
Executive Summary 
The main objective of the ADAPTEAM project is to investigate and develop new 
techniques for Agent Adaptation in multi-agent systems. Such techniques must deal with 
the problems of team representation for agile organizational changes, collaboration 
among teammates for best knowledge sharing and task distribution, monitoring and 
detecting deficiencies in team performance, and rectifying and improving team 
knowledge and organizational structures. These techniques are best for agents that must 
perform complex tasks in environments that are dynamic and uncertain. 

To solve the above challenging research problems, the ADAPTEAM project has made 
substantial progress in the past three years (07/97-03/01), and accomplished the following 
milestones: 

1. Developed a graph representation for agent teams, where an adaptable 
organization is represented by roles (nodes), role-relationships (edges), and role- 
assignment (task distribution). With this representation, the process of team 
adaptation can be formalized as a process of searching for the best graph in a 
graph space where the evaluation criteria are based on the team performance. 

2. Developed a negotiation technique for detecting and resolving conflict and 
inconsistent beliefs among agents. This investigation has inspired a new research 
project called DYNAMITE in the Autonomous Negotiating Targets (ANT) 
program in DARPA/ITO. 

3. Developed a distributed technique for monitoring team performance by individual 
agents. In this technique, the monitoring problem is classified as a problem of 
Socially Attentive Monitoring, and a distributed algorithm is developed and 
shown to be sound and complete. This is a property that has not yet been shown 
for any centralized monitoring algorithms. A PhD dissertation has written by Dr. 
Kaminka and its title is "Execution monitoring in multi-agent environments", 
which can be obtained in http://www.cs.cmu.edu/~galk/Publications. 

4. Developed a distributed technique for dynamic task re-allocation and 
experimented this technique in the formalization of distributed constraint 
satisfaction problems. The developed algorithm can dynamically modify the 
structure of an organization by changing roles, role-relationship, and role- 
assignment. Performance of this algorithm has demonstrated that an organization 
can be dynamically adapted to team performance. 

5. Invented a biological inspired technique called "Digital Hormones" for solving 
the scalable and distributed control problem for self-reconfigurable systems. This 
technique has a number of unique properties similar to the biological hormone 
counterparts, and has been successfully applied to metamorphic robotics systems. 
A US Patent Disclosure (USC File# 3157) has been applied for this technique. 

The personnel supported by this project include the faculty members Dr. Wei-Min Shen 
(PI) and Dr. Milind Tambe (Co-PI), and graduate students: Zhun Qiu (07/97-12/98, 
completed MS in USC Computer Science), Behnam Salemi (07/97-03/99), Hyuckchul 
Jung (01/99 to 08/99), and Gal Kaminka (09/99-06/01, complete PhD in USC Computer 
Science). 
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1 OBJECTIVE 
The main objective of the ADAPTEAM project is to investigate and develop new techniques for 
Agent Adaptation in multi-agent systems. Such techniques must deal with the problems of team 
representation for agile organizational changes, collaboration among teammates for best knowledge 
sharing and task distribution, monitoring and detecting deficiencies in team performance, and 
rectifying and improving team knowledge and organizational structures. These techniques are best 
for agents that must perform complex tasks in environments that are dynamic and uncertain. In this 
research project, we have focused our efforts on the following fundamental research issues for 
agent team adaptation: 

1. Compared to individual agent adaptation, what are the special aspects for team adaptation? 
How to represent the concept of team organization so that it is effective and efficient for 
adaptation? 

2. How do agents share information among themselves so that they can detect, diagnose, and 
resolve conflicts and inconsistencies among their knowledge bases? Does negotiation play 
any critical role in this process, if so, how? 

3. How do individual agents monitor the team performance so that any deviation from the 
team plan can be detected timely, accurately, and in a distributed manner? 

4. How do teammates dynamically redistribute tasks among themselves according to their 
capabilities, workloads, and team performance in the process of problem solving? 

5. How can team adaptation be accomplished without any fixed leaders so that no individual 
agent failures can paralyze the entire team, and that reorganization can be scaled up to large 
systems without requiring agents to have global knowledge about the organization? For this 
task, what can we learn from biological systems where cells seem to accomplish many 
complex tasks without global knowledge? 

2 STATUS OF EFFORT 
To solve the above challenging research problems, the ADAPTEAM project has made substantial 
progress in the past three years (07/97-03/01), and accomplished the following milestones: 

1. Developed a graph representation for agent teams, where an adaptable organization is 
represented by roles (nodes), role-relationships (edges), and role-assignment (task 
distribution). With this representation, the process of team adaptation can be formalized as a 
process of searching for the best graph in a graph space where the evaluation criteria are 
based on the team performance. 

2. Developed a negotiation technique for detecting and resolving conflict and inconsistent 
beliefs among agents. This investigation has inspired a new research project called 
DYNAMITE in the Autonomous Negotiating Targets (ANT) program in DARPA/ITO. 

3. Developed a distributed technique for monitoring team performance by individual agents. In 
this technique, the monitoring problem is classified as a problem of Socially Attentive 
Monitoring, and a distributed algorithm is developed and shown to be sound and complete. 
This is a property that has not yet been shown for any centralized monitoring algorithms. A 
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PhD dissertation has been written on the subject, and the thesis can be obtained in 
http://www.cs.cmu.edu/~galk/Publications. 

4. Developed a distributed technique for dynamic task re-allocation and experimented this 
technique in the formalization of distributed constraint satisfaction problems. The 
developed algorithm can dynamically modify the structure of an organization by changing 
roles, role-relationship, and role-assignment. Performance of this algorithm has 
demonstrated that an organization can be dynamically adapted to team performance. 

5. Invented a biological inspired technique called "Digital Hormones" for solving the scalable 
and distributed control problem self-reconfigurable systems. This technique has a number of 
unique properties inspired from the biological hormone counterparts, and has been 
successfully applied to metamorphic robotics systems. A US Patent Disclosure (USC File# 
3157) has been applied for this technique. 

3    ACCOMPLISHMENTS AND NEW FINDINGS 

j. 1   Properties and Representations of Team Adaptation (GFY98) 

In order to accomplish tasks and missions that require collaborative effort in a real-world situation 
that is dynamic and uncertain, a group of individual agents must adapt and learn as a team. 
Although the notion of "team learning" clearly implies more than a collection of individual learning 
agents, the precise difference between team learning and single-agent learning remains an open 
problem. 

In pursuing our objective to build adaptive agent teams, we have analyzed many learning 
architectures, and proposed a definition of team learning based on the notion of "roles" and 
"assignments". A role is defined as responsibilities in service of a team plan, and an assignment 
assigns members of a team to the roles. For example, in a team plan of leader-follower formation 
flight of two URAVs (Unmanned Reconnaissance Air Vehicles), the role of the leader may be 
specified as following a path, while the role of the follower is specified as following the leader. 
With these two roles, there are two possible assignment for the two URAVs. 

Given these concepts, team learning can be performed in at least four aspects to continually 
improve team performance: (1) to improve an individual's ability to perform a role; (2) to change 
member/role assignment; (3) to modify roles themselves (such as create, delete, change roles); and 
(4) to modify the team plan by changing the interactions between roles. In our two URAV 
example, the first two aspects are obvious. For the third aspect, the team may learn to change the 
leader role to maintain contact with the follower. For the fourth aspect, the team may learn to 
change the distance to be maintained between two URAVs. In contrast, non-team learning (or 
single-agent learning) covers only the first of the four aspects of team learning. 

fo operationalize this definition, we have developed a new representation called Partial 
Organizational Structure (POS) based on the concept of Cooperation Structure proposed by 
d'Inverno, Luck and Wooldridge (UCAI 1997). A POS is acyclic graph where nodes are roles and 
edges are relationship between roles. Each node is also labeled with an agent identifier to specify 
the role assignment. A POS graph is "partial" in the sense that it may only provides a local view of 
the team activities. In a context of team, each agent produces and executes its own POS. Based on 
the feedback at the team level, all agents will modify their own POS such that the composition of 
all POS will converge towards a better performance at the team level. The novel aspect of POS is 
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that it separates roles from agents and allows richer relationships between roles. Furthermore, it 
uses team performance as a measurement of the structure and permits adaptation in a distributed 
fashion. To address the problem how a set of POS can be modified to produce a better global 
measurement, we are also investigating Pareto Rationality as a negotiation strategy. 

We are currently implementing this POS framework and testing it on three domains: manufacture 
scheduling where agents may dynamically change their roles according to the output of an 
assembling line, marching-band formation where agents have to learn role assignment and role 
relationship in order to improve the quality of the formation, and helicopter engage attack where 
agents must synchronize their activities. Limited applications are also considered in the RoboCup 
domain, where a team of agents must perform in a highly dynamic, uncertain, and adversarial 
environment. 

3.2   Reconcile Conflicts during Collaboration (GFY98) 

A major issue in multi-agent teamwork is detecting, diagnosing and resolving conflicts and 
inconsistencies. We have divided up this problem in two phases: (i) monitoring and diagnosing 
conflicts; and (ii) collaborative negotiations to resolve conflicts. Guided by our previous experience 
in multi-agent implementations in complex, real-world domains (e.g., battlefield simulations), we 
have pursued novel approaches in addressing both these problems. In pursuing these approaches, 
we have built on our previous work on "model-based teamwork". Such models are essentially 
common-sense, first-principles rules of teamwork, that provide flexibility in agent behaviors in 
teamwork. 

Conflicts arise in teamwork due to a variety of reasons. In particular, each agent in a multi-agent 
domain has (i) a local view of the environment, or (ii) a local interpretation based on a local context 
of the events around ft, or (iii) local actions that cannot possibly consider all possible global 
interactions with other agents. As an example, in battlefield simulations, if a message was lost due 
to radio-interference, the sender would continue to believe that the message was sent, and the 
receiver would continue to believe that the message was never sent, leading to a conflict of beliefs. 

With respect to monitoring and diagnosis of such conflicts, the novel aspect of our approach is its 
use of social comparison. This is a complementary approach to standard monitoring techniques 
where users provide monitoring conditions. In particular, here an agent compares own behavior 
with those of its teammates, to detect differences. (Here, other agents' behaviors are here often 
inferred via plan-recognition based on observations of low-level actions.) Behavior differences, 
while not guarantees of conflicts, triggers a detailed diagnosis that can either explain the difference 
as legitimate, or else a possible conflict. This novel approach to monitoring has been implemented 
in the context of battlefield simulations, in a system called SAM (socially-attentive monitoring). 

With respect to negotiation, our initial approach was to borrow from game-theory, often used in 
multi-agent environments, although in the context of self-interested (i.e., self-utility-maximizing) 
agents. However, this approach failed for a variety of reasons. First, solutions appropriate for self- 
interested agents are many times inappropriate for a team of agents, where the collective utility is 
more important than any individual utility. Second, game-theoretic approaches focus on global 
frameworks or rules of encounter (e.g., vickery auction mechanism) that ensure particular desirable 
behaviors on part of the agents, such as non-deceptive bids in auctions. However, they do not focus 
on building agents that can negotiate effectively. More importantly, in teamwork settings, conflicts 
often center on conflicts of beliefs. Thus, teammates often need to be persuaded to change their 
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beliefs. This issue is not addressed in game-theoretic settings; indeed, due to the possibility of 
deception, such persuasion is discouraged in self-interested agents. 

We have instead followed an alternative approach, that we call negotiation via argumentation. 
Essentially, agents explain or argue their positions to their teammates. Teammates may accept such 
explanations or counter-argue, and via this process of argumentation agents may arrive at a 
resolution of their conflict. Argumentation is a well-studied topic in philosophy, and we are 
building on Toulmin's argumentation schema (Toulmin, 58). A key problem in such argumentation 
is devising the rules via which agents may argue with each other. Here, a novel aspect of our work 
is to rely on our previous research model-based teamwork. In particular, common-sense rules of 
teamwork from teamwork models are used as a basis for generating arguments. Another novel 
aspect of our work is that it takes real-time negotiation costs into account. Thus, agents will not 
engage in protracted negotiations, if the cost of negotiations exceeds its benefits. Based on this 
approach to negotiation, we have begun to build a system called CONSA, and are currently 
applying CONSA in battlefield simulations. 

3.3   Detecting and Resolving Conflicts during Collaboration (GFY99) 

In GFY99, we have built on our research from GFY'98, and continued to focus on issues of 
detecting and resolving conflicts in multi-agent systems, particularly in agent systems built to 
operate as teams. Recent advances in teamwork, particularly in the form of recently developed 
teamwork models, that explicitly outline agents' commitments and responsibilities in teamwork, 
have significantly improved the flexibility in teamwork coordination and communication. 
However, this research has so far not fully addressed the challenge of resolving conflicts within a 
team, because team members are by design, not anticipated to enter into such conflicts. 

Yet, as agent applications advance to meet the requirements of scale and autonomy, inter-agent 
conflicts become increasingly inevitable. For instance, while autonomously reacting to dynamic 
events, agents may be unable to obtain relevant information from others, thus unintentionally 
interfering in others' actions or plans. Similarly, agents' faulty sensors may provide them with 
conflicting information, or their local contexts may lead them to conflicting inferences. While such 
conflict resolution is a difficult challenge in general, it is even more problematic in teams, precisely 
because intra-team conflicts are not anticipated. 

As mentioned in the last year's report, the challenges here are two-fold: (i) detecting conflicts in 
teams; (ii) resolving detected conflicts. In detecting conflicts, we have been building on the 
socially-attentive monitoring approach that we mentioned in last year's report. In this approach, 
agents use plan recognition to monitor their teammates and detect conflicts by noticing differences 
with teammates in areas where agreement is assumed mandatory (Plan recognition is used to avoid 
reliance on communications). Since in our work, socially-attentive monitoring relies on plan- 
recognition, it must address the problem of uncertainty in plan-recogmt'on. In particular, agents' 
actions can be ambiguous in that several interpretations are possible, and thus inferences based on 
them may not be accurate. Here, we have experimented with several different plan-recognition 
algorithms for socially-attentive monitoring. A major result of our investigation is that a simpler 
plan-recognition algorithm, that does not explicitly represent the ambiguity in plan-recognition can 
lead to better socially-attentive monitoring (when employed in a distributed fashion), than a more 
complex plan-recognition algorithm that does explicitly represent ambiguity but operates in a 
centralized fashion. We have been able to show this result experimentally, and prove the result 
theoretically.  Thus, the distributed algorithm is shown to be sound and complete, but the 
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centralized one is either incomplete or unsound. We have also been able to identify a key property 
of agent teams that enable the distributed socially-attentive monitoring technique to provide 
guarantees of soundness and completeness. 

In terms of resolving conflicts in teams, teams, we are developing a system called CONSA 
(Collaborative Negotiation System based on Argumentation). In recent years, there has been a 
growing interest in argumentation-based conflict-resolution in multi-agents (although outside of the 
context of teamwork research). In this approach, agents negotiate by providing arguments (which 
may be justifications or elaborations) in support of their proposals to one another. CONSA builds 
on this past work, significantly advancing the state of the art in several ways, as outlined below. 

One key insight in CONSA is to fully exploit the benefits of argumentation in a team setting. 
Several novel sets of ideas stem from this insight. First, CONSA can turn the tables on conflict 
resolution, by casting it as a team problem. That is, when an agent detects a conflict, it argues for 
the establishment of a common team goal to resolve this conflict. Subsequently, all relevant team 
members participate in this conflict resolution via argumentation. Thus, the team members 
explicitly recognize conflict resolution as a common team goal, accepting compromises in their 
team's, rather than their own interest. More imrcxtantly, all of the recent advances in flexible 
teamwork — e.g., based on teamwork models - are now fully brought to bear to guide agent 
behavior during conflict resolution. This significantly improves negotiation flexibility. For 
instance, if a team member privately discovers an event that resolves the current team conflict, it 
will be automatically committed to informing its team members — it will not just withdraw 
privately from negotiations. Additionally, with an explicit common team goal, novel argumentation 
strategies emerge, e.g., agents will not solely focus on refuting teammates' arguments, but they 
may even attempt to improve the quality of teammates' arguments. 

A second novel idea tfiat exploits the above insight of team argumentation is as follows: Team 
conflicts are often rooted in past teamwork. To argue effectively about teamwork, agents must be 
knowledgeable about teamwork. Here, CONSA exploits the general teamwork models mentioned 
earlier in a novel way, i.e., not as a guide to own behavior during conflict-resolution, but as a 
source for CONSA's domain-independent argumentation knowledge—so developers need not 
engineer argumentation knowledge from scratch each time. 

CONSA also differs in other important ways from previous work. CONSA is integrated within 
existing agent teams performing tasks in dynamic, complex environments. Thus, practical issues, 
such as minimizing the resources consumed in negotiations, meeting real-time deadlines are critical 
in its implementation. To this end, CONSA performs decision-theoretic cost-benefit analysis of 
negotiation, so that in some cases, agents may tolerate the conflict to avoid costly negotiations. 
Argument ordering and pruning is also used for negotiation efficiency. 

3.4   Agent Organizational Learning for Better Team Performance (GFY99) 

In GFY99, we built on our earlier results and represent Agent Organization (AO) as a set of roles, 
role relationships, and role assignments, and we had formalized the problem Agent Organizational 
Learning (AOL) as an adaptive process that changes the three aspects of an organization: 

(1) the role structures (such as creation, deletion, and modification of roles); 

(2) the relationships between roles; 

(3) the assignment of agents to roles. 
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We have implemented these definitions and experimented the system in several domains. Based on 
the above definitions, the structure of an organization is not maintained by any single agent but 
distributed into the set of roles in the organization. Each role uses a Partial Organizational Structure 
(POS) to represent the part of the organization that it is aware of. A POS is a graph where nodes are 
roles and edges are role-relationship. A POS graph is "partial" because it only provides some 
partial information about the organization from a role's local point of view. In addition to POS, a 
role also contains a Controller for manipulating the POS, and a Communicator to communicate 
with other roles that it has a relationship with. The assignment between a role and an agent is 
established by a direct communication link through which the role can issue action commands the 
assigned agent and receive information from the agent. 

Compared to the previous work in Economic Organizational Learning (EOL), the research in Agent 
Organizational Learning has some unique concerns. In EOL, learning is viewed as a process to 
select and discriminate a set of "routines" (equivalent to our "roles" at a high level) based on 
experience (Levitt and March 1988). In AOL, we must adapt not only the roles but also the 
relationships between roles. Furthermore, in EOL there is no concern about the assignment between 
routines and actors (for all actors are assumed to be humans), whereas in AOL different role-agent 
assignment would result, in very different organizational performance because agents by design 
have different capabilities. 

We have implemented the above ideas in a JAVA system called ORBLE that can dynamically 
change an agent organization based on the performance of the organization. The existing ORBEL 
system can modify role-relationship and role assignment in an organization. (We are actively 
working on role modification as well). The assumptions we made for the ORBEL system are that 
(.1) the organization has only pair-wise role-relationships, (2)' there is no "sabotage" roles in the 
organization, (3) organizational performance is an additive function of individual performance, and 
(4) no single agent has the complete knowledge about the organization. The ORBLE system 
consists of a set of (independent) roles and each role maintains its own POS. In a POS, all role- 
relationships have a "degree of deviation from expectation" (DDE) which records how well a 
particular relationship meets its performance criteria. For each role, there is one role-relationship 
marked as "active", and the objective of ORBLE is to have all roles to converge to a stable set of 
active relationships that provide the best possible performance at the organizational level. This 
converge process is guided by the external feedback as follows. Initially, all DDE = 0 for all role- 
relationships, and each role randomly marks one of its role-relationships as "active." Then, each 
role will improve its active role-relationship by asking its assigned agent to perform some selected 
actions. After these actions, the role will re-compute the DDE value for all its role-relationships, 
and set the highest DDE role-relationship to be active and continue to improve that role- 
relationship. As this process iterates, the set of active role-relationships will become stable and the 
performance of the organization will improve. 

We have experimented ROBLE in two different domains: a marching band example, and a set of 
transportation problems in Linear Programming. In the marching band example, a team of agents is 
to form an organization for marching in a formation. The team performance is measured by the sum 
of distance discrepancies between adjacent agents with respect to a given constant. (For example, in 
a given formation, the distance between any two adjacent agents must be maintained at 1 meter.) 
The agents can move forward and turn left or right, and can measure the distance to any agent in 
sight. The agents, however, may have different moving speed and may choose different adjacent 
agents to maintain distances. Since the initial organization may be arbitrary, the initial marching 
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performance could be very poor. Using the ORBLE system, these marching agents can improve 
their organization (by selecting and maintaining active role-relationships) based on the team 
performance. In the experiments we have simulated in the JAVE system, the agents always 
converge to a stable organization for a good marching formation. For example, in one good final 
organization all agents in a row are aligned to their left agent, and the left-most agent aligns itself to 
the left-most agent in the front row. 

In the transportation domain, we assume that a set of transportation agent must form the most cost- 
effective organization to transport products from a set of sources to a set of destinations. There is a 
cost associated with each route between a source and a destination and the performance of this 
organization is measured by the total cost to ship a set of given products from sources to 
destinations. We assume that each source is managed by an agent, and so is each destination. 
Furthermore, each agent only knows its local cost constraints, and each agent performs its actions 
based on local costs, and communicates with other agents with a set of "wishes". For example, 
agent X may communicate with Y saying that if "I can ship you N more units of products, then it 
will save me (thus the entire organization) M units of cost." Starting from a random organization 
(i.e. a set of randomly selected routes and shipments), the objective of this problem is to find a set 
of role-relationships (route and shipment) that give the best performance for the entire organization. 
iSotice that these agents are not selfish, and some of them must sacrifice their own benefits in order 
to gain a better organization performance. Among the experiments we did in this domain, ORBLE 
is able to find the oprimal organization for some problems (i.e., the result is the same as that 
computed by a centralized Simplex algorithm when a global view is given). We are currently 
analyzing these results and investigating if such results can be reached for all problems in this 
domain. 

To change role assignment in an organization, ORBLE uses a simple approach. During the learning 
process, ORBLE checks if any role's commands have exceeded its assigned agent's capability. For 
example, a marching agent may be repeatedly asked by its role to increase its speed even though 
the agent has reached its max speed. Such a case also arises when the agent is damaged and its 
performance cannot keep up with the commands sent by its role. In these cases, ORBLE will search 
among all the known agents and seek a more capable agent who is doing a less demanding job, and 
switch the role assignment between the two. 

We are currently extending this organizational learning approach in two major directions. First, we 
are developing new ideas to allow the learning algorithm to change role structures (such as 
creating, deleting, composing, and decomposing roles) and deal with more complex learning tasks 
for role-relationship and role assignment. Second, we are generalizing the algorithm to solve more 
organizational learning problems in other domains. One very interesting application is self- 
configurable robots, where a dynamically connected robot modules must work together to change 
shape and size of the overall robot in order to solve the tasks in hand. Such metamorphic robots are 
highly desirable in tasks such as fire fighting, search and rescue after an earthquake, and battlefield 
reconnaissance, where robots must go through unexpected situations and obstacles and perform 
tasks that are difficult for fixed-shape robots. For example, to maneuver through a difficult terrain, 
a metamorphic robot may become a snake to pass a narrow passage, grow a few legs to climb over 
an obstacle, or roll down a slope as a ball. Similarly, to enter a room through a closed door, a self- 
configurable robot may disassemble itself into a set of smaller units, crawl under the door, and then 
reassemble itself in the room. To rescue a child trapped deep in rubble in an earthquake, a set of 
small robots may form a large structure to carry cooperatively an oxygen cylinder that is too heavy 
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for any individual robot. We have recently completed the construction of 20 of these robot 
modules, and we are designing experiments of organizational learning on these modules. 

3.5 Performance Monitoring in Multi-Agent Systems (GFY00) 

One of the major successes of the AFOSR grant for FY'OO was the successful doctorol thesis 
defense of Dr. Gal Kaminka, who was supported by this grant. Dr. Kaminka's PhD thesis was 
entitled "Execution monitoring in multi-agent environments", which he defened in May 2000. Dr. 
Kaminka is currently a post-doctoral fellow at the school of computer science at Carnegie Mellon 
University. A copy of this thesis can be obtained at http://www.cs.cmu.edu/~galk/Publications. 

Our research in FY'OO, which was part of Dr. Kaminka's thesis, focused on monitoring agent 
teams. In particular, we focused on the role of plan-recognition in addressing the monitoring 
selectivity problem. While agents in a team must monitor teammates to ensure effective team 
performance (referred to as socially attentive monitoring), monitoring all their teammates all the 
time can be overwhelming for any individual agent. It is thus critical to develop algorithms that 
enable agents to selectively monitor teammates, yet provide some guarantees on detecting failures 
in teamwork. Towards this end, we devised plan-recognition-based distributed monitoring 
algorithms that provided guarantees of sound and complete failure detection. Interestingly, in these 
algorithms, agents only monitored some key teammates, thus ensuring high monitoring selectivity. 
We illustrated that such distributed algorithms outperformed much more complex centralized plan- 
recognition-based monitoring algorithms, which monitored all teammates, and yet were unable to 
provide similar soundness and completeness guarantees for failure detection. This research was 
published in the following article: G. Kaminka and M. Tambe, "Robust agent teams via socially 
attentive monitoring," Journal of Artificial Intelligence Research (JAIR), 12:105-147, 2000. 

Further extension of the plan-recognition-based monitoring work focused on monitoring teams 
based on agents' communications with each other. The key here is to provide information about 
agent teams' current state based on their on-going communications. This technique is applicable in 
situations where agents are themselves unable to provide detailed information about their own state 
to a monitoring agent. For instance, consider deployed agent applications. Here, it is difficult to 
change existing agent code to cause agents to report their state to a monitoring agent — indeed 
legacy code is notoriously difficult to modify. Furthermore, as is well recognized in the literature, 
agents' continuous communication in all states leads to significant scale-up difficulties (hence, 
once again, we need to address monitoring selectivity problem). Monitoring based on agents' 
routine communications avoids such difficulties, and that is the method we adopted. However, 
routine communications are often sparse—they create significant ambiguities that a monitoring 
agent must address. We have built a new plan-recognition algorithm to address these difficulties. 
One key idea to address ambiguities was to exploit the fact that a team is more than a collection of 
individuals. That is, a team of agents will tend to work together, in agreement, on joint goals. The 
algorithm we developed was implemented and tested on a working application, and it showed on 
average 84% accuracy in monitoring agents' state. For comparison, a naive algorithm that did not 
exploit teamwork ideas had a low 10% accuracy in the same application. 

3.6 Dynamic and Distributed Task Re-Allocations (GFY00) 

Self-organization (also known as adaptive organization, organizational self-design, or 
organizational learning) is one of the fundamental problems in multi-agent systems. It is about how 
autonomous agents organize themselves into a collaborative structure and adapt such a structure for 
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better performance. This ability is extremely important for distributed systems that have multiple 
autonomous agents. One example of such systems would be a group of unmanned air vehicles in a 
search and rescue mission in an adversarial territory. Any static organization, no matter how 
cleverly designed beforehand, cannot couple with the dynamics and uncertainties encountered in 
the real world. 

One of the main difficulties in self-organization is that the objective and the feedback are not at the 
same granularity level. An organization's performance is typically evaluated at the global level, yet 
its modification is mostly distributed to local and individual agents. Previous research tackles this 
problem with different assumptions. For top-down approaches such as (So and Durfee 1993), it is 
common to assume that there is an analytical model for bridging the two levels, and thus the best 
organization could be found by static analysis of the performance model without execution. This is 
also true for approaches that are based on agent coalition formation (Shehory and Kraus 1996), 
where the values of coalitions are assumed to be computable before the execution of the 
organization. On the other hand, for bottom-up approaches to self-organization such as (Ishida, 
Gasser, and Yokoo 1992), it is assumed that agents have universal capabilities (i.e., every agent can 
handle every subtask) and the population of agents can be changed arbitrarily when adapting the 
organization to the environmental change. 

In addition to the granularity discrepancy problem, self-organization is also a very diverse natural 
phenomenon, and it is difficult to give a coherent and general definition. Many different definitions 
exist in the literature. For example, (Durfee, Lesser, and Corkill 1989) defines an organization as a 
set of problem solvers with "information and control relationships." Ishida, Gasser, and Yokoo 
(1992) describe an organization as a set of production systems with shared variables. (Levitt and 
March 1988) describe an organization as a set of "routines"1. (So and Durfee 1993) models an 
organization as a task dependent structure that includes the task units to be done, the participating 
(universally capable) agents, an assignment of the tasks to the agents, and a workflow structure 
dictates the task distribution and result assembly. Most of these definitions, although they provide 
valuable case studies, are not completely operational for execution. 

One way to address the problem of granularity discrepancy and the lack of a general definition is to 
realize that agents have limited resources and heterogeneous capabilities, and that the feedback 
from execution must be utilized in searching for a better organization. For this purpose, this paper 
defines an organization as an assignment of agents to a task-specific role-graph and defines self- 
organization as the optimization of agent assignment in the context of distributed constraint 
satisfaction problems. 

In a role-graph, a role node is a set of obligations (or subtasks) for the given task, and a role- 
relationship edge is a commitment between roles to communicate certain types of information 
(such as subtasks, solutions, actions, or data). This representation separates the role requirement 
from the agents' capabilities, and makes the assignment of agents to ^oles an essential task in 
organization. As we will see later, since agents are allowed to traHe their obligations, the 
assignment task can essentially affect almost all aspects of an organization, including the structure 
of the role graph and the directions of information flow between agents. With this representation, 
self-organization is a team-learning process for creating and adapting a role-graph and searching 
for an optimal assignment of agents to the graph such that a given task can be solved most 
effectively and efficiently. 
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3.6.1   Dynamic and Distributed Task Re-Allocation for DCSP 
To study self-organization in a domain-independent fashion, it is necessary to ground the research 
on a rigorous computational foundation that is domain-independent and decomposable among 
multiple agents. Examples of such foundations include Distributed Constraint Satisfaction 
Problems (DCSP), Distributed Bayesian Networks, Contract Nets, and Graphical Models (Jordan 
1998). In this paper, we shall focus on DCSP to investigate the feasibility of the approach. 

A Constraint Satisfaction Problem (CSP) is commonly defined as assigning values to a list of 
variables Ffrom a respective list of domains D such that a set of constraints C over the variables is 
satisfied. For example, we can define an example CSP, as follows: V=(x,,x2,x3), D=({1,2}, {2}, 
{1,2}), and C={(xi*x3), (x2*x3)}. Then a solution for CSP, is (x,,x2,x3)=(2, 2, 1). A distributed CSP 
is a CSP in which V, D, and C are distributed among multiple agents. A DCSP is solved if each 
agent solves its local portion of the CSP and the collection of all local solutions is a solution to the 
CSP. For instance, we can partition the above example into two parts: {Vl=(x,,x2), £>7=({1,2},{2}), 
Cl={(x,*x3)}} and {V2=(x3), D2=({1,2}), C2={(x2*x3)}}, and assign them to two agents 
respectively. Then, a solution to the DCSP is (x,,x2)=(2,2), and (x3)=(l). In the standard DCSP, 
however, self-organization is not an issue because *\z assignment between agents and variables are 
assumed to be given and static. 

To generalize DCSP to address the self-organization problem, we introduce that (1) every variable 
has a set of required capabilities, (2) every constraint has two obligations: the initiator and the 
accommodator, and (3) there is a set of heterogeneous agents that collectively possess all the 
required capabilities. For any given constraint that links two variables, the obligation of the initiator 
is to select a value for its variable and pass the value to the accommodator. The obligation of the 
accommodator is to adjust the value of its variable so that it satisfies the constraint with the 
initiator's value. * 

Formally, the problem of self-organization for DCSP can be defined as a tuple (V, R, D, C, A), 
where V is a list of variables, R a list of capabilities required by the variables, D a list of value 
domains for the variables, C a set constraints, and A a set of agents with heterogeneous capabilities. 
The goal of this problem is to find an assignment A<^{V,C) that is both complete and optimal. An 
assignment is complete if every variable and every constraint obligation is assigned to a qualified 
agent and no single capability is assigned to more than one variable simultaneously. An agent is 
qualified for a variable if the agent possesses the necessary capabilities required by the variable. An 
assignment is optimal if it enables the given DCSP to be solved with the minimal cost among all 
possible assignments. The cost can be measured in a number of different ways, including the total 
number of messages sent between agents (or variables), or the sum of computational time 
consumed by the participating agents. 

To illustrate the above definitions, we can extend our CSP, example to a self-organization problem 
SOCSP, as follows: V=(x,, x2, x3\ R=({c,}, {c2}, {c3}), D=({1,2}, {2}, {1,2}), C={(x,*x3), 
(x2*x3)}, and A={A,={c,, c2},A2={c2, c3}). Without lost of generality, we assume that each variable 
requires a unique capability so that capabilities can be represented by variables. With this 
simplification, R and A in the above example can be represented as R={{x,}, {x2}, {x3}) and 
A={A,={xi, x2},A2={x2, x3}). 

With the above definition, we can enumerate all possible organizations for a given self-organization 
problem by matching the qualification of agents with variables and constraints. In our current 
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example, there are eight possible agent assignments (or organizations) and they are listed in Table 

Table 1: Possible organizations for SOCSPi 

Agent Assignment (Organization) MR ML 

01: {Al:xl,x2UA2:x3h [xl-> x3 -» x2] 4.6 1.9 
02: {Al:xl,x2UA2:x3h [xl-> x3 <- \2] 4.2 2.0 
03: {Al:xl,x2},{A2:x3}, \\l<r x3 -> x21 4.1 2.1 
04: {Al:xl,x2},{A2:x3}Jxl<-x3 <r x2] 3.5 1.9 
05: {Al:xl},{A2:x2,x3}, [xl-> x3 -» x2] 4.0 2.2 
06: {Al:xl},{A2:x2,x3}Jxl->x3 <- x2] 3.8 2.0 
07: [Al:xl},{A2:x2,x3},[xl«-x3->x21 3.9 2.2 
08: {Al:xl},{A2:x2,x3},rxl^x3 <-x21 3.2 1.9 

The above organizational notion can be graphically represented in a Distributed Organizational 
Constraint Network (DOCN). In a DOCN, the nodes are the variables with required capabilities, 
the edges are the constraints, and the direction of an edge represents the obligation assignments for 
the constraint pointing fror" the initiator to the accommodator. A DOCN is complete and optimal if 
the agent assignment to tb ■ elements in the DOCN (nodes and edge directions) is complete and 
optimal. To illustrate tne representation of DOCN, Figure 1(a), 1(b), and 1(c) shows three 
organizations for SOCSP,: 01, 02, and 08, respectively. Note that 01 and 02 have the same 
variable assignment, {Al:xl,x2},{A2:x3}, but have different constraint obligation assignment for 
"x2*x3". In 01, Al is the accommodator and A2 the initiator, while in 02, Al is the initiator and 
A2 the accommodator. Shown in Figure 1(c), 08 has a totally different variable assignment from 
01 and 02; Al is assigned with xl, and A2 is assigned with x2and x3. 

Figure 1: DOCN examples for Ol, 02, and 08. 

Table 1 also lists the communication cost of each organization for solving the CSPi problem. The 
second column MR is the number of remote messages between agents and the third column ML is 
the number of local messages within agents. These numbers are obtained by using the 
Asynchronous Backtracking Algorithm (Yokoo et. al. 1998) to solve CSPh although other DCSP 
algorithms could also serve the same purpose. The measurements are the average for 10 trails with 
the initial value for the variables randomly determined. As we can see, 08 is the best organization 
for this example. This matches our intuition because xi and x2 are not linked by any constraint so 
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they are assigned to different agents^and x2 has the most restricted domain so it is assigned as the 
initiator. 

3.6.2  Self-Organization by Heuristic Search 
The above definition of self-organization implies that solving the problem requires a search in an 
enormous space for possible assignments between agents and DOCN elements (nodes and edge 
directions). This search can be done either exhaustively or heuristically. 

The basic idea for exhaustive search is quite simple. One can find the best organization by going 
through all possible organizations and returning the one that has the best performance. This search 
is complete because it guarantees to find the optimal organization. But the time complexity of this 
search makes it impractical to use. 

To find a practical solution for self-organization, we may use local search approaches to find an 
approximate of the best organization by incrementally improving the current organization based on 
the feedback of solving the given DCSP. To do so, we have to answer two questions: what are the 
actions for modifying an organization, and when to apply these actions so that they result in 
improvement. By definition, an organization can be modified by two actions: to trade variables 
between agents, and to trade constraint obligations between agents. We now discuss them in detail. 

Trading Variables between Agents 

In an organization for DCSP, an agent assignment actually corresponds to a partition of the given 
variables. Thus, trading variables between agents means altering the partition of the variables. 
When a variable x is reassigned from agent A to agent B, the roles and the role-relationships in the 
organization are also changed. This is because a role is a partition element (a set of variables), and a 
role-relationship is the set of constraints between two partition elements. By migrating x from A to 
B, the local links between x and other local variables in A will become remote links between x and 
A, while the remote links between x and B will become local in B. 

When should a variable x be traded from an agent A to an agent B? This depends on the remote 
communication cost of x with B (i.e., the total number of messages from x to the related variables 
in B) verses the local communication cost of x in A (i.e., the total number of messages from x to 
other variables of A). If the former is higher than the later, then it is better to move x from A to B 
because it will save remote communication cost of the organization. Here, we assume the cost of a 
remote message between agents is much higher than the cost of a local message within an agent. 
The above cost information is typically available in the process of solving a DCSP. Each agent will 
record the number of messages sent and received by its variable, and these numbers are then used 
to compute the variable's local and remote communication cost. 

Thv.s, to improve an organization based on trading variables between agents, we have the following 
"variable-trading" heuristic: 

• When a variable's remote communication cost is higher than its local communication cost, 
the variable should be migrated to the remote agent that is qualified for the variable and has 
the highest remote communication cost with the variable. 

Trading Constraint Obligations 

Trading constraint obligations between agents or variables is another way to modify an 
organization. In DOCN, this is equivalent to switching the direction of an edge. In an organization, 
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this action affects the direction of information flow between roles. This action can also affect the 
performance of an organization because it has been demonstrated in (Armstrong and Durfee 1997) 
that changes in the priority order among variables can influence the rate of problem solving in 
DCSP. In this case, switching edge direction is a special case of changing priorities of variables. 

To implement this action, however, we have to be careful that no loops of constraint should be 
formed in the new organization. For this consideration, we assume that every variable is assigned a 
global priority, and whenever an edge needs to switch direction, the two variables involved in the 
constraint will exchange their priority values. Notice that although this priority-switching action 
may cause more changes than switching the direction of a single edge, it does not introduce any 
new priorities for the variables, thus has less dramatic effects to an organization than the reaction of 
"nogood" used in (Yokoo, et. al. 1998). This finer modification helps to speed up the rate of finding 
a solution for DCSP, as we will see in the experimental section. The trigger of this action, however, 
is the same as the nogood situation in (Yokoo, et. al. 1998). Thus, to improve an organization based 
on constraint obligation switching, we have the following "priority-switch" heuristic (a relaxed 
version of constraint-obligation-switching): 

•    If an agent find a variable xk that has no consistent value, the agent will switch the priorities 
between xk and the inconsistent variable that has the highest priority. 

Notice that if both variables are in the same agent, the priority switch is local. Otherwise, it is 
between agents. 

3.6.3  The SOLO Algorithm 
In this section, we describe a self-organization algorithm called SOLO for finding the 'best' 
organization based on the local search heuristics defined above. Similar to many existing DCSP 
algorithms, the SOLO algorithm allows agents to negotiate by messages to find a solution for a 
given DCSP. Two types of messages are commonly used. An ok? message is sent when an agent is 
proposing a new value assignment for its local variable. A nogood message is sent when an 
accommodator agent finds it is impossible to adjust its local value assignment to satisfy a 
constraint. These messages, in the context of self-organization, will be extended to reflect the needs 
and opportunities for variable trading and priority switching. 

SOLO implements the variable-trade heuristic as follows. Whenever an agent Ai sends out an ok? 
message for a value update for a local variable x„ it also indicates its willingness to give away 
(giveAway?) the variable to the receiver. When the ok? message is received by an agent Aj that has 
the required capability for xh Aj will reply to Ai with an "interested" message. In an ideal situation, 
among all the "interested" agents, Ai should "release" xt to the agent that has the highest remote 
communication cost with x, so it can save the most remote communication cost for the organization. 
In practice, however, x, is released to the first interested agent because communications are- 
asynchronous and the giver agent cannot wait for all interested parties. Nevertheless, this action^ 
tends to gather variables that are heavily depending on each other (i.e., have more traffic) into the 
same agent, thus reduce the total remote communication in the organization. 

The priority-switch heuristic is implemented as follows. Whenever an agent checks its variables 
and finds a local variable xk that has no consistent value, it searches for the inconsistent variable xh 

that has the highest priority, and then switches the priorities between xk and xh. This action is 
different from Yokoo's heuristic for priority updating (Yokoo, et. al. 1998) because no new priority 
is created and the resulted change in the organization is much more local. 
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when received (ok?, (Aj, xj, dj, priority, eiveAwav?)) do 
add (Aj, xj, dj, priority) to agentView; 
if (eiveAwav"} && (hasReguiredCapabilityfa)) then 

sendCinterested. AL Ai. xi): 
when agentView and currentAssignments are not consistent do 

checkAgentView; 
end do; end do; 

when received (nogood jcj ,nogood) do 
add nogood to the nogoodhist 
when (xk, dk, priority) is contained in the nogood 

where xk is not in the neighbors do 
add xk to neighbors, 
add (Ak, xk, dk, prority) to agentView; end do; 

checkAgentView; 
end do; 

when received (interested. Ai. xi) do 
if xi is in the possessedVariablesList then 

delete xi from possessedVariablesList; 
send (release, (xi. di. priority)); end if 

end do; 

when received (release, (xi. di. priority)) do 
add xi to possessedVariablesList: 
annouce the new ownership of xi to the neighbors: 

end do; 
k 

procedure checkAgentView 
if agentView and currentAssignments are consistent then 

for each xi that has a new value d do 
for each agent Ak that has a constraint with;» do 

eiveAwavl = CommCostfa,/4fc')>localCornrnCostto)): 
send (ok?. (Ai. xi. d. currentPrioritv(xi). eiveAwav?)): 

else select** from possessedVariablesList, which has the 
highest priority and violating some constraint 
with higher priority variables; 
if no value in Dk is consistent with 

agentView and currentAssignments then 
record and communicate a nogood, i.e., the subset 

of agentView and currentAssignments where 
xk has no consistent value; 

when the obtained nogood is new do 
switch the priorities between xt and the inconsistent 
variable that has the highest priority in the nogood: 
xk- d; where de. Dk and dminimizes the number 

of violations with lower priority variables; 
checkAgentView; end do; 

else xk = d; where d e Dk and d is consistent with 
agentView and currentAssignments and minimizes 
the number of violations with lower priority variables; 
checkAgentView; end if; end if; 

Figure 2: The SOLO Algorithm 
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Figure 2 illustrates SOLO's procedures for receiving messages such as ok?, nogood, interested, and 
release, and for checking local agent views. The lines that are related to organizational 
modification are underlined for better legibility. We assume the algorithm starts with an initial 
agent-variable assignment and variable-priority assignment determined randomly. Each agent 
assigns values to its local variables, and sends ok? messages to all related accommodator agents. 
After that, agents wait and respond to incoming messages. When an ok? message about a variable x 
is received, the receiver agents will update its local view and send back an interested message if it 
is capable of and interested in possessing x. When an interested message for a variable x is 
received, the receiver agent will relinquish the variable (by deleting x from its local variable list) 
and replies with a release message. The receiver of the release message will add the variable to it 
local variables list and announce the new ownership by a set of ok? messages. 

To illustrate the SOLO algorithm in detail, let us consider our SOCSPj example again. We assume 
that the initial organization and values are chosen as in Figure 1(a). Each agent communicates these 
initial values via ok? messages. When Al sends an ok? message to A2 for xl's new value, it also 
indicates the willingness to give xl away (because xl's local communication cost in Al (0) is less 
than its remote communication cost with A2 (1). When A2 receives this ok? message, it updates the 
agentView but is not interested in xl because it does not have the required capability. After A2 
assigns a new value 2 to its local variable x3, ü sends an ok? message to Al (for Al is the 
accommodator of the constraint x3*x2). Al discovers that there is no consistent value for its local 
variable x2 to satisfy the constraint of x3*x2, so it performs the following actions. Al sends a 
nogood message {(x3=2)} to A2, switches the priority value of x2 with x3, selects a new value 2 
for x2, sends an ok? message to A2 to inform the priority switch and its willingness to give x2 
away. At this point, the organization is modified as shown in Figure 1(b). In this new organization, 
A2 sends out two messages: an interested message to Al for taking x2 (since it has the required 
capability for x2), and a nogood {(xl=l),(x2=2)} message to Al because it cannot find a consistent 
value for x3. After these messages, Al releases x2 to A2 and changes the value of xl to 2. This is a 
solution to the given DCSP and the final organization is shown in Figure 1(c). 

3.6.4  Experimental Results 
This section evaluates the effectiveness of the proposed heuristics and the implemented algorithm. 
For variable trading, we use a simpler version of SOLO, called SOLO-VT, where only the variable 
trading heuristic is included. We then compare the performance of SOLO-VT and SOLO-PS with 
the multi-AWC algorithm (Yokoo and Hirayama 1998) using the distributed 3-color problems. 

Given n variables, we first generate a random 3-color problem with 2.7« links (to ensure the 
difficulty of the problems). We then generate a set of m agents by randomly partitioning the 
capabilities (variables) into m even subsets. If the nlm is not an integer, then the remaining 
capabilities are assigned to the last agent. To make sure that agents have overlapping capabilities, 
we then expend each agent's capabilities by adding extra p%, randomly selected different 
capabilities. Notice that when p=0, no agents are able to trade variables, and SOLO-VT is then 
functionally equivalent to multi-AWC. 

Table 2 lists the results of running SOLO-VT with different number of variables (n), agents (m), 
and capability overlapping (p). Each data point in the table is the average for 50 randomly 
generated problem instances. The initial values of the variables in these trails are determined 
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randomly. To show the effects of variable trading, we have recorded the number remote and local 
messages, the cycles needed to solve the problem, and the number of variable trading. 

Table 2 : The Effects of Variable Trading 

nlm MAWC SOLO-VT 
P=0 p=30 p=60 p=90 

# of remote messages 
10/4 119.0 79.3 68.1 62.0 
10/8 265.1 186.7 137.4 200.8 
20/8 1004.7 2394.5 1111.7 593.2 

20/12 5729.7 3652.9 3038.3 1132.6 
30/10 2584.0 2269.4 2490.3 2343.2 
30/20 5969.4 7007.3 4236.4 348.9 
50/10 2948.9 3152.1 J 3446.1 3310.4 
100/20 6041.7 5920.6 5766.5 5718.1 

nlm # of local messages 
•'0/4 29.8 19.1 17.6 21.6 

1     10/8 17.8 25.3 19.6 35.4 
20/8 142.2 333.3 189.6 89.6 

20/12 412.4 379.8 409.2 143.9 
30/10 269.4 239.6 264.7 257.1 
30/20 176.7 329.6 293.6 19.4 
50/10 324.5 353.0 396.4 395.4 
100/20 311.5 329.1 333.3 350.3 

nlm # of cycles for solving DCSP 
10/4 29.8 19.1 17.6 21.6 
10/8 5.8 5.8 4.1 8.2 
20/8 20.8 44.6 33.5 16.5 

20/12 47.0 47.0 60.2 21.2 
30/10 26.7 27.4 31.8 32.1 
30/20 21.3 32.4 37.6 3.7 
50/10 34.0 39.7 39.8 41.9 
100/20 22.8 24.7 26.1 27.0 

nlm # of variable trading 
10/4 0.0 0.7 1.1 0.5 
10/8 0.0 0.0 2.5 2.0 
20/8 0.0 0.1 2.8 3.9 

20/12 0.0 3.7 5.0 4.9 
30/10 0.0 1.3 3.6 5.8 
30/20 0.0 7.0 8.0 6.6 
50/10 0.0 7.0 8.7 7.4 
100/20 0.0 7.2 9.9 10.8 

As we can see from the results, as the overlapping capability increases, more variables are traded 
between agents, less coiAmunication is needed between agents, and the rate of converge is faster 
(less cycles). In general, when agents have choices for what they do, self-organization allows them 
to solve the problem much more quickly than fixed organization. Interestingly, we notice that the 
savings in communication does not always go monotonically with the overlapping of capabilities. 
In the case m/n=20/8, we see an increase of communication at 30% of overlapping, before it goes 
down again. This may corresponds to some phase transactions in the complexity of self- 
organization. 
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Table 3: Comparison of SOLO-PS with multi-AWC 

nlm SOLO-PS Multi-AWC 
20/8 20.9/1183.4 21.2/1077.4 
30/10 25.4/2353.3 26.3/2548.8 
50/10 34.0/2408.6 34.2/2478.3 
100/20 29.8/5841.7 30.8/6041.7 

To evaluate the priority-switch heuristic, we use another version of SOLO, called SOLO-PS, where 
only the priority-switch heuristic is implemented. Table 3 lists the result of comparing SOLO-PS 
with multi-AWC for the rate of problem solving. Each data point contains the number 
cycles/checks to solve the problem. As we can see, SOLO-PS performance is not significantly 
different from multi-AWC, showing that the heuristic is functionally very close to the priority- 
updating heuristic used in multi-AWC. 

3.7   Hormone-Based Control for Self-Reconfigurable Systems (GFY01) 

3./1   M-Cell Organizations 
'To apply the concept of hormone to cooperative systems, we envision a set of autonomous agents 
or robots as an organization of cell-like components. We call these components m-cells to 
emphasize that they are autonomous mechanical/computional systems but they communicate and 
control each other via hormone-like signals. Abstractly, we will represent any multiple m-cell 
system as a graph or network of m-cells, with nodes being m-cells, and edges being communication 
links. Each m-cell has a set of potential communication link* that can dynamically connected to 
other m-cells. We assume that within each m-cell, the communication links can be uniquely 
identified locally. For example, a CONRO robot module (see http://www.isi.edu/conro) can be 
represented as an m-cell shown in Figure 3(a) that has four links, named as/(front), / (left), r 
(right), and b (back), respectively. 

Thus, a graph for a snake with four self-reconfigurable robot modules can be represented as a graph 
in Figure 3(b), a 6-legged insect in Figure 3(c), and a system with two separate robots with a 
remote communication link (dashed line) in Figure 3(d). For a system where all m-cells can 
broadcast signals to any other m-cells, the network of m-cells will be a completely connected 
graph. But in general, an organization of m-cells can be an arbitrary graph and m-cells can be 
different types (i.e., having different number and name of their local communication links). 
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Given the definition of m-cell organization, "hormones" are defined as signals that are currently 
active in the system. Computationally speaking, hormones are messages that are "propagating" in 
the m-cell network. A hormone can trigger different actions at different m-cells because the 
selection, execution and coordination of actions are determined locally by receiver m-cells. 
Formally, a hormone is a type of message that has three important properties: (1) it has no 
destination but propagates in an m-cell organization; (2) it has a lifetime; and (3) it can trigger 
different actions at different receiving m-cell. The actions caused by a hormone may include 
modification and relay of other hormones, execution of certain local actions, or just ignoring the 
received hormone. Different from the conventional message-passing computing paradigms, 
hormones do not have destination addresses or receiver identifiers, but contain data and action 
code. When a m-cell receives a hormone message, it will decide its actions completely depending 
on its local information and knowledge. This total autonomy of m-cells increases the robustness of 
the organization because even if certain m-cells are damaged, the organization may still function 
because other m-cells are still in working conditions. 
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Figure 3: Examples of M-Cell Organizations 

It is worthy to point out that hormones are different from broadcast messages or traditional content- 
based messages. Hormones are "propagated" signals that may be modified, delayed, or determined 
along the way of propagating from the source to the rest of the entire global system. In 
conventional message-passing protocols, messages are sent to certain destinations, and all receivers 
will obtain the same copy of the same message. Another difference is that when an m-cell receives 
a hormone from a link (called the inLink ofthat hormone), it must either propagate the hormone to 
all other links (called the outLinks ofthat hormone) or completely ignore it. If an m-cell generates a 
new hormone, it sends the hormone to all the links it has. In other words, m-cells have no 
mechanisms to "select" subsets of its local communication links when propagating a hormone. This 
property is similar to the communication protocols in artificial neural networks, but m-cells do not 
have fixed I/O links (i.e., every communication link can both receive and propagate hormones), and 
they have much more local authority than simple artificial neurons. 
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3.7.2  The Internal Structure of M-Cells 
The internal structure of an m-cell system in a hormone-based organization is shown in Figure 4. 
Each m-cell has a local decision engine that examines the hormone messages received from some 
of its communication links, and decides if any local actions should be taken on local devices or on 
these hormones. An m-cell's decisions for actions are totally dependent on the m-cell's local 
information and knowledge. Since m-cells may have different local state information, the same 
hormone message may cause different actions at different m-cells. This property of hormone can be 
exploited to implement a complex action plan as a single hormone. Actions that can be triggered by 
a hormone may include executing local actions or sensors, modifying local receptors or programs, 
generating new hormones, or modifying or terminating certain hormones. 

Hormones from 
the input links o LocaJ Engine 

/ \ 
Sensors & 
Actuators 

-► Local state 
Information 

Hormones to 
the output 
links 

Figure 4: A Hormone-based M-Cell 

All m-cells in a hormone-based organization share the same control strategy shown in Figure 4. 
This uniformity of autonomous cell systems allows adaptations of organization to be totally 
distributed among the members of the organization. In 'particular, since any m-cell can 
communicate with any.other m-cell, as long as they have the matching hormones and receptors, 
new configurations can be negotiated and constructed among m-cells themselves. This property is 
particularly useful for mobile autonomous systems because they must re-organize themselves 
whenever the existing configuration becomes ineffective due to the change of the environment or 
relocations and status changes of some autonomous systems. Furthermore, since programming the 
local decision engine is a completely local activity and is independent to the number and the state 
of other cell systems in the organization, this hormone-based control mechanism may be scaled up 
to very large m-cell organizations. 

It is conceivable that hormones may also be used to extend or alter the functions of an m-cell's 
local engine so that the responses to new and old hormones can be dynamically programmed and 
altered. Such ability will allow dynamic changes in the functions of m-cells, in a way that is similar 
to the biological hormones that can enter the cell nucleus. 

3.7.3  Types of Hormones 
Hormones can be classified and typed in terms of their functions. Each h^*mone is a list of data 
fields, and the interpretation of these fields depends on the type of the hormone. Among many 
types of hormones, two particular types are essentially important for our distributed robot control. 
They are Action-Specification Hormones (AH) and Synchronization Hormones (SH). 

The format of an Action-Specification Hormone is as follows: 
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(AH, Task, Action, Value, TimeToLive) 

The "Task" field specifies the desired task or goal to be accomplished. The "Action" field describes 
the selected action for the task. The selected action can be an executable local action or a new task 
to support the given task. The "Value" field provides a place for m-cells to pass local state 
information and knowledge to other m-cells. The "TimeToLive" records the remaining time before 
the hormone should be determined. 

The purpose of AH is for m-cells to select and propagate actions for tasks. For example, suppose an 
AH that contains a "move" task is currently active in the system, then m-cells that receive this AH 
will select an appropriate "gait" for the move task. In this case, a gait is a compound action to 
support the move task. 

After a gait is selected, a new AH can be generated to trigger m-cells to perform appropriate motor 
positions for the gait. In the new hormone, the Task field contains the selected gait, while the 
Action field will be filled with motor positions to support the gait task. With this usage, we can see 
that the structure of Tasks and Actions in hormones are recursive, i.e., an existing action in a 
hormone can become a Task in another hormone to trigger more actions. 

Another important type of hormone for our purpose is the Synchronization Hormone, whose format 
is as follows: 

(SH, Action, AHSet, Value, TimeToLive) 

The "Action" field specifies the action to be synchronized among m-cells. The field "AHSet" is a 
set of AHs that have been received from a particular communication link. (The usage of this field 
will be explained later.) The Value slot may contain local information and knowledge to be 
propagated. The TimeToLive field is the same as that of AH. The purpose of Synchronization 
Hormones is to synchronize actions among m-cells. 

Synchronization can have many forms. According to [13] there are thirteen types of temporal 
relationships among two actions. Two of the types are 'Meets' and 'Starts', which in this proposal 
are called 'Serial' and 'Parallel' relationships respectively. Serial actions are those that one starts 
after the other ends and parallel actions are those that start at the same time. These two cases are of 
our interest since they accomplish almost all synchronization requirements of an m-cell 
organization. In a later section, we will describe in detail how SHs are used to synchronize actions. 

3.7.4  Hormone Propagation 
Hormone propagation is a mechanism by which an m-cell communicates with others. In two 
situations, an m-cell propagates a hormone. The first case is when the m-cell generates a new 
hormone. In this case, the generator m-cell will send (local broadcast) the hormone to all its links 
that are active, i.e., connected to a neighbor m-cell. The second case is when an m-cell receives a 
hormone at a particular communication link and decides to relay it to all other neighbors. In this, 
case, the m-cell marks the receiving link as the inLink and will send the hormone to the rest of its 
active links, called OutLinks. Hormone propagation is the only way that an m-cell can 
communicate with other m-cells. Different from regular message-passing protocols, it is not 
possible for a module to send a hormone to "some" of its active links. In other words, an m-cell 
must either propagate a hormone or completely ignore it. 
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3.7.5  Types of Metamorphic Robot Modules 
Metamorphic robots are among the best platform to demonstrate the advantages of hormone-based 
control methods because no static assumptions can be made for such robots' body shape and size. 
This section describes how we apply the hormone-based control method to a metamorphic robot. 
The generalization of these results to cooperative systems in general are made whenever necessary 
and appropriate. 

CONRO modules can be connected together by their docking connectors, called links, located at 
either end of each module. At one end, called back (b for short), there is a female connector, 
consisting of two holes for accepting another module's docking pins. At the other end, three male 
connectors are located on three sides of the module, called left (I), right (r) and front (/). An active 
link is a connector that is connected to another module and the connected module is called a 
neighbor. Each module has a type. The module type is determined based on how active links are 
connected to the neighboring modules. For example, if a module's back is connected to the left of 
another module and there is no other active links, then it will be of type T5. Each module can 
determine its type locally by checking to which links of the neighboring modules it is connected. 
This information is commun-cated among neighbors. Table 4 lists the 32 distinct types for a 
CONRO module. 

Table 4: The Types of CONRO Modules 

This Module This Module 
b f r I Type b f r I Type 
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TO f b T16 

f Tl f b T17 
b T2 f b T18 

b T3 b b b T19 
b T4 f b b T20 

I T5 f b b T21 
r T6 f b b T22 

b b 11 I b b T23 
b b T8 I b b T24 

b b T9 I b b T25 
I b T10 r b b T26 
I b Til r b b T27 
1 b T12 r b b T28 
r b T13 f b b b T29 
r b T14 I b b b T30 

r b T15 r b b b T31 

In the later sections, we assume each active link has a buffer for keeping the received hormones. 
The name of the buffer is a pair of link names, starting with the module's link name. For example, 
the name of a module's kft link buffer connected to the back link of its neighbor will be lb. This 
name will be used to label the received hormones from that link. 

3.7.6  A Reconfiguration Example 
Before we discuss the general issues of hormone-based control for metamorphic robots, let us 
consider an example how hormones can be used to guide reconfigurations. 
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Figure 5: Reconfiguration from Quadruped to Snake 

Figure 5 illustrates a situation where a CONRO metamorphic robot with seven modules changes 
from a quadruped (a four legged structure) to a snake. In this figure, a CONRO module is 
represented as a line segment with two ends: a diamond-shaped end (the back link) and a circle- 
shaped end (this end has three possible links: the front, left and right). The robot must change from 
a legged configuration (at the top-left of the figure) into a snake (at the bottom of the figure). To do 
so, mis robot must perform the "leg-tail assimilating" action four times. To assimilate a leg into the 
tail, the robot first connects its tail to the foot of a leg and then disconnects the leg from the body 
(shown at the upper part of the figure). Just as in any m-cell organization, each module in the robot 
determines its role based on its local state information such as its own module type. For example, in 
this robot, a module is the tail if its type is T2. Similarly, a module knows it is a foot if its type is 
T5 or T6 and its immediate neighbor is of type T21 or T29. 

Using hormones, the entire reconfiguration procedure starts when one (and any one) of the modules 
generates a reconfiguration hormone LTS (Legs To Snake). This LTS hormone is floating to all 
modules, but each module's reaction to this LTS hormone will be different and that depends on the 
receiver's role in the current configuration. For this particular hormone, no module will react 
except the foot modules, which, will be triggered to generate a new hormone RCT (Requesting to 
Connect to Tail). Since there are four legs at this point, four RCT hormones will be floating in the 
system. Each RCT carries a unique signature for its sender. No module will react to a RCT 
hormone except the tail module. Seeing a RCT hormone, the tail model will do two things: 
acknowledge the RCT by sending out a new TAR (Tail Accept Request) hormone with the 
signature received in the RCT, and inhibit its receptor for accepting any other RCTs. The new 
TAR hormone will reach all modules, but only the leg module that initiated the acknowledged RCT 
will react. It first terminates its generation of RCT, and then generates a new hormone ALT 
(Assimilating a Leg to the Tail) and starts the required reconfiguration action (see [6] for the details 
of this compound action). When seeing an ALT hormone, the tail module will terminate the TAR 
hoiinone and starts actions to assimilate the leg. After the action is done, the tail module will 
rer Livate its receptor for RCT hormones, and another leg assimilation will be performed. This 
procedure will be repeated until all legs are assimilated. In Table 5, we list all the hormones 
involved in the entire reconfiguration procedure. 
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Table 5: Hormone activities during a reconfiguration 

Active hormones Actions 
LTS Start the reconfiguration 
RCT,, RCT2, RCT,, RCT4 Legs are activated 
TAR, RCT2, RCT,, RCT4 The tail inhabits RCT, and legl determines RCT, 
ALT, RCT2, RCT,, RCT4 The tail assimilates legl and then accepts new RCT 
TAR, RCT,, RCT4 The tail inhabits RCT, and leg3 determines RCT3 

ALT, RCT2, RCT4 The tail assimilates leg3 and then accepts new RCT 
TAR, RCT2 The tail inhabits RCT, and leg4 determines RCT4 

ALT, RCT2 The tail assimilates leg4 and then accepts new RCT 
TAR The tail inhabits RCT, and leg2 determines RCT2 

ALT The tail assimilates Ieg2 and then accepts new RCT 

0 End the reconfiguration 

As we can see from this example, hormone-based control has a number of unique features. First, 
this control procedure can work in many different configurations. In our current example, the 
procedure will work independent of the number of legs in the system and how long the tail is. 
Second, the hormones are naturally organized in hierarchical structures. For example, a single LTS 
can trigger a level of activity managed by the hormones RCT, TAR, and ALT. One ALT will 
trigger another level of activity for assimilating a leg using another set of hormones (we did not 
show the details of this level in this example). Third, hormones allow global actions to be totally 
distributed to individual members. Modules do not have addresses or identifiers, and they have total 
autonomy in deciding their local actions, generating new hormones, or terminating existing 
hormones. 

3.7.7  A Locomotion Example 
Each CONRO module has two degrees of freedom: DOF1 for pitch (up and down) and DOF2 for 
yaw (left and right). Each DOF has a home position (when the joint is straight), and has two joint 
limits (when the joint reaches the maximal or the minimal angle). With these two DOFs, a single 
module can wiggle its body but cannot move. However, when two or more modules connect to 
form a structure, they can accomplish many different types of locomotion. For example, Figure 6 
illustrates a 6-module caterpillar gait. To move forward, each module's DOF1 goes through a series 
of positions and the synchronized global effect of these local motions is a forward movement of the 
whole caterpillar (indicated by the arrow). 

StepO 
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Figure 6: A caterpillar (or nessie) movement 
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To completely specify this gait, a conventional method is to use a "gait control table" as shown in 
Table 6, suggested in [14, 15], where each row in the table corresponds to the target position for all 
DOFs in the configuration during a step. Each column corresponds to the sequence of desired 
positions for one DOF. The control starts out at the first step in the table, and then switches to the 
next step when all DOFs have reached their target position in the current step. When the last step in 
the table is done, the control starts over again at step 0. Table 6 lists the control for the caterpillar 
movement in Figure 6. As we can see in this table, the six columns correspond to the six module's 
DOF1 (the leftmost is Ml, and the rightmost is M6). The first row in this table corresponds to Step 
0 in Figure 6. 

Table 6: The gait control table for the caterpillar movement 

Step Module ID for DOF1 
Ml M2 M3 M4 M5 M6 

0 +45° -45° -45° +45° +45° -45° 
1 -45° -45° +45° +45° -45° -45° 
2 -45° +45° +45° -45° -45° +45° 
3 +45° +45° -45° -45° +45° +45° 

The problem of this conventional gait table method is that it is not design id to deal with the 
dynamic nature of robot configuration. Every time the configuration is changed, no matter how 
slight the modification is, the control table must be rewritten. For example, if two snakes join 
together to become one, a new control table must be designed from scratch. A simple concatenation 
of the existing tables may not be appropriate because their steps may mismatch. Furthermore, when 
robots are moving on rough grounds, actions on each DOF cannot be determined at the outset. 

To represent a locomotion gait using the hormone idea, we notice that Table 6 has a "shifting" 
pattern among the actions performed by the modules. The action performed by a module m at step / 
is the action to be performed by the module (m-1) at step (t+l). Thus, instead of maintaining the 
entire control table, this gait is represented and distributed at each module as a sequence of motor 
actions (+45°, -45°, -45°, +45°). If a module is performing this caterpillar gait, it must select and 
execute one of these actions in a way that is synchronized and consistent with its neighbor module. 

To ensure the ordered action, each module can use hormones to inform its neighbors what action it 
has selected, and the neighbors will select their actions according to the desired order. The 
advantage of this approach over the gait control table is that it will function regardless of how many 
modules are in the current snake configuration. 

3.7.8  Task Specifications 
At the present, tasks for a metamorphic robot are either for reconfiguration or for locomotion. They 
are both specified using the following format: 

• A task name; 

• An ordered list of actions; 

• Synchronization pattern among actions performed by different m-cells; 

• A set of constraints on actions selected among neighbor m-cells; 
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Since actions are ordered in a task, it is possible to define functions like nextQ, or previousQ on 
actions, which returns the next or previous action according to the order specified in the task. A 
constraint has the following form: (<action> <relation> <link-pairs sequence> <action>). The role 
of constraints is to create patterns of actions among modules by eliminating unsuitable action 
candidates. There are two symbols that can be used instead of a constraint. The first one is the '+' 
symbol which means one or more link-pairs and the second is '*' symbol which means zero or 
more link-pairs. 

As an example task specification, a caterpillar gait is defined as: 

• Task: Caterpillar-Move 
• Actions: An ordered circular list of actions (ao-a^), which sets the DOF1 to the 

specified value: (a0 -> +45°, a\-> -45°, o2-> -45°, a3-> +45°) 
• Synchronization: start at the same time (parallel); 
• Constraint: (ax) =fi next(ax). This constraint means that if the/link of a module /' is 

connected to the b link of another module;', the action of a module;' should be the next 
action of module /. 

Notice that the synchronization between actions pe/furmed by different modules is specified as 
"parallel", which means all modules must start execu*'ug their action at the same time. Other types 
of synchronization include "start after finish (serial)", or "end at the same time". For example, in 
Table 5, the ALT actions triggered by a LTS must be executed in serial. While the supporting 
actions for a single ALT must be executed in parallel because all modules involved in a ALT must 
be active to make a successful docking. 

3.7.9   Synchronization Among M-Cells 
Synchronization is a general problem for distributed systems. In a master control system [14], 
synchronization is an operation with a high cost of communication. In a masterless control system 
[14], it demands an unrealistic assumption that all modules' internal clocks are synchronized. 

In a hormone-based control system, solutions to the synchronization problem are naturally 
suggested by the flexible interpretations of hormones. Since hormones can "wait" at a site for the 
occurrence of certain events before traveling further, they can be used as tokens for synchronizing 
events between modules. For example, to synchronize steps in a caterpillar move, a synchronization 
hormone can be designed to ensure that all modules start moving in a single wave step. 

Among many types of synchronization, the serial synchronization can be easily realized by 
hormones because of the way hormones propagate among m-cells. When a serial synchronization 
among the actions of a task is required, a module will first execute and complete its local action 
before propagating the action hormone to its output links. 

The parallel synchronization, on the other hand, requires more computational resources. An m-cell 
cannot execute a local action immediately after the ,aion is selected. It must negotiate with other 
m-cells to ensure that all actions are started at the same time. For example a spider robot should 
move its legs simultaneously to perform a successful 'walk' gait. Therefore a mechanism is 
required to signal modules when they should start. 

For this purpose, we propose a hormone based synchronization algorithm, which runs on each 
module in parallel and guarantees the same starting time for all synchronized actions. Generally 
speaking, for a given task, a module can infer that all other modules have selected and are ready to 
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Start their actions when it receives the "expected number of hormones" (include both AHs and SHs) 
from all of its neighbors. The expected number of hormones (ENP) for a neighbor is the number of 
active links ofthat neighbor. 

In performing a task, when a module selects an action, it generates and propagates an action- 
specifying hormone, e.g. (AH, move, a,, x, v), to all its neighbors. It then counts the number of 
received hormones for each link. When a link has received the expected number of hormones, the 
module sends a synchronization hormone (SH) to the rest of its neighbors. The new hormone 
contains the received hormones labeled with the link name. For example, if the above action- 
specifying hormone is received from the link lb with ENP=1, then a new synchronization hormone 
(SH, move, 76 {(AH, move, a,, x, v)}, w, z) will be generated and sent to all other neighbors. The 
receivers of this synchronization hormone will count it as one received hormone for the appropriate 
link. Although the content of the AH and SH are not required for the synchronization purpose, they 
will be kept by modules and will be used in conflict resolution, which will be described in the next 
section. 

Mudule:A BCD 
Tv. ::    Tl T16 T16 T2 

f    I      b    f    I        b f    I        b   f  I 

»    [6/{al,?}]    (/J{a2),i/|a3,?>] [A/(?},J*(all/Z>{a2}}]   [/Z>{a3,/2>{al,/Z>{a2}))] 

Figure 7: A Snapshot of the Parallel Synchronization 

To illustrate this synchronization idea, consider a detailed example of parallel action 
synchronization of a four-module caterpillar robot shown in Figure 7. For simplicity, it is assumed 
that the robot is performing only one task, and only actions are represented in the internal 
representation of received hormones. The type of each module is shown according to Table 4. The 
number of active links of modules A to D is 1-2-2-1, respectively, which also defines the ENP for 
each link. For example, the ENP for module A's bf'link is 2 (for the neighbor B on that link has 2 
active links). Figure 7 also shows the hormones that have been propagated. AHs are shown in 
circles and SHs are shown in rectangles. Notice that module 'B' ('C) has received the expected 
number of hormones from 'A' ('B') and has propagated a SH to 'C ('D'). The lower part of the 
figure shows the contents of the received hormones. The '?' sign represents hormones that are 
expected. For example, B has two active link buffers: ß expected and received 1 hormone a2, and 
bf expected 2 but received 1 hormone a3 (so it has a "?"). This synchronization process is complete 
when 'D' propagates hVacti u a4. It causes modules 'C, 'B', and 'A' to receive all of the expected 
hormones and, together with module 'D', start execution of their actions at the "same" time. Here 
we assume that the time between D sending out a4 and the completion of propagation of this 
hormone to all other modules is negligible compared to the execution time of actions. When the 
synchronization is completed, the contents of received hormones for each module are shown in 

Table 7. 
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Table 7: The contents of received hormones during a parallel synchronization 

Module Internal representation 

A [a2, [bf{ah Z>/{a3, bf{^}}}]} 

B [a1,[/6{a2},*/{a3!6/{a4}}]] 

C [a3,[Z»/{a4},y&{aI)y&{a2}}]] 

D [*4,\fl{^ fl^ufli^}}}]} 

The above parallel synchronization method works for any configuration of the robot. Compared to 
the centralized control system with a standard message passing protocol, which requires 0(n ) 
message hops for each synchronized action (because n messages must be sent to n modules), 
hormone-based mechanism requires only 0(fn) hops (Because each module generates / messages 
and relays t(t-l) messages), where n is the number of modules in the configuration and / is the 
number of its active links (l</<4 for CONRO modules). 

3.7." J Conflict Resolution 
In the above algorithm it was assumed that when modules select and synchronize their actions, 
there is no conflict among the selected actions. In reality, since actions are selected independently 
between modules, it is a possible that actions of two modules violate some constraints in the gait 
definition. Therefore a conflict resolution phase is required. 

The first step in conflict resolution is the constraint checking* It examines the selected actions in 
the internal representation gathered during the action selection phase, such as the ones shown in 
Table 7. A constraint matches the internal representation of a module if there is an exact match 
between the link-pairs of a constraint and a sequence of labels connecting two actions in the 
internal representation. For example, the constraint given in the caterpillar gait, i.e. (ax) = ß 
next(ax), matches "ai ft> a2" because ax = ai and «ex/faj= a2 according to the action order specified 
in the gait. However, "a3 ft a" does not match the constraint, and one of the actions must be 
changed. 

The decision about which action needs to be changed is based on the TimeToLive (TTL) of the 
action-specifying hormone. Among the two actions, the "younger" one (i.e., with greater TTL 
value) will be selected. If conflict is detected before propagation, the selected action will be 
changed and a consistent action will be propagated. However, in situations that action is already 
propagated, a conflict-resolution hormone (CRH) will be propagated. The format of CRH is shown 
as follows: 

CRH(task, ASH, constraint, TTL). 

A CRH contains the conflicting hormone and the violated constraint. In the above example, 
assuming that the hormone containing a3 has a greater TTL, the generated CRH is: CRH(move, 
ASH(move, a3), (a3 ft ai ), *). If a receiving module has the conflicting ASH in its internal 
representation, it will delete that hormone, update the number of received hormones in the receiver 
buffer, and propagate the CRH. Otherwise, the receiving module will ignore the received CRH. 

When the module whose action is the source of conflict receives the CRH, it will select an action 
that satisfies the constraint included in the CRH and generate a new ASH containing the new 
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action and propagate the hormone. In the above example, module 'C, which selected a3, will re- 
select action ao and generate a new ASH. If module 'D' receives the new ASH before propagating 
its selected action, it will select a consistent action, which in this case is a*. 

3.7.11 The Basic CELL Algorithm 
All activities discussed above are parts of a distributed algorithm called CELL. This algorithm runs 
locally and autonomously at each m-cell, waiting to receive hormones and perform action selection, 
synchronization, and execution of local actions. Figure 8 gives the CELL algorithm in pseudo-code. 

When a hormone (AH, task, action) is received do 
{ 

selectedAction <- selectNextAction(ta.s&, action); 
If (the synchronization of task is "Parallel") { 

propagate(AH, task, selectedAction); 
parallelSynchronization&ConflictResolution(selectedAction); 
execute(selectedAction); 
} 

If (the synchronization of task is "Serial") { 
execute(selectedAction); 
propagate(AH, task, selectedAction); 
} 

} 
Figure 8: The Basic Steps of the CELL Algorithm 

3.7.12 Hormone Management 
So far we have described hormone-based algorithms for working with single active hormones. To 
support multiple hormone generation and management, we illustrate briefly in this section how 
CELL algorithm uses two synchronized hormones to perform both moving and turning in a 
caterpillar configuration. The "caterpillar-move" gait described above will move the robot along its 
body and the "caterpillar-turn" gait, as described below, will bend the body to the side. The 
synchronized combination of these two gaits will generate a circular trajectory. The "caterpillar- 
turn" gait is defined as: 

• Task: Caterpillar-Turn; 
• Actions: (a5 -> 0°, a6-> 10°) to set DOF2 to the specified angle; 
• Synchronization: Parallel; 
• Constraint: (ax) I- +a6, which means there can not be two modules in the robot that perform 

the a6 action at the same time. Synchronization between the two gaits (caterpillar-move 
and caterpillar-turn) are ensured by the following local constraints: 
if (ax=a4 &ay = ag) then next(ay) = bflay), 
if {ax=a3) then next(ay) = bfiay) 

The last two constraints are used to identify the next action of a module. They ensure that the next 
action of a module is the action performed by its back neighbor. Along with the constraint that 
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restricts the bending to one and only one module, this gait will shift the bent-action between a 
unique pair of modules who are performing the caterpillar move a4 a?. 

To effectively use hormones in an adaptive organization, hormones must be properly generated, 
managed, and terminated. We view hormone generation as another local action of an agent, which 
can be triggered by an incoming hormone or by some external sensor stimuli. In a decentralized 
organization, a hormone generator for a particular global task is the temporal leader and 
coordinator of that task. For example, the tail module is the leader for the task specified in a ALT 
hormone (see Table 5). Some actions are single events, and others may require a sequence of 
hormones to be sent out. 

For an agent to generate a sequence of hormones, we assume that the agent has the local knowledge 
about the hormone sequence. One possible representation of such knowledge is a vector H of a 
particular hormone H, along with an index variable Hj. To generate the next hormone in the 
sequence, the agent simply increments H; = mod(H.,+l, |H|), where |H| is the length of H, and then 
release H[Hj] into the organization. To ensure that any agent can become the generator for any 
hormone sequence, we assume that every agent contains all sequences of hormones that have been 
defined. This can be accomplished dynamically by broadcasting whenever a new sequence of 
hormone is defined. An agent can become the generator of a hormone sequence in two ways. In the 
self-promoted case, an agent generates hormones because a local sensor is triggered by some 
external stimulus. In the instructed case, an agent generates hormones because it received a special 
hormone trigger message. 

Hormones are terminated in a way similar to the way they are generated. That is, an agent can stop 
producing hormones either by self-promotion (because of an external stimulus) or by a special 
hormone-stopping message. For example, a hormone may be terminated if certain values are read 
from a local sensor, or if it receives a special hormone. For example, as shown in Table 5, an m-cell 
will terminate its RCT when it receives a TAR. 

3.7.13 Initial Results of Hormone-Controlled Metamorphic Robots 
The concepts and algorithms described above have been implemented and tested in two sets of 
experiments. The first set of experiments is to apply the algorithm to controlling the real hardware 
CONRO modules to perform caterpillar move. This implementation has enabled a 4-module 
CONRO snake to perform autonomous motions with the CELL algorithm running on each module. 

In parallel with the hardware implementation of the CONRO robot, we have also used a Newtonian 
mechanics based simulator, Working Model 3D, to develop the hormone-based control theory, with 
the objective that the theory and its related algorithms will eventually be migrated to the real 
robots. Working Model 3D is a three-dimensional dynamics simulation program. Using it, a 
designer can define objects with complex physical properties, including ma«3, coefficient of 
friction, moments of inertia, and velocities. Constraints among objects include rigid joints, revolute 
joints, and linear constraints, including rods, springs, and dampers. User-denned forces, torques, 
actuators and motors are also available. In this simulation environment, the CELL algorithm is 
implemented in Java and running on each simulated module. We have experimented and 
demonstrated successful locomotion in various configurations, including snakes with different 
length and insects with different numbers of legs. We are in the process of applying the CELL 
algorithm to self-reconfiguration actions such as shape changing from a legged configuration to a 
snake, and vice verse. 
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