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EDITORIAL 

QFT & RFDM International Symposia. Past, present and future. 

Much of the current interest in frequency domain robust stability and robust performance dates from the original 
work of H.W. Bode (1945), and I. Horowitz (1963). Since then, and during the entire second half of the twentieth 
century, there has been a tremendous advance in the state-of-the-art of robust frequency domain methods. One of 
the main techniques, introduced by Prof. Isaac Horowitz in 1959, which characterises closed loop performance 
specifications against parametric plant uncertainty, mapped into open loop design constraints, became known as 
Quantitative Feedback Theory (QFT). 

Since the seventies until now, the association of the Air Force Research Laboratory (AFRL-USA) with the 
Department of Electrical and Computer Engineering of the Air Force Institute of Technology (AFIT-USA) has 
resulted in a large amount of research in QFT. In fact, the first research grant that Prof. Horowitz, the founder of 
QFT, received was in 1973 from the Air Force Office of Scientific Research (AFOSR). Further support came from 
their European Office Aerospace Research and Development (EOARD). Indeed, much of the early Air Force 
support for Prof. Horowitz came through EOARD. 

Great strides were made by the U. S. Air Force researchers in the application of QFT to the design of robust 
multivariable flight control systems. Prof. Constantine H. Houpis of AFIT, along with his graduate students, and 
in conjunction with Prof. Horowitz, extended the state-of-the-art in the development and application of QFT. As a 
result Prof. Houpis, as General Chairman, with the sponsorship of AFRL, organised the first international scientific 
meeting on QFT, with the name: Quantitative Feedback Theory Symposium. It was held at Wright Patterson 
Airforce Base, Dayton, Ohio (USA), in August 1992. As Prof. Houpis stated in those days, "Quantitative feedback 
theory (QFT) has achieved the status as a very powerful design technique for the achievement of assigned 
performance tolerances over specified ranges of plant uncertainties without and with control effector failures". 

The awareness of the power of QFT to solve real world problems has evoked the interest and involvement of a 
greater number of control engineers and researchers. The methodology has been used to solve SISO, MISO, and 
MIMO plants, single and multiple loops, linear and nonlinear processes, lumped and distributed plants, etc. Since 
1989 until 2000 there have been published 322 international papers on QFT: 210 at international scientific 
conferences and 112 at international scientific journals of the Science Citation Index (data according to INSPEC 
and the QFT Symposia). Figure 1 shows the evolution. 
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Prof. Horowitz said in the first QFT symposium: "there is room in QFT for highly diverse talents: the 
nonmathematical practical engineer with physical insight and inventive talent, the skilled mathematician interested 
in existence theorems and abstract generalisations, up to the stubborn, even plodding researcher who by hard 
dedicated work acquires deep understanding of this subject". However, he also said "QFT is as yet in its infancy, 
pointing to vast, available problems areas". 
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Since then, there has been an increasing interest in the frequency domain methods. The second international 
symposium was held at the Purdue University, West Lafayette, Indiana (USA), in August 1995, with the name: 
Quantitative and Parametric Feedback Theory Symposium. The third one was at the University of Strathclyde, 
Glasgow, Scotland (UK), in August 1997, with the name: Symposium on Quantitative Feedback Theory and other 
Frequency Domain Methods and Applications. The fourth symposium was held at the University of Natal, 
Durban, South Africa, in August 1999, with the name: International Symposium on Quantitative Feedback Theory 
and Robust Frequency Domain Methods. 

Now, I would like to introduce the fifth international scientific meeting being held this year at the Public 
University of Navarra, Pamplona, Spain, for which I am keeping the same name as the last symposium: 
International Symposium on Quantitative Feedback Theory and Robust Frequency Domain Methods (QFT & 
RFDM). Its purpose is to bring together practitioners and researchers in the field of frequency domain methods 
and to promote the development of these methods and their practical application. The Symposium covers new 
developments in Quantitative Feedback Theory and Robust Frequency Domain methods, algorithms, software and 
applications. 

The number of papers that have been published in the five international symposia is 138 (= 37 + 18 + 27 + 21 + 
35). Their distribution per symposium is shown in Figure 2. In terms of subject, at the beginning almost 95% of the 
papers were about QFT, and only 5% about other Robust Frequency Domain Methods. However, from the third 
symposium until now the rate has been stabilised in 62% about QFT against 38% about other RFDM (Figure 3). 

The total number of authors that have attended any symposium is 253 (- 61 + 41 + 43 + 42 + 66), and the number 
of different authors that have attended the symposia is 190. Their distribution per continent and symposium is 
shown in Figures 4 and 5. 
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Among the set of 190 different authors that have attended the symposia, 15 of them have been present in more than 
60% of the events. They are: I. Horowitz, C.H. Houpis, F.N. Bailey, Y. Chait, M.A. Franchek, S. Jayasuriya and 
O.D.I. Nwokah from USA; E. Eitelberg and E. Boje from South Africa; M. Garcia-Sanz and A. Bafios from Spain; 
P.O. Gutman and O.Yaniv from Israel; P.S.V. Nataraj from India; and B.C. Wang from Taiwan. In this context 
only one author has taken part in all of the symposia: Prof. Constantine H. Houpis. 

The number of countries participating in the biennial symposium has increased through the years, as it is shown in 
Figure 6. The number of different countries that has attended the symposia is 16. Table I shows the countries 
where the authors came from per symposium. 

Number of Countries 

13 

12 

11 

10 

9 

8 

7 

6 

5 

4 

3 

2 

1 

12 
--- 

10 

 1  

9 
8 

  — 

7 

1st 2nd 3rd 
Symposium 

Figure 6 

4th 5th 

Symp 

1st 
2nd 
3rd 
4th 
5th 

Table I. Authors distribution p zr countries 
America Europe Asia Africa 

USA Mexico Brazil UK Spain France Germany Poland Sweden Switzer 
land 

Portugal Ireland Israel Taiwan India South 
Africa 

44 1 0 4 0 0 0 0 0 0 0 0 5 3 3 1 

29 1 0 2 1 0 0 0 0 0 0 0 2 3 2 1 

11 0 0 10 6 6 3 1 0 0 1 0 4 0 0 1 

5 3 0 7 9 1 2 0 2 3 0 0 0 4 0 6 

9 2 2 0 29 0 3 0 2 0 2 4 4 2 4 3 

SUM 

61 
41 
43 
42 
66 

% 38.7    2.8 0.8 9.1 17.8 2.8 3.2 0.4 1.6 1.2 1.2 1.6 5.9 4.7 3.6 4.7 

XI 



The countries with the most representation, in terms of number of authors, are the four that have been organisers: 
USA (38.7%), United Kingdom (9.1%), South Africa (4.7%) and Spain (17.8%); plus Israel (5.9%). 

Two countries have attended the five symposia: USA and South Africa. Five countries have attended four: Mexico, 
United Kingdom, Spain, Israel and Taiwan. Three countries have attended three: France, Germany and India. Two 
countries have attended two: Sweden and Portugal. Four countries have attended one symposium: Brazil, Poland, 
Switzerland and Ireland. 

More than 60 successful engineering control applications of robust frequency domain methods, mainly QFT 
controllers, have been reported through the five symposia. The following list highlight the next real 
implementations: 

• Flight control: F-16 flight control system, Lambda remotely-piloted airplane, C-135 military transport aircraft, 
UH-60 Black Hawk helicopter flight control, SAAB AB flight control system, Advance combat aircraft, 
Autopilot flight control design, Missile control systems, X-29, etc. 

• Process control: Distillation columns, Continuous stirred tank reactors CSTRs, Heavy oil fractionator, pH 
neutralisation process, Heating systems, Multiple-effect evaporator, Gasifier control, Superheater temperature 
control, Cooling machines, Arc welding penetration control, Pinch weld quality control, Hydraulic positioning 
systems, Storage vessel processes, Flow control, Pneumatic positioning system, etc. 

• Robotics: Distributed mechanical structures, Flexible beam with variable coupling, 3 DOF Robot 
manipulators, Autonomous path tracking robot, SCARA Robot manipulator, etc. 

• Combustion motors control: Aircraft engines, V-6 fuel-injected combustion engine, Allison Pd-514 aircraft 
turbine engine, GE16 variable cycle engine, Ford 4.6L-2 valve V-8 fuel injected engine, Turbofan engine, etc. 

• Special vehicles control: Intelligent vehicles, Autonomous vehicles, Fast Ferry control, Citroen BX active 
suspension, etc. 

• Electronics systems control: 741 BJT Operational amplifier, Audio power amplifier, Fixed point DSP, DC 
motor position servo prototype, etc. 

• Power systems control: Fast control coil system of a Tokamak, Aero-electric power station, etc. 
• Biological systems control: Active sludge wastewater treatment plant, etc. 
• Advanced systems: Flight telescope control, Earthquake simulator machine, etc. 

After the large covered itinerary, we can state that the international QFT & RFDM symposia have reached the 
maturity of a periodic and referenced scientific meeting on Robust Frequency Domain Methods. Progress has been 
made in having IF AC take over the management. The outlook in IF AC assuming the sponsoring of the symposia is 
favourable. We expect a final decision later this year. Until then, I would like to thank all the people and 
institutions that have worked and supported the symposia, since the first ideas of Prof. Isaac Horowitz and the first 
symposium organised by Prof. Constantine Houpis, and from many different countries and through the years. 
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PLENARY TALK 

SOME PECULIARITIES OF LOAD SHARING CONTROL 

Eduard Eitelberg 

NOYBusiness, 58 Baines Road, Durban 4001, South Africa 
e-mail: controle@pixie.udw.ac.za 

Abstract: In the recently published book, 'Load Sharing Control" ( Eitelberg, 1999), a 
frequency domain, loop-by-loop load sharing control system design methodology was 
developed and demonstrated with engineering examples. A number of new concepts were 
introduced in order to characterise some peculiarities that are not relevant in single-loop 
control systems, or have been overlooked in the general multivariable control system theory. 
Some of these concepts and peculiarities will be elaborated during this presentation. 

Keywords: load sharing, cross sensitivity, stability, floating supply. 

1. INTRODUCCION-THE CONCEP OF LOAD 
SHARING 

In many engineering and in most economic systems, 
the burden of producing material, energy, goods (or 
signals in general) to satisfy some demand is shared 
between two or more distinct sources with limited 
supply capabilities (plants, suppliers, controllers, ... ) 
— these sources share the load. In fact, all systems, 
where at least one output depends on at least two 
inputs, are load sharing. 

Figure 1 defines the basic additive load sharing 
structure with N supply plants Pi, the associated 
supply and manipulated variables ysi and «/, a 
common plant A, a common output y and a common 
disturbance d — the load. Disturbance may be added 
after the accumulator' A, without affecting the 
general validity of the presented results. 

Some prominent load sharing examples are: 

• process steam supply by multiple boilers to a 
common header with y signifying the header 
pressure; 

boiler feed-water pumps in parallel and in series 
with v signifying the total feed-rate; 
electric power supply grid with multiple power 
stations with y signifying the grid frequency; 
competitive markets with multiple suppliers for 
substitutable goods or services with y signifying 
the price. 

Figure 1: The basic load sharing system model. 

In my book 'Load Sharing Control", fundamental 
properties of load sharing control systems are 
investigated and procedures for designing independent 
and    co-ordinated    control    systems    are    derived 



constructively and demonstrated. It is shown there that 
systems with multiple feedback loops often 
(unintentionally) contain load sharing structures of 
significance to the designer. The load sharing 
properties and abilities of some new and some well- 
known industrial multi-loop and multivariable 
feedback control structures are analysed in this book. 

2.   CONTROL OF LOAD SHARING SYSTEM 

The primary control problem is to control the 
common output y via the supply plants Pj. The same 
load d can be balanced by an infinite number of 
combinations of the individual supplies ysj. In real 
systems, there are generally very strong technical, 
economic and political reasons to prefer certain 
combinations over others. Therefore, maintaining 
some predetermined distribution of the load between 
individual supply plants is the secondary control 
problem. In special cases, however, control of one of 
the individual supplies ysj may be the most important 

task. 

One could attempt to counteract the influence of load 
variation on y by feed-forward only. Despite the 
undeniable usefulness of load feed-forward, the 
practical difficulties of measuring the total system 
disturbance/load accurately and the uncertainties in 
the supply plants Ps make it seldom sufficient on its 
own. Hence, with or without feed-forward, a feedback 
control system from y to at least some of the 
individual uj has to be designed. 

There are N feedback signal transfers to define — 
from y to each «/. In addition, the system can have N 

independent reference signals r; for each independent 
supply plant. Figure 2 shows one possible 
implementation of these 27V design degrees of 
freedom. 

An independent implementation of load sharing 
control is an attractive option, especially when 
individual supply plants Pi are in geographically 
distant locations. Power plant control for grid 
frequency stabilisation is implemented in many plants 
individually, see Knowles (1990). Sometimes 
individual supply plants are supplied with built-in 
load control instrumentation, such as the small 
electrode boilers that are used in the textile industry, 
industrial refrigerant compressors and others. These 
'packaged deal' supply plants are designed to work 
well when carrying a specified load range alone. They 
are sometimes implicitly expected to work just as well 
or better when sharing a load — they might, but not 
without additional control system design effort. 

It is convenient to introduce the individual supply 
loop transfer function as 

Li(s)=A(s)Pi(s)Gi(s) (1) 

Li represents the feedback loop around the supply 

plant Pi when all other supply plants Pj are 'on 

manual' — allG/ = 0 for j ± i. This is not necessarily 

the same as having all the other plants physically 
disconnected from the load, because that could 
significantly modify the accumulator A — for 
example, the steam volume or the rotating inertia. 
Now, the load regulation loop transfer function around 
the accumulator is simply 

L(s)=JjLi(s) = A(s)JjPi(s)Gi(s) 
/=1 /=1 

The common output in Figure 2, is given by 

(2) 
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Figure 2: Independent load sharing control system: 
with common load d and output y; and N individual 
supplies ysj, supply plant inputs UJ, supply references 

77, and feedback measurement or transmission 

noises/errors «/. 

A detailed expression for individual supply outputs, in 
Figure 2, is given by 
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The pre-eminence of the load regulation loop L is 
evident in the first right-hand term of eq. (3). In order 
to eliminate the effect of the load D on the system 



output Y a high-gain loop L is needed. As a minimum, 
in order to justify the introduction of feedback, the 
design must achieve \L(jcö)\»l in some (usually 
low) frequency range. This technical expression of 
the previously mentioned primary control problem 
will remain in the focus for the rest of this 
presentation. 

A high gain L can only be achieved by implementing 
some of the individual supply loops Lj with high gain 
in the required frequency range — seeeq. (2). As a 
first rough idea, all load sharing supply loops must 
have a gain in the order of \L\. This is evidenced by 
the first right-hand term of eq. (4). The supplies with 
\Lj(jcd)\«\L(jco)\ do not participate in the load sharing 

at the corresponding frequency ft) — as if they were 
bn manual'. 

This discussion brings us to the first peculiarity of 
Load Sharing Control. 

Cross sensitivity: 

Pair-wise discrepancies between feedback signal 
errors (Nj-Nß and mismatches between the 
filtered references ((Fj/GjWi-iFj/GßRß — see 
eq. (4) — are amplified by the 'supply distribution 
cross sensitivities' (LjLß/(A(\ + L)) in the 
individual supplies Ysi. If both loops number i and 
j are high-gain supply regulating loops then the 
cross sensitivity between them has a quadratic 
numerator \LjLj that dominates the denominator. 

Independent load sharing control systems are 
generally unsuitable for high gain control due to 
potentially infinite supply distribution cross 
sensitivities. The supply outputs in loops with high 
gain in the independent controllers G, or plants Pt are 
hugely sensitive to differences in independent 
measurement errors and output references — the 
supplies will saturate easily and thus not be party to 
controlled load sharing. 

The electrical power supply grid frequency is 
essentially controlled independently by a number of 
power plants by feeding the difference between an 
independent frequency reference and the 
independently measured grid frequency through a 
generally low-gain proportional controller to the 
turbine governor valve, see Knowles (1990). It should 
be noted, that the grid frequency control loop for an 
entire area, or country, does have high gain in the 
single central controller (Glover and Sarma, 1989). 

Cascaded control systems contain two or more loops 
around some common plant. Hence one needs to be 
concerned about the cross sensitivity and some other 

load sharing peculiarities. Cascaded control system 
design is handled quite thoroughly in my book. 

Further, it is shown in my book that MIMO control 
systems can become inoperable due to large cross 
sensitivity — this is the case when the controlled plant 
is strongly interacting in the sense of Bristols relative 
gain (Bristol, 1966). In 1998/1999, I was involved in 
an automotive component production scheduling and 
productivity improvement project. Fundamental 
market changes had been followed by a drop in the 
achievable production rates to somewhere between 50 
and 70%. This is a very interesting story but must be 
left for another occasion. Besides a number of 
significant middle and top managerial deficiencies (in 
my very carefully considered opinion) there was an 
interesting technical problem with one of the 
manufacturing bottlenecks'— an aluminium brazing 
furnace. The original multivariable control system 
contained temperature control loops that had high 
cross sensitivity from temperature sensors to 
individual heaters. My analysis indicated that small 
temperature measurement errors led to such 
dramatically uneven heater power distribution that 
local thermal safety switches tripped the furnace. 
Management was very sensitive to the resulting loss 
of production and had suspected sabotage! The 
problem and its solution are described in my book and 
have been published separately (Eitelberg, 1999a). In 
essence, I simplified the control system structure and 
eliminated the high cross sensitivity. The general idea 
is as follows. 

An alternative implementation of the 2JV design 
degrees of freedom is shown in Figure 3. For 
convenience of designing and operating the whole 
system and in view of the presence of a co-ordinating 
controller, a common master reference is added — it 
does not add another degree of freedom for control. 

r-^M*q+[^ C^^S^-^Qf 
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Figure 3: Co-ordinated load sharing control system: 
with common load d, output y, master 
sensor/transmission noise nm and master reference rm; 
as well as N individual supplies vSI-, supply plant 
inputs Ui, and supply references/biases £>,-. 



The feedback control co-ordination is achieved by 
using a common master controller Gm. The possibly 
dynamic feedback blocks C, distribute the feedback 
control effort between the individual supply plants Pt. 
It is assumed that the gains of all (except possibly 
one) CjP{ are sufficiently low. The accumulator A may 
have high gain, but this does not help in load 
disturbance rejection. Any necessary high gain for 
load regulation is implemented in the master 
controller Gm. Because of the availability of the 
master reference Rm, the gains of all (except possibly 
one) Fj (feeding into closed loops) can and should be 
kept low. 

Although the independent and co-ordinated control 
systems are formally equivalent for the purpose of the 
combined supply control in the linear regime with 
respect to the common output v, the co-ordinated 
control structure has no such cross sensitivity problem 
with high gain feedback as was the case in the 
independent control structure, because the high gain is 
provided by the common equipment in the load 
control loop. If necessary, the plant gains can be kept 
low with local supply regulating feedback loops 
around the individual plants. 

Now I would like to turn the attention to peculiarities 
that help to understand the design of load sharing 
systems. In this context, there is no difference 
between independent and co-ordinated load sharing 
control structures. Fifteen years ago I heard Professor 
Horowitz stressing the difference between design and 
implementation and I agree. For example, a good 
design can be badly implemented — like in an 
independent structure with high cross sensitivity — 
but good implementation of a bad design makes no 
useful sense. 

3.   CONTRIBUTION OF A SUPPLY PLANT TO 
GLOBAL PERFORMANCE 

Important design insights are gained by defining the 
feedback loop transfer function around an individual 
supply plant Pt under the condition that all other loops 
are closed: 

'\+L 
with ■■L-L; 

N 

iLj (5) 

Lsi is important for determining the conditional 
stability and limit cycling conditions for the plant P„ 
but it has other uses as well. Lsi is called the 
conditional supply loop transfer function, as opposed 

to the individual supply loop transfer function Lt that 
assumed all other loops to be open. Z,_,- is the load 
control loop transfer function when P, is 'on manual'. 

By elementary substitution, one can show that 

(1 + L)=(1 + L_,.)(1 + LS/) (6) 

All zeros of (1 + L), that are not zeros of (1 +£-,-)> 
must be zeros of (1 + Lsi). A zero of (1 + L) = (1 + L_ 
i) + Lj can be a zero of (1 + !_,•) if and only if, at this 
zero, Lt = 0 as well. This permits us to judge the 
stability of the entire load control system from the 
design of the individual supply control loop. 

Stability: 

Stability of the closed conditional supply loop 
transfer function Lsi around any individual supply 

plant Pt guarantees stability of the overall load 
control closed loop L, if none of the right half- 
plane poles of 1/(1 +!_,) is cancelled by Lt in 
eq. (5). 

The closed loop load regulation is characterised by the 
first right-hand term in eq. (3). It can be split into the 
contribution of Lsi and all the other supply loops as 

1 

l + /_ 1+ /._,. 1+Lsi 
(7) 

Equation (4) expresses each supply plant's share in 
load regulation as I,/(l + L), which can be expressed 

as 

L7- 

l + L 1 + /-« 
(8) 

I should point out that eq. (8) does not indicate the 
share of supply number i in the total load, merely its 
share in the dynamic load regulation. The former 
depends on the freely prescribed load reference or bias 
too. Now the contribution of supply number i to the 
control system performance can be clearly stated. 

Contribution to performance: 

The individual supply plant Pt improves the load 

regulation by the factor 1/(1 + Z-S() as indicated by 
eq. (7) and carries Lsi/(\ + Lsi) of the total load 
variation as indicated by eq. (8). 



4   SUPPLY AUGMENTATION WITH FAST 
PLANT 

The following design scenario is quite common in 
load sharing systems. A set of N-\ plants are 
operating, but an additional plant is needed. If this 
need has arisen due to increased load, then the 
management should seriously consider buying more 
of the same — because of the familiarity with the 
plant and because of the relative ease of slotting an 
identical plant into the existing load sharing control 
system. 

However, if this need has arisen due to inadequate 
speed of load regulation with the existing complement 
of the supply plants, then a faster (and probably more 
expensive) plant PN must be considered. The existing 
control system speed is obviously limited by the non- 
minimum phase-lag characteristics of the existing 
plant. Note that a new and more expensive plant may 
actually have lower running costs and perhaps even 
lower total cost of ownership, or it may increase the 
overall profit of the business despite higher running 
and total costs! Some economic and safety related 
aspects are discussed in my book. 

One can proceed conservatively (cautiously) and use 
the existing load control loop as is, with allowance for 
the possible but usually quite simple modification of 
the accumulator A. This way, taking the additional 
plant PN out of the loop returns the total system to a 
previously designed known stable operational mode. 
The existing load control loop transfer function is L.^ 
and the new conditional supply loop Z,^ = Z,#/(l + L_ 

N) will be designed so that the augmented system is 
stable. Equation (7) indicates the improvement in the 
load regulation and eq. (8) indicates the load share 
that the additional plant has to be able to balance with 
its own supply. 

The   algebraic   simplicity   of this   design  problem 
suggests   a   similar   simplicity   of the   quantitative 
feedback design. I think I have moved significantly in 
this direction but much still remains to be done. 
Horowitz (1993) uses the very powerful concept of 
'design perspective' to judge various properties and 
consequences of a successful design before the actual 
feedback   system   design.   His   main   concern   is 
satisfaction   of  low   frequency   specifications   and 
judging the necessary gain cross-over frequency togc, 
as well as other consequences. I prefer the 'reverse' 
perspective    —      from    known    gain    cross-over 
frequencies to judging the best possible performance. 
This frequency domain perspective' is solidly based 
on the understanding of the analytic function phase 
and magnitude integral relationships. Bode and then 
Horowitz  must  be  credited  with  recognising  the 

tremendous importance of these abstract mathematical 
relationships for the design of feedback systems. 

One of the most important of these relationships, in an 
approximate form, states that the average magnitude 
slope of a stable minimum phase-lag transfer function 
is 40 dB/decade/(7i radians) = 0.222 dB/decade/degree 
of phase angle. An extremely important consequence 
of this relationship is the elementary fundamental 
relationship between the achievable gain cross-over 
frequency OgC and the non-minimum phase-lag 
characteristics of the equipment in the loop. For 
example, in a practical design, <a^c < l/7d where T^ is 
the dead-time (transport delay). In my book, other 
relationships are derived as well. 

The corresponding design perspective is shown with 
the help of straight line approximations on the Bode 
magnitude plot in Figure 4. 

Figure 4: Design perspective when L^ is faster than 

L-N- 

Thus, if a phase margin of JT/4 is required then the 
loop transfer function will 'roll-off at about 30 dB/dec 
around the gain cross-over frequency ö)gc. If not only 
unconditional stability, but also 'unconditional 
stability margin' is required, then this roll-off cannot 
be exceeded for any frequency below C0gC. In reality, 
the non-minimum phase-lag component will reduce 
the phase margin for the assumed roll-off, but the 
amount of reduction depends on the required gain 
margin (among other things). 

If the accumulator A is an integrator (or integrating), 
then the above unconditional stability margin of n/4 
may be an unaffordable luxury and a roll-off of closer 
to 40 dB/dec may be needed below the gain cross-over 
frequency fiOgC — to makeZ, dominate A in A/{\ + L) 
at low frequencies. 

With these explanations, one can start by assuming 
that the slope of L.^ in Figure 4 is often in the vicinity 



of-30 dB/dec with a phase angle of about -3rc/4 = - 
135°. The gain cross-over frequency of L_N C%C,-/V is 
determined by the non-minimum phase-lag of the 
existing plant. The new plant P^ has for example 
smaller dead-time and the corresponding loop Lp/ has 
a correspondingly higher maximum gain cross-over 
frequency ca^cN, but the same slope of, say, -30 
dB/dec. 

If LN has the same slope of -30 dB/dec for all co < 
mgc,N> as indicated by L'N, then all load regulation will 
be done in a stable manner by the totally dominating 
new plant. In this case, all the other supply plants are 
kept at a constant individual supply level either by 
their bias set-points or in the manual mode and the 
feedback design is trivial. However, the new plant 
must be sufficiently powerful to cover all load 
excursions. 

If the new plant is not sufficiently powerful, one can 
still design a totally dominating loop transfer function 
around it. However, the fast regulation dynamics is 
enabled only when the new plant is not saturated. 
Either L = Z,_# or L = L^. The individual supply biases 
affect the load level(s) at which the switch-over 
happens. Figure 5 illustrates this design. The 
usefulness of this option is doubtful. 
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Figure 5: Illustration of load distribution between slow 
and dominating fast loop. The fast supply limits are 0 
and 60. The slow supply limits are 0 and 200, it is 
biased to 150. 

The power and (especially the operating) cost of the 
new plant can be limited by requiring L^ to regulate 
only in the frequency range where L.JJ cannot — 

around and above cogCrN. This is achieved by reducing 
the roll-off of L^ as indicated in Figure 4. Note that 
LN does not have to be horizontal, it just has to cross 

L_u at some 'hand-over' frequency ß^.0 (< ö^c-M t0 

be determined by the designer) — Horowitz (1963, 
Chapter 8) uses the term 'transition frequency' in a 
similar design situation. The corresponding magnitude 
of the conditional supply loop L^ = L^l(\ + L_u) is 

indicated by the thick line in Figure 4. According to 
eq. (7), the load regulation is improved in the 
approximate frequency range of ß^.0 to £Ugc>jv- 

The hand-over frequency a^.0 must be significantly 

less than ß^Cj.jv 
m order to avoid regulation gaps in 

the frequency range below fflgC,Ar, and in order that 
significant gain can be put into the new loop L^. 
According to eq. (8), the new plant carries the entire 
dynamic load in the frequency range from fflh_0 to 

(Ogcjy and the old plant set follows load changes below 

ö^.0 — slower than it would do without the new plant. 

Therefore, the choice of the hand-over frequency ö^.0 

is a matter of compromise. 

If, around the hand-over frequency co^.0 (<OgCi-Ar), the 
slopes of L.N and Z,# are -30 and 0 dB/dec 

respectively, then the slope of L^ is +30 dB/dec. This 

yields a sufficiently small LsN phase angle of 135° at 

ft^.0 (a low frequency phase margin of 45°). 

Sometimes, Lpj is made zero at steady-state. This is so 
in the inner loop design of the plant modifying 
cascaded system by Horowitz (1993) and it happens 
automatically when the 'valve position control scheme' 
of Shinskey (1988) is inserted into a control loop. This 
requires positive slope of L^ at some low frequency. 
If this positive slope is designed around the hand-over 
frequency, such as indicated by i'V in Figure 4, the 
overall system may become unstable. If, for example, 
the slope of LN is 20 dB/dec, around ö^.0 (<ö)gc,-Ar), 
then the slope of the conditional L^ is +50 dB/dec. 

This yields an L^ phase angle of 225° at a^.0 — and 

an unstable system! 

The above conservative design process results in a 
Bode magnitude plot of the load control loop transfer 
function L that looks like a terraced mountain side. In 
a single loop system this would generally indicate 
under-design. Furthermore, perhaps more importantly, 
the 'corner' at ft^.0 introduces a slow mode at about 
this frequency in addition to the intended dominant 
closed loop fast mode at about (Ogcjj. The general 
problem of slow modes in control systems with 
Wiggling' loop transfer functions is analysed in my 
latest book (Eitelberg, 2000). 

Although the slow supply redistribution mode at ftfo-o 
cannot be avoided in the supply plant outputs, its 
residual in the accumulator output can be reduced to 
zero by 'straightening out the terrace' in L. That means 
that the hand-over will have to take place along the 
line LV m Figure 4 and some low frequency portion 

of I.JV must become (significantly) steeper than the 
previously mentioned -30 dB/dec. If the hand-over 
frequency ß},_0 is sufficiently low the modified L_N 



will be conditionally stable, otherwise it will be 
unstable without the new loop closed and operating 
within its supply limits. The main condition for overall 
stability is that LN dominates L.^ by magnitude where 
the non-minimum phase-lag is significant in L_x — 
then one should be able to design a stable L with the 
gain cross-over frequency 6%C,N of Z,#- 

The advantage of increasing the hand-over frequency 
cuh_0 is in more small signal load regulation burden 
falling on the existing plants and correspondingly less 
on the new plant. Therefore, according to linear 
system theory, a less powerful and cheaper new plant 
needs to be purchased than in the case of the cautious 
design. 

Achieving better small signal economy or 
performance with unstable (or conditionally stable) 
L.N could (and very probably would) be a Pyrrhic 

victory] Even temporary saturation of the plant P^by 
sufficiently large load deviations can lead to overall 
system limit cycling ('instability' of the linear system 
theory). In my opinion, this is the most amazing 
peculiarity of load sharing systems. 

Avoid Pyrrhic victories: 

Base your design of the conditional supply loop 
LsN on an unstable (or conditionally stable) closed 

loop L.N, only if you really know what you are 
doing (or if you have adequate insurance). 

Be very circumspect when designing master 
controllers for combined plants with fixed load 
sharing structures — important information is in 
the individual loops. 

Be very circumspect when tuning slow loops 
while  fast loops  are  operating —    impressive 
(small signal) linear performance can be achieved 
at the cost of potentially disastrous (large signal) 
operating problems. 

I did not suspect the above stability problem during 
my development of the design procedures, it surprised 
me when I could not make one of my apparently good 
designs work, took some considerable effort to 
explain, and much more effort to overcome the 
obstacle without compromising the performance. 
Figure 7 gives an idea of what can be achieved with 
some non-trivial design effort. 

I should point out that well-designed cascaded 
feedback loops inherently suffer from the 'Pyrrhic 
victory syndrome'. A solution seems to be in 
acquiring an inner loop sensor with sufficiently wide 
range. This is a question of implementation which 
goes beyond what I can explain here, but see Eitelberg 
(1999). 
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Figure 7: Illustration of load distribution between slow 
and floating fast supply. The fast supply limits are 0 
and 60, it is biased to 20. The slow supply limits are 0 
and 200. Same plant and load as in Figure 6, different 
control system structure. 

5   CONCLUSION 

Two of the arguably most interesting peculiarities of 
load sharing control are the cross sensitivity and the 
Pyrrhic victory syndrome (the conflict between small 
signal performance and plant operability). Both 
concerns are just as relevant in general multivariable 
control systems. 
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Abstract: The Aero-Electric Power Station is the ultimate solar power station, utilizing the dry, hot air 
of Earth's desert zones. By spraying water at the top of e.g. a 1200 m tall chimney with a diameter of 
400 m, the air is cooled by evaporation and flows downwards through turbines at the bottom, 
generating 380 MW of net electric power. The Aero-Electric Power Station is still on the planning 
stage, and this paper belongs to a long series of feasibility studies. 

The current "truth" model of the Aero-Electric Power Station is a one-dimensional computational 
partial differential equation model, having the air density, the air velocity, the temperature, the 
humidity of the air, and the mass of the evaporating droplets as state variables, combined with a turbine 
model whose state variables are the air velocity through the turbine and the rotor angular velocity. 

The external weather conditions, defined as the air pressures, temperatures, and humidity at the top and 
bottom of the tower, determines the optimal operating point, i.e. the optimal water spray flow and 
turbine velocity that give the largest net power. The gross power produced by the turbine is partly 
delivered to the grid that is assumed to accept all it gets, and partly to pump sea water to the lower 
water reservoir at the bottom of the tower, and from the lower reservoir to the upper reservoir at the 
top. The reservoirs make it possible to use the pumping power as a control input in addition to the 

spray flow rate. 

For each operating condition it is possible to approximately model the Aero-Electric Power Station 
plant as an uncertain unstable irrational transfer function, with the deviations from the nominals of the 
delivered turbine power and spray flow as control inputs, and the deviation from the nominal of the 
rotor velocity as the output. Changes of external humidity and temperatures are typically very slow 
with diurnal and slower variations, and hence these changes can be taken into account by slowly 
changing the operating condition. The same holds with respect to the slowly varying mean external air 
pressures. Wind changes, however, will cause significant disturbances in the external air pressures at 
the top and bottom of the tower in the frequency range 0.002 - 0.2 Hz. Therefore deviations from the 
nominals of the external top and bottom air pressures are included as disturbances in the model for 
regulation, whereby the regulator is to be designed to keep the rotor velocity constant at its nominal 
value. Thus the plant model has two disturbances (external air pressures at top and bottom), two control 
variables (turbine power, and spray flow), and one output (rotor velocity), without a cascaded structure. 
Hence this problem is a paramount case for robust load sharing control. 

It turns out the set of possible operating conditions impose such a large uncertainty in the transfer 
function model that it is impossible to solve the regulation problem with one linear feedback regulator. 
The set of operating conditions is thus divided into overlapping subsets. For each subset a robust linear 
feedback regulator is designed by QFT, in such a way that the load of regulation is shared between the 
two control inputs. Gain scheduling should then be implemented to follow the slowly changing 
operating condition from subset to subset. 

In this paper the load sharing QFT design is demonstrated for one subset of operating conditions, with 
closed loop simulations using the "truth" model. Problems that remain to be solved include, inter alia, 
the design of the gain scheduling algorithm, the use of feed-forward from disturbances, and the 
development of a multi-turbine three dimensional "truth" model and the solution of the subsequent 
MIMO design problem. 



1. Introduction 

The Aero-Electric Power Station is the 
ultimate solar power station, utilizing the dry, 
hot air of Earth's desert zones. By spraying 
water at the top of e.g. a 1200 m tall chimney 
with a diameter of 400 m, the air is cooled by 
evaporation and flows downwards through 
turbines at the bottom, generating 380 MW of 
net electric power. An artist's view of an Aero- 
Electric Power Station is found in Figure 1. 
The Aero-Electric Power Station is still on the 
planning stage, and this paper belongs to a 
long series of feasibility studies. An overview 
of the principles and main design issues is 
found in e.g. Gueta (19993), Zaslavsky (1997) 
and Zaslavski etal, (1999). 

One of the major operational problems of the 
Aero-Electric Power Station is to avoid so 

called salt spray. The water sprayed at the top 
of the tower will of course be salt ocean water, 
in order not to waste costly and scarce fresh 
water. If the droplets evaporate completely, 
powdered salt will pass through the turbines 
and potentially harm the surroundings. Studies 
have shown that at optimal operation, the 
amount and size of the droplets should be such 
that the evaporation increases the salt 
concentration in the drops from 4% to about 
20%. Then the remaining salty drops will be 
collected outside the turbines, and led back 
into the ocean. As an additional benefit, the 
humid outlet air will in part dew irrigate the 
surrounding areas. It is clear that to avoid salt 
spray, efficient feedback control might be of 
importance. The present study does not deal 
with the salt spray avoidance control problem 
directly, but with maintaining the operation 
near optimum. 

Figure 1. An artist's view of the Aero-Electric Power Station. Note that this view is inexact since the 
drops will not evaporate completely, but exit through the turbines to be collected outside. 
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Figure 2. The air temperature inside,   Tin, and outside,  Tout, the tower vs. altitude, when water 

droplets of diameter 150 jum are sprayed at the top of the tower, in a quantity sufficient to saturate the 
air with vapor. 

The thermodynamic principle of the Aero- 
Electric Power Station is the different adiabatic 
heating of the humid and cool air inside the 
tower and the dry and hot air outside the tower, 
as displayed in Figure 2. The cool and humid 
air inside the tower is heavier than the outside 
air and flows downwards. The created 
pressure difference between the inside and 
outside air at the bottom of the tower drives the 
turbines. The potential gross energy due to the 

cooling, Ec [J/m3] is given by 

T  -T out        m 

(1) 

where   pa   [kg/m3] is the density of the air 

inside the tower, pat [kg/m3] is the density of 

the air in the atmosphere, g is the constant of 

gravity, Hc [m] is the total height of the tower, 

and Tin [K] and Tout [K] are the temperatures 

inside and outside the tower, respectively. 

Note that Ec is approximately proportional to 

the mean difference between   Tin and   Tou, 

Tout —Tin .    Tin    denotes   the   mean   inside 

temperature. It is hence important to spray a 
sufficient quantity so that the air inside the 
tower is saturated with vapor and the 
temperature profile follows the wet adiabatic at 

all  heights,   as   Tin    in  Figure   2.   With   an 

insufficient spray discharge, complete 
evaporation will take place at some height, and 

from that height and below the Tin profile will 

be parallel to the dry adiabatic of T0M   in 

Figure 2, and hence  T0l 

than maximal. 

-T-    will be less 

A slow initial cooling at the top of the tower 

will decrease the value of Ec in (1). It has 

been shown (Zaslavski et cd, 1999) that for net 
power optimal operation, surplus spray 
discharge is necessary, in order to ensure fast 
evaporation and a fast drop in temperature at 
the top of the tower, see Figure 2. 
Consequently, water drops will exit the 
turbines together with the humid air. Ideally, 
infinitesimal droplets should be used. 
Available spraying equipment is capable to 
produce droplets with a diameter of 150 u.m. 
The optimal surplus discharge is such that the 
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size of the droplets will decrease to a diameter 
of about 87 urn at exit, thus also avoiding salt 
spray. As stated above the salt concentration in 
the droplets will increase from 4% to 20%, the 
latter figure also being the limit for efficient 
water vapor evaporation from the droplets at 
the bottom of the tower. Larger surplus spray 

discharge will increase gross power 
production, since a large part of the kinetic 
energy of the remaining droplets can be 
retrieved in the turbines, but net power 
production will decrease due to the pumping 
losses. 

10     11     n     13     H     is 
Entrance velocity [m/s] 

□ ■200--150 H-150--100 rj-ioo--io   rj.jo-o        BO-JO rjio-ioo 
0150-200     «300-250      ^250-300      □ 300-350      0330-400 

Figure 3. Potential net power [MW] as function of constant entrance air velocity, and constant spray 
rate, for a 1200 m high tower with diameter of 400 m, sprayed with droplets of 150 jum diameter. An 
ideal tower model with an ideal turbine is used for the computation. The weather conditions are 
Tout(top,t)=293 [K], ToJbottom,t)=304 [K], atmospheric vapor density (humidity) = 20 [kg water/kg 
air], P0Jtop,t) = 93000 [Pa], PBJbottom,t) = 106700 [Pa], where t denotes time [s]. 
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Figure 4. Net power [MW] as a function of constant rotor angular velocity and constant spray 
discharge, for the tower and conditions described in Figure 3. The computation is done with a static 
model that approximates the "truth" model in steady state with at most 15% error (Horesh, 2001), and 
the turbine described in section X. 
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The power production is proportional to the 
product of air mass flow, and the air pressure 
difference between inside and outside air at the 
bottom of the tower, (or, alternatively, head at 
the turbine). Both of these variables are 
functions of the entrance velocity of the air 

into the tower, v [m/s]. In Horesh (2001), 

on which this paper is based, it is shown that in 

steady state, v     is a monotonous function of 

the turbine rotor angular velocity, n [rpm], for 
the studied weather conditions. It can be 
shown, (Zaslavsky et al, 1999) that there exists 
an optimal constant entrance velocity for 
which the net power production is maximized. 
Figure 3 shows the potential net power as a 
function of constant spray rate and constant 

vw . The dependence of the net power on 

constant spray rate and constant rotor velocity 
is similar, see Figure 4. 

The "truth" model of the Aero-Electric Power 
Station is a one-dimensional computational 
partial differential equation model, having the 
air density, the air velocity, the temperature, 
the humidity of the air, and the mass of the 
evaporating droplets as state variables, 
developed in Borshchevski (1998). The "truth" 
model took its current form in Horesh (2001) 
where Borshchevski's model was combined 
with a variable rotor speed turbine model, 
Ekelund (1994), whose state variables are the 
air velocity through the turbine and the rotor 

angular velocity. 
Section 2. 

The model is described in 

The external weather conditions, defined as the 
air pressures, temperatures, and humidity at the 
top and bottom of the tower, determines the 
optimal operating point, i.e. the optimal water 
spray flow and turbine velocity that give the 
largest net power. The gross power produced 
by the turbine is partly delivered to the electric 
grid that is assumed to accept all it gets, and 
partly to pump sea water to the lower water 
reservoir at the bottom of the tower, and from 
the lower reservoir to the upper reservoir at the 
top. The reservoirs make it possible to use the 
pumping power as a control input in addition 
to the spray flow. 

Figure 4 is generated by a static model from 
Horesh (2001) that approximates with at most 
15% error the steady state of the current 
"truth" model (Section X) for the weather 
condition defined in the figure caption. The net 
power was computed for combinations of the 

spray rate   Qw   [m3/s]  and rotor velocity n 

[rpm] in a grid in Figure 4. The net power JVnet 

[Watt] and the pumping power, Np [Watt], 
follows from the computation. In this way 
optimal operating points are found also for 
other given weather conditions, yielding set 
points for all input and output variables. 
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Figure 5. Wind spectrum, from Freris (1990) 
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For each operating condition it is possible to 
"locally" model the Aero-Electric Power 
Station plant as an uncertain unstable irrational 
transfer function, with the deviations from the 
nominals of the delivered turbine power (or 
equivalently rotor load torque) and spray flow 
as control inputs, and the deviation from the 
nominal of the rotor velocity as the output. 
Changes of external humidity and temperatures 
are typically very slow with diurnal and slower 
variations, and hence these changes can be 
taken into account by slowly changing the 
operating condition. The same holds with 
respect to the slowly varying mean external air 
pressures. Wind changes, however, will cause 
significant disturbances in the external air 
pressures at the top and bottom of the tower in 
the frequency range 0.002 - 0.2 Hz, see Figure 
5. Therefore deviations from the nominals of 
the external top and bottom air pressures are 
included as disturbances in the model for 
regulation, whereby the regulator is to be 
designed to keep the rotor velocity constant at 
its nominal value. Thus the plant model has 
two disturbances (external air pressures at top 
and bottom), two control variables (turbine 
power, and spray flow), and one output (rotor 
velocity), without a cascaded structure. The 
local transfer function model is described in 
Section 3. 

It turns out the set of possible operating 
conditions impose such a large uncertainty in 
the transfer function model that it is impossible 
to solve the regulation problem with one linear 
feedback regulator. The set of operating 
conditions is thus divided into overlapping 
subsets. For each subset a robust linear 
feedback regulator is designed by QFT, in such 
a way that the load of regulation is shared 
between the two control inputs, using the load 

sharing ideas of Eitelberg (1999). Gain 
scheduling should then be implemented to 
follow the slowly changing operating condition 
from subset to subset. 

In Section 4 the load sharing QFT design is 
demonstrated for one subset of operating 
conditions. The design was done with Qsyn - 
the Toolbox for Robust Control Systems 
Design, Gutman (1995). Some Closed loop 
simulations using the "truth" model are 
presented in Section 5. The results and their 
implications are discussed in Section 6. One of 
the conclusions is that QFT is eminently suited 
to solve this challenging control problem. 

Problems that remain to be solved include, 
inter alia, the design of the gain scheduling 
algorithm, the use of feed-forward from 
disturbances, and the development of a multi- 
turbine three dimensional "truth" model and 
the solution of the subsequent MIMO design 
problem. 

2. The one-dimensional "truth" model 

In this section a short overview is given of the 
computational one-dimensional partial 
differential model of Borshchevski (1998) 
which is partially based on Gueta (1993). In 
this model, the tower is sliced into h =20 m tall 
slices (cells), and the time is discretized by 
0=0.05 seconds, such that a pressure wave 
that travels with the speed of about 340 m/s 
will hit each slice at least once in discrete time. 
Let j denote the time step, and i the cell 
number. The balance equations defining the 
operation inside the tower follow. The air 
mass balance equation (continuity equation) is 

Paov)= Pa(ij-i)+ - (u(ij-i)pa(i-ijyu(i+ij-i)Pa aj-i))+-sv(ij) (2) 
h n 

where pa [kg/m3] is the humid air density, U  [m/s] is the air velocity, and Sv [kg/m2/s] is the vapor 

source. The momentum balance equation is 

U(iJ) = U{iJ-\)--U(i,j-\){U{i + \,j-\)-U(i,j-\))- 
h 

e 
hpa(i,j-l) 

{R(i-lJ)(pa(i,j-l)T(i,j-l)-pa(i-l,j)T(i-l,j)))+        (3) 

+ 0 8-f 
2H 

2 A e  sTq,j) 

hpa(i,j-l) 
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where R [J/kg/K] is the gas constant for air, T [K] is the temperature of the air, g [m/s/s] is the 
constant of gravity,/is the friction coefficient, Hc [m] is the height of the tower, and SF [N/m2] is the 
momentum source due to drag. The energy balance equation is 

6 
T(i,j) = T(i,j-l) U(i + \,j-\){T(i,j-l)-T(i-\J))- 

h 

e R(I,J-D mj/_1)(t/(l.+1)_/_1)_t/(l.ji/._1))_ 

,   U(iJ-\f       f 

(4) 
hCv(i,j-l) 

e        sQ(ij) 

hpa(i,j-l)Cv(iJ-l)    Cv(i,j-1)   2Hc 

where C„ [J/kg/K] is the specific heat of air at constant volume, and SQ [J/m2/s] is the energy source 
caused by the interaction with the water drops. The vapor balance equation is 

cob(i,j) = (ob(i,j-l) + -(U(iJ-\)cob(i-\J)-U(i + l,j-l)cob(i,j-\)) + -Sv(i,j) 
h n 

(5) 

where (Ob [kg water/m3 air] is the vapor density. The equations for the evaporation of a drop, Ed 

[kg/s], the mass of a drop, md [kg], the drop diameter, dd [m], and the velocity of a drop, Ud [m/s], are 

Ed (i, j) = -pa(i,i)oKDdd(i, j){cod(i, j)-(Oa(i, j)) 

urnd 

dt 
= Ed(U i) 

dd 
_ \6mä 

xpd 

Ud(i,j) = U(i,j) + 
SPtdä{ij) 

18//a(l + 0.15/?/687) 

(6) 

where a is the Sherwood number, Da is the 

diffusion coefficient, dd [m] is the water drop 

diameter, (Od [kg water/kg air] is the 

saturation humidity of the air, pd [kg/m3] is 

the density of the drop, p.a [kg/m/s] is the 

elasticity of the air, Re is the Reynolds 

number,   and   C0a [kg   water/kg   air]   is   the 

humidity of the air, computed from (5). The 
vapor source in (1) and (5) is given by 

Sv(iJ) = -^Ed(ij) (7) 

where nd is the number of drops in cell   i  at 

time j , and Ac [m
2] is the cross section area of 

the tower. 
The momentum source due to drag in (3) is 
given by 

>F=—gmd 
A 

(8) 
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The indices / , j are dropped for convenience. 
The equation for the energy source caused by 
the interaction with the water drops is 

SQ=-f-{v-kKdd(Td-T) + LEd) 

dT, 

dt      mdCpii 

l—(v.kxdd{Ta-Td) + LEd) 

(9) 

where V is the Nusselt number, ka [J/(Ksm)] 

is the thermal conductivity of air, Td [K] is the 

temperature of the drops, and L [J/kg] is the 
evaporation energy for water. Cpd [J/K/kg]= 
drop specific heat at constant pressure. The 
indices /, j are omitted. 

The boundary conditions for the tower are 
governed by the following equations. The 
humid air density at the top of the tower, 

pa(0,t/0.05) [kg/m3] is given by 

pa(0,t/0.05) = 
RToa{top,t) 

(10) 

where      Paax (top,t) [Pa]     is     the     outside 

atmospheric  air  pressure  at the  top  of the 

tower,    Tml(top,t)     [K]    is    the    outside 

atmospheric temperature at the top of the 
tower, and, as mentioned above, R [J/kg/K] is 
the gas constant for air. The air velocity at the 
bottom of the tower, vbot(0 = 1/(61, f/0.05) 
[m/s] is given by 

where m is the number of turbines, D [m] is the 
diameter of the turbine, and vmT(t) [m/s] is the 
velocity of the air through the turbines, given 

below by (12). 7^, (top,?) constitutes the 

boundary condition for (4), while the 

atmospheric vapor density equals mb[0,j)in 

(5). The initial water drop velocity at the top of 

the tower, Ud(0,j), is neglected since it 

tends very quickly to the drop velocity in (6). 

The initial drop diameter, dd0 =dd[0, j) 

[m], is assumed to be constant in this study = 
150 (im, but could be used as a control 
variable. The initial mass of a drop follows 
from (6). The spray flow rate, QJfy [m3/s], is a 
control variable, from which the number of 

initial water drops, nd(0,j), follows from 

4,(0,./) and (6). 

The turbine model is adapted from Ekelund 
(1994), and contains two differential equations. 
The differential equation for the air velocity 
through the turbine, vm(t) [m/s] , is 

UO=|M£ (o-£(o)    w 
where C is the efficiency of the turbine and 

diffuser system, given by a table (Krivchenko, 

1994)2^ [m] is the length of the turbine, and 

Vpot(/) [m/s] is the "potential" air velocity, 
given by 

vb«(0 = 
"WD2vm (0 

AA 
(ID 

25600(3200 -n(t)-p + 2^-&2944q2n (tf +8lq2Hpol + 2500p2 Hpo,q
2)      4 

H    3(6U)-/>out(6U) 

8P.(toJ) 

^(61,j) = 
A,(6U) 
RT (61, j) 

81? +2500/ KD
1 

(13) 
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where n(f) [rpm] is the rotor angular velocity, p 
and    q    are    constant   turbine   parameters, 

H ot [m]  is the "potential" head, computed 

according to static head in Pnueli and 
Gutfinger (1992), Pin(6lJ) = Pin(bottom,f/0.05) 
[Pa] is the internal pressure at the bottom, 
Pom(61J) = -Pout(bottom, r/0.05) [Pa] is the 
atmospheric pressure at the bottom, see the 
atmospheric  model  in  Wallace  and  Hobbs 

(1977).    Pin(0j>    Pout (top,t/0.05)    is    a 

boundary condition.  T(iJ)  is  given by (6), 

T(0j)   =Toat (top,t/0.05)    is   the   boundary 

condition for (6), and R [J/kg/K] is the gas 
constant for air. Note that it is via (13), (11) 
that the water spray enters as a control variable 
that influences the air velocity through the 
turbine in (12). 

The differential equation for the rotor angular 
velocity, n(t) [rpm], is 

h(t)=- 
1 npjyv^ (o 

8n(0 
C - 

V60y m ■ n(t) 

\ 

(14) 

where  J     [kgm ] is the turbine moment of 

inertia, m is the number of turbines, and Nlh (t) 

[W] is the power delivered from the turbines. 
Note that 

N„(t)=Nm(t) + N?(t), (15) 

where Nnet (?) [W] is the net power delivered 

to the grid, and    N (t)   [W] is the pumping 

power. The pumping power needed to lift the 
water from the bottom of the tower to the 
sprayers is 

'p 

where Hiass [m] is the loss of head in the water 

intake   and   in  the   sprayer,   and   77 is   the 

efficiency of the pumps. When optimizing the 
steady state operation, (16) is used. (16) 
prescribes that Nv(t) cannot be a control 
variable independent of ßw(0- If there, is water 
storage capacity at the bottom and top of the 
tower, Np(t) may however be used as an 
independent but limited control variable. In 
this paper it is assumed that for dynamic 
regulation, ßw(0   and   Nv(t) are independent, 

and that the capacities of the storage tanks are 
sufficient. 

3. The linear model around an optimal 
operating point. 

With the tower-and-turbine model in Section 2, 
and a given constant weather it is possible to 
find the constant spray flow rate <2„, and rotor 
angular velocity n that maximizes the net 
production of electrical power, Nna. 

To compute Nnct for given Qw and n, one may, 
e.g. solve the equations in Section 2 in steady 
state, i.e. letting all derivatives and differences 
with respect to time in each cell be zero. 
Another route is to simulate the model in 
Section 2 until steady state is reached which is 
however very time consuming. In Gueta 
(1993) a simple "ideal" model of the tower 
without turbines was assumed and the 
optimum was found with relative ease. Figure 
3 is generated with the method of Gueta 
(1993). Horesh (2001) formulated a simplified 
algebraic steady state model based on the 
equations in Section 2, that was shown in few 
cases to give an optimum at most 15% off the 
the optimum found by simulating the equations 
in Section 2 to steady state. Figure 4 is 
generated with the use of the simplified model 
in Horesh (2001), combining equidistantly 
gridded values of Qw and n. The local optima 
in Figure 4 are due to different values turbine 
efficiency as a function of Qw and n. 

One may notice Figure 4 that the optimum is 

not very sensitive to Qw e [16,18] m3/s for n 

~ 30.7 rpm. 
The results both in Figure 3 and Figure 4 
indicate that insufficient spray flow (in Figure 

4, Qw <16   m3/s) causes the net power to 

decrease sharply. In Figure 4 the decrease of 
turbine efficiency contributes to the sharp 
decrease in net power for insufficient spray 
flow. Surplus spray flow also decreases net 
power but in a less drastic way, since the 
potential energy of the water drops may be 
partly recovered. This fact is beneficial for 
avoiding salt spray. 

In view of Figure 4, one possible way to 
control the aero-electric power station is to 
make use of an extremum-seeking controller 
(Sternby, 1979) whereby set points for Qw and 
n are "probed" in the vicinity of the current set 
point, in order to track an optimum that is 
changing slowly due to the slowly changing 
weather conditions. Such a configuration will 
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require feedback control to keep QK and n at 
their respective set points. An extremum- 
seeking controller has to be designed wisely in 
order not to lose too much produced power 
during probing due to local optima and the 
sharp drop in net power due to insufficient 
spray flow. 

In this paper another approach is taken. It is 
assumed that a pre-computed operating table 
prescribes the operating points for the spray 
flow rate, and turbine rotor angular velocity, 
j2„o [m'Vs]and n0 [rpm] respectively, as a 
function of current weather, yielding the 
corresponding net optimal power, 7Vnct0 [W] 
and pumping power A^p,0 The task of the 
feedback controller is to keep An zero, where 
An = n- n0, using Ag„. = g„ - g.vo. and A/Vlh 

= Np- Np0, thereby, in view of (15), keeping 
the net power Nna = NDCt0, in response to micro- 
meteorological wind induced pressure 
disturbances, whose spectrum is given in 
Figure 5. Such a scheme is feasible if the water 
storage tanks are sufficiently voluminous to 
accept temporary deviations from nominal 
levels until the operating points are adjusted 

anew with the use of the operating table. In 
fact, the storage tank water levels may be used 
as indicators that new operating points are 
needed. 

In this section the simplified linearized model 
around an operating point is presented. For the 
detailed development, see Horesh (2001). 
Section 5 contains the design of the feedback 
controller. 

By linearizing the turbine equations (12)-(14) 
around the state operating point [n0 vtur0] , one 
gets a second order state space description with 
constant coefficients: 

\y(t) = Cx{t) 
(17) 

where x{t) = [An(t) Avwr(*)] = [(«(0 - «o) 
(vmr(f) - Varf,) ]T w(t) = [AAWO Atfpot(?)]T= 

[(Nlh(t) - Afoo) (/WO - #Po,o) ]T = [ W) - 
AW (tfpmW - tfpoto) ]T, since Nnct = Nnct0, y(t) 
= An(t)= (n(t) - n0), 

A = 

f60t 
In 

*PaDC,vm0 

SJTn0 

v   nC   dv   , turu      p pot 

L^       dn 

(60y3xpaD
2Cpviur0 

ylTZ J SJTn0 

V,urOC
P 

Lr 

fi = [fi,|52] = 2/r JTmn0 V,urOCP     dVpo, 

Lr      3//, 

and C = [0    l]. 

From (17) the transfer function from w to y is easily computed, 
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'Y(s) = [Pl\Fi]w(s) 

ff 

PA') 

60 

2K 
+ 

s  = - 
mJTn0 

Cvtur0(60\    1 

A- 2;r mJTn0 

s +s 
^60 V 

v2;ry 

%^J+9^^ 
87r«0 ^ y 

f60Y^pö2c 2vmr0 

yln j SJTLrn0 

v 3v   , 
tltrO   _ ■J POt 

dn 

f 60 t SnpaD
2Cp\J 3v 

3» = - 
v2;ry 

2„  2 3 
V    „ 

p      turO pol 

87A«o       &*, 

j +s 
\lK J 

- + - 
877n0 

^60V 

V2;zV 

2^,   2 3   / 
VAC, vttrl p      turO 

8-^Vo 
turO        -a P°' 

(18) 

where the delay e °s was inserted to reflect 
the dynamics of the turbine to load power 

changes. While Pt (s) connects y with a 

physically manipulable control input, ANlh, the 

input into  P2 {s)is the intermediate variable 

A//pot. It is thus necessary to find the transfer 
function or frequency function from AQW to 
AHpo„ as well as the transfer functions from the 
assumed pressure disturbances at the top and 
the bottom, APtop(f) = F0ut(top, f)-^outo(top, t), 
and APbot(0 = fout(bottom, f)-<Pouto(bottom, t), 
respectively, to AHpol. In fact, A/7pot was 
chosen as a control input in (17) rather than 
e.g. Avmr or Avbot because this enables the 
decoupling between the tower and the turbine. 
Approximate expressions for these frequency 
functions were developed in Horesh (2001), 
and summarized here. 

Assuming that the tower is filled with an ideal 
gas than undergoes in isentropic process, then 

the pressure changes AP(x,t) [Pa] around a 

stationary point can be modeled with the wave 
equation, 

d2AP(x,t)      2d
2AP(x,t) 

dt2 
■ = c 

dx 
(19) 

where c [m/s] is the velocity of sound. Assume 
further that the boundary condition at the top 
(i.e. equal to the pressure disturbance at the 
top) is sinusoidal, with frequency CO [rad/s], 

*P«At) = AP(0,t) = AmpSm{a)t). (20) 

The turbine imposes the boundary condition 

dAP{Hc,t) 

dx 
= 0. (21) 

Then (19)-(21) yield that 

( 
AP(x,t) = Ampsm(0)t) cos 

V 

CO 
— x 
c 

ism 

From (22) it is easy to find that the resonance 

frequency is <Dies = (ffc)/(2Hc) «0.445 

rad/s for Hc=\200 m. According to Figure 5, 

CO 
—x 
c 

(22) 

the subset of the micrometeorological range in 
which the pressure disturbance has a 
significant   contribution   is   about   to   0.02 
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Hz=0.126 rad/s, and hence one may assume 

that CO<CO   . Then, one has from (22) that 

AP{H.,t): 
1 A  sm[COt) 

cos(coHjc)    cos(coHjc) 

(23) 

AP(0,t) 

By the use of Bernouilli's equation (Pnueli and 
Gutfinger, 1992) on which also equation (13b) 
is based, one gets 

A"„o,(0 = 
1 

gpa(Hc,t)cos(o)Hjc) 

(24) 

AP(0,t). 

Equation (24) can be interpreted that a 
sinusoidal pressure disturbance of sufficiently 
low frequency is amplified with a frequency 
dependent gain. If the time dependent variable 

pa (Hc, t) is replaced by an uncertain constant 

pa that covers the range of pa(Hc,t), then 

one gets the frequency function 

Atf,0,(» = 
1 

gpa cos(coHjc)     top 

(25) 

A^op(^)- 

Note that for CO- CO    and its harmonics (25) 
res v ' 

has infinite gain. In the "truth" model, the gain 
is but very large. In a similar way, one finds 

A*U (■/<») = 
1 

— -r-rjT^bcO"®) 
gpo cos (coLD/c) 

(26) 

where LD [m] is the length of the diffuser. 

For the details of the development of the 
approximate transfer function from AQW to 
AHp0„ see Horesh (2001). It is based inter alia 
on an averaging procedure of the equations in 
Section 2. With reference to (4), (6), (9), the 

use of the approximation  8cOa ~ —CpaSTJL 

where ScOa [kg water/kg air] is the change in 

humidity of the air due to the temperature 

changed    [K],   and   C      [J/kg/K]   is   the 

specific heat of air at constant pressure, one 
may obtain the following approximation for 
the static dependence of the temperature 
change AT [K] at the bottom of the tower as a 

result of a change of the spray flow AQw 

[m3/s], 

AT = - 
djAcU

2 

6Q naDd, 
1 — 

c -AÖ„  (27) 

where   U   [m/s] is the average air velocity, 

dd [m] is the average drip diameter, and y is 

the difference between the temperature 
gradient for humid and dry air, as in Figure 2. 
However evaporation is a dynamic process, see 
(6a) that may be approximated by a linear first 
order model and the droplets have a finite 
velocity, see (6d), which causes a delayed 
response. One may therefore turn (27) into a 
dynamic equation in the Laplace domain, 

AT(x, s) =■ 

8 

j^_e vt ■AQJs) 

s + - 
"2 

(28) 

AT(x, s)   is  the  Laplace  transform  of the 

temperature   change  x  m  down   the   tower, 

^=(ddoAÜ)/(6Qw0aDadd)    [s]   is   the 

time constant of the evaporation of the drops, 

cf. (6b), and x/l/d [s] is the time delay of the 

droplets.    With    the   help    of   Bernouilli's 
equation,   (1)   may   be   turned   into   an   an 
alternative formula for AH, pott 

AH 
fHt -AT(X) 
[    z^dx 

Jo T 
(29) 

where T =Tin [K] is the average temperature 

inside the tower, we get from (28), (29) after 
integration 
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u f^i) 

AH ,(,).I.-^ not ^    '   

-V, 

— + s 

l-e 

\ 

e'^AQfs), (30) 

where also AQw(s) was replaced by 

e~TbSAQ(s) in order to represent in a simple 

way the dynamics of the spraying equipment, 

whereby   AQn (t) should  from  now  on  be 

interpreted as the command to the spraying 
equipment. The model (18), (25), (26), (30) is 
now complete.. 

It can be shown that the plant parameter values 
for the studied aero-electric power station are 
such that one of the poles of P^s) and P2(s) is 
unstable. Let the unstable pole be -pu and the 
stable pole -p2. Let -Z\ be the zero of P\{s), kt 

*n(*) = M*)    t(*)] Aß». 

the high frequency gain of Pi(s), k2 the high 

frequency gain of P2(s), kp=k2/(gßa) , 

and 

kQ - 1 JL 
TQw0 

1 
1  

7 V 

(31) 

With this simplified notation, the block 
diagram of the plant model (18), (25), (26), 
(30), (31) isdrawn in Figure 6, and its 
frequency function becomes, with s = jco, 

■[PA*) PA*)) >t, (4 
(32) 

where 

*?(') = 

PA°) = 

kAs+^) 
 1 

(s + Pl)(s + p2) 

(s + Pl)(s + p2)   {S + 1/T2)S 
1 — e 

V J 

PA*)- 
(s + Pl)(s + p2)cos((sHc)/(jc)) 

*(*) = (s + Pl)(s + p2) cos ((sLD)/(jc)) 

It should be pointed out that the model errors 
introduced by the approximations is partly 
"compensated" by letting the parameters have 
an extended uncertainty range with respect to 
the ensuing robust control systems design. 

The set of all operating conditions is 
characterized by the following set of uncertain 
parameter    ranges     (nominal     values     are 

underlined): p^el-0.054, -0.015], p2e[033, 
0.71], zie[027, 0.53], kxe[2A, 5.1]10n, 
k2& [0.006, 0.0711, kQe[1.2S, 21J-10"4, 

T,er0.09. 0.111. T2G[33, 50],Zb e [1.8, 22], 

#c=1200, Üd e [9,5,19], kp=k2l\2, LD=160, and 

c=340. 
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F/gwre 6. ß/oc/t diagram of the plant model (18), (25), (26), (30), with the parameters defined in (31) 
and above. 

10y 

Block diagram 

AP   M 
An(s\ 

Figure 6 

Figure 7. Block diagram of the initially closed loop system, stabilized by the proportional regulator k = 
109 in the ANm(t) loop. The plant block represents the block diagram in Figure 6. 

4. Load sharing QFT design for regulation 

The control systems should be designed such 
that for all operating points the following 
specifications be satisfied: i) the closed loop 
system must be asymptotically stable; ii) 
include an integrator such that An(t) —>0 for 
step disturbances; Hi) the gain of the output 
sensitivity function must be less than 2 for all 
frequencies; iv) \An(jco)/APtop(jcö)\<O.OOl and 
IA«(jft>)/APbot(/G>)l<0.001 for a < 1 rad/s, 
excluding a small frequency range around the 
resonance 0.445 rad/s ; v) minimum use should 
be made of the control variable ANlh(t). 
Specification iv implies that all disturbances in 
the micrometeorological range are damped, as 
well as disturbances near the first resonance 
frequency. Specification v is meant to ensure 
that that AiVlh(0 will be operated within the 
capacity of minimal storage tanks. 

It turns out the set of possible operating 
conditions impose such a large uncertainty in 
the transfer function model of Section 4 that it 
is impossible to solve the regulation problem 
with one linear feedback regulator. It is also 
even impossible to stabilize the closed loop 
system with AQW only, because of the 
combination of an unstable pole, significant 
delay, and uncertainty. On the other hand it is 
easy to understand with root locus arguments 
that it is possible to 

stabilize kPl(s)/(l + kPl(s))        with        a 

sufficiently large k provided Tais sufficiently 

small, i.e. globally stabilize the closed loop 
system with a P-regulator in the ANih(t) loop. 
In our system k = 109 was sufficient. The 
initially closed loop is displayed in Figure 7. 
The compensated open loop, kPx(s), is 
displayed in a Nichols chart in Figure 8, 
together with the uncertainty templates for the 
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global set of operating conditions. It follows 
from Figure 8 that the sensitivity specification 
Hi is satisfied. The still insufficient disturbance 
rejection is demonstrated in the Bode diagram 
in Figure 9 of \An(jco)/APtop(jo))\ 

= \P3 (;'»)/(1 + kPl( jco))\ for the closed loop 

configuration of Figure 7. 

It should be noted that no attempt was made to 
make the AN[h(t) loop satisfy specifications 

beyond stability and sensitivity, since, firstly, 
as mentioned above, this was found impossible 
for the full uncertainty set emanating from all 
operating points, and secondly, specification v 
prescribes that as much as possible of the 
feedback burden should fall on the AQW loop. 
It is however important that the system may be 
globally stabilized by a simple controller in the 
ANm(t) loop, even if other control loops fail. 

1B0 -16G -140 -120 -10D -80 deg -60 

Figure 8. Templates of the open loop kPj(s) for the parameter combinations characterizing the 
complete set of operating conditions (full uncertainty set), in a Nichols chart. The nominal plant is 
marked with the template frequencies [rad/s]. 
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Figure 9. The disturbance transfer function \bn(jctylM>top(jed)\ =|/,3(;fl))/(H-Wj(j'ß)))|    for the 

closed loop configuration of Figure 7 in a Bode diagram. Due to finite numerical resolution, the 
resonance peak at 0.445 rad/s does not reach infinity. The plant cases cover the full uncertainty set. 

Due to the failure to find one linear feedback 
regulator to solve the problem of regulation, 
the set of operating conditions is thus divided 
into overlapping subsets. For each subset a 
robust linear feedback regulator is designed by 
QFT, in such a way that the load of regulation 
is shared between the two control inputs, using 
the load sharing ideas of Eitelberg (1999). 
Gain scheduling should then be implemented 

to follow the slowly changing operating 
condition from subset to subset, but this topic 
is not treated in this paper. 

Here, we will demonstrate the design for one 
particular subset of operating conditions. It is 
defined by the following shrunken parameter 
intervals (nominal values are underlined): 
p,sr-0.042,     -0.029], po£ r0.55.    0.60], 
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z,£r0.44,     0.46], kxe\2Jl,     3.05]10"9, 
k2e [0.020, 0.0241, fcße[3.31, 4.851104, 

7fle[0.09, OH],   r2e[53,   11.9],rt   e[1.8, 

Z2], //c=1200, t/dG [9,5,19], kp=k2/\2, 

LD=160, andc=340. 

According to Eitelberg (1999) the "slowest" 
loop should be closed first, which in the 
present case is the loop whose control input is 
the water discharge Ag„.. Closing this loop first 
will also satisfy specification v. The open 
conditional water discharge supply plant is 
given by the transfer function from AQ„, to An 
in Figure 7, 

LM = 
\ + kPt(s) 

(33) 

whose templates for the shrunken uncertainty 
are given in Figure 10. Due to the significant 
phase lag and time delay in Ls2(s), it was found 
possible to satisfy only closed loop stability 
together with an 8 dB output sensitivity 
specification, rather than specification Hi, see 
Figure 11. It was not possible to raise the 
bandwidth further. However, an integrator was 
included in the controller Gd(s), 

3-10" 

<?,(') = ■ 

V 
1 + - 

0.0003 
1 + - 

0.002 
l + : 

2 -0.6s 2  V 

0.02  0.022 
1 + - 

2-0.75 
- + - 

0.009  0.009 

V 
1 + - 

0.0007 

V 
1 + - 

1000 

A 
1+- 

0.03 

/ V 
1+- 

0.0011 

f \ 
1+- 

0.01 

(34) 

thus satisfying specification ii. See Figure 12 
for a block diagram of the system. Figure 13 
displays        the        Bode        diagram        of 
\An(jü))/APlop(J(o)\= 

\P3 (jco)/(l + kPx (jco) + Gd (jco) P2 (ja>))\ 

for the configuration  in  Figure   12.  Clearly 
specification   iv  is   not   satisfied.   Hence   an 

additional A/Vlh loop stronger than the 
previously designed P-regulator has to be 
designed, also to meet specification Hi. The 
ATVih loop could also be made such that 
specification iv be satisfied in a "robust" way, 
and to increase the bandwidth in order to get a 
rapid disturbance response. 

•20 
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•1200 •1000 .800       40D       -2D0 Ü 

Figure 10. Templates for (33) for the shrunken uncertainty set, in a Nichols diagram. The nominal is 
parameterized by frequency, [rad/s]. 
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Figure 11. The nominal compensated open conditional water discharge supply loop GJs)Ls2(s) from 
(33), (34), in a Nichols diagram, together with Horowitz bounds emanating from the closed loop output 
sensitivity specification, \S\ <8dB. 

Figure 12. Block diagram of the system after the closure of the conditional water discharge supply loop 

with the controller G^s) in (34). AN'^ is the control input for the subsequent final control loop. 

Figure 13. Bode diagram of \An(joJ>/APu,p(Jc^\ = \P3 (jo))/(l + kPx ( jco) + Gd ( jco) P2 (;ö;))| which is 

the disturbance transfer function for the closed loop configuration of Figure 12. Due to finite 
numerical resolution, the resonance peak at 0.445 rad/s does not reach infinity. The plant cases cover 
the shrunken uncertainty set. 
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The open conditional supply loop for the 
design of the final AN]h controller is given as 

the transfer function between AN^ and An in 

Figure 12, 

LA'Y W 
\ + kPl(s) + Gd(s)P2(s) 

(35) 

The templates of L 3(5) for the shrunken 

uncertainty set are displayed in Figure 14. In 
order to attenuate \An(ja>)/APlop(ja))\ further in 
the frequency range [0.0002, 0.03] rad/s, cf. 
Figure 13, the following disturbance rejection 
was introduced: 

25 
dB 

20 

10 

-1D 

-15 

Ja.Z 

GQ01 

-50 50 1D0     ,      150 
dec 

200 

Figure 14. Templates for \09Ls3(s), with Ls3(s) defined in (35) for the shrunken uncertainty set, in a 
Nichols diagram. The nominal is parameterized by frequency, [rad/s]. Notice the size of the templates 
in comparison with Figure 8. 
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Figure 15. The nominal compensated open conditional pumping power supply loop Gf{S)L3(s) 

from (35), (37), in a Nichols diagram, together with Horowitz bounds emanating from (36). 
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An(s) 

AP,(') 

(j + 2-10"3)(5 + 5-10"3) 

(5 + 2-10"5)(5 + 5) 

(36) 

The  nominal  compensated  open  conditional 

pumping power supply loop Gf (s)LsJ (s) , 

together with the Horowitz bounds emanating 
from (36), with 

Gf(s): 
1013 (1.67/ +0.5*+ 0.0002) 

s3 +1000/ +9^ + 0.025 

(37) 

is displayed in Figure 15. Comparing Figure 
14 and Figure 15, it is clear that specification 
Hi is satisfied. The block diagram of the final 
system is found in Figure 16. Figure 17 
displays the Bode diagram of 
\An(jco)/APtop(jco)\= 

\P3 (ja>)/(l + (k + Gf (jco))^ (jco) + Gd (jco)P2 (jw))\ 

for the configuration in Figure 12. 

Figure 16. Block diagram of the final control system. G/s) is given in (37), and G^s) in (34). 

Figure 17. Bode diagram of the disturbance transfer function for the closed loop configuration of 

Figure  16,  \An(jco)/APtop(jü))\  = \P,{ja>)/(\ + {k + Gf{jco))Pl{ja)) + Gd{j(o)P2{j(o))\.  Due  to 

finite numerical resolution, the resonance peak at 0.445 rad/s does not reach infinity. The plant cases 
cover the shrunken uncertainty set. 
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-120 

Figure 18. Bode diagram of the disturbance transfer functions \An(jco)/APtop(j(o)\ from Figures 9, 13, 
and 17, for the nominal case of the shrunken uncertainty set. 

5. Simulations. 

The "truth" model of the Aero-Electric Power 
Station in Section 2 will not exhibit the infinite 
resonances seen in Figures 9, 13, 17, and 18, 
since internal damping and friction is not 
neglected. To check the control system, the 
pressure disturbance at the top was however 
defined at a frequency near the first resonance, 

AP   (f) = 10-sin(0.450 (38) 

in a simulation where the final controller 
defined in Figure 16, and the plant was defined 
by the "truth" model in Section 2. The results 
in Figures 17 and 18 make us expect an 
attenuation of about -40 dB. Figures 19, 20, 21 
display the time domain response of n(t), and 
the control signals ANih(t), and Qw(t), 
respectively. It is clearly seen in Figure 19 that 
An(t) is attenuated to an amplitude of about 
0.075 (around the nominal n0=34 rpm) that is 
by -42 dB in comparison with (38). 

Rolct Spesd v 

Ü        20        tu        50       60       \00      120      14Ü      180      180      2C0 
lime [s] 

Figure 19. The simulated response of n(t), as a result of a disturbance according to (38) in a 
simulation where the controllers of Figure 16 were integrated into the truth model of Section 2. 
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3.56 1 

timri [3] 

Figure 20. ANlh(t) The simulated response ofANlh(t), as a result of a disturbance according to (38) in a 
simulation where the controllers of Figure 16 were integrated into the truth model of Section 2. Note 

that N^ = (27Tn/60)M , where M [Nm] is the control torque exerted on the axis. With n0=34 rpm, it 

holds that 3.56M=n. Note in the figure the controller needs about 3 MW peak-peak for control 
purposes which is negligible in comparison to the produced net power. 

Changs in Spraying Discharge v--, time 

Figure 21. The simulated response of AQw(t), as a result of a disturbance according to (38) in a 
simulation where the controllers of Figure 16 were integrated into the truth model of Section 2. 

6. Conclusions 

The general conclusion is that it is possible to 
design a regulator for the Aero-Electric Power 
Station that satisfies stringent specifications, 
using QFT and load sharing, for an uncertainty 
set around a given operating point. Indeed one 
might perceive a certain over-design in this 
paper. 

However, the design results implicitly 
demonstrate the trade-off between the size of 
uncertainty and achievable specifications. If 
the disturbance attenuation specifications are 
relaxed then the design problem would have 

been solvable for a larger uncertainty set 
around the chosen nominal. With larger local 
uncertainty sets it will become easier to design 
the global regulator by gain scheduling among 
the local regulators. One way to gain schedule 
is to switch regulators when the operating 
point belongs to the intersection of two 
adjacent uncertainty sets, for which local 
controllers were designed. Such robust gain 
scheduling is impossible if robustness and 
uncertainty sets are not taken into account in 
the local regulator design stage. 
Another interesting issue is the presence of the 
resonances at harmonic frequencies, see Figure 
Damping these is a problem similar to echo 
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cancellation in telecommunication systems or 
active vibration damping. In this paper no 
special measures were taken except strong 
attenuation, but one could contemplate e.g. 
comb filters or other measures. 

It is expected that Aero-Electric Power 
Stations will contribute significantly to the 
needs of electrical power during the 21st 

century, particularly in desert areas where part 
of the power will be used to desalinate sea 
water. It is expected that their controllers will 
be designed using QFT. 
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Abstract: A recent result characterizing the set of all stabilizing Proportional-Integral-Derivative (PID) 
controllers for a given linear time invariant (LTI) plant is used here to address the issue of achievable 
performance with PID control. Specifically, we show how to determine constructively a) the attainable set 
of closed loop characteristic roots b) the set of achievable frequency responses and c) a prescribed set of 
loop shaping specifications. Items a) and b) utilize standard results from parametric robust control theory 
on polytopic sets of polynomials and transfer functions. The problem of loop shaping for the given LTI 
plant using PID controllers is formulated as a set of gain and phase specifications to be attained pointwise 
at a prescribed set of frequencies. By describing these in the Nyquist plane with prescribed tolerances 
specified using rectangular windows we are able to formulate the loop shaping problem as a linear 
programming problem parameterized by a proportional gain. This combined with the linear constraints 
describing the stabilizing set allows us to constructively intersect the stabilizing and specification sets and 
obtain a yes or no answer to the question of whether a given loop shaping specification can be achieved 
using some controller from the set of stabilizing PID controllers. The usefulness of such a formulation in 
control system design cannot be overstated and is illustrated here 

1.    INTRODUCTION1 

Despite revolutionary advances in control theory, the 
PID controller retains its status as one of the most 
widely used control techniques. This is largely due to 
its built-in characteristics. It provides feedback; it has 
the ability to eliminate steady state offsets through 
integral action; it can also anticipate the future 
through derivative action. In fact, the PID control has 
gone through and adapted to many technological 
changes ranging from pneumatics to microprocessors 

1 This research was supported in part by NASA Grant NCC- 
5228 and NSF Grant HRD-9706268. 

via electronic tubes, transistors, and integrated circuits 
(Astrom et al., 1995). However, the research in PID 
control mainly focused in implementation issues such 
as auto-tuning, gain scheduling, continuous 
adaptation, etc... 

In recent years, attention has turned to more 
fundamental issues which provide theoretical insights 
into PID control in the modern control context. One 
notable development is the determination of the set of 
all stabilizing controllers for a given single-input, 
single-output plant and the resulting efficient 
computational schemes for depicting this set. This 
development revealed interesting aspects of the set 
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and the topology of the stabilizing set can be 
exceedingly complicated (Datta et al., 2000). It was 
found in (Datta et al., 2000) that, for a fixed 
proportional    gain    Kp,    the    stabilizing    set    is 

characterized by a set of linear inequalities in the 
integral gain K, and the derivative gain KD . As a 

result, the two dimensional stabilizing set in K, - KD 

space, for fixed K becomes a union of bounded or 

unbounded convex polygons. 

The present paper builds on the above development 
and investigates the following questions. First, for a 
given single-input, single-output linear-time invariant 
system, how can we characterize the entire root space 
in the complex plane that is achievable for closed loop 
poles by all possible choices of stabilizing PID 
controllers? Second, what is the achievable frequency 
response in the Bode plot sense? In this paper, these 
two questions are elegantly answered by using the 
result of in conjunction with standard results in 
parametric control theory (Bhattacharyya et al., 1995; 
Keel, 1994) on polytopic sets of polynomials and 
rational functions. 

Answers to above questions are directly related to the 
achievable performance of PID controllers. For 
example the achievable frequency responses give us 
the maximum achievable gain and phase margins. 
Despite extensive use of PID controllers, these 
questions regarding the achievable performance of ID 
controllers have never been analytically investigated 
before. 

We next consider the problem of loop shaping for a 
given LTI plant with a PID controller. The loop 
shaping problem can be stated as follows: the designer 
desires that the frequency response of the open loop 
controlled system should have prescribed gain and 
phase, within tolerances, at a chosen set of 
frequencies. This is a standard approach to design: for 
example, see (Zhao et al., 1996) and references 
therein. Our approach to this problem consists of 
requiring that the frequency response of the controlled 
system loop gain function should pass through 
prescribed rectangular windows in the Nyquist plane. 

This formulation in conjunction with the 
characterization of all stabilizing PID controllers 
(Datta et al., 2000) leads to a linear programming 
problem whose solution determines the set of PID 
controllers attaining the specifications within the 
stabilizing set. The advantage of this formulation, 
from the designer's point of view, is that it gives a yes 
or no answer to the question of whether a given loop 
shaping specification can be achieved with a PID 
controller from the stabilizing set. In case the answer 
is yes the entire set attaining specifications is also 
obtained,   and   in   case   the   answer   is   no,   the 

specifications have to be relaxed or changed. An 
example is given for illustration. 

2. CHARACTERIZATION OF ALL STABILIZING 
PID CONTROLLERS 

The central result underlying the characterization of 
all stabilizing PID controllers for a given SISO LTI 
plant is the Generalized Hermite-Biehler Theorem 
(Ho et al., 1999), which is essentially a root counting 
formula. An alternative root counting formula was 
given in (Keel et al., 2000). This is the version we use 
here. To state this, let 

8(s)=8„s" +--- + 8xs + 80 

= 8e(s2)+s80(s2) 
(1) 

where <5e(.?2)and 80(s2) are components of 

8 (s) made up of even and odd powers of s, 

respectively. Then for every frequency öGR, we 
write 

8{ja>) = p{coyrjq(co) (2) 

where p(co) = 8e(-a>2) and q((o)=(o80(-co2) . 

Let r(l) denote the open right half plane (RHP) (open 

left half plane (LHP)) roots of the given polynomial. 
Introduce the notation: 

Sgn[x] = 

+1 if x>0 

-1        if x>0 

0 if x = 0 

and let 

r(*) /w (*,):= 
dk f{x) 

dxk 

(3) 

(4) 

Theoreml (Keel et al., 2000): Let the nonnegative real 
zeros of q((0) be 

0 = co0<col<co2<-<a>t 

with respective multiplicities &,•, i = 0,l,---,t, and let 

Then A degree[8 (s)J is even, 

l-r = Sgn[q (*°' (fl)0)] (Sgn [p ^ (ffl0)] - Sgripfa)]) 

+ X SSn Ü{kl) to M (Sg^piat,)] - Sgn[p(coM)]) 

B. degree[8(s)J is odd, 

l-r = Sgn[q(*°>(a)0)](Sgn[p(V1)(fl>0)] -Sgw[/7(a»,)]) 
i-i 

+ ^Sgn[q(k')(coi)](Sgn[P(coi)] - Sgn[p(a)M)]) 
;=i 

+ Sgn[q«")(cot)]Sgn[p(col)] 
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We apply the above results to the PID problem. Let 
P(s) be a given plant and C(s) be a PID controller 
where 

ns)__m__NAsysN^)      (5) 

and 

C(s) 

D(s)    De(s2) + sD0(s2) 

_ Kj+KPs + KDs2 

(6) 

Then   the   closed   loop   characteristic   polynomial 
becomes 

S(s,K1,KP,KD) = sD(s) + (K1+KDs
2)N(s) 

+ KPsN(s) 
(7) 

Let us introduce 

N(-s) = Ne(s2)-sN0(s2). (8) 

Now let us observe eq. (9). It is easily seen that the 
coefficients of the polynomial p(co, Kj,KD) are linear 

functions of K, and KD , and KP also appears 
linearly in the coefficients of the polynomial 
q(co, K  ). Thus, once we determine the real positive 

roots, 0 = co0<a>l<co2 <■■■<toM of q(co,KP)for a 
fixed value of KP , we can determine the set of sign 

sequences Sign p(cOj, Kf, KD), i = 0,1, • • •, / that 
satisfy the condition given in eq.(ll) from the 
Theorem 1. Each of these sequences is a set of linear 
inequalities, in Kj and KD to be solved to determine 

the stability region in (Kj,KD)space. By repeating 

this over the KP axis, the entire stability region in 

(Kj,KD,KP) is obtained. In the following sections, 
we use the above characterization of the stabilizing set 
to constructively formulate and solve the problems 
related to achievable performance with PID control. 

Then it is easy to verify that we have 

5(s, K,,KP,KD) N(-s)\ s=ja = p(co, Kj,KD) 

+ jq(co,KP) 

where 

p(co,Kj,KD) = Pl(co) + (Kj -KDco2)p2(co) 

q(co, KP) = q1 (co) + KPq2 (co) 

with 

Pl(co) = -co2[Ne(-co2)D0(-co2)-De(-co2)N0(-co2)] 

p2(co) = N2(-co2) + co2N2(-co2) 

q](co) = co[De(-co2)Ne(-co2) + co2D0(-co2)N0(-co2)] 

q2(co) = co[N2(-co2)-co2 N2(-co2)] 

Let r() and /(•) denote the number of open RHP and 

open LHP roots of the given polynomial (•), 
respectively. Then we see that 

l(S(s, Kj,KP, KD )N(-s)) - r(8(s, K,,KP, KD )N(-s)) 

[l(S(s, Kj,KP, KD)) - r(5(s, K,,KP, KD))] 

+ [l(N(-s))-r(n(-s))]. 

From the definition 

*/[■] = KO -/(•), (10) 

we therefore conclude that S(s,Kj,KP,KD)of n' 
order is Hurwitz if and only if 

a, [5(s, K,,KP, KD )N(-s)} = n + [{N-s)- r(N(-s))] 

(11) 

3. ACHIEVABLE CLOSED LOOP POLES 

In this section, we consider the problem of 
determining the root space attainable in the complex 
plane where the closed loop poles can be obtained by 
all choices of stabilizing PID controllers. We call this 
set the achievable root space. In other words, it is not 
possible to find stabilizing PID controllers, for the 
given system, such that the closed loop poles can be 
located outside the achievable root space. Let 

„n-\ 

P(S) = '«-!•= N(s) 

D(s)    s"+d„_lS"-1 +--- + dlS + d0 

-.  (12) 

Then the characteristic polynomial is 

S(s) = s D(s) + (K,+KPs + KDs
2) N(s) 

= (1 + KDn„_x)s"+l + (d„_x + KDn„_2 + KPn„^ )s" 

+ (d„-2 +KDn„_3 +KPn„_2 +KIn„_l)s"-1 +••• 
+ (d0 + KPn0 + AT7«! )s + Kj»0 

(13) 

The coefficients of the characteristic polynomial 
8(s) are linear functions of the controller 

parameters K,, KP and KD . Furthermore, it was 
established in the previous section that the stability 
region in (Kj, KD) space, for every fixed KP, is a 
single polytope or a union of polytopes. For each such 
polytope, with fixed KP the set of characteristic 
polynomials in eq.(13) is a polytope. Therefore, by the 
Edge Theorem (Bhattacharyya et al., 1995; Bartlett et 
al., 1988) the boundary of the root space of the set of 
8(s) can be determined by computing the root loci 
along the exposed edges of this polytope. By 
repeating this computation over the stabilizing range 
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of KP, we can determine the set of characteristic 

roots achievable. The example given in Section 6 
illustrates the use of this root space computation in 
design. 

4. ACHIEVABLE FREQUENCY RESPONSES 

The open loop transfer function of the system with the 
PID controller is 

L(s) = C(s)P(s) (14) 

As CO) ranges over the stabilizing set, L(s) ranges 

over the corresponding stabilizing set which we 
denote as Stab (L). The frequency response of each 
L(s) in Stab (L) is the set of achievable frequency 
responses. As we have seen before, the stabilizing set 
is described for a fixed KPby linear inequalities in 

(K,,KD). Thus, the set of achievable L(s) transfer 

functions for a fixed KP by a polytopic set of transfer 

functions. This fact allows us to determine the 
corresponding achievable Bode plots by Stab (L) 
using results on frequency response of polytopic sets 
of transfer function developed in (Bhattacharyya et al., 
1995; Keel, 1994). Basically, the Bode magnitude and 
phase envelopes that are achievable can be obtained 
by scanning the exposed edges of the polytope. Once 
again, the example in Section 6 illustrates the use of 
this in design. 

5. LOOP SHAPING VIA PID CONTROLLERS 

In this section, we consider the problem of loop 
shaping, i.e, for the given plant P(s), find C(s) such 
that magnitude and phase plots of the loop transfer 
function L(s)=P(s)C(s) are as close as those of a 
prespecified loop transfer function L0 (s). Typically, 

the complete description of L0(s) is not known. 

Instead, data points (magnitude and phase) over 
several frequencies are available. It is important to 
note, at the outset, that, from the properties shown in 
Sections 3 and 4, it is necessary that the frequency 
plots of L0(s) (or data points over chosen 

frequencies) must lie inside the admissible envelopes. 
Otherwise, it is impossible to determine a stable set 
(K, ,KD,KP) that approximates L0 (s). However, it 
is in general difficult to find a stabilizing controller 
that has the magnitude and phase plots of its loop 
transfer function to exactly coincide with those of a 
chosen L0 (s). Therefore, it is reasonable to attempt to 

achieve these within tolerances. To formulate this 
problem, write 

L(jco) = P(jco)C(jco) 

\K,-a>2KD) + jeoKp 
= P(jco) 

ja> 
C(ja) 

= [Pr(jco) + P,{j(o)l(Kj -co2KD) + jcoKP] 

P(ja>) jmC(jo)) 
jo 

= [(Kj -co2KD )Pr (co) - coKPPi (co)] 

R(co,K,,KP,KD) 

+ j[(K, -co2KD)P,(co) -coKPPr(co)]. 
(15) 

l(m,K,,K,»KD) 

Let ö)J , ■ • ■ cok denote the prescribed set of frequencies 

where we wish to enforce frequency response 
specifications. As state before, these specifications 
must be stated with some tolerance so that the chances 
of finding a controller are improved. This leads to the 
following set of linear inequalities on the real and 

imaginary parts of I(y'ft),). 

arzR(foi,KI,KP,KD)<.af,    i = l,-,k   (16) 

ßrziitOi.K^KpMZß,*,    i = l,-,k   (17) 

for all selected i. The set of loop gain transfer 
functions attaining the specifications above may be 
denoted as Spec (L). This set is depicted in Figure 1. 
Note that this set of inequalities describing Spec (L) is 
linear in (K,, KD). To determine if the specification 

can be met, they need to be solved in conjunction with 
the stability conditions. In other words we need to 
intersect the stability set Stab (L) with the 
specification set Spec (L). Since the latter are linear in 
(K,,KD)for a fixed KP, our strategy for design is 

clear. First, fix KP to solve the linear programming 

problem in (Kt, KD) obtained by adding the stability 

conditions to the loop shaping conditions in eqs.(16) 
and (17). 

Fig. 1. Loop shape satisfying specifications 

Repeat this procedure for different values of KP 

within the stabilizing range. If no solution exists to 
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such linear programming problems, the specifications 
cannot be achieved. Conversely, the set of all 
(Kj, KD) which satisfy the augmented linear 

programming conditions for a given KP represent the 

set of solutions that achieve the specifications. This 
type of computation is illustrated in the example. 

6. EXAMPLE 

Consider the control system with the plant 

N(s) s3-4s2+s + 2 m=- 
D(s)    s5 + 8s4 + 32s3 +46s2 + 46s+ 17 

and the PID controller be 

C(s) = KP+^- + KDS . 
s 

The characteristic polynomial is 

8(s,KI,KP,KD)N(-s) = [s2(-\2s6 -180/ -183s2 

+ 75)+(KI +KDs2)(-s6 + 14s4 -17s2 +4)] 

+ s[(-s8 -65s6 + 246s4 -22s2 +34) 

+ ATP(-s
6+14s4-17s2+4)]. 

We have 

Pl (co) = -12«8 + 180<u6 - 183G)4 - 75co2 

p2(co) = co6 +14ö)4 +17ö)2 +4 

qx (co) = -co9 + 65ß)7 - 246co5 + 22G)
3
 + 34co 

q2(co) = co1 +14o)5 +17ö)3 +4co 

and 

8(s,KI,KP,KD)N(-s' 
s=ja> 

= p(C0,Kj,KD) + jq(C0,KP) 

where 

p(co,KI,KD) = Pl(co) + (Kj -KDco2)p2(co) 

q(C0, KP) = ql (co) + KPq2 (co) 

For a fixed KP, we compute the distinct finite zeros 

of q(co,KP)with odd multiplicity's, say, fi)0=0, 

©], • • ■ cok. We have 

degree[5(s,K j ,K p, K D)] = n = 6 

degree[N(s)] = m = 3> 
l(N(-s)) = 2 

r(N(-s)) = l. 

Suppose, for example that KP = - 4, then we have 

co0 =0, ö)] =0.4265, co2 =2.3639, co3 =7.4531. 

Fromeq. (11), 

l(S(s,K!,KP,KD))-r(S(s,KI,Kp,KD)) 

required to be 6 

- [I (N(-s))~r(N(-s))] = l (required for stability) 

2-1=1 

By applying the formula in Theorem 1 (for the odd 
case) we have 

7 = Sgn[q(co0 ,-4)](Sgn[p(co0 ,Kj,KD)) 

-Sgn^co^Kj^j,)]) 

+ Sgn[q(co, ,-4)}(Sgn[p(cox ,K,,KD)] 

-Sgn[p(co2,Kj,KD)}) 

+ Sgn[q(co2 -4)](Sgn[p(co2 ,Kj,KD)] 

-Sgn[p(co3,K,,KD)]) 

+ Sgn[q(co, ,-4)]Sgn[p(co3 ,K,,KD)}     (18) 

Since 

Sgn[q(co0 ,-4)] = 1, Sgn^co, -4)] = -1, 

Sgn[q(co2 -4)] = 1, Sgn[q(C03 -4)] = -1, 

the only feasible sign sequence that satisfies eq. (18) 
is 

{Sgn[p(co0, •)], Sgn[p(cox, ■)], Sgn[p(co2, •)], Sgn[p(co3, ■))} 

= {1,-1,1,-1}- 

This leads the following set of linear inequalities in 
(Kj,KD) space that characterises the stabilising 

parameters. 

p1(co0) + (KI-KDco2.)p2(co0)>0 

Pl(co1) + (K, -KDco2)p2(col)<Q 

Pl(co2) + (KI-KDco2
2)p2(co2)>0 

Pl(co3) + (KI-KDcol)p2(co3)<Q 

(19) 

Typically, the loop shaping constraints are selected 
using Bode plots. A designer selects a number of 
frequencies of interest, and the upper and lower 
bounds of magnitude and phase at each selected 
frequency. These selected windows can be 
reinterpreted in terms of the Nyquist plot windows in 
our formulation, as shown in Figure 2. Thus the 
wedge shaped regions are approximated by 
appropriate rectangular windows shown in the figure. 
For this example, we select four frequency points of 

interest, co* for/'=1,2,3,4, in this example and 

35 



Bound of Phase 

V 
\ 

Bound of Magnitude 

Fig. 2. Bounds of magnitude and phase 

approximate the corresponding wedge shape windows 
by rectangles, and have 

a,~ <R{a)*,KI,KP,KD)<ai
+,    i = \,-,k 

ß,-^I((oi,K1,KD)<ßi\    i = \,-,k 

where (a,~, a,+) represent the lower and upper limits 

of the real and image parts of the rectangle shown in 
Figure 1. Thus, the additional linear inequalities are 

R{(o*,KI,KP,KD)<ai
+, i = l,2,3,4 

-R{a>*,KI,KP,KD)lz-ar, / = 1,2,3,4 

]{a>1,K,,KD)<ßi
+ , 1 = 1,2,3,4 

-l{(o*,K,,KD)<-ßr i = l,2,3,4 

(20) 

As discussed, the region satisfying the set of 
inequalities in eq. (19) gives the stabilizing parameter 
set. On the other hand, the set of inequalities in eq. 
(20) gives the set of controller parameters satisfying 
loop shaping conditions or specifications. Therefore, 
by solving eqs. (19) and (20) simultaneously, we have 
the controller parameter set satisfying both 
stabilization and loop shaping conditions. Figure 3 
shows these two sets. 

-fi 
~B~— "L'°P ShJpinVSft^ 

SUiilualinn Sei 

-1 -0 5 0 0 5 1 1.t 25 3        35 

Fig. 3. Stabilization and loop shaping for KP = - 4 

Figure 4 shows admissible Bode plots (bounded by 
dotted lines) that correspond to the stabilisation 
region. This means that any Bode plots passing 
outside   this   region   cannot   be   realized   by   any 

stabilizing PID controllers when KP= - 4. (Ot for 

z'=l,2,3,4 indicate the set of design frequencies and 
the envelopes depicted by solid lines are the design 
envelopes. The design objective is to find a set of 
controller parameters that results the Bode plots of the 
corresponding loop transfer function L(jco) located 
inside the design envelopes. 

Finally, we select a set of controller parameters inside 
the loop shaping region shown in Figure 3, that is 
Kp = -4,    K,=\,   KD=2 

or 

C(s) = 
l-4s + 2s' 

The controller is verified in Figure 5. With this PID 
controller, feedback stabilization as well as loop 
shaping are achieved. 

Bode Tubes for Designed Region and Stabilizing Region when kp = -4 

-ro:-- 
I                    I 

r'ai^ ~T  
<•:.:;..    ' 1        1    '                        1 

"^"Disign"EnveioVf:>; 

---^ii. 
!  .   i  i         Achievable Envelop 
'  _'_U_../ _;  
!^H '            ! 
!         i    :^'XX        ■    ! 

10" 

!                          : 
 -rrh——^ i 

:             .."/Li   
!                          I   V '' - 
;                i     \1_ 
!                            I 

10 10 10 
Frequency 05 (Radians/Second) 

Fig. 4. Admissible Bode envelopes and design 
envelopes for KP = - 4 

Bode Tubes for Designed Region and Stabilizing Region when kp = 

% -200 
Of 

a-400 

| -BOO 

0- 
-800 

X 

10 10 10 

Frequency w (Radians/Second) 

Fig. 5. Admissible Bode envelopes and design 
envelopes forKP = - 4 , and Bode plots ofLQco) 
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Figure 6 shows the achievable closed loop poles 
discussed in Section 3. As expected, the achievable 
closed loop poles from the design set are inside those 
from the stabilization set. 

Clo'seA lööp pöfe*. for lööp sf)aping cortorainfs 

:   /   : \   :       lr ^-   : 

  '?                  y X :       eat 

Achievable closed [loop poles!               *               ', 

','<'>'<%'• 

',              ',              !              !              * 

Ho, M.T., A. Datta, and S.P. Bhattacharyya (1999). 
Generalization of the Hermite-Biehler Theorem. 
Linear Algebra and its Application, 302, pp. 135 
-153. 

Keel, L.H. and S.P. Bhattacharyya (1994). Robust 
parametric classical control design. IEEE 
Transactions on Automatic Control, 39, 7, 1524 
-1530. 

Keel, L.H. and S.P. Bhattacharyya (2000). A 
generalization of Mikhailov's criterion with 
applications. Proceedings of the 2000 American 
Control Conference, Chicago, IL. 

Zhao, Y. and S. Jayasuriya (1996). Robust stability of 
closed loop systems resulting from nonsequential 
MIMO-QFT design. Journal of Dynamic Systems, 
Measurement and Control, 118, 4, 753 - 756. 

Fig. 6. Achievable closed loop poles and design 
closed loop poles for KP = - 4 

7. CONCLUDING REMARKS 

In this paper we have given procedures to determine 
the performance achievable by a control system 
consisting of a given LTI plant in closed loop with 
PID controllers. By exploiting recent results giving a 
"linear" characterization of the stabilizing set of 
controllers we are able to determine the root space 
attainable and the frequency response attainable. 
Moreover we have developed a loop shaping 
procedure based on linear programming that can 
systematically search through the stabilizing set and 
determine a PID controller if it exists. We expect 
these results to significantly impact design 
methodologies for PID control and to further research 
on PID controller performance. 
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Abstract: PID controllers are widely used due to the ease in their design and implementation. 
Existence conditions of Quantitative Feedback Theory (QFT) controllers have been 
established by previous studies. In this paper, some of these results are extended to the PID 
controller implemented with a filter in the derivative term. It is shown that the PID 
controller gains cannot span the entire real space for a proper plant family. In addition, the 
Nevalinna-Pick interpolation problem is used to establish a lower limit on the peak 
magnitude of the nominal complimentary sensitivity function. Also, certain plant structures 
are excluded from PID control if stability is to be achieved. 
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SISO, 

1. INTRODUCTION 

In traditional QFT, the controller is obtained by 
shaping the nominal loop transfer function, L0i on the 
Nichols chart that has the stability and performance 
bounds superimposed on it (Horowitz, 1991). This 
stage relies heavily on the experience of the designer. 
Several existence conditions for QFT controllers have 
been developed in order to establish, a priori, if the 
tedious process of loop shaping can produce a 
controller for the general robust performance problem 
(Jayasuriya and Zhao, 1994). In this paper some of 
these existence conditions are extended to the case 
where the controller structure is constrained to be a 
PID controller according to: 

KPID(s)-k l + ^- + ^ 
k:S    Ts + 1 

k[S2 +k2s + k3 

s(Ts + l) 
(1) 

where kp is the controller gain, k; is the reset time, 

kd is the derivative coefficient and T is the time 

constant of the filter in the derivative term. kb k2 and 
k3   are   defined   as    kd+kpT,   kp+T/kj,   l/k; 

respectively. 

2.    STABILITY OF A TWO DEGREE-OF- 
FREEDOM QFT PROBLEM 

The QFT problem for a single-input-single-output 
(SISO) system is stated (Nordgren et al., 1994): 
synthesize a controller such that the uncertain 
feedback system is internally stable and: 

1)   is exponentially stable Voc e Q. c 91q 

(Robust Stability) where a is the vector of q 
bounded       and      continuous      uncertain 
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parameters belonging to the differentiable 
manifold Q . 

2) A(co)< JT^(jco)| < B(co)    VCO (Robust 

L 

Define 

tracking performance), T = F 
1 + L 

3)    |S(jco)| = 
1 

<MD(co)  Vco, 
I + LQCO) 

Vote Q (robustdisturbance 

accommodation) 

The above is a statement of the general QFT robust 
performance problem. It was shown in Nordgren et al 
(1994) that robust performance of a system is 
guaranteed if 

|M"1(co)s(a,jco1 + |H(a,jco)m(co)|<l, Vco, VaeQ 

L'(Q,s) = K 
N(fl,s) 

D(Q,s) 

Defining A(Q,s) = A(a,s), Vae £2, as an uncertain 

polynomial function, letDN be the semicircular 

contour varying along the imaginary axis from -jR to 

jR avoiding the poles of L(Q,s) on the imaginary 

axis by arbitrarily small semicircles centered at these 
poles and then into the right-half plane from (0, +R) to 
(0, -R) along a circle of radius R, centered at the 
origin and chosen such that all right-half plane zeros 
are included in it. Stability is established by the 
following theorem for the general plant with time 
delay: 

subject to the satisfaction of the robust stability 

L 
condition of H = - V a £ Q where the general 

1 + L 
uncertain plant family is given by 

P(s) = P(oc,s)[l + An(s)] 

and 

|An(jco)|<m(co)c9frr, 

k n(s + Z; )n(s2 + 2^-cOjS + co2 y 

P(oc,s) = 
s2n(s + pk)n(s2 +2£|CO,s + cü2) 

ke~ 

-,Vco<coh 

Vco > co,, 

where 

L(cc,s) = KPID(s)P(a,s), 

L(s) - KPID (s)P(s), L0 (s) = L(ao, s) = KPID (s)P0 (s) 

Po(s) = P(a0,s), coh is the Horowitz's universal high 

frequency (defined as the frequency after which the 
phase variation of the parametric plant set is 
essentially zero) and M(co) is the infimum of all 

sensitivity specifications. k,zi,^j,^1,coj,co1,x,pk 

belong to a. It is noted that the tracking specification 
can be transformed to a sensitivity specification. It is 
also noted that the relative degree of the plant remains 
constant over the plant set. 

A condition on the feasibility of the QFT problem is 
that the feedback system involving only the 
parametric plant set   P(a,s)   is robustly, internally 

stable V a e fi. 

THEOREM 1: (NORDGREN ET AL., THEOREM 2) 

Given       the       loop       transmission       function, 

NCQ sie"" 
L (Q, s)e -sx = K    ^   ' ' , assume that 

v      ' D(Q,s) 

N(Q s) 
= K —    '    = L (Q, s) is strictly proper and that there 

D(Q,s) 

is no closed right half plane, C,+ , pole-zero 

cancellation in L(Q,s). Then the time delay 

feedback system with the characteristic function given 
by: 

Z(Q,s) = D(Q,s) + Ke-STN(Q,s) = 

an(Q)s" +... + a0(Q) + Ke-"[bra(Q)sm +... + b0(Q)] 

has no zeros in the closed set DN e C,+ if and only if: 

i)   for    some    a = a0 e Q,Z(ao,s)^ 0      Vse DN 

and 
ii) Of? Z(fi,s), Vse 3DN where 3DN is the contour 

ofDN 

Proof: 

See (Nordgren et al, 1994 ) 

For the special case of plants without time delay, the 
above theorem reduces to the lemma in Jayasuriya and 
Zhao (1994) given here as Lemma 1. 
Let  the  proper  compensator  transfer  function  be 

G(s) = 
Q,(s) 

Q.(s) 
and strictly proper: 

and the plant be   P(cx, s) = 
Np(oc,s) 

D„(a,s) 
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Lemma 1:[Lemma 2.1(jayasuriya arufZXao, (1994)] 

G(s) stabilizes the whole plant family if and only if: 

i) 

iii) 

there exists an   ao e £2   such that 

G(s) stabilizes P(s,oc0) 

Oe SjCjco.Q), Vooe [0,°°]      where 

5,(jco,Q)A l + KPID(jco)P(jco,a) 

Q,(jco)N (jco,a) 
= 1 +  

Q0(Ja)Dp(jco,a) 

there are no imaginary axis pole- 
zero cancellations in 
Qi(JtP)Np(jcn,a) 

Qo(Jw)D,,(toa)' 

Proof: 

See (Jayasuriya and Zhao , 1994) 

Robust stability thus requires the zero-exclusion 
principle given as condition (ii) in Lemma 1 and 
discussed in Jayasuriya (1993). To satisfy the robust 
stability condition, there should be no closed right- 
half plane pole-zero cancellations in the product 
P(S)K(S)PID, where K(s)PID KPID(s) = G(s)is the 

controller of equation 1 in this situation. 
Also      there      exists an a = ocn such      that 

P0(jco) = P(jco,a0)?iOor P(jco,a0) does not contain 

any imaginary-axis poles or zeros. In other words, 
according to condition (ii) of Lemma it can be shown 
that: 

-P(jco,a0) 
LoO); Vco,VaeQ (2) 

P(jco, a) 

If there is no a0 such that P(jco,oc0)*0 then there 

must exist several fixed frequencies to, ,...cor such that 

P(jcOi,a0)=0(oroo) Vote Q and no more 

imaginary-axis poles or zeros. 

3. EXISTENCE CONDITIONS OF QFT 
CONTROLLERS WITH A PID STRUCTURE 

In this section, results would be developed that deal 
specifically with PID controllers. Let the parametric 
plant be: 

Np(s,cc) 
P(s,a) = 

D„(s,a) 
e"s\ aeQeSR" 

where a is the uncertain parameter vector of length q. 

Let the PID controller be KPID(s) = 
Nk(s) 

Dk(s) 
as given 

by   equation   1.      The   loop   transfer   function   is 

N(Q,s)  _t L(s,a) = -J^e-ST = 
DpDk 

It is assumed that P(s,cc) is strictly proper. KPID(s), 

as implemented here, is proper. The characteristic 
polynomial is: 

8(s, a) = D(Q, s) + KN(Q.s)e"ST (3) 

where Np (s, a) = p^ (a)sm +... + pl0 (a), 

Dp(s,a) = pon(a)s"+...+Poo(a),m<n. 

Nk(s)=k,s2+k2s + k3 and Dk(s) = Ts2 +s. 

The coefficient of the highest order term in 8(s, a) is 

Tpon with order = (n+2). 

Allowing no change in plant order, i.e. 
T pon * 0 V P e p. In other words, 0 £ pon (Q). 

The controller has only two poles, one at the origin 
and one at -T. To avoid loss of degree in the loop 
transfer function, and also to insure it is proper, there 
can be no pole-zero cancellation of the controller 
poles. As is seen from the stability theorem given 
earlier, the pole at the origin cannot be cancelled. 
This reasoning lead to the following Lemma. 

Lemma 2: 

Plants of the form sP'(oc,s) where P (ct,s) is of the 

Np(s,oc) 
form 

D0(s,oc) 
e ST  with  N (s,oc)  and  D (s,ct)as 

rational polynomials with no zeros at the origin cannot 
be stabilized by PID control. 

Proof: 

Since no pole-zero cancellation is allowed on any of 
the controller poles (at -T and 0) in order to insure it 
is proper, it follows that the plant cannot have a zero 
at the origin since this would cancel the pole of the 
controller at the origin 

From the third condition of Lemma 1 follows 
corollary 1: 

Corollary 1: 

Since there are no right half plane poles of KPID (s), it 

is not possible to have closed right half plane pole- 
zero   cancellation   in   the   loop   transfer   function 

D(Q,s) 
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L(s, a) = 
N„N 

P       k       -ST 

DpDk 

e ST provided such do not occur in the 

plant transfer function. 

This makes the condition, that there be no right half 
plane   pole-zero   cancellation,   of   Lemma   1   and 
Theorem 1 unnecessary. 
The next corollary is only applicable to strictly proper 
plants. 

Let the nominal plant be P(s, ao) = P0 (s). 

Corollary 2: [Corollary 2.2 (Jayasuriya and Zhao, 
1994)] 

Np(s,cc) 
The   plant   family    P(s, a) = —-     cannot   be 

Dp(s,oc) 

stabilized if 0 e {P0 (s) / P(s, a)}s=j„. 

Proof: 

The loop transfer function is L(s, a) = P(s, a)K P1D (s). 

But 

KPID(s) = ^^-L(s,a) = ^L0(s) 

Proof: 

8(jco, a) = 1 + L0 (jco)   (j(0,a) * 0 for stability. 
Po(J°>) 

So if L0(jco)   (JC0,a-) --1, then the plant family is 
P„(Jö>) 

unstable Vae Qor Vooe [0,oo] which is true if and 

only if the polar plot of L0(jco) intersects the value 

P.(s) set <- 
P(s, a) 

Let   VaeD, 
P. (ja) e {*F}, a value set, 

P(s,a0)     P0(s) P„(s) 

P(jco,a)J 

then for stability L0(jco)|(B=== i {¥}. 

Since L0(jco) = P0(jco)KPID(jco) and P0(jco) is fixed, 

then certain values of KPID(s) must be excluded. 

Sometimes the PID controller is implemented without 
the filter in the derivative term. In such a case, 
corollary 3 reverts to the general case of the zero 
exclusion principle. 

Corollary 3 leads to theorem 2 below. 

From Lemma 1 the robust stability is achieved if 
L0(s) is stable and 

P(jco, a) 
S(jcü,a) = l + L0(jco)'VJ   '"y*0 VOCEQ, coe[0,oo] 

P„(J<o) 
(4) 

8(jco,a) = 0   if and only if    L0(jco) '     =-1, 
Po(Jro) 

which is true if and only if the polar plot of L0(jco) 

P„(s) 
intersects the value set . Since the plant 

P(s,a) , 

is strictly proper and KPID(s) is proper, L0(jco)  is 

strictly   proper   so   that    lim L0 (jco) = 0 .      So   if 

Oe {P0(s)/P(s,a)}s=JM     =>8(s,a)|s=.M =0  and the 

plant family cannot be stabilized. 

For  a  plant  family that  is  proper  the   following 
corollary is useful. 

Corollary 3: 

For a proper plant family, let [ PQ(S) j 

WOOL*. 
=M, 

value set, then the PID controller parameters must be 

suchthat {y}e;L0(jco)| 

THEOREM 2: 

If 
P„(s) is finite (plant is proper) then the 

P(s, a) | 

PID controller (implemented as a proper transfer 
function) parameter gains cannot span the entire real 
space. 

Proof: 

Follows from corollary 3. 

Another result that will be developed uses the theory 
that parameterizes all stabilizing controllers and 
solves the Nevanlinna-Pick interpolation problem. 
Certain theorems and definitions useful in developing 
the results are first reviewed. 

Let RH°° be the family of all stable, proper, real and 
rational functions. 
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THEOREM 3: Definition 2: 

Assume    PeRH™.      The   set   of  all   stabilizing 
controllers,  G  for which  the  feedback  system  is 

Q internally stable is: G 
1-PQ 

:QeRJT 

N 
If P is no longer assumed to be stable let P = — be 

M 
the coprime factorization of P over jp and let X, Y be 

two functions in RH°° satisfying the equation NX + 
MY=1. 

THEOREM 4: 

The set of all G's for which the feedback system is 

internally stable is given by: \ —: Q e RH" \. 

Theorem 4 reduces to Theorem 3 when P e RH~. 

THEOREM 5: 

Let C = NC/MC be a coprime factorization over 

RH°°. Then the feedback system is internally stable if 

and only if (NNC + MMCT' E RH~. 

Theorems 3 to 5 are well known theorems and the 
proofs are omitted. For the proofs see, for example, 
(Doyle et al, 1992). 

Let  {a^.-.a,,}, {b,,...bn}  be sets of points in the 

complex plane such that for a;, Re s > 0, a,,...a„ are 

distinct and |b; | < 1 i = 1,... n..  Then if fG^ < 1, the 

Nevanlinna-pick (NP) problem is to find G such that 
G(ai)=bi, i = l,...n., that is, the graph of G is to 

pass through the point (a^bj) where GeRH" and 

llGl   <1. 

Definition 1: 

The NP problem is said to be solvable if G exists. 

ai+aj 

Associated with the NP problem data a^bj, i = l,...n 

th 1 —bjbj 
is the n x n matrix A whose ij   element is 

called the pick matrix. 

Definition 3: 

The NP problem is solvable if and only if Q > 0 . 

Lemma 3: 

If the NP problem is solvable, then Q > 0 . 

Proof: 

Doyle et al, 1992 

Definition 4: 

Let A be the matrix with ijth element 

bibj 
with elements  . 

1 

ai+3j 
andB 

&, +a, 

Then the pick matrix, A = A - B. 

Lemma 4: 

If at least one of the  b; * 0, then  Ynax = 
A 

where A.max is the largest eigenvalue of A_1B . For 

the NP problem G(aj) = yb;, i = l,...n, y>0 the 

maximum y is y,^ such that y < y^ . 

Proof: 

(Doyle et al., 1992) 

For the standard 2-dof system, the transfer function 
from the reference input to the output is: 

PG 

N 

1 + PG 

X + MQ 
Since P = —, G = 

M Y-NQ 
, then 

T = N(X + MQ) 

(5) 

(6) 

The frequencies at which 1 + P(s, a)G(s) = 1 + L(s, a) 

is zero are characterized by L(s, oc)| 
s=jto 

-1 or 

P (i») L (jco) = 2  and the system is unstable. 
P(jco,cc) 
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1 + L0(jco)- 
P(jC0,CC)-Po(jC0) 

P(jco, a) 

L0(jco)   _  L0(jco)P(jco,oc) 

1 + L0(jco)    P(jco,a)-P0(jco) 

= P0(jco)K(jco)P(jcü,a) 

P(jco,a)-P0(jco) 

so the plant family is stable if and only if: 

Mjco) 
I + Mjco) 

P0(jco)K(jco)P(jco,a) 

P(jco,a)-P0(jco) 
Vcoe [O, 

(7) 

Let 

=    inf 
Kstabilizing 

L0(jco) 

1 + L0(jco) 
(8) 

Define T (s) = - (NX + NMQ) 
Y 

The   following  NP   interpolation  problem   is  then 
posed: Find T0 such that the following interpolation 

conditions are satisfied: 

T0(z;) = -NX(z;))i = l,...n 
Y 

where z|,i = l,...,n are the zeros of NM including 

those at infinity. It is assumed that plant is strictly 
proper. Satisfaction of the interpolation condition 
implies: 

NMQ(z,') = 0 (9) 

This   further   imply no   right   hand   plane   zero 
cancellation in NM and Q and it follows that Q must 
be stable. 
The pick matrix is 
A = A-Y2B 

where    1           l 
b
ibj 

a +a 
Bij   -                -5              d\         Zi> 

a +a i      j 

and   bj=NX(z|).   z| are the right half plane zeros 

ofNM. 

Therefore, ymisx for which the problem is solvable is 

where   Xm3X   is the largest  eigenvalue  of 

A-B 

Then a stabilizing controller exists such that: 

P„ 
inf min 

IüE[0,°°] aefi 
K- 

1-Pn/P 
>Y, (10) 

Since 

K- 
l-P./P 

where (left. 

[\i, °°]   Vcoe [0,»], ae Q, 

Let  M-min = i"f I1   tnen tne following corollary is 
(0E[O,~] 

obtained. 

Corollary 4 

If    L 

1 + L„ 
< (i.min ,   then   the   family   of  plants   is 

robustly stable i.e. 
1 + L„ 

K- 
PP„ 

P-P„ 

The above corollary can be used to check if a 
compensator, K?m (that stabilizes the nominal plant) 
is robustly stable. In other words, if we can find a 
member of the plant family for which the maximum 

since any member of the family peak (i.e. 
1 + L„ 

can be chosen as the nominal) value specified is 
violated, then that K is unacceptable. 

Theorem 6: 

If inf min 
Cfle[0,~] oefl 

K(jco) P. (j«») 

K stabilizin g 

1-P0(jco)/P(jco,a) 

Mjco) 

>Y,™>  where 

then  K  stabilizes  the 
l + Lo0a>) 

entire family P(s, a). 

Proof: 

Follows from corollary 4. 

Theorem   6   is   a   variation   of  Theorem   3.1   in 
(Jayasuriya and Zhao, 1994): 

If     inf  inf 
(ue[0,~]asn 

P(jco, a) 
> Y,     ,   then   there 

P(jco,a)-P0(jco)|    'smm' 

exists a stabilizing controller for the entire family 

P(s,cc) where ys 

Corollary 5: 

:    inf 
K stabilizin g 1+L0(jco) 

Let   inf 
<DE[0,~] 1 + L„ 

= ii. 
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If ynM <|iT and the plant family satisfies the 
conditions of Lemma 1, then the QFT controller 
satisfies the performance specification characterized 
in terms of the maximum allowable peak (iT, on the 
complimentary sensitivity function. 

Proof: 

Obvious. 

This corollary is useful in verifying whether a given 
controller can achieve a specified allowable peak 
value. 

4.   CONCLUSION 

The result that the PID terms cannot span the whole 
real space have been shown by using the zero 
exclusion principle and the requirement that there can 
be no right half plane or imaginary axis pole-zero 
cancellations in forming the open loop transfer 
function. This restriction on the pole-zero 
cancellations was used to exclude plants with a zero at 
the origin from possible PID control as implemented 
in this paper. The Nevalinna-Pick interpolation was 
used to establish a lower limit on the peak magnitude 
of the complimentary sensitivity function. This would 
be useful in controller performance analysis to check 
if a specified peak value of the complimentary 
sensitivity function can be realized. 
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POINTING CONTROL FOR PRECISION FLIGHT TELESCOPES 
USING QUANTITATIVE FEEDBACK THEORY 

Anthony E. Bentley 
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5800, Albuquerque, New Mexico 87185-0501 

A pointing control system is developed and tested for a flying gimbaled telescope. The 
two-axis pointing system is capable of sub-microradian pointing stability and high 
accuracy in the presence of large host vehicle jitter. To achieve the design specifications, 
high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle 
measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement 
sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The 
feedback compensation was designed using Quantitative Feedback Theory. 

1. INTRODUCTION 

The two-axis gimbaled telescope is shown below in 
Figure 1. This project was funded to retrofit the 
telescope (which was built over ten years ago) to 
incorporate the latest advances in servo technology 
and thereby achieve an "order-of-magnitude" im- 
provement in pointing accuracy and line-of-sight 
stability. The telescope was retrofitted with preci- 
sion resolvers and new (higher torque) motors. On- 
gimbal Inertial Angle Sensors were also added to 
enhance inertial pointing stability. A servo system 
was developed that blends feedback from the resolv- 
ers together with the inertial angle sensors to achieve 
less than one microradian line-of-sight pointing 
stability or jitter, ±1.5 microradian pointing resolu- 
tion and +30-microradian accuracy. 

This paper will describe, the new servo system 
including each sub-system, namely: the gimbal, 
Inertial Angle Sensors (IAS), resolvers, Inertial 
Measurement Unit (IMU), feedback compensators, 
motor power amplifiers, and IAS notch filters. The 
pointing performance of the refurbished telescope is 
also presented. 

Two separate models were used depending on the 
operating mode of the telescope. For large re-target- 
ing maneuvers, the telescope is a Multiple-Input 
Multiple-Output (MIMO) servo system with signifi- 
cant non-linear interactions between the two gimbal 

axes. However, for small maneuvers, gimbal inter- 
actions can be ignored—which reduces the model to 
two de-coupled Single-Input Single-Output (SISO) 
systems with disturbances. The command input is 
labeled "R" while the main output is the inertial 
pointing angle. Although, the gimbal angle is also an 
output, it will not be controlled independently of the 
inertial pointing angle. Axis de-coupling is possible 
because both axes of the telescope are balanced—the 
center of mass is very close to the center of rotation. 

Elevation IAS 

Figure 1. Telescope gimbal. 
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A simplified flow graph of the servo system is 
shown below in Figure 2. While only one axis is 
shown, with a few parameter substitutions the flow 
diagrams for both are identical. In Figure 2, and 
throughout this study, the telescope angle definitions 
are as follows. The gimbal angle of either axis with 
respect to its base is referred to as "6," the inertial 
gimbal angle is "Y," and the angular position of the 
gimbal base is a disturbance and is therefore labeled 
"D." The relationship between these angles is: 0 = Y 
-D. 

Figure 2. Single-axis (de-coupled) servo model 

The pointing resolution and accuracy requirements 
are imposed on the gimbal angle 0 measurement and 
are achieved by using high accuracy resolvers and 
resolver-to-digital converters. The resolvers provide 
absolute knowledge of the gimbal angle relative to 
the telescope base to ±30-microradian accuracy. 
This is a physical limitation of the resolvers due 
mainly to alignment limitations. The resolvers 
provide an output, which is an analog modulated AC 
signal. In order to use the resolvers as feedback 
sensors, the output must be demodulated and 
digitized. The resolver-to-digital converter circuits 
provide digitized resolver measurements that are 
stable to 22 bits. Thus the resolution of the resolvers 
is 2n / (222) = 1.5 microradians. 

The reference command "R" is the absolute line-of- 
sight pointing requirement on the inertial output "Y." 
Because there is no low-frequency inertial sensor on 
the telescope, we have no absolute DC measurement 
of the inertial pointing angle "Y." Thus, "Y" must 
be estimated based on the attitude of the vehicle "D" 
(which acts as a disturbance) as measured by the 
Inertial Measurement Unit (IMU) and the gimbal 
angle 0. An on-board navigation processor computes 
the inertial command needed to track a point on the 
ground, and subtracts from that command the attitude 
of the vehicle, to issue the gimbal command "C" 
which is the absolute pointing requirement on the 
gimbal angle 0. These navigation computations are 
not part of the servo system as described in this 
paper. The command input to the servo system 
herein described is the gimbal command "C." 

The commanded input "C" is the desired gimbal 
angle 0, which if followed perfectly at low frequency 
would cause the telescope to track the desired point 
on the ground. It contains both the inertial attitude 
data of the vehicle "D" and the line-of-sight informa- 

tion from the navigation solution. However, the 
high-frequency information contained in the com- 
mand "C" is less than ideal for frequencies above 
about 2 Hz due to bandwidth limitations of the IMU 
as well as a variable latency in the vehicle attitude 
data stream. Thus the on-gimbal Inertial Angle 
Sensors (IAS) are used as local feedback sensors to 
cancel high frequency telescope jitter. 

In summary, the accuracy and resolution of the 
telescope are performance measurements on the 
gimbal angle 0, while the absolute line-of-sight and 
line-of-sight jitter specifications are requirements on 
the inertial angle "Y." All four requirements must 
be met in order for the telescope to track a point on 
the ground with a stable (jitter-free) image. 
However, since all pointing requirements are related 
by the equation 0 - Y - D, the two outputs 0 and Y 
need not be controlled independently of each other. 
The system accuracy and absolute line-of-site 
performance limit how closely the telescope can 
acquire and center a given target in the field-of-view. 
Once a target has been acquired, the system resolu- 
tion limits how well the target can be tracked. The 
line-of-sight jitter determines how much shaking and 
blurring are seen in the final image. Assuming that 
the servo system has large DC gain, the accuracy and 
resolution specifications are both meet by the 
resolver and resolver-to-digital converter designs, 
while absolute line-of-sight requirements are the 
responsibility of the aforementioned navigation 
processor (not described in this paper). Finally, the 
line-of-sight jitter requirements are met by the 
careful design of the servo system whose description 
follows herein. 

The plant in Figure 2, labeled P(s), models the effect 
of gimbal inertia "J," that is: P(s) = l/( Js2). In 
reality there are also structural resonances in the 
plant P(s) that are not represented in the model. The 
telescope was being refurbished while the servo 
controls were being designed, so it was not available 
for study and identification of structural resonances. 
Because of a tight delivery schedule, neither was 
there enough time nor opportunity to fully study the 
plant once the refurbished telescope was completed. 
Thus, the structural resonances were never incorpor- 
ated into the plant model. However, the effects of 
said resonances were successfully dealt with in an 
empirical manner using notch filters installed shortly 
before delivery of the telescope. This is described in 
a subsequent section of this paper. 

The input to P(s) is torque "x," while the output is the 
inertial angle "Y." The torque input to P(s) comes 
from two sources: 1) W(s) which collectively 
represents the motor windings, the power amplifiers 
(which deliver current to the motor), and a feedback 
compensator, and 2) F(s) which represents gimbal 
friction. Of course, friction opposes the relative 
motion and thus carries a negative sign. 

The gimbal angle 0 is measured by two high- 
accuracy resolvers (a lx and a 64x resolver). In 
Figure 2, the resolvers together with the Resolver-to- 
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Digital (R/D) converters are lumped together and 
labeled Q(s)—and for simplicity, will hereafter be 
referred to as the resolver. The inertial angle "Y" is 
measured with a Systran Dormer Inertial Angle 
Sensor (IAS) and is labeled H(s) in Figure 2. 

Because H(s) rolls-off at low frequencies, another 
sensor was needed to cancel the low-frequency 
components of the disturbance "D." A connection to 
the Inertial Measurement Unit (IMU) on the host 
vehicle was added to the telescope pointing system to 
provide low-frequency feed-forward cancellation of 
the base disturbance. Of course, since the IMU is 
located off-gimbal, a transformation is necessary to 
convert host attitude data into gimbal coordinates. 
The frequency response of the IMU together with the 
coordinate transformation are lumped together in 
Figure 2, and labeled B(s). The transformed host 
attitude data are subtracted from the desired pointing 
angle "R" to produce the commanded angle "C." 
This calculation, together with the coordinate 
transformation are computed on a navigation 
processor outside the servo controller system as 
described in this report, however, these components 
are shown in Figure 2 for completeness. 

Finally, there is the compensator G(s). The function 
of G(s) is to blend the low-frequency data coming 
from B(s) and Q(s) with the "high-frequency" 
feedback data coming from the inertial sensor H(s)— 
producing a "smooth" transition between the two 
sensors. 

2. IDENTIFICATION OF FIXED COMPONENTS 

In this section we identify the transfer functions of 
those components in the servo that are fixed in the 
sense that they are not available for modification by 
the design process. We also quantify the uncertanties 
in their parameters. For example, elevation gimbal 
inertia is estimated at 0.6 kg-m . This estimate was 
made prior to the telescope being completed so for 
design purposes elevation inertia was allowed to vary 
between 0.5 and 0.7 kg-m2. Azimuth gimbal inertia 
depends on elevation angle G as per Equation 1 
below. For an elevation angle of 90 degrees, azimuth 
inertia is approximated at 1 kg-m2, for 180° it is 
estimated at 0.75 kg-m2. 

J^ = 0.35 + 0.4 cos2(9) + 0.65 sin2(9) kg-m2      (1) 

The Inertial Angle Sensor H(s) is a band-pass device 
whose bandwidth is between 2 Hz and 10 kHz. The 
theory of operation, application and evaluation of the 
IAS is further explained in Reference 1. 

The nominal transfer function of the IAS is, given by 
Equation 2 below, has been found to vary slightly 
with temperature. The manufacturer provided four 
different transfer functions to represent H(s) at 
various temperatures (Equations 3 through 5).   This 

1 Harold Morris, 'The Inertial Angular Displacement 
Sensor, Theory and Application," (Systran Donner 
Inertial Division), February 18,1987. 

set of four was used to represent the variation in H(s) 
as a function of temperature. 

Hn(s) = 
s^s + WHs + T.Ö] 

[s + 201][s + 4][s + l][s2+17s + 15   ] 

H  (s) = - 
sJ[s + 151][s + 6.9]  

2 [s + 163][s + 4][s + 2][s2+21s + 15   ] 

s3[s + 151][s + 8.5] 
H (s) = 2~ 

3 [s + 163][s + 4][s + l][s2+20s + 15   ] 

H  (s) = - 
4 s + 047][s2+17s + 13   ] 

(2) 

(3) 

(4) 

(5) 

A Bode plot of the IMU, B(s) was provided from the 
host vehicle contractor From this plot, a nominal 
transfer function Bn(s) was empirically determined 
that matched the Bode plot. The transfer function, 
given by Equation 6 (excluding the time delay), is 
shown below. For design purposes, the dominant 
pole at 300 rad/sec was varied ± 20%, while its 
damping ratio of 0.6 was varied ± 10%. A sample 
space of sixteen variations on B(s), plus the nominal, 
was used to represent the uncertainty in the IMU. 

B(s) = - 
300'(1000)[0.205s + l] 

(6) 
[0.201s + l][s/+ 360s + 300   ][s + 1000] 

The nonlinear behavior of bearing friction was 
simulated with the Dahl friction model2—whose dif- 
ferential equation is shown below in Equation 7. The 
telescope manufacturer estimated the Dahl friction 
model parameters as shown below in Table 1. 

dF ■— = abs< 1 - sign 
dt *$i max 

(slope) - 
d6 

dt 
(7) 

Axis Running Torque Fm,x 
(Nm x 10"3) 

Slope (Nm/rad.) 

Min.       Nom.      Max. Min.       Nom.      Max. 

El. 

Az. 

5            10           21 

21           42           85 

3.5             7           14 

26           52         104 

Table 1. Dahl friction model parameters 

In order to include the nonlinear effect of bearing 
friction into the design process it was convenient to 
convert the nonlinear Dahl effect into an equivalent 
frequency response. This was done using the de- 
scribing function technique. That is, the response of 
the nonlinear model to various sinusoidal inputs was 
measured, and the input/output transfer function was 
derived from these data.   Sinusoidal inputs to equa- 

P. R. Dahl, "A Solid Friction Model," The 
Aerospace Corporation, Space and Missile Systems 
Organization Air Force Systems Command, Report 
No. TOR-0158 (3107-18)-!, May 1968. 
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tion 7 produce outputs with the same fundamental 
frequency, plus higher harmonics due to the non- 
linear nature of Equation 7. The describing function 
technique tests the nonlinear system at one frequency 
at a time. The transfer function is determined at each 
frequency by ignoring the harmonics and computing 
the input/output ratio for the fundamental. 

Accordingly, the Dahl equation was simulated at var- 
ious frequencies, under various conditions. The 
input to the Dahl model simulations was the first 
derivative of angle with respect to time (theta dot), 
and the output was bearing friction torque. When the 
data for these simulations were reduced, it was found 
that the Dahl frequency response varies as a function 
of both frequency, and input magnitude. The Dahl 
friction behaves much like a single-order low-pass 
filter—whose roll-off frequency is a function of not 
only the Dahl parameters of Fmax and Slope, but also 
a function of input magnitude. From these data, it 
was empirically determined that the describing 
function equivalent of Equation 7 could be written as 
shown in Equation 8. (Note that because the input to 
the Dahl equation is d6/dt instead of 0, Equation 8 
must be multiplied by "s" in order to yield the 
transfer function F(s) with bearing friction as the 
output and 0 as the input.) 

F(s) 

s 
= 

slope 

s + a (8) 

Where: a = 
n • slope • input magnitude 

4F, max 

3. DESIGN PROCEDURE 

Applying standard flow graph techniques to Figure 2 
yields the transfer function shown below in Equation 
9 for the inertial angle "Y." The first term in Equa- 
tion 9 is the response due to the control reference 
signal "R," while the second term represents the 
system response due to the disturbance "D." 

Y(S): 
RGWP DP[F + GW(Q-B)] 

I + P[F + W(GQ + H)]   I + P[F + W(GQ + H)] 
(9) 

The design goals for this project were: 1) 1.5 uradian 
pointing resolution—that is, steady-state pointing to 
within one bit of the 22 bit commanded gimbal 
angle, 2) 1 microradian RMS line-of-site pointing 
jitter in the presence of host vehicle attitude disturb- 
ance "D" and 3) high agility—that is, fast re-target- 
ing capability. Note that the transfer function for 
goal 1 is represented in the first term of Equation 9, 
while the stability performance (goal 2) is represent- 
ed in the second term of Equation 9. The most chal- 
lenging design goal is the stability criterion. 

3.1 Resolver to Digital (R/D) Converter Design 

By observing the second term in Equation 9, it is 
clear that the system response to disturbance "D" can 
be significantly reduced by designing Q(s) = B(s). 
That is, we want the frequency response of the 
resolvers to match as closely as possible that of the 
IMU shown in Equation 6. 

An Analog Devices chip (AD2S80A) was used for 
the R/D converter. It is a "type II feedback system" 
that requires external compensation to achieve the 
desired closed-loop response.3 The converter can be 
summarized as shown in Figure 3. In order for the 
transfer function of Q(s) to closely match that of the 
IMU B(s), another pole was added to the compen- 
sator, as shown in Figure 4.    This produced the 

desired closed- 
loop response 
shown in 
Equation 6. 

Figure 3. Block diagram of R/D converter 

6in 

s2(s+b) 

i 

i »J    -£- 
(s+c) 

Figure 4. Modified block diagram of resolver-to- 
digital converter 

3.2 Design of Feedback Sensor Blending 
Compensator G(s) 

The most challenging aspect of this design was that 
of the compensator G(s). The function of G(s) is to 
blend the low-frequency data coming from B(s) and 
Q(s) with the high-frequency feedback data coming 
from the inertial sensor H(s). The effective feedback 
sensor is the composite G(s)Q(s) + H(s). Since H(s) 
rolls-off for frequencies below 2 Hz, we want to use 
the resolver feedback data from Q(s) for all frequen- 
cies below 2 Hz, and use the inertial angle sensor 
H(s) for all frequencies above 2 Hz. Therefore, 
ideally G(s) should cut-off Q(s) sharply at 1 Hz, 
however, this presents a significant problem. Factor- 
ing the equation G(s)Q(s) + H(s), reveals zeros in the 
right-half of the s-plane—resulting in unstable poles 
in the closed-loop system, (since according to root- 
locust analysis, closed-loop poles "seek" the open- 
loop zeros at high gain). 

Using the root-locus technique, it is possible to 
modify G(s) to cause G(s)Q(s) + H(s) to have all 
zeros (and poles) in the left-half plane. However, 
this proved to be quite difficult when taking into 
account the divergence in H(s) and Q(s) due to temp- 

Mark L. Schirmer, "Using Laplace and Fourier 
Transform Techniques to Model the Performance 
of Resolver to Digital Converters," (Analog 
Devices Inc.: Memory Devices Division, 3 Techno- 
logy Way, Norwood Massachusetts) 
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erature and component variations. That is, finding a 
compensator that meets this specification (no right- 
half-plane poles and zeros) is relatively simple for 
each combination of H(s) and Q(s) individually. But 
finding one compensator that satisfied this criterion 
for all combinations of H and Q in the set proved to 
be quite impractical using the root-locus technique. It 
was therefore necessary to find another method. 

Quantitative Feedback Theory (QFT) is ideally 
suited for such a design challenge. Typical QFT 
designs specify upper and lower performance bounds 
on the closed-loop frequency response. In this case 
the design specifications on G(s)Q(s) + H(s) were 
quite simple: 1) First we needed a smooth transition 
between the Q(s) and H(s) feedback sensors (that is, 
there should be no significant peaking over the 
desired operating range). 2) Secondly the composite 
sensor GQ + H must be minimum phase (no right- 
half-plane zeros). To be more precise on the first 
specification, smooth transition was defined as 
-2.3 dB < IGQ + HI < 2.3 dB for frequencies less than 
100 Hz. Here + 2.3 dB was used for the upper and 
lower bounds which correspond to damping ratio of 
about 0.42—that is, the composite feedback sensor 
GQ + H should have no poles or zeros with damping 
ratios less than 0.42. Designing to both of these 
specifications simultaneously, while taking into 
account plant uncertainty, turned out to be relatively 
simple using QFT. 

Designing to requirement 1) is straightforward using 
QFT, however, meeting criterion 2) requires some 
problem manipulation. The sensor equation simply 
needs to be rearranged to fit the classical QFT 
approach: GQ + H = H(l + GQ/H) = H(l + L), where 
L = GQ/H. 

If 1 + L is minimum phase and stable, then the 
composite sensor GQ + H will be also. As long as G 
and Q are stable, and H is minimum phase 1+L will 
be stable. To guarantee that 1+L is minimum phase 
the Nyquist criterion needs to be satisfied. Since 
L(s) has neither right-half plane poles nor zeros, we 
can simply design L(s) to have no encirclements of 
the critical point. On the Nichols chart, the critical 
point is found at 0 dB and -180 degrees. Thus if L(s) 
crosses 0 dB to the right of this critical point, then we 
will have no encirclements, and our system will be 
stable and minimum phase. Ideally, of course, we 
would want to have some phase margin when L(s) 
crosses 0 dB, so we will stay a considerable distance 
away from the critical point—specifically, we will 
stay outside the 2.3 dB Nichols chart contour. 

Figure 5 shows the Nichols plot of the compensated 
nominal plant GL„(s) = GQn/H„. The performance 
bounds were defined as -2.3 dB < IGQ + HI < 2.3 dB 
with respect to the nominal plant Qn/Hn. At each 
frequency where bounds were calculated, there are 
two bounds shown in Figure 5. The dashed lines 
represent the upper bound of IGQ + HI < 2.3 dB, 
while the solid lines represent the lower bound 
-2.3 < IGQ + HI. As long as the compensated nomi- 
nal plant GL„(s) lies below the dashed lines, and 
above the solid lines at each frequency, the design 
criteria will be satisfied for all combinations of Q and 
H in the set. A lead-lag compensator G(s) was de- 
signed to meet the design specifications at all freq- 

uencies—G(s) is 
Equa- 

G(s) = - 
27[s + 4] 

[s + 9][s + 12] 
(10) 

given   in 
tion 10. 
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Figure 5. Nichols plots of GQn/H„ with bounds on GQ + H. 
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Figure 6 shows a Bode plot of GQ(s) along with 
H(s), and a simulated disturbance D(s) as measured 
by B(s). This sample disturbance is taken as the ab- 
solute worst case that could be expected on the host 
vehicle. Note the large spike at 4.5 Hz. Figure 7 
shows the Bode plot of the composite sensor 
G(s)Q(s) + H(s). 

3.3 Redesign of Feedback Sensor Blending 
Compensator G(s) 

The simulated host vehicle pointing error d(t) con- 
tains a ±6 microradian jitter at 4.5 Hz. The host 
vehicle attitude data from B(s) is sampled at 40 Hz, 
and contains a variable latency. Every other sample 
has a maximum latency of 15 milliseconds, with the 
remaining samples having a latency of 25 millisec- 
onds. Since this delay is not inside the feedback 
loop, it will not affect stability, but it severely 
restricts the disturbance rejection performance. 
Detailed simulations revealed that because of this 
variable latency, attenuation of the 4.5 Hz jitter was 
quite difficult. The impasse is due to the fact that the 
4.5 Hz disturbance is measured by both the inertial 
angle sensors H(s) as well as IMU B(s), but is 
corrupted in B(s) by the variable latency. The delay 
becomes more significant at higher frequency, caus- 
ing the two sensors B(s) and H(s) produce conflicting 
information on D(s) at 4.5 Hz, which seriously limits 
disturbance attenuation. 

Ideally, we would have rolled-off B(s) at a lower 
frequency so it would not see the 4.5 Hz. However, 
as it turns out, a certain amount of over-lap between 
the two sensors is needed in order to satisfy the mini- 
mum phase requirement. Thus, another approach 
was needed to further attenuate D(s). To accomplish 
this, G(s) was modified (as shown in Equation 11) to 
purposely violate the upper bound IGQ + HI < 2.3 dB 
for frequencies local to 4.5 Hz. The idea was to 
allow the 4.5 Hz jitter to come through the feedback 
sensor with a higher gain so that it could be acted 
upon more aggressively than its neighboring 
frequencies. In an effort to emphasize the uncorrupt- 
ed information coming from H(s) with respect to 

B(s), a gain of 

G(s) = ■ 
42[s + 4] 

[s+14][s + 12] 
(11) 

3 was added to 
H(s). 

* This conclusion is not immediately obvious and is 
not proved in this paper. It was reached while 
attempting to shape the nominal loop GQn/Hn. 
Suffice it to say that while shaping the loop it 
became clear that the QFT bounds could not be 
satisfied without some frequency overlap between 
Q and H. The high-frequency roll-off of Q is 
provided by G and if G is rolled off at too quickly 
the nominal loop approaches the critical point and 
ultimately violates the Nyquist criterion. 
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Figure 6. Bode plot of G(s)Q(s) and H(s) along with 
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Figure 7. Bode plot of G(s)Q(s) + H(s) 

This significantly improved the disturbance attenua- 
tion at 4.5 Hz, however, when the servo was imple- 
mented on the actual telescope, large structural 
resonances in the inertial angle sensor mounts that 
attach the Inertial Angle Sensors to the telescope 
were discovered. The lowest of these resonances 
were too close to the system bandwidth to effectively 
notch-out, so it became necessary to sacrifice per- 
formance in order to avoid exciting the structural 
resonances. (These resonances will be discussed 
later in this report.) The gain on H(s) was thus 
lowered from 3 to 1.5. The Bode plot of the 
composite sensor GQ + H in Figure 8 includes the 
gain of 1.5 on the inertial angle sensor H(s). 

//    \>^ Magnitude 

10 10 
Frequency (Hz) 

Figure 3. Bode plot of composite sensor G(s)Q(s) + 
1.5 H(s) 
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3.4 Design of Feedback Compensator W(s) 

As mentioned in the system overview, W(s) collect- 
ively represents the motor windings, the power amp- 
lifiers (which deliver current to the motor), and a 
feedback compensator. The power amplifiers were 
designed as current drivers with current feedback 
from the motor windings. This effectively removed 
the motor winding dynamics from the design 
process, and the bandwidth of these amplifiers was 
large enough to be ignored with respect to the design 
of W(s). The driving factor in the design of W(s) 
was that of disturbance attenuation. The desired 
pointing stability is ±1 microradian. 

The worst-case host-vehicle attitude data contains 
disturbances of about ±250 microradians at low freq- 
uency and ±5 microradians at 4.5 Hz. For design 
purposes, it was assumed that the disturbance D(s) 
would be no greater than the bound shown in Fig- 
ure 9—derived by taking the Fourier transform+ of 
the azimuth data shown in Figure 22. To achieve a 
factor-of-two design margin, the system was design- 
ed to attenuate this disturbance down to ±0.5 uradian. 

10" 10 
Frequency (Hz) 

Figure 9. Fourier transform of D(s) with maximum 
disturbance limits. 

To accomplish this, an attenuation of 55 dB is 
needed at low frequencies and 22 dB is needed at the 
higher frequencies. The only other quantitative spec- 
ification imposed on the design of W(s) was the 
stability criterion—that the closed-loop system must 
have less than 2.3 dB of peaking. 

Nichols chart stability and disturbance attenuation 
bounds were calculated from Equation 9 with respect 
to L„(s). To stabilize the servo loop, a compensator 
W(s) was designed as given by Equation 12. Fig- 
ure 10 shows the intersection of the stability and dis- 

+ The FFT data presented in Figure 9 has been scaled 
such that there is a one-to-one correspondence in 
magnitude between the time d(t) and frequency 
D(s) domains. That is, the ±5 uradian time-domain 
disturbance at 4.5 Hz shows up in the FFT data as a 
spike of magnitude 5 microradians at 4.5 Hz. 
Likewise with other frequency components of the 
disturbance d(t). 

turbance attenuation bounds. Also in Figure 10 is 
shown the Nichols plot of the compensated nominal 
loop W(s)L„(s) = W(s)Pn(s)[G(s)Qn(s) + Hn(s)]. 
Note that the servo system is stable, and meets the 
bounds at all frequencies. A Bode plot of the open- 
loop compensated system is shown in Figure 11. 
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Figure 10. Nichols plot of compensated nominal 
loop W(s)Ln(s) with bounds. 
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Figure 11. Bode plot of open-loop system W(s)L(s). 

A Bode plot of the closed-loop disturbance attenua- 
tion is shown in Figure 12 along with the disturbance 
attenuation design criteria—which are met at all 
frequencies. The disturbance attenuation criteria 
were derived from the disturbance bound shown in 
Figure 9, which was derived from the FFT of the 
simulated disturbance data d(t). 
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Figure 12. Disturbance rejection Bode plot. 

3.5 Design of the Inertial Angle Sensor Notch Filters 

The system was first tested on a single-axis gimbal 
with the same resolver, Inertial Angle Sensor (IAS) 
and roughly the same inertia, torque and bearing fric- 
tion as the actual telescope. This provided an ideal 
test-bed for debugging servo hardware and software. 
However, once implemented on the actual telescope, 
structural resonances on the IAS mounts caused the 
telescope to oscillate. The single-axis test gimbal did 
not exhibit this phenomenon since the IAS was 
mounted rigidly at the center of the gimbal, while the 
makeshift telescope mounts, being retrofits, were sig- 
nificantly more compliant (see Figure 1). The open 
loop* frequency response of the servo system was 
measured using a network analyzer, and is shown in 
Figure 13. This revealed several destabilizing 
resonances starting at about 200 Hz. 

40 

30 

20 

m 
^10 
O) 

T3 

I   ° 
-10 

-20 

-30 

»2:!V: Uli, 

I            I  I 

Elevation   * ■ 

]j\.    ■ ■ /       '   '                  L 

10 10 
Frequency (Hz) 

Figure 13. Open-loop frequency response showing 
resonances in the IAS mounts 

The tight delivery schedule did not allow time to 
fully analyze and re-design the controller to account 
for these structural resonances. Instead, in-line notch 
filters were added to modify the IAS feedback sensor 
transfer function to ignore the jitter data at certain 
frequencies. The notch-filter board provided a maxi- 
mum of six, second-order active-notch filters, toge- 
ther with a third-order low-pass filter for each axis. 

The input for these measurements was motor 
current while the output was angular displacement 
as measured by the Inertial Angle Sensors (IAS). 

The transfer function of the notch filter is shown in 
Equation 17, while that of the low-pass filters is 
shown in Equation 18. Note that for elevation, COj is 
infinite. The specific notch frequency for each filter 
is given in table 2 in Hz. 

N(s) 
2      2 

S   + CO 
(17) 

sz +2(0.lS)0)s +0)' 

Az.  264  335  406 504 2500 5000 

El.       335  555  635  720  875 

Table 2. Notch filter locations in Hz 

LP(s) = 
co^^ls + ax] 

Js + 6>2] 6>3[s2 +a>ls + a)l
2 

Az. El. (18) 

where: 
CO, 

co2 

co^ 

5000 1500 
1000010000 
1500    00 

The frequency responses of Figure 13 provided a 
general idea of what notch filters would be needed. 
However, the process used to select the number of 
filters used as well as their frequencies (described 
below) was not based on this preliminary data—since 
it was gathered before the telescope was entirely 
assembled, and would most likely be different than 
the final configuration. Also, since each notch filter 
ads unwanted phase lag below the notch frequency it 
was important to not use more notches than absolute- 
ly necessary to avoid eroding the phase margin. 

The notch filters were selected as follows. The loop 
was closed around the telescope and allowed to 
resonate while the dominant oscillation frequency for 
each axis was measured. A notch filter was then 
built to eliminate that frequency and inserted in front 
of the IAS signal. The loop was again closed, while 
the next most dominant mode was identified. This 
continued until all oscillations were eliminated. The 
low-pass filter was then added to roll-off all high 
frequency resonances. The azimuth low-pass filter 
includes a zero at 239 Hz needed to restore phase 
margin that was lost due to the several notch filters. 

IMPLEMENTATION RESULTS 

Figure 14 shows the telescope step response. The 
top graph in Figure 14 shows the gimbal angles in 
degrees, while the bottom graph shows the output of 
the Inertial Angle Sensor (IAS) in microradians. 
Figure 15 shows actual in-flight pointing perform- 
ance with typical host vehicle base motion disturban- 
ces. The azimuth pointing jitter as measured by the 
IAS's over this time interval is 295 nanoradians 
(rms) while the elevation pointing jitter is 385 nano- 
radians (rms). Note that both axes exceed the design 
goal of 1 microradian pointing stability. 
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Figure 15. In-flight tracking performance 

CONCLUSIONS 

Quantitative Feedback Theory (QFT) provided a 
simple, yet powerful design tool which resulted a 
solution that exceed the performance goal of 
1 microradian pointing stability in spite of large host 
vehicle pointing errors. One of the most challenging 
aspects of this project was the blending of feedback 
and feed-forward sensors to achieve optimum 
performance. These feedback sensors included the 
gimbal resolvers and Inertial Angle Sensors (IAS), 
whose signals were blended with the variably- 
delayed host vehicle attitude data coming from the 
Inertial Measurement Unit (IMU). The blending of 
these sensors was greatly simplified using QFT. 
Using this technique, design trade-off options could 
be easily weighed against each other in terms of cost 
versus performance benefit. 

Another significant challenge was overcoming the 
structural resonances in the telescope. The perform- 
ance goal of 1 microradian pointing stability resulted 
in a relatively high gain/bandwidth controller. Be- 
cause of the large bandwidth, several structural reso- 

nances were excited, causing pointing performance 
degradation. Several notch filters were added to the 
controller to eliminate the possibility of exciting 
these structural resonances. The extra phase lag 
introduced by these notch filters decreased the phase 
margin of the closed-loop system, which in turn 
further degraded pointing performance. Ultimately 
the optimum* trade-off between gain-bandwidth and 
stability margin was obtained to produce a controller 
that exceeds the design goals without exciting 
structural resonances. 

All components of the feedback compensator and 
notch filters were implemented in analog hardware. 
Thus, the controller modifications, which were 
necessary to avoid exciting the structural resonances, 
were more difficult to create. Because of the short 
design cycle, it was not possible to fabricate new 
printed circuit boards in time to meet the delivery 
schedule. Therefore, all modifications had to be 
carefully reworked on the original flight hardware. 
This provided another significant challenge. 

Yet despite these obstacles, the pointing control 
system was delivered on time, with measured in- 
flight performance that meets the design goal with 
significant margin. 
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Abstract: Feedback theory is much less popular now than 5 years ago. However, there is 
little question that the problem of achieving desired system tolerances from Uncertain Plants, 
at minimum Cost of Feedback, will remain an important, enduring one for many future 
generations. Although much progress has been made, it is minuscule in comparison with the 
extent of the problem. The purpose here is to suggest some significant QFT research 
problems, some tantalizingly on the boundary of the unknown. There have been in the past 
many suggestions for improvements in Feedback Synthesis. Most have been illusory, e.g. the 
Smith Regulator [9], because they were formulated in a qualitative context, without the 
disciplines of quantitative uncertainty and performance specifications, degrees of freedom, 
sensor noise, plant modification etc. Without such disciplines, it is impossible to properly 
evaluate competing techniques. The reader is referred to the 1991 Survery papr for some 
background, I. Horowitz, 1991, Survey of QFT, Int. J. Control, 53, 2, 255-91. 

1.    SINGULAR G COMPENSATION 

Consider a SISO plant whose range of uncertainty 
includes right half-plane (rhp) poles and zeros, some 
even so close as to appear like dipoles. Ordinary 
design (even only for stability for one plant case at a 
time) results in impractical, negligibly small stability 
margins. In this approach [1], the Stability Problem is 
separated from the Sensitivity problem, by 
transforming the SISO system into a MIMO system 
for stability purposes, by use of MIMO compensation 
(G a matrix). It was shown that stability can then be 
achieved over the entire plant set. However, the 
system stability is highly sensitive to the G 
compensator. Since G can be a simple digital 
controller or active network, it can usually be 
designed much more 'robust' than a typical plant P 
(which may be highly complex and massive in extent), 
so much has been achieved. This is a fantastic result, 
violating normal Feedback tradition. Somehow, the 
very high system sensitivity to the plant, has been 
shifted to the G compensator. Note that Performance 
Sensitivity has been sacrificed. The loop transmission 

has been dedicated to Stability. What is the 
mechanism involved here? Can similar results be 
obtained for highly uncertain unstable, 'nmp' nonlinear 
plants? There has been hardly any follow-up to this 
pioneering work. 

2.    NONLINEAR NETWORK SYNTHESIS 

The following is a classical much-researched LTI 
synthesis problem: Given a desired transfer function, 
find a passive (or active) network for this purpose. An 
equivalent nonlinear problem is: Given a set Fi(s) of 
transfer functions and a set of deterministic signal 
inputs Ri(s), find a network such that for a given 
desired output set Yi(s), each Yi has the transform 
Yi(s) = Fi(s)Ri(s). This is a very difficult problem. 
See [2] for a stab at it using Linear Time-Varying 
(LTV) elements, but with unsolved problems of 
sensitivity and stability. Obviously, such nonlinear 
network synthesis would be tremendously useful in 
feedback design, and in other applications. 
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3.    THE SISO MULTIPLE-LOOP FEEDBACK 
PROBLEM (WITH AND WITHOUT PLANT 

MODIFICATION) 

(a). There is available a finite (n) number of internal 
sensors, in addition to the usual output sensor, giving 
a (n+2) degree of freedom system (one due to the 
prefilter). The research objective is to find a 
systematic means of designing the available n+1 
feedback loops, to satisfy the quantitative 
specifications at minimum cost of feedback, i.e. with 
consideration of the n+1 sensor noise sources, (b). The 
solution of this permits solution of the much more 
complex analogous MIMO problem, i.e. given a n by 
n MIMO plant, with rn available internal feedback 
sensors, and the usual n output sensors, develop a 
synthesis procedure for exploiting the available 
freedom to satisfy the quantitative specifications, with 
minimum cost of feedback. The 'equivalent 
disturbance' technique described in [3], enables the 
solution of this problem, by means of the above SISO 
technique of (3a). Furthermore, for both 3a, b, the 
techniques are applicable to Nonlinear, Time-Varying 
Plants, because for NO Plant Modification systems, 
the desired outputs determine the Plant internal 
signals. Needless to say, this is a much more complex 
problem if'plant modification' is allowed [4, 11]. It is 
surely time for QFT researchers to provide some 
competition to Prof. B. C. Wang in the very important 
area of Feedback Systems with allowed plant 
modification. So far, he and his students have had the 
field to themselves. 

4.    NON-DIAGONAL COMPENSATION IN 
MIMO FEEDBACK SYSTEMS. 

There has been disappointingly little work in this area. 
Most design problems have apparently been solvable 
by diagonal compensation. One might tackle this, by 
formulating a design problem which is not thus 
solvable. The ill conditioned high purity distillation 
column Challenge Problem (1992 CDC Conference) 
is herewith suggested for this purpose (see P. 419 of 
Ref. 5). Besides being on the verge of 
uncontrollability, the Plant has up to one minute pure 
time delay. To best of author's knowledge, the only 
solution to this Challenge Problem has been due to 
QFT. The H-infinity solutions offered at the 
Conference (Brighton, Gt. Britain), were quite 
inadequate. The QFT solution [5] was forced to use a 
nondiagonal prefilter, and barely satisfied the specs., 
but diagonal G was satisfactory. It is suggested that 
the specifications be made more difficult, in order to 
force use of nondiagonal G. This should be a good 
problem for thorough study of nondiagonal 
compensation in MIMO systems. 

5. LOAD SHARING (PARALLEL PLANT) 
CONTROL 

H. W. Bode, the great pioneer of feedback theory once 
noted that after he had deduced the 'cost of feedback' 
in single loop systems (see [5, Sec. 10.8]), he devoted 
much time to decrease of the cost, which was 
achieved by others [7,p.400]. It involves use of a 
family of plants, with feedback available from the 
outputs of the individual plants to the inputs of other 
family members. The relation between cost and 
benefits of feedback can then be dramatically different 
that in the normal feedback system. For example, in 
the single loop system, 40 db of feedback over (0,10) 
rps has a cost of about 400rps [5, 291]. But in a 
properly designed 2-plant parallel system, for the 
same cost, 80 db of feedback is available [7]; 120 db 
in a 3 plant system. Eitelberg [6] has pioneered in the 
control and stability aspects of these systems, but 
much work remains to be done to integrate this, to 
achieve the available superior Sensitivity properties of 
such systems. 

6. COST OF FEEDBACK REDUCTION BY 
MEANS OF SPECIALIZED NONLINEAR 

DEVICES 

FORE is a simple first order device which responds 
linearly to input r(t) not equal to zero, but its output is 
zero when the input is zero. It has been shown [8] that 
for a large class of systems, this nonlinear device can 
be used to significantly reduce the cost of feedback, 
especially for plants with large high\_frequency gain 
uncertainty It should be emphasized that many 
nonlinear devices have been suggested in the 
literature, which have describing function models 
which promise such properties (have phase lags 
smaller than in LTI elements, for the same magnitude 
slopes). The difficult challenge is how to integrate 
such nonlinear elements into a systematic quantitative 
design technique. To best of author's knowledge, this 
has been done only by FORE. There must surely be 
many more such nonlinear elements, awaiting the 
ingenious inventor. 

7. TIME DOMAIN QFT, TIME-VARYING 
FEEDBACK, ON_LINE_IDENTIFICATION 

The great progress made by QFT has been thanks to 
its Frequency Domain formulation, because thereby 
the real time-domain system (differential equations, 
convolution), is transformed mathematically into an 
algebraic system, (transforms, multiplication), in the 
complex domain. One can hardly visualize achieving 
analogous results by working in the time domain. In a 
brilliant tour de force [10), Barnard has presented a 
Time Domain QFT synthesis theory for the two- 
degree-of- freedom SISO system. 
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Obvious criticisms are: its lack of the 'cost of 
feedback' concept, the effect of sensor noise, the 
difficulty of extensions to multiple-loop structures, the 
high mathematical expertise needed for practical 
design, compared to the very much simpler 
mathematics needed in Frequency Domain QFT, and 
the latter's easy, flexibility of extension to highly 
complex structure systems. Nevertheless, a detailed 
consideration and comparison of Barnard's work, 
would be highly desirable. No doubt much insight will 
be thereby obtained in time-transform relations in 
QFT, and the basic feedback mechanism. Also, one 
might then think in terms of time-varying feedback, 
for example if there is significant change in the extent 
of plant uncertainty as a function of time. 

The latter idea is related to of On-Line Identification, 
almost totally ignored in existing QFT. There can be 
no question that even gross identification could 
tremendously reduce the cost of feedback. For 
example, suppose the zero frequency uncertainty, 
which is say 1000 to 1, could be even sloppily 
measured by a 2 to 1 error factor, then the LTI 
uncertainty is only 6 db rather than 60db; similarly for 
high\_frequency uncertainty the Oscillating Adaptive 
system is intended to do precisely that, and disciplined 
(quantitative) study of its many forms has led to a 
scientific theory for such systems, revealing feedback 
problems for which it is superior to ordinary LTI 
systems. [1 2]. 

Consider the following simple scheme for on-line 
identification, applied to the following: a 3 pole, 1 
zero Plant, with Transfer Function: [s(3)+As(2) + 
Bs(l) +C] / [Ds(l)+ E}, where s(i) is s to ith power . In 
the time-domain, by repeated integrations (from 3 to 
7), and letting I(m)y represent the mth integral of y(t) 
over some fixed interval, one obtains a set of 5 
simultaneous equation in the unknowns A, B, C, D, E. 
For example, the first is: y +(Iy) A + (I2y)B + (I3y)C 
= (12u)D +(I3u)E, where u, y are the plant input and 
output. The fifth equation is (I4y) +(I5y)A 
+(I6y)B+(I7y)C = (I6u) D + (I7u)E. This is an ill- 
conditioned set of simultaneous equations, but can be 
readily solved, and gives good results. One must 
decide of course on interval of integration etc. 
Identification is then good, but only in absence of 
measurement noise; quite poor otherwise. The 
following technique was found useful to obtain fairly 
good results for even fairly significant y (output 
unbiased measurement) noise. A variety of methods 
can be used to do finite-time interval smoothing of the 
noise contaminated y(t), giving say yx(t). Then use 
yx(t), instead of y(t), to obtain the needed 5 equations 
to solve for A, B,..E. One can experiment to find 
better preliminary modification of the y(t) 
measurement. This can, of course, be done to u(t) it 
is also noisy. The fair success achieved by the above 
primitive technique, suggests that online identification 
is highly worth pursuing. The eventual objective is a 

Unified theory for the optimum combination of 
ordinary QFT, and On - Line Identification. Sensor 
noise must be included, if the theory is to be 
meaningful. 

8.    DISTRIBUTED SYSTEMS 

The Ordinary, Lumped (differential or difference) 
equation is a very small subclass of Distributed 
Systems (partial differential or difference equations). 
For many years, it was mainly treated by 
approximation, as a cascaded multiple loop system. 
By means of the double transform, QFT was extended 
to y(x,t) type pde systems, involving only 2 variables 
[13]. An extension of the Nyquist Criterion was 
essential, because it is in the same mathematical 
language that is used in QFT quantitative design. 
Without it, QFT would be seriously impaired. Prof. 
Yakar Kannai was prevailed upon to supply us this 
essential tool [14]. However, the above [13] approach 
is pretty well limited to 2 variables x, t. By a brilliant 
tour de force, Dr M. Kelemen broke through this 
seemingly impenetrable barrier, basically extending 
QFT rigorously to Distributed (PDE) systems. This is 
done by Laplace Transform for the time variable, and 
Fourier Series for the others, or in many cases, Green 
functions, as in several of the references below. As 
with lumped multiple-loop systems with Plant 
Modification, in which advanced research has been 
the exclusive domain of one group, so QFT 
Distributed System theory has been almost the sole 
domain of one individual with various coworkers. 
(The author acknowledges the assistance of Dr. 
Kelemen in the following, briefly summarizing 
significant features of the progress made in 
Distributed QFT system theory). The System 
quantitative performance specifications can be 
functions of space or other non-directional variables, 
as well as of time (directional variable), to be 
achieved despite the Uncertainties in the analogous 
distributed plant variables. The same applies to the 
Boundary Conditions, which are absorbed as 
Disturbances [15]. As to be expected, Existence 
conditions are more complex than in Lumped systems. 
Other QFT features are carried over, such as 
applicability to Multiple-Loop, and to 
Nonlinear/Time-Varying Systems. However, the 
issues are very complex, as can be seen in Fritz-John 
[16]. Even for a linear PDE, the transfer function will 
be non-rational in the Laplace variable, with the other 
variables entering as highly nonlinear coefficients. 
The kind of great care one must take with lumped 
nonmininum- phase unstable systems is essential for 
the simplest PDE problem. 
Even the simplest problem, like the heat equation with 
zero boundary conditions, involves a considerable 
amount of computations; the transfer functions are 
non-rational, and the time domain simulations are far 
from trivial. 
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A laboratory tested DETAILED QFT DESIGN 
procedure, with non rational plant, parametric 
uncertainty and boundary conditions, is described in 
[17,18]. A systematic theoretical study has been made 
concerning the enhancement by linear distributed 
feedback, of stability of LTI PDE plants. The space 
variable was assumed unbounded. So rational 
functions in two variables, Laplace and Fourier were 
involved. The main technical innovation was 
extension of the Gaarding hyperbolicity condition to 
infinite time. The PDE problem was thereby 
transformed into an ODE one in time, with 
coefficients the Fourier transforms on the space 
variables of the plant equation [19]. The conclusion of 
both these references is: Arbitrary regularity in space 
of the data (initial conditions) leads to arbitrary 
polynomial enhancement in time of stability, and 
uniformly in space applicable to both exponential and 
undamped plants -poles in left plane, but not bounded 
away from imaginary axis- the degree of stability 
depends not only on the system, but on the DATA 
(initial conditions and the input functions, both 
distributed in space) as well. This phenomenon is 
typical of distributed systems, but is lost in any finite 
dimensional approximation. Are such results the best 
obtainable, or is exponential enhancement of stability 
possible in general? See Sun [20] for some results. 
The practical designer need not be skilled in the 
mathematics of the above, only be aware of the 
practical limitations, so that he does not try to do the 
impossible. The extension to nonlinear PDE plants 
can be done with the second Nonlinear QFT 
Equivalent Disturbance technique. This is to be 
attempted [22]. 

The above cryptic summary reveals that THE DOOR 
HAS BEEN OPENED TO THE CREATION OF A 
TRULY QUANTITATIVE FEEDBACK THEORY 
FOR UNCERTAIN DISTRIBUTED SYSTEMS. 
THERE IS TREMENDOUS AMOUNT OF 
RESEARCH TO BE DONE, BOTH OF A PURE 
MATHEMATICAL NATURE, AND ESPECIALLY 
OF APPLIED COMPUTATIONAL NATURE. 

shaping - a considerable saving in deign labor. See 
[5, Sec. 14.11], of a 4 by 4 highly interacting, 
uncertain, nonlinear time-varying mimo problem, 
solvable by this technique, within half a day without 
use of a computer. It is possible also to apply the 
technique to the Command input problem, by use of a 
nominal output, so that the allowed deviation from the 
nominal becomes a disturbance. It is also very 
convenient to use this technique to guarantee 
Quantitative stability, i.e. quantitative performance in 
response to deviations in original command or 
disturbance sets, or plant set, or of compensators, even 
for designs originally made by first QFT nonlinear 
technique, in which the nonlinear/time-varying plant 
set is replaced by an equivalent LTI plant set (see 
forthcoming book by Banos, Horowitz, Notes for 
European Nonlinear Course, Universidad de Murcia, 
Spain, September 2000). However, the applicability 
constraints noted in first sentence above is a very 
severe shortcoming, and the eliminations of the 
restrictions worthy of significant research. One 
suggested bullike method to generalize the technique 
is as follows: (a) the nonlinear plant output y terms 
are treated as before, available from the specifications 
on the outputs due to the disturbances (they must 
include the bounds on the derivatives of the output, up 
to highest order). One solves backwards (as in the first 
QFT nonlinear technique) to find the nonlinear plant 
input u terms, and combines them with (a) to obtain 
their resulting extremes. Then, all the nonlinear terms 
due to both input and output, (and mixed ones), appear 
as equivalent disturbances, on a LTI plant with only 
high-frequency gain uncertainty. The design problem 
then becomes again, to shape the LTI loop to satisfy 
the performance bounds on y. The extra work needed, 
cf the simple problem is solving backwards for the u 
inputs. But there is still no need for plant templates, 
and the loop shaping is much easier than in the first 
QFT nonlinear technique. For the case of nonlinear 
y terms with leading nonlinear derivatives, the plant 
prefilter technique of [23] can be used. It is worth 
investing much research effort to generalize and 
streamline this equivalent disturbance technique, 
because of its relative simplicity and versatility. 

9. THE SECOND QFT NONLINEAR TECHNIQUE 

This method was originally meant for disturbance 
attention for Nonlinear Plants [22], in which the 
highest derivative of the plant output y appears 
linearly, and the input u appears linearly. The 
nonlinear terms become disturbances in an overall LTI 
equivalent system, and the design problem is one of 
disturbance attenuation of a LTI plant with only high- 
frequency gain uncertainty, which is a relatively easy 
design problem. Unlike the first QFT nonlinear 
technique, there is no need to solve backwards from a 
family of acceptable y, to the resulting family of u; no 
need for plant templates and possibly difficult loop 

Conclusion: One can obviously conclude from all the 
above, that it is fallacious to say that most OFT 
problems have been solved. Rather, as of this date 
only a tiny part of the battle for "Achieving Desired 
Quantitative Performance Despite Uncertainty" has 
been won. 
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AbstracfcThis paper shows how the pre-filter may be designed in quantitative feedback 
design of single-input, single-output systems with tracking error specifications (Eitelberg, 
2000). The method uses gain and phase information for the pre-filter design. The design is 
conveniently performed on the log polar complex plane using standard CAD tools. 
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1. INTRODUCTION 

Eitelberg (2000) investigated quantitative feedback 
theory (QFT) design for single-input, single-output 
systems with tracking error specifications. This note 
shows how the pre-filter is designed for this approach. 

A two-degree-of-freedom control system is shown in 
Fig. 1. As usual in quantitative control system design, 
it is assumed that the linear(ised) plant transfer 
function is an element of a set, P(s)e {P}, and this 
may include structured and unstructured uncertainty. 
(The dependence on the Laplace variable, s, or 
projection onto the imaginary axis (/'ft)) will not be 
shown where it is obvious from the context.) In order 
to undertake engineering design, there must also be 
some closed loop specifications available. In most 
QFT work (see Horowitz (1991 or 1993) for a general 
reference), the tracking (and other) specifications are 
assumed to be only on the magnitude of the closed 
loop transfer functions. As Eitelberg (2000) has 
argued, bounding the closed loop transfer function 
within a disk around a nominal (model) performance 
often makes engineering sense. Such performance 
specifications result in sensitivity designs for tracking 
performance. They are compatible with norm-based 
methods, but the exact (structured and/or unstructured) 
plant uncertainty description is retained. QFT design 
with norm bounded specifications has previously been 
discussed for example by Horowitz (1979, 1991), and 
Nwokah, Jayasuriya & Chait (1991). 

Given the system in Fig. 1 and client-specified model, 
M(s), with model output, Ym(s) - M(s)R(s) , the design 
task is to specify feedback controller, G(s) and pre- 
filter, F(s) to meet relative tracking error 
specifications.   The  relative  tracking  error transfer 

function, Er
k, of the k* plant is defined as follows: 

E,R — Ym —Yh (1) 

must become large at frequencies where the closed 
loop transfer function (reference to output) has low 
gain. A model reference extends the frequency range 
over which the relative tracking error specification is 
useful as it captures knowledge of the expected closed 
loop roll-off. Eitelberg (2000) accounts for 
unstructured uncertainty in the measurement system 
and pre-filter. This important consideration will not be 
pursued here. Let H=l (no significant measurement 
dynamics) and D=0 (no disturbance as tracking 
behaviour is the subject of the paper). Define the 

complimentary sensitivity, Tk =(l + Lk)~ Lk , with 
Lk=PkG. Simple specifications on the relative 
tracking error would be to contain the relative error 
(element-wise) within a disk of client-specified, 
frequency-dependant radius, A(co), 

(2) 

Eitelberg (2000) does not use a model reference (i.e. 
M(s) = 1) which means that the relative tracking error 

\E[ (jco)\ = \M{jco) - Tk (jco) F(jeo)\ < A(co) 

VPk G {P} 

A two-degree-of-freedom design is required to 
properly solve the design problem with minimum 
feedback bandwidth and to take care of unstructured 
and structured uncertainty in the plant. The design is 
performed at a set at of discrete design frequencies, ft}, 
j=l,2... 

2. PRE-FILTER DESIGN 
Suppose that a controller, G, has been designed to 
meet or exceed the feedback design constraints. The 
pre-filter, F, can then be designed to satisfy the 
tracking error specification, eq(2). A simple approach 
to the design of F is to make use of the assumption 
that the nominal relative tracking error is zero, 

F = F0=M/TQ (3) 

By correct (realistic) specification of the model, M, the 
designer can ensure that F is rational, (strictly) proper 
and stable (even if L0 is transcendental). The model 
would be required to exactly anticipate and replicate 
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right hand plane transmission zeros and other 
singularities in the nominal loop transfer function. If, 
as would be usual, the model is approximate, direct 
application of eq(3) may yield nuisance right hand 
plane singularities with small residuals that should 
obviously be discarded. Direct use of eq(3) may also 
result in a pre-filter of unnecessarily high order for 
practical problems. 

To avoid high order feedback controllers, practical 
QFT designs usually have higher bandwidth than 
strictly necessary, meaning that there is some over- 
design. As opposed to "standard" QFT designs where 
the choice of nominal plant is arbitrary, there may also 
be over-design as a result of a poor or constrained 
choice of the nominal plant. At each design frequency, 
(Oj, any over-design of the feedback controller can be 
exploited to reduce the complexity of the pre-filter by 
finding the exact region (around F0) within which F 
may lie. For any particular L, M, and A, eq(2) is a 
linear fractional mapping of F and therefore results in 
simple quadratic inequalities on a plant by plant basis. 

For example, (unknown)   F = re^J^', and (known) 

T = L/(\ + L) = xeja , M iß   ■ ■ yeJt^ gives, 

(ycos(a)-xrcos(0+ /?)))  + 

+ (ysin(a)-xrsin(0 + jß)))2 < A' 
(4) 

Eq(4) can be solved for r, given any 0 e [-360°, 0°], 
for example using the Matlab QFT toolbox 
(Borgesani, Chait & Yaniv, 1998). The solution of 
eq(4) for a particular plant case and design frequency 
will divide the complex plane of F into acceptable and 
unacceptable regions. If the feedback controller design 
was successful, by construction, there is a non-empty 
intersection (over the plant set) of the acceptable 
regions for F at each frequency (or at worst the point, 
F = M/T0). (F(s) must satisfy Bode gain-phase 

relationships and, as discussed above, correctly 
specifying the model will ensure that a proper, rational 
and stable F(s) exists.) Usually, in QFT the pre-filter is 
designed by magnitude only but the design outlined 
here is conveniently undertaken on the log-complex 
plane {arg{F} vs. dB{F}). The intersection of the 
regions given by eq(4) at frequency CO) provides an 
exact bound for the design of F((o). 

3. EXAMPLE 

The example is based on Example 2 in the Matlab® 
QFT toolbox (Borgesani, et al, 1998). 

Original specifications: 

Plant: P(s)=- 
s(s/a + l) 

Tracking specifications: 

a,Jfce[l,10]. 

0.6584(s + 30) 

sz+4s + 19.75 
^\TYIR 

s=jco 
(JO) 

120 

s3+1752 +825 + 120 

Design Nominal (specifically chosen): 

3 
Po(s) = :(s/3 + l)' 

Approximately        equivalent        tracking 
specifications, (illustrated at s=j3 in Fig. 2): 
Model response (for specific P0) 

M(s)= —1  
(s/4)2+1.4.s/4 + l 

Tracking error tolerance: 

 0.12s      

((s/4)2+l.2s/4 + lls/U + l) 

The original feedback controller design, 

(Wl.l + lX^/lH+l) 

error 

A{co) = 
s=ja> 

G(s) = 
(s / 43+ !)((.*/lOOO)2 +1.55/1000 + l) 

obviously satisfies the above tracking error bounds. 
The constraints on the pre-filter design are illustrated 
in   Fig.   3   along   with   the   (original)   pre-filter, 

F(S) = ,      that      satisfies      the 
(W4)2 +1.45/4 + 1 

constraints with low order and low bandwidth. 

4. CONCLUSIONS 

This paper has shown how to design the pre-filter in 
quantitative feedback design with tracking error 
specifications 
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Figure 3 - Pre-filter design for tracking error specifications (dashed lines = "below" bounds, solid lines = 
"above" bounds) 
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Abstract: Multivariable systems are currently considered one of the most challenging problems within Control 
Engineering. Loop interaction reduction and stability under the presence of plant uncertainties as well as system 
integrity are some of the problems attached to those processes. In this context, some previous papers have dealt with 
the loop coupling reduction in the QFT frame, taking into account the definition of a coupling matrix. Those 
techniques are applied in order to design the controller of a SCARA robot manipulator. 

Keywords: QFT, Robust Control, Multivariable Systems, Non-diagonal Matrix Controller, SCARA robot arm. 

1. INTRODUCTION 

Consider a nxn linear multivariable system, -see 
Figure 1-, composed of a plant P, a non-diagonal 
controller G, and a prefilter F, where PeP and 
P  is a set of possible plants due to uncertainty. 

The quantitative feedback design problem 
(Horowitz, 1979) of specifying a controller G, and a 
prefilter F to achieve certain tracking specifications 
will be considered. This work will focus on those 
systems with a high interaction level due to loop 
coupling. 

;g F(.) ir' p- Gfs) \   u Pv>\ y* 
*\ w 
. t i. 

m 
Fig. 1. Structure of a 2 Degree Of Freedom system 
composed of a linear uncertain plant P(s), an two 
designed elements: a feedback controller G(s) and a 
prefilter F(s) 

In the last decades, many papers dealing with the 
design of controllers for uncertain multivariable 
systems have appeared: Rosenbrock (1970) used the 
Inverse Nyquist Array; Kidd (1984) extended the 
Direct Nyquist Array to uncertain systems; Horowitz 
(1979), and Horowitz and Sidi (1980), first used the 
Schauder's fixed point theory to justify a quantitative 
multivariable technique, improving it later 
(Horowitz, 1982); the Perron-Frobenius root method 
was used by Boje and Nwokah (1997 and 1999) in 
the QFT frame, as well as Yaniv (1995) and 
Francheck et al. (1997) included non-diagonal 
elements in the feedback controller; OReilly and 
Leithead (1991) proposed the Individual Channel 
Analysis and Design -ICAD-, etc. 

Analogously to the gamma function of ICAD, the 
loop interaction with non-diagonal elements was 
studied in order to reduce the loop coupling in 
(Egana and Garcia-Sanz, 1999; Egana and Garcia- 
Sanz, 2000) and (Garcia-Sanz, and Egana, 2002). 
This yielded the development of a new design 
methodology for fully populated matrix controllers. 

In this paper a controller design of a multivariable 
controller for a two-input/two-output SCARA robot 
arm is presented. Thus, the present work is a detailed 
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application of some considerations -explained in 
Egafia and Garcia-Sanz (1999; 2000) and Garcia- 
Sanz and Egana (2002)- about multivariable design 
techniques for uncertain systems with a strong 
coupling behaviour. 

The arrangement of the paper is the following. In 
Section 2 the performance specifications for the 
design problem are stated. In Section 3, a detailed 
description of the controller design is explained, and 
Section 4 concludes the paper emphasising the most 
relevant ideas. 

2. UNCERTAIN MODEL AND PERFORMANCE 
SPECIFICATIONS 

The process to control is a SCARA robot arm, 
manufactured by Adept Technologies. Figure 2 
shows the Adept One robot manipulator, and Figure 
3 the two joints -angles qi and q2- that are 
considered in this paper. 

In order to present the control of two joints of a 
SCARA robot arm, in this Section the plant model 
and the desired performance specifications are 
presented, as well as a brief description of the 
theoretical principles that will be applied. 

2.1 Plant Model 

Figure 3. Considered joints of SCARA robot arm 

(p,+2-p3-cos(q2))-q1+(p2+p3-cos(q2))-q2 + 

u, 
+ r1-q1+Tcl-sgn(q,)=T1=- 

(p2+p3-cos(q2))-q,+p2-q2 + 

(1) 

+ r2-q,+Tc2-sgn(q2)=T2 =-f- (2) 
k 

where k is the power amplifiers' gain, r; are 
coefficients of viscous friction, Tci Coulomb friction 
parameters associated with link i, and 

p, = I, +12 + m, • xf + m2 • (if + x2) 

p2 = I2+m2 -x2 

p3 =m2-l, -x2 

The Lagrange equations' method is used to find 
Equation (1) and Equation (2), which describe the 
dynamic behaviour of the two-link system. The real 
inputs are torques Ti and T2 -applied through power 
amplifier as Uj and u2- commanded by electrical 
motors on joints 1 and 2, and the outputs are angles 
qi and q2. 

denoting Ij, moment of inertia of the z'-th link; mi; 

mass of the z'-th link; lb length of link 1. 

Input signals Ui and u2 will be computed in counts 
[ct] and will be commanded to the robot motors by 
the amplifiers. Hence the robot parameters included 
in Table 1 are multiplied by a gain of 75 [ct/Nm] 
due to the power amplifier equipment. 

Table 1: Coefficients of uncertain p lant 

Minimum Maximum Nominal 
prk   [cts2/rd] 719 813 766 
p2-k [ct-s2/rd] 186 200 193 
p3-k [cts2/rd] 134 230 182 
rrk [cts/rd] 67 381 224 
r2k [ct-s/rd] 11.6 91.9 51.75 
Tci-k [ct] 344 358 351 
Tc2-k [ct] 262 323 292.5 

Now it is possible to consider the Coulomb frictions 
as disturbances and the cosine value of q2 as an 
uncertain parameter h between -1 and +1. Taking 
into account Equation (1) and Equation (2), it is easy 
to find the following transfer functions, which are 
the elements of the plant P defined as, 

Figure 2. Adept One SCARA robot 

Q, 

Q2 

= M 
Mn    Mn 

M21    M22^ 
(3) 
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Mu(s) = 
p2 -S + T2     1 

s ■ A{s)    k 

M22(s) = 

where, 

(p, +2-p3 -h^ + r,    1 

S-A(J) k 

A = z, -s  +z, -s + z„ 

(4) 

(5) 

(6) 

(7) 

(8) 

with the following coefficients, 

Z2=P2-(P,+2-P3-h)-(P2+P3-h)2 

z1=P2-ri+r2'(p1+2-p3-h) 

2.2 Specifications 

Consider the quantitative feedback design problem 
(Horowitz, 1979) of specifying a controller G, and a 
prefilter F, to achieve certain tracking specifications 
A(co) = {flij (a>)\ and #(<w) = \bi} (a>)\ for the function 

T     = \tY/R) JY/R        If ij      J» 

iä((D) < (CO«)! * «sC») for J.J = 1.-,«     (9) 

when, 

(10) 

and where all the matrices are 2 X 2. 

The   desired  performance   specifications   are   the 
following, 

• robust stability: at least 50° lower phase margin 
and at least 1.8333 (5.26 dB) lower gain margin 
(not simultaneously), 

• control signals lower than 32767 [ct] for 
disturbance rejection of and tracking 
commands, 

• reduction of coupling effect as much as 
possible, 

• tracking specifications on \TY/R(j(ßJ are to 

achieve tracking tolerances defined by, 

a (co) < \t™ (jco)j < b(co) for i = 1,2 

where, 

(11) 

a((0) = 

b(co). 

3.52-(s/30 + l) 
s2+2-0.75-3.5-.S + 3.52 

 22         
(s2+2-1.5-2-5 + 22)-0?/10 + l) 

(12) 

(13) 

The design presented below is part of a normal 
engineering design process, and is the first approach 
to design a competitive controller for the Adept One 
robot arm. The above specifications are limited by 
the achieved sampling time for the practical 
implementation, that is actually 10 ms. Further 
designs for force control are subjected to the 
improvement of this critical parameter. 

2.3 Brief description of theoretical principles 

Garcia-Sanz and Egaria (2002) include a detailed 
description of the transfer function matrix of the 
system T expressed as in Equation (14). 

T-r' = [l+(pi}'-GiJ-(piy-Gi-r'+ 

+ (l + (pdY -GX -(Pdy .(ff„ -(Pb +Gb).l)r' = 

= (V + (pd)-'-Gdj   ■(päy-Gi-r'+ 

+ (l + (Piy.GdV-(päy-C-r' (14) 

denoting P as the plant inverse, and Pd, Pb, Gd 

and    Gb    the   diagonal   part   -subscript   d-   and 

non-diagonal part -subscript b- of P and G 
respectively. 

The term of Equation (14) that includes the non- 
diagonal parts Gb and Pb of the feedback controller 
and the plant inverse is called the coupling matrix C. 

One hypothesis is needed to simplify the expression 
of each element of the coupling matrix C. 

Hypothesis HI: suppose that, 

hi ■ ih +ga ] »I'kj • (Ac + S* \f°r k * j   (15) 

Note that diagonal elements t^ will be larger than the 
non-diagonals t§, so that after all, this Hypothesis HI 
is quite reasonable. Then every element of the 
coupling matrix cy obeys the following Equation 
(16), 

cs =««-(1-d«)-*ii -(Ps+«a) (16) 

where 8;, is 1 when i andj are equals. Otherwise, 0. 
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On the other hand, it is possible to approximate the 
diagonal elements t^ of the transfer function matrix 
of the feedback loop as Equation (17). 

l + SfPt 
(17) 

Hence the elements cy of the coupling matrix can be 
written as, 

°ii    "ii 

It is important to emphasise that the non-diagonal 
elements of the controller Gb will be designed to 
reduce coupling interactions taking into account 
Equation (18). 

Moreover, an optimum non-diagonal controller g°pl 

was previously proposed in Egana and Garcia-Sanz 

(1999) defining the nominal plants p™ and /?? as 

those which minimise the non-parametric 
uncertainty radii Apti and Ap^ that comprise the 

plant templates, 

- N 
P<\ 

Pa 
(19) 

Francheck et al. (1997) stated a multivariable 
technique to design fully populated controllers under 
the presence of uncertainty. As their work pointed 
out, for this purpose a sufficient condition to include 
non-diagonal elements is, 

Condition Cl: the plant P and its inverse P are 
stable and do not have any hidden unstable mode. 

This limitation is an inherent constraint for any 
similar technique, and therefore it is also an 
important remark to consider hereby. Note that the 
plant model described in Equations (3)-(7) achieve 
the above-mentioned condition. 

The system is required for a last condition about the 
Relative Gain Analysis -denoted as RGA- proposed 
by Bristol (1966). Skogestad (1996) demonstrated 
that robustness could be only achieved for non-'ill- 
conditioned' multivariable uncertain plants. The 
relationship between condition number and RGA 
analysis was also included in the same paper, 
concluding that large RGA elements -above 10- lead 
to 'ill conditioned' plants. To summarise, the 
condition considered here can be expressed as 
follows, 

Condition C2: The plant P is not 'ill-conditioned' for 
any of the possible plants in the whole set P. 

3. CONTROLLER DESIGN 

In this Section, one controller system is tested on the 
Adept One SCARA robot arm: a controller designed 
by a non-diagonal technique (Egana and Garcia- 
Sanz, 1999; Garcia-Sanz and Egana, 2002). 

The first step suggested by Garcia-Sanz and Egana 
(2002) is the RGA in order to pair input and output 
signals and to quantify how much coupled the 
system is. 

Due to RGA properties, for 2x2 systems only one 
element of the RGA matrix A is necessary: the sum 
of the elements of every row or column is 1. 
Therefore, for a system like this, A, equals A22 and 
A12 equals A21. In addition, perfect decoupled 
systems yield diagonal elements equal to 1, and the 
rest of them equal to 0. 

Figure 4 shows the first element An for all the 
possible plants due to uncertainty. At low 
frequencies -below 0.06 rd/s - the coupled behaviour 
is very low, but as far as the frequency increases the 
system presents a more coupled dynamics. At a 
frequency of 0.2 rd/s the element An reaches a 
maximum value of 1.8 that is rather high. The 
required bandwidth of the system derived from 
tracking specifications lies between approximately 2 
and 3.5 rd/s. In those frequencies the maximum 
value of An is greater than 4.5. Hence, the robot arm 
presents a very coupled behaviour. 

10' 10 

Frequency (rd/s) 

Figure 4. Element An of the Relative Gain Analysis 
Matrix 

This analysis also yields a very obvious result angle 
qj will be controlled by motor 1, and angle q2 by 
motor 2. Thus the sequential technique may be 
applied as follows. 

•     Step 1: Design of the first loop controller, gn. 

Through standard loop-shaping the controller of 
Equation (19) is found, satisfying all the 
performance specifications. 
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_ 1.65 109 -^2 +4.384 109 -^ + 2 619109 

8u ~ (s2 +829.2-5 + 1.545-105)-s 
(20) 

Step 2: Design of the decoupling element of 
control effort Uj on angle q2. 

Taking into account the optimum controller of 
Equation (19), the controller g2\ of Equation 
(21) is searched minimising the coupling effect 
C21 that can be obtained from Equation (18) for 
this case. 

6.187-10" -s2 +1.666.10'2 -5 + 9.815-10" 
!1 ~ 1130-53 +9.372-105 -s2 +1.748-108 -5 + 3.46M07 

(21) 

Step 3: Design of the second loop controller, 

g22- 

The controller of the second loop is to be 
designed. However, note that the dynamic 
behaviour that now can be observed acting on 
input u2 and getting measures from angle q2 is 
not the stand-alone plant M22, but the following 

equivalent plant M\2, 

M22 = M22 — 
{M22-g21+M2]-gu)-Mr 

l + Ml2-g21+Mn-gn 

(22) 

Then through a standard QFT loop-shaping the 
controller of Equation (23) is designed. 

_ 4.218-1010 -s2 +1.119-10" -5 + 6.3-1010 

822 ~ (s2 +3870-5+3.177-106)-5 

(23) 

Step 4: Shaping of the closed loop to satisfy 
tracking specifications. 

Open loop prefilters of Equation (24) and 
Equation (25) are included in order to satisfy 
time domain specifications for reference 
tracking. 

/., 
14.3 

s2 +7.5620-^ + 14.3 

J22 ~ 
3.026 

s2 +6.355-5 + 3.026 

(24) 

(25) 

The non-diagonal controller is composed of the 
feedback   controller   G   -with   the   elements   of 
Equations (20), (21) and (23)-, and the diagonal 
prefilter F -Equations (24) and (25)-. 
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Figure 5: Experiment with the non-diagonal 
controller 

The controller was implemented using a sampling 
time of 10 ms. One experiment is shown in Figure 5. 
The reference for angle qi is commanded from 0 up 
to 20 degrees, while the reference for angle q2 is 
constant. The influence of the coupling effect with 
the non-diagonal controller is lower than 1 degree 
and the designed specifications are achieved. 

Integral elements are included in both diagonal 
controllers in order to remove steady-state errors. 
These elements present a fairly good behaviour in 
spite of the Coulomb friction terms or the 
uncertainties. 

4. CONCLUSIONS 

This paper has demonstrated the use of the 
non-diagonal controllers for uncertain systems. In 
spite of some limitations on the use of those 
elements -with unstable or non-minimum phase 
elements-, if sufficient conditions are satisfied these 
techniques work perfectly even for uncertain 
systems, and robustness is not affected by 
uncertainty. 

This controller design is the first approach to obtain 
a competitive control system for the reference 
tracking of a robot manipulator. A further goal 
subjected to the improvement of sampling time is 
force control. 
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Abstract: The interval transfer functions from wave height to pitch and heave movement 
described in this paper are interpreted as a family of transfer functions whose coefficients 
are bounded by some know intervals and centred at nominal values. The nominal model is 
obtained by a non-linear least square algorithm of identification applied in the frequency 
domain. Once the nominal model was obtained, then the tightest intervals around each 
coefficient of the nominal transfer functions was created while satisfying the membership 
and frequency response requirements. Different model validation tests was made (Bode 
plots and simulations). These tests show that the uncertainty model obtained is a valid 
interval model and it can be used for robust control design. 

Keywords: Identification algorithms, Optimization problem, Robust performance. 

1. INTRODUCTION 

The main problem for the development of high speed 
ship is concerned with the passenger's comfort and 
the safety of the vehicles. The vertical acceleration 
associated with roll, pitch and heave motion is the 
cause of motion sickness. The roll control is the most 
attractive candidate for control since increasing roll 
damping can be obtained more easily. However, 
shipbuilders are also interested in increasing pitch and 
heave damping. In order to solve the problem 
antipiching devices and pitch control methods must be 
considered. Previously, models for the vertical ship 
dynamic must be developed for the design, evaluation 
and verification of the results. 

The number of published investigations about ship 
modelling is immense. For example, non-linear 
models in 6 degrees of freedom are shown in Fossen 
(1994) and Lewis (1989). These models are 
theoretical and they are obtained from the equations of 
a rigid solid partially immersed in water. 

Obtaining a very accurate mathematical model of a 
system is usually impossible and very costly. It also 
often increases the complexity of the control 
algorithm. A trend in the area of system identification 
is to try to model the system uncertainties 
(Bhattacharyya et al., 1995) to fit the available 
analysis and design tools of robust control. 

The interval functions described in this paper are 
interpreted as a family of transfer functions from wave 
height to pitch and heave movement whose 
coefficients are bounded by some know intervals and 
centred at nominal values. The nominal model 
(Aranda et al., 1999b; Aranda et al., 2000) is obtained 
by a non-linear least square algorithm applied in the 
frequency domain. Once the nominal model is 
obtained, then the tightest intervals around each 
coefficient of the nominal transfer functions are 
created while satisfying the membership and 
frequency response requirements. 
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2. IDENTIFICATION METHODOLOGY 

The method describes in this paper follows the steps 
of classical identification diagram (Ljung, 1989; 
Schoukens and Pintelon, 1991; Södertröm and Stoica, 
1989). A model test was carried out in the towing tank 
of CEHIPAR (Madrid, Spain). The model was free to 
move in heave direction and pitch angle. The wave 
surface elevation was measured at 68.75 m. forward 
from model bow. Different regular and irregular 
waves and ship speed were tested. A set of simulated 
data (Aranda et al., 1999a) has been generated by the 
program PRECAL (which uses a geometrical model 
of the ship to predict her dynamic behaviour), 
reproducing the same conditions of the experiments 
with regular waves. 

Two transfer functions are identified (see Figure 1): 

• Gp(s): transfer function from wave height (m) to 
pitch movement (°). 

• GH(s): transfer function from wave height (m) to 
heave movement (m). 

WAVE HEIGHT (m) 

GP(s) 
PITCH r V 

G„(s) 
HEAVE (m) 

Fig. 1. Blocks diagram of the identified system 

The identification is made in the frequency domain 
and uses the simulated data of magnitude and phase 
obtained by the program PRECAL in the encounter 
frequency cöfcj (i=l,2,...,25) for the transfer functions 

GP(jcObi)andGH(jG\:i)- 

GP (ja>ci) = Re(GP (M,))+ J Im(G/> (M/))      (1) 

G„ (ja*) = MGH U<oCi))+ j Im(Gw (M,)) 

In general, the estimated transfer functions 
G (s) and GH (S) can be written in the following form: 

G(s). 
S    + XS        +.... +X, 

(2) 

where m is the number of zeros and n is the total 
number of poles. The parameter vector is: 

" ~ V^l»-*^ '••">Xn >Xn+l '■■■'Xn+m+l )      ^   ' 

The estimation of the parameter vector P is made by 
a non-linear least squares procedure that uses the 
following cost function (Schoukens and Pintelon, 
1989): 

K{P) = £|(Re(G(yßU)-(Re(G(Mt))+...        (4) 

+ j(lm(G(jcoei))-(lm(G(jcoJ)\2 

A number of considerations need to be made based in 
a priori knowledge of the ship dynamics. So, there are 
three constraints in the identification process of the 
models: 

• The models must be stables. 
• The gain of GP(s) must tend to zero in low encounter 
frequencies. 
• The gain of GH(s) must tend to one in low encounter 
frequencies 

The solution to a non-linear least squares problem 
with constrains is described for example in 
Söderström and Stoica (1989), and can be 
programmed using MATLAB. 

3. INTERVAL MODELLING 

Bhattacharyya et al. (1995) describes a method to 
obtain the family of linear time invariant systems 

G(s) by letting the transfer function coefficients lie in 

intervals around those of the nominal G(s). This 
method is adapted to our problem. Let 

yUcoJ = D(j(oci)u(jcoei) i = 1,2,-,N (5) 

where cocl,coe2,...,cofcN are the test encounter frequencies 
and the complex number ußcütj) and y(jcübO denote in 
phasor notation the input-output pair at the frequency 
coei generated from an identification experiment. 
Suppose that G'(s) is the transfer function of a linear 
time-invariant system which is such that G'Gcoe) is 
closest to D(jcOb) in some norm sense. In general it is 
not possible to find a single rational function G'(s) for 
which GI(jcoi;i)=D(jcöCi) and the more realistic 
identification problem is to fact identify an entire 

family G(s) of transfer functions which is capable of 

validating the data in the sense that for each point 

D(jcüfci) there exists some transfer function G; e G(s) 

with the property that GI(jcoci)= D(jcOfei). 

Let the nominal transfer function G'(s), which has 
been identified by a non-linear least squares 
procedure explained in the previous section, and the 
transfer function G(s) with the form: 

G(S): 
■ + x„ (6) 

. + x, 
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The family of linear time-invariant systems G(s) is 

defined by: 

G(s) = {G(s): x, € [Xi - wXi ■ e- ,x, + wXi • < ] V/} (7) 

where wxi are to be regarded as weights chosen apriori 
whereas the e's are to be regarded as dilation 
parameters to be determinated by the identification 
algorithm and the data Dßcübj). 

3.1 Weight selection 

Suppose the  test data  consists  of N  data  points 
obtained at corresponding frequencies, 

D{jcoe) = {D(jcoJ = a,. + jß, ,i = l,2,...N} (8) 

the 1st model is defined as: 

(D(jcoei)   i = l 
G,(M) = 

(9) 
G'ijcoJ   / = 1,2, ,l-l,l + l,....,N 

The model Gi(jcoci) is identical to the nominal 
identified model G'fjcOej) with the 1st data point 
replaced by the Is' component of the test data D(jco). 
Now the 1st identified model G/(s) is constructed, 
which is identified from the 1st data set Gi(jco). Let 

if G(jcOfej) is made equal to the data set D(jco(,) for a 
particular encounter frequency Cflfei, then: 

D{jcoei) = ai+jßi = 
n\ + j ■ nl 

d\ + jd2 
(13) 

Operating, the next pair of equations are obtained: 

Fl (a,, ßnx\',...,x'«+m+i )= (atd\ - ßtd2)-n\ = 0   ,^\ 

F2(ai,ßi,xl,...,xi„+„+i)=(ßidl + aid2)-n2 = 0 

xj for all i is defined by: 

,   \i = \,....,n + m + \ ^ 

l/ = l, ,N 

Rewrite (14) in terms of a matrix equations: 

A-x + A-W-i'=-E       (16) 

A-W-e' = -B-E 

where: 

al - A®« a,(oJ - ß<(°J .   -1 0 ffl-2 0 03el 

A a,w„ - A®«,2 a,coJ .    0 <»«/ 0 <oJ 0 

G,'(s) = 
X  n+m+lS      -T + X„, 

s"+x's"-\ 
(10) 

.+ x. 

The models G/(s) must be identified with the same 
method used to identify the nominal model G'(jco). 

The weight vector w is : 

1     N  , . 1     N 
JLv    _  ' Vi 

w = K,, ,wXr, wx>ti, ,wW] ] 

n+m+l       "^n+m+l (11) 

The weight selection is an important stage because an 
inappropriate selection may results in an unnecessarily 
large family. 

3.2 Computation of the intervals of the transfer 
function coefficients. 

Replacing s=jcOej in (6): 

„, .      ,      fX»+> -W X»+i + , + J.Mi»** -Of' X-*' + x 
G(joy>) = (     .        K        )   . I    -          - ) v    fr-ay<xi+ <+ j ■ W - or' x" + •,    ' 

(12) 

E = 

k,= 

W- 

( a, si n = 0,4,8,.... 

-ß, sin = 1,5,9,.- 
-a,, si n = 2,6,10,.. 

^ ßt si n = 3,7,11,.... 

0 

k, = 

( ß, si n = 0,4,8,.... 

a, si n = 1,5,9,.... 

ß, sin = 2,6,10,.... 

a. si n = 3,7,11,.... 

(17) 

x      t?Jt, ,J 
x = \x1, >*n+m+lJ 
B = Ax 

£    is the vector of the dilation parameters obtained 

for the encounter frequency C0ei- Here it is assumed 
without loss of generality that A((übj,aj,ßj) has full 

rank. Then the minimum norm solution e'x can be 

computed as: 

E'X=-W-
1
{A

T
AYA

T
{B + E)        (18) 
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After finding £ x for all 1=1,...,N, the dilation 

parameters of the intervals of the transfer function 
coefficients are determined as follows: 

In Table 3 and Table 4 the model interval of GH(s) and 
Gp(s) are showed. 

Table 3: Model interval of GH(S) 

e  -=min{o,£ '}  e  + =max{o,ex'}      (19) 

4. RESULTS 

In Table 1 and Table 2 different model structures 
(where m is the number of zeros, n is the total number 
of poles and nps is the number of simple poles) are 
showed for heave and pitch movement, at several ship 
speed. The cost function and mean square error can be 
compared when the model structure is reduced. 

Table 1: Model structures for heave movement 

Ship Model       Value of 
speed      Structure     the cost 

(knots)      (m,n,nps)     function 

Mean 
square 

error (m2) 
20 (4,6,2) 0.0383 0.0143 
20 (3,5,1) 0.0692 0.0141 
20 (2,3,1) 0.0696 0.0138 
30 (4,6,2) 0.0385 0.0111 
30 (3,5,1) 0.1012 0.0115 
30 (2,3,1) 0.2381 0.0170 
40 (4,6,2) 0.0471 0.0112 
40 (3,5,1) 0.1045 0.0113 
40 (2,3,1) 0.4510 0.0125 

Table 2: Model structures for pitch movement 

Ship 
speed 

(knots) 

Model 
Structure 
(m,n,nps) 

Value of 
the cost 
function 

Mean 
square error 

(C)2) 
20 (4,6,2) 0.1213 0.1056 
20 (3,5,1) 0.1228 0.1052 
30 (4,6,2) 0.0938 0.0995 
30 (3,5,1) 0.0946 0.0998 
40 (4,6,2) 0.0942 0.1214 
40 (3,5,1) 0.0989 0.1226 

The model interval was obtained for each of model 
structures show in Table 1 and Table 2. For example, 
the transfer functions of model structure (4,6,2) for 
heave movement and pitch movement at 40 knots are: 

G„(s)-- 

GP(S) -. 

3.219s" -0.9423J3 + 26.Pis' - 6.7&i + 80.35 

s° + 16.43/ + 42.62s-' + 106.6J3 + 1419s2 + 142.65 + 80.35 

-ft3381,s  -6.05h- +13.2U  -52.28.v- 

Lower 
Interval 

Nominal 
value 

Upper 
Interval 

Xl 79.95 80.35 83.50 

x2 139.79 142.61 143.09 

x3 139.63 142.94 144.56 

X4 106.31 106.59 109.02 

x5 35.88 42.62 43.09 

x6 12.98 16.43 16.52 

x8 -6.81 -6.78 -6.28 
x9 25.99 26.02 26.35 

Xio -5.14 -0.92 -0.81 

Xll -0.14 3.21 3.28 

Table 4: Model interval of GP(s) 

Lower 
Interval 

Nominal 
value 

Upper 
Interval 

Xl 49.71 

x2 80.70 

x3 91.03 
x4 63.45 
x5 28.31 
x6 6.19 
x8 -53.07 
x9 12.55 
x10 -6.79 
Xn 0.25 

50.08 50.87 
83.73 84.31 
91.84 92.42 
63.99 66.07 
28.73 28.95 
9.85 9.95 

-52.57 -52.48 
13.21 13.47 
-6.05 -4.59 
0.53 2.74 

In Figure 2 Bode plot of GH(s) and data obtained by 
PRECAL are showed. 

Bode plot (*) Experimental (-) Model 

rlir-X- ... -- -;- 
r::i:      :V 

4 

iiii      i  ■* 
4 '<< 

—   -10D 

1111       . _^*»t4i- 
-- - - 

ill!         i     i 

OH 

Frequency of encounter (racVseg) 

Fig. 2. Bode plot of GH(s) and data of PRECAL 
program. 

In Figure 3 Bode plot of GP(s) and data obtained by 
PRECAL are showed. 
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Bode plot (*) Experimental (-) Model mean square error 0.1214 

 1" - T - 
iL^k*N   !  i i iiii 

- r TT r T "v i--Trn-rr' 

i   I   I i  I                \*-      I      IIII'! 

Tiiii fVn":"::":: 
_      _ J_ _ 1 _ 

)   i  i i i              i        i-.+  
_ J.    1    t L i - -                I             J   '*i-l      J      1J     L L. 

-/ (DO 

 1- _ J _ _ 1 J^Wtiyu.l 1 L.l.J.U-LL. 
1   '   l7tnHt.            
::::: \ :    ::::::: 
! ! !! !        "Vt» J    !   !  ! ! ! ! 

! ;! i!       :      "::;:; 

Frequency of encounter(rad /seg) 

Fig. 3. Bode plot of GP(s) and data of PRECAL 
program. 

ID 31 3D 31 4D 41 

TIMEfsecondsl 

Fig. 5. Simulation of GP(s) and measured pitch at 40 
knots and sea state number (SSN) equal to 5. 

Figure 4 shows the output of GH(s) and the measured 
heave in the CEHIPAR when the input was irregular 
waves at 40 knots and SSN=5. 

mean square error 0.0111 

:D 31 3D 31 

TIME (seconds) 

41 ID 

Fig. 4. Simulation of GH(S) and measured heave at 40 
knots and sea state number (SSN) equal to 5. 

Figure 5 shows the output of GP(s) and the measured 
pitch in the CEHIPAR when the input was irregular 
waves at 40 knots and SSN=5. 

5. CONCLUSION 

In this paper continuous linear models for vertical 
dynamics of a high speed ship has been showed. 
These models were identified by a non-linear least 
square algorithm applied in the frequency domain. 
Once the nominal model was obtained, tightest 
intervals around each coefficient of nominal transfer 
functions was created while satisfying the 
membership and frequency response requirements. 
Different model validation tests was made. 
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Abstract: This paper describes the design of a robust QFT (Quantitative Feedback Theory) 
controller for the control of the changing of a ship's course in the presence of disturbances. 
A linear model is used with uncertainties in the parameters obtained from the non-linear 
model of the ship. The required performance specifications and the existing number of 
plants determine the bounds which the system must not violate. The results are compared 
with those obtained with a conventional PID controller by means of genetic algorithms. 

Keywords: ship control, ship autopilots, marine systems, control systems, ship model, 
course-changing control, plant templates, bounds, QFT control. 

1. INTRODUCTION 

In any physical process which one aims to control, 
certain performance specifications must be fulfilled. If 
the mathematical model of the system is not exact or 
if there are external disturbances, that is, if the system 
presents uncertainties, it is then necessary to use 
robust control techniques in the design of the 
controller. Among the different techniques available, 
the QFT (Quantitative Feedback Theory) method 
developed by Horowitz (1992) has been chosen for 
this work. With this model, the physical dimension of 
the problem is maintained at all times and an adequate 

balance is achieved between the structure level of the 
process and the complexity of the problem. 

The above method is applied in this work for the 
course-changing control of the ship, the R.O.V. 
Zeefakkel (Fossen and Paulsen, 1992), using for the 
design of the QFT controller the first order Nomoto 
model (Nomoto, et al., 1957) which relates the 
heading angle with the rudder angle. Saturation effects 
have been taken into account in the design. The results 
are compared with those of a conventional autopilot. 
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Autopilot 

+       V', ! PID 

->0—►!     Controler 
-4 

Steering Gear 

s„., 4 ... 

hoi 
rudder 
limiter 

rudder rate 
limiter 

Ship 

">     G(s) 46 

Fig. 1. Block diagram of a conventional steering system 

2. MATHEMATICAL MODEL OF THE VESSEL 

Figure 1 shows the block diagram of a ship steering 
system with a conventional autopilot (PID controller). 
Saturation effects have been taken into account both 
in the rudder angle and in the speed of change of this 
angle. 

The command applied is yr< which represents the 
desired heading and y/e is the heading error. The 
control signal of the controller which acts as a 
command to the steering gear is 8C and represents the 
rudder angle required to correct the deviation from the 
heading. The actual value of the rudder angle is 8 and 
^is the ship's course. 

The mathematical model of the ship's dynamics 
between the rudder angle signal 8 and that of the 
ship's course y/ assuming that the relation is linear 
(Van Amerongen and Udink Ten Cate, 1975), can be 
represented (Nomoto, et al., 1957) by the transfer 
function: 

^-(s)= 3-  (1) 
8 s{\ + sTx)(\ + sT2) 

or equally by the differential equation: 

T{T2iji + (Tx + T2 )t// + V> = K(S + T3S) (2) 

where K, TL T2 and T3 are the parameters which 
represent the ship's dynamics. These parameters are 
basically determined by the dimensions and forms of 
the vessel and also depend on operating conditions 
such as ship speed, load or ballast situation, draft, trim 
and water depth. 

Equation (1) is usually approximated by 

w K 

8 s{\ + sT) 

with T=Tj + T2- T3. 

Expressed as a differential equation: 

(3) 

Tifi + v> = KS (4) 

This attractively simple model provides a reasonably 
accurate representation of the performance of vessels 
when they keep a straight course or one with only 
slight changes. However, if the characteristics of the 
vessel's rotation are to be studied, a non-linear term 
(Van Amerongen and Udink Ten Cate, 1975) can be 
added to the linear model: 

T{T2yi + (Tx + T2 )y) + KHB (V>) = K(S + T3S) (5) 

where HB(\j/) is a non-linear function of y/ which is 

obtained from the relation between ij/ and 8 in the 

steady state by means of the spiral test. This can be 
approximated (Van Amerongen and Udink Ten Cate, 
1975) by: 

HB(y) = b3y/3 +^1//     (6) 

If equation (4) is used, we get 

T(,) + HN{w) = KÖ (7) 

with 

HN(Y) = n3y/  +nxy    (8) 

3. CONTROL PROBLEM 

An autopilot must fulfil two objectives: course 
keeping and course changing. In the first case, the 
control objective is to maintain the ship's heading 
following the desired course (y^t) = constant). In the 
second case, the aim is to implement the change of 
course without oscillations and in the shortest time 
possible. In both situations, the operability of the 
system must be independent of the disturbances 
produced by the wind, the waves and the currents. 
The course followed by a vessel can be specified by 
means of a second order reference model (Fossen, 
1994): 

V|/(t)+2Cconvj/(t)+(ö^(t)=co^r (9) 
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where co,, is the natural frequency and C, ( 0,8 < £ < 1) 
is the desired damping coefficient of the closed loop 
system. 

As an application of the proposed methodology, the 
simulation of the behaviour of a vessel of 45m in 
length, the R. O. V. Zeefakkel, is performed. The 
model's parameters at a speed of 10 knots are (Fossen 
and Paulsen, 1992): 

K = 0.5s"\ T = 31 s, n, = 1, n3 = 0.4 s2 

4. DESIGN SPECIFICATIONS 

The aim of the design of this work is that the vessel 
should make a fast change of course following, 
without oscillations, the course determined by the 
values £ = 0.9 and to,, = 0.07 rad/s and that this course 
should be maintained despite the effect of bow waves 
in the order of lm in significant height. (Moyano, et 
al., 2000) It is considered that these may lead to 
variations in the course of up to 1°. 

The non-linearities in the ship model mean that the 
performance in response to changes in course may 
vary. The prior study of this effect has led the authors 
to consider for the model design the vessel given by 
equation (3) with the following uncertainty in the K 
and T parameters (at a speed of 10 knots): 

Ke [0.21,0.5] 
Te [29.5,31] 

Despite the fact that the model is non-linear, the QFT 
model for linear SISO systems with parametric 
uncertainty will be used, incorporating the two- 
degrees-of-freedom control system shown in figure 2. 
This includes a cascade compensator, G(s), and a 
prefilter F(s) (both LTI) in order to reduce the 
variations in the output of the system caused by the 
uncertainties in the plant parameters and disturbances. 

F(s)      —*Q -*     P(s) 

Fig. 2 Block diagram of the two degree-of-freedom 
control system 

The system must fulfil robust stability and robust 
tracking specifications (Houpis and Rasmussen, 1999; 
Yaniv, 1999): 

For the robust stability margins, the phase margin 
angle should be at least 45° and the gain margin 2 dB. 
Thus, the robust stability specification is defined by: 

p(jco)G(jco) 

l + p(jco)G(jco) 
< 5 = 1.2 (10) 

Robust tracking: The change of course must be 
defined within an acceptable range of variation. This 
is generally defined in the time domain but is 
normally transformed to the frequency domain, being 
expressed by: 

TRL{j(o)<TR{jco)<TRU{jO))      (11) 

where TR(s) represents the closed loop transfer 
function and TRL(s) and TRU(s) the equivalent transfer 
functions of the lower and upper tracking bounds. In 
this case, the following is specified: 

TRL{s) = 3 2 5  +b s   +c s + a 
(12) 

with a =269.5*10-6, b = 181*103, c = 118.3*10"4 

TRuis) = - 
195*10^ + 49*10^ 

RU Ä2+112*10_3s + 49*10-4 

for co < 0.4 rad/s, as shown in Figure 3. 

(13) 

Fig. 3 Robust tracking specifications. 
As mentioned above, the aim of the design is to 
maintain the course even when there are bow waves. 
No disturbance rejection restriction has been specified 
because the simulation considers only waves of a 
reasonable force. 

5. SIMULATIONS 

The following nominal plant has been chosen for the 
design: 

0.5 
(14) />(,) = • 

;(3Ly + l) 
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and the following set of frequencies for the design has 
been established: 

£2 = {0.03, 0.07, 0.1, 0.2, 0.4, 1,1.2} (15) 

Using the Matlab QFT Toolbox (Borguesani, et al., 
1995) the plant templates are computed for each 
frequency, as shown in Figure 4. 

■so.- ,-  -  -  -, 

Fig. 4 Plant Templates. 

On the basis of the performance specifications and the 
plant templates, the robust stability and robust 
tracking bounds are calculated. The intersection of all 
of the bounds at the various frequencies is shown in 
Figure 5. 

ISETCTION OF BOUNDS 

Fig. 5 Intersection of bounds. 
For the design of the G(s) controller, the Nichols 
Chart is used, adjusting the nominal open-loop 
transfer function Lo = PoG (Po is the nominal plant) in 
such a way that no bounds are violated, as shown in 
Figure 6. 
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Fig. 6 Shaping of L0(j(xi) on the Nichols chart for the 
nominal plant. 

The controller obtained is: 

180.45 * 10"3 s3+ 625.38 *10~V +16.57 *10"3s + 36.92 *10~7 

G(.) = 1 +168.53* 10- sJ +203.23 *10"V +18.73*10"zs 

(16) 

With this controller, the robust stability specification 
is fulfilled but not the robust tracking specification, as 
can be seen from Figures 7 and 8. The solid line 
shows the response of the system and the dashed line 
represents the specifications. 

Woighl   - 
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Fig. 7 Robust Stability 
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i       r '- i     i   i   i  i i                  i           i       i  

Fig. 8 Robust Tracking 

By adjusting the prefilter: 

F(s) = 
-3 128.89*10 

s+ 128.89 * 10" 
(17) 

a restriction on the frequency response of the system 
is obtained such that it is maintained within the limits 
imposed in the design. It is also verified that the 
control structure designed allows the ship's course to 
fit the specifications for various course changes. As 
examples, Figures 9 and 10 show the results for 
changes in course of 10° and 30° resDectivelv. 

20 40 60 SO 

Fig. 9 Course changing manoeuvre. \|/r = 10° 

0 30 40 so 40 1S0 1B0 200 

The change of course manoeuvre obtained with QFT 
design has been compared with that of a vessel with a 
conventional PID controller which has been tuned by 
means of genetic algorithms: 

G(s) = 
15523.7s2 + 448.37s+ 0.1 

44737s2 + 4473.7s 
(18) 

Figure 11 shows a change of course manoeuvre of 10° 
for the two controllers and Figure 12 illustrates the 
required variations in the rudder angle (control 
signal). 

Fig. 11. Change of course manoeuvres for the QFT 
(solid line) and PID (dashed line) controllers. 
Reference heading (dotted line). 

I—,j^—'L—n^— 
■ i nf ■ 

i i1 

Fig. 10 Course changing manoeuvre. \|/r = 30° 

Fig. 12. Rudder Angle. QFT signal control (solid 
line), PID signal control (dotted line) 

6. CONCLUSIONS 

This paper describes the use of the QFT robust control 
technique which is highly suitable since the system 
presents uncertainties and disturbances. Robust 
stability and robust tracking specifications have been 
imposed. The results have been compared with those 
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obtained using a conventional PID controller. It can 
be observed that a more satisfactory result is obtained 
with the QFT controller in the response of the system 
at the expense of an increase in the complexity of the 
control. 
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Abstract. Variable speed compressors and electronic expansion valves are among the most 
successful devices recently developed in the cooling systems control field. Currently, the 
researcher's expectancy points to new automatic control schemes for the next generation of 
cooling machines, however, some difficulties must be solved before new schemes can be 
used in practice. Multivariable output feedback control of cooling processes is a difficult task 
mainly due to the existing cross-coupling among inputs and outputs. This paper proposes a 
control scheme that allows the freezing power and the super heating to be independently 
controlled. It introduces a frequency domain based control design procedure that includes 
robustness analysis and controller validation. Finally, it presents simulation results. 

Keywords: Cooling Systems, Multivariable Control, Frequency Domain. 

1.   INTRODUCTION 

The improvement of power consumption efficiency of 
industrial devices is one of the main issues for the 
incoming decades. In the last century of the industrial 
age, the world population has virtually exploded, 
nature has been almost devastated and energy 
resources have been depleted. In spite of that, the 
human living comfort has become a priority for most 
of the whole world population, even for the third 
world people; and because of that, energy per-capita 
consumption should continuously increase in the 
future. It is a fact that the next decades are going to 
testify a continuous and strenuous search for new 
devices and technologies to save energy resources. 
The energy consumption by heating and cooling 
systems in commercial and industrial buildings 
corresponds to approximately 50% of the world 
energy consumption (Imbabi, 1990). Heating and 
cooling systems are high-energy consumption 

processes and their operation in commercial and 
industrial buildings is still inefficient. The just arrived 
worldwide energy crisis has started a search for new 
energy-saving cooling systems. 

It is already known that the solution for the poor 
operation of heating and cooling systems relies on the 
proper choice and design of automatic controllers. 
Low-cost controllers such as On/Off and SISO PID 
controllers are the standard ones in the heating, 
ventilation and air conditioning (HVAC) industry. 
However, their low energy efficiency causes an extra- 
undesired energy burning (Machado, 1996). Time 
varying thermal loads and time delays in the control 
loop are among the most challenging difficulties 
remaining to be solved for the next generation of 
cooling machines (Arguello et al, 1999). 

Most today controllers are only capable of dealing 
with constant thermal loads, in practice, thermal loads 
are time varying. The temperature sensor location is 
another difficult in the control field of HVAC devices. 
The natural position for the sensor is close to or even 
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inside the target environment; currently, the sensor is 
usually located close to the freezing power source (to 
avoid time delays in the control loop). 

Furthermore, to optimize energy efficiency, the 
generated freezing power must respond to thermal 
loads variations keeping the super heating as steady as 
possible. Conventional single-input single-output 
(SISO) control of cooling machines is not capable of 
independently control the freezing power and super- 
heating due to the existing inputs-outputs cross- 
coupling interactions. 
Several control strategies to deal with the control 
problem of time varying processes, time delays and 
I/O cross coupling have been proposed by the control 
community. Among them, robust control, adaptive 
control and intelligent control are the most important. 
A drawback of these new sophisticated alternatives is 
that they are usually expensive and required advanced 
computational resources. To face time-varying 
thermal loads, time delays and I/O cross coupling; 
new low-cost multi-input multi-output (MIMO) 
control strategies must be explored. 

This paper introduces a MIMO control scheme for a 
cooling machine based on the vapor compression 
cycle that permits the independent control of its output 
variables. It is shown that the proposed strategy 
permits to control the freezing power keeping the 
super heating almost unperturbed. Figure 1 shows the 
schematic diagram of a cooling machine of this type. 

been successfully developed and applied to SISO 
control of industrial plants. Behind this success there 
has always been a property that exists for all physical 
system, the dominance of the low-frequency poles in 
the system time response. This fact has been the 
background of nearly every robust control design 
technique. Considering this concept in the controller 
design, there is no need for solving the modeling 
problem as rigorously as it could be required without 
the pole dominance property. 

Several attempts have been made to extend the SISO 
design techniques to the MIMO case. With some 
exceptions, the success of MIMO control design also 
depends on the pole dominance property. In this 
context, the size (order) of large-scale MIMO systems 
becomes less important when compared with the 
usually strong input-output cross-coupling existing in 
MIMO systems. In recent years, the research has been 
focused in new decoupling techniques. It is worth to 
mention the pioneer contributions from Bristol (1966), 
Kouvaritakis (1979), Mees (1981), McAvoy, (1983) 
and Grosdidier and Morari (1986). Characteristics of 
these techniques are: the control design procedure is 
usually carried out in the frequency domain; low 
frequency models are, in general, accurate enough for 
control design in this environment; model 
uncertainties are easily represented in the frequency 
domain; output disturbances are usually low 
frequency signals. 

3.   MIMO CONTROL - A BRIEF REVIEW 

Valve 

Condenser - 

Compressor 

iling *- 
Evaporator 

Vapor 

1 -^      - *~ 

Q. 
Super Heating 

Liquid 

Figure 1. The Cooling System. 

2.    OUTPUT FEEDBACK CONTROL 

Output feedback has been the industrial standard for 
control purposes not only to shape the plant response, 
fulfilling performance specifications, but mainly to 
deal with output disturbances and model uncertainties. 

Traditionally, the industrial control community has 
relied on the intrinsic robustness of output feedback 
controllers to face the control design problem for 
SISO plants. A diversity of tuning algorithms has 

This section presents a brief review of the basic 
concepts on multivariable control systems. The 
following is based on the books from Maciejowski 
(1989) and Skogestad et al (1996). 

The system output, y(s), is given by 

y(s) = T(s)P(s)r(s)+S(s)d(s) - T(s)m(s) 

(1) 

where r(s) is the reference input, d(s) represents the 
disturbances and m(s) is the measurement noise. 
In this case, S(s) is known as the output sensitivity 
function and is defined as 

S(S)=[I + G(s)K(s)l :-l (2) 

the    system    closed    loop    transfer    function    (or 
complementary sensitivity), T(s), is then given by 

T(s) = S(s)G(s)K(s) (3) 

The input sensitivity function is defined as 
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S,. (*)=[/+ *(s)G(s)]- (4) 

and its corresponding complementary function as 

Ti(s) = K(s)G(s)Si(s) (5) 

A multiplicative model for plant uncertainty is 

G(s) = G0(s)[I + Wi(s)] (6) 

Hence, the following criteria to assess the system 
performance and stability can be established: 

a)    The criterion for nominal performance is defined 
by 

\S(s)Wp(s)\\   <1 ^ ä[S(s)]< 
1 

w.W 
(7) 

where a[.] is the greatest singular value of [.] and 
Wp(s) is a performance weighting matrix given by 

WJs) = wJs)[l] (8) 

b) In the case of non structured uncertainty (NSU), the 
criterion for robust performance is given by 

yöiw^S^+äiw^Us))^       (9) 

where J= min(plant condition number,  controller 
condition number) 
and the criterion for robust stability (NSU) by 

IT(s)Wi(s)\\   <1 <=> a[T(s)]< 
1 

wt(s) 
(10) 

where <r[.] is the greatest singular value of [.] and 
Wt (s) is an uncertainty weighting matrix given by 

Wi(s) = wi(s)[l] (11) 

c) In the case of structured uncertainty (SU), the 
robust performance condition is given by 

n(Q(s))<l V© 

where, the matrix Q(s) is defined 

Q(s) = 
Öii(s)   Qnis) 

Ö2i(*)  QM. 

(12) 

(13) 

Qn(s) = wp(s)S0(s) 

Qn(s) = wp(s)S0(s)G0(s) 

Q2l(s) = -Wi(s)K(s)S0(S) 

Q22(s) = -Wi(s)K(s)S0(s)G0(S) 

S0(s)  ^(i + G^Kis))-1 

and the robust stability condition (SU) by 

MÖ22 (*))<!        VOJ 

(14) 

(15) 

Equations from (7) to (15) are used in Section 6 to 
validate the controller design. 

4.   THE COOLING SYSTEM MODEL 

This paper is concerned with the control of cooling 
systems based on vapor compressor. The system 
inputs are the expansion valve opening position, 
which defines the mass flow rate (MFR) and the 
compressor speed, which controls the volume flow 
rate (VFR). The system outputs are the super heating, 
AT, and the freezing power, Q,, (Figure 2). 

MFR(s) T(s) 

Cooling 

System 

VFR(s) Qi(s) 

Figure 2. The Open Loop System. 

Figure 3 shows the cross coupling between inputs and 
outputs. Ideally, only the expansion valve would be 
used to regulate the super heating and only the 
variable-speed compressor would be used to control 
the generation of freezing power. (G12(s) = G2i(s) = 0 
in Figure 3). Unfortunately, this is not the case. 
Actually, each of the outputs is a function of both 
inputs (the valve opening position and the compressor 
velocity). This means that Gi2(s) and G2i(s) can not be 
neglected in practice. 

with 
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MFR(s) T(s) 

VFR(s) 

-      G„(s) 

-      G12(s) 

-      G21(s) 

-      G22(s) 
Qi(s) 

Figure 3. The Cooling System Cross Coupling. 

In this case, the system dynamics can be defined by a 
matrix transfer function of the form: 

AT(s) Gu(s)    Gn(s) 

G2l(s)   G22{s) 

MFR(s) 

VFR(s) 

Equation 16 can be written as: 

[Y(s)]=[G(s))[U(s)} 

(16) 

(17a) 

with 

[G(sj\ = 

[Y(s)] = 

[U(s)] = 

~Gu(s) G 12 00 
G2l(s)   G22(s) 

rwi AT(s) 

_Y2(s)_ aw _ 
'U^s) 'MFR(s) 

U2(s) VFR W 

(17b) 

Several models for cooling systems can be found in 
the literature (Koury, 1998; Machado, 1996; 
Outtagarts, 1994). In this work, the cooling system 
model identified in Machado (1996) has been used 
throughout the analysis and simulation. 
In this case, 

" -5.62 
Gu(s) = 

Gn(s) = 

G22(s) = 

(455 + 1) 

2.49(-705 + l) 

(59.525 + 1) 

33.89(-36.375 + l) 

(25.655 + l)(67.795 + l) 

" 22.20(6305 + 1) ' 

(805 + l)(905 + l) 

(18) 

Equation 18 shows that the plant is a non-minimal 
phase and a non-strictly proper system. Also, the 
conditioning numbers of the controllability and 
observability matrices of state space realizations of 
this plant are of the order of 104 showing that cooling 
systems are, in general, ill-conditioned plants. 

5.   THE 2x2 MIMO CONTROL LAW 

In this work, the nominal performance criterion was 
specified as 

ö[5(,)]<_L7 = i??4 (19) 
W

P(
S) 50^ + 1 

And the criterion for robust stability was chosen as 

Wj(s)    0.1^ + 1 
(20) 

Equation 20 shows that to fulfill the robust stability 
criterion the plant should be made strictly proper. This 
can be achieved by the proper inclusion of a low-pass 
filter in the control loop of the form 

[F(s)] = 
1        0 

0   F22(s) 
(21) 

The practical consequence of this is that the 
compressor speed will change smoothly during the 
system transients. The proposed design strategy is 
basically a frequency-domain procedure. In this case, 
the MIMO controller design is carried out in two 
steps. First a MIMO pre-compensator, K,(s), is 
designed to scale the system and reach diagonal 
dominance at low frequency and then a MIMO 
controller, K2(s), is designed to meet performance 
specifications such that the controller will have the 
final form 

[KM=[mlKM\K2(sj[ (22) 

Thus, the MIMO control law has the form: 

[U(s)] = [F(s)][A",(*)][*2 (s)][R(s) - Y(s)] (23a) 

= [F(*)][tf(*)]to] 
where 

~ AT(s) Setpoint' 

Qx (s)   Setpoint 

' AT (s) Error! (23b) 

Q\{s) Error 

'Kn(s)    K12(Sy 

Kn(s)    K22(s)j 

[R(sj\ = 

[E(s)] = 

[K(s)]   = 

and 

[KF(s)]= 
1        0 

0   F22(s)_ 

Kn(s)    Kl2(s) 

K2l(s)   Kn(s\ 
(24) 

all entries of K(s) have the general form of SISO PID 
controllers, thus, the MIMO PID controller is given by 
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K(s)- 

Ki Ki 
KPn+—± + Kdns    KPn+—^ + Kdns 

s s 
Ki Ki-, 

Kp2l +—^- + Kd21s   Kp21+—^ + Kd22s 

(25 

Also, to have a proper controller a low-pass filter must 
be included in every single PID (omitted here for 
simplicity). Figure 4 shows the MIMO controller 
structure. 

E,(s) MFR(s) 
-       K„(s) 

-       K12(s) 

E2(s) 

K2i(s) 

K22(s) 
VFR(s) 

- F22(s) 

F22{s) = 

Kn(s) = 

Ku(s) = 

K2l(s) = 

K22{s) = 

8O5 + I 

-(p.206352+0.17245 + 0.0106) 

5(1.35 + 1) 

(p.597852 + 0.02995 + 0.0005) 

5(1.35 + 1) 

(o.317952+0.26575 + 0.0163) 

5(1.35 + 1) 

(l.352052+0.06765 + 0.001l) 

5(1.35 + 1) 

(27) 

Finally, the closed loop transfer function has the form 

T(s) = [/ + G0 (s)KF (5)]-1 G0 (s)KF (5) (28a) 

with 
[F(5)]=[7(5)][/?(5)] (28b) 

Figure 4. The MIMO PID Controller Implementation. 

This leads to a closed loop matrix transfer function 
that can be approximated at low frequencies) by 

AT(s) 

0 

0 

T22(s), 

AT(s)Setpoint 

Qi (s) Setpoint 
(26) 

And since the closed loop system is diagonal 
dominant at low frequency, the independent control of 
superheating and freezing power is tangible as it is 
shown in the next section. Figure 5 shows the block 
diagram for the closed loop system. 

-fEi(s) MFR(s) 

-T(s) 

Qi(s) 

Figure 5. The Closed Loop System. 

Several techniques for multivariable control design 
can be found in the literature (Maciejowski, 1989; 
Skogestad, 1996; Ho & Xu, 1998). An acceptable 
performance is reached with 

T(s) 
Setpoint MIMO 

Control 

Cooling 

System 

Qi(s) 
Setpoint 
— ^- 

+; 

E2(s) 

i   

VFR(s) 
 ^ 
  

6.    SUMMARY OF THE DESIGN PROCEDURE 

a) Design a low-pass filter to compensate the plant 
for strict properness such that the open loop 
system be given by 

[G(5)]=[G0(5)][F(5)] 29a) 

b) Design a pre-compensator to decouple the pre- 
filtered plant at low frequencies such that the 
open loop system be given by 

[G(5)]=[G0(5)][F(5)][^(5)]        (29b) 

c) Design a MIMO PID controller based on the 
decoupled pre-filtered plant such that the open 
loop system be given by 

[Gis)] = [G0{s)] [F(s)][K,(s)][K2(s)]    (29c) 

d) Compute the MIMO controller MTF as 

[KF(sj\=[m] [*i(*)][*2(*)]   <29d) 
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7. EXPERIMENTAL RESULTS REFERENCES 

Simulation results are presented here to illustrate and 
validate the controller performance. 

Figure 6 presents the frequency response of the 
nominal plant G0(s); it shows the super-heating 
(quadrant II) and freezing power (quadrant IV) 
frequency responses; it also shows the strong effect of 
the I/O cross coupling (quadrants I and III). Figure 7 
presents the frequency response of the plant with pre- 
filtering (Equation 29a); it shows the performance of 
the low-pass filter, F(s), making the plant strictly 
proper (quadrant I). Figure 8 shows the plant 
frequency response with pre-filtering and pre- 
compensation (Equation 29b); it also shows 
(quadrants I and III) how the effects of the I/O cross 
coupling were eliminated by the pre-compensator 
K,(s). 

Figures 9, 10 and 11 present the step responses of the 
nominal plant G0(s), the plant with pre-filtering and 
pre-compensation (Equation 29b) and the closed loop 
system (Equation 28), respectively. 

Finally, Figures 12 and 13 show, graphically, the 
controller performance and validation and also the 
robustness analysis based on Equations 7 to 15. 

8.   FINAL COMMENTS 

Classical on-off controllers for cooling machines have 
already shown to be inefficient for energy saving 
purposes. Variable compressor speed operation has 
recently emerged as the solution for the energy 
consumption minimization problem. The searching for 
an inexpensive compressor speed controller is 
currently on the focus of the attention of the control 
community and although some fine results can be 
found in the technical literature, the final solution is 
still under investigation. 
This paper has introduced a designing procedure of 
MIMO controllers for cooling machines based on 
vapor compression. The proposed technique has been 
applied to an ill-conditioned, non-minimal phase and 
non-strictly proper model of an existing cooling 
machine showing excellent performance in analysis 
and simulation. The controller performance and 
stability robustness has been assessed and validated 
through well-known criteria. The results have shown 
that independent control of superheating and freezing 
power in cooling systems is a feasible task and that 
the proposed MIMO controller scheme has a unique 
potential for saving-energy-oriented control. 
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Figure 6. Nominal Plant Frequency Response [G0(s)j (Open Loop). 
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Abstract: In this work, a block-oriented approximate feedback linearization for control of 
a pneumatic cylinder positioning system is briefly introduced and a rather detailed 
discussion is presented on the uncertain linearization residual characterization based on 
the describing function technique. With the limitation of the Bode's gain-phase 
relationship, making use of the characterized gain-phase information leads to a good 
trade-off between performance and stability in the loopshaping, thus the conservativeness 
of the QFT robust control design is significantly reduced and high control performance is 
achieved. Simulation and experimental results are shown. 
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NOTATION 

• D denotes Laplace or differential operator. 

• The square bracket "[]" in the expressions, like 

G{D)[q(u)] or G~l{D)[q(u)\, is used to define 

that the bracketed component [q(u)] is to be 
located on the input side of the linear dynamics 

G(D) or G~\D). 

• The term with an over-head "A" represents its 

corresponding estimate, e.g. G(D) is the estimate 

of G(D) and in the perfect case G(D) = G(D). 

• N with its corresponding subscript represents a 
sinusoidal input describing function, SIDE 

1.   INTRODUCTION 

High precision positioning of a pneumatic actuator in 

the presence of high friction has long been a challenge 
topic, because of the substantial inherent 
nonlinearities within the system. Xiang (2001) 
proposed a block-oriented approximate feedback 
linearization technique for the control and modelling 
of pneumatic actuator systems. By this technique, a 
controlled pneumatic system can be considered to be 
composed by some series and parallel connections of 
blocks — nonlinear elements and linear sub-systems. 
Feedback linearization is then implemented based on 
the block level units. It is shown that high control 
performance is achieved by this fairly straight forward 
approach. Due to the system uncertainties and 
constraints, there might be considerable uncertain 
linearization residuals left. In this case, if high 
robustness is pursued for the final pneumatic servo 
system, it is quite appropriate to select a robust control 
technique for the controller synthesis of the 
approximate linearized system. 

One of the rather attractive robust control techniques 
is the quantitative feedback theory (QFT) which has 
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been used effectively in a variety of control 
applications, such as flight control, Houpis (1995). 
Originally developed by Horowitz and Sidi (1972, 
1978) and Horowitz (1973), it is aimed at designing a 
feedback controller so that pointwise frequency 
response specifications on closed loop tracking and 
disturbance rejection are met in spite of large 
parametric and/or unstructured plant uncertainty. 
Comparing to other robust control techniques, such as 

H^ control, QFT can take into account phase 

information in the design process. Thus it can provide 
a somewhat less conservative framework for making 
trade-off between performance and stability. But, as 
the linear time invariant control can not breakthrough 
the Bode's gain-phase relationship, large system 
uncertainty will exert even greater limitation on 
control system performance. To overcome the 
problem, nonlinear QFT and some other nonlinear 
techniques, such as the reset control and nonlinear lead 
compensator, have been explored in quite a few 
works, such as Glass and Franchek (2000), Banos and 
Barreiro (2000), and Zheng et al (2000). But as one 
would expect, there are still many open questions and 
techniques to be formalized in nonlinear QFT, Banos 
and Barreiro (2000). 

Rather than seeking a nonlinear control algorithm, the 
work presented here focuses on characterization of the 
uncertain linearization residual or the linearized 
system, based on the sinusoidal input describing 
function, SIDF, technique, Taylor (1999). It is shown 
that the conservativeness of the QFT robust control 
design can be significantly reduced by making use of 
the characterized gain-phase information of the 
linearized (uncertain) system. With the limitation of 
the Bode's gain-phase relationship, making use of the 
possible gain-phase information leads to a good trade- 
off between performance and stability in the 
loopshaping, thus results in high control performance. 
A convincing demonstration of this, presented in this 
work, is the position control design for the friction 
compensated pneumatic system where there exists 
considerable linearization (friction compensation) 
residual due to the slow force generation dynamics. 

The organization of the following sections is as: 
Section 2 gives a mathematical description of the 
concerned pneumatic system and a brief introduction 
of the block-oriented approximate feedback 
linearization; In section 3, a rather detailed discussion 
is presented on the uncertain linearization residuals 
characterization for both the inner force generation 
loop and outer motion control loop; Based on the 
characterization results, in section 4, QFT controller 
design is presented; Some experimental position 
control results are shown in section 5; The final 
section gives the conclusions and discussion. 

2.   CONSTITUTIVE EQUATIONS AND BLOCK- 
ORIENTED APPROXIMATE FEEDBACK 

LINEARIZATION 

As shown in Fig. 1, the pneumatic system concerned 
in this work is made up of a horizontally mounted 
0.032x0.4 rodless cylinder, two 3/2 way solenoid 
spool servo valves with a nominal flow rate of 500 1/ 
min, two analog pressure sensors and an optical 
incremental position sensor with a resolution of 5 urn. 

The supply pressure is 7x10 Pa. The maximum 
static cylinder friction force is about 15-20% of the 
maximum static cylinder force. This means that the 
nonlinear friction force is so significant that it is taken 
as the main disturbance force. 

y 

P\ Pi 

™3 „,r¥ES 
«!        I  <5 

Controller r Pl>P2> y 

Figure 1: Rodless pneumatic cylinder positioning 
system 

With the assumptions that the supply pressure ps and 

the supply air temperature T are constants; 
temperatures are uniform throughout of the system; air 
can be considered as an ideal gas; the kinetic energy of 
the air is negligible; the flow force effect on the spool 
can be neglected; and the servo valve's model can be 
simplified as an input nonlinearity followed by a 
normalized Hurwitz dynamics, then the pneumatic 
actuator system can be described by the following 
equations. 

• Motion equations 

my+fvy = F-Fnfr{y) 0<y<l (1) 

F = A(pl-p2) 0<pat<Pi<ps (2) 

where, for i = 1,2, pt represents the ith chamber's 

pressure; m, I, A, y,fv, Fnfr(y), pat and ps are the 

payload mass, cylinder stroke, piston area, 
displacement, viscous friction coefficient, nonlinear 
friction force, atmosphere and supply pressure 
respectively. 

• Pressure build-up equation 

(RT-      ■    \    n 
Pi= fTß,-ttP,J— 

yi + y0 

(3) 
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where y0 >0 is the effective initial displacement 
corresponding to the non-working volume; n, R, T are 
specific heat ratio, gas constant, and supply air 
temperature respectively; For i = 1,2, g, and y,- 
represent the /th chamber's mass flow rate and 
corresponding displacement (yi-l-y2 = y) 

respectively. 

•    Mass flow rate equations 

pt = (v«^^;)
Gvo(D)[^(".)]+iVv(y«'P/))^(>«) 

Jf 
^p(P()Gv0(ö)[^(M,)] 

9piPi) 

1 
: - b\l 

\-b 

Pdi <r u p ■ = — < b 

Pdi ^ h 

rIII 

(4) 

(5) 

Pdi = Pi>     Pui=Ps   while Gv0(D)[qu(Ui)]>0 

Pdi = Par   Pui = Pi    while Gv0(Z3)[g„(M.)]<0 

where for i = 1, 2, «,-, pui and pdi represent the rth 

chamber's corresponding valve input, up and down 
stream pressure respectively; b and cq represent the 

critical pressure ratio and specific heat constant 

respectively; Gv0(D) stands for the normalized 

Hurwitz valve dynamics; qu(u^) represents the lumped 

effective valve nonlinearity which is supposed to be 
hysteresis-like as in Xiang and Wikander (2001). Eq. 
4 and 5 originate from Sanville (1971), but the fixed 
effective orifice cross section area is replaced with 

GV0(ö)[?U(M,)] and the discharge coefficient is 

neglected here. 

From Eq. 1, 2 and 3 it can be seen that the coupling 
between the pressure build-up and piston motion is 

mainly defined by the measurable variables p, y and y. 

If y and y are treated as two exogenous disturbance 
signals in the pressure build-up process, then the 
whole servo system can be decomposed into two 
cascaded, inner pressure and outer motion control, 
sub-systems. Let 

Lp := cqRjf/A 

Nv(yi,Pi):=-yiPi 

Aay,):=«/(y,. + y0) 

(6) 

(7) 

(8) 

where L„ is a lumped constant; iVv and Ny represent the 

nonlinear blocks through which the two exogenous 

disturbance signals, y and y, act on the inner pressure 

sub-system. With these notations, for i = 1, 2, the 
pressure build-up model can be re-expressed in the 
following block-oriented form. 

Now select the valve input signal ut as 

«,- = q~u (GrtWlpliqp (pt)Ny (y,)]^,- 

-Lp GMD)[p~u)qp\pi)Nv{yi,p.)]) 

(9) 

(10) 

where vpi is the introduced equivalent linear pressure 

control signal. By substituting Eq. 10 into 9, it is 
evident that when the estimates tend to be their 
corresponding true values and if all the inverse 
functions can be exactly realized, the pressure build- 
up system is reduced to the linear subsystem 

Pi = Gv{D)[vpi] 

where GV(D) := LpGv0(D). 

(11) 

Based on this linearized pressure build-up model, an 
inner pressure controller can be designed with just 
some linear feedback control law. Let GF(D) represent 

the zth chamber's closed pressure control loop 
dynamics, with the presented symmetric or 
asymmetric pressure control strategy given in Xiang 
(2001), the force response can be expressed as 

F = GF(D)[Fref] (12) 

Assuming GF(D) is of minimum phase, the force 

reference can be chosen as 

Fref=  Vm + G~F(D)[Fnfr] (13) 

where vm is the introduced equivalent linear motion 
control signal. Substituting Eq. 13 into 12 and then the 
result into Eq. 1, gives 

my +fvy = GF{D) [vj - 8/r(y, D) (14) 

where 

5/r(y,D) = Fnfr(y)-GF(D)GF\D)[Fnfr(y)] (15) 

represents the nonlinear friction compensation 
residual. If the inverse of GF(D) can be exactly 
realized and the estimate of the nonlinear friction tends 
to be its true value, then 5yr -> 0, and the linearized 
motion control system is reduced to 

my+fvy=Gp(D)[vm] (16) 

3.   CHARACTERIZATION OF THE 
LINEARIZATION RESIDUALS 

Due to the system uncertainties and limitations, 
perfect cancellation of all the nonlinear effects is 
impossible, which means that the existence of 
linearization residual is unavoidable. So, how to 
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Figure 2: Linearization and inner-outer cascaded control design 

characterize the linearization residual, to reduce its 
adverse effects on the overall system and how to 
design a high performance control system despite the 
existence of considerable linearization residual will be 
the main QFT control design problems. Moreover, 
solving these problems will relax the requirement on 
modelling and linearization accuracy. Since the 
pressure p, corresponding to the force F measurement, 
is introduced for the linearization, a cascaded 
feedback control structure shown in Fig. 2 seems to be 
a superior choice. In the figure, the inner and outer 

loop nonlinearities Ninner, NQuter (the nonlinear 

friction) and their corresponding compensators 

Ninner and GF Nouter are shown conceptually. The 
controllers to be designed include the inner feedback 

controller Cinner, outer feedback controller Couter 

F 
and outer feed forward controller Couter. Even 

though QFT is a well established robust control 
technique, a good characterization of the approximate 
linearization residual will definitely facilitate the 
trade-off making between the performance and 
stability in the loop shaping of the QFT control design, 
thus result in high control performance. In 
characterizing the inner-outer linearization residuals, 

Ninner   VS  N,-„„er  and   GF Nouter   VS  NQUter, the 

following facts and assumptions are admitted. 

al) In both inner and outer loop feedback 
linearization, "under" nonlinearity 
compensation strategy is employed, which 
means that after the linearization the nonlinear 
effect is either totally removed or considerably 
reduced but the residual still possesses its 
original nonlinearity's characteristics and does 
not lead to an unstable plant. 

a2)      Considering the input constraint, sensor noise 
and the limited compensation improvement 

"-1 
effect, the linear dynamics inverse GF   is not 

implemented, Xiang (2001). 

a3) The two chamber pressures, px and p2, are 

controlled symmetrically, and are kept varying 
around a selected base pressure such that in 

most cases q  = 1 . 

a4)      The estimation (measurement) errors of y, y, 

Pl and p2 are negligible. 

Consequently, it is supposed that the linearization 
residuals can be described in a structure of their 
original form, but with less nonlinear effects, 
especially in low frequency range. In accordance with 
frequency domain QFT control design, all the 
linearization residuals will be characterized with the 
describing function technique, one of the approximate 
ways of representing the frequency response of a 
nonlinear system. 

3.1 Inner Loop Linearization Residuals 

Except for the nonlinear friction force, i.e. the outer 

loop nonlinearity Nouter, all other nonlinearities are 

supposed to be in the inner loop. The inner loop 

nonlinearity Njnner mainly consists of valve 

nonlinearity qu(u), flow rate related nonlinearity qp(p) 

and pu, as well as piston motion coupling A^ and Nv. 

Substitute Eq. 10 into 9. Let 

U-=PuiqNyGJq/ql\GlL0lpl)q~pNy ]))]   (17) 
*P y  v0L 

= -(yi-^
/Pi)NyPi = -^Pi 

(18) 

where 

PoO := LPPuiqpGvO\qAqu  [~Lp Gv0[P»i1p N*] 

ß:=(y,-ß00//',)^ 

(19) 

Then, the pressure build-up system can be represented 
as 

~-i 
Pi = <xLpGv0[qu(q~ (vpi))] + ß0 

'-1 
(20) 

= <xLpGv0[qu(q-u (vpi))]-^Pi 

With Nqu representing the valve nonlinearity 

compensation residual's SIDF, then from Eq. 20, the 
linearized pressure build-up system plant transfer 
function can be expressed as 
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G"{s) = 7^G^s)N9u (21) 

In this way the linearization residuals in the inner 
pressure build-up system are lumped in three terms, 
i.e. a, ß and Nqu. When all the estimations tend to be 

their corresponding true values and when all the 
inverse functions can be exactly realized, 

a -> 1, ß -> 0 and Nqu —> 1. Now, characterization 

of the inner loop linearization residuals is reduced to 
characterization of these three terms. 

Valve nonlinearity residual Nqu. The valve 

nonlinearity qu(u) is a lumped hysteresis-like input 

nonlinearity. It represents the integrated effects of all 
the nonlinear elements from valve input to valve 
effective opening. In Xiang and Wikander (2001), 
experimental results show that with either dead-zone 
inverse or backlash inverse the hysteresis-like 
nonlinear effect, in frequency response (describing 
function), can be considerably reduced. By 
assumption al), the linearization residual is still a 
hysteresis-like nonlinearity and can be simplified as a 
backlash hysteresis — the simplest representation of 
hysteresis. The backlash SIDF shows that when the 
input amplitude decreases lower than certain value 
both gain and phase will decrease greatly, Slotine and 
Li (1992). With small amplitude input, considerable 
phase lag may cause control problem, such as limit 
cycles. The condition for a limit cycle occurrence is 
when the loop transfer function C(s)G(s) is intersected 
with the negative inverse of the nonlinearity, backlash, 
describing function -l/Nqu. To avoid limit cycle, the 

controller C(s) must be designed such that the 
intersection can not occur. 

Flow rate related nonlinearity compensation residual 
— the a term. By assumption al) and a3), the flow rate 
related nonlinearity compensation residual a has a 
similar but less effect on the inner system than its 
original nonlinearity puqp. This means that the effect 

of the compensation residual a is between the two 
extremes, totally un-compensated and compensated, 
cases. Supposing the effect of Ny in a term can be 

negligible, then the investigation can be carried on in 

a fixed cylinder piston case e.g. 0 < y = y~ < I and 

yfa is a constant. Referring to Eq. 9, to characterise the 

a term, a simulation model as depicted in Fig. 3 is 
used, where u represent the valve opening. The SIDF 

u 
—>■ 

i 
 *■ Pu{u,p)qp{u,p) —*- L

P 

A 

Figure 3: Npm un-compensated case 

simulation on this model is conducted with the method 

given in Xiang and Wikander (2001). With Np 

representing its simulated SIDF, the gain and phase 
plots of Np are shown in Fig. 4 and Fig. 5, where the 

Describing Function Amplitude vs. Frequency and Amplitude of Input 

Frequency (rad/sec) 

Figure 4: Np gain plot 

Describing Function Phase vs. Frequency and Amplitude of Input 

Amplitude Frequency (rad/sec) 

Figure 5: N phase plot 

input and output have been normalized. From these 
figures it can be seen that 

• When the input sinusoid's frequency is high, the 
output signal p is small due to the integrator 
effect, and thus the puqps effect is small. 

Otherwise, puqps effect will become more and 

more significant with the increase of input 
amplitude. At the maximum input amplitude 
point, puqp's effect will get most serious while 

when the input amplitude tends to be zero, the 
system tends to be a pure linear integrator system. 

• puqps nonlinear effect results in a considerable 

drop in the SIDF gain, but also considerable 
reduction of phase lag. The later feature, in fact, is 
favourable for the servo control. 

Fig. 6 shows both the linear_^ase and the most 
seriously nonlinear case of Np. For the system 
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Seriously nonlinear case 

Seriously nonlinear case 

" .. No nonlinear effect 

Frequency (rad/s) 

Figure 6: the system of Np followed by an integrator 

depicted in Fig. 3, when puqp is replaced with a, it is 

reasonable to suppose that the system's frequency 
response is located in the shadowed area of Fig. 6, 
which represents the equivalent family of linear time 
invariant plants (ELF) corresponding to the 
compensation residual a. Its area and shape depend on 

the flow rate related nonlinearity compensation 
quality. In the perfect case of flow rate related 
nonlinearity compensation, a = 1, the 'no nonlinear 
effect' case indicated in Fig. 6. So the main 
characteristics of the flow rate related nonlinearity 
compensation residual is to result in gain decreasing 
and phase 'lead'. Since the phase 'lead' caused by the 
flow rate related nonlinearity compensation residual is 
beneficial, and since normally this effect occurs with 
large input amplitude and low frequency, the phase 
problem is believed to be not crucial. So, for controller 
synthesis simplicity, the phase effect of the a term can 
be neglected. In this way, a can be taken as a bounded 

scalar, i.e. a e [a,,a ] . The value of the lower bound 

a/ and upper bound au should be positive and around 

the ideal value ctideal = 1 . 

Motion coupling nonlinearity compensation residual- 
-the ß term. Referring to Eq. 3, when the displacement 

y and velocity y are taken as an external signal, the 
system from flow rate to pressure can be considered as 
a first order system. Furthermore, for the ith chamber, 

when yi > 0 , it is a stable plant. By assumption al), 

the linearization is supposed to be realized in the way 

such that ß > 0 . From Eq. 19, it can be seen that the 
amplitude of ß is also dependent on the displacement. 
With the decreasing of the corresponding chamber 

volume, the amplitude of ß will increase. The ß term, 
here, is supposed can be characterized as a scalar 

varying in the range of [0,ßj .The specification of the 

upper bound depends on the compensation quality and 
displacement range. 

3.2 Friction Compensation Residual 

When the force loop dynamics is not fast enough and 
when the nonlinear friction effect (especially the 
stiction effect) is significant, like the case in the 
presented pneumatic positioning system, friction 
compensation is difficult and the compensation 
residual is considerable. There are quite many aspects 
that affect the residual. But first of all, a friction model 
which can give a more explicit description of the 
friction behaviour in low velocity and at velocity 
reversal is desired. Among the so many friction 
models, the LuGre dynamic friction model proposed 
in Canudas de Wit et al (1995) is considered here to be 
a satisfactory one, and it is used in this work. It can be 
expressed as 

Ffr = Fnfr+fV
v = OoZ + GrZ+f.V 

V 
Z  =   V-——Z 

g(v) 

1 ( -(v/vsy 
g{v) = ±tFc + (Fs-Fc)e 

(22) 

where v = y is the velocity, z the virtual friction state, 
a0 stiffness coefficient, o^ internal damping 

coefficient, Fc Coulomb friction, Fs static friction and 

vs Stribeck velocity. Detailed discussion on nonlinear 

friction compensation is presented in Xiang (2001). 
For the friction compensated positioning system, 
careful characterization of the compensation residual 
will facilitate the controller synthesis to achieve high 
positioning performance. 

As discussed in Xiang (2001), the dynamics inverse 
"-1 

effect, the GF (D) term in Eq. 13, for output 
nonlinearities compensation would be limited by the 
control input constraint and sampling frequency. By 
making a trade-off between the compensation effort 
and the compensation effect improvement, GF(D) 

inverse is not used in the friction compensation. So 
Equation 13, in fact, is reduced to 

Fref =Vm + F»fr 

As a result, Eq. 15 can be represented as 

(23) 

5/r(y, D) = Fnfr(y) - GF(D) [Fnfr(y)] (24) 

In characterization of the friction compensation 

residual 6V(>>, D), supposing that the friction 

estimation error can be neglected, Eq. 24 is reduced to 
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8fr(y, D) = (1 - GF(D))[Fnfr(y)] (25) 

Since the behaviour of nonlinear friction and the 
behaviour of the friction affected system are 
interacting with each other, an investigation on the 
integrated system is more appreciated. Accordingly a 
simulation model presented in Fig. 7 is used for this 

the increase of frequency, the nonlinear friction's 

Figure 7: Simulation model for the characterization 
of friction and friction compensation residual effect 

200 

0    0 

100 

co    (rad/s) 

Figure 8: Gain change caused by the nonlinear 
friction 

investigation. In this simulation, GF{D) is a second 

order linear dynamics characterised with cof = 78 

rad/s and £F = 0.65 ; The payload mass m = 5.5 kg; 

The force input signal F is a sinusoidal signal with 
amplitude of a = [0.012, 0.015, 0.02, 0.03, 0.04, 0.05, 
0.06, 0.08, 0.09, 0.1, 0.13, 0.15, 0.2, 0.3, 0.4, 

0.5 ] X 600 N, and frequency of CO = [1, 2, 4, 6, 8, 10, 
12,20, 30,40,60, 80,100,150,200] rad/s; The LuGre 
friction model parameter values used in the simulation 
are 

°0 /v 

(N/m)       (Ns/m)       (m/s)      (N)       (N)       (Ns/m) 

1.15e5 1500 0.01 60 80 95 

When there is no nonlinear friction, the system from F 
to v is linear and its SIDF, represented with Nt, is equal 

to its frequency response function, i.e. 

Ni(a,(ü) = l/(m-j(0 + f) (26) 

To check how the nonlinear friction Fnjr and friction 

compensation residual 8, affect the linear system of 

Nj, two cases are considered. First, the no 

compensation case, i.e. the system defined by Eq. 1; 
The simulated SIDF is represented with Nnfr And the 

last, the compensated case, i.e. the system defined by 

Eq. 1 but with 7^,. term replaced by 5, of Eq. 25; The 

simulated SIDF is represented with /V5. 

Fig. 8 and Fig. 9 show the gain and phases change of 
the linear system /V/ caused by the nonlinear friction 

Fnfr Some facts can be seen From the plots. First, with 

?P 100 

Ife; 50 

N 
i 0 

* 
Ife: -•V) 
\J 1 

0    200 

100 

co    (rad/s) 

Figure 9: Phase change caused by the nonlinear 
friction 

"max 
0   0 

100 

co    (rad/s) 

Figure 10: Gain change caused by friction 
compensation residual 

effect will decrease very much. This phenomenon can 
also be seen in Gäfvert (1997). Second, at low 
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frequency and small input amplitude range the 
nonlinear friction causes a considerable gain drop. 
When the input amplitude and frequency tends to zero 
the gain almost drops to zero. And the last, the 
nonlinear friction has the effect of reducing phase lag 
(a nonlinear damping effect), but in the near zero 
frequency range this effect tends to zero. The 
characteristics of the nonlinear friction effect can also 
be seen in the solid lines of Fig. 12 and Fig. 13. 

M 
0) 

■a *—' 50 

1^* 
N 0 

N -50 
1 

a/a max 
o   o 

100 

co    (rad/s) 

Figure 11: Phase change caused by friction 
compensation residual 

Fig. 10 and Fig. 11 show the nonlinear friction 
compensation effect for the system that has a 
considerable force generation dynamics. In other 
words, they show how the liner system is affected by 
th . nonlinear friction compensation residual. From the 
plots, it can be seen that even though there is a 
considerable force generation dynamics, the nonlinear 
friction compensation is still quite effective especially 
in the low frequency range. The friction compensation 
effect can be seen more clearly by comparisons of the 
gain and phase changes before and after the 
compensation in 2D plots as shown in Fig. 12 and Fig. 
13. It is noted that gain drop caused by the nonlinear 

ZNnfr-ZN, 
solid line 
un-compensated 

100 
CD rad/s 

Figure 13: Comparison of the phase changes 
caused by F„yr and 8yr 

friction can be compensated effectively. But this effect 

depends on the sinusoid's input amplitude and 
frequency. The smaller the input amplitude the larger 
the residual (amplitude) left and at a certain frequency 
point the residual reaches its maximum value for a 
given input amplitude. This maximum residual 
frequency will increase with the increase of sinusoidal 
input amplitude. From Fig. 13, it is also noted that the 
increase in SIDF gain by the compensation is at the 
cost of phase loss (see the dashed line). In 
characterization of the friction compensated system, it 
is important that the main features, in the most 
frequently appeared cases, can be captured such that 
with the limited system capacity, high control 
performance can be achieved, while a relatively large 
uncertainty can be tolerated. From Fig. 12 and Fig. 13, 
it can be seen that the envelope formed by the four 

lines, the un-compensated a = Fs and a = amax 

lines, and the compensated a = F$ and a = amax 

lines, includes almost all the compensated case gain 
lines and phase lines, except the compensated case 

0.012 

/V§ - \N[\, dashed line 

compensated case 

Nnfr\ - \Ni\, solid line 

uncompensated case 

-0.012 
50 100 150 

co    (rad/s) 

Figure 12: Comparison of the gain changes caused 
by Fnfr and 8/r 

50 100 150 

Frequency (rad/s) 

Figure 14: Uncertainty (residual) gain modelling 
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phase lines corresponding to a<F$. The main 

purpose to characterize a uncertainty or a uncertain 
system is to determine its upper and lower bounds. To 
do so, in Fig. 14 and Fig. 15, the nonlinear friction and 

un-compensated^a = Fs\a = amax 

compensated: a = Fs\ a = a^^ 

"   > ...-! 

fc -60 

-70 

-80 

-90 

-^. 

by uncertainty model 

7£ 

. ....   * 

linear case 

50 100 150 

Frequency (rad/s) 

Figure 15: Uncertainty (residual) phase modelling 

friction compensation residual effects on the linear 
system from force to velocity are depicted in the gain 
and phase plots (not the above 'gain change' and 
'phase change' plots). With the under compensation 
assumption al), an uncertainty gain model shown by 
the area between the two thick solid lines in Fig. 14 
and phase model shown by the "x" marked clusters in 
Fig. 15 seems reasonable. The two thick lines 
represent the upper and lower bounds which include 
most of the area of the mentioned envelope and the 
linear case. The lower bound in low frequency range is 

higher than the un-compensated case a = F   line. It 

is used to indicate the friction compensation effect. 
The better compensation, the closer to the upper 
bound. To characterize the uncertain system from 
force to velocity, the uncertain model structure is 
selected as 

(27) 

where ky and ay represent the two uncertain parameters 

of the structured model, they are bounded with their 
corresponding upper and lower bounds oikyd, kyu, ay^ 

and ayu respectively; Ay(s) represents the additive un- 

structured uncertainty. The structured model 
parameters, ky and ay, and AJs) values are obtained 

through manual fitting. For the cases of ky = 

0.08:0.01:0.12 and ay = 10:2:20, the structured 

model's gain and phase distribution are shown with 
the "x" marked clusters in Fig. 14 and Fig. 15. Most of 
the phase 'lead' (nonlinear damping, friction, caused 
phase lag reduction) cases are not included in the 
structured model. But this phase 'lead' information 

will be used to decide the phase margin selection in the 
following outer loop controller synthesis. The gain 
distribution by the structured model is assigned in a 
way such that it is located in the middle of the target 
area and that it covers most of the area, except for 
some area in the high frequency range which is 
difficult to fit with the structured model. The next step 

is to select lA (s)\ values such that the envelope 

formed by the upper and lower bounds described by 

\Gvl(s)\ = max I    v'       \upper 

TvM\ower 
= min 

s + ay 

y 
s + a. 

(l + |Ay(*)|) 

(l-|Ay(s)|) 
(28) 

k e [0.08, 0.12], aye [10,20] 

will cover almost all the target area. For the interested 

frequency points |A (co)| is selected as 

(29) 

|A (co)| = [0,0,0,0,0,0,0.1,0.1,0.2,0.3,0.5 

0.5,0.5,0.5,0.5] 

co = [1, 2, 4, 6, 8, 10, 12, 20, 30, 40, 60 

80, 100,150,200] 

As a result, the uncertain (linearized but with 
linearization residual) system from force F to position 
y can be represented as 

Gy(s) -X—(1+A(*)) 
(s + av)s y -yt- (30) 

ky e [ V *y«]. ay e f V ayJ 

It should be noted that the a < Fs compensated cases 

are not included in the outer loop plant model, but the 
phase lag in the low frequency range (refer to Fig. 13) 
will be considered in the controller synthesis. 

4.   CONTROLLER DESIGN 

It is well known that to increase feedback controller 
amplitude will increase the system's input and output 
disturbances rejection capability, and is one of the 
main ways to improve tracking performance for an 
uncertain system. But for a real system, feedback 
controller amplitude will be limited by many other 
factors, such as input constraint, sampling frequency, 
sensor noise, un-modelled dynamics and/or 
nonlinearities, especially in high frequency range. 
With a limited bandwidth or loop cross-over 
frequency, the loop's gain-phase relationship is 
limited. How to utilize the above characterized gain- 
phase information to make trade-off between 
performance and stability in the loopshaping will be 
the main problem in the presented QFT controller 
design work. 
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4.1 Inner Loop Controller Design 

For the inner controller_design, the valve nonlinearity 
compensation residual, Nqu, will not be involved in the 

plant. Its effect will be considered in the Nichols chart. 
Referring to Eq. 21, the inner loop plant can be given 
as 

GSs) = 
Lpa 

co„ 

(ä + ß)(5/a>v + 2c;/a>v+l) 

ße [0,0.15], a £ [0.9, 1.1] 

= 310, £   = 0.7, L   = 2.4 xlO6 

(31) 

The control design objective for the inner loop is to 
design a controller such that, without causing limit 
cycles and within the given bandwidth, the loop gain 
should be as high as possible in the interested 
frequency range, e.g. low frequency range, while 
keeping enough phase and gain margin. Fig. 16 shows 

40 loop plot ^        / 
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/ / 
stability (margin) bound             / 

X                         f 
-a 
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/■"           -1/Nqu         /'N     f 

co = 80 rad/s ^,--**" / 1 

_..-•-'"   bandwidth limitation 

;50 -200 -150 -100 

Phase (degrees) 

Figure 16: Inner loop QFT controller design 

the inner loop design. The bandwidth of the closed 
loop is selected to be 80 rad/s. So the loop amplitude, 
at 80 rad/s frequency point, must be lower than the 
bound. The margin bound is calculated such that the 

amplitude of the closed inner loop, G2clp(j(ü), 

satisfies 

(/a»| =      Ci"^U(ä)G^a) , £ji,a>e [0,-) '2c//A 
1+£,■„„„(/«» GV(/CD) 

(32) 

Here and in the following \i is decided according to the 
algorithm given in Borghesani et al (1994). For the 

inner loop, (X = 1.2. This corresponds to at least 49.2° 
phase margin and at least 1.83 dB gain margin. In the 
controller synthesis, it is also important to make the 

loop plot and the -\/Nqu plot as parallel as possible 

so that the possibility of generating limit cycles can be 
reduced to the lowest level. The designed inner 
controller is 

r(*) = 
0.0003/+ 2.3^+ 299 

s3 + 844s2 + 231856s + 17920144 
(33) 

4.2 Outer Loop Controller Design 

The outer loop motion part plant is already defined by 

Eq. 30 and 29, where kyd = 0.08, kyu = 0.12, 

V 10 and a     - 20. So the overall outer loop yu 

plant can be given by 

GXU) = G2clp(s)Gy(s) (34) 

The outer loop controller design task is to design a 

controller for G^s), such that within the limited 

bandwidth, the positioning accuracy can be as high as 
possible. Two important facts, which can be seen in 
Fig. 13, Fig. 14 and Fig. 15, which have not been 
considered in Eq. 30 and 29, are 

• In low frequency and small input amplitude cases, 
the friction compensation residual will cause 
relatively large phase lag. This implies that these 
cases are phase critical. 

• In the high frequency range, the friction effect has 
in fact almost not been compensated due to the 
considerable dynamics of the force generation 
loop. As a result, there are small gain and large 
phase 'lead' in this frequency range. 

These two facts implies that to get a high positioning 
accuracy, especially high steady-state positioning 
accuracy, the only possible way is to considerably 
reduce the phase and gain margin so that in the low 
frequency range the loop's gain can be higher and the 
phase lag is small. In this work, u, = 7 is selected. This 

corresponds to at least 8.2° phase margin and at least 
1.14 dB gain margin. Fig. 17 shows the design of the 

■7' bandwidth limitation, to = 120 rad/s 

-200 -150 -100 
Phase (degrees) 

Figure 17: Outer loop QFT controller design 

outer loop controller. The designed feedback and feed 
forward controllers are 
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,,      6.7e95 +8.4elli +7.4el3s+L4el5 ,„, 

s  + 3334/ + 2.4e6/ + 7.5e8i + lei 1 

C
F      (5) =  ^  

//50  + 2s/50 + 1 
(36) 

5.   EXPERIMENTAL POSITIONING RESULTS 

little bit. Fig. 19 shows the 0.5 mm small positioning 

0.201 - 

„0.2005 '-r 
E. ;! 

S    0.2^ 

0.199- 

Experiments are conducted with the pneumatic rodless 
cylinder positioning system presented in section 2. To 
test the robust performance and robust stability, 
system and experimental parameters are changed from 
test to test, but with no controller parameter 
modification. The default payload is 5.5 kg and the 
default friction compensator parameters arel 

F,   Fr /v 

(N/m)   (Ns/m)   (m/s)   (N)   (N)  (Ns/m) 

Chamberl le5      1500    0.016   26    65       95 

Chamberl le5      1500     0.01     26    95      125 

Inertia force forward and viscous force forward are 
involved, in order to reduce tracking error. In every 
figure, there are two rows; The upper one shows the 
comparisons of different positioning with their 
corresponding references; All the references are after 

p 
the low-pass filter, Coutgr(s), which is designed to be 

one part of the reference generator; The lower one 
shows the closed-up positioning error, and the transit 
behaviour can be seen more clearly there. All the 

positioning experiments show a < 5 um (sensor's 

resolution) steady-state positioning error. Fig. 18 
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Figure 18: Normal positioning for payload of 5.5 kg 
and 15.5 kg 

shows some normal positioning cases with payload 
changed from 5.5 kg to 15.5 kg. With this change of 
payload, only the overshoot is seen to be increased a 
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Figure 19:0.5 mm small positioning for payload of 
5.5 kg and 15.5 kg 

cases with payload changed from 5.5 kg to 15.5 kg. 
Small positioning means small displacement, small 
pressure reference and thus small control input. In this 
case, the uncertainty is substantial. With the change of 
payload, only a little bit slower response is seen. Fig. 
20 shows four cases: change and without change of 

Figure 20: Change and without change of friction 
parameter; With and without velocity de-coupling 

friction parameter, with and without velocity de- 
coupling. For both chambers, the friction compensator 
parameters are changed simultaneously as: 

F ,        - 13 and F.       - 20. The without velocity 
Cldefault Idefault 

de-coupling case is to set JVV = 0 in Eq. 10. From the 

figure, it can be seen that all the changes in the 
compensator parameter cause no obvious deviation in 
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positioning performance. Fig. 21 shows the position 

2 3 
Time    (sec) 

Figure 21: Position tracking for payload of 
5.5 kg and 15.5 kg 

tracking control results for random tracking 
references. For payload m = 15.5 kg the tracking error 
is seen somewhat larger than for payload m - 5.5 kg in 
the high frequency range (fast reference change). 

6.   CONCLUSIONS 

With the introduced block-oriented feedback 
linearization technique, the nonlinearity compensation 
is fairly effective. The linearization residual and 
finally the linearized system are characterized with the 
presented method. The conservativeness of the QFT 
robust control design can be significantly reduced by 
making use of the characterized gain-phase 
information of the linearized (uncertain) system. With 
the limitation of the Bode's gain-phase relationship, 
making use of the possible gain-phase information 
leads to a good trade-off between performance and 
stability in the loopshaping, thus results in high control 
performance. For further reduction of the 
conservativeness of QFT robust control design, some 
other frequency domain nonlinearity modelling 
techniques, such as the general describing function 
method, may be worth exploring. For a high accuracy 
positioning, it is required that the overall closed loop 
system amplitude frequency response should be unit 
from the DC case to a quite large frequency range, and 
with no or only small peaks. Efficiently creating such 
a result by the interaction of feedback and feed 
forward loop shaping is worth further investigating. 
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Abstract: This paper presents a method of computing frequency response bounds on the 
elements of a decentralised controller for a MIMO system for guaranteed closed loop 
stability. The proposed technique uses the structured singular value. It generates stability 
bounds that can be plotted on the Nichols chart and incorporated into the QFT loop shaping 
procedure. 
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1.    INTRODUCTION 

Grosdidier and Morari (1986) have derived some 
techniques of using the structured singular value for 
computing stability bounds on the diagonal closed loop 
elements which can be used in an independent design 
for decentralised control systems. We note here that the 
same approach can be extended to find frequency 
response bounds on the elements of a diagonal 
controller. The main idea is to associate an uncertainty 
with the (structured) controller for a fixed plant model 
and use the SSV to analyse the stability of the closed- 
loop system. The bounds obtained impose both 
magnitude and phase constraints on the controller and 
are expected to be useful in a QFT type loop shaping 
synthesis procedure. 

Matrices are represented here by upper case bold face 
letters while scalars are in lower case. Subscript ij 
refers to the ij* element of a matrix. In is the identity 
matrix of order n. The frequency argument (s or jco) is 
omitted in most expressions. 

Consider first the feedback system comprising of an 
nxn plant P, with a diagonal feedback controller K = 

diag(kij). If P is stable, then the loop shown in figure 1 
is stable for all stable K satisfying 

|ka|<-^— ,i = l..nVco (1) 11      u<P) 
where    (i()    is    the    structured    singular    value 
corresponding to the diagonal structure of K. This 
follows directly from the definition of the structured 
singular value and the fact that the spectral norm of a 
diagonal matrix o(K) is the magnitude of its largest 
element (maxj|ki;[ 

Figure 1: Plant and diagonal controller. 

Inequality (1) gives a magnitude bound on the elements 
of K or in other words restricts them to lie within a 
circle of radius l/(x(P) centred at the origin. It is 
possible to numerically optimise such bounds so as to 
obtain larger regions within which the elements of K(s) 
are constrained to lie. Further, this development does 
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not require any additional assumptions on the unstable 
plant poles. 
The next section presents the method of doing this. A 
simple 2x2 example is then given. Extension of the 
principle to deal with uncertain plant models is also 
discussed. 

2.    STABILITY BOUNDS FOR CONTROLLER 
ELEMENTS 

Consider a nxn plant P. Let K(s) = k(s)In (where k(s) 
is a scalar transfer function) be a diagonal controller 
that stabilises P. 

Though the existence of a rational stabilising k(s) 
cannot be proved, it is generally not difficult to find a 
real rational k(s) such that k(s)In stabilises a given 
unstable plant. Since k(s) multiplies each of the 
characteristic gain loci of P(s) (K(s) is trivially 
commutative) one can shape the frequency response 
k(jto) such that the loci of k(jco)?ii(PGco)), taken 
together, encircle the point (-1,0) the required number 
of times (Maciejowski, 1989). 

Now, it is expected that there exists a perturbation of 
the frequency responses of the controller elements 
around k(jco) for which the closed-loop remains stable. 
Let A be an additive perturbation with the same 
diagonal structure as the controller. The perturbed 
controller can be represented as 

K(s) = k(s)In+A 

where   A   is   a   diagonal   perturbation   matrix.   The 
structured singular value can be used to obtain bounds 

on |A;|. 

PCsl 

M 

k(s)I ' tC 
\ 
+ 

A 

Figure 2. Schematic 2 

The block diagram  of the  corresponding  u-test is 
shown 
in figure 2. The part in the dotted line M = P(I-kP)"1 is 
identified with the stable plant of (1). 
The system is stable if 

iÄ«i<*Wi=1-"v<*      (2) 

This bound can be very small especially at frequencies 
where    the   compensated    characteristic    gain    loci 

k(jco)Xi(P(jco)) pass close to the point (-1,0). 

We now replace k(jco) by a complex number z, which 
can be optimised to obtain a larger perturbation radius 
than that obtained from (2). 
As is well known, the computation of n(M) is a non- 
convex problem and so is replaced by a tight upper 
bound, jI(M), (for instance the Perron root Ap(M)) the 

computation of which is a convex problem. This upper 
bound is a smooth function of the elements of the 
matrix. Hence given M=P(I-zP)"1, p(M) is a well- 

behaved function of z. It is therefore possible to use 
numerical (gradient based) search techniques to find a 
(locally) optimal z such that p(M) is minimised. This 

in turn maximises the perturbation radius l/p(M) on 

the elements Kü when applied to (2). The controller 
k(s) no longer lies at the centre of the allowed 
perturbation sets of Kjj(s). 

We further add the constraint 
1 

|z(co)-k(jto)|< — (3) 
p(M) 

This ensures that the original nominal controller k(s)In 

lies within the optimised bounds. 
Now by using a connectedness argument, it is possible 
to deduce that the loop remains stable for all controllers 
K, such that each of the elements Kü (j<*>) lies within a 
circle defined by the optimised z(co) and l/p(M) 

values above. 

Fact: Given a stabilising controller k(s)In, and complex 
valued function z(co) such that (3) holds, the closed 
loop system of figure 1 is stable for all diagonal K such 
that, 

| KH (jco) -z(co) | < r 
p(P(jco)(In -z(co)PGco))-1 

Vi Vco     (4) 

i.e. each element of K lies within a circle centred at z 

and with a radius l/|x(P(In -zP))_1 at the frequency 

CO. 

Proof: From the definition of p, (4) implies 

det(In-(K-ZIn)(P(In-zP)-1))^0 

=>det((In -zP)-(K-zIn)P)det((In -zP)-])*0 

=>det(In-KP)*0 

The closed loop characteristic polynomial of figure 1, 
det(In-KP) is non-zero for all controllers satisfying (4). 
Hence, the number of encirclements of the origin by 
det(In-KP) does not change for this entire set of 
controllers satisfying (4). 

Further, since one controller in the set, k(s)In, gives a 
stable closed loop, the entire set represented by (4) 
gives a stable closed loop. • 
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The circles obtained from the above formulation at any 
specified frequencies can be transferred onto the 
Nichols chart and used in conjunction with other 
bounds (derived from performance requirements) in a 
QFT type design procedure. Such bounds are expected 
to prove particularly useful for non-diagonally 
dominant systems for which stability cannot be easily 
addressed in the framework of classical frequency 
response methods. 

For specific problems, it might be possible to further 
improve the bounds by having different centres and 
perturbation radii for each of the loops. The former can 
be achieved by replacing zln by Z = diag(Zi), the z;s 
being the centres of the discs for each of the loops. A 
diagonal scaling factor can also be introduced to have 
different perturbation radii in each of the loops if 
required. 

(a) Bounds on KH at co = 0.1 rad/sec 

3. AN EXAMPLE 

Consider the  simple  2x2  plant  model  taken  from 
Maciejowski (1989). 

P = 
1 (s-1)      s 

-6     (s-2) 
stable,   we 

(5) 
1.25(s + l)(s + 2) 

Since   the   plant   is   stable,   we   first   compute   the 
unoptimised bound on the controller elements resulting 
from (1). The plot of l/u.(P) is shown in figure 3. .5-4-3-2-1 0 1 2 

(b) Bounds on K« at co = 1.1 rad/sec 

Frequency (rad/sec) 

Figure 3: Unoptimised magnitude bound on the 
controller elements 

The corresponding circles representing the bounds on 
the controller elements in the complex plane are shown 
(dotted) in figures 4 a-c for 3 frequency points (co = 
0.1, 1.12 and 7.0 rad/sec) lying below, approximately at 
and above crossover respectively. 
Since the plant is stable, we can choose the initial 
stabilising controller k(s)=0 and optimise the bounds. 

(c) Bounds on Kjj at co = 7.8 rad/sec 

Figure 4: Initial (dotted) and improved (solid) bounds 
on the controller elements at 3 frequency points. 

The optimised bounds (on KH, 1=1,2) obtained after 15 
iterations of an optimisation routine based on 
sequential quadratic programming are also shown 
(solid) in figures 4 a - c. If the optimisation is 
continued further, the bounds at some frequencies 
expand further and tend towards half planes. 

The circles shown in figure 4 can easily be transferred 
onto the Nichols chart to generate quadratic bounds 
that can be incorporated into a sequential or 
independent design procedure based on QFT. 
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3. EXTENSION TO UNCERTAIN PLANTS 

3.1 Norm bounded uncertainty 

The above idea can be easily extended to incorporate 
plant model uncertainty if the uncertainty is modelled 
as a norm bounded structured perturbation as in 
conventional (i theory. 

Figure 5 shows the block diagram of the plant P with a 
structured uncertainty Ap wrapped around it. The 
additive perturbation of the controller is denoted by Ak. 
The initial stabilising controller K(s)=k(s)I„ is to be 
chosen so as to robustly stabilise the nominal as well as 
perturbed plants. 

A 
]• 

P(s) 
t  

1  

—^ 

M; 

k(S)l" S : 

\ - 

Figure 5: Plant with norm bounded uncertainty 

This nominal K(s) can be designed by plotting the n 
plant eigenvalue templates and shaping k(s) such that 
the compensated characteristic loci of the nominal plant 
have the required number of encirclements and in 
addition the compensated eigenvalue templates at a 
chosen set of frequency points avoid the critical point, 
(-180°,0dB), on the Nichols chart. 

Without loss of generality let Ap be scaled such that 
ö(Ap) <> 1. Also introduce a scaling factor D = dln (d e 

3i) into the Ak loop as shown in figure 6. 

t    A 

P(s)     ► 

k(s)I ■X) 

\ 

Figure 6: Block diagram for equation (6). 

Now invoking the main loop theorem (Doyle and 
Packard, 1993), we have an extended u. test for the 
system of figure 6. 
The system in figure 6 is stable if 

where d is chosen such that 

ji(M) < 1 

(u here being with respect to the augmented structure 
of Ap and Ak appended together). A formal proof of 
this follows from Skogestad and Morari (Theorem 1, 
Appendix). In this formulation, d is the radius of 
perturbation and should be maximised. 

Again, k(jco) can be replaced by a complex number z 
which is optimised such that d is maximised subject to 
the constraint u.(M) < 1. 

3.2 Enumerated plant set 

When a finite set of linear models for the plant are 
available, a common stability constraint on the 
controller frequency response can be obtained by using 

an augmented matrix M . 

Given m plant models, the matrices Mi; i=l..m are 
defined as (refer figure 2.) 

M^PiCIn-kPi)-1  i = l..m 

We then define the augmented matrix 

M = diag(M, M2 •••• Mm), 
generating the block diagram shown in figure 7. 

Inequality (2) can then be applied (replacing M by M ) 
to compute the required controller bounds. 

Figure 7: Block diagram for the augmented system for 
an enumerated plant set. 

5. CONCLUSIONS 

A technique based on the numerical optimisation of the 
SSV for computation of stability bounds in 
decentralised control has been discussed. The 
presentation addresses only diagonal controllers and 
cannot handle other general decentralised control 
structures. However, the method is expected to be 
potentially useful in applying quantitative techniques to 
non-diagonally-dominant systems. 

kkii <d Vi Voo (6) 
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Abstract: This paper presents a method that uses QFT for choosing the initial open-loop 
transfer function and the using a robust loopshaping approach to consider unknown 
coprime uncertainties. Thus, this methodology considers not only the robustness 
properties of the shaped plant, but also those of the real plant. This technique is 
presented by way of an example using a model of a Neutralization process. Simulation 
results show the benefit of using this technique: the plant is controlled in a range of pH 
values, despite variations of the plant parameters, obtaining good performance at the 
desired working points. To apply the methodology presented in this paper it is only 
necessary to consider the possible uncertainty in the nominal model and using available 
software to design the controller. 

1.    INTRODUCTION 

As it is well known, the essence of robust control is to 
model the uncertainties themselves and to incorporate 
them in the design procedure of the control system, 
with the aim of ensuring stability and performance at 
all working points. Usually it is possible to identify 
multiple local linear models at different operating 
regions, which can be used to evaluate the expected 
uncertainty of the nominal model. Then this 
uncertainty information is used to design a controller 
that ensures robust stability and performance. 

Among all the available Robust Control techniques 
the Hoo Loop Shaping (H^LS) procedure (McFarlane 

and Glover, 1990) has been chosen, because it has 
been proved to be efficient to solve realistic problems. 
The approach involves the robust stabilization to 
additive perturbations of normalized coprime factors 
of a shaped plant. Prior to robust stabilization, the 
open-loop singular values are shaped using pre- and 
post- compensators. Then, the resulting shaped plant 

is robustly stabilized with respect to coprime factor 
uncertainty using H^ optimization. 

One difficulty of the H^LS design method is that it 

does not directly address the robustness properties of 
the real plant, but rather it is concerned with the 
shaped plant, and, unfortunately, there is no direct 
connection between the robustness of the shaped and 
unshaped plant. This paper shows a methodology that 
solves this problem by considering the robustness 
properties of the real plant in the selection of the 
weights of the shaped plant. This selection is done 
using ideas from Quantitative Feedback Theory 
(Horowitz, 1962, 1992; Yaniv, 1999; Houpis and 
Rasmussen, 1999). Once selected a robust shaped 
plant the controller is designed by application of the 
H^LS design method. 

This technique is presented showing an example of 
designing a controller for a pH neutralization 
processes. This process plays an important role in 
chemical   plants,   such   as   biological,   wastewater 

Author to whom correspondence should be addressed. This work was supported by the CYTED (Proyecto 
Precompetitivo VII-5) and CICYT (Proyecto TAP97-1144) 
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treatment, electrochemistry and precipitation plants. 
However, it is difficult to control a pH process with 
adequate performance due to its nonlinearities, time- 
varying properties and sensibility to small 
perturbations when working near the equivalence 
point (Palancar ct al, 1996). 

2.    H^ LOOP SHAPING 

H^LS, as introduced and solved in [5], considers the 
stabilization of a plant which has a normalized left 

coprimc factorization: G = D N . That is, N and D 
arc        stable        transfer        function        matrices 

(N, D € RH °° ) such that there exists 

X,YGRH°° which fulfils the identities 

NX + DY = I    and    NN*+DD*=I    (Where    H 
T/ denotes H   (-s)). 

1 ► AN x> AD 

u 
N 

3 \ 
D1 y. 

A 
1 ► ^W   ' 

iz    . 

Figure 1: Coprime perturbed plant 

In this technique two uncertainty blocks are used, as 
depicted in Figure 1, one on each of the factors in the 

coprime     factorization:      G = (D + Ap)   (N + AN ), 

where   AD,A|vjeRH°°.   The   objective   of  robust 

stabilization is to stabilize the nominal plant G and 
the family of perturbed plants defined by 

G = {D + ADr
1(N + AN)/|[AD    AN]|oo<ej 

where e is the Stability Margin. Objectives of H^LS 
are the maximization of this Stability Margin and 
achieving good input-output performance. It can be 
shown that this is equivalent to find a stabilizing K 

that minimizes y = 1K-1 (l + GKpD which can 

be   calculated   by   solving   an   Algebraic   Riccatti 
Equation, as shown by [12]. 

Compared with other HM design methods, the main 

advantage of the H^LS method is that it does not 

require   the   so-called   y-iteration   to   calculate   the 
optimal controller. Also there are available relatively 

simple formulas to calculate the controller. On the 
other hand it does not (directly) include any closed- 
loop specification, which must be included by 
considering, instead of the nominal plant, a shaped 
plant. In practical designs, the Loop Shaping Design 
Procedure (LSDP) can be applied (McFarlane and 
Glover, 1990). The complete design procedure is the 
following: 

1. Using pre- and post-compensators (Wj and W2) 

the singular values of the nominal plant  G are 
modified    to    give    a    desired    loop    shape: 

Gs = W1GW2,    which    should    not    contain 
unstable hidden modes. 

2. G§ is considered to be perturbed by normalized 
coprime uncertainties, and an optimal feedback 
controller Kg is then synthesized using the H^LS 

approach. 
3. The combination of the H^LS controller and the 

compensators gives the final controller: 

K = W2KSW! 
Different methods to select the compensators have 
been studied: 

• Wright and Kravaris (1991) propose the use of 
the Inequalities Method 

• Pantas and Walsh (1996) the use of the Phase 
Crossover Frequency 

• Tang et al. (1996) the use of Genetic Algorithms 
• Tadeo et al (2000) show the use of graphical 

loopshaping techniques for designing a controller 
for a laboratory plant 

In order to consider the robustness properties of the 
real plant in the design, this paper shows a 
methodology that solves this problem by considering 
the robustness properties of the real plant in the 
selection of the weights of the shaped plant, using 
QFT. 

Following similar ideas as those in (Tadeo et al. 
2000), the QFT GLS method is applied to obtain an 
open-loop transfer function LQ, which then is robustly 
stabilized by application of the H^LS approach, 
obtaining a robust open-loop transfer function Lj^. It 
is important to notice that the available information 
about uncertainties in the model and performance 
specifications is considered when applying the QFT 
method to design L(s). When applying the H^LS 
method the uncertainty is considered unknown and 
coprime. 

3.    USING QFT FOR ROBUST LOOPSHAPING 

The Quantitative Feedback Theory (QFT) is a well- 
known  controller design technique,  introduced by 
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Horowitz (1962), to solve the problem of designing 
controllers in the frequency domain. The main 
advantages of using this technique are the possibility 
of including performance and robustness 
specifications in the design, without losing the 
physical insight of the problem. The design 
methodology is presented in Horowitz (1992), Yaniv 
(1999), Houpis and Rasmussen (1999). Short 
overviews can be found in Horowitz (1991) and 
Niksefat and Sepehri (2001). Roughly speaking it 
consists of two main steps: 

• First, design a controller using the Nichols Chart 
to meet the robustness specifications, taking into 
account the physical properties of the system and 
the performance requirements. 

• Second, designing a prefilter to meet the 
performance specification. 

This paper proposes to combine this QFT technique 
with the HOQLS technique to include the maximization 
of the Stability Margin for Coprime Uncertainties in 
the QFT design. The basic steps proposed are: 

1. Use QFT to design an initial open-loop transfer 
function, with minimal robustness characteristics, 
taking into account the physical properties of the 
system and the performance requirements. This 
open look transfer function is designed by 
manually adding poles and zeoes, to yield a stable 
nominal closed loop, while at the same time 
satisfying all bounds. 

2. Use H^LS to augment the QFT controller for 
increasing the Stability Margin for Coprime 
Uncertainties. 

3. Design a prefilter to meet the performance 
specification. This prefilter is required to bring 
the response withing the robust tracking 
specifications. 

Steps 1 and 3 use standard QFT, with the only 
modification that, as the controller will be augmented 
to increase its robustness, the robustness 
characteristics are relaxed using a less restrictive 
stability bound. That is, instead of using a robustness 
parameter of p=1.2 or 1.3 we propose to use p=1.5, as 
the robustness of the controller will be taken care of in 
the second step. 

The technique is now presented by way of an example 
in process control. 

4. EXAMPLE: PH CONTROL PROCESS 

4.1.   The Plant 

The process under study is the neutralization of an 
aqueous solution with Hydrochloric Acid (HO) in a 
Continuous Stirred Tank Reactor (CSTR). The 
experimental setup (described in detail in Tadeo et al, 

1996 and Tadeo et al., 2000) is shown in Figure 2. It 
consists of a CSTR where a liquid of variable pH is 
mixed with a solution of high concentration of HC1. 
This liquid is fed from the tank using a pump, which 
produces a variable flow depending on the level of 
liquid in the tank. The liquid in the mixing tank 
overflows (outlet not shown), so the volume of liquid 
in the tank can be considered constant. The control 
variable w is the flowrate of the titrating stream. The 
output variable y is the hydrogen ion concentration in 
the effluent stream. 

Due to the nonlinear dependence of the pH value on 
the amount of titrated agent the process will be 
inherently nonlinear. Moreover, variations of the 
buffering effects could make the process time-varying. 
Both effects make the process difficult to control with 
classical process control techniques (Palancar et 
al.,1996). 

Although the modeling of pH-control processes has 
been well studied (Gustafsson et al, 1995), in this case 
it is only necessary to have a simplified model, 
because when designing the controller the available 
information on plant uncertainty can be considered. 
This model was obtained based on first principles, and 
then validated in the real plant, by carrying out 
experiments at different working points. Also 
experiments were carried out by eliminating one of 
the streams, to check the shape of the titration curve. 
The experimental results were consistent with the non- 
linear model. Details on the experimental setup and 
the model can be seen in (Tadeo et al, 2000) 
Assuming the input liquid is pure water, that the HC1 
has constant concentration, and there is perfect 
solution, mixing, and no buffering, the following 
model can be obtained: 

dNd 
dt 

qoNd   qa
Nd + qaNa 

M 

x*!k-N, 
dt        c 

M 
* 

Nd 

M 

pH = -10log(Nd) 

Here, T is the sensor time constant, M the mass of 
liquid in the tank, qa is the acid mass flow, q0 is the 

liquid mass flow, N(j is the acid concentration in the 

tank, N ,   is the measured concentration and Na is 

the input acid concentration. The model parameters 
were estimated using measured data. 

It can be seen that this simplified model corresponds 
to an static logarithmic non-linearity and a dynamic 
model which is bilinear in one of the states. To reduce 
the number of non-linearities in the model, it was 
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decided to do the calculations working with 
concentrations, taking the antilogarithm of the 
measured pH, which is a common practice in 
industrial pH control: 

Nm=10-pH 

Minimum Phase and Gain Margins (type 1). 
Design parameter: p=1.5. (This value is selected 
so big, as the unmodelled dynamics will be taken 
care of in the second step by the H^LS process) 

Observe that although the assumptions looks quite 
restrictive, deviations from the assumptions in the real 
system can be considered in the robust control design 
as unmodeled dynamics. This is one of the advantages 
of using a robust control approach. 

DH 

measurement 

Control 
signal 

r 
-s 

Liauid Tank 

Control Acid Stream 

L> 

n 
Peristaltic 

Pump 

Liauid Pump Mixing Tank Acid' 

4.2. 

Figure 2: Laboratory Plant 

Controller Design 

First the effect of parameter variation on the transfer 
function was studied. The uncertain non-linear model 
was approximated by a set of local linear 
approximations. Assuming the parameter variations 
uncorrelated, the non-linear model was linearized 
considering the extreme values of each uncertain 
parameter. This approximation is suitable for slowly 
varying parameters. 

Tracking Properties (type 7): 

Upper limit: G(j(s) = 

Lower limit: 

GL(s) = 

0.0013 

s2 +0.04s+ 0.0013 

1 

5-1010s3+4.25107s2 + 1.15104 + 1 

The design was carried out using QFT Toolbox in 
Matlab (Borghesani et al., 1995), as is now described: 

First, the set of plants and templates were calculated: a 
set of 80 plants were obtained by parameter sweeping 
(their frequency responses are shown in Figure 3), and 
the corresponding templates (shown in Figure 4) 
calculated at the following frequencies: 

w= [0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1] 

In the next steps the robust stability and tracking 
bounds (shown in Figures 5 and 6) were calculated 
using the Matlab QFT Toolbox. Based on these 
bounds a controller was design for the nominal plant 
(see Figure 7). The selected controller was: 

KQFT(S) = 
3901lS0.05289 + 1AS0.00301+ V 'V 0.05289.^ 'A 0.00301 

VS/3.839 + 1A^0.00301+1/ 

First Step: Design using QFT 

For QFT design the plant is modelled as the second 
order transfer function, with two real poles: the faster 
pole given by the sensor dynamics and the slower pole 
from the pH dynamics: 

G(s) =  v ;    (s + a)(s + b) 
where the sensor pole is supposed constant: 

b = 0.012725 
and the following parametric variations have been 
measured: 

K e [-0.000004649,-0.00007469] 
ae [0.25,2] 

It can be seen that there are important parametric 
variations, as the dominant pole position varies 800% 
times, and the gain 1600%. 

To design the initial controller usign QFT we consider 
two kind of design specifications: 

-SO : 

CD 

1-eo 

c 

CD 

•80 

CD 
2,-iGO 

CD 
<o 
CD-150 

Q. 

Frequency (rad/sec) 

Figure 3: frequency response of linearized 
plants 
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Figure 7: QFT Design 

2 Frequency Responses Complementary Sensitivity S. R. 
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Figure 5: Robust Stability Bounds 

Figure 8 shows the open loop transfer functions for 
this controller with the worst-case plants: the fastest 
and the slowest plants. Figures 9 and 10 show the 
corresponding closed-loop transfer functions, and 
figure 11 the step responses. 
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Figure 6: Tracking Bounds 
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Figure 8: Characteristic Transfer Functions 
with QFT Controller 

Open Loop Transfer Function (QFT) L=KG 
Gm=58.541 dB (at 0.88655 rad/sec), Pm=44.059 cte(5. {at 0.014455 tad/sec) 

10J 10"2 
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Figure 9: Open Loop Transfer Functions 
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Complementary SensitivitY T=KC3/1+KG) Second Step: H^Loop Shaping for the pH plant 
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or-: 

m 
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Frequency (rad/sec) 

Figure 10: Complementary Sensitivity 
frequency response 

Sensitivity S=1/(1+KG) 

Once an adequate open-loop transfer function 
LQPT(S) have been selected, the design can be made 
more robust by considering additional coprime 

uncertainties of LQFJ = D N . These uncertainties 
include additional unmodelled dynamics, giving 
additional robustness. The resulting compensator KQ 

can be included in the feedback controller block by 
augmenting the controller designed using the GLS 
method. Kg is a stabilizing compensator of LQ and of 

the set of uncertain plants such that 

G = {D + ADr
1(N + AN)/|[AD    AN]|oo<ej. 

Therefore, the robust controller can be calculated as 
follows: 

KHoo =KQFTKS 

This method was applied to design a controller for the 
pH control plant. The obtained Algebraic Riccatti 
Equation was solved using the Matlab Robust Control 
Toolbox (Chiang and Safonov). Considering the 
desired loop-shape the one calculated using QFT, the 
H^LS method was applied, and an optimal 
compensator calculated. Before reduction, the 
controller was: 

D) 

KHM = 
8.619s4 + 2.757s3 + 0.1586s2 + 0.002028s + 0.000004097 

14.2029s4 +1.4293s3 + 0.12423s2 + 0.002830s + 0.000001870 

The characteristics transfer functions are shown in 
Figure 13 for the nominal plant.lt can be seen that the 
shapes are adequate, and improved from the QFT 
design. 

Figure 11: Sensitivity frequency response 

Step  response: Complementary Sen sitivity 

Tim a  (sec.) 

The open-loop shape when this compensator is 
included (L(-|oo = 1-QFTKS)is shown in Figure 14 for 
the worst-case plants. It can be seen that the overall 
effect of the compensator is a gain reduction, 
especially at high frequencies. The open-loop cut-off 
frequency is decreased, so a reduction on the speed of 
response of the closed-loop system is achieved. The 
feedback system with the designed open-loop transfer 
function presents good robustness characteristics: 
With the nominal plant, the Gain Margin is 27.7dBs 
and the Phase Margin is 59.9°. Also there are good 
disturbance rejection properties, as can be seen from 
the Sensitivity Frequency Response in Figure 15. 

Figure 12: Command Step Response 
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2 Frequency Responses Complementary Sensitivity S. R. Third Step: Prefilter Design 

10 10 
frequency (rad/seg) 

Sensitivity Step Response 

Time (sec.) 

Control Sensitivity S. R. 

The final step of the technique proposed in this paper 
is the design of a prefilter using standard QFT. This 
method was applied to our case study, selecting the 
following Prefilter that fulfills the specifications: 

F = 
(s/0.002767 + l)(s/0.005882 + 1) 
(S/0.001212 +1 )(s/0.03323 +1) 

It can be seen in Figures 16 and 17 that the transfer 
function from the reference to the output fulfills the 
stability and tracking specifications. 

Time (sec.) Time (sec.) Robustness Properties 
BiffrWP' 

Figure 13: Nominal Characteristic Transfer Function 
with the final controller 

Open Loop with final controller LH«=K H-G 
82 dB (ai 0 11332 rsiteec), P:v:=58.3KS dsg. {a! 0.012877 rad/sec 

10"s 10: 10-1 <■<>- 

Figure 14: Open Loop frequency response 

Sensitivity with final controller: 1/(1+KH-G) 

Figure 15: Sensitivity Frequency response 

The order of the controller was further reduced using 
the balanced truncation method (Green and Limebeer, 
1995). 

Figure 17:Prefilter Design- Tracking Check 

Finally, the characteristic transfer functions where 
calculated for the feedback system with the final 
controller and the designed prefilter: the frequency 
and time responses of the command tracking 
properties are shown in Figures 18 to 20. It can be 
seen that using the technique presented in this paper, 
good command tracking and robustness properties are 
obtained: With the nominal plant, the Gain Margin is 
27.7dBs and the Phase Margin is 59.9°, there are good 
command tracking and disturbance rejection 
properties. 
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Step Response with final controller and prefilter 

Time (sec.) 

Figure 18: Command Step Response with prefilter 

Complementary Sensitivity with prefilter: FK„-G/(1+KH-G) 

Figure 19: Complementary Sensitivity frequency 
response with Prefilter 

Control Sensitivity with final controller and Prefilter FK ^/(l +K H-G) 

Figure 20: Control Sensitivity Response with Prefilter 

5.    CONCLUSIONS 

Hoo loopshaping is an appealing approach for 

controller design, as it addresses explicitly the 
problem of model uncertainty. However this design 

method does not directly address the robustness 
properties of the real plant, but rather it is concerned 
with the shaped plant. 

This paper has discussed a methodology that solves 
this problem by considering the robustness properties 
of the real plant in the selection of the weights of the 
shaped plant. Then a shaped plant is selected 
following the Quantitative Feedback Theory ideas. 
Once selected a robust shaped plant the controller is 
designed by application of the HM loopshaping design 

method, following McFarlane/Glover ideas. 

This three step design methodology makes possible to 
take advantage of the positive properties of the HM 

loopshaping design method, but considering at the 
same time the robustness properties of the real plant. 
Also it is a natural way of considering two-degrees-of- 
freedom control systems. The application of this 
technique in a case study has shown its advantages for 
designing controllers for a real plant. It must be 
pointed out that it may be necessary to re-examine the 
robust stability and robust performance conditions 
with the final controller, as there is not guarantee on 
robust performance for the final controller. If these 
robustness are too strict, it may be necessary to relax 
them and repeat the design. 

The idea shown in this paper of combining graphical 
and robust loopshaping has been shown to be 
promising. Compared with other robust control 
approaches this technique is more intuitive to the 
control engineer, thanks to the fact that the design 
parameter is the open-loop transfer function itself. 
Further work must be done to extend the proposed 
technique to multivariable systems and to ensure that 
the final controller fulfills the robustness conditions 
stated in the first step of the design. 
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Abstract: This paper analyses the phase specifications problem in QFT. An algorithm is 
proposed aimed at achieving pre-specified closed loop transfer function phase and magnitude 
variations taking into account the plant uncertainty. A two-degrees of freedom feedback 
control structure is used and a new type of boundary is included to satisfy these objectives. 
As the control effort heavily depends on a good estimation of these boundaries, the proposed 
algorithm allows avoiding over-design. Copyright© 2001 IF AC 

Keywords: phase characteristics, phase contours, control system synthesis. 

1. INTRODUCTION 

Quantitative Feedback Theory (QFT) is a robust 
control design method where system uncertainty is 
typically of parametric nature, commonly given in the 
form of templates (see Horowitz (1982) for a survey 
of the technique). QFT uses a two-degrees of freedom 
(2DoF) feedback scheme (Fig. 1), where it is assumed 
that the uncertain system is represented by a transfer 
function P(s) belonging to a set of plants P, while G(s) 
and F(s) are respectively the compensator and pre- 
compensator to be synthesised in order to meet robust 
stability and performance specifications. 

W. 

as) 

v^ufe&-! V) 
)—► 0(s) —KJ—' P(f) 1 1    +          1 1 

+ 
r 

• 
0^~ Ms) 

Fig. 1. A 2DoF feedback system 

In QFT, closed loop specifications are given in the 
frequency domain, in terms of admissible bounds on 
closed loop transfer functions. Then, specifications are 
combined with the uncertainty of the system (given in 
the form of templates) to obtain limits or boundaries 
on the frequency shape of the compensator G(s). In 
addition, nominal specifications are used to shape the 
pre-compensator F(s). This paper focuses in the 
analysis of the problems associated with the 
simultaneous consideration of magnitude and phase 
specifications for the closed loop transfer function 
(which can be of interest, for instance, in problems 
dealing with co-ordinated movement in robotics). 

Few works about phase specifications and their 
applications can be found in the QFT literature 
(Bailey and Kallel, 1992; Holt and Lee, 1989). The 
way in which these papers address the problem differs 
from the approach used in this paper, which mainly 
consists of shaping F(s) and G(s) to achieve some 
nominal phase and magnitude specifications using a 
new set of boundaries. Another important point not 
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previously considered is the computation of multi- 
valued boundaries. For instance, the algorithm 
proposed by Bailey and Kallel (1992) to compute the 
phase tracking boundaries did not exploit the fact that 
boundaries can be multiple-valued. 

The consideration of multiple-valued boundaries may 
have an important practical relevance, as the control 
effort is directly related with them. This fact was 
pointed out in (Bailey et al, 1988) and considered in 
the subsequent works, but general solutions to this 
problem have not been found. The computation of 
multiple-valued tracking boundaries has been 
analysed in (Moreno et al.,\991) and extended 
(Moreno, 2001) to include also phase tracking 
boundaries to guarantee certain closed loop transfer 
function phase variations (from reference input to 
system output). The consideration of phase 
specifications results in new type of boundary (the 
nominal phase tracking boundary), which is 
developed in this work. 
The paper is organised as follows. After some 
preliminaries in Section 2, the subsequent Sections 
show different aproaches for solving the phase 
specification problem. Section 3 considers a first 
algorithm usign a design viewpoint. In Section 4 a 
much less conservative solution is investigated. An 
example is developed in Section 5. 

2. PRELIMINARIES 

The problem that will be cosidered in this work is the 
design of a control system (Fig. 1) to satisfy tracking 
specifications, considering a nominal value of the 
closed loop transfer function T=FGP/(1+GP) and 
allowed deviations. P is any element of a set of plants 
P. For the nominal value and allowed variations, the 
specifications are given for both magnitud and phase. 

G can be designed to meet variations over both 
magnitude and phase of the closed loop tranfer 
function T(s). The role of the pre-compensator F(s) is 
to fix the nominal value of T(s), but due to the fact 
that phase and magnitude of T(s) are related, by the 
Bode's Integral assuming minimum phase systems, or 
analogous constraints for unstable and nonminimum 
phase systems, phase and magnitude can not be 
independently manipulated in design. 

Usually, F and G are designed without taking into 
account the phase specifications in the design process, 
then a satisfactory design can be obtained meeting 
variations over the nominal magnitude of T(s) and 
variations over the nominal phase of T(s), but this is 
not the general case. 

In robotics, the robot motion control problems can be 
separated into two categories: positioning and 
contouring. In contouring problems, the robot tool tip 

is commanded to follow a specific path. Here the 
spatial contour tracking accuracy of the robot is of 
paramount concern since it directly influences the 
quality of the final product. These cases can be 
handled using phase specifications. In (Eitelberg, 
2000) this problem is solved using tracking error 
magnitude specifications. 

Throughout the paper the following notation will be 
used: 

p: A set of plants. 
W: A finite set of frequencies. 
L(s):G(s)-P(s) with Pep 

/■-template(ö)): {L(ja):Pe p) with we W 

xisy.-1^ 
\ + L(s) 

T(s):F(s)-X(s) 
X={X(s):Pep} 

It will be said that X is a crossing set of transfer 
functions if 3X1, X2 e N : \XX (jco)\ = \X2 (jco)\ for 

some <w > 0. The set of frequencies in which there is 
crossings is noted by Z/(N) = {0 < ft) < cos}, where 

a>,=Supfa>0:\XlU<o$ = \xjU<o)\,i*j,Xl,XJevi\ 

For this type of set N, MD(N) is defined as 

\abs[x, (jco)\dB - \Xj {jm)\   ): X, and XjZXi* j, 
Max\ 

[coeLf(X) 

the maximum difference between the magnitud of 
transfer functions belonging to N for all frequencies in 

3 A SOLUTION FROM THE DESIGN VIEWPOINT 

Given design specifications over a frequency set W 
(Fig. 2a), the problem is to find G(s) to satisfy them 
(satisfying a set of boundaries). Once G has been 
obtained, F has to be designed to achieve nominal 
specifications (Fig. 2b). In Moreno et al. (1997) an 
algorithm to compute the boundaries over the nominal 
open loop transfer function (equivalently over G(s)) is 
presented. This algorithm is based on the construction 
of a 3D surface, where the boundaries are simply 
contour lines. Here, to compute a new set of 
boundaries the same idea is used. 
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(a) (b) 
Fig.   2.   (a)   Specified   T(s)   magnitude   and   phase 

variations 
(b) Allowed magnitude and phase of T(s) 

The main problem is that two objectives (phase and 
magnitude specifications) have to be met with only 
one degree of freedom, F. The G(s) degree of freedom 
will be used too, in order to satisfy a new set of 
boundaries which guarantee that finally, using F, both 
objectives can be met. 

A sketch of the algorithm is: 

Algorithm 1 

Compute Pm€ p such that 

Pm(jco)-G(jco) 
^sup(CO)= 

l + Pm(jo))-G(jw) 

where Pe p and« E W . 

= max 
Ftp 

L(jco) 
l + L(jco) 

2.    Choose F ■ 
B„ 

X, sup 

In step #1, the point Pm has been calculated for each 
Z-template(öJ) in such a way that the M-contour 
passing through the point Pm is the maximum M- 
contour passing through the Z'-template(ö}). The 
algorithm guarantees the achievement of a desired 
shape of the nominal magnitude but not necessarily 
the shape of the nominal phase (in general, the 
maximum N-contour passing through the shifted 
template does not pass through the point Pm). It can 
be demonstrated (Moreno, 2001) that by using this 
algorithm, the phase specifications shown in Fig. 3 
can be met, in which the upper phase bound for each 
frequency in W is modified such that the phase band 
for each frequency is the double of the original 
specification. In order to guarantee a proper F(s), the 
pole-zero excess of Xsup must be less or equal than the 
pole-zero excess of Ba. 

IIA 

Fig. 3. Phase specifications that can be fulfilled using 
the algorithm 

Thus, allowing a (conservative) modification of the 
original phase specification (Fig. 4), the previous 
algorithm gives a solution to the problem. 

Original specifications Derived specifications 

|T|    A 

II    A 

"^ 

Fig. 4. Transformation of the original specifications 

The computation of Xsup(G>) is very easy to implement 
if N is not a crossing set of transfer functions. The 
maximum M-contour passes through the same point 
Lm (Pm'G) for all the Z'-templates, so 

Lm(s) 
Xsw(s) = 

1+A.C0 

From the design viewpoint, this algorithm is a 
conservative solution to the phase specification 
problem, because the derived specifications are more 
restrictive than the original ones. Obviously, if the 
plant is a single integrator with uncertain gain and a 
OdB robust stability specification is used, the 
transformation shown in Fig. 4 is not needed, as the 
maximum M and N contours pass through the same 
point of each template. In this particular case the 
above algorithm is not conservative. For example, if 
the uncertain plant and the compensator are given by 

P(s) e p = |--■: k = 0.01,0.05,0.1,0.5,1 i (2) 

<*') = —A 

s 

a set of non-crossing open loop transfer functions 
(Fig. 5a) and a crossing set X in Fig. 5(b) are 
obtained. There exists a maximum in the set of open 
loop transfer functions but this is not the case when 
obtaining X(s), due to the location of open loop 
transfer functions on the Nichols Chart, as can be seen 
in Fig. 6. 

The original specifications in this example are given 
by the following transfer functions (corresponding to 
the curves shown in Fig. 7): 

B,(s) = 

1.2 109 

(s+10)(.s+104)(.?+1.2-104) 

5109 

(S+10)(S+5)(ä+10
4
)

2 
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0)(r/s) A|71 (dB) AHO 
0.1 0.0017 1.1458 

1 0.1703 11.3099 
10 6.9897 63.4349 

100 26.0314 87.1376 
1000 46.0207 89.7135 

Fig. 10 shows the magnitude and phase plots of X in 
the set N . 

Frequency (rad/soc) 

Opon-l.ocp Phase (fleg) 

(a) 

Frequency (rad/scc) 

(b) 
Fig. 5. (a) Set of open loop transfer functions, 

(b) Set of X(s) transfer functions 

Nichols Charts 

Open-Loop Phase (dog) 

Fig. 6. Situation of the set of open loop transfer 
fuctions on the Nichols Chart 

Using the algorithm in (Moreno et al,  1997), the 
magnitude and phase tracking boundaries can be 
computed (Fig. 8). The nominal open loop transfer 
function (Fig. 9) can be obtained using computer tools 
(Borguesani et al, 1995). The result is 

G(S): 
4336/ + 230880/ + 726610/ + 297840s+ 1.952 

0.000125s5 + 1.25/ +46.82/ +100.7/ +19.65 + 1 

Fig. 7. Original specifications 

-400 -350 -300 -250 -200 -150 -100 -50 0 
Phase (degroos) 

(a) 

20 

0 

.:■' 

-20 (      ', I                 i  ■ 

-40 -----„_.-_:_i:-"-'           /  ■ 

-60 

-400        -350 -300        -250        -200        -150        -100 -50 0 
Phase (degrees) 

(b) 
Fig. 8. (a) Magnitude tracking boundaries, 

(b) Phase tracking boundaries 

Then, the proposed algorithm can be applied to obtain 

F(s), given as result 

F(S): 
150000/ +1.506 10V +5.259 10'2/ + 2.772-IP14/ + 
4336/ + 9.566 10V + 5.263 1011/ +3.298 -10"/ + 
+ 8.72 ■ 1014/ +3.574 ■ 1014s + 2.342 ■ 109  

-3.644 ■ 1014/ + 9.077 • 1014/ + 3.574 ■ W"s + 2.342 • 109 

In Fig. 11, both magnitude and phase of the closed 
loop transfer functions T(s) are shown. 
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-60 - 

-40D -350 -300 -250 -200 -150 -100 -50 
Ph.se (dtgr.us) 

Fig. 9. Nominal open loop transfer function 

Fig.   12.   Set   of X(s)   transfer   functions   at   low 
frequency 

In this example, a robust stability specification of 0.2 
dB has been used, this being related with the 
approximation error incurred when selecting Xsup 

belonging to the set K . 

This example has shown that the computation of Xsup 

can be performed by defining an approximation error, 
using a robust stability specification. The difficulty in 
computing Xsup is another of the main drawbacks of 
the algorithm. 

4. A NEW TYPE OF BOUNDARY 

Fig. 10. X(s) transfer functions and specifications. 

Fig. 11. T(s) transfer functions and specifications 

Xsup has been selected belonging to the set K, but it 
can be observed in Fig. 12 that this selection is 
incorrect, because K is a crossing set of transfer 
functions. The approximation in this case has 
provided good results because MD(tf) is small. 

Obviously, there exists a relation between MD(x) and 

the situation of nominal open loop transfer function in 
Nichols Chart. So, when the Z-template is near of 
point (-180°,0dB) MD(x) is higher. 

The idea developed in this Section is based on using 
the 2DoF scheme to satisfy the shape of both the 
nominal magnitude and phase specifications instead of 
using only the F(s) pre-compensator for these 
purposes. 

In the loop shaping , the allowed region of the Nichols 
Chart has to be restricted to a zone such that the 
maximum M and N contours passing through the 
template cross the same point. This is possible only 
for a template with all its points lying at the same 
phase (an integrator with uncertain gain). In general, 
a new specification has to be defined directly related 
with the approximation error. A new type of boundary 
is proposed to satisfy these objectives, which is called 
the Nominal Phase Shaping Boundary. This boundary 
provides an allowed region C(a>) of the Nichols Chart 
given by the following expressions: 

C(a>) = 

(x, y) e Nichols Chart: 

max 
Pep S\\ + P{jm)-G{jco))      S\\ + Pm{jco)GU<o)) 

withx=P0(ja)G(jco)   andy = Angle(P0(jco)G(ja))) 

with 
\ + PmU«>yG\j(o) 

PUco)G(jco)       and 

"' \ + P{joJ)G{ja>) 

P0 s fc> being the nominal plant. 

In order to compute this region, the next algorithm 
(based on Moreno et al. (1997)) is used. For each 
frequency co, the template is shifted over the Nichols 
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Chart and, for each phase and each magnitude, the 
difference between the maximum N-contour passing 
through the template and the N-contour passing 
through the point Pm (the maximum M-contour passes 
through this point) is computed. This generates a 
surface in a three-dimensional space, in such a way 
that the new boundary at frequency a> can be 
computed by taking a section of this surface 
corresponding to a constant value (5(oo). 

In the following wc use the notation: 

□ Closed (the allowed region is the exterior of the 
boundary) in the case T^ and T3. Due to the fact 
that at small magnitudes, the phase of the 
template points is the same that the N-contours 
passing through these points. 

Q Open (the allowed region is above the boundary) 
in the case T2. 

In addition, S(co) can be used in the algorithm as a 
parameter to obtain less conservative results 
(restrictiveless boundaries for greater values of 5(ft))). 

Algorithm 2 

1. Choose a phase vector and a magnitude vector 
2. For each phase <|> and each magnitude / 

If (-180°,0dB) € Template, then 

( 
S((j>,l) = max Angle 

PUP 

LoU<») \ 

Angle 

P0(jco)/P(jo)) + L0(jco) 

L0(jco) > 

P0(M/PmU(o) + L0U(o) 

else 

end 
end 

5(0,/) = 36O0 

3.    Boundary = contour line of S for the height 8(a)) 

The region of Nichols Chart above this boundary is 
the allowed zone. Due to the shape of the N-contour in 
the Nichols Chart, it can be asserted that the 
satisfaction of this restriction is compatible with the 
satisfaction of the magnitude and phase tracking 
boundaries. 

Furthermore, the shape of this new type of boundary 
can be characterised from the shape of the templates, 
which can be typified within three types Tb T2, and T3 

(Fig. 13) 

□ Ti: The largest magnitude points are situated at 
the greatest phase (right part of the template). 

□    T2: The largest magnitude points are situated at 
the smallest phase (left part of the template). 

Q    T3:     There    exist    more    than     one    point 
corresponding to the largest magnitude. 

Tl T2 T3 

Fig. 13. Examples of the three types of templates    y 

5. AN EXAMPLE 

Consider the uncertain plant (taken from Horowitz 
and Sidi (1972)) 

P(s)=    ka     with ke [l,10] and ae [l,10] 
s(s + a) 

The working frequencies are W = {1,2,10} rad/s, the 
nominal point is k = a = 1, and the specifications 
given by 

5-1010 

*» = - 

B,(s) = 

(s + 10)(.s + 103)(.? + 5-103)(.? + 10J) 

IP10 

(s + l0)(s + \)(s + \0')3 

Tracking specifications (allowed magnitude 
variations) are given by 3.01, 6.99 and 20.04 dB for W 
= 1,2 and 10 rad/s respectively. The phase tracking 
specifications (allowed phase variations) are 45°, 
63.44° and 84.29° for the same W. Finally, 0.1° is 
used as a nominal phase shaping specification for all 
0)G W. In Fig. 15, the magnitude tracking boundaries 
(a), the phase tracking boundaries (b), and the nominal 
phase shaping boundaries (c) are shown. 

BodD Diagrams 

■100;- •   ■   -       .-.--.        --:... -. 

S     -200 ;■ - "'■"" "^     ; 

1  -^   ■  ■ /■"-;■■ 
m       -'-OO'-: :   : : : : : :~_~ : ----- ----.:.. >..: : :.„.: :".:: 

S     -«Or    -    -    -     ■     "■-  ;. >-^-          -.-■----    -i 

Q.      -200' "---. -     -\  

-4ooi ■' -<.^"_ \ 

.2 0 2 4 6 

Frequency (rad/sec) 

Fig. 14. Phase and magnitude specifications for T(s) 
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15 / \ 
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\  ^^. 2 I 

30 / ' /            '  - 
35 s' / 
-40 ~ ------ '"'.'" 

-250 -200 
phase(L) (degra 

-100 -50 

(b) 

-400 -350 -300 -250 -200 -150 -100 -50 

phase(L) (degrees) 

(c) 
Fig. 15. (a) Magnitude tracking boundaries. 

(b) Phase tracking boundaries. 
(c) Nominal phase shaping boundaries 

As done in the previous algorithm, using computer 
tools (Borguesani et al, 1995) the nominal open loop 
transfer function can be designed (Fig. 17). The 
obtained G(s) compensator is given by 

G(s) = 0.028 
( + 1) 
0.01 

( 
10000 

+1) 

Before computing F(s), it is important to check if 
specification are satisfied for other frequencies which 
are not considered in the initial working set W. In our 
case, at low frequencies the specifications are violated 
(Fig. 17). 

-400        -350        -300 -250 -200 -150 -100 -50 0 

phase(L) (degrees) 

Fig. 16. Loop-shaping of nominal open loop transfer 
function 

Bode Diagrams 

Frequency (rad/sec) 

Fig. 17. X(s) transfer 

Thus, two new frequencies 0.01 and 0.1 rad/s are 
included in W. In this way, the next set of 
specifications is given by: 

o(rps) A|71 (dB) AlKdeg.) 
0.01 0.0004 0.5729 
0.1 0.0432 5.7106 
1 3.0103 45.0000 
2 6.9897 63.4349 
10 20.0432 84.2894 

The  boundaries  corresponding  to  these  new  two 
frequencies are included in Fig. 18. 

\. 0.01 ■ 

0.1 

/ 
' 

" \   , ./ ,. /' 

-400 -350 -300 -250 -200 -150 -100 -50 
phase(L)(degrees) 
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-dOO -350 -300 -250 -200 -150 -100 -50 
phQsodHdogroos) 

Fig. 18. (a) Magnitude tracking boundaries, 
(b) Phase tracking boundaries. 

The nominal open loop transfer function is now (Fig. 
19) 

G(.s-) = 9.544' 
(    ,S"     +1)(      S      +1)(     *      +1) 
0.1101        0.01072        0.08572 

(    S     +1)(      S      +1)(     S     +1)(   *    +1) 
10000        0.00933        0.1167        5000 

Fig. 20 shows how specifications are satisfied over the 
whole frequency axis. The selected precompensator is 
given by: 

F(s)-- 
918400s6 +1.379 -10'V + 4.606 10'V +4.721 -10'V 

9433000.?7 + 6.613 -10'V +1.044-10'V +4.823- 10'V 

+ 9.748 ■ 10'V + 5.442 ■ 10'5s + 4.772 ■ IP13 

+ 4.816-10'V +9.797-10'V +5.446- \0]5s + 4.772 ■ 1013 

Fig. 21 contains the final result of the design stage 
using the proposed algorithm. 

6. CONCLUSIONS 

In this paper, the problem of dealing with phase 
specifications in QFT has been studied and two 
algorithms have been proposed to solve it. The first 
algorithm (a sketch has been included in the text) is 
based in the transformation of the original 
specifications, often leading to a conservative solution 
from the design viewpoint. The second algorithm is 
based in the inclusion of a new type of boundary in 
the loop-shaping stage. Both algorithms use the 2DoF 
controller to solve the phase nominal shaping 
problem. 

-250       -200       -150 
phase{L) (degrees) 

Fig. 19. Loop-shaping of nominal open loop transfer 
function 

Bode Diagrams 

10 10' 

Frequency (rad/sec) 

Fig. 20. X(s) transfer functions 
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Abstract: Based on the observation that inclusion of a system in a family of Bode 
diagrams implies inclusion on the respective family of step responses, some ideas about 
a new geometric approach for the robust performance problem for interval systems 
are presented. This approach allows to deal with classical time specifications such 
as overshoot, settling time and steady state error. Two examples are presented with 
remarkable results. 

Keywords: Parametric uncertainty, interval systems, robust performance 

1. INTRODUCTION. 

Given the parametric uncertain plant 

6(s,q) 
P(sA) a(s,q) (1) 

where q = (qi,...,qp), ft = fo ,qf], robust 
performance problem consists on finding a con- 
troller so that the closed loop response at each 
instant t* G [0,öo[ belongs to the interval 
[m~ (t*),m+ (t*)]. Functions m~(t) and m+(t) de- 
note the lower and upper bounds on the closed 
loop output. Usually, the kind of bounds one looks 
for is that of a low order system (first or second 
order). In this case, bounding functions will be 
derived from bounds on time domain specifica- 
tions such as overshoot, settling time and steady 
state error. These control specifications can be 
easily mapped to an uncertain reference model. 
For instance, if a "second order response" is de- 
sired with overshoot S G [0%, 10%], settling time 
te G [Is, 4s] and steady state error ±1%, then 
control specifications can be given by means of 
the reference model 

M(s,f) = 
K 

(2) 

Fig. 1. Unit step response of the reference model 
(2). 

where r = (Ä\|,w„) and K = [0.99,1.01], | = 
[0.5912,1], Qn = [1,6.7664]. Bounding functions 
m~(t), m+(t) correspond, thus, to the lower and 
upper envelope of the response of the uncertain 
reference model (figure 1). In general, the un- 
certain reference model will consist on a set of 
first and second order terms shaping the desired 
bounding functions. 

Definition 1.1. Given an uncertain system G(s,q), 
with output envelopes g~(t), g+(t), a trajec- 
tory y(t) is said to belong to the output space 
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TJ -?5 

(a) 

,G1(s) 

G2(s) 

Frequency (rad/see) 

Slop Response 

F(s) - C(s) ■P(*,q)- 

Fig. 3. TDF control structure. 

Based on this observation some ideas about a new 
geometric approach for the robust performance 
problem for interval systems are presented. The 
use of an uncertain reference model as shown 
above allows to deal with classical time specifica- 
tions such as overshoot, settling time and steady 
state error in opposition to current methodologies 
(Zhou. 1998: Bhattacharyya et al., 1995; Barmish, 
1994; Ackermann, 1993). Two examples are pre- 
sented with remarkable results. 

G3(s) 

G2(s) 

(b) 

Fig.  2.   (a)  Frequency envelopes   (b)  Unit  step 
output envelopes. 

of G(s,q), denoted by yG, if g~(t) < y(t) < 
g+{t), Vi G [0, oo[. The output space is then 
the functional interval [g~ (t), g+(t)] (Bondia and 
Pico, 2001). 

Consider a first order uncertain system, for in- 
stance: 

[0.75,1 
(3) 

In this case, the output envelopes are generated 
by two members of the family, in particular: 

9+M-+TTTs-Gli8) (4) 

These members also define the envelopes of the 
Bode diagrams of the family (frequency en- 
velopes). Any member with a Bode diagram 
within the frequency envelopes will have an out- 
put within the output envelopes. This can be 
generalized for any system of relative degree one, 
for instance: 

.,  , , 1.538s+ 0.8 f 

4.938s2 + 4s + 1 

2. MAIN RESULT. 

From the above observation the following is con- 
jectured. 

Lemma 2.1. Given a reference model M(s,f) and 
an uncertain plant G(s,q), let M(ju*) and 
G(ju)*) be their images in the complex plane 
for s = juj*, respectively. If G{ju*) C M(ju*), 
Vw* e [o,oo[then yG cyM. 

If a two degrees of freedom (TDF) control struc- 
ture is considered (figure 3), the resulting closed 
loop system is: 

F(s)C7(s)P(s,q) 
Gic(s,q) = (7) 

l + C(s)P(s,q) 

where F(s) is the prefilter and C(s) the loop 
controller. By lemma 2.1, the system will fulfill 
the specifications whenever 

Gidju*) Q M{ju*),   Vw*e[0,oo[        (8) 

Denoting by H(s) the inverse of the loop con- 

troller, H(s) d= 1/G(s), the following result holds. 

Theorem 2.1. S/e(jw*) Q M{ju*) if and only if 

H(J^)rU^) <= F(^*)MU^)-h Vo,* £ [0,oo[. 

Proof:    (sufficiency) By (7), 

1 + C(JOJ*)V{JUJ*) 

must hold, for all UJ* £ [0, oo[. Operating, to get a 
unique instance ofV(ju)*), 

F(J^) 

7T + 1 

as shown in figure 2. 

C{ju')V{juj') 

F{ju*) 

CM(ju*) 

C M(juj*) 

(10) 

(11) 
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kf 

- \ *+  
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Re 

Fig. 4. Image of the inverse of a first order system. 

Set inclusion is invariant under division by F(jui*), 
thus 

1 

H(joj*) V(ju') 
+ 1 _ F(jcj* 

(12) 
' M(jüj') 

The above condition will hold whenever set inclu- 
sion holds for the denominators. Therefore, 

H(ju'h 
1      +1C F(j^)      l (13) 

'V(ju*)  ' * -- «     'M(JL0*) 

ff(jV)*    , C F{ju*) kd}.    . - 1   (14) 

Necessity is proved using similar arguments.    ■ 

The control synthesis problem for robust perfor- 
mance consists on finding a prefilter F(s) and a 
loop controller C(s) — 1/H(s) so that theorem 
2.1 holds. It is, thus, a set inclusion problem. 

2.1 Inverse reference model image set. 

The reference model M(s,f) will usually be an 
uncertain system of first or second order. In this 
case, an analytic description of 1/M(JCJ*) can be 
obtained. 

First order reference model.  Let 

M(s,f) = 
1+fs 

(15) 

with k = [k~,k+] and f = [r   ,T+
]. For a fixed 

frequency w*, 

M(ju*,f)      k 
= 7(l+jfw*) (16) 

The image of 1 + jfuj* is a vertical line with 
endpoints 1+JT~U* and I+J'T+U;*. Considering 
without loss of generality positive gain, multipli- 
cation by 1/k expands or contracts this vertical 
line without changing the phase. Thus, the result- 
ing image set is the polytope shown in figure 4. 

Second order reference model.    Let 

jfe 
M(s,f) = 

+2fe+W 
(17) 

1 

with k = [k~,k+], i = [£-,£+], w„ = [w-,w+]. 
For a fixed frequency w*, 

1 =l(l-f^ 
M(jw*,r)       jfe ^       V^« 

def 1„,    *   —. 
= ~S(w ,r) 

+ 2^] (18) 

(19) 

The image of S(w*,f)  consists on a union of 
vertical lines. For Q = w*/wn, 

5(w,r) = l-öJ+j2^w (20) 

which corresponds to a vertical line with end- 
points 1 - Ü)2 + j2£~w and 1 - ö2 + j2£+w. As 
w„ = [CJ-,W+], then ö = [w*/w+,o;*/w~], pro- 
ducing a sweep of the vertical line on the complex 
plane. Multiplication by 1/fc converts this vertical 
line into a polytope, as for a first order reference 
model. Therefore, 1/M(ju*) will result from a 
sweep of polytopes on the complex plane (figure 
5). Vertices A to F will depend on w* and can be 
obtained evaluating (18) for the following values 
of the uncertain parameters: 

. to* < oj- 

A^(k-,C+,u;-)    D->(k-,£+,w+) 

B-^fc-.c,"-) -B^(fc-,r,w+) 
<7->(fc+,r^n) F->(fc+,r,w+) 

• to* > 10+ 

A^(k-,t,0    D^(k-,Z+,u+) 
B-+(ft-,r,"-)    E->(k+,£+,u+) 

The arcs AD, CF obey the expression: 

AD=-^(1-Ü2 + 2£+jü) 
K> 

CF=±(l-ü2+2CJü) 

— < w < —- (21) 

For  ui*    —   0  the   image   set  is   the   interval 
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Re 

Fig.  5. Image of the inverse of a second order 
system. 

2.2 Inverse plant image set. 

The image set 1/V(w*) will depend on the way 
the uncertain parameters appear in the transfer 
function of the plant. Considering independent 
uncertainty structure, the image of b(ju*,q) and 
o(jw*,q) are both rectangles, thus, \/V(u*) re- 
sults from the quotient of two polytopes (in par- 
ticular, rectangles). As the next lemma shows, this 
can be obtained by quotients of edge-vertex pairs. 

Lemma 2.2. Let Q\ and Q-2 be two complex plane 
polytopes with vertex sets V\ and V2 and edge sets 
E\ and E-2, respectively. Then, 

'Qx 
d Ez   YL 

Q-i) C V2 
U E-2 

(22) 

where d(-) denotes the border of the complex 
plane set (•). 

Proof:    See (Bhattacharyya et al, 1995).    ■ 

E\ jVi is the quotient of the rectangle a(jui*, q) by 
each vertex of b(jw*,q), resulting four rectangles 
scaled and rotated. Vi/E-i is the quotient of each 
vertex of a(ju>*,q) by the rectangle b{ju*,q). As 
the inverse of a line segment is an arc of a circle 
crossing the origin, this will lead to a set of convex 
and concave arcs (figure 6). 

In the case there is no independent uncertainty 
structure, more complex image sets will result. In 
this case, their convex hull can be used instead, 
although this will lead to conservativeness. 

2.3 A geometric interpretation. 

Condition (14) has a natural geometric inter- 
pretation (figure 7). H(ju*) is a complex num- 
ber multiplying the image set l/V{ju)*). There- 
fore TI(juj*) expands (or contracts) this set by 
\H(ju)*)\ and rotates it with respect to the origin 
by ZH(ju>*). Sweeping on  \H(ju)*)\ from 0 to 

Fig. 6. Quotient of two rectangles. 

 \\W)\ \ | L. 
;           l/M{jif)-l    \ !l/rcM*)i   ! 

.JP(J^I) *.   ,.. A. 

 j j ) |ZRMC.|...  i i i  
RMC 

Fig. 7. Geometric interpretation of theorem 2.1. 

oc, H(jw*)/V(ju*) describes a cone with origin 
at (0,0) (open loop cone, OLC). On the other 
hand, ZH(ju)*) determines the orientation of this 
cone. Similarly, F(jcj*) expands (or contracts) 
the image set 1/M(ju*) - 1 by \F(jto*)\ and 
rotates it with respect to the point (-1,0) by 
ZF(ju*). Sweeping on \F(JOJ*)\ from 0 to oo, 
F(JLO*)/M(joj*) - 1 describes a cone with origin 
at (-1,0) and orientation determined by ZF(jco*) 
(reference model cone, RMC). Given F(JOJ*), the 
cone with origin (0,0) and minimum width which 
inscribes to F(juj*)/M(ju>*) - 1 will be denoted 
as zero reference model cone, ZRMC. 

Sweeping on the frequency from 0 to oo, \F(ju>*)\, 
ZF(ju)*), \H(ju)*)\ and ZH(ju*), must be chosen 
so that theorem 2.1 holds. 

Let S£ and S^ be the left and right side of the 
cone C and </>J, (f>Q their angles with respect to the 
real axis for a fixed frequency w* (to ease notation 
this dependency will not be denoted explicitly). 

Definition 2.1. The width of the cone C is defined 
as follows: 

width(C) d= #fc - <t>c (23) 

Proposition 2.1. If there exist F(ju*), and H(joo*) 
so that (14) holds, then 
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width(ZMRC) > width(OLC)        (24) 

Proof: As H(JüJ*)/V(JUJ*) moves along the 
OLC, if (14) holds, then OLC must necessarily be 
contained in ZMRC, yielding (24).    ■ 

Proposition 2.2. width(ZMRC) > width(OLC) 
if and only if 

(25) »ZMRC t>OLC> 'ZMRC ,JOLC 

»ZMRC OLC Proof: (refer to figure 7) 
represents the angle OLC must be rotated with 
respect to the origin to overlap the left side of both 
cones {S%MRC = S^LC). Respectively, <f>ZMRC - 
(f>QLC represents the angle OLC must be rotated 
with respect to the origin to overlap the right side 
of both cones (SZMRC 

= ^OLC)- Therefore, 

then (a) if (j>zMRC ~ 'f'OLC   <   &ZMRC ~ &OLC 
when the right side of both cones overlap, 
the left side of OLC has already overpassed 
the left side of ZMRC. Thus, width(OLC) > 
width(ZMRC), 

(b) if &ZMRC ~ 4>OLC   >   <t>ZMRC ~ <t>OLC   then 

when the right side of both cones overlap, the 
left side of OLC is in the interior of ZMRC. 
Thus, width{OLC) < width{ZMRC), 

(c) if  <t>ZMRC  ~ &OLC    =   <f>ZMRC  ~ <f>OLC   the 

same angle will produce overlapping of the 
left and right side simultaneously. Thus, 
width(OLC) = width(ZMRC). 

Let F(s) be considered a gain: ZF(JOJ*) = 0, 
Vw* G [0,oo[. Then, ZMRC will remain fixed 
and OLC will be rotated by ZH(ju*). In this 

case, ^>ZMRC ~ &OLC correspond to the bounds 
on ZH(ju)*) which will lead to a solution of the 
problem. 

Corollary 2.1. Let 

ZH + Ü«) = cß+MRC (co) - <f>+LC M      (26) 

ZU- (ju) = <PzMRC M - <t>OLC M (27) 

If F(s) is constant then 

(a) if Vw G [0,oo[ ZH'(joj) < 0 < ZH+(JLO) 

then robust performance can be obtained 
with H(s) = K. 

(b) if Vw G [0,oo[ ZH+(JOJ) > H~(ju), then 
robust performance can be obtained with 
a dynamic loop controller. An analysis of 
ZH+(juj) and ZH~(JüJ) gives us the struc- 
ture of H(s). 

The problem of controller synthesis can be ad- 
dressed by an iterative process. Prom ZH~(jui) 

: OLC 

ZRMC    / 

.■■''  / 

RMC 
H(jw*)l-P{ju*) 

F(ju*)/M(ju>*)-\ 

Fig.  8.  Proportional controller design for first 
order systems. 

and ZH+(ju) the poles and zeros of C(s) = 
l/II(s) are selected (phase shaping). Then, F(s) 
and the gain of H(s) are changed until theorem 
2.1 holds. 

3. EXAMPLES. 

3.1 First order 

Let the uncertain plant 

P^ = ik (28) 

with Kp = [20,50] and fp = [10,40]. A time 
constant between 0.1 and 1.5 seconds and a steady 
state error of 1% is desired. This specification is 
matched to the reference uncertain model 

M(s,f) 
K 

1 + fs 
(29) 

with K = [0.99,1.01] and f = [0.1,1.5]. The 
images of 1/M(ju*)-1 and 1/V(ju*) correspond 
to polytopes of the form shown in figure 4. These 
poly topes will move along the cones RMC and 
OLC, respectively, due to \F(jw*)\ and \H(ju*)\. 
If F(s) and H(s) are considered gains (a propor- 
tional controller is sought) the orientation of RMC 
and OLC will remain constant with frequency and 
the value of their modules must be found so that 
situation in figure 8 holds for every frequency. 

A point p = x+jy belongs to F(JCJ*)/M(JOJ*) — 1 
if 

T
+

UJ*X -y< -T+0J*    x < F^P - 1  (30) 

T    0J*X — y > —T   ÜJ*      X > 

K- 

K+ 
1  (31) 

Making the change of variables x = x, y — 
oj*y, dependency with frequency can be avoided 
simplifying to a great extent the design. A point 
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K+ 

Hint 

H+ ffO'W) 

Fig. 9. Solution space. 

p = f,+jui*y belongs then to F(jiü*)/M(jco*) - 1 
if 

T
+

X — y < —r+    a; < 

r  x — y > — T      x > 

P(^*) 

P(j^*) 
7\~+ 

(32) 

(33) 

Due to convexity of both image sets, condi- 
tion (14) will hold whenever the four vertices of 

II(ju*)/V(jco*) belong to F(ju*)/M{ju*) - 1- 
This leads to the following equations1 

-T-K+ -T+K, 
?r<//(jw*)<—--^ 

T+ — T\T 
(34) 

(35) 

Bounds on F{juj") are affine functions on H(ju)*). 
The maximum value admissible for F(jco*) is that 
given by 

J/C?W } =   K+K- - K-K+    - Hini 

which correspond to the intersection of the 
bounds in (35). Thus, the pairs {H{ju*),F{jw*)) 
leading to a solution of the problem are given by 

F(jüü') e 
Kp -K, 

K+_ 

H(joj')e [H-,min{H+,Hint}] 

dcf  -T_/<"p 

(36) 

H' 
H+ dcf -T+/<p 

whenever IIini > II    (figure 9). 

For the plant (28) and the model reference (29) 
the solution space is given in figure 10(a). For 
H(s) = 0.6826 (C(s) = 1/0.6826 = 1.4650) and 
F(s) = 1.0238 inclusion (14) holds (figure 10(b)). 
In figure 10(c) a simulation of the closed loop 
system is shown. As it can be seen, specifications 
are fulfilled. 

1   Kp > 0 has been considered here. Similar expressions 
are derived for negative gain. 

 :P 
pi  

(a) 
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 

mm 

(c) 
0 1 2 3 4 5 6 7 

Fig. 10. (a) Solution space for H(s) and F(s) (b) 
Inclusion of image sets for u>* = 1 (c) Closed 
loop response. 

3.2 Second order 

Let the uncertain plant 

P(«,q) = 
K„ 

1 + 2&577 + \Un,pJ 

(37) 

with Kp = [0.3,0.5], |p = [0.4,0.5] and w„,p 

[1,1] and the reference model 

M(S,T) = 

1 + 2^ + W 
(38) 

with K  =   [0.99,1.01], f =   [0.7,1] and ün  = 
[10,15]. 

Considering F(s)   =   1, bounds on ZH(s)  are 
obtained applying corollary 2.1. These bounds 
determine the structure of the controller. For 

s(l/24s+l) 
H(s) = 

s2 + 0.9s + 1 
(39) 

138 



!                                ! 

xahp 

\       :   v h 
■ 

 y \ 
ahm        \ 

cs 

(a)     • 

Reference model 

(b) 

5. REFERENCES 

Ackermann, J. (1993). Robust Control. Sys- 
tems with Uncertain Physical Parameters. 
Springer-Verlag. 

Barmish, B. R. (1994). New Tools for Robust- 
ness of Linear Systems. Macmillan Publish- 
ing Company. 

Bhattacharyya, S.P., H. Chapellat and L.H. Keel 
(1995). Robust Control. The Parametric Ap- 
proach. Prentice Hall. 

Bondia, J. and J. Pico (2001). Application of 
functional intervals to the stability analysis 
of fuzzy linear systems. Proceedings of the 
Joint 9th IFSA World Congress and 20th 
NAFIPS International Conference, Vancou- 
ver, Canada. 

Zhou, K. (1998). Essentials of Robust Control. 
Prentice Hall. 

Fig. 11. (a) angle bounds (b) Open loop vs. closed 
loop response. 

the angle bounds hold (figure 11(a)). Sweeping on 
the frequency, the gain of H(s) must now be found 
so that theorem 2.1 holds. For a gain of 0.055 
specifications are fulfilled (figure 11(b)), although 
a complete inclusion of the image set does not 
hold for every frequency (lemma 2.1 is sufficient, 
but not necessary). The resulting controllers are 

F(s) = 1 

C{8) = 
18.1818(s2 + 0.9s + l) 

s(l/24s + l) 

(40) 

(41) 

4. CONCLUSIONS. 

A new geometric approach for the robust per- 
formance problem for interval systems has been 
introduced. It arises from the observation that 
inclusion of a system in a family of Bode dia- 
grams implies inclusion on the respective family 
of step responses. On the contrary to current 
approaches which deal with frequency domain 
specifications, this new approach allows to deal 
directly with classical time domain specifications, 
such as overshoot, settling time and steady state 
error by means of an uncertain reference model. 
The remarkable results obtained in the examples 
presented here motivate a further study on the 
methodology. A deeper study must still be done 
concerning lemma 2.1. 
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Abstract: A competent quantitative feedback control system design must 
not ignore the effects of digital implementation of the designed analog 
controller. Two of the most important and significantly quantifiable effects 
are: the loop effect that reduces stability margins; and the signal effect 
that refers to both, aliasing at the ADC and reverse aliasing at the DAC. 
The often observed huge sensitivity to control algorithm evaluation 
accuracy is not a control system design issue — it need not arise if the 
controller is implemented in the form of a velocity algorithm. 

Keywords: digital control, loop effect, signal effect, velocity algorithms. 

1. PROBLEM STATEMENT 

All real systems (Ps(s) in Figure 1) and most 
of their (engineering) performance 
specifications are in continuous-time. 
Hence, it is most natural to carry out the 
control system design in continuous-time. 
However, it must yield all relevant data for 
the digital control system implementation 
as well — including the sampling 
parameters. The effect of sampling (if any) 
must be visible in the continuous-time 
design. 

On the other hand, generally and 
unfortunately, there can be no one-to-one 
correspondence between a continuous-time 
design and its (partial) discrete-time 
implementation. The control engineer must 
learn to live with a certain amount of 
ambiguity. 

Figure 1: Simple SISO feedback system 
with digital controller. H(s) may contain an 
anti-alias filter. 

The following philosophy is followed in the 
recently published book "Control 
Engineering Course Notes" by Ed. Eitelberg 
(2000). 

Approximate the designed 
continuous-time controller by 
using, for example, one of the 
suitable simulation methods. 
Simulation methods, in general, 
yield sufficiently good approximation 
at low frequency' where the 
performance is specified. Then 
analyse the stability of the resulting 
closed loop system. This can be 
done by transforming the whole 
sampled control loop into a form 
where the stability is determined on 
the imaginary axis. This process is 
significantly simplified and can lead 
to very useful design procedures 
when the last transform is the 
inverse of the above controller 
approximation (simulation) method. 

This basic philosophy is illustrated 
schematically in Figure 2. The implicit and 
(especially) the explicit Euler methods, with 
the step-size of T, would be very simple to 
use for the controller approximation stage. 
Indeed, much attention has been given to 
the explicit Euler method (s = (z- 1)/T) by 
Middleton  and  Goodwin  (1990),  who use 
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the corresponding inverse transformation 
z = 1 + wT in Figure 2. They actually use '8 
instead of 'w', but the method is the same. 
Both of these Euler methods lead to the 
system stability boundary approaching the 
imaginary axis only for (very) small T 
relative to all system time-constants. 
Therefore, neither of these two methods can 
be generally recommended for quantitative 
control system design, as the stability 
cannot be judged along the to-plane 
imaginary axis. Nevertheless, explicit or 
implicit Euler methods can be used for the 
controller approximation in many cases — 
even though they are not good enough for 
stability analysis. 

G (~\ H i- )Ps(s) s\s) nsl° 
1 

i 

G 1 A AM z\z\ [HI 

/ 
i 

Gu 
\TTP w(w) j\W) [111 

Figure 2: Philosophy of control system 
design with digital equipment in the loop. 
Dashed arrow indicates approximation and 
solid arrows indicate exact correspondence. 
(Here: Gw(w) = Gs(w), w = (2/T)(z-l)/(z+l) 
and 1/Tis the sampling rate.) 

The simplest rational transformation into 
the w-plane with the stability boundary on 
the imaginary axis is based on the 
trapezoidal rule — the T-transform: 

1 + wT /2 2  z-1 
z= ~ <=> w = ■ 

wT \2 T z+1 (1) 

GZ(Z>GS\^^\ Fz(z) = Fs^^\(3) 
T z+1 T z+1 

For the pre-filter Fs(s) other approximations 
can be used without any effect on the 
following analysis of the feedback loop 
performance. 

Now the inverse T-transform is used, 
yielding 

Gw(w)=Gs(w) 

and 

with 

[HP]w(w) = [HP\ 
i + w r/2 
l-wT/2 

LwM=Gw(»)[HP]w(w) 

= Gs(w)[HP]w(w) 

(4) 

(5) 

(6) 

The first term Gs(w) of L^w) is formally 
equal to the first term Gs(s) of Ls{s) when we 
set w= s. It would be useful for the 
continuous-time design if, similarly, we 
could somehow relate the entire loop 
transfer function Lw(w) to Ls(w). There is 
indeed a very useful approximate 
relationship which was originally derived by 
Eitelberg (1988), see also (Eitelberg, 2000). 

We assume that Hs(s)Ps(s) is composed of a 
strictly proper rational part [HP]s(s) and a 

— sT dead-time term e     d as 

HS(S)PS(S) = [HP]S(S)< 
-ST_ 

(7) 

Under     some     realistic     conditions     (see 
Eitelberg, 2000) we obtain 

2. SAMPLING EFFECT ON CONTROL 

SYSTEMS 

We follow the philosophy of Figure 2 and 
assume that some continuous-time 
controller transfer functions Fs(s) and Gs(s) 
have been designed, yielding the loop 
transfer function 

Ls(s) = Gs(s)Hs(s)Ps(s) (2) 

The   'simulation/approximation'   controller 
algorithms are obtained as 

[HP]w(w)~[HP]s(w)\l + w 
2A-T l-wT/2 

1+ w T/2 

\k 

k = cei\(Td/Ty   A = JcT-Td 

(8) 

It is convenient to define Td=kT -A 
(0<A<T) as the loop dead-time which 
includes any delays caused by the digital 
equipment. 

Even when the continuous-time system has 
no dead-time or non-minimum phase-lag 
zeros,   the   digital   equipment   in   the   loop 
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always introduces the non-minimum phase- 
lag term (1 - wT/2) into the feedback loop 
LJ.W). For A * 0, the zero of (1 + w(2A-T)/2) 
is further from the complex plane origin 
than the zeros of the all-pass term that 
result from the analog dead-time or digital 
implementation delays. Hence, for any A, 
the dominant non-minimum phase-lag 
term is always (1 - wT/2). Because of the 
multiplicity of these non-minimum phase- 
lag zeros, the loop gain cross-over frequency 
can be limited to much less than the 1/T 
from a single right half-plane zero. 

A control system designer must not ignore 
the effect of digital equipment on analog 
signals — aliasing by the analog to digital 
converter (ADC) and reverse aliasing by the 
digital to analog converter (DAC) — as 
distinct from the above described loop 
effect. The corresponding expertise is 
assumed for the purpose of this 
presentation. 

are specified (the Nyquist stability criterion 
remains valid). Furthermore, this approach 
makes it easier to simultaneously visualise 
the 'signal effects' — aliasing and reverse 
aliasing in the feedback loop — in Figure 3. 

Figure 3: Loop and signal effects of digital 
control equipment. 'l-sT/2' indicates the 
dominant loop effect'. Dashed lines indicate 
non-linear formation of effective low- 
frequency aliased disturbance d^ in the 
ADC and high-frequency reverse-aliased 
disturbance drai in the DAC. 

This design philosophy is demonstrated 
with the following simple example. 

3. CONTROLLER DESIGN PROCEDURE WITH 
"I-ST/2' 

The previous section characterised the 
sampling effect in the iü-domain. Strictly 
speaking, a design specification should be 
translated from the s-, or ©-domain to the 
u;-domain as well, before a controller 
design can be executed. However, it can be 
suggested that there is no practical control 
engineering need for the proliferation of 
complex domains: s, z, w, 8, and who 
knows what else. In particular, replace the 
variable w in eq. (8) with s. That means, 
formally, 

[HP]w(s)~[HP]s(s) 1 + S 
2A-T i-sr/2 

l+sT/2^ 

(9) 

Since Gw(s) = Gs(s), we can design in the s- 
domain by using 'I-sT/2' with appropriate 
multiplicity (alone and in the all-pass term 
of eq. (9)) as the only (dominant) effect of 
the digital equipment in the loop — the 
'loop effect. It is true, that the frequency 
values around 2^/T and above lose some of 
their usual meaning (they cannot get 
through the digital equipment without 
being aliased into the Nyquist frequency 
band), but this is beyond the loop gain 
cross-over where only the stability margins 

Example 1: Digital controller in the loop. 

Let the  plant,  performance,  and  stability 
specifications be given as 

Ps(s) = 

|S(>J = 

1+ s/10 
s(L + s/0.l)' 

HB(B)=1       (10) 

i+i-O) 
< = -40 dB, 

100 (11) 

ö)<0.03 

HM = 1 + L(jb) 
<3dB,    Vft)        (12) 

Due to considerations of computing time, 
only first-order difference equations are 
allowed as control algorithms and it takes 
one sampling interval to evaluate the 
algorithm. Figure 4 shows the plant 
frequency response Ps(/ß>) on the sensitivity 
chart background. A loop Ls(jco) 
Ps{jo)}Gs(jco) is (over-) designed so that it 
satisfies the low frequency specification in 
eq. (11) and leaves phase reserve for the 
stability margin in eq. (12): 

Gs(s) = 3 
l + s/0.3 
l + s/7 

(13) 
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Figure 4: Feedback loop design. Ls 
indicates continuous design and Lw 
indicates digital implementation. 

With this phase reserve, a lower sampling 
rate can be tolerated than with a smaller 
phase reserve. In this example, because of 
the algorithm evaluation delay (dead-time) 
of T, the loop effect is (1-ST/2)

2
/(1+ST/2). 

This would limit the loop gain cross-over 
frequency to about 0.5/T, when 0.2jt phase 
margin is allowed (cf. Eitelberg, 2000). 
Equation (12) is equivalent to at least 0.25;r 
phase margin and leads to a lower gain 
cross-over frequency limit. The 
corresponding Lw{jco) = Ps(jco)Gs{ja>) (1- 
jmT/2)2/(l+jcoT/2) is shown in Figure 4 with 
the lowest possible sampling rate 

1/T = 4.5 (14) 

The control algorithm is found from eq. (13) 
by substituting s = (2/7)(z- l)/(z+ 1). The 
discrete-time transfer function is 

21T+140 21T-140  z + - 

Cfe(z) = 
_        IT +9. 1T+ ■?. 

z+- 
7T-2 

IT + 2 

(15) 

The corresponding algorithm is 

*      7T-2    *      , 
"i =:^T77ui-i + 

21T+140 21T-140 
 e.H e 3rl 7T + 2    " " 7T + 2 7T+2 

= 0.125u*_1 +40.69ei-38.06ei_1 

(16) 

u* denotes the computer internal sequence 
of the control values. Due to the mentioned 
delay, the physical computer output (plant 
input) is denned by 

Uj- ="*_! = 0.1250ui_1 +40.696^ -38.06e.j_2 
(17) 

Nevertheless, eq. (16) is programmed in the 
computer and not eq. (17). This example 
with PAM-DAC (pulse amplitude modulated 
digital to analog converter) was originally 
implemented with analog and digital 
electronic components, see (Eitelberg, 
1988). A Simulink implementation is shown 
in Figure 5. Input limits had to be included 
so that a (fair) comparison with a PWM- 
DAC (pulse width modulated digital to 
analog converter) implementation is 
possible. 

Figure 6 shows the system's ability to 
reduce sinusoidal output disturbances and 
to alias high frequency noise. Notice, that 
only frequencies above 2nfs/2 = n/T = 
14.137 rad/[time-unit] — far beyond the 
loop gain and phase cross-over frequencies 
— will be aliased. The aliased frequency in 
da, is 2n/T- 28.244 = 0.03 rad/[time-unit] 
for the dashed line and 2n/T - 28.24 = 
0.034 rad/ [time-unit] for the dash-dotted 
line, dg] amplitude is transferred to the 
output without change because | L/(l + L) \ 
= 1 at these frequencies. In real systems, 
one is very unlikely to see such clean 
sinusoidal aliasing. 

0- time 

Clock To Workspace 
fV 

Gfc& 40.69z-38.06 

z2-.125z 

Discrete G + delay 
-h 
Actuator 

-5...5 

10s 2+s 

Plant 

^fiU- 

-CB=: {V yout 

□ 
Scope 

To Workspace 1 

Figure 5: Simulink block diagram with 
PAM-DAC (Pulse Amplitude Modulated 
Digital to Analog Converter). 

0.51 

0.49 

500 

Figure 6: Disturbance rejection with PAM- 
DAC. Solid line shows the y response to cf 
= sin(0.03f) with n = 0. The dashed and 
dash-dotted lines show the y responses to a 
100 times smaller sensor noise, n = 
0.01 sin(28.244t) and n = 0.01 sin(28.24f) 
respectively while cf = 0. 
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The PWM-DAC (Pulse Width Modulated 
Digital to Analog Converter) Simulink 
implementation is shown in Figure 7 and 
Figure 8 shows this system's ability to 
reduce sinusoidal output disturbances and 
to alias high frequency noise. 

Figure 8 illustrates the role of the signal 
dj-al in Figure 3 — the dominant conversion 
frequency of 4.5 Hz is clearly visible. In this 
example, no anti-alias filters are 
implemented. This causes a slight problem, 
because the PWM-generated reverse-aliased 
frequencies in dra] are aliased back into the 
system bandwidth via d^ and the result is 
sensitive to the relative offset between ADC 
and DAC. In particular, the conversion 
frequency f^ (and its harmonics) alias 
precisely into a constant bias — this is 
clearly visible in Figure 8. This can happen 
with PAM-DAC only if the converted signal 
is held for lesser duration than the 
conversion interval. 

Span | -5 p      "T 

time 

&m 

To Workspace 

°   40.69z-38.06 
^     z^-.125z 

Discrete G + delay 

fV 

Actuator 
-5...5 

Plant 

to 

-o*^ IV To Workspace 1 

□ 
Scope 

Figure 7: Simulink block diagram with 
PWM-DAC. The block PWM evaluates 
(u[3]*rem(u[1]*u[2],1) < (u[5]-u[4]))*u[3]+u[4]. 

.515 

0.51 

.505 

0.5 

.495 

0.49 

rate=9/2 

rate=10 

rate=9/2 

15 20 
time 

25 

Figure 8: Disturbance rejection with PWM- 
DAC. Solid lines show the y response to d*= 
sin(0.03f) with n = 0. Dashed line shows the 
y response to n = 0.01 sin(25.3t) while d*= 
0. The sampling rate is 9/2, but the PWM 
rate is varied as indicated in the figure. 

Figure 4 indicates a theoretical gain margin 
of about 12 dB = 4 and a limit cycling 
frequency of about 4 rad/[time-unit]. This 
is confirmed experimentally for both, PAM 
and PWM, implementations. 

This example can be made more practical 
with an anti-alias filter l/(l+sT/2). The 
digital equipment together with this 
simplest of filters yields a modified 
equivalent (l-sT/2)2/(l+sT/2)2. The 
improvement in high frequency noise 
transfer properties, especially with the 
PWM implementation, would be significant. 
There is an additional way to reduce the 
PWM-induced reverse aliased d,-^. In Figure 
7, the PWM rate can be set independently 
of the sampling frequency in the block 
'Discrete G + delay'. For example, Figure 8 
illustrates the effect of changing 9/2 to 10 
in the block 'Rate'. 

End of Example 1. 

For plant modes and disturbances above 
the sampling rate, additional filtering may 
be necessary — see (Eitelberg and Boje, 
1991) or (Eitelberg, 2000) for some suitable 
design procedures. 

4. IMPLEMENTATION WITH VELOCITY 
ALGORITHMS 

Direct implementations of the control 
algorithms tend to calculate very small 
differences between large numbers. This is 
only mildly visible in eq. (17) because of the 
slow sampling rate relative to the controller 
corner frequencies. These numerical 
problems are strongly compounded in 
direct implementations of high order 
control algorithms. One of the remedies can 
be an implementation of the algorithm in 
the FSR form (incorrectly called FIR). 
However, this tends to require summing 
very many small numbers. 

Here, the often recommended remedy of 
splitting the discrete transfer function (and 
the corresponding algorithm) into series- or 
parallel-connected sections of maximum 
second order is followed (Phillips and Nagle, 
1984; Middleton and Goodwin, 1990). 
Consider the second order controller 
section: 
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E(s)      s2 +a±s+ a2 

The algorithm is defined by 

Gz(z)=Gs((2/r)(z-iy(z+l))   and   can   be 

written as 

*JZ\Z)- 2   . 
z   +aaz + a22 

(19) 

Assume now, that the a^ and b^ are 
implemented with some small errors Aaz; 
and Ab*,-. These implemented 

and ..+Aa zi 
bzi = bzi+*bzi 

correspond to a different continuous-time 
controller 

Gs(s)AS2+V + ^? (20) 

bz,- are, we still have the problem of working 
with very small differences of large 
numbers in the direct implementation of 
even first order algorithms. This 
phenomenon is somewhat easier to analyse 
in any of the equivalent (canonical) state- 
space formats, some of which are 
recommended for digital filter 
implementation (Phillips and Nagle, 1984). 
Any rational proper SISO controller transfer 
function (such as in eq. (18)) can be 
modelled in the time-domain by state 
equations 

3^= Ax+Be 

u=Cx + jbQ e 
(22) 

Application of the Laplace, T-, and inverse 
z-transforms yields directly an explicit 
(state space) controller implementation 
algorithm 

The  continuous-time coefficients  relate  to 
the discrete-time implementation errors as 

*0  =i50 + AhzO-Ab
Zl
+Abz2' 

Ab^o - AJb;,, 
i\ = b1 + ^ skL 

i>> =i>2+- 
Ab^+AJb,, +Ab 

(21) 

Aa. 

a2 =a2 +" 

T 
Aa„, +Aa„ 

See (Eitelberg, 2000) for the derivation of 
eq. (21). Clearly, small T leads to extreme 
sensitivity in the actually implemented 
control system — even for very small 
implementation errors of the algorithm 
coefficients. Consider, for example, the 
coefficient a2 which is equal to the square 
of a second order controller denominator 
corner frequency. For example, if the 
sampling rate is 100 times the corner 
frequency then a21

Q = lO"4. Let the 'other' 
denominator coefficient az\ (azl -> -2 for 
small 7) be implemented with a 12-bit 
mantissa, then the 0.5LSB round-off error 
of azl is a clearly very small 2~12 = 0.00024 
(0.012% of |azl| = 2) — but the relative 
error of a2 due to Aa2l is 0.00024/10"4 = 
2.4 (240% of a2)! 

T 
I A 

2 

T 
I+ —A 

2     J 
x i_1 + IB —L 

u
i= Cx i + bOei 

T^} 
(23) 

For small T, the recursion equation for x; 
has the same coefficient precision problem 
as the above analysed direct 
implementation. However, here it is easy to 
modify the algorithm by first evaluating the 
state increment and then adding this 
increment to x^. Add and subtract x^ 
from the right-hand side of the difference 
equation in eq. (23). After simplification, the 
algorithm is now evaluated in the 
numerically well-conditioned sequence 

Axi= T 
T 

I A 
2 

-i-l e • + e • , 
Axi_1 + B—3 ti 

xi=xi_1+Axi 

ui= Cx i + boei 

(24) 

There is one slightly arguable problem with 
this algorithm — Ax; can only be evaluated 
after the ADC releases the new measured 
et. In order to avoid this, a linearly 
transformed state vector v; is introduced 
with yet to be defined transformation 
matrices M and N so that Xj = Mv i + Nei. 

Two specific choices that were derived by 
Eitelberg (2000) yield 

Now,      never      mind      how      exact      the 
implemented algorithm coefficients az; and 
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Avi= r 
T 

I A 
2 

Avi-1 + 
r 

I- —A 
2     J 

-i-l 

vi= vi_1+Avi 

u
vi=Cvi 

U^u
vi+Gs\-Pi 

Be ■i-l 

(25) 

AvU= aAllVl,i-l + aAl2V2,i-l + i>Aiei_1 

Av2jl= aA21vltirl + aA22V2ji_1 +bAzeirl 

where 

(27) 

or 

Av,- = T 
T 

I A 
2     J 

l-l 

{»vH + BeH} 

*i= Vi-i+Avi 

l-l T 
I A 

2 

u.= u   ,+ Gc —  e. 

(26) 

Both algorithms can be called the 
(generalised) velocity algorithms, because 
the increment Av; is exactly, or 
approximately, a scaled rate of the 
continuous-time controller state v at tj_j. 
This is most clearly visible in eq. (26), 
where Av^+Bei.^^. In both 
algorithms, the first three equations can be 
evaluated in the given order before the new 
measurement e{ is available. After the ADC 
releases this e;, only a single multiplication 
with Gs(2/T) and a single addition to uw- 
need to be carried out in the last equation 
of the algorithm, before Uj can be passed on 
to the DAC of the controller. Thus, the 
computation delay can be practically 
eliminated — depending on the operation of 
the entire control software. 

It is an additional advantage of velocity 
algorithms in general, that AVJ can be 
accumulated separately over many time- 
steps, if necessary. Thus, at every step, the 
greatest possible portion of the 
accumulated increment can be transferred 
to (the finite precision mantissa of) v,- and 
the remainder is retained in the increment 
accumulator without any loss of precision. 
This trick is even more crucial in the 
(generally cheaper or faster) fixed-point 
controller implementations. 

For a second order controller section in 
eq. (18), eq. (25) can be written explicitly as 
(Eitelberg, 2000) 

D*(2/T)=l+a1(T/2)+a2(T/2) 

-r(ai+a2(T/2)) r 
aAii *~T~.—\ '    aA12 -     TJ~,   \ 

D (2/r) D (2/r) 

-Ta2 -Ta2 (T/2) 
aA22 =       *,\   / 

D   (2/T) 
aA21 -     * ,  ,   , 

D   (2/T) 

i>Al = 

T^-bp ax )+ fa -b0 a 2 )r + (a±b2 - a 2i>iXTl2f ] 

[D*(2/T)f 

bA2 = ■ [(b2 -jb0a2 )+ fab2 -a^T 

((ai - a2 )b2 -b0a 2 )- aia2 fa - b0 a1 )\T/2 f J 

Gs(2/r) = b°+^r/2)+Mr/2)2 

D (2/r) 
(28) 

Equation (26) can be written in a very 
similar form. 

The following example demonstrates the 
implementation of the above ideas for a not 
particularly simple controller. 

Example 2: Series connection of controller 
terms. 

In (Eitelberg, 2000), a marine stabilisation 
system design is reported. The following 
controller transfer function was derived: 

Gs(s) = T 

1+- ahn 
/  _ \2 V 

1 + 1 

/ 

50     ySOj     y       300J 

s     I s 
1+ 0.2— +    

17     U7 

(29) 

/ 
1 + 1.4 

V 
17     ^17j 
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One can utilise 1/(1 + s/300) as the analog 
anti-alias filter. The rest of Gs can be split 
into two second order sections and the first 
order PI section: 

H,i=vx±-i-°-lvii-i + 0-002v2,*ri- • —i-i 
V"2,i=V2,i-l-5Xi,rl 

\,i=vxi+0-2ei 

+ 0.5e^ 

-0.005v^,._n+3et1       (32) "2,i-i '1-1 

1 + - 

Gsi(s)=- 
10 

s      f  s 
1 + 1.2 +     

50     150 

h(*) = 

s     I s 
1+0.2—+   — 

17     ll7 
'snotchVy s      ( B\2' 

1 + 1.4— +    
17     117 

GsPl(s)-(1 + 17^) 

(30) 

The corresponding digital implementation 
can be represented in a block diagram form 
as in Figure 10. 

The notch-filter block G^tch is obtained 
from G^otch = (s2 + 3.4s + 289) / 
(s2 + 23.8s + 289). Therefore, b0 = 1, b\ = 
3.4, b2 = 289 and a2 = 23.8, a2 = 289. 
Using T/2 = 0.001 in eq. (28) yields D* = 
1.024089 and hence, 

aAli =-0.047045;    aAi2 =0.0019530 

aA21 =-0.56441;      aA22 =-0.00056441 

bA1 =-0.038892 

hA2 = 0.022754 

Gs(2/X)= 0.98008 

(33) 

The   algorithm   can   be   written   with   an 
'outrageous' 1-digit coefficient precision as 

Figure 10: Digital controller implementation 
in series form. 

The transfer functions Gz\, G^^ch* and 
GzPI in Figure 10 represent the equivalent 
velocity algorithms. Since 1/(1 + s/300) is 
now the highest frequency component of 
the analog part of the feedback loop, a 
suitable sampling rate would be about 300 
samples/second. Let us choose T=2ms, 
on the safe side. Eitelberg (2000) has 
shown that 10 ms would be possible. 
Nevertheless, here the algorithm's ability to 
perform sufficiently accurately with a Very 
high' sampling rate of 500 samples-per- 
second is demonstrated. 

The low-passing block Gz\ is obtained from 

Gsi(s)= (25 0 s + 25 0 0 y (s2 + 60s + 2500 \ 

Therefore, b0 = 0, bx = 250, b2 = 2500 and 
ai = 60, a2 = 2500. Using T/2 = 0.001 in 
eq. (28) yields IT = 1.0625 and hence, 

«Ail =-0.11765;    3^2=0.0018824 

aA2i =-4.7059;      aA22 =-0.0047059 

bfa = 0.45092 

jbA2 =2.68446 

GS(2/T)= 0.23765 

(31) 

The   algorithm   can   be   written   with   an 
'outrageous' 1-digit coefficient precision as 

«U = V3,i-1 - °-05V3,rl + °-002V4>l - °-04^,i-l 

Vi,i = V4,i-1 - °-6V3,i-l - ° -0006 V4,i-1 + °-02^,i-l 

*2,i=V3,i+^i 
(34) 

Notice that the states v3 and y4 are 
allocated to G^otch» since v\ and v2 axe 
already in use for G\. The PI controller 
block Gzpi can be obtained from 
GsPI(s)=(i+6.25/s) by setting a\^= a2 = b2 

= 0 in eq. (28), but here a direct route is 
taken. Application of the inverse T- 
transform yields 

— =GzPI{z): 1+- 
6.25 

2  z-1 

T  z + lj 

1+ 0.00625 ' 
z + 1 

z-1 

(35) 

It is convenient to use the following trick. 
Substitute (z + l)/(z- 1) = 1 + 2/(z- 1) into 
eq. (35) and solve for the controller 
output U: 

rr      , 0.0125 
U=   1.0062 5 X2 + X2 

Introduce       the       new      variable 
[0.0125/(z- 1)]X2 into eq. (36). Then 

zV5 =V5 +0.0125X2 

U = (1.0 0 62 5 X2 +V5) 

(36) 

^5 

(37) 
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Inverse     z-transform     yields     (with     an 
'outrageous' 1-digit precision) 

uS.i :V5,±-1 + °-01(*2,i-l) 

Ui=V5.i+X2,i 

(38) 

In Chapter VII of (Eitelberg, 2000), some 
equivalent but much more practical PI 
controller implementations with reset wind- 
up protection are derived. This is not 
shown here. 

Notice that the individual section outputs 
X\ and X2 are not needed outside the 
controller. Yet their values have to be 
stored for the evaluation of the follow-on 
algorithms and the overall controller output 
u. All three sections can be combined into 
one fifth-order algorithm by eliminating 
these 'unnecessary' variables x\ and X2 — 
see (Eitelberg, 2000). 

The above velocity algorithm is 
implemented in the Simulink diagram in 
Figure 11. The controller sections are 
implemented individually — for physical 
clarity and for relative ease of 'debugging' 
(or delousing?). 

The individual controller sections are 
implemented with the Simulink blocks as is 
shown in Figure 12. The step responses of 
these digital filters are compared 
individually and collectively to their 
continuous-time counterparts — this leads 
quickly to finding the almost inevitable 
errors. A few typing errors in the preceding 
equations were found this way. After all 
small differences are plausibly explainable 
with the digital implementation effects or 
with the used numerical precision, these 
controller blocks are inserted in the 
(continuous-time) feedback loop of 
Figure 11. 

Incidentally, during this debugging activity, 
one can try setting small coefficients to 0, 
or 1, and thus optimise the number of 
arithmetic operations. The debugging is 
very much more difficult in the combined 
controller implementation. In the 
experience of the author, the principle of 
'divide-and-conquer' is extremely useful in 
software development and in many other 
activities. Many 'modern' control methods 
may be aesthetically pleasing but make 
'dividing and conquering' difficult. 

Figure 11: Control    system    with    velocity 
algorithm in series form. 

»| -.ru[11+.002'u[2]+.5'u[3]    f—»LLJM-I^JT—.fr|  

-5'uI1]-0.005'u[2]+3-u[3]     |—>ljJH1/zr 

Eh 

-L>| u[1]+,2'u[3J~| >{T\ 

>[ •.05*u[1]+.002'u[2]-.04' ̂ JSD+SU^ 

6'u[1]-0.0006'u[2]+.02-u[3]   |—RlIH^iT 

B- 

|uPl+u[3]   | *{T\ 
out 2 

& 

^«M|Nn u[1]+u[2] -*H 

Figure 12: Simulink implementation of the 
individual controller sections. 

Figure 13 indicates achievement of 
performance that was originally specified in 
section IV-6.2 of (Eitelberg, 2000), despite 
only single-digit coefficient precision in this 
case. 

1 ^x u 
0.5 

0 
VA^!/                           / 

0.5 V                    / 
-1 , ?^~~^, 

10 

Figure 13: Performance of the feedback loop 
of Figure 11 with 1-digit coefficient 
precision in the velocity algorithm. The 17 
rad/s vibration transfer to the actuator 
(from y to u) is significantly reduced by the 
notch filter. 

To prove the advantage of the above velocity 
algorithms, the identically sectioned direct 
(position) algorithms are calculated as 
follows. 
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Gzi(z) = G^ 
2  2-1 

T  z + 1 

0.23822 + 0.004712-0.233 
(39) 

22-1.88z+0.887 

G znotch (z)=Gs 

2   2-1 

T   2+1 

0.98022 -1.952+ 0.973 

22 -1.95Z+0.954 

(40) 

QzPl(z)-GzP 
f 2  2-1 
\r 2+i 

1.012-0.994 

z-1 
(41) 

The often observed huge sensitivity to 
control algorithm evaluation accuracy can 
be avoided by velocity algorithms, two of 
which were shown in this paper. The 
benefits of a velocity algorithm were 
demonstrated in an example from a real 
design. 

More details and the very important digital 
implementation of industrial PID controllers 
can be found in (Eitelberg, 2000). 

The given 3-digit coefficient accuracy leads 
to good closed-loop performance despite 
very wrong individual section step 
responses. When they are implemented, 
however, with still a comparatively 
generous 2-digit accuracy then the closed 
loop system is unstable. 

End of Example 2. 

5. CONCLUSION 

A competent quantitative feedback control 
system design must not ignore the effects of 
digital implementation of the designed 
analog controller. Two of the most 
important and significantly quantifiable 
effects are: the loop effect that reduces 
stability margins; and the signal effect 
that refers to both, aliasing at the ADC and 
reverse aliasing at the DAC. The loop effect 
and some examples of the signal effect were 
analysed and demonstrated in an example. 
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Abstract: Digital Signal Processors (DSP) are excellent candidates for the implementation 
of multivariable complex control fast systems. This paper reports the application of fixed 
point DSP in the control of a multivariable mechanical system, a 3 DOF robot 
manipulator. Results from analysis of the effects of controller's coefficient wordlength on 
the robustness of the system allows the choise of the must suitable DSP. Then, an optimal 
realization was computed using a method based on the worst-case criterion for the 
minimization of the effects of error quantization noise at the output while avoiding 
overflow of the internal signals of the controller. The implemented controller behaves 
excellent without not much change in the robustness characteristics of the system. 

Keywords: Fixed Point Arithmetics, quantization error, robust control, Optimal realization. 

1. INTRODUCTION 

Implementation of complex controllers using fixed 
point arithmetic processors has become very 
important in the industrial applications due to the low 
cost, portability, and high speed of this type of 
processors. Application to disc drive servos see 
Hanselmann, et al., (1987), Silvinski, et al., (1985), 
and robotics see Henrichfreise, (1988), can be found 
in the literature. Implementation of a controller in 
fixed point processors, bear many problems not found 
in its floating point couterpart. See Hanselmann, 
(1987) for an account of the kind of problems we can 
met when dealing with this type of processors. 
Briefly, working with fixed point arithmetic may 
present problems of numerical representation of signal 

and coefficients and overflow. These two only 
problems can induce instability or deviate the 
performance of the close loop system from 
specifications. Reduction of the effects above 
mentioned depends, among other things, heavely on 
the structure we chose to implement our controller. 
Here, we worked with the problem of computing an 
optimal structure for a controller of a three degrees of 
freedom robot manipulator. But, before we went into 
this problem, analytical and simulation analysis were 
carried out to find the 'best' wordlength of the 
controller coefficients that did not deteriorate the 
robustness of the close loop system. To do this we 
obtained the upper bounds of the singular value for 
stability and nominal performance for different 
wordlength   values,   and   finally,   carried   out   an 
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analytical test propoused by Fialho and Geourgiou 
(1994). There exist many structures for a single 
controller for been implemented, see Neuman, et al., 
(1979), Williamson, (1985). Our aim was to derive a 
structure such that the controlled system robustness 
remains as close as possible to the 'ideal'. Hence, we 
opted for using a structure or realization derived under 
an optimal criterion, where some design conditions 
were similar to the conditions taken during the design 
process of our controller, as for example the condition 
to consider the exogenous inputs to have unknown but 
bounded power density spectrum. Robert & Mullis, 
(1978), worked out an optimal realization base on a 
cuadratic criterion for digital filter implementation. A 
new approache to this problem by Rotea-Williamson 
(1995) considers the H2 and H00 norm minimization 
that cover both, the case when the power density 
spectrums of the quantization error and/or the 
exogenous inputs to the close loop system, are known, 
and the case when they are unknown but bounded. 
Using the computational procedure propoused by 
Viassolo (1996), we derived several optimal 
realizations from where the 'best' was chosen. The 
paper is divided as follows: Section II gives a brief 
introduction to the problems found when using fixed 
point processors. Section III presents the theory of the 
method to derived the optimal 2/oo realization and the 
computational procedure. Section IV, shows the 
analytical, and the experimental results obtained from 
the close loop system for different optimal realization 
of the controller implemented in a DSP. Finally, in 
Section V we present the conclusions of this work. 

2.    PROBLEMS ON USING FIXED-POINT 
PROCESSORS. 

In this section we specify briefly many of the 
characteristic problems found when fixed-point 
processors with a limited resolution on the 
representation of signals and coefficients are used to 
implement a controller. 
Arithmetics.-Problems we can find when using fixed- 

point arithmetics data are: overflow due to the fixed 
wordlength range, and quantization effects due to 
roundoff or truncation. These two effects are a 
constant source of error that we need to be aware of. 
Therefore, we need to know the different techniques 
and methods of analysis to work with these two 
sources of error in order to diminish theirs effects on 
the system performance. On this design digital 
representation in two's complement was used. Any 
number in two's complement is written as: 

rl-1   r_Av-'? 
(1) 

h c=0] 

where bj, j=0,1 p-2 represents the bits (0 or 1), bPi 
carries the sign information p is the total wordlength 
and a determines the location of the binary point. If 

oc=0, then d is an integer, and if a=1, d is a fractional 
number. Number format can be a source of error due 
to overflow. Usually, in point fixed arithmetic, 
fractional format is chosen since that facilitates the 
operations as products or accumulated products with 
scalar product computations that can easily be 
truncated or rounded-off to the size of the factors for 
storage and further processing by simply dropping the 
least significant p-1 bits. Hence, we can say that 
fractional fixed-point arithmetics trade off precision 
for number size. 

But, use of fractional arithmetics did not save us from 
the overflow problem which possible occurs in add 
and substraction operations, but not with 
multiplications. Overflow is due to the limited number 
range of wordlength so, controller signals and 
coefficients most fit well into the wordlength range if 
quantization effects are to be minimized. The DSP 
used in this application incorporates optional 
saturation by code when an overflow happens. 
Finally, quantization error results when scalar 
multiplications must be roundedoff or truncated to the 
size of the fraction. There exist an ample literature on 
the subject of the influence of the quantization error in 
the performance of digital filters and close loop 
controls. See Katz, (1981), and Franklin et al., (1990). 
Quantization error is introduced through roundoff 
error of controller internal signals and coefficients that 
may produce bias, noise , and limit cycles at the 
output of the close loop system. On a robust close- 
loop control system these effects are primarily 
reflected in the loss of robustness for performance or 
in more critical cases the system could be taken into 
instability. Analysis of the effects of the quantization 
noise depends on the model taken for the quantization 
error. Usually, analysis of quantization of the internal 
signals of the controller is taken separately from the 
analysis of quantization of coefficients. As sensitivity 
analysis of eigenvalues which is one of the methods to 
find the best representation of the controller that 
minimize the effects due to coefficient quantization. 

Structures.- The numerical performance of the 
controller implemented in fixed-point processors 
depends greatly in the structure used for the controller 
with respect to: number storage elements, number of 
non-zero non-unity coefficients, coefficient range, and 
roundoff noise. For SISO transfer functions, parallel, 
and cascade structures are a correct choise. Both, offer 
a spread of poles and ceros between blocks. In the 
other hand state space structures offer an infinity 
number of possible realizations. Not without surprise, 
the companion structures that only have a minimum 
number of coefficients, are not good candidates, since 
they suffer from ill-conditioning and high coefficient 
sensitivity. Mullis, et al., (1976), has shown that 
parallel realizations (block diagonal state matrix ), can 
be taken as a good suboptimal realization. 
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Optimal realizations that minimize roundoff noise 
while scaling the internal signals to avoid overflow, 
have received a lot of attention. Solution to these 
problems has been proved to be feasible and a similar 
transformation T can be constructed. 

While the above criteria of selection are generally for 
open systems without much considerations for the 
close-loop behaviour, there are methods to obtain a 
realization based on close loop performance. 
Monroney, et al, (1980), and Sasahara, et al., (1984), 
have considered the minimization effects of noise 
quantization for a SISO system under an LQG criteria. 
More resently Rotea, and Williamson (1995), worked 
the MIMO case with a worst-case criteria. 

A more detailed explanation of this last method 
along with the computational procedure to derive an 
optimal realization will be shown in Section 2, and 3. 

Scaling.- The operation of scaling when fixed-poit 
processor is used is generally necessary. The objective 
of the scaling is to fit data into the number range to 
avoid overflow without provoking to much 
quantization noise. Scaling must be carried out on the 
inputs, outputs, states, and scalar products. 

3.    OPTIMAL REALIZATION 

Here, is given a brief description of the method used 
to derive an optimal realization. As mentioned in 
Section I, there exist a good number of works on the 
computation of optimal realizations which minimize 
the quantization noise on signals at the output while 
kept the word range as to avoid overflow. Rotea and 
Williamson (1995), propoused a model to describe 
how the internal signals of a fixed point 
implementation are quantized. Based on this 
framework they posed and solve four optimal 
realization problems in a close loop context. These 
realizations are based on either H2 and H00 norms of 
the quantization noise gain subject to either H2 and 
H00 scaling constrains. Assume a controller K(z) with 
state space representation (Oc,rc,Cc,Dc) connected to 
an augmented open loop transfer matrix P(z) = [Py(z) 
ij = 1,2] as shown in Fig (1), 

From an adequate partition of the plant ,the input 
output equations of the close loop system will be: 

z w fc, 

u V w 

4 

z-P   (z)w + P   (z)u 
11 12 

y-P   {z)w+P    (z)u 
21 22 

(2) 

u = K(z)y 

where u is the control input to the plant, y is the 
measurement output with purpose of feedback, w is 
the exogenous input, and z the output of interest of the 
closed loop system. 

The general scheme for the controller implementation 
to describe the internal signal quantization is given as: 

gk=CXOc)xt+DXT)yt 

uk=Cxt+DXC)et+Dcyk 

(3) 

where x, u, and y denote the state, output and input of 
the fixed point implementation of the controller, 
respectively. £ is the quatized internal signal of the 
implementation, the model input e represents the 
quantization error or quantization noise. The signals £, 
and e are related via the nonlinear equation e(k) = 
(N(Q)(k); N :=Q-I, where Q(*) is a nonlinear 
memoryless operator to implement roudoff 
quantization on each entry of vector £(k), to ß 
fractional bits; that is |e(k)|< 2"(ß+1) for all k. The 
functions B0, C0, D0, and Q are linear on its argument. 
Due to the problem posed by the presense of the 
nonlinearities, the quantization noise e was taken as an 
exogenous signal, that for purpose of analysis can be 
taken as zero mean white noise signal, coming into the 
controller. From the general scheme different 
quantization schemes can be derived as: Quantization 
Before Multiplication, and Quantization After 
Multiplication with or without Error Feedback. 
Different from the infinity wordlenght realizations, in 
finite wordlength realizations the output of the system 
due to a given input, depends on the state space 
structure used to implement the controller. Therefore, 
if any other realization of the controller is of the form 
(T^OcT, T_1rc, CCT, Dc ), for a nonsingular 
transformation T it can easily be found that the 
quantization error and the quantized signal will be 
affected by this transformation. Let L(z) be the 
quantization scheme for the controller, then the close 
loop controlled system will look as shown in Fig. 2 

Fig. 1.- Discrete close loop system 
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N[J 

L(Z)Z 

P(Z) w 

Fig.2.-Closc     loop     system     with     K(z)     FWL 
quantization scheme 

Ciq(T)=eiT-]Hl2(z)g<Y (8) 

p,q = 2 or °°, and ei is a unity vector. The scaling 
constraints limit the value of each internal signal to be 
less than y a positive number. This is a nonlinear 
programming problem not yet solved. Hence, Rotea & 
Williamson took a different approach to solve this 
problem. They first solve an "auxiliary " problem 
where the scaling constraint was taken as: 

C(T)=T-1Hu(z)^<\ (9) 

where 

y ^I.(Z)      ^12 W u 

z _P21(z)   P22(z)\ w 

is the open loop transfer function, and 

rg Ln(z)    La(z) Te 

u A(z)   Ln(z)_ y 

(4) 

(5) 

is the quantization scheme of the controller. For the 
Optimal Realization Problem it is not required the 
relations between the variables u and y with the rest of 
the variables, so these two variables are removed to 
obtain the following diagram of the close loop system 

that yielded to a convex problem and reduced the 
Optimal Realization Problem to a Linear Matrix 
Inequality Problem with a global solutions. Then, the 
" auxiliary" solution was related to the solution of the 
main problem. As was written before this problem 
was solved for p,q = 2 or °°. The relations derived 
between the optimal and the "auxiliary " 
transformations were: 
- For q = 2 

T   = op 

TauxH12 
T     U 

n  y 

that satisfies: 

C1,2(Top) = - = C„a(Top) = Y 

(10) 

(11) 

S 

Fig. 3.- Diagram for the analysis of close loop FWL 
effects 

e—► T -► H(z) T'   - 

z-^ ^ 

where n is the order of the controller and U is a 
unitary matrix. 
-For q = oo 

71 =■ 
TauxH\l (12) 

where 

Tg Hu(z)    Hn(z) 

Hn{z)   H22(z)^ 

Te 

w 
(6) 

Taking the ideal output as zio = H22(z)w, the transfer 
matrix htafc) can be removed and taken as output the 
difference Z-Zid which is the deviation of the actual 
output z from the ideal zid affected directly by the 
quantization error through H2i(z) . 
The problem of the optimization realization can now 
be described: 
-Optimize the quantization noise gain 

J(T)=H21(z)T- 

subject to the scaling constraint 

(7) 

that satisfies: 

ClATop) = - = C^(Top)<7 (13) 

For the case q = oo the solution is suboptimal. 

4.    ANALYSIS, DESIGN AND EXPERIMENTAL 
RESULTS 

4.1.-Wordlength Analysis of the Robust Control 
System 

Here, the results obtained from an analysis of the 
effects that finite wordlength representation of the 
coefficients on the bounds for robust stability and 
nominal performance of the close loop system are 
given. Both, simulation, and an analytical expression 
obtained by Fialho and Georgiou, (1994), are applied 
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to determine the least upper value of the wordlength 
which will guarantee robust stability and nominal 
performance. The controller for the robot manipulator 
was designed using u-synthesis technique, see 
Gonzalez, et al., (1999), for specific details. A 
controller of order 43 was obtained, then it was 
reduced to a more manageable 10 order balanced 
realization by a truncation technique. It was found by 
U-analysis that the close loop ten order system kept its 
robustness to stability and performance. Here, the 
same analysis is worked out on the same system, but, 
for different coefficient wordlength of the controller in 
order to ascertain the effects of finite wordlength on 
the robustnees of our desig. From a u-analysis of the 
weigthed sensitivity function, curves of the structural 
value for robust stability were obtained for different 
wordlength and are shown in Fig. 4 

Discrct Robust Stability 

robot for different wordlength values. This result is 
shown in Fig. 6. A very impressive result from this 
simulation is to find out that the balanced realization 
worked well even for a 4 bits wordlength. We can see 
that for 4 bits wordlength the system's response 
becomes more sluggish and noisy, as compared with 
the longest wordlength, but with a similar settling 
time. On the other hand the 8 bits wordlength has no 
overshoot and shorter settling time hence, it could be 
considered as the best option. Similar analysis were 
also made for other controller realizations but, they 
did not behave as well as the balanced realization. 

-*8 bits 

16, 24 bits 

V .V.: 

Fig.4. Robust stability analysis for different 
wordlength. 

From the theory of u-analysis the system will be 
robust stable if the upper bound of the structural value 
is less than one, clearly, this is satisfied for infinite 
wordlength, but amazingly for this case, robust 
stability is maintained even for a 4 bits wordlength. A 
similar simulation experiment was carried out on the 
nominal performance of the system. The results of this 
simulation are shown in Fig.5. 

Discret Nominal Performance 

Fig.6.-Coefficient wordlength effect on time 
responses. 

Also, by applying a result given by Fialho, et al., 
(1994), it was found the least value of the size of the 
wordlength for this problem, that kept robust stability. 
Briefly, is presented the problem of analysis of 
sensitivity of a sampled data control system to the 
effects due to the quantization error on system's 
coefficient representation. Assume a sampled-data 
control system with a plant in state space discrete 
form ( O, T, C, D ) and a digital controller (<5C, rc, 
Cc, Dc ) . Then, the state coefficient matrix of the 
corresponding close-loop realization is of the form: 

(14) 

wl=B bits 
wl=12btts 
wl=16 bits 

*c,= 

"O-IT>CC rc" 
-TCC       Oc 

<D    0" 

0    0 
+ 

"-r  o" \DC  -c; rc o" 
0     / rrc   °c. L°   7. 

or 

10 10 10 10 10 10 

Fig. 5.-Nominal       performance 
wordlength. 

for        different 

From Fig.5, clearly, close loop nominal performance 
will be violated if a 4 bits word processor is used. The 
above experiments show, the well known fact, that 
performance is harder to achieve than stability. We 
also obtained the step response of the first joint of the 

3>, =o „+r„M„c„ (15) 

where Mo is the system matrix of the digital controller. 
Therefore, the feedback system will be stable if and 
only if all the eigenvalues of OcI are in the interior of 
the unit circle. 
Say, due to finite precision arithmetic the actual 
system matrix implemented may take the value M0+A 
where A will contain all the coefficient quatization 
errors. For a given realization of the controller the 
problem is to compute the minimum value of ||A|| 
respect to an induced norm that guarantee stability of 
the close loop system.  Fialho et al. (1994), based on 
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an statistical point of view behavior of the 
quantization error, derived an approximate expression 
for the wordlength of least size that guarantee robust 
stability as: 

( 
IP, = log, 2   N+    N*(l) 

2       45     77 

(16) 

in bits. N is the number of nonzero random entries in 
A, and T) is the least upper bound defined as: 

77 = inf {A : O, + rAC   is unstable}   (17) 

where ||*|| is the infinity norm. r| is the so called 
complex or real stability radius depending if A is 
complex or real and has already been computed. 
The computed value of the limit wordlength for the 
balanced realization using Eq.(16) for our case was 12 
that is greater than the value obtained from the 
simulation. Being too conservative we took this result 
to chose an appropriate DSP for our implementation. 
Specifically, we worked with a 16 bits DSP 
TMS320F240 of Texas Instrument [15]. 

4.2.-    Optimal   Implementation 
Results. 

and   Experimental 

As was mentioned above we worked with fractional 
arithmetic format for coefficients and with a DSP with 
an overflow mode of operation. Here, we presents the 
process to compute the optimal realization derived by 
Rotea et al. (1994), for our fixed point application The 
first and important step is to choose the quantization 
scheme. Here, we worked with the Quantization 
Before Multiplication with Error Feedback scheme or 
model which is described as : 

ax = <bc+(I-Qc)Te+rcy 

Tg = x 

u = Ccx + CcT£ + Dcy 

(18) 

Hence, for the representation of Eq.(5), we have: 

In(z) = (z/-Oj'(Oc-7) (19) 

La(z) = (zi-oyr€ 

I2,(z) = C(z/-Ocr(Oc-/) + C 
LJz) = K (z) = C (zl-® VT +D 

The close loop system with the quantization model for 
our application looks as shown in   Fig. 7. 

:^Q 
C 

►O+0-T> 

Fig. 7.- Close loop system with quantization controller 
scheme 

Where G„(z) is the nominal plant, the exogenous 
input vector considered for this design is w = [rT dT nT 

ZaT ]T where r, d, n, and za are the command or 
reference, disturbance at the output, noise in the 
sensors, and modeled uncertainty respectively. The 
output vector was taken as z = [uT yT ] where u is the 
output of the controller, and y is the close loop error. It 
is also included the quantization noise Te taken as an 
exogenous signal, and the scaled internal signal vector 
T£. The open loop plant P( z ) for this system is 
given as: 

where 

-G,(z)   /,   -73   -h   ~h 
I, 0      0        0        0 

-G„(z)   h    -h      0      -73 

(20) 

r h ] 
[-Gn(z)\ 
"0      0      0 0 " 

h -h 0 -^J 

(21) 

Pu(z) = -Gn(z) 

P^) = 

From Fig.7, the transfer matrix functions, that relates 
the quantized noice Te, and the exogenous inputs W 
with the output difference Z-Zid, and the scaled signal 
T£, respectively are given as: 

Hu{z) = Ln{z)S,{z)Pn{z) (22) 

where Si(z)=(l+Gn(z)Kc(z))-1, 

andS0(z)=(l+Kc(z)Gn(z))-1. 

Once the quantization noise and scaling transfer 
matrix have been defined the next step is to derive the 
optimal realization. This computation depends on an 
initial realization, a positive number and the norms to 
work with the quantized error gain and the scaling 
constraint, (2/oo). Viassolo, (1996), one of MC. 
Rotea's student propouse the following procedure to 
compute the optimal realization: 

- Select an initial realization for the controller, here 
given by its system matrix Mi , the scaling norm, and 
the upper bound y for the scaling norm 

Compute the transformation: 

T.c = 

'a, (Mi)      o 
0 C2,(Mi) 

0 

0 
y ;n 
r.. <u,\ 

(23) 
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hence, the new realization will be 

M„ 
7 o " 

M< 
7 0" 

0 y.-l 
sc |o 7' 

(24) 

that will be written as  MSc=(Tsc,  Mi),  and satisfies 
Clq(Msc)= ... = Cnq(Msc) = y. 

Starting from Msc, solve the optimal realization 
problem to obtain the transformation Top that 
yields the optimal realization Mop=(Top, Msc) 

- Using Mop and y compute the transformation 

Clg(Mop) 0 
0 C2g(Mcp) 

0 0 Cm(Mv)_ 

(25) 

and obtain the realization Mscop=(Tscop, Mop) that satisfies 
Clq(Msccop) =.. .= Cnq(Mscop) = y. 

For this experiment we try as initial realizations: 

-The balanced realization obtained direct from the 
design 
-The Schur form of the realization. 
- The realization for q = 2, p = 2 that was derived by 
applying Viassolo's procedure. 

During the experiments the power density spectrum of 
the exogenous input vector w was also considered 
unknown but bounded, therefore, the norm q = oo for 
the scaling constraint Gq was used. For each trial the 
quantization noise gain for norm 2 and oo was 
calculated, as well as the max Ci,2 . The results of the 
computation are shown in Table I Table II, and Table 
III. 
From these results it is found that the realization 
derived from an initial optimal realizatio ( Op22 ), is 
the best if the power density spectrum of the 
exogenous input is known (p = 2, J2 = 3.59 ). 

Table I (q= =-) 
Bal. 
Seal. 

p=2 p=oo 

BaScOp BaScOp 
Sc 

BaScOp BaScOp 
Sc 

J. 25.78 30.20 20.28 1.51x10" 18.38 

h 20.97 5.51 4.05 1.26x10" 11.53 

Max 
Ci2 

0.5479 0.58 0.6521 0.0853 0.4998 

Table n (q =oo) 
Schur 
Sea 

p=2 p=oo 
SchScOp Op220pSc SchScOp SchScOpSc 

J. 21.076 29.86 19.96 19.964 17.02 

h 6.1582 5.511 4.247 4.247 7.827 

Max 
Ci2 

0.648 0.39 0.6536 0.6536 0.6488 

Table m (q=«>) 
Op22 
In 

p=2 p=oo 

Op220p Op220pSc Op220p Op220pSc 
J- 17.318 29.67 18.73 1.54x10" 71.193 

h 3.5554 5.456 3.59 1.32x10" 52.7 

Max 
Ci2 

0.4533 0.5765 0.6538 0.0708 0.444 

For the case when the power density dpectrum is 
unknown but bounded, the best realization was the 
one derived using the Sclr - realization as initial ( p = 
oo, J00 = 17.02 ). A po ; of interest of the above 
results is that the realization derived from Op22 as 
initial deteriorates with respect to the quantization 
error gain for p = oo, and does not show significant 
improvement for p = 2. For these two realizations the 
maximum overflow gain is almost the same ( 0.6538 
and 0.6488 ) respectively. An analysis of variance of 
the output for the three realizations for different 
wordlength size was done as well. The result of this 
analysis is shown in Table IV 

Table IV 

Wordlength Init. Balanced Init. Schur Init. Op22 

8 4.6891xl0"5 1.1771X10"5 3.4559X10-6 

12 1.9477x10-' 4.5982x10-" 1.35x10-" 
16 7.6082x10-'° 1.7962x10-'° 5.2733x10-" 
24 1.1609x10-'" 2.7408x10-" 8.0464xl0-18 

32 1.7714x10"" 4.1821X10"20 1.2278xl0-20 

The results of Table IV are also presented in graphical 
form in Fig. 8 below: It is clear from the graphs, that 
the realization derived from the OP22 initial 
realization causes the least variance at the output due 
to quantization error for any wordlength. 

 - -   Balanced 

 Schur 

 Optima 22 

Fig. 8.- Variance at the output for different 
wordlength. 

The realization derived from the Schur initial 
realization also show a small value for the variance of 
the output. Due to this small difference on the 
variance, and because the exogenous inputs 
characteristics were not known exactly this last 
realization was chosen for implementation in the 
DSP. 
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Then, the controller was implemented using two 
different structures: A balanced realization derived 
direct from the design in floating point arithmetics ( 
here we used a 486 computer to implement the 
controller ), that was noted as the 'ideal ', and the 
optimal realization derived from an Schur initial 
realization implemented in the 16 bits DSP 
processor. Below, Fig.(9), and Fig (10) show the joint 
time responses of the close loop controlled system for 
a step input of (-50, -20, 40 ) degrees on the first, 
second, and third joints for the ideal and optimal 
realization, respectively. 

Ideal system state signals 

Ideal system joint signals 

Fig. 9.- Step responces of the robot with the ideal 
implementation. 

The two controlled systems show a good performance 
on tracking of the reference signals, but not without 
surprise, the optimal realization, clearly outperforms 
the ideal realization, since it is almost four times 
faster, show no overshoot, and filtered the oscillations 
present at the third joint. 

Schur realization joint signals 

10        15        20        25        30        35        40        45        50 

Fig. 10.- Step responces of the robot for the optimal 
Schur implementation. 

In order to see the effects of the scaling constraints on 
the internal signals of the controller Fig. (11), and 
Fig. (12) also show the time responses of three of 
these signals for the ideal and the optimal realizations 
respectively. 

0 5 10        15        20        25        30        35       40        45       50 

Fig, 11.- State dynamics of the close loop system for 
the ideal implementation. 

Schur realization states signals 

0 5 10        15        20        25        30        35        40        45        50 
t sees 

Fig. 12.- State dynamics of the close loop for the 
optimal Schur implementation 

The optimal realization clearly shows the effects of 
the constraint to keep in range (< 1), the size of the 
internal signals of the controller. For this experiment 
the maximum size of the signals was less than 0.26 
that is well inside the working range. In the other hand 
the ideal without this constraint produced signals 
almost thirty times greater in instantaneous magnitud 
than the optimal realization. This difference on 
performance was simple due to the structure of the 
controller since the input control signals were almost 
the same for both realizations as proved by the RMS 
value of the difference between the two control 
vectors uid-Uop equal to 1.1 degrees. A significant 
advantage of the optimal realization derived from a 
Schur initial realization with respect to the other 
analysed realizations is that the number of coefficients 
equal to zero is larger in the Schur than in the other 
realizations something that will lessen the effects 
produce by the time delay due to the computation time 
on the close loop stability and performance. 

5.   CONCLUSIONS 

Here, was presented the process of implementation of 
a complex controller, derived for a three degree of 
freedom robot manipulator, using fixed point 
arithmetic processors. The controller was of   order 
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ten, with three inputs and three outputs. Analysis of 
coefficient wordlength effects on stability and 
nominal performance, analytical and from simulation, 
were carried out to arrive at an assessment of the 
choise for the more suitable DSP. Based on a 
quantization noise model , and on an optimal 
technique where minimization of the quantization 
error gain is achieved subject to scaling of the internal 
signal constraints, and under matrix 2/oo norm, 
different optimal realization were computed for the 
controller. The computation of the optimal realization 
depends greatly on the initial realization taken at the 
start of the computation. Six different initial 
realizations were try of which the two derived from 
the Schur and Optimal Cuadratic realizations were the 
best with respect to the 'size' of the quantization error 
gain, and output variance. The resultant optimal 
realizations obtained with Viasolo's computational 
procedure based on Rotea-Williamson method, 
worked very well for our case obtaining excellent 
results on the performance of the robot on tracking of 
command signals as well as on regulation to constant 
disturbance, and noise rejection as compared with 
other realizations. But, most important is the 
suitability of the controller to be implemented in a 16 
digits fixed point DSP processor without causing 
deterioration on the stability,and/or performance of 
the close loop system. One problem to observe of the 
method was the lack of a criterion to propose an 
initial realization. The optimal realization derived 
from a balanced initial realization, also produced good 
practical results in its implementation in the DSP. 
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Abstract: In this paper, a technique is proposed for synthesizing robust sampled- 

data feedback systems for plants described by polynomial NARMAX models. The 

technique is based on the concept of generalized frequency response functions, and 

exploits recent results that enable derivation of these directly from the NARX 

description of the plant. A nonlinear chemical reactor example is solved using the 

procedure and found to yield satisfactory results. 
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1. INTRODUCTION 

Sampling of real finitely realizable continuous-time 

nonlinear systems naturally produces NARMAX 

(Nonlinear AutoRegressive Moving Average with 

eXogenous inputs) models, as demonstrated by 

Chen and Billings (1989). The NARMAX model 

provides a unified representation for a wide class of 

discrete-time nonlinear stochastic systems, and in- 

cludes several known nonlinear input-output mod- 

els, such as Hammerstein, Weiner bilinear, and 

state -affine, as special cases. The chief advantages 

of the NARMAX model over functional series rep- 

resentations such as the Volterra series, are that 

for identification the former requires a reduced 

number of parameters, smaller data sets, and there 

is no need for special input signals. With the 

identification results also being easier to analyze 

for NARMAX models, these are certainly more 

convenient to use than the Volterra series. 

Of the various forms of NARMAX models the 

polynomial NARMAX model is perhaps the most 

suitable in practical applications, because it is 

linear in the parameters. Many linear identifica- 

tion results have been extended to the polynomial 

NARMAX model, and several combined routines 

of intelligent structure determination and para- 

meter estimation are available, see Korenberg, et 

al. (1988). Indeed, practical identification of sev- 
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Fig. 1. The nonlinear sampled-data system. 

eral industrial systems has established that most 

practical systems can be satisfactorily modeled by 

polynomial N ARM AX models. 

Quantitative Feedback Theory (QFT) of Horowitz 

(1993) is a well-established body of robust con- 

trol synthesis techniques. A QFT technique for 

sampled-data systems comprising of a nonlin- 

ear continuous time plant modeled by differential 

equations has been outlined by Horowitz and Liao 

(1986). However there are no QFT techniques to 

handle systems described by polynomial NAR- 

MAX models. In view of the popularity and wide- 

spread use of these models, it is very desirable 

to have such a QFT technique. In this work, we 
propose a QFT technique for systems described by 

polynomial N ARM AX models. 

Further, in the nonlinear QFT procedures of 

Horowitz (1976) and Ioinovici (1987), a major 

computational difficulty arises while generating 

templates of the so-called 'LTIE plant' set. Our 

proposed technique is also based on the LTIE 

plant approach. However, in our technique a new 

method of computing the LTIE plant templates 

based on generalized describing functions is in- 

troduced. In the new method, the LTIE plant 
templates are generated easily and efficiently, di- 

rectly from the coefficients of the nonlinear model. 

Thereby, the computational difficulties inherent 

in the existing methods of LTIE plant template 

generation are solved. 

To implement the proposed procedure on non- 

linear systems, an integrated package has been 

developed (cf. sec. 4.3). Initial experience with this 

package in the area of chemical process control has 

been encouraging (a simulated chemical reactor 

examples is given in sec. 5). It is hoped that 

the developments and software tools reported here 

make it possible to use QFT on-line in nonlinear 

robust control, in the not too distant future. 

It is assumed in this paper that the reader is 

familiar with the ideas and results concerning 

nonlinear frequency response functions as given by 

Jones and Billings (1991), and with those of QFT 

methods as given by Horowitz (1976; 1993) and 

Horowitz and Liao (1986). 

2. BACKGROUND 

Consider a nonlinear SISO plant in a two degree 

of freedom structure. Suppose the plant is given 

by nonlinear continuous mapping w : u(t) —> 

y(t), with unique continuous inverse w~l. Due to 

the uncertainty in physical parameters, there is 

a denumerable set of nonlinear plants W = {w}. 

The given finite set of deterministic inputs I to 

the system consists of the set of possible setpoint 

signals E = {r} and disturbances © = {d}. For 

each ia € /, there is a specified set of acceptable 

plant outputs Aa. The design problem is to find 

strictly proper LTI operators F (the prefilter) and 

G (the controller), such that for each ia € L the 

system output y € AQ•, V w € W. 

For nonlinear continuous-time plants, a QFT syn- 

thesis technique to solve the above problem has 

been presented by Horowitz (1976). The tech- 

nique, based on Schauder's fixed point theorem 

and valid for zero-initial conditions, is basically a 

two-step procedure: The first step is to find a set 

feq of what are known as LTI 'equivalent' (LTIE) 

plants. The second step is to solve the synthesis 

problem with ¥eq replacing W. It has been shown 

by Horowitz (1976) that for a large nonlinear prob- 

lem class, the prefilter F and controller G which 

solve this 'equivalent' LTI problem, also solve the 

original nonlinear problem (i.e., for the set W). 

Next consider a nonlinear sampled-data system 

shown in Fig. 1. Assume that a fixed sampling 

period T is used, giving sampling frequency us = 
OTT 
—. As is customary, let f*(t) denote the impulse- 
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sampled signal, F*(s) denote the Laplace trans- 

form of f*(t), and F(z) denote [F*{s)]z==e„T. 

A QFT approach similar to the nonlinear continuous- 

time case has been suggested by Horowitz and Liao 

(1986). In the sampled-data case, the actual plant 

input is of a staircase form (as a ZOH is used), 

and therefore the acceptable output set must be 

carefully formulated so that the w~1(a) indeed 

emerges as a staircase signal. Once this has been 

done, the designer can proceed by obtaining the 

'equivalent' LTI set Pe(J, exactly as in the nonlinear 

continuous-time case, and apply linear sampled- 

data QFT techniques to the set Fecj. 

An improved algorithm to find the LTIE plant set 

has been given by Ioinovici (1987). This method 

does not require w~l to exist, which is a con- 

straint inherent in Howoritz's LTIE method. Fur- 

ther, Ioinovici demonstrated through several ex- 

amples that his algorithm gives superior results 

to the earlier LTIE method, in terms of reduced 

overdesign. However, certain difficulties are found 

in Ioinovici's LTIE algorithm: 

1. Finding analytically the solution of nonlinear 

differential equation describing the plant, for each 

member of /. 

2. Obtaining the expressions for Laplace-transforms 

of each of these time-domain solutions. 

3. As discussed earlier, it is very desirable in prac- 

tice to have polynomial NARMAX representations 

for nonlinear plants. However, Ioinovici algorithm 

does not address plants represented as NARMAX 

models - in polynomial or other forms ( the same 

is true for Horowitz's algorithm.) 

A method to directly find (i.e. without solving dif- 

ferential equations or Laplace- transforming ) the 

LTIE plant templates from the given Polynomial 

NARMAX model and the set / is described in the 

following section. 

y(k)=F\y(k- l),...,y(k-ny), 

u(k — l),...,u(k — nu), 

C(fc-l),...,C(*-nc)] + C(fc)       (1) 

where F is some nonlinear function of lagged input 

signals u(k — nu), outputs y(k - ny), and noise 

C(/c — TIQ), with k denoting the sampling inter- 

vals and n the lags. The model in (1) is referred 

to as the NARMAX model. Chen and Billings 

(1989) rigorously proved that a nonlinear discrete- 

time-invariant system can always be represented 

by the NARMAX model in a region around an 

equilibrium point, subject to two sufficient condi- 

tions: (1) The response function of the system is 

finitely realizable (which means that distributed- 

parameter systems are excluded) (2) A linearized 

model exists if the system is operated close to the 

chosen equilibrium point. Further, the model can 

also be shown to be valid for the non-zero initial 

state response case. 

If the nonlinear function F(-) is continuous, it 

can always be arbitrarily closely approximated 

by a polynomial function. For practical purposes, 

therefore, we may choose F(-) as a finite polyno- 

mial function, giving us a polynomial NARMAX 

model. 

Once a polynomial NARMAX model of the plant 

has been estimated, we can discard the moving 

average noise terms in (1) to get a polynomial 

NARX (Nonlinear AutoRegressive with exogenous 

inputs) model. This is justified, as the moving 

average noise terms were originally included to 

ensure unbiased estimation, and therefore can be 

dispensed with once estimation is over. 

The output y(i) of NARX model is expressed as 

M 

y{t) =  J2 Vm{t) (2) 

where ym(i) is m—th order output of system, given 

by 

3. THE NARMAX MODEL AND ITS LTIE 

PLANT 

Suppose that the nonlinear plant is represented by 

the model 

ym{t)=2_J    2^    cp,q(h, ■ ■ ■, kp+q) 
p=0 ki,kn = l 

V P+1 

xHy(t-ki) n U(t-ki) (3) 
i=l i=p+l 
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with p + q = n 
EK V^^ 

K 
1,...,K and Ea,6=i  = 

>From a polynomial NARX model description 

of the plant, the ??-th order GFRFs (Generalized 

Frequency Response Functions) can be computed 

using the recursive probing algorithm of Jones 

and Billings (1989). The algorithm yields the n- 

tli order frequency responses to be found, without 

restriction on the order ??. Further, this method 

also exposes the structure of Hn(-), and enables 

the GFRFs to be related to the structure and 

coefficients of the nonlinear difference equation 

model of the plant. These GFRFs can be subse- 

quently used to evaluate the GDFs (Generalized 

Describing Function), giving us a unidimensional 

frequency domain representation of the nonlinear 

plant. 

Using the recursive probing input method, the n- 

th order GFRFs for the NARX model (2), (3) are 

computed as follows: 

I 1 - ^2 cifi(ki) exp(-j(uii H h u»„)fci) J 
V    fc,=i / 

K 

T. 
fc,,fc„=i 

cO,nO'l) ■ ■ ■ ,kn) 

x exp(-j(wi/ci + • • • + cj„kn)) 
?■).—1 n — q        K 

+ 2_j z2   z_^   cvAki' • • ■ i kp+i) 
q=\ J>=1 fci,fc„=l 

* exp(-j (üjn_q+ikn_q+1 H + Lüp+qkp+q)) 

XHn-q.p(j^l,. ■■ ,j^n) 
n K 

+y^ y^ cPto(ki,..-,kp) x 
p—2 ki ,kp=l 

Hu.p(jüJ^...,JLVn) 

where Hn.p(-) is generated by the recursion 

(4) 

71 — p+1 

Hn.p(-)=   Yl   H,{JLo1,...,ju)i) x 
i=l 

Hn-i.p-i(juJ.i+i,. . . , ju>n) X 

exp(—j(n>i H + u>;)fcp) (5) 

The recursion finishes at p = 1 and 

#iCM,..., jwn) = Hn(ju>i,... ,ju„) 

x exp(-j(^i + wn)fei) (6) 

Next, the n-th order multidimensional output 

spectrum is found: 

Y(jiOi,. . . ,ju)n) = HnijuJi,. . . ,jüJn) 
n 

xn^i)     (7) 

where U(JUJ) represents the normalized input spec- 

trum. Then, the unidimensional output spectrum 

is obtained: 

CO oo 

Yr> (.7^) = 
1 

(27T)"-1 

-CO —CO 

Yn(jiO\,j(uJ2 - Wi), ... ,j(ion - Wn_i)) 

xdu>i ... du;„_i (8) 

The total unidimensional output spectrum is given 

by summation of all the n-th order unidimensional 

output spectrums: 

N 

w = E}»w (9) 
71 = 1 

Finally, this output response is used to evaluate 

the GDF: 

N{A,jw) = 
Y(JLJ) 

AU(ju>) 
(10) 

where A denotes the input amplitude or waveform 

scaling factor. Note that N(A,ju>) is considered 

undefined whenever U(jw) = 0. 

It is easily seen that the GDF characterizes pre- 

cisely Ioinovici's LTIE plant that corresponds to 

the given polynomial NARMAX model and the 

input signal considered in (7). 

Thus, the GDF provides a new and powerful fre- 

quency domain representation of a wide class of 

nonlinear systems. This characterization is sub- 

sequently used in the proposed procedure as a 

basis for controller synthesis using the principles 

of sampled-data QFT. 
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4. A QFT PROCEDURE FOR POLYNOMIAL 

NARMAX MODELS 

4.1   The Basic Idea 

Suppose that a polynomial NARMAX model de- 

scription of the nonlinear plant is available. From 

this model, a NARX model is extracted, and the 

rc—th order GFRFs generated using (4)-(6). For 

any particular input signal ia € /. the correspond- 

ing GDF is obtained by finding the total output 

frequency response and then diving it by the input 

signal spectrum, as given in (7)-(10). Now, the 

GDF is unidimensional in frequency, so a single 

magnitude and phase (Bode) response is got at 

each frequency. By repeating the procedure over 

I, a band of (instead of a single) magnitude and 

phase plots is obtained at each frequency. This 

response band forms the template of the LTIE 

plant at each frequency. 

These LTIE plant templates are next used for 

feedback synthesis using linear sampled-data QFT 

methods. The resulting controller and prefilter 

when used on the original nonlinear plant, are 

guaranteed to achieve the given specs. This has 

been shown in general for a large class of nonlinear 

systems using fixed-point theorems of nonlinear 

function analysis by Horowitz (1993). 

4.2  The Proposed Procedure 

We now give the complete synthesis procedure. 

(1) For the considered plant, formulate the set 

/ of signals for which the design is to be 

performed, and the set A of acceptable output 

responses. 

(2) Generate appropriate input-output data set 

for experimental (or simulated ) identification 

of the non-linear plant. Using an integrated 

structure determination and parameter esti- 

mation algorithm of Korenberg, et al. (1988), 

identify a parsimonious model in the polyno- 

mial NARMAX form from these data sets. 

Validate the model using model validation 

methods for nonlinear systems. 

(3) From the identified NARMAX model, obtain 

the NARX model (2)-(3) by discarding the 

moving average noise terms. 

(4) From the obtained NARX model, find GFRFs 

Hi (ja>i), Hi (JLVi,juj2),..., Hn (ju>i,... ,jun) 

using (4)-(6) where the highest order n is con- 

summate with the nonlinearity of the model. 

Evaluate these functions in the output fre- 

quency domain, and use the same domain for 

all further work. 

(5) Pick any input signal ia € /, and find its 

input spectrum U(ju). 

(6) Find the n-th order output frequency re- 

sponse Yn(jui, j(u>2 - wj),...,j(un - wn_i) 

using (7), the unidimensional output fre- 

quency response Yn(ju) using (8), the total 

unidimensional frequency response Y(JUJ) us- 

ing (9), and the GDF N(A, jw) using (10). 

(7) Repeat steps (5)-(6) over the set I ( and/or 

over set W), to get magnitude and phase re- 

sponse bands at each frequency. These bands 

form the template of the LTIE plants at each 

frequency. 

(8) Using the LTIE plant templates generated 

at the design frequencies, synthesize a con- 

troller G(z) and a prefilter F(z) using lin- 

ear sampled-data QFT methods. The steps 

in sampled-data controller design using QFT 

are detailed by Horowitz (1993). 

(9) Design verification: The performance of the 

closed loop system with the synthesized pre- 

filter F(z) and controller G(z), and the origi- 

nal nonlinear plant model needs to be checked 

in the time domain. This can be accom- 

plished using simulation packages such as 

SIMULINK (2001). 

4.3 Software Aspects 

To implement the proposed procedure, a suite of 

MATLAB-based program has been developed at 

IIT, Bombay. This suite can be categorized in 

terms of the following sets of programs: 

1. NLID: Performs automatic structure detection, 

parameter estimation and model validation of mul- 

tivariable nonlinear systems, see Makwana (1995). 

165 



The underlying algorithms are based on the works 

of Billings and co-workers (see the references). 

2. NLMIMO: Finds GFRFs and GDFs for mul- 

tivariable NARX models identified using NLID, 

with at most second order terms, see Date (1995). 

Program handles step command inputs for a range 

of amplitudes, and up to three uncertain model 

coefficients. The LTIE templates generated are 

readily usable by QFT_IIT. 

3. QFT_IIT: Performs robust feedback synthesis 

using QFT principles, see Nataraj (1994). A recent 

version incorporates a fully automated controller 

synthesis routine based on the numerous sugges- 

tions given by Horowitz (1993) . 

Using the integrated software package, the overall 

design cycle for the problem example given in 

sec, 5 took about 3 min. on a PC/Pentium-I 133 

MHz.. A major portion of this time was taken 

up by the MATLAB-based numerical integration 

routine QUADS called upon by NLMIMO. A more 

efficient numerical integration routine should con- 

siderably reduce the computation time, enabling 

the procedure to be executed fast enough for on- 

line QFT-based control of nonlinear processes. 

5. SIMULATION EXAMPLE 

5.1  Problem Description 

We test our design algorithm on a nonlinear dif- 

ferential equation model of an isothermal CSTR 

described by Eaton and Rawlings (1990). The 

reaction occurring in CSTR, is 2A -> B with 

(reaction rate) oc (concentration of A)2.Assuming 

that volume of liquid is constant, the mass balance 

equation is 

Vd^f = Fin[CAm(t)-CA(t)} 

-KVC\(t) (ID 

where K is related to the reactor temperature by 

K = Koe~E/R-,T. Here, CA is the concentration 

of reactant A, mol/lit., C.\in is inlet concentration 

of A, mol/lit., Fin is the inlet flow, in mols/ hr., T 

is reactor temperature, Kelvin, V is the volume of 

vessel, liters, and E and Rg are physical constants. 

The input and output variables of CSTR are 

Fin and CA, respectively. The reactor parameter 

values are K = 0.972 mol lit/hr., and V = 

10.0 liters. The initial steady-state concentration 

of reactant A is 0.5 mol/ lit., with the inlet 

concentration CA,U — 3.6, and Fin = 0.784. 

(11) is rewritten in terms of deviation variables 

with respect to the initial steady state values: 

dy 

dt 

C-Ain — CA 

r- 2      1 -Ktf - —uy 

Fin,s + 2KVC A.s 

(IS 

where y(t) and u(t) are the deviations in CA and 

Fm from their respective steady states CA,S and 

Ftn,s. The reactor model (12) is used to generate 

input-output data set for identification purposes. 

The sampling time is taken as 0.01 hours. From 

this data set, a NARMAX model is first identified 

using program NLID described in sec. 4.3 and then 

a NARX model is extracted as 

y(k) = ay{k - 1) + (3u(k - 1) 

-0.0031u(fc - l)y(k - 1) 

where a = 0.8858,/? = 0.0156. 

(13) 

Next, uncertainty is introduced into the reac- 

tor parameter values, which leads to the follow- 

ing bounds on the estimated NARX parameter 

values:« € [0.7,0.9],/? € [0.012,0.018]. 

Based on the open loop responses, for a unit step 

in setpoint of CA the closed loop specs are set 

as follows. Steady state offset at most 2%; Maxi- 

mum overshoot: 10%; Minimum and maximum 2% 

settling times: 0.53 and 0.65 hours, respectively. 

These figures of merit are translated into the fre- 

quency domain via transfer function models. The 

translated frequency domain specs and the orig- 

inal time domain ones are shown as dotted lines 

in Figs. 2 and 3. Moreover, a gain margin of 5 dB 

and a phase margin of 45° are sought. 

5.2 Design Execution 

The design is executed as follows. 
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Fig. 2. The closed loop frequency responses 

Fig. 3. The closed loop time responses obtained 

for the original reactor system. 

1. For generating the LTIE templates correspond- 

ing to the obtained NARX model, first and second 

order GFRFs are used. Following step 4 of our 

procedure, the first two GFRFs are derived from 

(12) as 

H 
ß 

1 (exp (jo;)) = -,—r~r 
1 - a exp (-ju) 

H2 (exp (JLJi),expj(u2 - wi)) 

0.0031 exp (-jw2)#i (exp (ju2)) 
(14) 

1 - aexp(-jo)2) 

Continuing the procedure until step 6 and using 

the equation 

N(ju>) = 
1 

u(M 
[Ti(ju>) + Y2(ju>)} 

the GDF is evaluated over the design frequency 

range. At each freciuency, N(ju)) is a function of 

uncertain parameters a and ß. Thus, by evaluating 

N(JLo) at different value sets of the reactor para- 

meters, the LTIE plant template at each frequency 

Fig. 4. Frequency responses of some LTIE plants. 

Dotted lines is for the linear transfer function 

H1. 

is got (cf. step 7). Program NLMIMO describe in 

sec. 4.3 is used to automate these computations. 

The freciuency responses of the LTIE plants are 

plotted in Fig. 4. 

An important condition to be satisfied by the 

plant family is that the plant templates must 

be topologically path connected, see Nwokah and 

Thompson (1989). 

This condition is checked for our example as 

follows: From the expressions for Hi, H2 in (14), 

and from (7), (8), it is seen that the domains 

of Yi(jui) and >2(jw) are path connected sets, 

and that Y\(ju>), l^O'^) are continuous functions. 

Since a continuous image of a path connected set 

is path connected, it follows that the templates 

generated from (10) are indeed path connected. 

For further work, the nominal plant is arbitrarily 

taken as the linear transfer function Hi(-) with 

a = 0.8858, ß = 0.0156. 

2. The robust margin bounds and the discrete-time 

tracking bounds on a nominal loop transmission 

LQ(S) are derived from the specs stated in sec. 5.1. 

3. The synthesis of a G{z) that satisfies these 

bounds and of an appropriate prefilter F(z) is 

carried out using the QFT_IIT toolbox. Using the 

QFT_IIT tool box, a controller is obtained as 

Gnum(z) = 1.52/ + 3.29/ - 0.72z4 - 5.50z3 

-1.98z2 +2.292+ 1.26 
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Gden (z) = z6- 1.49z6 - 0.20z4 + 1.21z3 

-0.8z2 + 0.28z - 0.00015 

G(z) = Gmim(z)/Gden(z) (15) 

and a prefilter as 

Fnum{z) = 0.00472z2 + 0.0094z + 0.0047 

Ff/ei,(z) = z2-1.71z+ 7.25 

F(z) = Fninu(z)/Fde,1(z) (16) 

5.3 Design Verification 

Since our proposed method is based on GDFs an 

error analysis for the validity of the describing 

function approximation is necessary, see Bergen, 

et al. (1982) and Mees and Bergen (1975). The 

analysis is carried out as given by Nataraj, et al. 

(1997), and verifies closed loop stability. 

Before proceeding to time domain design verifica- 

tions with the G(z) and F(z) obtained above, the 

closed loop frequency responses are first checked. 

Fig. 2 (dotted lines are the specs) shows that, over 

the entire range of NARX model parameters a, /?, 

these specs are satisfactorily met in the frequency 

domain. 

Closed loop time domain simulation studies on 

the nonlinear reactor model are performed using 

the simulation package SIMULINK. The setpoint 

on CA is changed by a step of unit magnitude, 

and the closed loop time responses for different 

reactor parameter values are obtained (see Fig. 3). 

Over the entire range of parameter uncertainty, 

the reactor concentration responses ( solid line 

figure, nearly single) are seen to be well within 

the time domain specs. 

6. CONCLUSIONS 

A new synthesis procedure for robust control of 

nonlinear sampled-data systems has been pro- 

posed. This procedure uses generalized describing 

function to characterize a given NARX model. 

Robust controller design is carried out using prin- 

ciples of nonlinear QFT. The proposed procedure 

enables one to apply QFT methods to the widely 

used polynomial NARMAX models. A simulation 

example of a nonlinear reactor model has been 

solved using the proposed procedure. The results 

have been found to be quite satisfactory. 
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1.    INTRODUCTION 

As control theory was being developed in late 1940 
through the '50's one of the many items of concern 
was how to design control systems for plants that are 
strongly nonlinear. Since then, many design methods 
have been developed for such plants. The principal 
features of Quantitative Feedback Theory (QFT) 
appeared in an article by Professor Isaac Horowitz in 
1959. In developing QFT, Professor Horowitz felt 
that there was a need for a control system design 
technique that control system design engineers could 
readily understand and apply. Also, for a technique 
that a control system design engineer would be able to 
have a "handle on the patient's pulse" throughout each 
step of the design process, and be able to handle 
structured plant parameter uncertainty as well as 
unstructured plant uncertainty. Thus, along with his 
graduate students, since 1959, he has developed such 
a technique: QFT. 

Through   these   past   many   years   Horowitz has 
continually stressed the transparency of QFT; that is 
the ability to visually relate the implementation of the 
design parameters to the real-world problem, from the 
onset of the design, and throughout the individual 
design steps. 

During the 70's Professor Horowitz received U. S. Air 
Force contracts that brought him in contact with the 
control community at Wright-Patterson Air Force 
Base. One of these contracts was with the Air Force 
Wright Laboratory (AFWL) Flight Dynamics 
Directorate's Control System Development Branch 
(AFWL/FIGL). By 1981 the Branch Chief, Mr. Evard 
H. Flinn, and his control system engineers, Mr. Duane 
Rubertus and Mr. Phil Chandler, all felt that QFT was 
a powerful multivariable nonlinear control system 
design technique for plants having structured 
parameter uncertainties. Mr. Flinn asked Professor 
Houpis, a Senior Research Associate to his Branch, 
and as a     Professor at the Air Force Institute of 
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Technology (AFIT), that he, along with his graduate 
students, become involved with Professor Horowitz in 
applying QFT to flight control problems. Also, to 
assist Horowitz in expanding his technique. He felt 
that the publication of the results of these theses in 
technical journals and in textbooks would help to 
further elucidate and expand the utilization of this 
nonlinear design technique. 

2.    JOINT AFWL/FIGL-AFIT HOROWITZ YEARS 

The years of 1982-1992 were a very productive QFT 
period. The first few years Professor Horowitz, under 
AFWL/FIGL contract, annually taught an AFIT 
course on QFT and was a co-thesis advisor with 
Houpis to M.S. thesis students. During the latter part 
of this period, with the suggestion to look into state- 
of-the-art topics proposed by individuals in the 
aerospace industry, the QFT technique was applied by 
Horowitz and Houpis and by their theses students to 
the design of flight control systems. These topics 
involved the utilization of thrust vectoring and high 
angle-of-attack flight. 

During this period    Horowitz amazed all those who 
were closely involved with him with the breadth and 
knowledge that he had, not only in control theory but 
in the field of mathematics. During one of the weekly 
thesis committee meetings with a thesis student he 
said "out of the clear blue sky" to the student "use the 
Binet-Cauchy theorem." Nowhere in his QFT 
publications had he made any reference to this 
theorem. In searching through countless linear 
algebra texts and inquires, no one was aware of this 
theorem. After prodding Isaac he final remembered 
the text that discussed this theorem. 

The European control community is a strong advocate 
of the frequency domain approach for control system 
analysis and synthesis. Thus, they recognized the 
potential of applying QFT, a frequency domain 
technique, to nonlinear control systems containing 
structured and unstructured parametric uncertainty. 
As a consequence, a QFT paper was presented at the 
International Control Conference 88 at Oxford 
University, Oxford, England (Horowitz, etal, 1988) 

The productive association of AFWL/FIGL and AFIT 
with Professor Horowitz attracted the attention of the 
late Professor Osita D. I. Nwokah and his doctoral 
student David Thompson starting in the summer of 
1988. Through Professor Nwokah's efforts the first 
QFT session at a technical conference was held at the 
1990 CDC held in San Diego, CA. Since then QFT 
sessions have been held at other technical 
conferences. 

A   heightened   awareness   of  Professor   Horowitz's 
contributions to the state-of-the art of control theory 

resulted through this association and the presentation 
of numerous papers by QFT researchers at technical 
conferences. With support of AFWL the first QFT 
symposium was held at Wright-Patterson AFB, OH. 
The purpose of this QFT symposium was a 
testimonial to the founder of QFT and to the 
numerous QFT researchers. Many of their results 
were transferred to the general public (Houpis, etal, 
1992). Throughout this period of association 
Professor Horowitz exemplified the essence of the 
following anonymous quote: 

"In THEORY (scientist) 
There is no difference between theory and practice. 

In PRACTICE (engineer) 

There is a difference between practice and theory." 

Thus, an engineer who has a firm understanding of the 
results of the " scientific method" and has a firm 
understanding of the nature and characteristics of the 
plant to be controlled must be able to Bridge the Gap 
between theory and practice. The essence of Bridging 
the Gap is brought out in the following sections (see 
Houpis and Rasmussen, 1999). 

3.    UNMANNED RESEARCH VEHICLE (URV) 

During the latter part of the 20 th century the Control 
System Development Branch of the Air Force 
Research Laboratory (AFRL/VACC) was responsible 
for the design, simulation, and flight testing of digital 
flight control systems for Uninhabited Research 
Vehicles (URV). Because   of   the   close R&D 
collaboration of the Branch with AFIT faculty, a 
number of AFIT M.S. thesis students were involved in 
the QFT design of digital flight control systems for 
the Lambda URV shown in Fig. 1( Houpis, etal, 
1992). The objectives of the project described in this 
section were as follows: 

1. To design robust flight control systems using the 
QFT design technique to satisfy the desired 
performance specifications. 

2. To flight test these designs. 
3. To implement an inner loop flight control system 

(FCS) on the Lambda URV that would be part of 
an autonomous flight control system. 

4. To illustrate some of the real-world problems that 
are encountered in pe rforming the control system 
design process. 

Accomplishing this design project required four cycles 
around the control design process loop. These four 
design cycles were: 

Cycle 1 - This cycle involved the satisfaction of only 
the first two of the project objectives. 

Cycle 2 - Cycle 1 was repeated but involved the design 
of an improved integrator wind-up limiter. 
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Cycle 3 -A redesign of the FCS was accomplished to 
satisfy requirements 1 through 3. 

Cycle 4-A refinement of the plant model was made in 
order to take into a ccount a bending mode 
that was neglected in the previous designs. 

A 

JK_ 

Fig. 1 Lambda Uninhabited Research Vehicle (URV). 

Cycles 1 and 3 were unsuccessful and cycles 2 and 4 
produced successful flight tests. 

This R&D effort involved the following design steps 
(Houpis andRasmussen, 1999): 

(1) Prescribing the desired flight scenario. 
(2) Prescribing the desired performance specifications 
(3) Obtaining the required number of plant models 

TheQFT    design of the digital    flight control 
system 
The linear off-line design simulation 
The nonlinear off-line simulation 
The hardware-in-the-loop simulation/implementa- 
tion in the laboratory 
Flight testing 

(4) 

(5) 
(6) 
(7) 

(8) 

Two QFT designs for Cycle 1 were required to satisfy 
design objectives 1 and 2. The nonlinear and 
hardware-in-the-loop simulations of the first design 
revealed that system noise needed to be minimized 
and the accuracy of the software implementation 
design needed to be improved. Thus, the second QFT 
design involved in achieving a lower gain (see Sec.9- 
3.7: Houpis and Rasmussen, 1999) and the utilization 
of an improved software algorithm implementation 
(see Sec. 9-3.12:    Houpis and   Rasmussen, 1999) in 
order to enhance the controller's numerical accuracy. 
The flight test of the second QFT URV flight control 
system design revealed that there existed a reversed 
polarity on an angle sensor and the integrator wind-up 
limiter design that was implemented did not work. 
Cycle 2, utilizing the second QFT design of Cycle 1, 
involved an improved wind-up limiter design and the 
correction to the sensor polarity. With these 

improvements a successful second flight test was 
achieved 

For Cycle 3 a new QFT design was accomplished that 
involved the use of a hardware noise filter and its 
implementation to minimize system noise and to 
satisfy design objective 3. Based upon satisfactory 
simulations a third flight test was made that revealed 
that an unmodeled longitudinal bending mode existed 
- thus the flight was aborted. Because the bandwidth 
requirement of the first two QFT designs was low 
enough, the bending mode did not affect the second 
flight test. 

Based on test data from the third flight test, the 
bending mode was  modelled and incorporated in the 
fourth QFT design process of Cycle 4. The fourth 
flight test of the final URV flight control system 
design that was implemented met all requirements. 
All of these four QFT design cycles demonstrated 
what    Horowitz has continually stressed: the 
transparency of QFT ; that is the ability to visually 
relate the implementation of the design parameters to 
the real-world problem, from the   onset of the design 
and throughout the individual design steps. 

4.    VISTA F-16 SUBSONIC ENVELOPE DESIGN 

This QFT design example, as did the previous 
example, exemplifies two important features: 
transparency of QFT and Bridging the Gap. 
Throughout his years of exposing QFT, Horowitz 
always stressed the former; that is, the ability to 
visually relate the implementation of the design 
parameters to the real-world problem, from the onset 
of the design and throughout the individual design 
steps. Both of these features were involved in the 
design of a flight control system for the UAV and for 
the VISTA F-16 shown in Fig. 2 ( Phillips, et al, 
1995). 

At the onset of the student's (Major Scott Phillips, an 
F-16 pilot) VISTA F-16 QFT design, he determined 
from the size of his QFT templates that a robust 
design with a fixed set of controllers could not be 
achieved thanks to the transparency of QFT. Asa 
consequence, he proceeded to achieve a gain 
scheduling QFT design. This design required the 
determination of the manner in which the gain 
scheduling was to be accomplished. During the 
process of achieving this design Major Phillips told 
his thesis committee the following: 

"I can tell from the feeling at the seat of my pants, 
as a pilot, when the gain must be changed." 

Based upon this feel of the seat of his pants he 
developed a    graph that determined at what point 
during the flight scenario a gain change needed to be 
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done. Thus, he was able to utilize his real-world 
knowledge of the aircraft and its handling qualities to 
achieve the desired robust FCS. This situation 
typifies the second feature Bridging the Gap. 

The design of this FCS involved the six design steps 
listed in Sec. III. Based upon the successful computer 
simulations the design was implemented and flown by 
Major Phillips on AFRL/VACC Lamars flight test 
facility. The flight test results verified that the 
performance specifications were met and the flying 
qualities were to Major Phillips' satisfaction. Based 
upon the results of this thesis a follow-on full 
envelope QFT FCS design was satisfactorily achieved 
by another graduate student (Reynolds, et al, 1996). 

«f' 

Fig. 2   VISTA F-16 

5.    UNSTRUCTURED PLANT PARAMETER 
UNCERTAINTY 

The previous examples have dealt with QFT designs 
dealing with structured plant parameter uncertainty. 
Dr. Anthony Bentley illustrated in his article (Houpis, 
etal,\992)  how Horowitz's QFT  technique can be 
applied     to     nonlinear SISO systems     having 
unstructured plant parameter uncertainty. 

6.    HOROWITZ'S QFT TRANSPARENCY 
AND BRIDGING THE GAP 

The impetus of the QFT R&D that was achieved 
through the AFWL/FIGL-AFIT association was 
continued through the association with AFIT 
Professor Meir Pachter (a flight control specialist and 
a colleague of Houpis) with AFRL/VACC since 1992. 
In a student's QFT flight control system design the 
student brought to the attention of his thesis 
committee that in his Bode plots of his tü control 
ratios spikes occurred which penetrated the upper 
specified %„ control ratio bound in the low frequency 
range of the desired loop bandwidth. Professor 
Pachter, because of his aeronautical background, 
exemplified Horowitz's exposition of the transparency 
of QFT.  His immediate response was: "the spikes are 

due to the phugoid mode of the aircraft and will note 
effect the aircraft's desired response." Naturally, the 
student was greatly relieved! 

As stated in Section 2, an engineer who has a firm 
understanding of the results of the "scientific method" 
and has a firm understanding of the nature and 
characteristics of the plant to be controlled must be 
able to Bridge the Gap between theory and practice. 
This concept led to the development of QFT 
Engineering Rules ( E.R.s) ( Houpis and Rasmussen, 
1999). This" Bridging the Gap" was also 
demonstrated by Major Phillips as noted in the 
previous section. 

7.    SUMMARY 

The anonymous quotation, given in Section 2, during 
the 1990's, was best illustrated by the thoughts of 
control system design engineers and educators 
throughout the international control community. They 
strongly believed that in facing the technological 
problems of the 21 st century, it is necessary that 
engineers of the future must be able to bridge the gap 
between the scientific and engineering methods. As 
indicated in the previous sections, Professor Horowitz 
exemplified this concept by his development of QFT. 

Horowitz's transparency of QFT and his QFT 
technique exemplified the concept of" Bridgng the 
Gap" which are the essential aspects of the QFT 
control system design process illustrated in Fig. 3. 
The intent of this figure is to give the control system 
design engineer an overview of what is involved in 
achieving a successful and practical control system 
design. The aspects of this figure present the factors 
that help in bridging the gap between theory and the 
real-world. While accomplishing a practical control 
system design, the designer must keep in mind that the 
goal of the design process, besides achieving a 
satisfactory theoretical robust design, is to implement 
a control system which meets the functional 
requirements. In other words, during the design 
process one must keep the real world in mind. For 
instance, in performing the simulations, one must be 
able to interpret the results obtained, based upon a 
knowledge of what can be reasonably expected of the 
plant that is being controlled. For example, in 
performing a time simulation of an aircraft's transient 
response to a pilot's maneuvering command to the 
flight control system, the simulation run time may 
need to be only 5 s since by that time a pilot would 
have instituted a new command signal. If within this 
5 s window the performance specifications are 
satisfied, then it will be deemed that a successful 
design has been achieved. However, if the 
performance of interest is the steady-state response, 
then the simulation run-time must be considerably 
longer. 
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Achieving a satisfactory multivariable robust control 
system design for a nonlinear system is a difficult 
problem. There are a number of nonlinear control 
system design techniques for handling nonlinear 
control systems, many of which are highly 
mathematical. Professor Horowitz developed a 
control system QFT design technique that control 
system design engineers could readily understand and 
apply. Also a        technique  that a control      system 

designengineer would be able to have a "handle on the 
patient's pulse" throughout each step of the design 
process, and be able to handle structured plant 
parameter uncertainty. The contributions ( Horowitz, 
1991) of Professor Horowitz led to the development 
of the "QFT control system design process of bridging 
the gap." 

Engineering Interactive Simulation 
•User supplies commands and then can 
react to resulting dynamic behavior 
•Gives a better understanding of control 
system operation 

Hardware- in-the- Loop 
Simulation/Implementation 
•Real-time operation of control algorithm 
■Noise corrupted measurements available 
for feedback 
•Computation cycle time/Sampling Rate 
•Quantization   Error, Warping 

Fig. 3 The QFT control system design process: bridging the gap. 
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Abstract: The paper presents an overview of a mathematical and computational enhancement 
of Horowitz's QFT design procedure. The enhancement uses methods of interval analysis and 
is called as interval QFT, or IQFT. IQFT addresses and solves some of the fundamental issues 
in QFT, concerning selection of design frequencies, selection of controller phases in bound 
generation, approximation of plant templates with finite plant sets, and generation of plant 
templates and controller bounds with reliability and to a prescribed accuracy. Several examples 
are presented to illustrate the key features of IQFT. 

Keywords: Interval Analysis, Quantitative Feedback Theory, Robust Control. 

1. INTRODUCTION 

Over the last few decades, the quantitative feedback 
theory (QFT) approach of Horowitz (1993) to robust 
control system design has been gaining popularity 
among control researchers. The QFT approach 
comprises of a collection of techniques for dealing 
with several classes of uncertain plants: linear and 
nonlinear, time-invariant and time-varying, lumped 
and distributed, single input-output and multi input- 
output, single-loop and multiple-loop, etc. Recently, 
several researchers have shown that the QFT 
technique is more general and powerful than other 
robust control approaches, see for example, (Chait and 
Hollot, 1990; Jayasuriya, 1993; Nwokah et al, 1992; 
Yaniv and Horowitz, 1987; Zhao and Jaisuriya, 1998). 

The QFT approach (like all other robust control 
approaches) is based on mappings involving point 
numbers. It is the thesis of this paper that several key 

enhancements to the point QFT approach can be 
obtained by adopting a fundamentally different 
approach based on mappings involving intervals. The 
interval based QFT (IQFT) approach provides 
guarantees on the reliability and accuracy of the 
generated plant templates and controller bounds, and 
automatically produces error estimates. Further, the 
key issues of finite frequency selection in design 
frequency set formulation, finite plant approximation 
in template generation, and finite phase selection in 
bound generation are resolved in the IQFT approach. 

The idea behind the interval analysis (IA) methods is 
to design algorithms, which in a single computation, 
do the approximation and a rigorous error analysis. 
With interval methods, one can directly deal with 
interval sets containing infinitely many points, and 
perform set operations such as subdivisions, unions, 
intersections, finding convex hulls, testing for set 
inclusion, testing for disjointedness of sets, etc. The 
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basis for the systematic approach of IA methods is to 
combine computer arithmetic with order relations. For 
details of IA and its methods, the reader is referred to 
the book of Moore (1979). 

The IA approach to QFT, or IQFT, is being pursued in 
the interval mathematics - QFT group at IIT Bombay. 
IQFT can be applied to (perhaps) any problem that 
can be solved with point QFT methods, but is 
surprisingly richer in its consequences. These are 
summarized below. 

Interval Analysis based Template Generation (IATG) 
algorithms provide several guarantees: the templates 
are (a) guaranteed to be of prescribed accuracy, (b) 
guaranteed to be reliable, despite all kinds of 
computational errors such as round-off, truncation, 
and approximation, (c) guaranteed to enclose all 
actual template points, thereby avoiding any loss of 
robustness due to template approximation errors. 

Interval Analysis based Bound Generation (IABG) 
algorithms also provide several guarantees: the 
bounds are (a) guaranteed to be robust against 
template inaccuracies, in the sense that regardless of 
the accuracy of the interval plant template used these 
can never lead to violation of the specifications, (b) 
guaranteed to be robust against phase discretization, 
so that no blip in the bounds can lead to violation of 
the specifications, (c) guaranteed to be reliable, 
despite all kinds of computational errors, such as 
round off, truncation, and approximation; the 
algorithms also offer key improvements: (d) the 
bounds are obtainable usually in much less time, and 
(e) a posteriori error estimates are readily available 
from the bounds. 

Before proceeding to describe IQFT methods, the 
various ways in which the design problems can be 
posed in QFT are first categorized. 

1.1 Classes of QFT Design Problems 

Class A problem: "Suppose the design frequency is 
given. Then, how may the QFT designer generate the 
plant template and compute the controller bounds so 
that the latter are guaranteed to be reliable over 
designer-selected controller phase intervals? " 

On the other hand, at the given frequency, the QFT 
designer may wish to specify a priori the desired 
accuracy of the controller bounds, and leave it to the 
algorithm to automatically arrive at the appropriate 
controller phase intervals. This situation leads to the 
following problem class: 

Class B problem: "Suppose the design frequency is 
given. Then, how may the QFT designer generate the 
plant template, and determine the controller phase 

intervals with their corresponding controller bounds, 
so that the bounds are guaranteed to be reliable and 
have a prescribed accuracy?" 

At an even more advanced level, the designer may 
wish to specify only the desired accuracy of the 
controller bounds, the range of design frequencies 
along with the desired spacing between the bounds, 
and leave it to the algorithm to automatically 
determine whatever frequency and controller phase 
intervals are appropriate. This situation leads to the 
following problem: 

Class C problem: "Suppose the design frequency 
range is given. Then, how may the QFT designer 
determine the frequency intervals, the controller phase 
intervals, and generate the plant templates, so that the 
bounds are guaranteed to be reliable, have a 
prescribed accuracy, and be spaced apart as desired?" 

As described in the sequel, to solve problems of class 
A, the QFT designer can execute an IATG algorithm 
for generating the interval plant template and then 
apply an IABG algorithm to compute the controller 
bounds over designer-selected phase intervals (cf. 
section 4). To solve problems of classes B and C, the 
QFT designer can execute the appropriate unified 
procedure (cf. sections 5 and 6). The unified 
procedures combine template and bound generation 
steps for generating bounds of prescribed accuracy, 
and appropriate controller phase and design frequency 
intervals are determined automatically in the 
procedures. The issues of finite frequency and finite 
phase selection in point QFT are resolved in the 
unified procedures, along with the issue of finite plant 
approximation that troubles all point-based QFT 
methods of template and bound generation. 

It is pertinent to note here why these issues (or 
difficulties) arise in the first place in QFT. According 
to Moore (1991, section 5), "Point methods and 
computations with ordinary floating-point numbers 
have no direct way of dealing with sets containing 
infinitely many or uncountably many points". Further, 
"using point methods, there may be no indication, let 
alone guarantee, of the accuracy or completeness of 
the results". As stated earlier, it is the thesis of this 
paper that the above mentioned issues in the point 
QFT approach can be resolved by adopting a 
fundamentally different approach to QFT using 
/«fervaZ-mappings (rather than point-mappings). 

The rest of this paper is organized as follows. In 
sections 2 and 3, an overview of the various IATG and 
IABG algorithms is given. In sections 4 through 6, 
procedures to solve design problems of class A, B, 
and C are outlined. In section 7, concluding remarks 
on IQFT are given. 
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All computations in this work are done on a PC / 
Pentium III 550 MHz machine using the interval 
arithmetic toolbox INTLAB of Rump (1999) that 
runs under MATLAB. 

2. INTERVAL TEMPLATE GENERATION 

Consider a plant represented by the transfer function 
g(s,A), where X={Xu...Xa} is a real vector of the plant 
parameters and s is the Laplace variable. Suppose the 
parameters XjVary independently over given real 
intervals Aj° so that we have a box A0 ={Ai°.. An

0} of 
plant parameters. 

Denote the phase angle and magnitude functions of 
g(s,k) as fang(co,k )= arg g(co,k); fmag(co,>. )= | g(co,^)|, 
where co is a given frequency. Define the angle - 
magnitude function fas f(co,X) = (fang(a>,^), fmag(to,X)). 
Then, the set G := {f(co,?i),Ä.eA0} defines a region in 
the angle-magnitude plane (i.e., in the Nichols chart), 
called the template of g(s,Ä.) at the given co. 

Definition 2.1. The expression which arises if each 
occurrence of Xin f(axX) is replaced by A, if each 
occurrence of a pre-declared function (like sin, cos, 
exp, etc.) is replaced by the corresponding pre- 
declared interval function, and if the arithmetic 
operations in f((0,X) are replaced by the 
corresponding interval arithmetic operations, is 
called as the natural interval extension of f((nX) to A. 
The natural interval extension off to A is denoted as 

F(an A). 

One can compute F(to,A) and obtain, with a single 
evaluation of F, a template comprising of a single 
angle-magnitude rectangle. By inclusion property of 
natural interval extensions (Moore, 1979, Theorem 
3.1) encloses the actual template G(co). However, this 
angle-magnitude rectangle F(co,A) usually has a width 
that considerably exceeds the specified width e. 
Therefore, one may repeatedly subdivide (or partition) 
the parameter box, find the evaluations of F over the 
sub-boxes using interval arithmetic, and take the 
union of the results to get templates comprising of 
smaller and smaller angle-magnitude rectangles which 
give increasingly accurate information about the 
actual phase-magnitude values. It is a fundamental 
result in interval analysis that as the partition of the 
parameter box is refined, these templates will 
converge to the actual template. The partition or 
subdivision process can be stopped when the widths 
of all the angle-magnitude rectangles is less than e. 

Depending on the way the subdivision is done, IATG 
algorithms can be cast into three categories, as 
follows. 

2.1. IATG using Uniform Subdivision 

The uniform subdivision process has been originally 
suggested by Moore (1979, sec. 4.1) in a general 
setting of finding the range of a function, and for QFT 
template generation by Sardar and Nataraj (1997), as 
follows. 

First, find a uniform subdivision factor N for all 
parameter intervals, making use of an inequality 
relation in (Moore, 1979, equation 4.5). Then, 
subdivide each parameter interval into N equal 
subintervals with this subdivision factor, and create a 
so-called uniform subdivision partition. Lastly, 
evaluate F(co, A) over the sub-boxes of the uniform 
partition, in a parallel manner, using vectorized 
operations. It can be shown from the work of Moore 
(1979, sec. 4.1) that every resulting angle-magnitude 
rectangle is of width at most e, and that the collection 
of all these rectangles constitutes the required 
template, which necessarily contains the actual one. 

The advantage of this algorithm is that it is a single 
step algorithm - the template can be generated with a 
single interval evaluation of F for each sub-box of the 
partition, and moreover, this can be done in a parallel 
manner for all the sub-boxes using vectorized interval 
arithmetic operations. The disadvantage of this 
algorithm is that N is usually heavily overestimated, 
due to overestimation in the Lipschitz constant 
calculation (Rail, 1981) and in Moore's inequality 
referred above. Consequently, a much larger number 
of sub-boxes than required will be generated with 
such a N. Therefore, it is clear that the amount of 
computational effort may be rather large in this 
algorithm, which may lead in turn to correspondingly 
large computation times. 

2.2. IATG using Adaptive Subdivision 

The adaptive subdivision process is also well-known 
in general setting of range finding in IA literature, see, 
for example, Kearfott (1987). Nataraj and Sardar 
(2000b) have also recently used it, together with the 
interval Gauss-Seidel method, for template generation 
as follows. 

First, evaluate F over the current parameter box, and 
check the width of the resulting angle-magnitude 
rectangle against the specified maximum width. If the 
specified width is exceeded, then bisect the box into 
two sub-boxes by cutting in the coordinate direction in 
which the box is longest. Discard the original box. 
Pick any one of the two sub-boxes, and put the other 
sub-box in a processing list. Successively subdivide 
the picked (current) sub-box till the width of the 
resulting angle-magnitude rectangle is at most e. 
Then, write the angle-magnitude information to a 
solution list, and discard the current sub-box. Repeat 
the above for all sub-boxes created in this process. 
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Finally, output the generated template as the 
collection of all angle-magnitude rectangles present in 
the solution list. 

The advantage of this algorithm is that it generates a 
considerably much smaller number of angle- 
magnitude rectangles in the template, because a sub- 
box is successively subdivided into smaller sub-boxes 
only as long as the angle-magnitude rectangle width is 
unacceptable. This can therefore be viewed as an 
adaptive subdivision process. However, each sub-box 
is processed sequentially. Therefore, the algorithm 
generally takes considerably more time than the above 
one involving parallel computations. 

2.3. IATG using Parallel-Adaptive Subdivision 

The attractive feature of the uniform subdivision 
based approach is parallel evaluation of F over all sub- 
boxes of a partition; while that of the adaptive 
subdivision based approach is adaptive subdivision. 
An algorithm that combines these two advantageous 
features i.e., parallel functional evaluation and 
adaptive subdivision is the so-called parallel-adaptive 
(PA) algorithm by Nataraj and Sheela (2001b). The 
PA algorithm for template generation runs as follows. 

In the first or initial iteration, create a partition by 
subdividing all parameter intervals into subintervals of 
nearly equal width. Then, perform parallel evaluation 
of F over the sub-boxes of the partition, and save all 
angle-magnitude rectangles, whose widths are less 
than e in a solution list, discarding the corresponding 
sub-boxes from any further consideration. In the 
second and succeeding iterations (only those sub- 
boxes for which the corresponding angle-magnitude 
rectangles have unacceptable widths are left), cut 
simultaneously all sub-boxes in the longest direction, 
discard the original sub-boxes used for cutting, and 
perform parallel evaluation of F over the sub-boxes 
resulting from cutting. Save all angle-magnitude 
rectangles whose widths are less than e in the solution 
list, discarding the corresponding parameter sub-boxes 
from any further consideration. Terminate the 
iterations when there are no more sub-boxes to deal 
with. 

The advantage of the PA algorithm over the uniform 
subdivision algorithm is that the former usually 
generates a much smaller number of angle-magnitude 
rectangles. This is due to the usage of adaptive 
subdivision process in the former algorithm, which 
keeps the amount of computations to reasonable 
limits, and in turn results in significant reductions in 
computation times. In contrast, a much large number 
of sub-boxes are typically created in the uniform 
subdivision partition, due to heavy overestimation in 
the subdivision factor. This thereby leads to large 
execution times. The advantage of the PA algorithm 

over the adaptive subdivision algorithm is that the 
former usually executes much faster since all sub- 
boxes under consideration are cut in parallel (i.e., 
simultaneously), F is evaluated in parallel over all the 
resulting sub-boxes. Recall that in the adaptive 
subdivision algorithm, the sub-boxes are adaptively 
cut and processed sequentially, which slows down the 
processing due to its sequential nature. 

In several examples, the PA algorithm is found to be 
faster than the above two categories by 1-2 orders of 
magnitude, see Nataraj and Sheela (2001b). The 
efficiency of the PA algorithm, in terms of the final 
number of template rectangles generated and the 
algorithm execution time, is greatly influenced by the 
selection of the co-ordinate direction along which 
boxes are subdivided in each iteration. In the version 
of the PA algorithm just described, the rule of 
subdivision is to cut each box along its longest 
direction. However, in many examples it is observed 
that this subdivision rule merely increases the number 
of template rectangles without yielding any significant 
reduction in their widths. Therefore, to further 
improve upon the efficiency of the PA algorithm, 
more efficient subdivision rules need to be explored. 
These are next described. 

2.4. IATG using Parallel-Adaptive with Other 
Subdivision Rules 

In the so-called parallel-adaptive with back-tracking 
algorithm proposed by Sheela and Nataraj (2001b), 
the subdivision rule is to adaptively cut the boxes 
along a favorable direction, i.e., in a direction along 
which the width of F over the sub-boxes of partition is 
reduced at least by some acceptable percentage. 

In the so-called parallel-adaptive with first-box 
algorithm proposed by Nataraj and Prakash (2001), 
the subdivision rule is as follows. In a given iteration, 
pick the first box from the list of parameter boxes to 
be processed and bisect it along the first co-ordinate 
direction to get two sub-boxes. Then, evaluate F over 
these sub-boxes, and find the maximum width of F. 
Repeat the process in all other co-ordinate directions, 
and determine the co-ordinate direction in which the 
corresponding maximum width of F is the least. This 
co-ordinate direction is then used as the direction for 
subdividing all boxes in the current iteration. The 
parallel-adaptive algorithm can also be based on other 
subdivision rules found in the literature on interval 
branch and bound algorithms for global optimization, 
see, for instance, Ratz and Csendes (1995). 
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2.5. Illustrative Examples 

The PA algorithm with the various subdivision rules 
is applied to generate the interval plant templates on a 
suite of eleven transfer function examples listed in the 
Appendix. The templates of all transfer functions are 
generated to an accuracy of 1 deg. and 1 dB. The 
findings of this study are summarized in Table 1. In 
this Table, Rule A is the rule of subdivision along the 
longest co-ordinate direction used in the basic version 
of the PA algorithm. Rule B is the maximum smear 
rule in Ratz and Csendes (1995), and commonly used 
for global optimization. The number of uncertain 
parameters is given as n. A "-" in the Table indicates 
that the computer runs out of memory. 

The performances with the various subdivision rules 
are compared, in terms of solution boxes and the 
execution time in seconds taken to generate these 
boxes. Summarizing the first-box subdivision rule is 
seen to be the best choice overall, in terms of 
consistency, number of template rectangles, and time 
taken 

Table 1 (Contd) 

Ex. Soln Back- 
tracking 

First-box Boundary 
extraction 

1 boxes 25,526 32,201 1,053 
time(s) 3.5 4.86 16 

2 boxes 2,451 2,860 285 
time(s) 1.5 1.11 0.4 

3 boxes 459 627 128 
time(s) 0.74 0.46 0.08 

4 boxes 504 512 138 
time(s) 0.3 0.4 0.08 

5 boxes 6,759 6,891 436 
time(s) 3 3.55 2.9 

6 boxes 84,466 92,608 1,604 
time(s) 16 21.99 84 

7 boxes 2,644 2,844 319 
time(s) 0.79 1.81 0.6 

8 boxes 170,448 189,903 2369 
time(s) 633 103 70 

9 boxes 1,751 1,981 579 
time(s) 1 0.99 0.8 

10 boxes 642 1,508 131 
time(s) 1 1.06 0.1 

11 boxes 194 208 101 
time(s) 0.7 0.64 0.05 

Table 1. Performances of Parallel-adaptive IATG 
and boundary extraction algorithms 

Example n     Soln Rule A     RuleB 

1 Under 2 boxes 30,223 281,814 
damped time(s) 7.24 109 

2 DC Motor 2 boxes - 3,048 
time(s) - 4.11 

3 Simple poles 3 boxes 7,712 627 
time(s) 3.27 1.88 

4 Non- 3 boxes 512 808 
minimum time(s) 1.33 1.59 
phase 

5 Non-rational 3 boxes 6,759 35,404 
time(s) 7.69 35.23 

6 Electro- 3 boxes - - 
Mechanical time(s) - - 

7 Vehicle 3 boxes 30,424 3,109 
clutch time(s) 6.09 2.15 

8 Multiple lags 4 boxes 235,139 411,118 
time(s) 1.23e3 1.27e3 

9 Mechanical 5 boxes 17,320 - 
time(s) 10.89 - 

10 Aircraft 5 boxes 40,002 966 
time(s) 10.73 1.92 

11 Inv. 7 boxes - 208 
pendulum time(s) - 1.312 

2.6. Properties of IATG Algorithms 

Mathematical reliability of the IATG algorithms 
readily follows from the existence of well-known 
theorems in interval analysis and usage of exact 
interval arithmetic in all computations. For instance, it 
follows immediately from the inclusion property of 
natural interval extensions (Moore, 1979, Theorem 
3.1) that, for any e > 0, the generated templates indeed 
enclose the exact templates. Moreover, it is a 
fundamental result in interval analysis (Moore, 1979, 
Theorem 4.1) that as the partitions are refined, the 
enclosures will converge to the actual ranges of the 
values over the given domain sets. From this property, 
it follows that in the limiting case of the specified 
width equal to zero, IATG algorithms yield templates 
that converge to the exact templates. Further, for any 
finite e > 0, IATG algorithms generate the required 
templates in a finite number of steps. This can be 
shown by proceeding on similar lines to Kearfott 
(1987, Theorem 2.10). Lastly, rigorous justification of 
the subdivision processes in a general setting are 
given by Moore (1979) and Kearfott (1987), 

Computational reliability of the IATG algorithms 
means that the algorithms are stable when 
implemented on floating-point systems. The IATG 
algorithms can be made computationally reliable by 
implementing them in any interval arithmetic 
compiler. An interval arithmetic compiler uses 
machine interval arithmetic (MIA) in all 
computations, see, for instance, (Klatte et al.,1993 ). 
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Efficiency of implementation. IATG algorithms are 
efficient to implement as they are simple from a 
computer programmer's point of view, and as their 
performances are not sensitive to details of 
implementation or to any "tuning". 

Range of application of IATG algorithms is very vast, 
as the algorithms are applicable to any programmable 
transfer function that is continuous in its parameters. 

2.7. Boundary Extraction 

Similar to the case of the point template, it can be 
shown that for a simply connected interval plant 
template only the boundary template rectangles need 
to be considered in designs. Now, the set of boundary 
rectangles of an interval plant template is obtainable 
as the union of upper, lower, left and right boundary 
rectangles in the Nichols chart (by upper boundary 
rectangles we mean the template rectangles with the 
maximum magnitude at each phase, and so on). 

Nataraj and Sheela (2001a) present an algorithm to 
extract all the boundary rectangles from a given 
interval template, without introducing any kind of 
boundary approximations. The procedure given 
therein to extract upper boundary rectangles from an 
interval template is as follows: Start always by 
marking the rectangle forming the left end of the 
template as a boundary rectangle, and set it as current 
rectangle. Then, journey along the top edge of the 
current rectangle towards the right end, checking if 
any upward jump to a higher magnitude occurs on this 
journey. IF yes, mark the rectangle associated with 
the jump as a boundary rectangle, set it as current 
rectangle, and take the jump along the left side of the 
current rectangle to reach its top edge. Next, continue 
the journey along the top edge of the current rectangle 
towards the right end, and so on, as before. IF no, 
complete the journey to reach the right end of the top 
edge, and when the right end of the entire template 
itself is thereby reached, print out all the boundary 
rectangles and exit the procedure; otherwise, journey 
downwards along the right side of current rectangle to 
the next lower magnitude rectangle, mark the latter 
rectangle as a boundary rectangle, set it as current 
rectangle, and journey along the top edge of the 
current rectangle towards the right end, and so on, as 
before. 

The procedure to extract lower boundary rectangles is 
the same as to that for upper boundary rectangles, 
except for a few obvious modifications, such as 
journeying along the bottom (instead of top) edge of 
each current rectangle, and checking for any 
downward (instead of upward) jumps to a lower 
(instead of upper) magnitude on the journey. The 
procedure to extract left and right boundary rectangles 
is   derived  by  simply  interchanging   the  roles   of 

magnitude and phase in the above procedures. Finally, 
the set of all boundary rectangles of the interval 
template is obtained by taking the union of the upper, 
lower, left and right boundary rectangles. 

The results of boundary extraction obtained on the 
suite of eleven transfer function examples referred to 
earlier, are given in Table 1 in the last column. The 
Table shows that the proposed algorithm extracts the 
boundary rectangles quite efficiently in terms of 
computational time. Typically, the algorithm takes 
about 10-40 milliseconds to extract the boundary 
rectangles from a set of 100 interval template 
rectangles - indicating the efficiency of the boundary 
extraction algorithm. 

3. INTERVAL BOUND GENERATION 

In this section, IABG algorithms for the various 
specifications are described. The robust sensitivity 
reduction case is first taken up. 

3.1 Robust sensitivity reduction 

Consider the plant family {g(s,A,), XeA0} embedded 
into a single-loop system with controller K(S). Then, 
the robust sensitivity reduction specification (spec) at 
a given frequency co is 

Il+Küco). göco,?L) I"1 < ws(co), WieA° 

The quadratic constraints algorithm in (Chait and 
Yaniv, 1993) computes the bounds at coas follows. 
Substituting the polar forms KHce*8 and g=gejc|' in the 
above spec and simplifying gives the quadratic 
inequality (dropping the argument jco), 

g2 k2 + 2 g k cos(x) +zs >0 

where zs :=1-1/ ws2, x := 0 + cp. The quantity x is the 
phase of the loop transmission function. Setting the 
LHS of above inequality to zero and solving for the 
roots gives 

(1) 

n root' "• root 
:= j-cosx + ^cos2x-zJ}/ n 

Thus, for the plant g, the allowable magnitude range 
of the controller for satisfying the sensitivity reduction 
spec at 6 is [0, k1™,] u [ku

root, <*>). Then, for the entire 
template G the allowable magnitude range of the 
controller at Q [0, k'b0und] ^ [ku

b0und, °°)> where ku
bmmd = 

max{ku
root>}; k'b0und= min{k'root}. The quantities ku

bound 

, k'bound are called as the upper and lower bounds on 
the controller magnitude at 8. The procedure can be 
repeated for all 6 E [ -2TT,0] to obtain the bounds over 
the entire controller phase range. 

182 



The quadratic constraints approach generates bounds 
at point values of controller phase and frequencies, 
and is based on point plant templates. The quadratic 
constraints approach can be extended for generating 
bounds at interval values of controller phase, and even 
for interval frequencies, using interval templates, as 
described below. 

It is assumed that in the sequel that all interval 
templates are closed and simply connected. 

3.1.1. Computing the root intervals. Consider a 
template rectangle picked from the interval plant 
template at a given frequency co, and denote its 
magnitude interval as G and phase interval as O. Let 
the controller phase be also an interval 0. Then, 
substituting all these interval quantities in the RHS of 
(1) gives 

ß       -cosX + yjcos'X-z, 
{) K>°°< = ~G~ = G  

Kl. .0=. 
G 

-cosX-Jcos X-z, 

where, 
(3) 

X=0 + O 
By analogy with the point case, X is the phase interval 

of  the   loop   transmission   function,   and    K"00l, 

Krool are the upper and lower root intervals at phase 

interval X for the considered template rectangle. 

Computation of these root intervals directly from (2) 
using interval arithmetic produces overestimation, due 
to multiple occurrences of the intervals © and O in the 
functional expressions and the interval dependency 
effect. However, if the computations are done as per 
Theorem 2.2 in Nataraj and Sardar (2000a), then the 
exact values of the root intervals are obtained. 

3.1.2. Computing the working phase interval. It is 
shown by Nataraj and Sardar (2000a) that any bound 
computations for this spec need to be performed only 
for those X belonging to the so-called working phase 
interval Y defined as 

(4) 
Y:=- (arccos(-A/z7), arccosd/z^) + n) 

Elsewhere in the range [-2rc,0], any controller 
magnitude is satisfactory to achieve the spec, so there 
is no need to compute the bounds at such phases. 

3.1.3. Composing the bound intervals. Consider a 
template rectangle in the interval template. Using (2), 

the root intervals are computed at various X in the 
working phase range Y. From these X and using the 
phase    interval    <&    of   template    rectangle,    the 

corresponding controller phase intervals 0 are back- 
calculated from (3) and the root intervals at X are 
reassigned to the respective 0. The obtained results 
are plotted in the Nichols chart as 2-dim interval 

vectors   or   rectangles   given   by    \ß,K"00l)   and 

(0, Kr00t ), with the controller phase intervals 0 on 

the x-axis and the root intervals on the y-axis. 

The procedure is repeated for all template rectangles, 
to obtain a Nichols plot of the upper and lower root 
intervals versus controller phase intervals for the 
entire interval template. 

At each 0, the uppermost and lowermost root 
intervals are picked from this plot and designated as 
the upper and lower bound intervals. The remaining 
root intervals are discarded. 

3.1.4. Composing bounds from bound intervals. At 
each 0 the upper and lower bounds are obtained as the 
maximum and minimum of the upper and lower 
bound intervals. Now, for any interval, the maximum 
and minimum occur at the right and left endpoints of 
the interval. Hence, the upper and lower bounds are 
simply the left and right endpoints of the respective 
bound intervals at each 0. 

3.1.5. Computational reliability. All computations 
described in this section (as elsewhere in this paper) 
are done using machine interval arithmetic, which 
automatically takes care of all kinds of computational 
errors, such as round off, truncation, and 
approximation. This produces bound values that are 
not only exact for the given interval plant template, 
but are also reliable. 

3.1.6. IABG algorithm for robust sensitivity reduction 
specification. The main steps of the IABG algorithm 
in Nataraj and Sardar (2000a), called as Algorithm 
SRI, can now be outlined. 

First, any of the IATG algorithms described in section 
2 is used to generate the interval template at the given 
frequency, and the set of boundary template rectangles 
extracted from the template using the boundary 
extraction algorithm of Nataraj and Sheela (2001a). 

Then, the working phase interval Y is found as per 
section 3.1.2, and subdivided into several phase 
subintervals of say, 5deg. phase widths. 

Next, the root intervals are computed as per section 
3.1.1 at each of these subintervals, and the bound 
intervals composed as per section 3.1.3. 

Lastly, the bounds are composed from these bound 
intervals as per section 3.1.4. 
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3.2. Robust gain-phase margin specification 

At a given frequency co, the robust gain-phase margin 
specification can be written as 

K(jCO).g(JG),A,) /   (l+K(jCD).gG«>A))   ^   Wm(CO),   VA.G A° 

The IABG algorithm for this spec, called as Algorithm 
RSBI in Nataraj and Sardar (2000a), is identical to 
the one in the preceding subsection, except for very 
some minor changes in the RHS expressions in (2). 

3.3. Robust tracking specification 

At   a   given   frequency   co,   the   robust   tracking 
specification can be written as 

(5) 

| K(JCO). giQ(o,Xy ( 1+K(jw). giüro^)) I 

I K(JCO). gk QaM ( 1+KGCO). gkCJCO,*.)) I 
< 5(co), 

for all pairs of plant elements g( , gk in the plant 
family. Consider an arbitrary but fixed pair of 
boundary rectangles and recall that G denotes the 
magnitude interval and O the phase interval of a 
template rectangle. Then, by substituting these 
quantities in (5) squaring both sides, and simplifying 
gives the quadratic inequality 

2\G2
kGi cos(4>,. + 0)-^i-cosCO, + 0) \k + 

G\- >0 

Making the substitutions Xj =1/G;, X2=l/Gj, X3 = <E>j + 
0, X4 = Ok +0 and solving the above with equality 
sign gives 

(6) 
Ku

root, K'root = ( (X2 CosX4 / 52 - Xj Cos X3 ) ± Sqrt 
((X2 CosX4/ 5

2 - X, Cos X3 f - (1-1/52) (X,2 - X2
2/ 82 

)) )/(l-l/52) 

Thus, for the considered pair of boundary template 
rectangles, the allowable magnitude range of 
thecontroller at © is [0, min 

fcL}]^[™*fc0,} ")■ The allowable 

magnitude range of the controller at 0 for the entire 
interval plant template  is  obtained by taking the 

intersection of the magnitude ranges over all pairs of 
boundary template rectangles. 

Just as is the case with (2), direct interval arithmetic 
evaluation of (6) produces overestimated values of 

K" t and Kl
rool, due to multiple occurrences of the 

intervals Xi, ..., X4 in the functional expressions and 
the interval dependency effect. However, by 
combining the concept of monotonicity with the tool 
of subdivision, the root intervals can be obtained 
directly and exactly, with no need for any initial guess 
values or algorithmic iterations (as in classical 
optimization methods). Then, the computed bounds 
also turn out to be exact for the given interval 
template. These ideas form the basis of the IABG 
algorithm in Nataraj (2001), called as Algorithm TSI 
that generates tracking bounds. 

The procedures to solve various classes of QFT design 
problems are next given. 

4. PROCEDURE FOR CLASS A PROBLEMS 

At a given design frequency, any of the IATG 
algorithms mentioned in section 2 can be applied to 
generate the interval plant template, reliably and to a 
prescribed accuracy. The respective IABG algorithm 
in section 3 can then be applied to this interval plant 
template to compute the controller bounds over 
designer-selected phase intervals. This approach 
provides a solution to QFT design problems of class 
A. 

4.1. Illustrative Example 

Algorithm TSI mentioned in section 3.3 is illustrated 
on an aircraft example. At a given frequency co, the 
interval template and the tracking bounds are 
generated to satisfy the robust tracking specification. 

Example 4.1. The transfer function for the 
longitudinal motion of an aircraft in open-loop is 
given as Example 10 in the Appendix. The nominal 
values are as follows: ko=2, z0=0.5, po=10, 0^0=6, 
^0=0.8. The tracking bounds for the above plant at 
co=0.1 with the tracking specification as 8=1.03 are 
required. The controller phase intervals are to span the 
range [-2it, 0] with a width of 5 deg. 

Notes: The design frequency is selected as co=0.1. The 
controller phases at which bounds are to be generated 
are also selected (spaced 5deg. apart) as is usually 
done in point QFT methods. The accuracy of the 
bounds is not prescribed (only reliable bound values 
are wanted by the designer). This puts the design 
problem in class A. 
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Figure 1 .Inner (upper solid line) and outer (lower 
solid line) tracking bounds generated by IABG 
Algorithm TSIfor the aircraft example at w=0.1. 
The stars denote the tracking bounds generated 
using the QFT toolbox. The QFT design problem 
is of class A. 

The maximum possible error in the generated tracking 
bounds is the maximum of these differences over the 
entire phase range. From Figure 1, this is seen to be 
about 1.5 dB. 

5. PROCEDURE FOR CLASS B PROBLEMS 

IATG and IABG algorithms can be combined to form 
a unified procedure that solves QFT design problems 
of class B. The unified procedure in Nataraj and 
Sheela (2001c) produces controller bounds of 
prescribed accuracy, for the robust sensitivity 
reduction and robust gain-phase margin specification 
problems. Moreover, the proposed procedure also 
completely solves the problem of phase selection 
inherent in point QFT procedures. 

To solve problems in this class, firstly an acceptable 
size of template rectangles needs to be determined and 
specified to the IATG algorithms, as follows. 

Solution: The various steps of the solution are as 
follows. The interval template is generated at CCF=0.1 

using the IATG algorithm of Sheela and Nataraj 
(2001b). This gives an interval plant template 
comprising of 70 rectangles, and takes 0.82 seconds 
and 85,480y7o/w. From the interval plant template, the 
set of boundary template rectangles is extracted using 
the algorithm in Nataraj and Sheela (2001a). This 
gives a set of 47 boundary template rectangles, and 
takes just 0.02 seconds and 88 flops. Algorithm TSI is 
applied to this set of boundary rectangles to generate 
the tracking bounds on the nominal loop transmission 
function L0(0.1j)=K(0.1j) g0(0.1j), as the plots on L0 

are usually preferred to those on K(.) in QFT designs. 
Algorithm TSI takes 7.58 seconds and 5,Ul,592 flops 
and the resulting plot of tracking bounds on L0(0.1j) is 
shown in Figure 1 as the upper solid line. 

For comparison, the algorithm available in the QFT 
toolbox is also applied. Each uncertain parameter is 
rastered at the minimum, mean and maximum values, 
as is the common practice in QFT. With such a 
rastering, the QFT toolbox gives a template consisting 
of 35=243 plants. The bound generation algorithm in 
the QFT toolbox takes 234 seconds and 5,817,592 
flops. Thus, the IABG algorithm TSI requires about 
46 times less flops than the QFT toolbox algorithm, 
and executes about 31 times faster than the latter. 

Comments on the error estimates: The lower solid line 
in Figure 1 is the so-called outer estimate of the 
tracking bounds. Using the outer and inner estimates, 
the maximum possible error at any particular phase is 
obtained as the difference between the corresponding 
inner and outer values. 

5.1. Size of Template Rectangles for Class B 

Let e denote the desired accuracy of the bounds in 
dB, and let e be split into two positive quantities eQ 

and eG such that their sum equals e. Further, let the 
working phase interval Y be subdivided such that 
width of Q+ in (2) is at most eQ on every subdivision. 

Let w denote the smallest width of these 
subdivisions. 

Then, it is shown by Nataraj and Sheela (2001c) that 
an acceptable size of the interval plant template (for 
specifying to the IATG algorithms) is as follows: the 
magnitude and phase sides of each template rectangle 

have lengths at most eG and w, respectively. 

5.2. The Unified Procedure 

The steps of the unified procedure for robust 
sensitivity reduction specification are 

Split the accuracy: The accuracy e is split 
into two positive quantities £Q and eG such 
that their sum equals e. 
Subdivide working phase interval: The 
working phase interval Y in (4) is 
successively bisected till over every 
subdivision of Y, the width (in dB) of 
function Q± in (2) is at most eQ, where X 
denotes a subdivision. The smallest width of 

these subdivisions is denoted as W. 
IATG Step: Using any IATG algorithm 
mentioned in section 2 an interval plant 
template comprising of template rectangles 

185 



of prescribed size is generated: each template 
rectangle should have its magnitude side of 
length at most eG dB, and phase side of 

length at most w. Then, the boundary 
template rectangles are extracted, while the 
rest are discarded. 

4. IABG Step : Using the X intervals obtained 
above, the bound intervals are composed as 
in section 3.1.3, and then the bounds are 
composed from these bound intervals as in 
section 3.1.4. 

The procedure is identical for the robust gain-phase 
margin specification, except that the respective 
algorithm is used in the IABG step above. 

5.3. Illustrative Example for Class B Problems 

The unified procedure is illustrated on a mechanical 
system, for generation of robust gain-phase margin 
bounds to a prescribed accuracy. 

Example 5.1. The transfer function of a mechanical 
system is given as Example 9 in the Appendix. The 
design frequency is 01=8, and the gain-phase margin 
spec is wm=2.3 dB. The prescribed accuracy on the 
robust gain-phase margin bounds is e =2.57 dB. 

Notes: The design frequency is selected as oo=8. The 
controller phases at which bounds are to be generated, 
however, are not selected, but are rather left to be 
appropriately determined by the procedure. The 
accuracy of the bounds is, however, prescribed. This 
puts the design problem in class B. 

Solution: The unified procedure is used to generate 
the gain-phase margin bounds of prescribed accuracy. 
Some details of the procedure are given below. The 
prescribed accuracy e=2.57 dB is split as eQ =1.57, 
and eG =1 dB, so that e=eQ + £G. The working phase 
interval is successively bisected into smaller intervals 
till the width of Q± functions over each of these 
intervals does not exceed eQ =1.57. The subdivision 
process takes about 0.3 seconds, and 15 subintervals 
are generated. The minimum width of the intervals is 
found as w=0.0137rads. Next, the interval plant 
template is generated using the parallel-adaptive with 
back-tracking algorithm given by Sheela and Nataraj 
(2001b). The acceptable size of each template 
rectangle is specified to this algorithm: each template 
rectangle should have its magnitude side of length at 
most equal eG =1 dB, and its phase side of length at 
most equal to w =0.0137 rads. The interval template 
is generated in about 1 second, as a collection of 1751 
template rectangles. The boundary extraction 
algorithm of Nataraj and Sheela (2001a) extracts 579 
boundary template rectangles, and takes about 0.8 
seconds. IABG algorithm RSBI in Nataraj and Sardar 
(2000a) is executed to generate the controller bounds. 

The time required for executing this step is about 3 
seconds, and the total flops is 50,675. The results are 
plotted in Figure 2. (For comparison, the results of the 
QFT toolbox using a phase grid spaced 5deg apart are 
also plotted in the same figure, with marking '*'). 
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Figure 1. Robust gain-phase margin bounds for the 
mechanical system obtained using the Unified 
procedure. The specified bound accuracy is 2.57 dB, 
which is almost exactly achieved. Note that the phase 
intervals are of varying widths. The QFT design 
problem is of class B, with the frequency given as 
co=0.8. 

Comments on the accuracy of the bounds: The 
maximum possible error in the generated bounds is 
readily obtainable from the widths of the plotted 
intervals in Figure 2. From Theorem A.l in Nataraj 
and Sheela (2001c), the error in the generated bounds 
is no greater than the maximum width (measured 
along the y-axis) of the bound intervals. This 
maximum width is found to be 2.564 dB, and occurs 
for the upper bound interval [70.2686,72.8320] over 
the phase interval [ -323.6288,-323.5905] deg, and for 
lower bound interval [56.6548,59.2187] over the 
phase interval [-221.5007,-221.4489] deg. Hence, the 
maximum error in the generated bounds does not 
exceed 2.564 dB. This maximum error is less than the 
prescribed accuracy of e=2.57 dB, confirming that the 
generated bounds are indeed of prescribed accuracy. 

Comments on the automatic selection of phase 
intervals: The controller phase intervals plotted in 
Figure 2 are found to have varying widths, with the 
maximum width as 50 deg and the minimum width as 
0.0002deg. The widths vary because the phase 
intervals are adaptively and automatically found in the 
unified procedure (in the subdivision step), so that 
bounds of prescribed accuracy can be generated. In 
contrast, in the point QFT procedures, the designer 
arbitrarily selects the controller phase points at which 
the bound values are to be generated. Thus, the unified 
procedure completely solves the problem associated 
with phase selection in the point QFT procedures. 
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6. PROCEDURE FOR CLASS C PROBLEMS 

The developments given above for the point frequency 
case can be extended to the interval frequency case. 
Extensions of some key concepts are first outlined, 
followed by the procedure to solve class C problems. 

Let Q° denote the given design frequency range, and 
Q denote a fixed but arbitrary frequency interval in 
fi°. 

Natural interval extensions. The natural interval 
extension in Definition 2.1 is extended for the interval 
frequency case as follows: The expression which 
arises if each occurrence of X and co in fmag (co, X) is 
replaced by A and Q, if each occurrence of a pre- 
declared function (like sin, cos, exp, etc.) is replaced 
by the corresponding pre-declared interval function, 
and if the arithmetic operations in fmag(co,A, ) are 
replaced by the corresponding interval arithmetic 
operations, is called as the natural interval extension 
of fmag(K>,X) to Q and A. The natural interval 
extension of fmag is denoted as Fmag (Q, A). Similarly 
for Fang (Q, A) and F (Q, A). 

Interval frequency plant template. By extension of the 
definition for the point frequency case, the plant 
template at frequency interval Q can be defined as 
G(Q) ={f((o,X),XeA°,COGQ }. 

The plant template for the case of frequency interval 
can also be generated using any of the IATG 
algorithms in section 2, by considering Q as just 
another interval parameter for purposes of 
subdivision. The resulting template is called as an 
interval frequency plant template. An interval 
frequency plant template also comprises of one or 
more phase-magnitude rectangles, called as template 
rectangles, just as for the point frequency case. A key 
property of the interval frequency plant template at Q 

is that it always encloses the exact template G(Q). 
That is, the interval frequency plant template at Q 
contains all the points in the usual (point frequency) 
templates generated at all coe fi. 

Working phase interval. The working phase interval Y 
is now a function of frequency, as zs depends on 
frequency through the spec. The working phase 
interval Y corresponding to the Q, under consideration 
can be found from (4). 

Spacing the frequency intervals and the bounds. The 
designer can choose among various criteria for 
obtaining frequency intervals from the given design 
frequency range. The following criterion is chosen 
here. Let Q,' be an adjacent frequency interval to Q. 
Then, the maximum of the upper bound at Q and 
maximum of the upper bound at Q. should be within 

some specified distance or spacing, denoted T dB 
(note that the maximums of the bounds need not occur 
at the same 0). This criterion can be written as (with 
all quantities in dB) 

(7)    |minFmag(Q,A)-minFmflg(Q',A)|<T-j3 

where Fmag is the natural interval extension of the 
plant magnitude function (cf. section 6.1), and ß is the 
overestimation in Fmag. Similarly for the spacing 
between the minimums of the lower bounds at Q and. 

The above criterion is chosen just to illustrate the 
methodology of the proposed procedure. Other criteria 
can be specified by the designer to suit the needs of 
the problem, and the proposed procedure can be 
suitably adapted to achieve the ends. 

6.1 The procedure 

A unified procedure for obtaining gain-phase margin 
bounds is outlined below. The procedure generates 
bounds that are of prescribed accuracy e dB, and 
spaced such that bounds of adjacent frequency 
intervals have their maximum magnitudes within T 
dB, and similarly for the minimum magnitudes. 

The steps of the unified procedure for robust gain- 
phase margin specification are 

1. Split the accuracy: The accuracy e is split 
into two positive quantities eQ and eG such 
that their sum equals e. 

2. Subdivide the design frequency range: The 
design frequency range is successively 
bisected till (7) is achieved at each frequency 
interval Q.. 

3. Subdivide the working phase intervals: At 
each frequency interval Q, the following is 
done. The working phase interval Y in (4) is 
first computed. Then, Y is successively 
bisected till over each subdivision X, the 
width (in dB) of function Q± in (2) is at most 
eQ. Lastly, the smallest width of these 

subdivisions is found and denoted as w. 
4. IATG at each frequency interval: For each 

frequency interval Q, using any IATG 
algorithm an interval frequency plant 
template comprising of template rectangles 
of prescribed size is generated: each template 
rectangle should have its magnitude side of 
length at most eQ dB, and phase side of 
length at most w. Then, the boundary 
template rectangles are extracted, while the 
rest are discarded from each interval 
frequency plant template. 
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5. IABG at each frequency interval: At each 
frequency interval Q, using the X intervals 
obtained in step 3 above, the bound intervals 
are composed as in section 3.1.3 and then 
the bounds are composed from these bound 
intervals as in section 3.1.4. 

6.2. Illustrative Example for class C problem 

Example 6.1. The transfer function of a system found 
in active noise and vibration control is given as 
Example 1 in the Appendix. The system has highly 
under-damped resonance. The nominal parameters are 
(üho=0.75 and ^o=0.02. The robust gain-phase margin 
specification is wm=1.2 dB. The design frequency 
range is Q° =[ 0.5,1.5]. The objective is to generate 
the bounds with an accuracy e=2.5 dB and spacing 
T=7.5 dB (cf. equation 7) over the given design 
frequency range. 

Notes: The design frequencies (as points or as 
intervals) and the controller phases at which bounds 
are to be generated are not selected here, but are rather 
left to be appropriately determined by the procedure. 
However, the design frequency range, the accuracy of 
the bounds, and the spacing between them are 
prescribed. This puts the design problem in class C. 

The above unified procedure is applied to generate the 
robust stability bounds of prescribed accuracy and 
spacing. In Step 1, the prescribed accuracy e=2.5 dB 
is split as £Q =2.1, eG =0.4 dB, so that e=eQ + eG- In 
step 2, the given design frequency interval Q. = 
[0.5,1.5] is successively bisected till the spacing 
inequality in (7) is achieved at each frequency interval 
Q. This step gave 17 frequency intervals listed in 
Table 2. Then, steps 3 and 4 are executed at each 
frequency interval to generate the interval frequency 
template and extract the boundary rectangles, as 
detailed in the earlier example. Lastly, the IABG 
algorithm for the robust gain-phase margin 
specification, Algorithm RSBI in Nataraj and Sardar ( 
2000a), is applied to the boundary rectangles of the 
templates to generate the bounds at each frequency 
interval. The total time for these steps is about 300 
seconds. For plotting purposes, the controller bounds 
are converted to those on the nominal loop 
transmission function L0 (s). Figure 3 shows the plots 
of these bounds at selected frequency intervals Q4, Q5 

and Q6 (bounds only for selected frequencies are 
plotted, to avoid cluttering the figure). 

Table 2. Design frequency intervals obtained by 
subdividing the given design frequency range in 
Example 6.1 

D!=[0.50,0.56] 
Q3=[0.62,0.65] 
Q5=[0.68,0.75] 
Q7=[0.78,0.81] 
Q9=[0.84,0.87] 
Qu=[0.90,0.93] 
Q13=[1.00,1.06] 
Qi5=[l. 12,1.25] 
Q,7=[1.37,1.50] 

Q2 =[0.56,0.62] 
Q4 =[0.65,0.68] 
Q6 =[0.75,0.78] 
Q8=[0.81,0.84] 
Q10=[0.87,0.90] 
Q12=[0.93,1.00] 
Q14=[1.06,1.12] 
OI6=[1.24,1.37] 
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Figure 2. Robust gain-phase margin bounds for the 
under-damped system in Example 6.1. The bounds are 
generated by the unified procedure for class C 
problems. Seventeen design frequency intervals are 
automatically generated, but bounds for only 3 
frequency intervals are plotted and marked as A - Q4, 
B - QSi C - Q6. The specified bound accuracy is 2.5 
dB. 

Comments on the automatic selection of frequency 
intervals: It is seen in Figure 3 that the frequency 
intervals are such that the spacing between the bounds 
(in the sense of section 6.4) is at most T=7.5 dB. 
Further, it is seen in Table 2 that the frequency 
intervals have different widths, with the maximum 
width as 0.13 and the minimum width as 0.03. The 
widths vary because the frequency intervals are 
automatically found in the unified procedure (in the 
subdivision Step 2), so that bounds of prescribed 
accuracy are generated. 

In contrast, in the point QFT procedures, the designer 
(usually arbitrarily) selects the frequency values at 
which the design is to be performed. The unified 
procedure completely solves the difficulty of carefully 
analyzing and selecting design frequencies with the 
point QFT procedures. To emphasize this capability, 
note in Figure 3  that while proceeding from £24 
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through Q6, the bounds shift considerably rightward at 
Q5. This phenomenon is important for loop-shaping, 
and the unified procedure captures it automatically. 
However, it is quite likely that this phenomenon 
would be missed in a designer-selected frequency set. 

Comments on the accuracy of the bounds: The 
maximum possible error in the generated bounds is 
readily obtainable from the widths of the plotted 
intervals in Figure 3. It is seen from the figure that this 
maximum error is less than the prescribed accuracy of 
e=2.5 dB. 

Comments on the automatic selection of phase 
intervals: The phase intervals plotted in Figure 3 have 
different widths at a given frequency interval. Further, 
the widths also vary with the frequency interval. The 
widths vary in this manner because they are 
adaptively and automatically found in the unified 
procedure (in the subdivision step 3), so that bounds 
of prescribed accuracy can be generated. In contrast, 
in the point QFT procedures, the designer arbitrarily 
selects the phase values at which the bounds are to be 
generated. 

7. CONCLUDING REMARKS 

It has been shown in this paper how IQFT lends rigor 
and reliability to Horowitz's basic QFT design 
technique. Several fundamental issues that have been 
so far treated in a rather ad-hoc manner in QFT, such 
as selection of design frequencies, phases, and plant 
parameter combinations, are treated in a systematic 
fashion in IQFT. 

Much, however, remains to be added to the baggage 
of IQFT tools, even for the basic single input-output 
linear plant case. Preliminary work done by 
Vamsikrishna (2000) on loop-shaping using global 
optimization tools of IA has met with some success, 
but needs to be made computationally more efficient 
and tested on more examples. The computational 
verification of existence of a solution to the basic QFT 
design problem seems to be possible, and is an 
exciting prospect in IQFT. Further, the cases of 
multivariable and nonlinear plants are as yet 
untouched in IQFT. 
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APPENDIX A. LIST OF EXAMPLES 

The following is a suite of transfer function examples 
used in this work. The test problems are taken from 
the QFT literature. The problem names reflect the 
general type of the system. 

Example 1. Under-damped Second Order System 
(Rodrigues et. al, 1997): The transfer function for a 
system occurring in active noise and vibration control 
with highly underdamped resonances is 

g(s) = 
a: 

s2 + 2%a>ns + (0* 

con € [0.75,1.25j£e [0.02,0.061« = 1. 

Example 2. DC Motor (Bailey ef.a/.,1988): The DC 
Motor drives a viscously damped inertial load. The 
transfer function between the torque and armature 
voltage is 

(s)= K(J,s + B,)  

(Ls + R)(Jms + J,s + Bm+B,) + K2 

Ke [0.2,0.6], J, e [10-5,3*10"5],Jm =2*10-3 

5m=2*10-5,Z, = 10"2//, 

R = 1Q,B,=Bm,a> = 20. 
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Example 3. Simple poles (Nataraj and Sardar, 2000a): 
The transfer function for a stable second order system 
with real poles is 

() = * 
(s + a)(s + b) 

ae [l,5\be [20,30l>te [l,10lfl) = l. 

g(s) = - 
(r+T.y 1-e" 

iogio ?! 57:^1+ 
^ V 

(1 + COST, s) 

Tt e [3,5jrr e [0.5,0.717-G [9.25,9.351 

T,G [0.49,0.51 ft) = 0.5. 

\An J 

Example 4. Non-minimum phase (Sidi, 1976): The 
transfer function for a non-minimum phase system 
with real poles and zeros is 

^) = ^,*e [0.3,11 
5(1 + Bs) 

DG [0.05,0. ll AT e [1,31© = 1. 

Example 5. Non-rational (Horowitz, 1993, pp.129): 
The transfer function for a non-rational system is 

-,ae[l,2] 
\ + be 

be [0A,0.6\Te [o.01,0.02lß> = 2. 

Example 9. Mechanical system ((Horowitz, 1993, pp. 
222 ): The transfer function for a mechanical system 
is 

g^= f2,2km, r./e[l,2] s(s fin  +bms + c) 

w2e[l,10],Z>G[0.5,l],cG[2,3] 

£e [0.5,2],© = 8. 

ExamplelO. Aircraft,longitudinalMotion (Thomspon 
and Nwokah, 1994): The transfer function for the 
longitudinal motion of an aircraft is (from 
aerodynamic data, the ranges for the uncertain 
parameters are identified) 

Example 6. Electro-Mechanical (Cohen et. al., 1995): 
The transfer function between control torque to motor 
speed of an electro-mechanical system is 

J,s2 +ds + k 
g(S)    J,Jms3 + (J, + JJds2 + (J, + JJks 

Jn = 0.4, J, e [5.6,8],rfe [30,300], 

ä:G[5880,59001O) = 10^. 

Example 7. Vehicle clutch system (Chen and Balance, 
1999): The transfer function between the input clutch 
position to the output transmission speed is 

*(*) = ■ 

M'2+ % + !*) 

y>-K + • 2 
y J v        o r J c j 

. k. .    k. 
s + ~f--\—f~r 

Jv       SrJc 

jv= [1400,11000], ks= [5800,115000], kc = [100,800], 
jc = 0.09, je = 3.07, cs = 377, gr = 27.0, co=10. 

g(s)-- 
*(! + -) 

z 

s(l + -)(l + 2 — S + -^r) 
P to„       *», 

ZG [0.5,0.75],pe [1,10],£ G [0.8,0.9] 

ft)„ G [5,6], ke [0.2,2], ft) = 0.1. 

Example 11. Inverted pendulum (Borghesani et. al, 
1995): The transfer function between pendulum angle 
to the cart's motor current is 

g(*) = 
KacolillL)s2

e- 

\{s(s + a) - K^Kajs2 + 2&„s + co2„ )1 

W-g'L) I 
le [0.3,0.45],K e [1.5,1.7],^ e [0.001,0.02], 

TG [0.014,0.015],« G [15,17],ft)„e [50,70], 

K, e [0.005,0.15],g = 9.81,o = 10. 

Example 8. Multiple transport lags (Nataraj and 
Sardar, 2000b): The transfer function for a system 
with multiple transport lags is 
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Abstract: Given a linear uncertain plant, a feedback two degrees of freedom control must be 
designed to satisfied specified tolerances on general performance and stability robust behaviours: 
gain and phase margins, appropriate response to command and disturbance inputs and control 
effort limitation. Solution existence mathematical theories developed until the moment in QFT, 
have only cared implicitly for the cost of feedback. So under certain constraints on the plant and 
on the rest of tolerances, they can infer necessary and sufficient conditions for the existence of an 
optimum open loop transmission function that lies on its bounds at each frequency. This remains 
an unresolved problem when control effort constraints are explicitly included. This paper dealt 
with it more than a loop shaping challenge, as a question of achieving a feasible set of bounds, 
i.e. gaining a non- empty QFT bound intersection at each frequency. Bound formulation based on 
quadratic inequalities is the foundation of the study. This permits to set up certain rules amongst 
the different specification tolerances as a function of the plant uncertainty to guarantee the 
simultaneous meeting of feedback requirements. 

Keywords: Quantitative Feedback Theory, Robust Control, Uncertain Systems. 

1.     INTRODUCTION 

Quantitative Feedback Theory (QFT), (Horowitz, 1991; 
Houpis, and Rassmussen, 1999; Yaniv, 1999), has 
proven to be a very effective design methodology of 
feedback control. However, it has often been criticised 
for lack of a rigorous mathematical theory to support its 
claims. The trouble arises on whether an open loop 
transfer function Ld=GP0 satisfying the various frequency 
bounds can be found, labelling this the solution existence 
problem. The bounds represent robust performance and 
robust stability requirements in QFT domain. 

Feedback tolerances in early QFT works included 
explicitly specifications on the uncertain system response 
to command and disturbance inputs (robust performance 
specifications) and robust stability. Attending to robust 

performance specifications, as the amplitude of the 
controller increases, the plant output response to 
disturbances decreases and the sensitivity of the plant 
output to tracking commands decreases. In turns, it also 
implies a larger open loop L=GP, and hence a larger 
cross-over frequency or larger bandwidth, so it also 
increases the plant output response to sensor noise on a 
wider bandwidth. Hence, the bound outlook must permit 
reducing the high frequency open loop gain \L\, reaching 
its high frequency asymptote as fast as possible to reduce 
the cost of feedback (Horowitz, 1972, 1973). As long as, 
tolerances on control effort are only implicitly 
considered, i.e. any bound represents them, some 
constraints must be imposed on the uncertain plant and 
on the rest of performance tolerances explicitly cared 
about, to guarantee solution existence to the feedback 
problem, (Horowitz, 1979 App.l). Under these premises, 
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several researchers have developed theorems with 
necessary and sufficient conditions for solution existence 
in minimum phase systems: Horowitz (1979, App.l), 
Nowokah and Thompson (1989), Nowokah et al. (1990), 
Thompson and Nowokah (1989, 1994), Jayasuriya and 
Zhao (1994a,b), Nordgren et al. (1994). 

In recent QFT works, more general performance 
specifications, including also the cost of feedback, have 
been formulated in terms of QFT bounds, Chait and 
Yaniv, (1993), Borghesani et al. (1994), Yaniv (1999). 
Unfortunately, in this case the solution existence 
question remains an unresolved problem. 

This paper dealt with this problem, more than if a I 
function exists given certain bounds, as a question of 
defining a feasible set of bounds. Taking advantage of 
bound formulation developed by Chait and Yaniv (1993) 
for automatic bound computation, it is going to be used 
to find out whether the set of algebraic bound inequalities 
must be met simultaneously, i.e. if there exist a non- 
empty bound intersection at each frequency of interest. 
System uncertainty and specification figures of merit are 
immersed in the bound formulas, so the trade-offs 
between arbitrarily small feedback requirements and 
arbitrarily large uncertainties can be algebraically 
arranged. 

This paper is made up of seven sections. Section 2 
expresses the closed loop requirements on robust 
performance and robust stability. Bound formulation 
through quadratic inequalities is revised in Section 3. 
Section 4 examines bound formulation of each feedback 
problem classifying them in typologies of bounds. The 
simultaneous meeting of feedback requirements is dealt 
with in Section 5. Firstly, general rules are given, and 
following, the most frequent tolerance values in practical 
systems are discussed. An example in Section 6 
illustrates the methodology for a particular control 
design. The conclusions are given in Section 7. 

2.  ROBUST FEEDBACK PROBLEM STATEMENT 

Consider the plant P(s) with structured parametric 
uncertainty {P} in Figure 1. A SISO feedback loop with 
a controller G(s) and a pre-filter F(s) is the design 
objective in order to meet robust stability and robust 
performance specifications despite plant uncertainty and 
plant disturbances. Assume the responses of all LQa>)= 
G(jco)PQco) form a convex set on the complex plane. 
Assuming also unity-feedback H(s)=\ for simplicity, the 
closed loop specifications ök of the system are described 
in the frequency domain in terms of inequalities on the 
system's transfer functions \Tk\, h=l,...,5, from some 
inputs to some outputs (Table 1): A=l, robust stability 
(Y/RF), robust control effort for the rejection of system 

input disturbances (£//£>,) and robust sensor noise 
attenuation (Y/N); k=2, robust rejection of system output 
disturbances (Y/D2); k=3, robust rejection of system input 
disturbances (Y/D{); k=4, robust control effort: for the 
system output disturbance rejection (U/D2), for the noise 
attenuation (U/N) and for the tracking of reference 
signals (U/RF); k=5, robust tracking of reference signals 
(Y/R). 

D,(s) D2(s) 

R(s) 
F(s) 

E(s) 

G(s) 

U(s) 

P(s) •Ö Y(s) 

H(s) 

Plant with 
uncertainty 

N(s) 

Figure 1: SISO Feedback System 

Table 1: Feedback problems 

Transfer functions and specifications Eq. 

|W<»)| = 
Y(jm) - U(jo>) - Y(jio) = P(jco)G(ja) 

< <5[ [to), ft> e Ü 
(1) 

R(jco)F(ja) 0,(y») N(jto) 1 + P(jco)GUa) 

\nu<4 = 
Y(jto) = 1 

- <S2(co), ms Ü2 
(2) 

(3) 

ZMyra) l + PU<0)G(j(O 

\T,(jt°)\ = 
Y{ja) = P(jco) 

- id3((o), <ue ß3 

AO'°>) \ + P(jm)G(j(0 

\Tt(jo)\ = 
U(jto) lb (jco) = V(jto) 

1 
GU(o) < 6,(10), CO E i2, 

(4) 
D7(ja» U<°) R(jco)F(j<o) + P(jco)G(jco) 

YU°>) - Hj 
PUto)G(jai) (5) 

R(ja) l + P(jco)G(ja>) 

3.      QUADRATIC INEQUALITIES IN QFT BOUND 
FORMULATION 

In the bound generation step of the QFT design 
procedure, tolerances on the closed-loop system 
frequency response S^co,), in combination with plant 
uncertainty templates (set of complex numbers on 
phase/log-magnitude axis representing the frequency 
response of an uncertain plant at a fixed frequency a),), 
are translated into ö),-bounds on the controller <j(jfi%). 
Logarithmic complex plane, the Nichols Chart (NC), is 
the domain used in QFT from Horowitz and Sidi (1972). 

Various approaches to the bound generation problem 
exist. Traditionally, QFT bounds have been computed 
using manual graphical manipulations of the plant 
templates on the NC. The necessity of alleviating much 
of the manual work required in the graphical procedure 
has led to several researchers to develop different 
algorithms for automatic computation of these bounds. 
For the general case, early bound generation algorithms 
used geometrical and/or search-based CAD techniques, 
(Longdon and East, 1978; Houpis and Lamount, 1988; 
Thompson and Nwokah 1989; Bailey and Hul, 1989; 
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Jayasuriya, 1990; Wang et al., 1991; Yaniv, 1992. 
Recently, more efficient numerical algorithms based on 
quadratic inequalities have been proposed. Chait and 
Yaniv (1993), Yaniv and Chait (1991, 1992, 1993), and 
Chait et al. (1995) developed quadratic inequalities for 
general settings including continuous and discrete-time 
systems, as well as for parametric and non-parametric 
uncertain models. These algorithms establish a formal 
process of mapping the plant uncertainty and the 
feedback specifications into the bound formulas through 
quadratic inequalities. They also form the basis of bound 
computation in the QFT Toolbox of MATLAB 
(Borghesani et al., 1994). Being this procedure the 
starting point of the work developed in this paper, next 
paragraphs summarise it. Other works improving the 
efficiency and accuracy of algorithms for computing 
bounds are in Zhao and Jayasuriya (1994), Rodrigues et 
al. (1997), Nataraj and Sardar (2000). 

For many practical problems, it is difficult if not 
impossible to analytically describe the plant templates. 
Consequently, algorithms for computing QFT bounds 
choose a set of discrete frequencies {ßj,}={n^, 
h=l,...,5} and approximate the ft), plant template by a 
finite w-point set of plants. This approximation should 
trade-off between computational complexity and the 
accuracy of the bound computed, (Rodrigues et al., 
1997). Each of the r=\,...,m plants in the co-template can 
be expressed in its polar form as 
Pfyco^PricofrtJ^^pZO, and equally the controller 
polar form is G(jft>/)=g(ft),)ei*=gZ0 (phase controller 
dependence on frequency has been suppressed 
considering 0 range is the same for all the «/-bounds). 
Substituting them into any of the k=l,...,5 feedback 
problems (Equations (1) to (5) in Table 1) and 
simplifying, results in quadratic inequalities, that follow 
the general form: 

Iko}Xp,e,8k,(P) = a-g2+bg + c>0 (6) 

where the coefficients a, b, c depends on: p=pr((Oi), 6 
=6r(coi), 8k=8k((D?) and 0. For a particular frequency 0),, a 
fixed plantpZ8 in the «,-template and a fixed controller 
phase 0 in the range [-360°,0°], the coefficients a, b and c 
take discrete values. Thus, the unknown parameter in (6) 
is the controller magnitude g. 

Feedback problems (1) to (5) are now reformulated in 
Inequalities (7) to (11) as Table 2 shows. Note that the 
tracking problem in (5) is a two degrees of freedom 
design (F and G). G design aims to reduce the variation 
in |7]=|7,

5|/|F|, under the limit ^=55sUp/^inf, implying a 
double valued problem. Due to it, two arbitrarily plants 
PdZ0d and peZ6e in the «/-template {PJja),), r=\,..,m) 
appear in Equation (11), instead of a single plant pZO as 
for the rest of feedback problems; Chait and Yaniv 

(1993). After the G-design, the F-design is accomplished 
such that <55inf<|F||71«55SUp. This last step is 
straightforward and its details are omitted in this paper. 

The quadratic equation /* {p,9,8k,^>) = 0, associated to 

(6) has two solutions: g; (negative square-root) and g2 

(positive square-root). Computing them for all the plants 
r=\,...,m in the «,-template, the most restrictive giZ<p 
and/or gi-Zty solutions determine the boundaries of a 
region on the NC that can not be penetrated by gZ(j> (see 
Section 4). Furthermore, they constitute the restrictions 
or bounds on G at the frequency ft), to achieve the 
specification &(«/). This procedure is carried out for all 
the frequencies of interest «eA and all the 
specifications (5*(ft>,), k=l,...,5. 

Table 2: Bound quadratic inequalities 

k Bound Quadratic Inequality Eq. 

1 
P1- H ■g2 + 2-/>-cos(0 + 8)-£ + iaO 

(7) 

2 
p2 ■ g2 + 2 ■ p ■ cos(0 + 0) ■ g + ('"-I I     1) 

>0 
(8) 

3 
p2 ■ g2 + 2 ■ p ■ cos(0 + 0) ■ g + >0 

(9) 

4 

I         1) 
g!+2-/>-cos(^ + 0)-g + l>O 

(10) 

5 
Pi Pi H) ■ g2 + 2p,pd p, cos(« + 9j)--ff cos»+ 6«) •g + \P!-^IO 

(11) 

Setting the bounds on the nominal loop transmission 
L0=PoG for a particular nominal plant P0 from {P}, 
rather than on G, is more natural for loop shaping. Then, 
being L0Q0)^=1 oZy/0, the Z,0-bounds are simply computed 
by translating the G-bounds vertically by \Po(jco,)\=p0 and 
horizontally by ZPoQa>^=60, where Po(ja>D=p0Zßo, is the 
nominal plant of the «/-template. The results given for 
the G-bounds along the paper are also applicable to the 
l0-bounds. 

4.     BOUND FORMULATION AND TYPOLOGIES 

g denotes the controller magnitude. Thus, from the gi 
and/or g2 computed for each plant in the «/-template at 
each 0 in [-360°, 0°], only the positive real ones give real 
constraints. As described in Thompson and Nowokah 
(1994), this leads to single-valued bounds when only one 
root is real and positive in the whole compensator phase 
range, 0e[-36O°, 0], or to multi-valued bounds if there 
are either no positive real roots or two positive real roots 
depending on the phase angle 0. Thompson (1998) 
establishes three bound categories, distinguishing 
between upper and lower single valued bounds, apart 
from the multi-valued bounds. The present work extends 
these conclusions formulating four bound categories in 
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terms of the open loop transmission, much more sensitive 
to the cost of feedback than the sensitivity function 
(Horowitz, 1991). Four classes of solutions to the general 
feedback problem expressed in the quadratic inequalities 
(7) to (11) can be found, giving four categories of bounds 
labelled as typologies A,B, C and D. 

gj. Repeating for each <pe [-360°, 0°], giZcj) constitutes the 
G-bound formula at the frequency ft), and the 
specification Sk(co,). 

(a) Typology A (b) Typology B 

8 <♦ i?2   (♦ 
s <* > e2 (♦ 

4.1       Bound typology description 

- Typology A. {g2, gi}>0 and real for 0e[-18O°+£], 
0°<e<180o, and o>0. Then to meet (6): 

g Z(p >g2 Z<p  and gZ$<gKZ§ (12) 

g2Z(f> and g\Z§ are two &)rbounds joint at their ends. 
They only exist over a particular phase range wherein gn 

are no complex. According to the requirement expressed 
in (12), from the g\2£§ computed for all the plants pZO 
in the ft),-template, the most severe ones are the largest g2 

and the smallest gx for each 0. This selection of gi2Z<p 
constitutes the G-bound formulas at the frequency cot and 
the specification Sk(a>i). Their graphical representation 
looks like Figure 2(a), blurred by the particular cor 

template shape. The stripped area is the allowed region 
for gZ(j>. 

- Typology B. g2>0 and real, gi<0 and real, for each 
0G [-360°, 0°]; and a>0. Then to comply with (6): 

gZ$>g1Z$ (13) 

g2Z<j> is the single ft),-bound for gZcp over the whole 

phase range. Keeping with the condition in (13), from the 
g2 computed for all the plants pZQ in the ft),-template at 
fixed (p, the most stringent one is the largest g2. 
Extending for all the </e [-360°, 0°], those g2Z(f) computed 
constitute the G-bound formula at the frequency &>, and 
the specification <5*(ft>,). Their graphical representation 
looks like Figure 2(b). 

- Typology C. {g2, gi}>0 and real for 0e[-18O°+e], 
0°<£<180o, and a<0. Then, to meet (6): 

g2Z(j> <gZ4><g]Z(P (14) 

Figure 2(c) shows these results. This kind of solutions 
does not appear for the most common realistic systems. 
Nevertheless, this possibility is considered, for the sake 
of generality. 

- Typology D. gi>0 and real, g2<0 and real, for each 
0e [-360°, 0°]; and a<0. Then to comply with (6): 

gZ<p<g,Z<S> (15) 

g,Z</> is the single G),-bound for gZ(p over the whole 

phase range. See Figure 2(d). Keeping with the condition 
in (15), from the gxZ<f> computed for all the plants in the 
ft),-template at a fixed </>, the toughest one is the smallest 

-360      -270      -160       -9C 

OH 
(c) Typology C 

/ \ 

-360     -270      -180      -90 

on 

-360     -270      -180      -90 

(d) Typology D 

S <« < 8, (♦ 

-360     -270      -180      -90 

Figure 2: Bound typologies 

The bound graphical notation for the whole document is 
that a bound plotted with a solid line implies that GQco) 
(or L0Qco)) must lie above or on it in order to meet the 
particular specification, while a bound plotted with a 
dashed line implies that GQco) (or loCJ^)) must lie below 
or on it. OptimumL0(jco) (or GQco)) lies on the associated 
boundary at each value of co (Horowitz, 1973) in the 
sense that, this L0Qco) always meets the required 
specification, despite the inherent uncertainty in PQco), 
with the minimum 'cost of feedback'. 

4.2      Bounds for the k=l ,...,5 feedback problems 

Table 3: si_2 solutions of the quadratic inequalities 

_SL2_ 

- cosl/p + 9) + Jcos2(0 + 6) -11 j- 

81,2 = — ■ 
P 

- COS(0 + 0) + . COS2 (0 + 0) '-is 
Sl.2=- H0)H S + 0)- 

p- 1 
P2« 

1 

" P2S} 

V       5 / 

 r--(p»COsW+^)-|fcos(«+ee) 

Acos(0+e,,)-|f-cos(0+ee) '-* 

Eq. 

(16) 

(17) 

(18) 

(19) 

(20) 

Solving the quadratic equations I^(p,0,8k,(j)) = 0 for 

the /t-feedback problems, £=1,...,5, expressed in (7) to 
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(11), gi and g2 solutions are presented in Equations (16) 
to (20) in Table 3. 

Attending to mathematical behaviour of (16) to (20), 
some conclusions about the bound typologies and bound 
formulas for the different performance and stability 
problems are summarised in Table 4. From this point, the 
constraints to design a solvable feedback problem can be 
studied. 

Table 4: Bound formulations and their typology 

k & Typol G-bounds 

1 0 < 5, < 1 D gZQ < glZ(j,  ; 0e[-36Oo,O°],giin(16) 

Si >1 A gZQ > g2Z<p ,gZ(t, < glZip ;0e[-18O°T£],g|2(16) 

2 0<52<1 B gZ<p > g2Z<f> ; 0e[-36O°,O°],g2in(17) 

<52>1 A gZ<t> > g2Z(l> ,gZ0 < g,Z0  ;0e[-18O°T£],gi2(17) 

3 p>83 
B gZ<p > g2Z<p ; 0e[-36O°,O°],g2in(18) 

p<63 
A gZ(f, > g2Z<p ,gZ<p < gxZ$ ;0e[-18Oo+e],gi2(18) 

4 p<l/SA 
D gZQ < g,Z0 ; 0G[-36O°,O°],giin(19) 

P > ys* A gZQ > g2Z<p ,gZ<t> < giZ<p ;0e[-18O°+£],g,2(19) 

5 

Pmm 

B gZ$> g2Z$ ; 0E [-360°, 0°], g2 (20) 

Pmax   , s 
 <°5 
Pmm 

A gZQ > g2Z<p ,gZ<p < g,Z<p ;0e[-18O°+£],g,2(2O) 

5.     SIMULTANEOUS MEETING OF FEEDBACK 
REQUIREMENTS 

Checking G-bound formulas and typologies in Table 3 
and Table 4, notice that for a specific compensator phase 
(p, the typology and the magnitudes gu g2 depend on the 
closed loop tolerances <5t and on the open loop plant 
uncertainty in magnitude p and phase 0. Considering the 
plant uncertainty (p and 6) a parameter arbitrarily large 
and inherent to the plant nature, the specification figures 
of merit (Sk) are the design parameters for the 
simultaneous meeting of all the specifications. 
Following, some general guidelines on this matter are 
given in Section 5.1. Sections 5.2 to 5.5 discuss the more 
frequent tolerances in practical systems. In general, the 
simultaneous meeting of all the specifications, or in case 
the best performance achievable, is highly dependent on 
the application, as an example shows in Section 6. 

5.1       General rules for solution existence 

The simultaneous meeting of bounds is checked for each 
particular frequency and there is a particular set of 
specifications to achieve at each frequency. Hence, from 
the point of a non-empty bound intersection, only for 

those frequencies where the specifications can conflict, 
trade-off solutions should be adopted for Sk. 

Single-valued bounds (typologies B and D) are more 
aggressive than double-valued bounds (typologies A and 
C) because they must be satisfied for the whole phase 
range [-360°, 0°]. A requirement more stringent for upper 
bounds (single or double valued) means a higher g2 

magnitude, and for lower bounds (single or double 
valued) a smaller gl magnitude, at each phase angle <j>. 
Double-valued bounds severity also increases when their 
phase range of existence (+e around -180°) increases. 
Harder 8k figures of merit lead to more severe bounds as 
described. 

Type A bounds of any magnitude gij2 can coexist with 
type B or D bounds allowing a simultaneous fulfilment. 
If type B and D bounds coexist, gx bound D magnitudes 
should be higher than g2 bound B magnitudes for some <p, 
relaxing Sk when necessary. 

5.2      Stability problem 

Robust stability is the main requirement in any practical 
design. QFT cared for it through a b\ constraint, that is a 
constant value for all the frequencies, see Equations (1), 
(7) and (16). Robust gain and phase margins can be 
obtained from 5] by simple arithmetic, (Yaniv and Chait, 
1993). öi requirement yields a single dominant high 
frequency bound, also labelled universal high-frequency 
contour or simply U-contour. 

Even in the absence of significant disturbances (no 
necessity of constraints b\ and/or 83) the latter should not 
be entirely ignored. If it is, very large peaks of \L/(l+L)\ 
will result at high frequencies. Such peaking does not 
violate tracking constraints S5 since the pre-filter F 
attenuate the higher frequencies of the command input. 
However, a large peak produces due to Z>i,2 if there is not 
a constraint on the damping factor of the complex pole 
nearest to the j co axis. To cope with it apart from stability 
purposes, a restriction Si of the form (1) should always 
be added, (Horowitz and Sidi, 1972,1978). 

Characterising stability constraint, 5i is a constant value 
independent of the frequency. For reasonable gain and 
phase margins (or disturbance peak limitation), Biernson 
(1988) advises Ö\<13 (MF>45° and MG>5dB). $ much 
larger than 1 implies too conservative margins, what 
amplifies high frequency noise. According to Table 4, 
stability requirements (Si moderately greater than 1) 
always yields typology A bounds, that can coexist 
(simultaneous solution) with any other type of bounds. 
See Figure 3, for a plant P(jco)=kßco with uncertainty 
ke [1, 3], and nominal plant for k=\. 
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5.3      Disturbance rejection problem 

According to Table 4, disturbance requirements are 
expressed in QFT as upper single-valued bounds 
(typology B) and/or double-valued bounds (typology A). 
For disturbances at the system output, the bound 
typology at co depends exclusively on the constraint 
value Ö2(cö). However, the typology of input disturbance 
bounds depends on <5,(a>) and the plant magnitude/? (that 
takes a set of values for the co template). Both constraints 
<5>2 and 5, can be rewritten as a single restriction So on the 
sensitivity    function    5=|1/(1+Z,)|:     5D(cö)=mm{ö2(co), 

min(S,(fi>)/|P(jfi>)l)}- Being \p6a>)\ a set of Plant 

magnitudes for each particular (»-frequency. 

The specification figures of merit 5D(CO) usually take 
values below zero at the frequencies of interest in the 
disturbance problem, assuring appropriated attenuation 
levels. These, 0<5D(CO)<\ for co<toD yield upper single 
bounds (typology B). However, there is also a constraint 
on the «^-specification values at high frequencies for 
gaining solution existence: b\,{co)>\, (Horowitz 1979, 
App.l). Then, <5D(G>)>1 for ai>coD yield double valued 
bounds (typology A), allowing the reduction of the open- 
loop gain at high frequencies. Check it in Figure 3, for 
<5c=(52. So values at high frequencies (ö>=90rad/sec. in the 
example) are considerably greater than 1 (60=82=9 in 
Figure 3). Thus, typology A bounds due to <5[ are 
dominant (more restrictive) than typology A bounds due 
to So, as Figure 3 shows. 

Specifications.    0=1:82=0.2,55=1.03;    m=90: S,=1.3, S2=9, J5 =50 

Safari) 40 

B(KF90) 

-360     -270     -180      -90 

(a) 

y 

-360     -270     -180      -90 
phase v n (b) 

Figure 3. (a) Bounds for 8h b\, 85 at «=[1, 90]; (b) 
Bound solution. 

5.4       Tracking problem 

In a two degrees of freedom feedback problem, the 
controller G aims to reduce the variation in 
\T\=\T5\/\F\=\L/(l+L)\ under the limit 8s=8Ssup/S5inf due to 
the uncertainty in P. The pre-filter F positions \T5\=\F-T\ 

within the frequency domain desired models, 55sup (upper 
model) and 55inf (lower model). 

At large frequencies any rational function 
P(s)=KU(s+zi)/U (s+pj) degenerates into Kse, where e is 
the excess of poles over zeros of P. Also, at large 
frequencies |I|«1. Thus, Aln|7>Aln|Z,|=Arn|P|=AlnK. 
Hence, the acceptable variation in |7Jjä))|, i.e. 85(co), can 
spread at these frequencies exceeding the actual variation 
in \P(ja>)\, and there is then no need of feedback in this 
frequency range, (Horowitz and Sidi, 1972). The same 
idea is also expressed in Horowitz (1979 App.l). So 
solution existence theorem for single loop design 
requires certain tolerances on |71(jfi>)|. For aXco5, 
85(co)=ö5snp(coy85mf(cö) is greater than 1, but as close to it 
as the sensitivity reduction required due to parameter 
variation. However, in the high co range, co>co5, the 
feedback is allowed to increase the sensitivity 
S=(dT(jco)/T(jco)y(dP(jcoyPQcö)) rather than decrease it 
(increase the spread between S5sap(co) and 55inf(ö))). In 
fact, as noted by Bode (1945): Jo" In |5| döH), in any 
practical system; so the decrease in sensitivity (|5|<1) 
achieved in the control bandwidth range, must be 
balanced by |5|>1 in another range. This is achieved by 
S5sxlp(coyS5inf(co) considerably greater than 1 in the high 
frequency range. Anyway, it is easy to live with this 
constraint because at sufficient large co, \7] is negligible 
small, so that large relative changes in \T\ are 
inconsistent, (Horowitz, 1973). 

Considering all this, tracking bounds are single valued 
upper bounds (typology B) at GKco5, where the 
specification closed loop tolerances are smaller than the 
open loop uncertainty, i.e. pmJpmm>85 in Table 4. 
However, VGJ>6)5, the tracking bounds are double valued 
(typology A), being pmJpmin<S5, and so the sensitivity is 
allowed to increase. A continuous increment S5 at high 
frequencies, yields type A bounds due to <5i become 
dominant respect to type A bounds due to <55. Check all in 
Figure 3. 

When the feedback requirements impose restrictions on 
the response to command and disturbance inputs, 85 and 
5D, the composite (intersection) bound of those typology 
B bounds of each problem must be fulfilled in the 
frequency range [0, mm(co5, COQ)]. This unavoidable 
means overdesign respect to the non-dominant 
specification, i.e. that with lower bound magnitude at 
each (p. See Figure 3. 

5.5       Control effort and Cost of feedback 

To cope with the global feedback problem with tracking, 
disturbance   and   stability  constraints   in  presence   of 
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uncertainty, the composite QFT bound at each co must be 
inviolate by LoQco). Besides, as the early QFT works 
describe (Horowitz 1972, 1973), L0(jcd) magnitude as a 
function of frequency must decrease as fast as possible. 
The main reasons are the unmodelled high order 
dynamics joint to the great uncertainty in using a linear 
plant model at high frequencies, and the main price paid 
for feedback: the excess bandwidth, (Bode, 1945). 

The benefit of feedback requires \L(ja>)\ significant larger 
than 1 over a certain co range. The larger the range, the 
larger also that over which |i(jö))|>|P(jü))|. Besides, any 
practical design requires |L|->0 when ö)-»°°. The 
problem arises at intermediate frequencies where 
\LQco)\«l but \LIP\>\, because stability requires \L(jco)\ 
decreases comparatively slowly with co, (Bode, 1945). In 
this range, \U/N\~\L/P\>1, what means a noise 
amplification at the plant input. Hence, \L\ must decrease 
as quickly as possible but without violate the single high 
frequency bound due to stability requirements, 
(Horowitz, 1972). 

For arbitrarily large feedback benefits (arbitrarily large 
plant uncertainty and arbitrarily small performance 
requirements) there will be typology B bounds (upper 
single valued bounds) due to S5, $,, VoKcöy, ö\=max(ß)5, 
COQ). However, Vco>cOy, as long as 5S and <5D tolerances 
should be relaxed (take values much larger than 1), the 
stability requirement becomes dominant, $=1.3. Then, 
the single effective bound for a^co, is of typology A 
(double valued bound), allowing \L(jco)\->0 when 6>->°°. 
See Figure 3. 

However, arbitrarily large feedback benefits can imply 
an excessive cost of feedback. A co range several times 
the system bandwidth, where \U/N\~\L/P\>1, produces 
large \LIP\ peak values. As N is generally stochastic, this 
large amplification over a large bandwidth causes 
elements G and P to be saturated for most of the time, so 
that the useful signal components due to R cannot get 
through, (Horowitz, 1973). 

To economy in bandwidth avoiding overdesign and its 
negative effects, leads to include explicitly constraints on 
the control effort. In the present paper cost of feedback 
bounds are born from 84 specification in (4). As long as, 
the cost of feedback usually yields a limit on the open 
loop gain \L\ at moderately high frequencies, there will 
probably exist plants with magnitudes 0</?<l in those 
frequency templates. Thus, relatively small values of 
54(co) in this co range means pS4<l, giving typology D 
bounds (lower single valued bounds), see Table 4. That 
constitutes the main reason of non-solution existence, at 
the frequencies where typology D and B bounds coexist 
and at the phases where the type D bound is lower than 

the type B bound. In this case, performance severity in 
tracking and/or disturbance rejection should be relaxed. 
An example is provided in Section 6. 

At large high frequencies the control effort does not need 
to be limited. What is more, there is no point in 
considering any feedback requirement at frequencies 
where the linear models do not fit the real behaviour and 
physical constraints do not allow any kind of control. 

Control effort limitation is not restricted to the 
moderately high frequencies, e.g. due to excessive 
ambitious performance required and/or presence of large 
uncertainties. Actuators a priori not well designed can 
also saturate in response to predicted commands and 
disturbances inputs. This can also be taken into account 
in a 'quantitative' control theory as QFT. In this sense, 
tolerances on \T4\=\G/\+L\<54, (see Table 1), not only 
bound to |IWV| but also to \U/D2\, to \UIRF], and 
extensively to \U/Di\ tailoring 8U as follows. 
$(<w)=min{<54(a>), min($(ft))/|P(j<ö)|)}, being Si(cö) the 
real tolerance on \U/Dr\ and \P(jco)\ the set of plant 
magnitudes of the cotemplate. In these cases, at 
frequencies with moderate small $ and small plant 
magnitudes p, there will be typology D bounds. Thus, 
this can be inconsistent with other typology B bounds at 
the same frequencies. Undoubtedly, this effect get worse 
with increasing frequencies where for practical strictly 
proper plants p reduces, if <54 requirements exist and 
remain moderate small. 

6.     APPLICATION EXAMPLE 

Given the plant P{jco)=kl]co, where k& [1, 3], the goal is to 
design a controller G such that for any plant in {P}: (i) 
the closed loop is stable, with \PG/(l+PG)\< $=1.3 at all 
frequencies; (ii) the sensitivity reduction meets Kl+PG)!"1 

<$(&>), tueß2=[0, o>2] and (iii) the control effort is 
limited to \GI{\+PG)\ <$(eo)=5, coe Q4=[co4inf, eo4sup ]. 
Frequency values are particularised as: co2=20, co4inf=4, 
<ö4sup=100 (rad/s). 

The stability requirement $=1.3 yields minimum gain 
and phase margins of 5dB and 45°, respectively (Yaniv 
and Chait, 1993). As discussed before, it produces 
doubled valued bounds (typology A in Figure 2) in a 
phase range around -180°, according to formulas in 
Tables 3 and 4. 

Tolerances on $(0)), COE Q2, aim disturbance attenuation 
(\Y/D2\<52). Thus, 0<$(co)<l VüXöJJ, giving single 
valued upper bounds (typology B in Figure 2) that extend 
on 0e[-36O°, 0]. Disturbances \/co>co2 are neglected 
dynamically (peak values due to them are limited by $). 
A constant tolerance 84(co)=5 in COE Q4 limits the control 
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frequency range coe[co4i„f, a>2] this 
ly limits the effort in disturbance 
WI2, co4sHp] its main target is to bound the 
;, i.e. the excess of \L\ over \P\. This 
« can amplify noises (U/N) or even 
irbances (U/D2). 

(a) 

am 

J.-domaln 

S 10' 20 
frequency [rad/s] 

uncertainty and  (^-specification;  (b) 

npares l/<54(eo) with plant uncertainty 
Note that for öX>ft)*=5rad/s, there is 

(w). Thus, the bounds to meet 54- 
I be typology D (single-valued lower 
ilc 4 and Figure 2). So at frequencies 
t type B and D bounds. Assuming ö4(co) 

; be tailored at these frequencies for non- 
ltcrsection.   Restrictions  on  £,(co)  are 

(21) 0<<52(©)<1, (0<co* 

](co)<Ö2(a))<\, co* <co<co2 

in (19) must be greater than g2Z^> {82) in 
certain grange. Taking (a) (j^-9=0° and 

1 substituting in (17) and (19), results in 
istraints on 82, i.e. £,min (a) and (b) as 
Figure 4b): 

Aco)SZ(co) » = fi-p\ 

= l-pmiA(o)S4(co) 

(22) 

(23) 

iker constraint on £2. From it, giZ</>(<54) 
than g2Z</<52) at (p close to 0° (and 

) -360°). To guarantee reasonable 0 
. condition £>min(a) should be adopted. In 
JC increases (more relaxed specification) 
;ange of solution widens, tougher the <54 

larger plant uncertainty exists. 

ms guidelines, Figure 5 plots I0-bounds 
plant P(ico), taking as nominal plant 

P0(jco)=l/)co. Figure 5(a) and Figure 5(b) shows L0- 
bounds at co=2 and 30 rad/s. At the lower frequencies, 
disturbance and stability requirements, e.g. Si=l3 and 
£2=0.1, are achievable simultaneously (more stringent 
values of £> could be even taken). At the higher 
frequencies, control effort constraints dominate over 
stability tolerances, being both met at once. However, 
Figure 5(c) and (d) show the necessary trade-offs at mid 
frequencies, e.g. co=6 rad/s. In Figure 5(c), <5i=1.3, £,=0.6 
and <54=5 satisfy the constraint £>min(a)- On the contrary, 
Figure 5(d) shows a case of no solution existence 
because both £,min (a) and £,min ^ are violated with £2=0.1. 
Note that Figures 4 and 5 depict bounds on /0Zy/0 not on 
gZ(j>. After loop-shaping, L0 

the striped area. 
(a)    w=2 

30  

20 

10 

0 

-10 
-360 

=GP0 should remain inside 

(b)    (o=30 

J 

-270     -180      -90 

(c)    (0=6 

-10 

-360 

40 

30  

20   -- 

10 

0 

-270     -180 

(d)(0=6 

NO SOLUTION 

/»4 

-270     -180      -90 

phase y0 [°] 

y 

-270     -180      -90 
phase *F0 [°] 

Figure 5:10-bounds, £=1.3, (a) co=2, £,=0.1; (b) o>=30, 
<54=5; (c) co=6, £,=0.6, 54=5; (d) co=6, £2=0.1, <54=5. 

7.     CONCLUSIONS 

The solution existence problem for a wide range of 
robust performance and robust stability requirements has 
been dealt with. Feedback tolerances are explicitly 
imposed not only on the response to commands and 
disturbances but also on the control effort, which 
includes the cost of feedback. The simultaneous meeting 
of them was translated into the QFT loop shaping domain 
as the non-empty bound intersection of bounds at each 
frequency. The bound typology and bound 
aggressiveness were found the issues to concern. To 
guarantee bound solution in presence of arbitrarily large 
uncertainties inherent to the system nature, constraints on 
the specification tolerances were studied. 
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Abstract—In this paper a robust controller design task for the lateral 
dynamics of non-identical autonomous road vehicles is considered. 
The focus lies on the comparison of different design strategies for 
robust lateral control: H„ - control with unstructured uncertainties on 
the one side and QFT-Design with structured parameter uncertainties 
on the other side. It is shown that through the appropriate choice of 
design parameters, varying vehicle dynamics can be taken into 
account without substantial losses regarding accuracy and dynamics. 
Both design strategies are discussed in detail. The evaluation of both 
design strategies takes place using practical implementation results 
from the lateral control of autonomous vehicles. 

Index Terms—robust control, autonomous non-identical vehicles, 
combustion engine, lateral dynamics, practical results 

R~*V 

steering transmission ratio 
gear transmission ratio 

manual / automatic transmission 
petrol/diesel engine 

motor characteristics (power / torque 
wheel base 

mass 
air drag coefficient 
center of gravity 

moment of inertia 

Fig. 1: Influence parameters on vehicle dynamics 

I. INTRODUCTION 

During the last decades the subject of design and analysis of various 
longitudinal and lateral control laws has been studied extensively. 
Throughout the literature numerous topics such as sliding mode 
control, parameter scheduling, nonlinear vehicle dynamics, look- 
ahead curvature processing and automated highway systems have 
been reported [Byr98], [Ger96], [Man93], [Soh99]. Even though 
much effort have been spent on various control laws for longitudinal 
and lateral control of autonomous vehicles this paper presents a 
mostly neglected aspect of autonomous vehicle control. 

The main task of the presented project is to drive non-identical 
customary cars completely autonomously. With varying vehicle 
parameters like the velocity or mass the dynamic of one vehicle is 

continuously changing. In addition much larger influences exist 
from different dynamics of non-identical vehicles like shown in 
figure 1. For this reason it is a large challenge for every control task 
to operate appropriate under such a wide variety of vehicle 
dynamics. The basic idea is to take full advantage of recent robust 
controller design methodologies and using these advantages for 
longitudinal and lateral control of autonomous vehicles. This paper 
focuses on the different design strategies for robust lateral control. 
The studied cars are equipped with actuators that are able to turn the 
steering wheel, to press the clutch, brake, accelerator and to change 
the gears in cars with manual shift. Therefore the controllers have the 
full range to affect the vehicle in the way a human driver operates a 
car. In order to get sufficient information about the state of the 
vehicle an additional sensor is fixed to the car. 
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II. MODELLING OF LATERAL DYNAMICS 

The design objective of lateral control of an autonomous vehicle is to 
ensure accurate tracking of a desired path. In previous research 
works the robust design objective is mainly to cover a wide range of 
longitudinal velocity without getting stability problems of the closed 
loop system [Byr98],[Man93j,[Söh99]. This work goes a step 
beyond this point and presents a controller that covers not only broad 
changes in longitudinal velocity but also various types of cars. To 
illustrate the differences and with that the challenge for the robust 
design procedure two extremely different cars are shown in figure 2: 
A small passenger car (VW Lupo) and a bus (VW T4). 

lÄ»I^S|i^^S^™J 

Fig. 2: Range of automatically driven cars 

For the description of lateral vehicle dynamics the Single-Track 
Model [Mit90] is used. Certain simplifications are made: linear tire 
characteristics, both wheels of an axle merged together in a virtual 
center line and coupling of horizontal and vertical dynamics is not 
considered. This approach yields to a fourth order degree state-space 
representation which depends on all vehicle parameters and the 
longitudinal velocity: 

x = Ax + Bu 
y=Cx 

(1) 

The Small-Gain-Theorem  shows that stability with 

model uncertainties can be achieved by restricting the T- 
certain closed loop transfer functions with a suitable 
Since the late eighties an algorithm for computing V> 
controller in  state space representation is known fi: 

controller is calculated by solving two algebraic riccaä <s 
consists  of a  combination  of observer and  stale 

controller is called optimal as the H„ - norm and witIS' 
singular value of the respective transfer function is gpfti- 

•i unetstructuiec 
M«,oi-«normi.o 

, -iso-mtrolleriK 

• ;Ä..ptr:;.optisnä 
lL>o;?y8fI. ■TRu 

. ;;#ju!itations;ani 
1fico:i>ntröL' CEJii 

. /lit iathe.-iarges 
:re«g,;irtitnimal. 

■ v 

: r. 

K V 
Fig. 3: Structure of the controller design task for rohm   V stability 

In consideration of figure 4 block P includes the mcMfsrUnflMU ;piani 
model, the description of the model uncertainties m f&v'S».i"u£requenc} 
domain and the specifications for robust control pesrarfoffemancdivb} 
weighting the sensitivity function S. The controller K ii'Sk« dsiesignediir, 
order to minimize the effects of the input sign?! z «rt"iiM !<*«, outpul 
signal v with regard to the H„ - norm for the gffiwÄrrsralll^ed'.plan] 

model. With 

P = 

A Ä. B2] 
Cr On Dn 

c2 ö21 D2i 

<: ,*« 

III. ROBUST CONTROL OBJECTIVES 

Classical controller design strategies base on the assumption that the 
nominal plant model equals the real plant. For various reasons this 
never emerge in practice. 

Norm-based robust control 
With the introduction of (unstructured) model uncertainties the 
described deviations can be handled. Unstructured model 
uncertainties are used if there are no information about the specific 
character of the uncertainties. Only an upper limit of the 
uncertainties can be given. Although the uncertainties are not known 
in detail it is possible to give an adequate condition for stability. This 
condition generally can be described with the aid of singular values 
respectively the H„ - norm and is known from common literature 
[Doy89] as Small-Gain-Theorem. 

ä[AAKS]=\\AAKS\l<\       V  to 

[A„T]= .<! V 

(2) 

(3) 

the transfer behavior from z to v is derived with tfe !iiwi;«i^:ti&aGtMÄ,a] 

transformation (LFT) 

M =Tvz=LFT{P,K)=Pn+Pl2K(H I'vK}1 P>,~ 
det(I +P2ZK)*Q 

The H„ - optimal controller HL, leads to 

\\M\\.=\\LFT{P,K.x)\l-*min 

f'-'f<5) 

win 

Guaranteed stability for closed loop systems for pjaaifc.-iv-)iw*iith)-.inb*I 
uncertainties is called robust stability. The H_ asBB-*«:(Col'dlef-.döagn 
leads to a controller that guarantees the best pgssJlfe-'-iCirStiteibilil^'*!! 
models with unstructured uncertainties 

The controller in state-space representation is [DoyS^i 

Kx =[ A +y-2 ß, B\ X x +Ä2F., +Z, H x C2;7^ H ,r: T -*U] ;0f^y) 
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with     X v    and     Y.,    solutions of two algebraic riccati equations 
and    F, ,Hj,Z,    as 

F,=-B\Xv 

HU=-YVC\ 

zx=(/-y-2y,xj 
(8) 

Robust Control Design Using Quantitative Feedback Theory 
Quantitative Feedback Theory is a frequency domain technique for 
robust controller design. In contrary to the H- - design both 
unstructured and structured parameter uncertainties are 
considered [Bai91]. The frequency response is visualized with the 
Nichols plot (magnitude versus phase). For the nominal transfer 
function of the lateral dynamics for a passenger car travelling at 
v=8m/s the nichols plot is shown in figure 4. 

Fig. 4: Nichols Plot nominal plant 

The plant uncertainties are the longitudinal velocity and the type of 
the car. Following the QFT-Design the plant templates for the 
described pertubations are shown in figure 5. 

Fig. 5: Nichols Plot pertubated plant 

The frequency domain specifications are given by   ertain transfer 
functions. 

Sensitivity function /plant output disturbance rejection: 

1 

1+G, 
<6, 

Plant input disturbance rejection: 

G 
1+G, 

<6r. 

Tracking boundaries (prefilter V): 

V-Gr 
a< 

1+G» 
<ß 

(9) 

(10) 

(11) 

With these frequency domain specifications the controller design via 
loop-shaping can be executed. The design objective is to find a 
controller K that satisfies all given frequency specifications. The 
loop-shaping is carried out regarding equally specifications and plant 
pertubations. 

Loop-shaping: 

|G*(;a^H*(M)l+|G0(M)l+4(M) (12) 

IV. PRACTICAL RESULTS 

With both controller design strategies it is possible to cover the 
uncertainties resulting from all varying parameters and especially 
from the change in velocity. Figure 6 shows the results of a 
respective autonomous driving experiment: the vehicle starts in first 
gear switches to second gear and reaches its maximum velocity at 
15m/s. To concentrate on the lateral dynamics only the tracking error 
between the desired path and the vehicles lateral position and the 
corresponding longitudinal velocity is plotted. The controller works 
without any stability or damping problems over the whole velocity 
range. 

0'  O'  O- Q-  K-   S1   v  v  <V  1'  f  "V  'S'  1' 'S'   &•'   *>'   >'   *•■  h'  V r>   V  S>   v   b   b   ^    V *V  «   RJ 

|^—tracking prrar —'velocity j 

Fig. 6: Tracking error of lateral controlled vehicle over a wide 
velocity range 
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Figure 7 shows the respective picture series of this ride. To underline 
the achieved high accuracy of the lateral control the track was 
marked with guidance cones standing only a few centimeters on each 

side of the car. 

Fig. 7: Picture series of a completely autonomous driven vehicle 

Even more interesting are the achieved results in the lateral control 
of different cars. The chosen cars represent the maximum possible 
range in passenger cars: A very small, short and lightweight car (VW 
Lupo - fig. 2), a middle class car (VW Passat - fig. ) and a long and 
heavy van (VW T4 - fig. 2). 

The specifications for the robust design cycle cover all differences 
between the various cars. To get comparable data the control task 
was the alignment of the car during accelerating up to 10m/s. The 
initial conditions of the tracking error between desired path and the 
vehicles lateral position were chosen between 6 and 9cm. 
Furthermore all cars were placed with distinct orientation regarding 

12 

10 

a -fix 
i• f\V/v 
1 :;^^^^-^-^^_^ 
I    2 **^ ^-/^Vj«*--^^*^^: 

0 

■2 

§»ci5E»;BBS2ES8aSäSS6HESB6ERESI|iäS3a; 

Fig. 8: Tracking error of various lateral controlled vehicles 

the straight line. Experimental results for three different cars are 
shown in figure 8. The substantial differences between these cars in 
steering transmission ratio, wheel base, mass, center of gravity and 
moment of inertia are covered perfectly by the robust controllers (the 
results in fig. 6 and 8 are achieved with H„ - design). 

V. CONCLUSION 

In this paper we presented lateral control laws for non-identical 
autonomous road vehicles. The main scope was to extend previous 
approaches for autonomous vehicles. In previous research works the 
robust design objective was mainly to cover changes in the 
longitudinal velocity. This work goes a step beyond this point and 
presents a lateral controller that covers not only broad changes in 
longitudinal velocity but also various types of cars. The used 
controller designs for all lateral specifications are described. The first 
practical results for lateral robust control of non-identical 
autonomous vehicles are presented. 

REFERENCES 

[Bai91]   Bailey, F.N. and C.H. Hui: Loop Gain-Phase Shaping For 
Single-Input-Single-Output Robust Controllers. 
IEEE Control Systems, Vol. 15(1), p. 93-101, 1991 

[Byr98]   Byrne, R.H., CT. Abdallah and P. Dorato: Experimental 
Results in Robust Lateral Control of Highway Vehicles. 
IEEE Control Systems, Vol. 18(2), p. 70-76, 1998 

[Doy89] Doyle, J., K. Glover, P. Khargonekar and B.A. Francis: 

State Space Solution to Standard H2 and H„ Control 
Problems. 
IEEE Transactions on Automatic Control, Vol. AC-34, 

No. 8, 1989 

[Ger96]   Germann, S.: Modellbildung und modellgestützte 
Regelung der Fahrzeuglängsdynamik. 
VDI-Verlag, Reihe 12, Nr. 309, Düsseldorf, 1996 

[Hou99] Houpis, C.H. and S.J. Rasmussen: Quantitative Feedback 
Theory Fundamentals and Applications. 
Marcel Dekker, New York/Basel, 1999 

[Man93] Manigel, J.: Autonome Fahrzeugführung durch 
Rechnersehen. 
Dissertation, Technische Universität Braunschweig, 

1993 

[Mit90] Mitschke, M.: Dynamik der Kraftfahrzeuge, vol. C, Berlin, 

Springer, 1990 

[Söh99]   Söhnitz, I. and K. Schwarze: Control of an autonomous 
vehicle: design and first practical results. 
IEEE International Conference on Intelligent 
Transportation Systems 1999, Tokyo 

[Yan99] Yaniv, O.: Quantitative Feedback Design of Linear and 
Nonlinear Control Systems. 
Kluwer Academic Publishers, Boston/Dordrecht/London, 

1999 

206 



5th International Symposium on Quantitative Feedback Theory and Robust Frequency Domain Methods 
Pamplona - SPAIN  23-24 August, 2001 

ONE-DIMENSIONAL ACTIVE NOISE CONTROL USING THE INTERNAL 
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Abstract: With increasingly stringent E.U. regulations on the allowable decibel levels in the 
working environment, the requirement for active noise control solutions is becoming more important 
to the industrialist. Much of the unwanted sound that occurs in industry tends to be of a tonal nature. 
This paper outlines a technique that uses classical control structures coupled with the internal model 
principle and EL optimization theory to suppress such acoustic disturbances. Furthermore, a 
discussion on the application and limitations of this technique to disturbances that contain multiple 
tones and, in particular, harmonics of a fundamental frequency will be presented. 

Keywords: Robust Stability and Performance, Robust Control Applications, Uncertain Dynamic 
Systems. 

1. INTRODUCTION 
Pnmuy Sour« 

Traditionally, unwanted acoustic disturbances were 
suppressed using passive mufflers and dampers. This 
technique is applied where the target disturbance 
frequencies lie approximately above 500Hz. However, 
for frequencies below this value, the space required to 
physically implement such solutions becomes 
extremely cumbersome. Consequently, active noise 
control is becoming progressively more important to 
the industrialist as a substitute for these passive 
solutions. 

The concept of active noise control is illustrated in 
figure 1. It may be seen that a spatial superposition 
occurs between the primary unwanted signal and 
secondary signal from the cancellation loudspeaker. In 
effect, destructive interference occurs, causing a 
localized zone of silence. 

W-1/\A/\/WA 

4  ■ 

Figure 1. Fundamentals of Active Noise 
Control 

In the past two decades, several successful active noise 
control applications have been reported, mainly in 
systems with one-dimensional properties. In particular, 
Eriksson (1985), Elliot (Elliot and Nelson, 1984) and 
Morgan (1980) contributed significantly to the initial 
developments in this area. The most common reported 
active noise control applications are one-dimensional 
acoustic ducts such as in heat-ventilation and air- 
conditioning systems. 

Inherent in acoustic plants is a high level of uncertainty 
and considerable time variance. For this reason, much 
of the earlier work in this field suggested that adaptive 
feedforward solutions were the most viable. However, 
in the late  1970s Zames (1979) developed a new 
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feedback strategy, referred to as FL control, which 
allowed the design of controllers specifically for 
uncertain plants. It took almost fifteen years before this 
design strategy found application in active noise 
control. Early work by Nakai et al. (1994), suggested 
robust techniques as an alternative to the adaptive 
strategy, but it was not until the latter half of the 1990s 
that Hu (1996, 1998) and Rafaely (1997) reported 
successful applications. However, much of this work, 
though non-adaptive in nature, remained feedforward in 
structure. Moreover, much of the literature neglected 
the practical issues of implementing feedback 
techniques for active noise control. O' Brien and Pratt 
(2001c) identify many of the theoretical and practical 
implications of implementing robust active noise 
control. Furthermore, O' Brien and Pratt (2001b) 
outline a reasonably extensive comparison between the 
adaptive and the robust active noise control strategies. 

Secondary Path 
Dynamics 

 G(z)        R- 

Figure 2. Feedback active noise controller 
applied to a one-dimensional acoustic 
duct 

Q-»| C(z) \-^G^)[UO 
y 

Figure 3. Classical feedback controller 

Figure 2 illustrates the basic one-dimensional SISO 
robust active noise control solution. This can be easily 
reconciled with the classical feedback structure of 
figure 3. It may be shown that noise attenuation in the 
acoustic duct is equivalent to disturbance rejection in 
the classical sense. Moreover, Kuo and Morgan (1996) 
showed that the secondary path plant is time variant 
and thus any model acquired for G(z) will invariably 

be uncertain. Therefore, the main requirements of the 
controller, C(z), are internal stability and good 

disturbance rejection in the presence of an uncertain 
secondary path. 

Central to the robust performance of any closed loop 
system is the sensitivity function, which is given by 
S(z) = 1/(1 + C(z)G(z)). It may be shown that a small 
value of sensitivity at certain frequencies is equivalent 
to good disturbance rejection at those frequencies. 

Equally important is the complementary sensitivity 
function T(z) = C(z)G(z)/(l + C(zp{z)), which may be 

interpreted as a set point tracking metric. 

2. INTERNAL MODEL PRINCIPLE 

In many classical feedback structures, similar to figure 
3, the unwanted disturbance d is tonal in nature. The 
internal model principle is a technique used in 
feedback systems to reject tonal disturbances at the 
output. If we assume that the tonal disturbance d in 
figure  3   has  a  frequency of  con rad/s,  then  the 

requirement of the internal model principle is that the 
closed loop system contain an internal model of the 
tonal disturbance in the forward path. Thus, the 
product     C(Z)G(Z)     must     contain    the     factor 

Z^2 +(02
n}=\-2cos{j(onTs)z-1 +z~2       in      the 

denominator, where Ts is the sample time and Z{} 

denotes the z-transform. Francis and Wonham (1976) 
provide a comprehensive analysis of the internal 
model principle. 

2.1 Application of the Internal Model Principle to 
Active Noise Control Applications 

As previously observed, much of the unwanted 
acoustic noise that occurs in practice tends to be tonal 
in nature. Consequently, the internal model principle 
may be satisfactorily applied to reject such 
deterministic disturbances. The application of the 
internal model principle is demonstrated in figure 4, 
which, in effect, is a modification of figure 3. Due to 
the fact that an internal model of the disturbance is 
now present in the forward path, the modified 
requirement is to design a controller that is robustly 

stable for the modified plant G'(z), where G (z) is 

given by 
G(z) 

G'(z) = zp (1) 
+ co: 

r 

Modified Plant 

G\z) 

Tonal 
disturbance 

d 

Qj c(z) 
1 

$wl 
y G(z) ±&4> 

Figure 4.   Classical feedback controller 
incorporating the internal model principle 
for rejection of tonal disturbance with 
frequency con rad/s 
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2.2 Tonal Disturbance Propagation in the Prototype 
Acoustic Plant 

The prototype plant used for all experiments was a 
one-dimensional acoustic duct approximately 10cm in 
diameter and lm in length. A noise source was placed 
upstream within the duct which produced a tonal 
disturbance of 230Hz. The cancellation speaker and 
the feedback microphone were mounted on the wall of 
the duct approximately 30cm and 10cm respectively 
from the mouth. 

Figure 5. Existence of downstream 
fundamental and induced 
harmonics in the acoustic duct 

Figure 5 depicts the disturbance signal detected by the 
feedback microphone without cancellation being 
employed. Initially, it may be observed that the 
230Hz tone is present, but harmonics of this frequency 
are also induced. It is surmised (O' Brien and Pratt, 
2000) that the presence of these harmonics is due to 
the existence of non-linearities in the source and in the 
plant. More importantly, it must be noted that 
successful active noise control within the duct requires 
the cancellation of both the fundamental and the 
induced harmonics. The cancellation of the 
fundamental is discussed in section 4.1, while sections 
5 and 6 outline the issues involved in canceling the 
first and any higher harmonics. Also present, but not 
considered, is an unwanted 50Hz hum that is due to 
the transformer driving the power amplifiers. It is 
important to note that the existence of non-linearly 
induced harmonics is not limited to this prototype 
duct, but will be present to varying degrees in most 
acoustic systems. 

3. PARAMETERIZATION OF PLANT 
UNCERTAINTY 

One of the key advantages of employing FL control 
for closed loop systems is the method by which plant 
uncertainty is defined. Due to its extensive analysis in 
the literature, plants are often defined with a 
multiplicative disk-like uncertainty 

G(z) = {G0(zXl + fF2(z)A);    |A|L<l}        (2) 

where A is the structured plant perturbation. 

Dropping the dependence on z for the purpose of 
convenience, G0 is the nominal plant, and W2  is a 

frequency dependent function that places a bound on 
the maximum allowable uncertainty. O' Brien and 
Pratt (2001c) offer guidelines for the selection of this 
perturbation bound in typical acoustic plants. Indeed, 
it is generally accepted that plants are well modelled 
at lower frequencies with the uncertainty increasing at 
higher frequencies. For the prototype duct, it was 
found that uncertainty becomes significant above 
250Hz. Consequently, W2 was chosen to be small 
below this frequency and large at frequencies higher 
than 250Hz. An appropriate weighting function was 
found to be 

2        [5 + 250(2^:) 
(3) 

Doyle et al.  (1992)  show that robust stability is 
maintained iffthe following condition is met 

\\W2T\\ <1 (4) 

In summary, if a controller can be designed to meet 
(4) for the modified uncertain plant G (z) in figure 4, 
then good tonal attenuation is achievable within the 
duct. 

3.1 Estimating the Plant Model 

Central to the PL design methodology is the 
requirement for a nominal plant model. Hu (1995, 
1996) derived a mathematical model of a typical 
acoustic duct; however, due to their relative 
complexity, mathematical models of acoustic systems 
are difficult to obtain and consequently models are 
generally estimated empirically. In this case, the 
methodology for acquiring a plant model is given in 
figure 6. 

"^ 

Secondary Path 
Dynamics 

—vte—a 
S + 

■A UoW -\£ 
Random 
Signal 
  i 

^-1 
LMS «=— —5 

0" 

Figure 6. Estimation of the secondary path 
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It should be noted that switching off the unwanted 
disturbance while estimation is being performed 
yields a more accurate plant model. Following this, a 
persistently exciting signal is injected through the 
cancellation speaker (in this instance a random signal 
was used). The LMS algorithm was then used to 
adaptively estimate an FIR model of the secondary 
path. Kuo and Morgan (1996) exhaustively discuss 
this estimation technique. 

It was found that a more accurate model was achieved 
as the number of FIR filter taps was increased. It is 
particularly obvious from figure 7 that low order 
models cannot model high frequency pole and zero 
dynamics. However, for reasons outlined by O' Brien 
and Pratt (2001b), an FIR filter with 16 taps was 
chosen to model the secondary path. 

Careful scrutiny of the designed controller C{z) 

indicated that the factor z{s2 +(2w230)2) was 

contained in its numerator. In effect, this cancelled 

the factor z{?2 + (2;r230)2} in the denominator of 

the modified plant within the forward path 

C(z)G (z). This invalidated the internal model 

principle, even though robust internal stability was 
being maintained. Because of this, an alternative 
method had to be pursued to implement the internal 
model principle in the acoustic system. Note that the 
ineffectiveness of the internal model principle may be 
a general problem with FL design for closed loop 
plants. However, this requires further investigation. 

4. THE SENSITIVITY FUNCTION BOUND 

Figure 7. Spectral plots of the acoustic plant 
model for filter lengths of 32, 16 and 10. 

3.2 Failure ofH„ Control and the Internal Model 
Principle 

The calculation of a H„, optimal controller is a non- 
trivial exercise, with some numerical techniques 
available in the literature. In particular, Grimble 
(1994) proposes a polynomial solution, but a state- 
space solution outlined by Safonov et al. (1989) is 
generally favoured. For this application, all of the 
controllers were evaluated using the Mathsworks Inc. 
(1998) MATLAB dhinf command, which employs the 
latter technique as its solver. A plant model was 
estimated as an FIR filter of length 16 using the 
technique given in section 3.1. The target disturbance 
signal to be cancelled was a 230Hz tone. Following 
this, the plant was modified by including the factor 

z{s2 +(2TT230)
2
 j in the denominator of the plant 

model. Note that a sample frequency of 3kHz was 
chosen, which met Nyquist's criterion and was still 
within the processing capabilities of the controller. 
With this established, and the uncertainty bound 
defined in (3), a robustly stabilizing controller was 
designed. However, when this controller was 
implemented on the prototype system, robust stability 
was maintained but no cancellation of the 230Hz 
disturbance occurred. 

Inherent in the H^ design technique is the ability to 
shape the sensitivity function, i.e. to specify at the 
design phase a bound on the disturbance rejection 
capabilities for the closed loop system in figure 3. 
Thus,   a   second   frequency   dependent   weighting 

10 
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m L ^,  
w t..:  
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        w2 / 

Frequency(Hz) 

Figure 8. Frequency plots of the uncertainty 
perturbation bound W2 and the 

sensitivity bound Wx 

function Wl is introduced that places a bound on the 

sensitivity function as follows 

S < \/Wx        Vco (5) 

This may be written in terms of °°-norms as 

wA- <l (6) 

Therefore, if rejection over a specific frequency band 
is required, Wl must be made large over that band. 

Doyle et al. (1992) show that satisfactory disturbance 
rejection, while maintaining robust stability in the 
presence of plant uncertainty, requires that the 
following condition be met. 

210 



WS \\ + \W2T\\ <1 (7) 

4.1 Using the Sensitivity Bound to Implement the 
Internal Model Principle 

From the discussion in the previous sub-section it may 
be deduced that if cancellation of a tone of frequency 
con rad/s is required, then Wx must be large at this 

frequency. This is achieved by ensuring that the 
factor Z\s2 +(ol\ exists in the denominator of Wx. 

Thus, for cancellation of a 230Hz tonal disturbance, 
the following weighting function was used (which is a 
first order band-pass Butterworth filter whose pass- 
band lies in the region of 230Hz) 

W, =Z\ 0.025 
<s2 - 628.3s + [230(2;r )]2 

s2 + [230(2TT)]2 
(8) 

Frequency plots of Wx and W2 are given in figure 8. 
Once again, the MATLAB dhinf command was used 
to calculate the controller and upon implementation it 
was found that robust stability was maintained. 
Moreover, as may be observed from figure 9, 28dB 
reduction of the 230Hz tone was achieved. 

On analysing the controller it was observed that its 
denominator contained the factor z2 — 1.772z + l, 

which may be shown to be Zy>2 + (2?r230)2 j for a 
sampling frequency of 3kHz. In effect, the internal 
model principle is being implemented to reject the 
unwanted 230Hz acoustic disturbance. 

5. CANCELLATION OF THE FIRST 
HARMONIC 

Careful scrutiny of figure 9 indicates the existence of 
the uncancelled 460Hz first harmonic. Not included 
in figure 9 but significantly present are uncancelled 
second and third harmonics. O' Brien and Pratt (2000) 
outline an adaptive solution to cancel these harmonics. 
However, the internal model principle can be 
extended to deal with multiple tonal frequencies. The 
uncertainty bound weighting function in (3) is used to 
calculate the final controller and once again the factor 
Zw2 + (27T230)2 ] must be present in the denominator 
of the controller to ensure cancellation of the 
fundamental. Furthermore, if the first harmonic is 
also      to     be      cancelled,      then      the      factor 
ZJs2 +(2;r460)2j must also be present in the 
denominator of the controller. From this discussion, 
the disturbance rejection weighting function, Wx, was 
chosen to be 

w1=wla.wlb 

where WXa and Wxb are given by 

(„2 

WXa=Z\ 0.025 
s2 + 628.3s + [230(27r)f " 

s2 + [230(27r)} 

(9) 

(lO.a) 

and 

( j- 

wlb = z\ s2+ 502.7s + [460(2/r)]: n\ 

s2+ [460(2^)7 
(lO.b) 

respectively. 
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Figure 10. Frequency plots of the uncertainty 
perturbation bound W2 and the 

modified sensitivity bound Wx 

Figure 11. Cancellation of a 230Hz 
fundamental and its first harmonic at 
460Hz using the internal model 
principle 

Frequency plots of the modified weighting functions 
are given in figure 10. Upon calculation of the 
controller it was found that it's denominator contained 
the factors z2-1.772z+l and z2-1.141z + l. 
These may be shown to be z{s2 +(2w230)2} and 

Z^2 +(2TT460 )2j respectively for a sampling 
frequency of 3kHz. Initially it was observed that 
robust stability was once again maintained with the 
calculated controller. In addition, it may be seen from 
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figure 11 that 28dB cancellation of the fundamental is 
maintained, with a further 20dB reduction of the first 
harmonic being achieved. 

experimentation indicated that insufficient bandwidth 
was available to cancel the second and any higher 
harmonics. 

6. CANCELLATION OF THE HIGHER 
HARMONICS 

With cancellation being realized for the fundamental 
and the first harmonic, the obvious progression is to 
design a controller that achieves cancellation for the 
second and higher harmonics. To include the second 
harmonic at 690Hz, the weighting function Wx must 

now include Wla and Wn in cascade, along with the 

factor z{s2+(2;r690)2} in its denominator. 

However, experimentation indicated that a robustly 
stabilizing controller could not now be found with the 
MATLAB solver. The rationale for this will duly be 
explained. 

Due to their inherent acoustic propagation delay, 
acoustic systems contain the dynamic equivalent of 
non-minimum phase zeros. Bosgra and Kwakernaak 
(1999) outline the implications of non-minimum 
phase dynamics for a feedback system, with O' Brien 
and Pratt (2001a) indicating their specific significance 
to acoustic systems. The findings of these authors 
may be summarized as follows: - 

• The waterbed effect is a phenomenon that occurs 
only in non-minimum phase systems. This states 
that an improvement in sensitivity at any 
frequency must be coupled with degradation in 
performance at some other frequency. This is 
stated more definitively in (11) where it is 
assumed that the system contains non-minimum- 
phase zeros but no unstable poles (which is 
typical of acoustic plants). 

j°°\og\S(jG>]d(O = 0 (11) 

The sensitivity function must be less than unity 
at the position of non-minimum phase zeros. 

• When this is coupled with the waterbed effect, it 
is found that the disturbance amplification at 
some other frequencies becomes far more 
pronounced. 

• The bandwidth over which sensitivity reduction 
can occur is limited by the lowest non-minimum 
phase zero. 

It is clear that these observations may compromise the 
performance of robust active noise control solutions. 
In particular, it was found from the plant model that 
the lowest non-minimum phase zero was located at 
approximately 50Hz. With considerable bandwidth 
already sacrificed in cancelling the fundamental 
230Hz   tone   and   the   first   harmonic   at   460Hz, 

7. CONCLUSION 

It was shown that successful active noise control of 
tonal disturbances could be implemented via the 
internal model principle and a H«, optimal controller. 
In noise control applications, the target acoustic plant 
is highly uncertain and time variant. Thus, careful 
selection of an uncertainty bound is required for a 
successful solution. It was found that plant models 
were generally accurate at lower frequencies, with 
uncertainty increasing at higher frequencies. 

A difficulty arose when the controller produced by the 
MATLAB solver possessed inverse marginally stable 
dynamics, which cancelled the dynamics introduced 
by virtue of the internal model principle. As a result, 
no cancellation of the tonal disturbance occurred. 

Nevertheless, an appropriate selection of the 
sensitivity bound, also inherent in the H^ cost 
formulation, can make the closed loop system 
implicitly contain the internal model principle. For 
the prototype system, it was found that successful 
attenuation of 28dB of the 230Hz fundamental and 
20dB of its first harmonic could be achieved. 
However, the physical properties of the duct 
prohibited any attenuation of the second and higher 
harmonics. 
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Abstract: This paper investigates the application of a robust FDI (fault detection and 
isolation) and control strategy for a non-linear system. This strategy considers (i) an 
observer-based approach to estimate the state variables of the system and (ii) the 
integration of the control design and the fault diagnosis in an H„ framework. The main 
purposes are to obtain a controller with robustness against uncertainty and with 
insensitivity to faults, and a fault detection filter to generate residual signals, which are 
used to isolate and identify the faults. This approach is applied to a non-linear system, a 
laboratory inverted pendulum. 

Keywords: Fault-tolerant systems, uncertain dynamic systems, robust control, fault 
detection and diagnosis, non-linear systems. 

1. INTRODUCTION 

Growing demands on reliability and safety have 
increased the use of fault tolerant control approaches to 
design process control systems. A common approach 
considers a fault diagnosis module, which includes the 
detection, isolation and identification actions, followed 
by the reconfiguration of the control system in case of a 
fault is detected. That module considers a fault 
detection filter to generate residual signals in order to 
detect and isolate the faults. To obtain an optimal design 
in the case of process uncertainty, the design of the 
controller and FDI (fault detection and isolation) filter 
should not be separated (Niemann and Stoustrup, 1997). 

Considering a model-based FDI approach, the robust 
control techniques and the H«, framework can be used to 
design the fault tolerant control system, integrating the 
controller and the fault detection filter. 
The control system obtained with this methodology 
should improve the plant efficiency and the closed loop 

performance in presence of faults, disturbances and 
uncertainty. 

The approach considered in this work, uses the 
generalised setup for robust control to integrate the 
uncertainty, controller and fault diagnosis specifications 
in the same framework. The fault tolerant control 
system is obtained using a fi synthesis method and the 
D-K iterative technique, followed by the optimal Hankel 
norm approximation (Anderson and Liu, 1989) for 
controller order reduction. The model-based FDI 
approach considers an observer-based method to 
estimate the state variables of the process. 

This methodology was initially presented in (Nett, et al, 
1988) and further developed in (Tyler and Morari, 
1994), (Isermann, 1994) and (Niemann and Stoustrup, 
1997). 
The model-based fault detection filter considers the 
analytical    redundancy    inherent    in    the    dynamic 
relationships between inputs and outputs of a system. 
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Usually, a mathematical model is used to derive a 
residual quantity, which is supposed to be "small" for an 
unfaulty plant and "large" whenever a fault occurs. 
Faults could then be detected if the residual exceeds a 
given threshold. In order to achieve fault isolation, a set 
of residuals could be used, each one indicating a 
different fault. Surveys can be found for instance in 
(Frank and Ding, 1997), (Patton, 1997), (Chen and 
Patton, 1999) and (Frank, et al, 2000). 

This work claims to give a contribution for the 
robustness analysis of the control and fault diagnosis 
system with respect to abrupt faults in actuators and 
sensors of a non-linear system. The generalised 
controller, including the robust controller and fault 
detection filter, is designed using the robust control 
framework and the frequency domain representation of 
the design objectives, and was successfully applied to 
an inverted pendulum system. 

The fault detection filter is designed to generate a set of 
residuals corresponding to the expected faults in the 
system. The residual signals can be used to identify an 
occurred fault and then as input of a supervisory system 
to generate alarm signals and to monitor the closed loop 
system's performance. The diagram of a fault tolerant 
control system considering fault diagnosis and 
supervision is represented in Figure 1. 

Alarms 

References 

Supervisor 

A 
Fault Diagnosis 

Fault Identification 

FDI     *                          * 

Fault Isolation 

A                                     A 
residuals 

Fault Detection 

A                              A 

Controller 
Observer 

"i A- 

System Actuactor % % Sensors 
i  y 

PROCESS 

Fig. 1. Diagram of the fault tolerant control system 
considering fault diagnosis and supervision 
to generate alarm signals. 

2. DESIGN FORMULATION 

Considering the model-based approach, a mathematical 
model is built and in a non-linear system case, a model 
linearisation around an operating point is performed. 
The deviations between the linear model and the real 
plant will be considered as uncertainties in the control 
system formulation. For fault diagnosis purposes, the 
system is described including actuator and sensor faults, 
which are represented by additive signals as illustrated 
in Figure 2. The system dynamics can be described by 
the state space model (1): 

x(t)=Ax(t)+BuR (t)   yR (t)=Cx(t)+DuR (t) 

y{t>yR (0+/, (0      «R (0=K(0+/O (0 
(1) 

Concerning the control system formulation, instead of 
using a standard one parameter controller, a two 
parameter generalised controller (controller and fault 
detection filter), given by (2), will be considered to 
integrate the control design (control action u(t)) and the 
fault detection filter (residual signal r(t)). 

u(t) 

r{t) 
= W): 

L^2J 
y(t) (2) 

The design setup uses a generalisation of the standard 
configuration for robust control (Zhou et al, 1996; 
Niemann and Stoustrup, 1997) as illustrated in Figure 3. 
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Fig. 2. System description with actuator and sensor 
faults. 
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Fig. 3. (i) Generalised setup for robust control. 
(ii) Setup with performance and fault detection 
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In this generalised setup, the model uncertainty is 
represented by A, and the fault detection and the 
performance specifications by fictitious perturbations 
blocks Af and Ap, respectively. It is assumed that each 
block is scaled such that UAH < 1, Vfi). 

The block P is an augmented plant, including the 
nominal plant model and the uncertainty description, 
fault detection and performance weighting functions 
(Lundström et al, 1991). To achieve fault isolation, the 
fault detection weighting functions must represent the 
expected behaviour of each fault. In this work, the 
effects of abrupt faults are investigated. 

The generalised controller, to be designed using the ß 
synthesis, must achieve nominal and robust stability and 
nominal and robust performance. For the purpose of 
analysis, the controller K is combined with the 
augmented plant P using a lower linear fractional 
transformation (LFT) to obtain a M-A structure (Balas, 
et al., 1993; Postlethwaite and Skogestad, 1993). 

To obtain a robust controller and a robust fault 
detection filter, the D-K iterative procedure, initially 
proposed by Doyle and Stein (1981), is applied using 
the Matlab® p. Analysis and Synthesis Toolbox (Balas, 
et al., 1993). 

3. THE INVERTED PENDULUM 

The Inverted Pendulum consists of a cart and an 
aluminium rod with a cylindrical weight (pendulum) 
fixed to the cart by an axis. The cart, which can be 
moved along a guiding bar, is connected by a 
transmission belt to a drive wheel. 

The wheel is driven by a current controlled motor, 
which delivers a torque proportional to the acting 
control voltage (Us) such that the cart is accelerated. A 
scheme of the plant is illustrated in Figure 4. 

-P 0 +P 

1-Servo-amplifier      2-Motor     3-Drive wheel 
4- Transmission Belt  5- Metal guiding bar 6- Cart 
7- Pendulum weight 8- Guide roll 9- Pendulum rod 

Fig. 4. Scheme of the Inverted Pendulum. 

Two output variables are measured: 

i)   the cart position by means of an incremental 
encoder which is fixed to the driving shaft of the 
motor; 

ii) the angle of the pendulum rod by means of an 
incremental encoder which is fixed to the pivot 
of the pendulum. 

The inverted pendulum system can be described by a 
mathematical model as a system of coupled differential 
equations. These equations have been derived using the 
equation of motion for the cart and the angular 
momentum conservation law for the rotary motion of 
the rod about the centre of gravity. 

This model is non-linear with some uncertain factors as 
the dry friction (Coulomb friction) and the static friction 
acting on the cart. In order to obtain a suitable linear 
model a linearisation is performed around the main 
operating point of the plant. 

However, in the linear model is not possible to consider 
the effects of the non-linearities. To reduce the effects 
of the dry and static frictions (main non-linearities), a 
compensator was introduced. This compensator has a 
constant value obtained experimentally. 

The linear model is valid as long the following 
conditions are satisfied: 

i)   a limitation of the control force F (|F| < 20N); 

ii) a       limitation       of      the       guiding      bar 
(|cart position) < 0.5m ); 

iii) a limitation of the angle (j> (|0| < 10°). 

The state and output equations, describing the system, 
are given by: 

x = Ax + bu     and    y = Cx (3) 

with 

X, Ap 

x2 t 
h r 

-X*. [<i>\ 

cart position perturbation 

pendulum angle 

cart velocity 

pendulum angular velocity 

(4) 

and 

u = [Force acting via the transmission belt]   (5) 

The main operating point is defined by (6): 

x0=[xl= p   x2 - 0   x3 = 0   xA = 0]        (6) 
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The state matrices are given by (7): 

0 0 1              0 0 

0 

0 

0           0             1 

-0.757    -2.47    0.00068 
b = 

0 

0.247 

0 20.346   4.7569   -0.0185 -0.475 

C = 
"10   0   0" 

0    10   0 

(7) 

The obtained system is unstable and the controller must 
guarantee the stability of the closed loop system, even if 
noise, disturbances or faults, limited to a given range, 
arc present. 

4. THE ROBUST CONTROL FRAMEWORK 

To design a robust controller for the inverted pendulum 
system, the framework of the control system with 
uncertainties, which will allow the application of the fl- 
synthesis and analysis, is shown in Figure 5. 

In this figure the structure of the augmented plant P is 
built using the weighting transfer functions to describe 
the objectives and to weight the input signals. In the 
framework, the external input w includes the 
measurement noise in each sensor and the cart position 
reference. The three considered faults (fa, fsl, fs2) are 
represented by the input variable v. The performance 
and the fault detection objectives are represented by the 
external outputs z and a, respectively. 
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Fig. 5. Setup for robust control and fault detection for 
the inverted pendulum plant. 

The inputs of the generalised controller are the cart 
position reference, the two plant's measured outputs (the 

cart position and the pendulum angle) and the other two 
state variables (cart and pendulum angular velocities), 
which are generated by an observer system. Concerning 
the outputs, the control action is generated by the 
controller and the residual signals are obtained by the 
fault detection filter. 

To approximate the control problem into a ji problem 
suitable for D-K iteration, the uncertainty is represented 
by a norm-bounded perturbation and a weighting 
transfer function, and the specifications for the closed 
loop system are expressed in the frequency domain as 
weighting transfer functions. 

The design objectives for the closed loop system can be 
formulated as: 

i)   the output signal yi should track the cart position 
reference, ref, and the output signal y2 should 
tend towards zero; 

ii) the two outputs should be insensitive to noise 
and faults; 

iii) the control action at high frequencies should be 
restricted, avoiding rapid variations; 

iv) the residual signals, rh r2 and r3, should be large 
only when a fault has occurred, fa, fsi and fs2, 
respectively; 

v) these objectives should hold in the presence of a 
bounded uncertainty, A. 

To achieve these objectives, the weighting transfer 
functions of the augmented plant P must be chosen 
appropriately. The selection of these transfer functions 
is a fundamental task to address the trade-offs between 
control and fault detection. 

4.1 Uncertainty description 

The inverted pendulum plant is represented by the 
nominal plant model, Gmm(s), with an uncertainty 
description defining the set of all possible plant 
variations. In this case, the plant uncertainty is 
described by structured multiplicative input uncertainty. 
The set of all possible plants G(s) is then described by 
equation (8). 

G(s):= 
G„om(s)(l + A(s)wi(s)) : 

A(s) stable , ||A(s)|L =£ 1 
(8) 

Essentially, the plant uncertainty is due to modelling 
errors and non-linear effects that are not compensated. 
Therefore, the plant uncertainty is obtained 
experimentally and is described by the following 
weighting transfer function: 

»/(') = ■ 

0.050 + 0.2) 
(9) 

s   +0.07J + 0.49 
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4.2 Performance specifications 4.3 Fault detection specifications 

To achieve the performance objectives (i, ii, and iii 
design objectives) the transfer functions from the inputs 
w and v to the output z are shaped using the weighting 
transfer functions wp], wp2 and w„. 
The transfer functions wnl, w„2, wref, wya, Wfsl and Wfs2 are 
chosen to express the knowledge about the measurement 
noise in each sensor, reference and faults, respectively. 
Therefore, the weighting transfer functions are chosen 
in order to achieve: 

In order to achieve the diagnosis performance 
objectives (iv design objective), the transfer functions 
from the inputs w and v to the residual output r are 
shaped using wr!, wr2 and wrS. 

Assuming the boundaries defined above for the input 
signals and expressing the desire of good diagnostic 
performance at low frequencies, the weighted transfer 
functions for the residual signals are given by: 

v   T   . w out   out.m    m ;i, for all A satisfying |A||   ^1 (10) 

It  is  assumed  that  the   input   signals   are  bounded 
according to: 

i)   the measurement noise is white noise with low 
power; 

ii) the reference signal satisfies |ref | < 03m ; 

iii) the    fault    on   the    control    action    satisfies 

|/|<2N; \J a\ 7 

iv) the faults on the measurements are given by 

|X1|<0.2^and|/j2|<2°. 

Given these bounds, the weighted transfer functions for 
the inputs are given by: 

, ,    0.005(5 + 1)        , ,    0.0025(25 + 1) 
W,l(j)=       ne     .  , W„2(j)=- 

0.55 + 1 
wre/(s) = 03 

5+1 

wfe2(s) = 0.035 

(11) 

To attain to the performance objectives the following 
requirements can be assumed in terms of: 

i) the error signal given by (ref - yi): steady-state 
error lower than 8%; amplification at high- 
frequencies lower than 4dB; closed-loop 
bandwidth higher than 0.2rad/s; 

ii) the output signal y2: steady-state error lower than 
0.036rad; attenuation at high-frequencies lower 
than -20dB; closed-loop bandwidth higher than 
0.3rad/s; 

iii) the control action u: control action at low 
frequencies should be lower than ION; action for 
frequencies higher than 0.05rad/s should be 
lower than 2N. 

Given      these      performance      requirements,      the 
corresponding weighted transfer functions are given by: 

..    12.5(55 + 1) 
M*)=     m»,,, W,»: 

1005 + 1 

27.8(3.35 + 1) 

105 + 1 

w„(s) = 
105 + 1 

205 + 10 

(12) 

..     10(5 + 1) 10(0-55 + 1) 

105 + 1 5 + 1 
4(0.25 + 1) 

(13) 

Wr2(S)Z 

25 + 1 

4.4 Controller Design 

The desired generalised controller for the inverted 
pendulum, satisfying the design objectives, is obtained 
using the /i synthesis method. Applying this method, 
and considering the M-A structure (M = F(P, K)) and 

the structured singular value, the generalised controller 
must satisfy condition (14). 

F, (Af ,A)L =li{M)<\ (14) 

Applying the D-K iterative procedure, and after two 
iterations, a generalised controller K of 15th order is 
found, giving ^i=0.9804. Using the optimal Hankel 
norm technique, the controller order is then reduced to a 
seven-order state-space representation. To implement 
this controller, a discrete-time representation of the 
controller is obtained considering a zero order sampling 
with a sampling time of 30ms. 

5. RESULTS 

The generalised controller was tested in an inverted 
pendulum laboratory environment, considering periodic 
step changes in the cart position reference (at t=0s, 
t=30s and t=60s). In order to analyse the responses of 
the system in presence of faults, three different faults 
have been applied on the plant, from t=40s to t=70s. 
The responses to the fault on the control action (fa=-2N) 
are represented in Figure 6. 

The responses to faults on the cart position 
measurement (fsl=0.2m) and on the pendulum angle 
measurement (fs2=2°) are represented in Figures 7 and 8, 
respectively. These responses shown that the closed 
loop system has a satisfactory behaviour even if faults 
are present. 
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Fig. 6. Closed loop responses to step changes in the cart 
position reference and a step fault (fa=-2N) in the 
control action, from t=40s to t=70s. 
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Fig. 8. Closed loop responses to step changes in the cart 
position reference and a step fault (fs2=2°) in the 
pendulum angle sensor, from t=40s to t=70s. 
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Fig. 7. Closed loop responses to step changes in the cart 
position reference and a step fault (fsl=0.2m) in the 
cart position sensor, from t=40s to t=70s. 

Concerning the residual signals, generated by the fault 
detection fdter, they present a clear response to the 
representative fault and might be used to detect and to 
isolate each occurred fault. 

6. CONCLUSIONS 

Control and fault detection systems for dynamic 
processes are often designed independently. This 
methodology may lead to unnecessarily poor diagnosis 
performance due to interaction between the controller 
and the fault detection filter, especially in the case of 
uncertain plants. 

To address this problem, the design of the controller 
and the fault detection filter should be integrated into 
the same framework. An approach relying on robust 
control methods has been studied in this paper, to 
achieve a robust fault tolerant control system for the 
inverted pendulum plant. The simultaneous design of 
the control system and a model based fault detection 
filter has been converted into a robust control problem. 

The inverted pendulum is described by a state space 
representation and a norm-bounded transfer function is 
used to represent knowledge about process uncertainty. 
The performance and fault detection specifications are 
expressed using weighting transfer functions. A 
generalised controller, integrating the controller and the 
fault detection filter, has been obtained using the jx 
synthesis. 

The results show a good performance of the controller 
and the generalised controller ability's to diagnose and 
isolate abrupt faults on the control action and on the 
measurement signals. 
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Abstract: For students that begin the learning in control engineering many concepts are not 
very intuitive at first, due their properties are expressed in two different domains: the time 
and the frequency domains. Transient behaviour, such as settling time, overshoot and the 
risk of saturation is analysed typically in the time domain; while concepts like stability, 
noise rejection and robustness are expressed more easily in the frequency domain. In loop 
shaping on Nichols chart, the designer must to have enough skill to add necessary elements 
(gain, poles and zeros) to the controller until the nominal loop lies near its bound. This 
aspect of the QFT design is usually the most difficult for students. This paper discusses an 
interactive environment in Sysquake for the design by QFT methodology, where the student 
can be see immediate the effect of modifying the parameters. 

Keywords: Educational aids, QFT, Interactive, Loop shaping 

1. INTRODUCTION 

To design technical systems or simply to understand 
the physical laws that describe their behaviour, 
scientists and engineers often use computers to 
calculate and represent graphically different 
magnitudes. In control engineering, these quantities 
include among others: time and frequency responses, 
poles and zeros in the complex plane, Bode, Nyquist 
and Nichols diagrams, phase plane, etc. Frequently, 
these magnitudes are closely related; they constitute 
different visions of the same reality. The 
understanding of these relationships is one of the keys 
to achieve a good learning of the basic concepts and 
allows the student to carry out control systems designs 
with sound sense. 

Traditionally, the design of the systems is carried out 
following an iterative process. Specifications of the 
problem are not normally directly used to calculate the 
value of the system parameters because there is not an 

explicit formula that relates them directly. This is the 
reason for dividing each iteration into two phases. The 
first one, often called synthesis consists on calculating 
the unknown parameters of the system. These 
parameters are based on a group of design variables 
that are related with the specifications. During the 
second phase, called analysis, the performance of the 
system is evaluated and compared to the 
specifications. If they do not agree, the design 
variables are modified and a new iteration is 
performed again. 

It is possible however to merge both phases into one 
where the result of modifying the parameters produces 
an immediate effect. In this way the design procedure 
becomes really dynamic and the student feels the 
gradient of the change of the performance criteria with 
regard to the elements that manipulates. This 
interactive capacity allows to identify much more 
easily the compromises that can be achieved. 
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At the present time a new generation of software 
packages have allowed the arising of an interesting 
alternative for the interactive learning of the automatic 
control. These tools are based on objects that admit a 
direct graphic manipulation. During these 
manipulations, the objects immediately are updated, 
so that the relationship among the objects is 
maintained at all moments. Ictools and CCSdemo, 
developed in the Department of Automatic Control at 
Lund Institute of Technology and Sysquake (Piguet, 
1999) and in the Institute dAutomätique of the 
Federal Polytechnic School of Lausanne are good 
examples of this new educational philosophy for 
teaching automatic control. For those that begin the 
learning in this field many concepts are not very 
intuitive at first, due to the fact that their properties are 
expressed in two different domains: the time and the 
frequency domains. Transient behaviour, such as 
settling time, overshoot and the risk of saturation are 
analysed typically in the time domain; while concepts 
like stability, noise rejection and robustness are 
expressed more easily in the frequency domain. The 
basic mechanisms that relate them and other 
phenomena as for example the effects of the sampling 
and the non-linear elements, to mention just a few, can 
be illustrated in a very effective way using these tools. 

Taking into account this philosophy this paper 
discusses an interactive environment in Sysquake for 
the design by using QFT methodology, where the 
student can see immediately the effect of modifying 
the parameters. Several graphics are displayed 
simultaneously, and some elements can be 
manipulated with the mouse. During the manipulation, 
all the graphics are updated in a coherent way to 
reflect the changes. 

This application is used in the design of an academic 
example and in the design of a controller for a real 
plant. 

2. INTERACTIVITY IN DESIGN BY USING 
QUANTITATIVE FEEDBACK THEORY 

Figure 1 shows a general diagram for a feedback 
control system. Where F is the pre-filter, G is the 
controller, P is the plant and H is the sensor. R is the 
reference signal and Y is the output. It can be 
subjected to reference disturbances W, input plant 
disturbances V and output plant disturbances D. 
Besides the sensor has a noise N. 

W 

HT M. r 

The main goal is to design a robust controller that 
considers parametric uncertainty of plant P. The 
design must carry out several performance 
specifications: Tracking of a reference R, control 
effort limits and disturbances rejection. 

The shaping of the loop gain in order to obtain the 
desired specifications is really at the heart of what is 
now called "classical methods". Bode, Nichols and 
many other control practitioners developed graphical 
methods and special diagrams to obtain this in a 
simple way for siso systems. The basic elements for 
manipulating the loop gain directly are the well 
known pure gain, lead and lag compensation. 

QFT introduced by Horowitz (1963, 1972) was 
developed with the same philosophy in mind. The 
goal of QFT is to ascertain in an explicit way that the 
loop gain specifications are maintained under the 
given model uncertainty. 

The basic principle is to describe the controller system 
by a set of transfer functions which define a set in a 
Nichols chart at each frequency. These sets are called 
templates in the QFT terminology. The requirement is 
that, at each frequency, the specifications for the 
closed loop system must be fulfilled for all elements 
in the template. 

The aim is to impose some constraints in the 
controller^ frequency response which can be related 
in a simple way to the restrictions in the nominal loop 
gain. This mechanism transforms the design procedure 
from a simultaneous and very difficult synthesis 
problem into a classical control problem with one 
nominal process model with constraints. 

By using Quantitative Feedback Theory a robust 
controller can be designed. This technique looks for a 
design that combines the following requirements: 

IN 

• Obtaining the performance specifications. 
• Plant    variations     inside    uncertainty 

(Robustness). 

QFT methodology has several stages: 

Synthesis of tracking models. 
Modelling disturbances 
Obtaining plant templates. 
Choosing the nominal plant. 
Generating stability bounds. 
Generating performance bounds. 
Intersection of all bounds. 
Loop shaping (Synthesis of controller G). 
Pre-Filter shaping 
Analysis, simulation and validation. 

regions 

Fig. 1. Feedback Control System 
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Obtaining plant templates and generating different 
bounds usually needs a demanding computational 
work. In this stages the designer must program 
algorithms and wait for results. 

In the loop shaping phase on Nichols chart, the 
designer must have enough skill to add necessary 
elements (gain, poles and zeros) to the controller G 
until the nominal loop satisfies the specifications and 
results in closed-loop stability. 

This aspect of QFT design is usually the most difficult 
for beginners. For them, it is sometimes easier to 
design a controller G by using root locus plot, Bode 
diagrams or step response plot. 

The interactive design environment in Sysquake for 
loop shaping (IDESQLS) shows the following in an 
only window: Nichols chart, Bode and root locus 
diagrams and the step response plot of the closed-loop 
transfer function. 

Therefore IDESQLS provides the designer with other 
well-know tools for analysis in order to verify the 
results of modifications that he inserts into nominal 
open-loop in Nichols chart. 

3. DESCRIPTION OF THE INTERACTIVE 
DESIGN ENVIRONMENT 

Sysquake (Piguet, 1999) is an interactive design CAD 
tool for automatic control and signal processing. It 
was developed in the Institut dAutomätique of the 
Federal Polytechnic School of Lausanne. 

Sysquake fc window can simultaneously display 
several interactive figures. So IDESQLS shows the 
following in an only window: Nichols chart, Bode and 
root locus diagrams and the step response plot of the 
closed-loop transfer function. The user can select the 
figures that he wants to display and it is possible to 
resize all the figures. 

Sysquake allows the user to interact some elements of 
its figures by using the mouse. During the 
manipulation, all the graphics are updated in a 
coherent way in order to reflect the changes. The user 
can select the element (gain, pole or zero) that he 
wants to add to the controller G, in order to place the 
mouse over nominal open-loop on Nichols chart and 
drag it in order to set the value of the added element. 
The modifications introduced in the Nichols chart are 
displayed simultaneously in the other figures. 

Sysquake has a setting menu where the user can set 
the value of different parameters of the displayed 
figures. In IDESQLS the user can define the transfer 
function of the controller G and the type of element 
that will be added to the present controller when he 

drags the nominal open-loop in Nichols chart. 
IDESQLS also allows the user to select a data file to 
draw stability and performance bounds in Nichols 
chart. 

Sysquake displays different information in a messages 
bar as the user places the mouse over the different 
elements of the figures. For example, in IDESQLS as 
the mouse is placed over a bound, the bound 
generation frequency is displayed in the messages bar. 
Whereas if the mouse is placed over a point of the 
nominal open-loop plot, frequency, magnitude and 
phase are displayed in the messages bar. 

4. EXAMPLES 

4.1 A classic example of loop shaping. 

In this section a classic example (Borghesani et al, 
1995) of loop shaping is done using IDESQLS. 

Let   the   uncertain  plant,   P(s),   described  by   the 
following parametric family P 

P = \P(s)-- 
(s + a)(s + b) 

:ke [\,\0],ae [\,5], be [20,30] (1) 

The feedback problem is to design a controller, G(s), 
such that the closed-loop system verifies the following 
specifications: 

1) Robust stability with at least 50° phase margin for 

all P(s) e P. 

P{ja)Gc{ja) 
< 1.2, for all PeP, we [0, °°) (2) 

\ + P(ja>)Gc(j<o) 

2) Reject plant output disturbance according to: 

Y(ja>)L 
D(jco)\ 

0.02 
C/ü>)3 +64C/GJ)2 +748(yo>) + 2400 

(ja)2 +14.40») + 169 

for all PeP, «£[0,10] 

3) Reject plant input disturbance according to: 

Y(jG>) 

(3) 

D(jco) 
< 0.01, forallPzP, ft>e[0,50] (4) 
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Templates and stability and performance bounds 
have been calculated in the following frequencies: 

ft) = [0.1,5,10,100] (rad/seg) (5) 

The nominal plant is: 

P=- 
1 

s2 +355 + 150 
(6) 

Initially, the controller G is a simple unit gain. Figure 
2 shows the IDESQLS window for this example. To 
carry out the performance bound at co=0.1 rad/seg it 
is necessary to increase the gain of the controller. 
The type of block Gain' is selected by default in the 
Settings menu. The evaluated nominal open-loop at 
the frequency co is represented by a triangle in 
Nichols chart. The user must drag up the nominal 
open-loop plot till the first triangle on the right-hand 
side is over the upper bound. 

The user can observe that a phase lead is necessary 
because the nominal loop lies inside the stability 
bounds at frequencies higher than co=100 rad/seg. It 
is necessary to add a real zero. So, by selecting Real 
Zero in the Settings menu, the user must place the 
mouse at cu=60 rad/seg and drag the nominal loop till 
obtaining z=42. 

Finally the controller design involves shaping the 
high frequency response of the nominal loop with the 
objective that its magnitude falls as fast as possible. 
A strictly proper controller is obtained by adding a 
pair of complex poles. So, by selecting Complex Pole 
in the Settings menu, the user must place the mouse 
over the nominal loop and drag the nominal loop till 
obtaining 5=0.5 y C0h=248. The final controller is 

380 1 + 

G = 
42 (7) 

- + ^-+1 
248'    248 

dynamics must be developed for design, evaluation 
and verification of the results. 

Once the modelling phase of the vertical dynamics 
of a high speed ferry (De la Cruz, et al., 1998; 
Aranda, et al., 2000) and actuators (Esteban, et al., 
2000) is completed then the next stage is to design a 
controller on heave and pitch motions in order to 
command the positions of the actuators. The final 
goal is to decrease the vertical accelerations to reduce 
motion sickness. The feedback system under 
consideration is schematically described in Figure 4. 

-*+> 

Fig. 4. Feedback system under considerations 

The model of the plant P is the model of the vertical 
dynamics of a high speed ferry properly connected to 
the model of the actuators. The input plant u is the 
position of the actuator (T- Foil) and the output plant 
y is the pitch motion that is subjected to one 
perturbation: wave height (d). 

P is an uncertain plant, described by the parametric 

family P: 

P = 

P(s) = K 

K 

(s + a){s + b) 

(s +100)0 +1 -8)0 + 0-491 S)(s2 + cs + d) 

[-0.87, -0.34],a = [-7.85,-5.79], 

6 = [0.016,0.041],e = [0.86,1.16],rf = [2.27,2.80] 

(8) 

The feedback problem is to design a controller, G(s), 
such that the closed-loop system verifies the 
following specifications: 

The modifications introduced in Nichols chart are 
immediately updated in the remaining figures of the 
window (see Figure 3). 

4.2 A real example of loop shaping. 

The main problem for the development of high speed 
craft is concerned with the passenger^ comfort and 
the safety of the vehicles. The vertical acceleration 
associated with roll, pitch and heave is the main 
cause of motion sickness. The roll control is the 
most attractive candidate for control since damping 
can be increased more easily. However, shipbuilders 
are also interested in increasing pitch and heave 
damping. In order to solve the problem, antipitching 
devices and pitch control methods must be 
considered. Previously, models for the vertical ship 
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1) Robust stability with at least 50° phase margin for 
all P(s) G P. 

W^».Sl.^flBP6^[0,-) (9) 

\ + P{jco)GcUa>) 

2) Plant output disturbance rejection (sensitivity) for 

any PG P, COG [0.5, 2]. The transfer function from the 
plant output disturbance to the plant output is 
bounded by: 

|r(;a>) < 11.1500))' +3.626Qto)3 + 6.515Qa>); +8.273(yft)) + 2.856; (*") 
\D(jco)i ~ f \j(i>)" +3.960&))3 +7.793(yo>)2 +10.43O'(B) + 2.914 

Templates and stability and performance bounds have 
been computed at the frequencies 

w = [0.5, 0.8, 1,1.5,2,10]  (rad/seg)    (H) 

The nominal plant is: 

Pn=- 
-0.875

2
+6.798J +0.2855 

i5 + 107-s" + 333. lsJ+595.1sl + 149.1s+ 251.9 
(12) 

A classical controller was designed for this plant. The 
nominal controller G0 is a second order filter that was 
tuned for the nominal plant solving a non linear 
optimization problem (Aranda et al, 2001). 

170.3s2 +385.6^ + 518.7 

52+2.172s + 18.47 
(13) 

Figure 5 shows the IDESQLS window for this loop 
shaping problem when G=G0. G0 is a good controller 
for the nominal plant, but the previous specification of 
plant output disturbance rejection is not verified. 

To satisfy the performance bounds it is necessary to 
increase the gain controller. The user must drag up the 
nominal open-loop plot till the first triangle on the 
right-hand side is over the upper bound. It can be 
observed that a phase lead is necessary because the 
nominal loop lies inside the stability bounds. It is 
necessary to add a pair of complex zeros; the user 
must drag the nominal loop till obtaining a natural 
frequency co„=4.32 rad/seg and a damping factor 
5=0.31. The final step to design the controller 
involves shaping the high frequency response of the 
nominal loop with the aim that its magnitude falls as 
fast as possible. The user must place the mouse over 
the nominal loop and drag the nominal loop till 
obtaining 6=0.8 y 00^=1000. The final controller is 

oc = 
(l.74i        1.74 Jl.4.322        4.32        ) 

(14) 

2-0.25-,? 

4.3' 

, „    s2        2-0.8-s   ,j + 1     =- + + 1 
1000*       1000        J 

These modifications in Nichols frequency response 
are updates in the remaining figures of the window 
(see Figure 6). We can see that all specifications are 
satisfied. 

5. CONCLUSION 

An interactive design environment for loop shaping 
was built in Sysquake. This application allows our 
students to understand more quickly and better the 
synthesis of controllers using QFT methodology. 
IDESQLS provides the designer with other well-know 
tools for analysis in order to verify the results of 
modifications that he inserts into nominal open-loop 
in Nichols chart. So the design and analysis phases are 
merged into one, and the student can see immediately 
the effect of modifying the parameters. 

This paper shows how IDESQLS is used in an 
academic example, appropriate for teaching. Also 
IDESQLS is used in the design of a controller to solve 
a practical problem. This design is compared with a 
previously classical controller. 
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Abstract: Certain robust control design techniques, like Hoc-H2 methodologies, usually obtain 
controllers with a high order mathematical expression that may cause some robustness 
problems. To reduce this disadvantage there are several order-reduction techniques. 
However, sometimes these techniques do not guarantee the required design specifications. In 
this context, the present paper uses Quantitative Feedback Theory (QFT) tools to search for a 
low-order controller that accomplishes design objectives. This article describes this method 
and presents two examples. 
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1. INTRODUCTION 

£L - H2 and u-synthesis robust control techniques are 
useful to find controllers for systems with plant 
uncertainty, satisfying both reference-tracking and 
disturbance rejection specifications (Skogestad, 
1996). The main advantage of these methods lies in 
the fact that once the problem is stated, the controller 
is found with an iterative process. 

However, these techniques generally result in a high 
order controller. Practical implementation of this kind 
of controllers may be difficult, because the order is 
related to the number of samples that the controller 
needs to be fully operative. Moreover, a great number 
of elements involves a great number of previous 
values to operate with. So the higher the controller 
order is, the faster and more accurate the 
microprocessor must be. 

For this purpose, one can use several order reduction 
techniques,   and   the   three   main   methods   are: 

truncation, residualization and optimal Hankel norm 
approximation. 
Truncation technique takes some elements of the 
original model and the rest -generally corresponding 
to the fastest modes- are removed. It usually obtains a 
good aproximation at high frequencies. 
Residualization process sets derivatives to zero in the 
space-state equations, and gets a system similar to 
initial at low frequencies (Skogestad, 1996). 
Optimal Hankel norm techniques find a reduced order 
model such that the Hankel norm of the 
approximation error is minimized. A complete 
analysis of this technique was done by Glover in 
(Glover, 1984). Enns (Enns, 1984) and Anderson 
(Anderson, 1986) proved that trying to get a better fit 
in a frequency range caused great errors out of this 
range. 

All of these techniques share the same basis: 
obtaining a model with similar dynamics to the initial 
one. But this is not the goal when designing a 
controller. If a suitable compensator has been found, 
the real objective is finding a reduced order model 
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which accomplishes -or tries to accomplish- the same 
specifications than the high order controller. 

In order to overcome this problem, a simple and new 
method based in QFT (Quantitative Feedback 
Theory), (Horowitz, 1992) is introduced in this paper. 
This technique uses the QFT toolbox for Matlab® 
(Borghesani et al., 1995) which provides an 
interactive and friendly environment with a graphical 
interface which lets the designer analyse in an easy 
way the controller behaviour. 
The method is aimed to find a controller that 
maintains the design specifications, without any 
considerations of the original structure of the high- 
order controller. 

Section 2 describes the steps followed to achieve the 
reduction using several methodologies. Section 3 
presents two practical examples. 

2.  METHODOLOGY 

2.1      Overview 

The starting point is the controller obtained through 
the classical robust control techniques. If the resulting 
order is too high, these steps are followed: 

The controller, together with the plant, is taken to 
Nichols chart. The plant under consideration P(s) is a 
member of a family p, exhibiting a parametric and a 
bounded non-parametric uncertainty with the 
following structure, 

P- {P(a)[l + Aj:aeQ,AneA} (1) 

where, |A„(y'ft))| < m(co). 

And the controller to be obtained can be written in the 
form, 

Y\U<o + z,) 
G(x,j(0) = kG^ (2) 

Ylu'o + P,) 

A representative set of frequencies -in which the 
behaviour of the system is to be evaluated- are 
chosen. 

/ = [o>„fl)2 ,...,<»,] (3) 

For these frequencies, the magnitude of L=Gn«,P must 
be found. With these values it is possible to obtain the 
exclusion areas (bounds) of the design. A generalised 
bound can be represented as a function q of phase and 
frequency, composed of upper and lower parts, qu and 
qh respectively, such that, 

qu (ZL0 (x, jco,), co,) < 4 (x, j(Ot) 

L0(x,;a))<?,(ZL0(x,ya),ß)) (4) 

In this context, an automatic or manual reduction of 
the terms of the controller is done. Three design 
possibilities are proposed: 

• Beginning a classic QFT loop-shaping, starting 
from plant templates and bounds, discarding the 
original controller. This process is carried out 
manually, and the success depends on the 
experience of the designer. 

• Beginning a classic QFT design, but this time 
using automatic loop-shaping tools. Genetic 
algorithms have proved to be successful 
considering the loop-shaping procedure like a 
nonlinear, non-convex optimisation problem. 
Section 3.1 shows an example based in a QFT 
adaptation for the algorithm designed by 
Goldberg in (Goldberg, 1989) presented in 
(Garcia-Sanz and Guillen, 2000). 

• Reducing the original controller using the 
classical techniques, and then adjusting manually 
controller elements, until a suitable fit is found. 
Section 3.2 presents and example illustrating this 
possibility. 

Figure 1 shows a graphical representation of the 
process followed. 

'      Model        \ 
V,     Reduction     J 

Obtain specs. & 
uncertainty 

1 
Transport data 
to QFT Frame 

-.---4------. 
Manual 

Loop shap in g 
Automatic 

Loop shaping 

Figure 1: Reduction process. 
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2.2      QFT Specifications 

In order to cope with the controller in the QFT 
environment, it is first necessary to obtain the 
specifications to be satisfied. 

The general diagram in which QFT theory is based 
can be seen in figure 2. 

w 

Pro-filter 

c--* ♦^ h- G    ''•■■ 

i - 
i c Controller 

»1 
Plant 

Sensor 
N 

Figure 2: General diagram for a two aegree-of- 
freedom control system. 

If initial regulator has been designed using any 
control technique where prefilter is not considered, 
the resulting QFT controller properties must be 
similar to the initial ones. Hence, in this case the use 
of the prefilter is, in general, not necessary because 
the controller itself obtains a suitable tracking. 

The QFT specifications to be considered in 
controllers design are shown in table 1. 

Table 1: QFT Specifications. 

Type Specification Name 

1 
PGH 

l + PGH 
<Wsl 

Gain and phase 
margins (with sensor 

dynamics) 

2 
1 

<Ws2 Sensitivity reduction 
l + PGH 

3 
P 

<Ws3 

Rejection of 
disturbances at plant 

input l + PGH 

4 
G 

<Wst Control effort 
l + PGH 

5 
GH 

<Wss 
Control effort (with 
sensor dynamics) l + PGH 

6 
PG 

<Ws6 Tracking bandwidth 
l + PGH 

7 Wsla< 
PG 

<Wsn Tracking 
l + PGH 

8 
H <r us? 

Rejection of 
disturbances at plant 
output (with sensor 

dynamics) 
l + PGH 

Mi 

9 
PH 

<Ws9 

Rejection of plant 
input disturbances 

(with sensor 
dynamics) 

l + PGH 

Depending on plant characteristics (existence and 
kind of associate uncertainty) and design 
requirements, it will be necessary to use a bigger or 
smaller number of specifications. Although it will 
always be necessary to define at least the values 
corresponding to sensibility and complementary 
sensibility functions. 

If controllers are calculated neglecting sensor 
dynamics (//= 1), the specifications used for a typical 
design will be Type 1 and Type 2. For certain 
patterns of uncertainty, Type 3 can also be 
considered. 

For each one of the selected frequencies it is 
necessary to find the specifications that the 
controller-plant group meets. With this procedure, a 
set of bounds in Nichols chart are obtained. These 
bounds represent the exclusion areas for the open 
loop systems. 

2.3      Including uncertainty 

There are several uncertainty models which can be 
introduced in different ways, taking into account that 
these kinds of uncertainty may appear 
simultaneously. 

2.3.1 Unstructured uncertainty 

Introducing available information about unstructured 
uncertainty usually involves calculating a radius of 
uncertainty for each design frequency. The value of 
this radius is obtained using the plant uncertain 
parameters. In those cases where uncertainty is 
modelled as simple plant input or output noise 
(additive or multiplicative), it is possible to consider 
this noise as a disturbance, including it in 
specifications Type 2 or Type 3, with a plant without 
uncertainty. 

2.3.2 Structured uncertainty 

Structured or parametric uncertainty is represented as 
one or several variable parameters inside the transfer 
function that defines the plant model. Some robust 
control techniques, like HTC, cannot handle this kind 
of uncertainty, but there is not any inconvenient in 
QFT to be considered. 

3.       EXAMPLE 1 

The following example shows a detailed description 
of the procedure used to find a low order controller 
starting from an HL compensator. Genetic Algorithms 
are used to fit the system behaviour to specifications. 
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3.1 Model reduction 

This example uses the FL controller showed in 
Figueres (Figueres). The plant is a DC-DC converter 
which has the polynomial model of the transfer 
function (5). 

/>(*) = 
2.59 10'°.f' +1.1 • 10V + 5.2 ■ 10" i + 2.6 10" 

4.17 • 10V +4.56-10V +2-10'V+7.M0"'.s + 3.3-10a 

(5) 

The initial controller, described in (Glover, 1984) is 
shown in the equation 6. 

G„ is) = 
ax+a,s +a,s +a,s +a,s + a. 

s" + b/ + b„s4 + b/ + b2s
2 + b:s + b0 

T-°—     (6) 

a0=1.2-l(T 
as = 10 
fl,= l.H02 

a3 = 2.2-101 

a, = 4.7-10' 

iö = 5.1-10^ 
Ä; = 4-1021 

6,= 10" 
Aj = 8.2-10' 
i< = 3.2-10' 

a5 = 4.3-107 _>_=3.H06 

Table 2: FL Controller- Plant Specifications. 

C0(rad/s) Typel Type 2 

250 0.9996 4.37-10"" 
1000 0.9998 0.001 
4000 1.0009 0.0049 
16000 1.009 0.0241 
64000 1.1208 0.178 

256000 0.8804 1.48 

750000 0.138 1.076 

Pli.ire (decree?!   Y   h.'aqncude (dB) 

Figure 3: Open-loop transmission function with 
restriction bounds. P(s) Gn.„ (s) 

Controller and plant data are taken to the QFT frame. 
The selected frequencies, as well as the resulting 
specifications can be seen in table 2. The 
representation of the controller and the plant transfer 
function in Nichols chart, as well as the bounds 
corresponding to table 2 are shown in figure 3. 

At this point the order reduction is to be done. Using 
a C++ adaptation -designed in (Garcia-Sanz and 
Guillen, 2000)- of the Simple Genetic Algorithm 
proposed in (Goldberg, 1989), it is possible to find 
with a minimum effort a suitable controller. The 
second order controller found is shown in (3), and 

was obtained in ten minutes in a Pentium-500 
computer, while advanced QFT designers could not 
find a suitable controller using manual loopshaping. 
Nichols chart of the corresponding system can be 
seen in figure 4. 

Ill' 

„,--'" 

.-'"'       "'^-. 
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- ^-" --. / - 
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 ,- ~^1_ .... - ------ 

- 

-   - 
__ ~~— ^~-_          ^—-'—"~~   ' 

- I - 
■ 100 -SCI 

: Riiasf (Jecree?;-  V   M.inr.itudi? CdE) 

Figure 4: P(s) GQFT(s) 

The transfer function of the reduced controller is: 

13.8s2+6.21-105.s + 2.08-109 
f~i _ ______^____^_^_______ 

°FT j2+1.65-104s + 6-106 
(7) 

The  specifications  achieved by the plant-reduced 
controller are shown in table 3. 

Table 3: QFT controller-Plant specifications. 

(ö(rad/s) Typel Type 2 

250 0.9996 4.33-10"4 

1000 0.9997 0.001 

4000 1.0004 0.0039 
16000 1.009 0.0206 

64000 1.105 0.1535 

256000 0.8804 1.480 
750000 0.1341 1.048 

3.2 Comparison between controllers 

3.2.1 QFT vs. Reduced FL-Controller 

The reduced order controller proposed in (Figueres) 
is shown in figure 5. This model was obtained using 
the order reduction techniques found in Matlabls 
Robust Control Toolbox (Borguesani et al., 1995). 

Table 4 shows the specifications of the FL reduced 
controller. 

Table 4: Reduced order FL controller-plant 
specifications. 

C0(rad/s) Typel Type 2 

250 1.0232 4.4-10-4 

1000 1.0009 0.001 

4000 1.2923 0.0053 

16000 1.72 0.0355 

64000 1.2351 0.1723 
256000 1.1092 1.8622 
750000 0.1386 1.087 
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Figure 6. FL and QFT controllers comparison. Solid 
line: GQFT, dashed line: GH„ 

It can be seen that none of the Type 1 specifications 
are accomplished, and Type 2 are only accomplished 
at OF 1000 rad/s and co=64000 rad/s. A time-domain 
response with a unit step input can be seen in figure 
6, and the corresponding control action is shown in 
figure 7. 

■ 

\ 

v    
Figure 7. FL and QFT controllers comparison. Solid 

line: GQFT, dashed line: GH«, 

3.2.2 QFT vs. Original FL Controller 

If a unit step input is introduced, the response of the 
system with the initial FL controller and the final 
QFT-controller as well as the control order in both 

cases, are shown in figures 8 and 9. The similarity 
between both controllers can be checked. 

A 
t   \ 

l\   - 
- 1 

i 

1 
i 

o:        0 4        of,        or: 

Figure 8. FL and QFT controllers comparison. 
Solid line: GgFT, dashed line: GH<*. 

Figure 9. Control action. Solid line: GgFT, dashed 
line: GH^ 

4.      EXAMPLE 2 

The next example has been taken from (Doyle, 1992). 
It is a controller for a flexible beam. The simplified 
model for the plant and the proposed controller are 
shown in equation 8 and 9, respectively. 

P(S): 
-6.475s2 + 4.03s+ 175.8 

5s4 +3.568J
3
 +139.552 +0.0929s 

G*.(*> = - 
CLS

7
 +aAs° +a,ss +a,s' +a,s* + a,s! +a,s + a. 

s° + 6,s' +by +by +b,s' + b,s' + b,s2 + b,s + b„ 

(8) 

(9) 

a0 = 0.01406 
a, = 1036 
a2 =1.961-10° 
a3 = 907300 
a4= 111700 
as = 31410 
a6 = 907.6 
a7= 1.424 

b0 = 3435 

^ = 4.94-10° 
^ = 2.348-106 

b4 = 632600 
Z>5= 112900 
b6= 13260 
fe7= 1013 

The specifications for this design can be seen in table 
5. Plant and controller models are taken to QFT 
design environment, together with specifications. 
Figure 12 shows initial system. 
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Figure 12: Open-loop transmission function with 
restriction bounds. P(s) Gu.„ (s) 

Reducing the order using both mathematical and 
manual methods, it is possible to obtain the system 
shown in figure 13. 

The mathematical expression for the reduced order 
controller is: 

G orr(s) = 
1.5495- + 1.695-1Q-5 

s2 +3.3625 + 4.141 
(10) 

This controller does not accomplish design 
specifications in certain frequencies. It could be 
possible to improve the proximity to lower 
frequencies bounds, but it yields a worse 
performance. 

  — 
1                  '                  ■                  ' 

1 

,...---—                          ~~---                s** 
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,„ :. 
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/ 
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Figure 13: P(s) GQFT(s) 

Figure 14 and 15 show the effects of a step input and 
a disturbance at the plant output in both H „ and QFT 
systems. 

Reduced model shows a better response with a lower 
control action. Obviously, the reason for this 
enhancement is not in the order reduction. Looking 
figure 12 and table 5 it can be seen that low 
frequency specifications are not accomplished, and 
QFT controller is similar to FL controller with a 
lower gain. A better performance is obtained 
decreasing gain for FL controller. Therefore, the 
conclusion is that the chosen weight functions were 
not the most suitable. 
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Figure 14. FL and QFT controllers comparison. Solid 
line: GQFT, dashed line: G//«, 
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Figure 15. Control action. Solid line: GQFT, dashed 
line: GH°° 

Table 5. Initial and final systems specifi cations. 

FL system QFT system 

<a(rad/s) Typel Type 2 Typel Type 2 

0.001 0.9986 0.002 0.9986 0.00255 

0.01 0.9986 0.014 0.9986 0.02124 

0.1 1.002 0.1397 0.9934 0.2109 

1 0.9282 1.5 0.621 1.3618 

4 0.1733 1.0706 0.1049 1.062 

5.5 0.1237 0.916 0.1255 0.8755 

10 0.00680 1.00007 0.00346 0.9984 

100 1.18e-6 1.0000002 2.016e-6 0.9999999 

1 5 
~.\ 

/-"^"-- 
05 

0 

/ / 
/ 

, i        i        i        < 

4 6 8 ID 12 14 IB 16 20 
Tim? (s) 

Figure 16. FL and QFT controllers comparison. Solid 
line: GQFT, dashed line: GH„ 
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Another interesting test consists in simulating with a 
saturation at controller output. Figure 16 and figure 
17 show the simulated output signal using the same 
saturation for both controllers, with the previous input 
and disturbance. QFT controller has not such a bad 
performance. However, both controllers show the 
same problem: the lack of a suitable integral action. It 
would be desirable to correct this, to avoid problems 
with real actuators. 

- 

:n -^ - 
■\ ^- I     '/ _.^ 

!_/ 
- 

- 

Figure 17. Control action. Solid line: GQFT, dashed 
line: GH„ 

5.    CONCLUSSIONS 

The present paper has introduced a new technique for 
order reduction based on the combined use of 
traditional methods and QFT tools. The main 
advantage of this new method, in comparison with 
the ones in the bibliography, is that the reduced order 
controller is designed to accomplish the specifications 
of the initial system, while other methods generally 
try to obtain a dynamic behaviour similar to the 
original one, which does not actually guarantees the 
achievement of these specifications. 

Another advantage of this method is its visual 
character, and its transparency. It gives the designer 
the possibility to observe in a graphic and easy way 
either the characteristics of the controller and the 
effects of changes in the parameters. Hence, the 
control engineer is able to decide in a moment 
whether certain limitations in certain frequencies can 
be relaxed, in benefit of a bigger simplicity in the 
controller. 
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Abstract: A simplicial algorithm is applied in this paper to generate frequency response 
templates for a class of transfer functions having an uncertain time delay and multilinearly 
correlated parameter perturbations. It relies on developing a new zero inclusion test algorithm 
for checking whether the origin is included in the image of a box 
TxQ = [T~,T+]xn™;1[^:,9,+ ] under a mapping of the form f(T,q) = g(q) + h(q)e~jm, 

where g(q) and h(q) are multilinear complex-valued functions of qeQ. We present easy- 

to-check sufficient conditions for the zero inclusion and exclusion of the value set f(T, Q). 
Using these sufficient conditions on subdivisions in the parameter box TxQ, we implement 
a branch-and-bound zero inclusion test algorithm. To illustrate the proposed algorithm, we 
provide a numerical example. 

Keywords: Frequency responses, time delay, uncertainty 

1.   INTRODUCTION 

Classical methods of analysis and synthesis for 
feedback control systems rely heavily on the 
information derived from frequency responses. 
Frequency domain properties of families of 
polynomials and transfer functions are also very 
important in the area of robust feedback control 
against parametric perturbations. For example, the 
feedback control design method of using Horowitz's 
quantitative feedback theory is based on using 
frequency response templates (or value sets) of the 
uncertain plant's transfer function at various 

''Author  to   whom  all   correspondence   should  be 
addressed. 

frequencies of interest. Here, the frequency response 
template denotes the smallest region in the complex 
plane within which the  values  of the parametric 
transfer function G(s; q) evaluated at   s = jet) for all 
parameter vector q in a prescribed domain Q lie. 

The problem of generating frequency-response 
templates for a transfer function under parametric 
perturbations has been studied as early as 1950s 
(Steward, 1951). In recent years, as motivated by such 
basic results as the Kharitonov and Edge theorems 
(Kharitonov, 1978; Bartlett et dl., 1988) in the 
parametric robustness area, there has been renewed 
interest in developing efficient techniques for 
computing frequency response templates for families 
of transfer functions with various forms of parameter 
dependence. Instead of using a brute-force parameter 
gridding approach, most of the developed template 
generation techniques are based on characterizing a 
small subset E of the parameter domain Q whose 
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image   under   the   mapping    G(ja>;q) covers   the 

boundary of the template 
G(./ß>;Q) = {G(yft>;q):qeQ}. 

For an interval plant whose transfer function 
coefficients are defined on intervals of the real axis, 
the subset E consists of 32 one-parameter plants. With 
this characterization, Bailey et al. (1988) proposed a 
phase-angle sweeping technique for computing the 
template boundaries. For the exact computation of the 
template boundary of an interval plant, 
Karamancioglu et al. (1996) have recently proposed 
criteria for eliminating the generation of interior 
points of the template. Based on testing the 
intersection of two rectangles in the plane with a 
modified Cohen-Sutherland algorithm, Hwang and 
Chen (1996) applied a pivoting procedure to trace the 
template boundaries. 

In the feedback control of an interval plant, the 
closed-loop transfer function's numerator and 
denominator would be linear combinations of two 
independent interval polynomials. For this case, 
Bartlett et al. (1993) has shown that a frequency- 
response template is bounded by the templates 
corresponding to 32 Kharitonov plant segments. In a 
more general case where the uncertain parameters 
enter the coefficients of both the numerator and 
denominator polynomials of a transfer function 
G(s;q)in an affine manner and the uncertainty 

domain is a box Q, Fu (1990) has shown that the 
template boundary is included in the image of the 
edge set of the box Q, i.e., 
dG(jco;Q)cG(jco;E(Q)), where d denotes the 

boundary and E(Q) the set of edges of Q. With this 

elegant characterization, the boundary of a frequency 
response template for a family of linear-polytopic 
uncertain systems can be obtained by a finite number 
sets of one-dimensional parameter sweeping. 
However, this approach to template generation often 
wastes time in calculating interior points of the 
template. To overcome this shortcoming, Chen and 
Hwang (1998a) have applied 
a pivoting procedure along with a zero-inclusion test 
algorithm to trace out the approximate template 
boundaries. 

Based on exploiting the notion of principal points 
associated with nonlinear differentiable complex- 
valued mappings, several authors (Kiselev et al, 
1997) 
have recently proposed technique for generating 
frequency-response templates for families of transfer 
functions with nonlinear parameter dependence. The 
set of principal points P associated with the mapping 
G(y'ft);q)is the smallest analytically characterizable 

subset of the box Q whose image G(jco;V) covers the 

template boundary dG(jco;Q). To facilitate obtaining 

the set of principal points, Hwang and Chen (1999) 
have generalized the notion of principal points and 
characterized the set of generalized principal points G, 
which is the smallest superset of P admitting a fully 
analytical characterization. They showed that the set 
of generalized principal points (GPPs) G consists of 
all the edges of the box and connected and/or isolated 
one-dimensional manifolds on the faces and/or in the 
interior of the box Chen and Hwang (1998b) further 
showed that in the special case where G(y'ft>;q) 

depends multilinearly on the parameter vector q all 
the GPP manifolds possesses connectedness 
properties. They also presented a pivoting procedure 
with integer labelling to trace out 
all connected GPP manifolds. However, there still 
lack an effective method to detect the existence of 
isolated GPP manifolds. 

In this paper, we are concerned with the generation of 
frequency-response templates for a class of transfer 

functions G(s;e'rs ,q) having an uncertain time delay 

and multilinearly correlated parameter perturbations. 
Due to the fact that for a fixed frequency co, 

G{j(o;e~iTa,q) is a nonlinear function of q and T and 

the uncertain delay term e~Jm is a periodic function, 
the potential existence of isolated GPP manifolds 
makes it unreliable to generate template boundaries 
via tracing GPP manifolds. Instead, we apply a 
simplicial algorithm to trace out the boundary of the 
template G(jco;T,Q). The main contribution of the 

paper lies in developing a new branch-and-bound zero 
inclusion/exclusion test algorithm for checking if the 
origin is contained in the image of the parameter box 

TxQ under the mapping /(T,q) = g(q) + h(q)e~jm , 

where both g(q) and h(q) are multilinear functions 

of the parameter vector q. More precisely, we present 
an easy-to-check sufficient condition for the zero 
inclusion of the value set /(T,Q). Moreover, we 

adapt the Mapping Theorem (Zadeh and Desoer, 
1963), which is a sufficient condition for the zero 
exclusion of the value set corresponding to a 
multilinear mapping, to check the zero exclusion of 
the value set  /(T,Q). The adaptation is achieved 

through overbounding the arc e'J[T 'T+],Bdue to an 
interval time delay by a two-dimensional box such 
that the modified mapping is multilinear. 

The paper is organized as follows. In Section 2, 
sufficient conditions of zero inclusion and exclusion 
for the value set /(T,Q) are presented. With these 

sufficient conditions, in Section 3, a branch-and- 
bound zero inclusion test algorithm for the value set 
/(T,Q) is developed. In Section 4, the frequency- 

response template associated with a transfer function 
is characterized with the notion of zero inclusion for 
the value set with a quasi-polynomial. Based on this 
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characterization of frequency-response template, we 
describe a simplicial algorithm for tracing out the 
template boundary. In Section 5, a numerical example 
is provided to illustrate the efficiency of proposed 
zero inclusion test algorithm and the application of 
pivoting procedure for generating frequency response 
template boundaries. Finally, some conclusions are 
drawn in Section 6. 

2.        SUFFICIENT CONDITIONS FOR ZERO 
INCLUSION AND EXCLUSION 

(1) 

Consider the function of the form 

/(T,q) = g(q) + />(qK^,;=V=l 
where q = (q0,q1,---,qm-l) is an w-dimensional (/w-D) 
real vector, both g(q) and /z(q) are complex-valued 
multilinear functions of q, and co is a constant real 
number. Let T = [T",T

+
] and Q denotes the w-D box 

Q = {q:qte[q~k,q
+

k],k=OX...,m-l} (2) 
The image of the (w+l)-D box TxQ under the 
mapping /(T,q) is denoted by 

/(T,Q) = {/(T,q):TeT,qeQ} (3) 

The image /(TxQ) is a subset of the complex plane 
C and is often referred to as the value set. The purpose 
of this section is to develop an algorithm for checking 
if the value set /(T,Q) includes the origin. 

To facilitate presenting the algorithm, we put r and q 
in an (m+l)-dimensional vector as 

b:=(b0,bl,b2,...,bm) = (T,q0,ql,...,qm_1) (4) 

and write /(b) = /(r,q). Hence, B = TxQ is an 

(TW+D-D box and /(B) = /(T,Q). The (m+l)-D box 

B has 2m+1 vertices and m{m + \)2m~2 2-D faces. Let 

the set of «v = 2m+i vertices of the box B be denoted 
by 

Bv := {b : bk = b~k or bk = b+
k, k = 0,1,...m} (5) 

and the set of nf = m(m + l)2m"2 2-D faces by 

Bs := {q : bß e [b;,b;], bv e [b'X],ß*v; 

K = K or bk = bk\ for b e Im+1 \ {/i,v}} 

where Im+1 = {0,1,...,m). Then the set of images of 
the vertices of the box B is denoted by 

/(B„) = {/(q):beBJ 

:={/,J,-..,i„,} (7) 

2.1 A sufficient condition for zero inclusion. 

We are now ready to present sufficient conditions for 
the zero inclusion of the value set /(T, Q). The 
following theorem is a sufficient condition for the 
zero inclusion of the value set. 

(6) 

Theorem 1: If the manifold M c Rm+1 defined by 
/(T,q) = 0 (8) 

has an intersection with the box TxQ, then 
0€/(T,Q). 

This theorem implies that if there exists at least one 
r'eT and q'eQ suchthat /(r*,q*) = 0 then the 

value set /(T,Q) includes the origin. However, it is 
too general to be useful for checking the zero 
inclusion of /(T,Q). However, based on the above 
theorem, an easy-to-check sufficient condition for 
the zero inclusion of /(T, Q) reads as 

Theorem 2: If the manifold M defined by (8) has an 
intersection with at least one of the 2-D faces of the 
box TxQ,then 0e/(T,Q). 

It is noted that the intersection of the manifold M with 
a 2-D face of the box TxQ can be easily achieved 
through finding the real roots of a 2nd-degree 
polynomial. To see this, we first consider a 2-D face 
involving the edge re [T",T

+
] as follows: 

F2(^&) = {(T!?ov-?H.?J.?w.-Ci):'re[T".T1. 

q,e [qi,qtlqk =ql orqk,toxk& {o,i,...,m-i}\{/}} 
(9) 

On this face, the manifold M defined by (8) satisfies 
an equation of the form 

g^HM^K^o (10) 
where g\(q,) and /*,(#,) are both first-degree 

complex polynomials in qi. To test if there exist a 

solution (T*,<7*)e [T',T+]x[qJ,q^] to the above 
equation, we first solve the quadratic equation 

Ig.te^f-IWM (ii) 
for q*. If a solution q* to (11) exists and lies in the 

interval [qi,q*], then we know that the complex 

number -g\(q*) I'hx(q") is of unity length. Hence, if 

there is a T* G [T~,T
+
] such that 

-gi(q")/hi(q"i) = eJZ<0> then the manifold M has an 
intersection with the 2-D face F2(T,#;.) defined in (9). 

On the other hand, if a 2-D face F2(^,^) includes 

the edges qte[qi,qt] and qke[qk,qk], then it is 
easy to see that on this face, the manifold M is 
described by the equations of the form 

g2 (?,•»?*) = "itf ßk +fli,o9, +«o,A +«o,o = 0 (12a 

) 
hianQk) = h&ii* +bifiii +bo,iVk +\o = ° 

(12b) 
The solution to the above equations can be easily 
obtained via solving a quadratic equation. If a solution 
exists and lies in the domain [q~,q*]x[q~k,qt], then 
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the manifold M intersects the 2-D face ¥2(qi,qi) 

being tested. 

2.2 A sufficient condition for zero exclusion. 

To authors' best knowledge, there has no effective 
zero exclusion test algorithm appeared in the control 
literature for the value set /(T,Q) with the mapping 

/given in (1). However, if/is a multilinear function, 
then a sufficient condition for the zero exclusion can 
be derived from the following theorem. 

Theorem 3: (Mapping Theorem (Zadeh and Desoer, 
1963)): Let ßb) be a multilinear complex-valued 
function of b. Then the image of an (w+l)-box B 
under the mapping/is a subset of the convex hull of 
the images of the vertices of B, i.e., 

/(B)cconv{/(Bv)} (13) 

where 

conv{/(B„)} := { £ A,/ :0< A, < 1,/ = 0,l,...,2m+1 -1} 

(14) 
In view of this theorem, a sufficient condition for the 
zero exclusion of the image of a multilinear function/ 
over a box B can be stated as follows: 

Theorem 4: Let 7(b) be a multilinear complex-valued 
function. If the convex hull of the images of the 
vertices of the box B under the mapping / does not 
contain the origin, then the value set /(B) does not 
include the origin, i.e., 

0*conv{/(Bv)}-»0e/(B) (15) 

It is noted that the mapping / given in (1) is 
multilinear in q and nonlinear in the variable T . This 
special form of / motivates us to construct a 

multilinear function / and an («?+2)-D box Q such 

that /(T,Q)c/(Q). The underlying idea is to 

replace the delay term e'Jza = coszco-jsinrco by a 

two-variable expression qm - jqm+1 so that the 

modified mapping 

/(q)=s(q)+^(q)(<7m-/9m+,)        (16) 

is multilinear, where q = (g,
0'9i>"->9m+i) • Tne 

augmented variables qm and qm+l lie in the intervals 

[q-m,qt] and [q~m+1,q
+

m+]], respectively, where 

1m -  min COS(Tö)) (17a) 

<C = max COS(Tö)) (17b) 

<fm+\ =  min sin(Tö)) (17c) 

<fm + \ = max sin (TOJ) 
re[-T,T4] 

(17d) 

Since     the     arc     or     unit     circle     given     by 

{e~Jm :TS [T",T
+
]} is   bounded   by   the   rectangle 

Q2 = te. ?; 1 x fc+i>Ci ].jt is obvious that 

/(T,Q)c/(Q) (18) 

where Q = QxQ2. In view of this set inclusion 

property, we can test the zero exclusion for the value 
set /(T,Q)by constructing the convex hull of the 

images of the vertices of the box Q and checking if it 
excludes the origin. Hence, we have the following 
sufficient condition for the zero exclusion of the value 

set /(T,Q). 

Theorem 5: Let g(q) and h(q) be both multilinear 

functions of q and let the function / be defined in 

(16). Then 

Og conv/(Qv)} (19) 

implies Og/(T,Q), where Q is a (w+2)-D box 

given in (18b). 

3.        A ZERO INCLUSION TEST 
ALGORITHM 

By the test procedure a box B = TxQ is checked for 

the zero exclusion of the convex hull of /(Qv) and/or 

the intersection of the manifold M with the exposed 2- 
D faces Bs of the box B. Since the conditions 

presented in Theorem 2 and Theorem 5 are 
sufficient for the zero inclusion and exclusion of the 
value set /(B) = /(T, Q), an undecidable case occurs 

when both conditions do not hold. Hence, if the 

convex hull of /(Qv) includes the origin and that all 

2-D faces of the box B do not intersect M, the test 
procedure returns undecidable: 

IN:BsnM*0 

Test(B) = {EX: 0£ conv{/(Qv)} (20) 

UD: otherwise 

If an undecidable case occurs in the zero 
inclusion/exclusion test for the value set /(B0) of a 

box B0, we have to subdivide the box B0 into two 

smaller ones, say B0 = B! uB2, and perform the zero 

exclusion and/or inclusion tests for the value sets 
/(BJ and /(B2). Let the (m+l)-D box 

B„=[«]x-x[^] (21) 
be partitioned on the variable  b,  with the partition 

point b* into B[ and B2. Then, we have 

B, =lK,b;]x-x[b^,bU]x[b;,b;] 

x^iXiix-xK,*;] 
B2 =[%,bZ]x-x[biltbUMb;,b;] 

x[*r+i>*i+
+i]x-xft;>£] 
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For each partition of a box B0 into two sub-boxes B, 

and B2, there are 2m newly generated vertices and 

m(/w-l)2m"3 newly generated 2-D faces, which are 

the common vertices and 2-D faces of the sub-boxes 
B, and B2. It is obvious that if one of the common 2- 

D faces of B, and B2 has an intersection with the 

manifold M, we can conclude from Theorem 2 that 
the value set /(B0) includes the origin. For the zero 

exclusion test, according to (16)-(18), the two boxes 

Q, and Q2 are constructed and the zero exclusion of 

the convex hulls of /(Qlv) and /(Q2v) are checked. 

For each box subdivision, the zero inclusion/exclusion 
status for the value set /(B0) is given by 

IN: if 7es/(B,) = IN or 7Vw/(B2) = IN 

Test(B0) = ■ EX: if 7es/(B,) = EX or Test(B2) = EX 

UD: otherwise 

(23) 
In the case that Test(B0) = VD  and 7asf(B,.) = UD 

for /=1 and/or 2, the box B, has to be subdivide 

iteratively until the zero inclusion/exclusion status of 
the value set /(B;) is determined. 

Based on the sufficient inclusion/exclusion conditions 
and the iterative box partitions, we develop an 
algorithm for the zero inclusion test. The algorithm 
uses the depth-first strategy and works with a stack. 
The standard stack operations to be implemented are 
MakeStack, Push, Pop, and IsEmpty. The operation 
(BX,B2) = Subdivision(B0,r)     partitions     B0     on 

direction r with the partition point b'r -(b~ + b*)/2 

The  function NextDirection(r,m) into   B, and   B2. 

works as 

NextDirection(r,m) = 
0,    if r = m 

(24) 
[r + l, ifr < m 

The function d(f(QJ) returns the distance between 

the origin and the center of conv{/(Qv)}, i.e., 

1 
d(J(Qv)) = 

■"Vv  *=1 

(25) 

where Vk,k = l,...,Nv are the vertices of the convex 

hull   conv{/(Qv)}   and  Nv is the number of these 

vertices. The zero inclusion test algorithm reads as 
follows: 
begin procedure 
t = Test(B); 
if(f=IN) return IN; 
if (f=EX) return EX; 
if(f=UD)then 

B0 = B ; r=0; 

S=MakeStack{); 
Push(S,B,r); 

do while (—JsEmpty{S)) 
(B,, B2) = Subdivision(B0, r); 

f, = Test(Bx);   t2 = Test(B2); 

r=NextDirection{r,m); 
if (/, = IN v t2=m) return IN; 

else if (/, = UD A /2=UD) then 

dl=d(J(Qlv));   d2=d(f(Q2J); 
if (ö?, > d2) then 

Push(S, B; ,r); Push{S, B2 ,r); 

else 
Push(S, B2 ,r); Push(S, B, ,r); 

end if 
else if (^ =UD)  Push(S, Bx ,r); 

else if (t2 =UD)  Push(S, B2 ,r); 

end if 
if (-, IsEmpty{S)) (B0 ,r)=Pop{S) 

end do 
if (f, = EX A ;2=EX) return EX; 

end if 
end procedure 

4.        GENERATION OF FREQUENCY- 
RESPONSE TEMPLATES 

In this section, we consider the problem of generating 
frequency response templates for a class of transfer 
functions given below: 

(26) 
G(s;r,q)- 

JD0(^;q) + D1(5;q)e-" 

TeT = [r-,T+],q = (q0,ql,...,qm_l)eQ 

where A^Osjq) and D,.(s;q)for i=\, 2 are 

polynomials in s with coefficients being multilinear 
functions of q. More precisely, we show that the zero 
inclusion test algorithm for the value set7TT,Q) can be 
applied, together with a pivoting method (Nishioka et 
al, 1991), to trace the outer boundary of the 
frequency response template 

G(jco; T,Q) = {G{jco;x,q): x e 1,qe Q}     (27) 

where © is a fixed frequency. 

To test whether a point z in the complex plane is in the 
frequency response template  G{ja; T, Q) or not we 

have to check if there exist a T* e T and a j'eQ 

such that G(JCO;T*,q*) = z. Let G(jco;T,q) = z, then 

we have from (26) 

p(z;T,q) = jPo(z;q) + /71(z;qK^ = 0     (28a) 

^0(z;q) = N0(j(o;q)-zD0(j(o;q) (28b) 

p,{z;q) = N,{jco;q)-zDx(jco;q) (28c) 

If the value set p(z;T,Q) includes the origin we can 

conclude that there exist a T* € T and a q* eQ such 
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that GC/'ß);T*,q*) = z, i.e., z is in the frequency 

response template G(y'ö>;T,Q). This allows one to 

apply the zero inclusion test algorithm developed in 
the previous section to check if a point z in the 
complex plane belongs to the frequency response 
template G(jco;T,Q). 

In using the pivoting method to trace the outer 
boundary of the template G(jco;T,Q), it is required 

first to divide complex plane into triangles as shown 
in Fig. 1. Then wc assign to each triangle vertex a 
label 1 if it belongs to the template and otherwise a 
label 0, or equivalently, 

{l,ifOe^,;T,Q) 
K '' l0,if0ep(u,;T,Q) 

Based on the triangulation in Fig. 1 and the vertex 
labelling shown above, the following pivoting 
procedure finds a sequence of adjacent boundary 
triangles with each having vertices of different 
memberships in the template. 

Pivoting Procedure: 

Step 1. Choose A, > 0 and h2>0 and divide the 

complex plane into triangles as shown in Fig. 1. 

Step 2. Choose a T0 e T and a q0eQ and compute 

z0 = G(j(a;r0,q0) 

Step 3. Searching rightward from z0 for a pair of 

triangle vertices u,<0) and u<0) = u'0' + A, such that 

Z,(u,<0)) = l and L(v{°)) = 0. 

Step 4. Set the initial vertex moving directions dx and 

d2=j = yR. 

Step 5. Set v = 3, p = 0, and u<p) = <> + jh2 

Step 6. Perform zero inclusion/exclusion test for value 

set p(v^p);T,Q) and assign according to (29) a 

label to the vertex vlP). 

Step     7.     Find     the     index      fi^v such     that 

L(v^) = L(vlP)). 

Step 8. If u1
(p)+<)+u<p)-u<p)=<>+<), go to 

Step 12. 

Step 9. Swap dx and d2, A, and h2. 

Step 10. Find the vertices of next boundary triangle 
by the rule: 

«+1,,<+1W+V) 
.        (p) (P) (P)      ,      , J ^N        ■£■     ,, , (v2   ,v3   ,v3   +h2d2,3), if n=\ 

(u,   ,u,   +hld],v3   ,2),if fi = 2 

,     (P) ,       , (P) (P)    ,v     -r- T 

(u    -A,^,^   ,u2   ,1), if/x=3 

Step 11. Set p := p +1, go to Step 6. 

Step 12. Stop. 

5. A NUMERICAL EXAMPLE 

Consider the feedback control system shown in Fig. 2. 
The controller Gc(s)  and the two plants  Gp](s;q) 

and G 20;q)  are as follows (Bhattacharyya et al, 

1995): 

Gc{s): 

GAs;q) = 

Gp2(s;q)-- 

5 + 1 

s + 2 

s + lo 
s2+qxs + 4 

s + q2 

The uncertain parameter vector q = {q9,qx,q2,qi) lies 

in the box 
Q = [2.9,3.1]x[1.9,2.1]x[4.9,5.1]x[1.9,2.1]and     the 
uncertain time delay T   is set to lie in the interval 
T:=[0.1,0.3]. 

The transfer function from disturbance D(s) to output 
7(s) is 

r<   r ^        ^(^K" 
Gd(S'T'q^0(,;q) + A(-;qK" 

where 
N1(s;q) = (s + 2)(s + q0)(s + q2) 

D0(s;q) = (s + 2)(s2+qls + 4)(s3+3s2+qis + 0.1) 

D1(s;q) = (s + l)(s + q0)(s + q2) 

First, we consider the construction of the value set 
G(j'0.6;T,Q). For a given « = 0.6 and a point z in 

the complex plane, the relation  G(j'0.6;T,q) = z  is 

equivalent to 
p(z; T, q) = p0 (z; q) + />, (z; q)e-yafc 

/?0(z;q) = -zD0(y0.6;q) 

p1(z;q) = 7V1O-0.6;q)-zD1(70.6;q) 

For the zero exclusion test of the value set p(z;T,Q), 

we construct the multilinear mapping 
p(z;T,q) = p0(z;q) + pl(z;q)(q4-jqi) 

where q = (q0,q1,...,q5). 

In performing the pivoting algorithm to trace the 
template boundary, the parameters \ =h2 =\G~4 are 
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used. Choose T0 = 0.1, and q0 =(2.9,1.9,4.9,1.9) 

then the value of the frequency response 
Gd(jco;T0,q0) at co = 0.6 is evaluated to be 

z0=l.30119-j\.73478. Searching rightward from z0, 

we obtained the first triangle vertices u,'0' and uf 

suchthat L(v^) = \ and L(v^) = 0 as follows: 

u,<0) =1.5252-yl.7347 

uf =1.5253-71.7347 

In   testing   the   zero   inclusion   of the   value   set 

/?(u,(0);T,Q), the nineteenth box partition gave the 

sub-box T0xQ0 =[0.2,0.225]x [3.0875,3.l]x 

[1.9,1.9125] x [5.0875,5.l]x [1.9,1.9125].      Partition 
T0xQ0  on the variable T   with the partition point 

T* =(T~+T
+
)/2 , we obtain the following two sub- 

boxes 
T,xQ, = [0.2,0.2125]x [3.0875,3.1]x [1.9,1.9125] 

x [5.0875,5.1] x [1.9,1.9125] 
T2xQ2= [0.2125,0.225] x [3.0875,3.1] x 

[1.9,1.9125] x [5.0875,5.1] x [1.9,1.9125] 
By the zero inclusion test algorithm, it is found that on 
the 2-D face F = {(0.2125,^,^,5.1,1.9): 

qQe [3.0875,3.1],qxe [1.9,1.9125]}the        set        of 

manifold defining equations 
-2.83070tf0 + 3.77009?, +1.61148 = 0 

7.31960?0 + 0.989549l - 24.57030 = 0 

has a solution (q0,ql) = (3.09991,1.90007). Thus by 

Theorem 2, we conclude that />(i>,(0);T0,Q0) includes 

the origin, which implies that Oe p(vl0);T,Q)  and, 

therefore, I(u1
(0)) = l. 

In performing the zero inclusion test for the second 

vertex v(
2
0) =1.5253-71.7347, 95 box partition 

operations have been performed to reach the 

conclusion that 0<£ /?(uf';T,Q), i.e., the manifold M 

does not intersect with the box TxQ. Hence, the 

vertex i^0) is not in the template G(70.6;T,Q) and, 

therefore, l(u<0)) = 0. 

By the pivoting procedure described in the previous 
section, the boundary curve of the frequency response 
template Gd(j0.6;T,Q) are traced out as shown in 

Fig. 3. To confirm the result, frequency response 
values of Gd(j0.6;T,q) of 10000 randomly selected 

members of Gd(s;T,Q) are also shown in Fig. 3. It is 

noted that none of these frequency response points lies 
outside the closed boundary traced. 

6. CONCLUSIONS 

In this paper we have developed an efficient branch- 
and-bound zero inclusion test algorithm for the image 
of a box TxQ under the complex-valued mapping of 

the form f{x, q) = g(q) + h(q)e~JT(0, where 

(T,q)eTxQ, and g(q) and h(q) are multilinear 

functions of q. To facilitate using the Mapping 
Theorem (Zadeh and Desoer, 1963) for the zero 
exclusion test, the arc or circle due to the uncertain 

delay term e~J™ for T e T is overbounded by a box. 
On the other hand, we present an easy-to-check 
sufficient condition for the zero inclusion of the value 
sety(T,Q). The zero inclusion test algorithm is thus 
based on the proposed sufficient conditions for 
checking the zero inclusion and exclusion of the value 
sets on subdivided box domain. As an application, the 
developed zero inclusion test algorithm is applied 
along with a pivoting procedure to trace out the 
frequency response templates for a class of uncertain 
systems having an uncertain time delay and 
multiaffine parameter perturbations in the coefficients 
of transfer functions. This frequency response 
template generation technique indeed enhances the 
accuracy of plant template generation for the control 
design of uncertain time delay systems having the 
multiaffine parametric perturbations using quantitative 
feedback theory. 
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Fig. 2. The feedback control system for the example. 
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Re 

Fig. 3. Frequency response template Grf(y"0.6;T,Q) 

and frequency responses Grf(7'0.6;f,q) of 

10000 randomly selected members of 
G„O'0.6;T,Q). 

Fig. 1. Triangulation of the complex plane for the 
pivoting method 
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Abstract: in this work the problem of computing general SISO plant templates from the 
templates of the single plants involved is considered. Some important aspects of the problem 
are remarked, especially the potential loss of information in the template melting process 
when a single plant can intervene in different locations in the general plant expression. After 
this considerations a general algorithm is developed to avoid this information loss effect. 

Keywords: multiloop control, value sets (templates) computation 

1.   INTRODUCTION 

The computation of templates is an important question 
in QFT by itself. The single plant case has already 
been studied in the literature, for instance in (Bailey 
and Hui, 1989), (Nordin, 1993) and (Ballance and 
Cheng, 1998). A general SISO plant is defined in the 
context of this work as a plant which is composed by 
the interconnection of several single plants. This 
definition includes the possibility of series, parallel 
and feedback interconnection, even with plants in a 
feedback loop. Plant P in fig. 1 is an example of a 
general plant including all these possibilities. 

Fig. 1.   General plant example. 

Throughout this work only the case of parametric 
uncertainty will be considered, and it will be assumed 
that there are no uncertain parameters affecting more 
than one plant. This work has been motivated by the 
problem of QFT control systems design in the 
multiloop case, in particular in the non plant 
modifying case, topic in which the authors are doing 
some research and which has already been treated in 
the literature, (Horowitz and Sidi, 1973), (Horowitz 
and Wang , 1979), (Horowitz, 1993). In this 
framework the need for a tool for the computation of 
general SISO plant templates emerges in a natural 
way. 

In the general plant case, the development of a refined 
template computation procedure is even more 
important than in the single plant case. The reason is 
that the number of combinations of uncertain 
parameters values choices, each parameter taking 
values from a discrete set, is an exponential function 
of the number of single plants involved. This fact 
makes especially impractical the application of a brute 
force method, that is, the computation of the plant 
frequency response for every possible combination of 
individual parameters values choices. 
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Fig. 2. Example of a general plant tree 
representation 

This brute force approach can be refined using 
templates contours as a set of representative elements 
of the templates, instead of the whole set of plant 
points corresponding to the complete /-dimensional 
grid in the /-dimensional space of uncertain 
parameters (being / the number of uncertain 
parameters). The global plant P is represented by 
means of a binary tree structure whose leaves are 
individual plants in P. Each non leaf node nc, with son 
nodes wa and nb, represent the general plant 
Pc = P^opcPb, where Pa and Pb are the plants 
represented by na and nb, and opc e {+,*,/} is an 
operator associated with nc. The root node of the tree 
corresponds to P, the global plant. An example of this 
decomposition is shown in fig. 2, where the tree 
representation of the general plant in fig. 2.a is given 
in fig 2.b. Templates contours for leaf nodes (leaf 
plants) are supposed to be given. For each non leaf 
node «c the template contour of its associated plant Pc, 
C(PC), can be obtained by combination of C(P3) and 
C(Pb), template contours of plants Pa and Pb, 
associated with «c's son nodes «a and nb. This 
combination consists of computing c = aopcb for 
every (a,b) pair where ae C(Pa) and be C(Pb) and then 
obtaining the contour of the set of resulting c's, which 
means dropping some of these points. This way, 
computing every node contour in a bottom-up order in 
the tree, i.e., from leaf nodes towards the root node, 
the template contour of P can be obtained from the 
individual plants contours. 

This contours combination procedure can be even 
improved by the use of interpolation in a given 
computed contour before using it for computing its 
father node contour. The idea is filling with new 
points those zones of the contour where the density of 

points is too low. Otherwise this zones with few 
points tend to expand in subsequently calculated 
contours. The effect is accumulative. 

G, •* 

»O>-[G~[—P-O 

[Fig. 3.a] 
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Fig. 3. Example of equivalent plant in a multiloop 
system 

But when there is one (or more) individual plant Pk 

appearing in various locations in the expression of the 
global plant P, that is, acting as leaf node in the tree 
representing P in more than one leaf, some difficulties 
arise that oblige to modify the application of the 
described contours procedure and that even prevent us 
from using the interpolation improvement. The 
problem is located in the calculation of Pc contour for 
any given nc node where Pa and Pb plants, associated 
with KC'S sons «a and nb, are such that PkcPa and 
Pk c Pb. This Pi c Pj inclusion means 'Pj corresponds 
to «j, which is a node included in the subtree under np 

the node associated to Pj'. To compute this Pc contour 
it is necessary to take into account that not every 
c = aopcb with (a,b) pair satisfying ae C(Pa) and 
be C(Pb) is really a point of Pc template. Only (a,b) 
pairs in which Pk's uncertain parameters have been 
instanciated with the same values produce a valid 
point of the template. Otherwise there would be at 
least one uncertain parameter taking different values 
for the same point of a template, which is incorrect. 

The fact that the same plant appears in various 
locations in the same global plant expression happens 
of course when feedback paths are allowed into the 
plant structure, but not only in this situation. Even if 
this structure is not permitted, we can have such a 
situation when dealing with multiloop design. For 
instance, for the cascaded multiloop system in fig. 3.a, 
in a certain stage of the design process the equivalent 
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plant offig. 3.b is considered, whose transfer function 
is 

PA+P3P* 
U    1 + G2P2 + GAP4 

The fact that for every (a,b) pair Pk has to be 
instanciated with the same values in a and b can cause 
an undesired effect, that is, that the important 
information of a significant point be C(Pb) is lost in 
the combination of both contours because there is no 
point ae C(Pa) with the same instanciation of 7\ (and 
vice versa). Every a point with this same instanciation 
was dropped, whether directly in the computation of 
Pa contour, or indirectly in the computation of the 
contour of plants 'included' in Pa, i.e., with associated 
nodes in the subtree below Pa's node. 

In the case in which interpolation is not used, every 
point in every contour comes from the combination of 
leaf node plants instanciated with values in the 
original grid in the space of uncertain parameters. In 
this case at least there is a reasonable probability for b 
to find an a with the same P^ instanciation than it has, 
and so to avoid the loss of its information. It is a 
matter of combinations of a discrete number of 
elements. But this is much more difficult, almost 
impossible, if b has been obtained by interpolation or 
in the chain of combinations through nb subtree which 
lead to b there was an element obtained by 
interpolation. In this situation b would need an a 
obtained from a direct or indirect interpolation which 
would have yielded the same uncertain parameters 
choices. 

As a first approach to face these difficulties we have 
developed the algorithm described in next section. In 
this algorithm we have used for the calculation of the 
contour of a set of points the e-hull algorithm 
described in (Nordin, 1993), in particular the 
implementation developed in (Montoya, 1998). 

2. ALGORITHM 

The attention has been centred in saving the lost 
information in the melting of two contours due to the 
lack of an a for a certain b (and vice versa) in the 
sense described previously. 

For this purpose it will be kept a record of the 
particular uncertain parameters instanciation of each 
point of each contour considered in the process. This 
information provides the knowledge that a certain 
be C(Pb) 'needs' a certain ae C(Pa) to combine with, 
having a a certain instanciation Is of the uncertain 
parameters of the set of individual plants S = Pa n Pb. 
The intersection is here defined as the biggest set of 
individual plants such that ScPa and Sc:Pb, using 
the inclusion concept defined before. This record also 

lets know whether such an a exists in C(P&) or not. 
Moreover, if it does not exist, it allows 'creating' such 
a point in C(Pa) repeating the chain of combinations in 
the subtree under wa which lead to C(Pa), but now 
taking into account that this particular instanciation Is 

of S must be respected after every melting of a couple 
of contours. That is, a point resulting from any 
melting in that subtree and whose uncertain 
parameters instanciation fits in IS) will not be affected 
by the contour computation algorithm, which drops 
points from the set resulting from the combination of 
every point in C(Pj) with everyone in C(Pj) if they are 
not considered part of the contour of this set. 

PiP2P3 

Fig. 4. Possible tree representations for P=PlP2P3 

For the use of interpolation, the procedure would be 
the same, but the reconstruction of such an ae C(Pa) 
could imply the addition of new uncertain parameter 
choices for leaf plants, not included in the original 
grid in the space of uncertain parameters. This is so 
because maybe none of the original choices 
combinations would produce the interpolated point we 
are interested in. This is just a detail to take into 
account, but there is a great problem about the use of 
interpolation: given a point b -pz = interpip*,py), 
where p*=pxiopbpx2, and py=py\opbpy2, the pair 
(PzuPzi) such that b = pz = pzl opb pz2 is not uniquely 
defined, consequently neither are the choices of 
uncertain parameters values for the individual plants 
in S = Pa n Pb- And so the way to construct a point a 
adequate to combine with b is neither uniquely 
defined. We have not dealt with this problem in the 
present work, but restricted to the case without 
interpolation. 
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The developed algorithm receives as its input the tree 
representing the global plant P whose template 
contour is to be calculated, in the way it was described 
in Section 1. This tree representation is not unique. 
For instance, for P^PIPJPT,, both representations in 
fig. 4 arc valid. Its choice determines the order in 
which the contours will be combined. So when 
various choices are available it is important in terms 
of efficiency and accuracy to chose that that 
minimizes the total number of combinations 
(intermediate nodes) and the number of different 
locations in the expression of the global plant for any 
given leaf node plant (points in which loss of 
information may occur). A planned improvement of 
the presented algorithm in the future is a grammatical 
analyser for plant expressions that makes this choices 
by itself with optimizing criteria. The algorithm also 
receives as input the template contour for each of the 
leaf node plants involved. For instance, the algorithm 
input for the plant in fig. 2.a would be the 
grammatical tree in fig. 2.b together with C(Pj), 
ie {1,2,3,4}. Its output will be the contour for the 
global plant P. 

The algorithm, named contour, is executed in a 
recursive way, corresponding the first recursive call to 
the root node of the tree. The basic structure of this 
recursive procedure is as follows: 

contour(father_node) <— 
Is = contour(left_son(father_node)); 
rs = contour(rigth_son(father_node)); 
result = combine(Is,rs); 

Function combine takes care of constructing necessary 
points in Is and rs so as to remedy the loss of 
information we are trying to avoid. Its basic structure 
is: 

s) ; 

s); 

)); 

combine(Is,rs,father_node) <- 
miss__in_ls = 
= missing_A_to_combine_with_B(Is,r 

miss_in_rs = 
= missing_A_to_combine_with_B(rs,1 

comp_ls = complete(miss_in_ls, 
left_son(father_node 

comp_rs = complete(miss_in_rs, 
right_son(father_node 

Is = Is u comp_ls; 
rs = rs u comp_rs; 
result = really_combine (Is, rs) ,- 

Function complete, which as contour is also recursive, 
takes care of constructing points in xs (Is/rs) 
compatible with those in ys (rs/ls) which were 
unpaired. There are many possible choices in the way 
to perform this task. 

The securest one in the sense of preserving 
information is to construct for every unpaired point in 
ys every compatible point in xs, that is, if 
compatibility is  determined by a set of common 

individual plants, say again S, and a particular choice 
of uncertain parameters, say Is, this would imply the 
calculation of every possible point in xs with choice Is 

with respect to leaf node plants in S, and with every 
possible choice in the remaining leaf node plants. This 
could mean, in terms of computational complexity, 
getting too near the brute force approach, so this 
choice has not been taken. 

P1P2P3+P^P2Pi,P1Ps 

+   1 

Fig. 5. Tree representation for 
P=P)PJ>*+P\PlP<&P\Ps 

Instead, it has been tried to find a trade-off between 
brute force and information loss by means of the 
following criterion about leaf node plants not 
belonging to S: the points constructed for a particular 
choice in S leaf node plants will be those formed by 
leaf node non S plants instanciations which are found 
in a contour in the downwards path followed by the 
recursive execution of complete. In particular, this 
contour could be each non leaf plant contour if no 
higher level contour is found before. 

In the execution of complete it is taken into account 
the possible situation in which for a certain node a set 
of non S plants, say NS, belongs to both sons of the 
node. This situation is the same in the sense of 
information loss than the one taking place in combine 
that lead us to the development of complete and 
missing_A_to_combine_with_B. But in this occasion 
the problem is already solved by this couple of 
functions. So, complete not only calls itself in its 
normal recursive execution constructing points 
compatible with a particular choice in S, but also 
begins a new search for points compatible with 
SuNS if this situation occurs. This point is explained 
with an example. 
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Consider plant P = {PXP2P3) + (P1P2P4) + (JVs)- The 
chosen tree representation is given in fig. 5. Nodes are 
numbered with bold typeface numbers on their right. 
Imagine we are in the execution of contour function 
on the root node, after getting both son contours. 
Combine is called with this contours as parameters. 
The set of common leaf plant between nodes 2 and 3, 
S, is P}. Combine will detect some points missjnjs 
in the contour of node 3 with S uncertain 
parameterschoices with no compatible point in the 
contour of node 2, so complete will be called with 

Pi 
+ 

y-> p, ►L 

+ 
' 

i+ 

+ , 
+ 

p, 
' 

Ri »■ w             "■ '^J 
'+ +1 i 

+   1 
+ 

p. Pf *{. 

Fig. 6. Plant for example of algorithm execution. 

node 2 and Is. And here is were the consideration 
made has to be applied. In node 2 complete detects a 
leaf plant belonging to NS, P2, because this plant is in 
both son nodes of node 2 but is not in S. It was said 
that any combination of parameters of non S plants 
appearing in a contour in the downwards execution of 
complete should be taken into account. For P2 there is 
a contour through node 4 and a different one throughh 
node 5. In the melting of both contours in node 3 
some P2 points will be lost. This is the same effect 
occurring in combine and that motivated the 
development of complete. So the same function can be 
used again to remedy the same problem. The initial 
result that complete would give back to combine, that 
would have lost some P2 combinations, will be 
completed with the result of call to itself, this time 
asking for completing points which are unpaired in 
terms of P2 when points from nodes 4 and 5 are put 
together. 

3.        EXAMPLE. 

In this section a simple academic example will be 
examined with the objective of observing the 
information recovery achieved by the algorithm. The 
time spent by the execution of the algorithm using 
complete scheme, using k = 8 points per parameter to 
obtain individual plants templates, was 220 seconds 
over a PC with a 750 MHz Pentium III processor and 
128 Mb RAM, using Matlab 5.2 running on Windows 
2000. The brute force method run out computer 
memory for the same k, even for k=4. For k=3, we 
stopped execution after more than half an hour. 

The plant structure for the example is shown in fig. 6. 
For   /=!...6,   Pi=ki/(s+ai),   and   ku   k6   e    [1,200], 

M4e[l,50], Mse[10,30]; aua6€[1.5,3], a2,a4e[l,4] 
and a3,a5e [1.5,3] (12 uncertain parameters). The 
chosen tree is shown if fig. 7. 

In fig. 8 and it is shown the execution of the algorithm 
contour with use of the complete routine, for the OJ=1 
rad/s template. For each numbered node in the tree in 
fig. 7 in fig. 8 there are two template plots: before and 
after contour calculation. In fig. 9 it is shown the same 
execution but without complete routine in order to 

P2 (Px+P3) +PilP1+P3+P5) +PS (P5+P3) 

Fig. 7. Tree structure for plant example in fig. 6. 

compare the information loss respect to execution 
without complete. 

For the second case better results could be achieved if 
at every stage no point is dropped from the template. 
But this would lead to a exponential growth of the 
number of points involved, which has to be avoided 
by means of some prune strategy. As it can be seen, 
this prune does not affect the execution with complete 
routine. 

4. CONCLUSIONS 

The problem of the computation of general SISO 
plants templates once single plants involved templates 
are known has been considered. It has been shown the 
need for a non brute force method in the general case. 
Some points to be considered in the design of such a 
method have been remarked, with emphasis on the 
topic of information loss in templates melting. A 
strategy to avoid this phenomenon has been designed 
and implemented in an algorithm. This algorithm is a 
first approach to the problem which the authors plan 

251 



to refine in the future, applied as a part of the design 
of multiloop control systems. One of the points to be 
developed, already mentioned in this work, is the 
addition of a grammatical analyser for general SISO 
plants expressions that chooses the best tree 
representation, in terms of commented criteria. Also 
allowing the same parameter appearing in various 
plants is planned. Another important related topic to 
be developed, not treated in this work, is the use of 
knowledge of the significant parts of the templates 
obtained from practical experience. 
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Fig. 9. Example 
execution 
without complete 
routine. 
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Abstract: This work deals with some practical aspects of PID controllers regarding 
multivariable non-linear feedforward compensation. This contribution concerns the task 
of compensation for multivariable disturbances on the controlled variable. The strategy 
consists of establishing an adaptive function capable of compensatinge by means of a 
feedforward strategy all disturbance variables under any dynamic condition. 
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multivariable disturbances, multivariable feedforward compensation. 

1.        FEEDFORWARD CONTROL 
BACKGROUND. 

Conventional feedforward control deals with the task 
of correcting the manipulated variable for 
disturbances on the controlled process. Most 
common industrial processes are disturbed by more 
than a variable. For instance, in heat exchangers, 
controlled temperature is disturbed from flow and 
temperature variations of heated fluid. Furthermore, 
they are disturbed also by variations of the operating 
point because dissipation heat may depend on the 
ambient and operating temperatures and by process 
parameters. 

In conventional feedforward control (Shinskey 
1980) an error must be detected in a controlled 
variable before the feedback controller can act to 
change the manipulated variable. Therefore, 
disturbances must upset the system before the 
feedback controller can do anything. It seems very 
reasonable that if a disturbance entering a process 
could be detected, a controller should begin to correct 
it before it upsets the process. 

This is the basic idea of feedforward control. If 
disturbance can be measured, this result will be used 

to send a signal through a feedforward control 
algorithm that makes appropriate changes in the 
manipulated variable so as to keep the controlled 
variable near its desired value. 

Classical industrial controllers offer the possibility of 
compensation for only a disturbance variable 
entering the process, if such a disturbance can be 
measured. 

The real problem concerning industrial control, in 
which a good performance is needed, requires the 
compensation task for more than a single disturbance 
variable included disturbance model parameters. In 
such a case, conventional controllers are not efficient 
and proposed adaptive controller takes advantage. 
Furthermore, disturbance variables are associated by 
non-linear functions. Non-linear feedforward 
compensator can be designed for non-linear systems. 

An alternative to implement feedforward control 
systems in order to compensate multivariable 
disturbances, may be implemented by means of a 
frequency analysis procedure based in disturbance 
model identification by FFT algorithm. 
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2. SPECTRAL IDENTIFICATION 

In order to get information related to system 
frequency response, it is necessary to implement a 
procedure by means of FFT algorithms. This 
information will be used later to design the 
corresponding PID controller. The application of FFT 
algorithms to the system dynamics by exciting it with 
sinusoidal signals of different frequencies permits the 
achievement of the magnitude and phase angle at 
concrete frequencies, but also subarmonic 
components originated by external disturbances are 
to be found. 

The identification task starts searching for the 
ultimate frequency (wrc|ay) with system phase angle 
response -n rad performing the Relay Feedback 
Analysis (Äström.K.J et al., 1989). This frequency 
will be the key for the control frequencies selection 
used in the regulator design (Ferreiro et al., 1995). 
The feedback PID controller and the perturbation 
lead/lag feedforward compensator (Figure 1,2 and 3) 
will be designed in function of the performance 
specification indicated by the designer. The control 
frequency (wcp) for the feedback controller and the 
time constants (xa, xr) for the lead/lag feedforward 
compensator will be obtained as fraction of the wrciay 

and the control system performance specifications. 
With the FFT algorithm the following information 
will be found about the plant, working in open-loop 
configuration: 

• The    magnitude     M = G(jwcp)|     and    phase 

P = ZG(jwcp)   at the control frequency (wcp) 

selected for the design of the feedback PID 
regulator. 

• The   central    frequency   of   high    frequency 
disturbances. 

The performance specification includes datas like: 
phase margin (§M), settling time, overshoot and 
bandwidth. With such data proportional gain, integral 
and derivative parameters can be achieved 
deterministically (Phillips et al., 1995 and 
Äström.K.J et al., 1984). 

The design expressions for three types of regulators 
are presented in Table 1. The contribution angle 0c 
corresponds with the regulator phase angle at the 
control frequency (wcp) . Proportional gain, integral 
and derivative parameters are achieved 
deterministically (Table 1) for PI and PD regulators. 
Design criteria can be achieved by selecting 
frequencies at which the contribution angle achieves 
acceptable regulators in terms of relative stability. 
Then the control frequency (wcp) can vary in order to 
verify the design restrictions. 

From frequency analysis by means of a digital signal 
processor  algorithm   which   implements   the   FFT 

(Decimation in Frequency) (Oppenheim et al., 1989), 
it is possible to introduce further computer-based 
calculations to identify salient characteristics, 
disturbance characteristics and system frequency 
response with some a priori knowledge. 

Table l:Design Equations for a concrete Phase 
Margin 

ec = ZGC (jwc ) = m+(/)M-zGp (jwc) 
Design Equations Restrictions 

Kp 

cos(0   ) 
c 

G   (Jwc 
P        i 

0 < 6r < — 
2 
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Tdwc i= tan(0c) 

Kp 
cos(0c) 
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cos(öc) 
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B 
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c 
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— >e,> — 
2 2 

l 

3.    DESIGN ALGORITHM. 

As we can see in Figure 1 ,2 and 3 the controller will 
be composed by a PID controller and a Lead/Lag 
Feedforward compensator. 

A 

PID 
Feedback 
Controller 

I 

Lead/Lag 
Feedforward 
Compensator 

1 

Identification, Design 
and Adjust Block for 

the Feedforward 

xgK- PLANT 

Identification, Design and 
Adjust Block for the PID 

Feedback Controller 

Figure 1. General configuration 
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The feedback one will be working all the time and 
will be adapted to give response to changes in 
operating conditions. Its input will be the error 
obtained as the difference between the set point and 
the controlled variable. 

PID Parameters 
Dynamic Adjust 

TT 
Regulator 

Design 

Operating 
Conditions 

IZ 

—     Frequency 
Identification at 

(*cp) 
FFT 

—^ 

Control System Specifications 

Figure 2. Identificaciön, Design and Adjust Block for 
the PID Controller 

The lead/lag feedforward compensator will give 
response to any disturbance. In the identification 
process the manipulated variable measured under 
different operating conditions will be stored in order 
to estimate the manipulated variable during the 
control system performance. 

l 

_rr 
Detector 

Feedforward Compensator ^_ Operating Conditions Change 
Dynamic Ajust 

and Manipulated 
Magnitud Estimation Compensator Feedforwardd 

Design 

Operating 
Conditions 

ZT_tl 
Control System Specifications 

Figure 3. Identificaciön, Design and Adjust Block for 
the Feedforward Compensator 

Its input (output 2 Figure 3) will be the error 
between the manipulated variable estimation when a 
variation in the disturbance variable is detected and 
the real system manipulated variable before the 
perturbation . Then the design algorithm will be 
related to the development of both elements. The 
design objective is to obtain two crisp sets look-up 
tables where we will map a complete set of PID 
parameters and the lead/lag time constants for any 
combination of operating conditions. This set of 
parameters will be obtained trying to give optimum 
responses depending on the design criteria specified 
for every concrete controller. As explained in section 
2 the fuzzy adaptive design procedure is based in the 
plant identification by frequency techniques 
obtaining wre]ay and subsequentally wcp ,xa and xr. 

It is important to mention that it is necessary to 
obtain these frequencies for any combination of 
operating conditions if we want to map the system 
nonliniarities. 

The Figure 4 shows a PID design block diagram 

(Äström.K.J et al., 1984) as important part of the 
fuzzy adaptive procedure. Input data is divided into 
two types: 

• Data   concerning   the   definition   of   the 
performance specification. 

• Data    concerning    the    dynamic    system 
behaviour. 

The design procedure has to follow the next sequence 
of actions: 

1. 

3. 
4. 
5. 

7. 

Take the system to a steady state under a 
concrete operating conditions 
Store the value of the manipulated variable 
(MV). 
Apply the Relay Feedback Analysis. 
Select the control frequencie 
Identify     frequency     system     response 
(magnitude and phase) applying FFT at the 
control frequencie 
Verification of the design restrictions. If not 
come back to the step 3. 
Application   of   the   design   expressions, 
obtaining the controllers parameters. 
Choice of lead/lag time constants for the 
lead/lag feedforward compensator. 

Kp 

Td 

Regulator 
Design 

|G(jwci)| t Excitation 
sin(wcit) 

ZG(jwci) Frequency 
Identification (wcj) 

.   FFT 

Response 
sin(wcit) 

Control System Specification: 
Bandwidth, settling time, phase margin, regulator 

type etc.. 

Figure 4. PID design block diagram 

During the design process we can find that for 
some control frequencies to obtain acceptable 
regulators it is not possible. In these cases it is 
necessary to restart the design, searching control 
frequencies that will generate stable controllers. 

Applying the above method for different system 
operating conditions we will built a crisp set look-up 
table with a complete set of controller parameters and 
time constants. The defuzzyfication method will be 
performed by least square regression procedure 
(Johansson et al., 1993, Brown et al., 1994) obtaining 
polynomials expressions for every PID parameter, 
lead/lag time constants and manipulated variable 
estimation as function of the operating conditions. 
These expressions permit to adapt in real time during 
the system performance the regulator parameters as 
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soon as the plant mathematical models change due to 
its implicit nonliniarities. 

3. CASE STUDY. 

A tank system is used to check the performance of 
the algorithm due to its nonlinear characteristics. The 
Tank system model is given by the expression (1) 

Respuesta Frecuencia wcp=0.195rad/sg,Set point 75%, Load 25% 

[A(h)h] = qi~qo = qi - a^lgh  (1) 
dt 

A(h) tank section (m2) 
h tank level (m) 
qi, qo input, output liquid flow (m3/sec.) 
a outlet pipe section (m2) 
g gravity (9.8 m/sec.2) 

A tank with the following characteristics was used to 
verify experimentally the controller. 

Height = 10m 
Base cross section diameter = lm 
Top cross section diameter = 4m 
qimax=3.514 m3//sec. 
amax=0.251 m2 

The tank section is a function of the h variable. 
Taking it into account the equation (1) is converted in 
equation (2) which represents the mathematical 
model of our tank system 

dh     d 
— + - 
dt     dt viooy 

d 
+ — 

dt 5 
V       J 

qi-a^2gh  (2) 

Figure 6. Frequency Response Analysis 

The objective is to find, for every combination of 
operating conditions (set point and load) the 
frequency (wrc,ay) with system response phase -180 
deg. It has been specified a set of performance 
specifications (time response, bandwidth and phase 
margin) initially. A slow time response trying to 
avoid great overshoots and a phase margin of 65 deg 
are some of these specifications. 

The control frequency (wcp) has been selected as 
fraction of wrc]ay (0.2 wrciay in this case) and the 
lead/lag unit pole and zero just the same 
(wccf=0.5wrciay=l/xa wcpf=wrclay=l/xr). The results of 
the application of the algorithm is presented in Table 
2. The Feedback controller is a PI and Feedforward 
compensator a lead/lag unit. 

Table 2. Design Algorithm Results 

The design procedure starts identifying the system by 
frequency techniques. First of all, it will be applied 
the relay Feedback Analysis (Figure 5) and secondly 
working with the open loop configuration we 
introduce sinusoidal stimulus to our plant, processing 
its responses by the FFT algorithm (Figure 6) 

Respuesta de Relay Feedback para Set point 25% Load 50% 

■WWWA 

/   :       :       : 
:       :       : 

Frequency 
Identification 

25% 
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50% 75% 

25% 
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-94.7° 
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0.32           Wccfi2.0.5 

-90° 

Wrelayl3=1.08M.V.-1.318 

Wcpl3=0.216     Wcpn3=l 

0.36       Wccn3m.s 

-106" 
H 
2 
5 
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Figure 5. Relay Feedback Analysis 
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With the information of Table2 it is possible, 
applying numerical analysis perform a 
deffuzyfication procedure by means of polynomial 
expressions. These expressions have as independent 
variables the set point and the load and as dependent 
variables the controller parameters. Then the 
defuzzyfication process will be performed by least 
square regression procedure, obtaining the 
polynomial expressions. The expressions (3) 
represents the functions that relates the operating 
conditions to the manipulated variable estimation 
(MV), the PID parameters and the limit cycle 
frequency. 

2 2 2 
Kpp = -2.385 + 19.13* + -8.68*    + 16.73.V + -66.14*y + 52.72*  y + 0.28y    + 

2 2    2 
-21.52XV    +32.32*  y 

2 2 
1 / Tip = -0.1637 + 0.7329* + -0.8513*    + 1.9757.V + -7.2847*y + 7.1781*  y + 

2 2 2    2 
-2.5498.V    + 9.3053*v    + 32.32*  y 

2 2 2 
w  ,     = -0.842 + 9.692* + -9.696*    + 9.99y + -7.80*v + -52.62*  y + 52.4y    + 

2 2   2 
41.84*y    + -41.92*   v 

MV =-0.0656+0.3716* +-0.4016*    + 1.1778.y + 2.13*y + 0.5808*  y + -0.3}'    + 

2 2    2 
1.6976*j'    + -1.824*   v 

(3) 
The variables x and y represent the operating 
conditions set_point and load. The universe of 
discourse for both variables is [0,1]. 

Now the identification and controller design 
procedures are finished. The control system 
behaviour under different operating conditions and 
disturbances will be tested. 

4. RESULTS AND CONCLUSIONS. 

Initially the system time response is tested modifying 
by steps the set point and the load at the same time 
during the experiment. Three combinations of set 
point and load have been tested (0.25,0.25), (0.5,0.5) 
and (0.75,0.75). 
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Figure7. System Time Response 

In this first experiment we just try to evaluate the 
feedback controller element without using the 
perturbation feedforward compensator. Trying to 
observe how we can obtain quick time responses a 
control frequency wcp=0.2wrclay is selected and 
designed the corresponding set of controllers. The 
results are represented in Figure 7. 

The second experiment was designed to analyze at 
the same time the controller performance under 
different operating conditions and disturbances. 
These conditions are set point (25%), load (25%) and 
a load perturbation. 
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Figure 9. Feedforward Compensator Time Response 

In Figure 8 and 9 the effect of the load perturbation 
with and without lead/lag feedforward compensator 
is represented. Its clear the correction effect of the 
lead/lag unit avoiding system long transient periods 
out of the operating point under load disturbance 
conditions. 

The results show how valve modulation activity is 
correct in the three conditions where energy 
demanded for rapid following is achieved under good 
valve modulation, depending on the required tracking 
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speed. It is possible to achieve performance while 
keeping robustness of a controlled system under load 
changes in acceptable limits as per time response of 
results, where feedforward compensation of loads 
and set points with inherent modelling errors do not 
distort too much the response and avoids the 
limitation of the integral action. 

The adaptive frequency method has been revealed as 
effective in feedforward dynamic compensation 
where uncertainties from environmental conditions 
are met, and some points are to be raised as follows: 

• Low man machine interaction is needed for the 
adjustment task 

• Acceptable time response to disturbances 
• Robustness in both cases, that is under parameter 

variations and relative stability 
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Abstract: The robust control of a dc servo-motor is considered using three different 
control strategies; the cancellation pole-placement (CPP) controller, the linear 
quadratic gaussian (LQG) controller and the generalised predictive controller (GPC). 
The process is difficult to control being high-order, non-minimum phase, 
underdamped and non-linear. A proposed modification of the CPP controller which 
involves restructuring as a two degree-of-freedom controller, is shown to produce 
performance comparable to the LQG and GPC designs and, surprisingly, to have 
superior high-frequency robustness for this application 

Keywords: Generalised Predictive Control, Linear Quadratic Control, Robust 
Control, Cancellation Pole-Placement Control, Real-time Control. 

1.    INTRODUCTION 

This paper considers the design and implementation 
of three digital control strategies for a dc servo-motor 
system. The selected techniques are the cancellation 
pole-placement (CPP) controller, the linear quadratic 
gaussian (LQG) controller and the generalised 
predictive controller (GPC). All three control laws 
are designed to yield the same nominal tracking 
performance and a similar (nominal) degree of 
robustness. The controllers are then evaluated in 
terms of 

(a) robust performance 
(b) deterministic disturbance rejection 
(c) sensitivity to high-frequency noise 

It could be argued that such a comparison is of little 
relevance in that, assuming the necessary degrees of 
freedom, each controller can be designed to yield 
identical performance. In theory this is certainly true, 
each controller can be designed to place the closed- 
loop poles at identical locations. In practice, 
however, performance is dictated not just by what is 
theoretically achievable but also by the availability 
and simplicity of the tuning parameters that equip the 

controller. Thus for a successful practical 
implementation the control law should have 
parameters that directly affect 

1) performance 
2) robustness 

Furthermore these parameters should be easily 
adjustable to achieve the requisite performance 
and/or degree of robustness. 

A frequent criticism of the GPC and, particularly, of 
the CPP controller is that they lack the simple 
robustness-enhancing 'tuning knob'. In the GPC case 
an observer polynomial - the ^-polynomial - may be 
incorporated to enhance robustness but its selection is 
not always intuitive and few systematic design 
techniques exist. The problem is exacerbated with the 
CPP controller in that the only tuning parameter 
available is the desired closed-loop transfer function. 
Hence while nominal performance is trivial to 
specify, the design of a robust control law is 
problematic. To overcome these deficits O'Mahony 
and Downing (2001, 2000) have recently proposed 
novel tuning strategies for each of these control laws 
that are based in the frequency domain and which 
directly enhance the robustness of the controllers. 

f This research was funded by the CIT Scholarship Scheme. 
The authors wish to gratefully acknowledge this support. 
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Figure 1: Experimental set-up of voltage controlled dc motor 

Thus one of the contributions of this paper is to 
evaluate these proposals, in real-time, on a difficult 
system, and to compare the resultant performance 
with that of a well established technique e.g. the 
LQG. 

A somewhat surprising outcome of this study is the 
level of performance achieved with the CPP 
controller. Frequently, in the literature, this controller 
is commended for its simplicity but dismissed due to 
the plethora of practical problems that besiege it. For 
example, Isermann (1981) notes that "the design of 
cancellation controllers has to be restricted to 
sufficiently damped, asymptotically stable processes 
with minimum phase behaviour". Yet in this 
application the CPP controller is successfully applied 
to a process that exhibits oscillatory poles, non- 
minimum phase behaviour and considerable non- 
linear characteristics. Furthermore if utilised in a two 
degree-of-freedom structure the CPP controller is 
shown to perform equivalently to the "more 
advanced" LQG and GPC designs in terms of robust 
performance and disturbance rejection, but displays 
superior immunity to the effects of high-frequency 
noise. 

This paper proceeds with a brief outline of the real- 
time process in §2.0, for which a linear model is 
developed in §3.0. In §4.0 the process of tuning each 
of the controllers is elaborated while §5.0 and §6.0 
are devoted to performance evaluation. Finally in 
§7.0 some conclusions are drawn. 

2.    DC MOTOR 

The experimental rig used to evaluate the 
performance of these controllers is a voltage 
controlled dc motor as illustrated in figure 1. The 
control target can be position, speed or torque, 
among others. In this application, position will be 
utilised as the controlled variable. 

An analogue proportional controller is supplied with 
the dc motor and employed to stabilise the motor. 
The combination of motor plus proportional 
controller is considered to be the system under 
control and the various controllers were designed on 
this premise. The control objective is to accurately 

and rapidly track any changes in set-point. The 
control design is achieved using MATLAB and 
implemented in real-time using the dSPACE real- 
time control environment. In essence this real-time 
environment resolves the issues of coding and 
implementation thus enabling the control system 
designer to concentrate on the design aspects of the 
application. 

3.    IDENTIFICATION 

A model of the dc motor may be directly estimated 
by recourse to parameter estimation techniques such 
as Least Squares, see, for example, Ljung (1987). 
With this technique it is necessary to select the model 
structure a-priori. Assuming a second-order model of 
the form - 

._     b,Z-l+b2Z-2 

Gm(z     )-- 1]  
1 + axz    + a2z -2 (1) 

the coefficients a,, a2, b, and b2 may be obtained by 
applying a standard test input signal such as a step 
and recording the result. Application of the LS 
algorithm to these signals resulted in the following 
model coefficients - 

a, =-1.554;   a2 =0.802 

bi =0.113;   b2 =0.1312 (2) 

A sampling interval of % = 0.05sec was utilised. 
Note that this discrete-time model is non-minimum 
phase (NMP) with a zero located at z = -b2/b, = - 
1.161. 

To test the accuracy of the model a step input was 
applied to both the model and the physical system, as 
illustrated in figure 2. For the estimated 2nd-order 
model it is evident that a perfect fit was not obtained. 
This is primarily due to the fact the motor, like most 
physical systems, has high-frequency dynamics 
which are not captured by the second-order model. 
However, it was felt that this model captured the 
dominant characteristics of the dc motor and 
therefore constitutes a valid simplification. 
Moreover, if a robust controller design philosophy is 
pursued, the resulting controllers will perform well 
despite the model uncertainty. 
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Figure 2: Model validation: 2nd-order model versus actual 
plant data 

4.    CONTROLLER DESIGN 

A difficulty with any controller comparison is that 
the authors familiarity with their favoured technique 
(in this case GPC) over the contesting solutions may 
unintentionally introduce bias into the results. To 
minimise this possibility the controllers considered 
here were designed to yield similar performance, 
though this aspiration is understandably limited by 
the available design parameters that equip the 
individual controllers. Since the GPC is, in essence, a 
two degree-of-freedom (2-DOF) controller a fair 
comparison dictated that a similar flexibility be 
available in the other two techniques. Hence the 
general 2-DOF structure of Vilanova & Serra (1997) 
was proposed to extend the standard CPP controller 
to provide the requisite degrees of freedom. Likewise 
a polynomial version of the LQG controller, as 
advocated by Grimble (1994), was implemented 
which enables the servo response to be specified 
independent of the feedback controller. All three 
controllers were therefore designed to yield the same 
nominal response to set-point changes. This ideal 
response model, Mt(z), was specified as second-order 
overdamped, with a settling time of 1 second i.e. 

,,, _K     0.0359z"1 + 0.0294z-2 

Mt{z   ) = - 
1-1.483z-1 + 0.5488z" 

(3) 

The feedback components of each controller were 
then designed to yield approximately the same 
robustness index - a delay margin of 0.75sec - as 
elucidated presently. 

4.1 Cancellation pole-placement design 

The design of the CPP controller centres around the 
selection of a single tuning parameter, the desired 
closed-loop transfer function or complementary 
sensitivity function, T. Given this transfer function 
the controller is calculated using 

e^-k"ih (4) 

Thus while nominal tracking performance is easily 
specified via T, few strategies exist to aid the robust 
design of this controller. In O'Mahony and Downing 
(2001) it was noted that if 

<1     Vfi)<fi)„ (5) 

where (0o is the closed-loop bandwidth, then the input 
sensitivity function, M(z'!) = Gc/(1+GCGJ would 
also be less then one at all relevant frequencies. This 
ensures that the controller possesses good high- 
frequency properties and hence that the closed-loop 
is relatively insensitive to high-frequency stimuli 
arising as a result of measurement noise or 
unmodelled dynamics. This simple guideline was 
used to choose the closed-loop transfer function T 
such that a robust CPP control law resulted. In 
general however, such a design may impinge upon 
the servo-performance and result in sluggish 
responses to set-point changes. To offset this 
disadvantage the two degree-of-freedom (2-DOF) 
control structure, presented by Vilanova and Serra 
(1997) and illustrated in figure 3, is utilised. In this 
realisation the servo response is characterised by the 
open-loop controller denoted as Gs, whereas the 
feedback and robustness properties depend 
completely on the feedback or regulator controller 
denoted GR. Each controller can be arbitrarily 
designed according to the desired behaviour of the 
associated loops. 

The design of the 2-DOF CPP controller began with 
the specification of the regulator transfer function, 
TR. A fourth-order transfer function was utilised 
which satisfied equation 5 and is defined by: 

T*(*) = 
0.0004(z + 7.58)(z + 0.76)(z + 0.077) 

(z-0.779)(z-0.67)(z-0.7)2 

and the feedback or regulator controller, GR, was 
calculated from equation 4 with T replaced by TR. 
Note that to achieve a stable control law the model, 
Gm, has to be modified to eliminate the NMP zero. 

Servo 
y 

^Q*Qn*E>H 

Gm(z)4 
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Regulator 

Nominal 
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■j^)H33= 

Figure 3: Realisation of 2-DOF CPP Controller 
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Figure 4: Performance of 2-DOF CPP controller 

An optimal solution to this problem is to replace the 
unstable zeros by their reciprocal, Peterka (1972). 
Analysis of the resulting control law yielded a gain 
margin, Gm, of BdB's, a phase margin, &„„ equal to 
86" and a delay margin, A„, of 0.76sec. The servo 
control law was subsequently designed to achieve the 
one second settling time by setting Ts = Mt of 
equation 3 and solving equation 4 to obtain the 
controller Gs. The control performance was evaluated 
using Simulink with the results shown in figure 4. 

4.2  Linear quadratic gaussian design 

The design of the LQG controller entails choosing 
three transfer functions. Two of these, Q(z~)   and 
R(z') appear in the LQG cost function as 

J = E]Qe\t) + Ru\t)} 

whereas the third Wt is used to dictate the ideal 
input/output response. The design of the LQG 
controller may be achieved by applying a two-stage 
synthesis procedure, where, in the first stage, the 
regulator dynamics are specified through the 
dynamic weights Q and R. Subsequently the user is 
completely free to choose an ideal servo response 
and the algorithm, outlined by Grimble (1994), 
enables a suitable reference controller to be 
systematically designed. 

Consider the block diagram of figure 5, below. It is 
trivial to define the following sensitivity functions: 

Sensitivity function: 

5 = 
1 m__  

d{t)    \ + GcGm 

rW^e^ 

I 
u(t) 

\   Gt 

d(t) 
■y(t) 

&S& 

y(0 T = 
q{t) 

Input sensitivity function: 

M(0 

GG„ 

M-- 
qit) 

\ + GG 

l + GG 

It is well known that the sensitivity function, 5, is 
predominantly used to investigate the low-frequency 
performance of the controller, in particular the 
response to disturbances and set-point trajectories. To 
achieve good low-frequency performance S must 
have low gain at low frequencies and, ideally, unity 
gain at high frequencies. In contrast both of the other 
sensitivity functions may be used to analyse the high- 
frequency controller performance. To minimise 
actuator activity it is required that Mhave good high- 
frequency roll-off in addition to having low gain at 
high frequencies. Similarly if T has low gain and 
good roll-off at high frequencies then the effect of 
measurement noise on the process response will be 
minimal. In addition T also determines the controller 
sensitivity to mis-modelling since: 

1 
< T ;   Vco (6) 

if stability is to be guaranteed, Doyle (1979). In 
equation 6 Am represents the upper bound of the 
multiplicative modelling uncertainty. The frequency 
weights Q and R may be designed by noting that Q 
predominantly affects the low-frequency properties 
of the controller and hence determines the response 
to disturbances, tracking ability and performance 
robustness. If Q is chosen such that this filter has 
high-gain at low frequencies it will effectively 
penalise S at these frequencies and ensure that S is 
suitably shaped. Introducing an integrator in Q 
introduces integral action in the feedback controller 
and guarantees that step disturbances will be rejected 
and that step-like trajectories will be accurately 
tracked. Conversely the control weighting R is 
usually defined to have high-gain at high frequencies 
such that both T and Mare heavily penalised in this 
frequency region, which results in improved stability 
robustness and measurement noise rejection. 

Using this philosophy suitable values for Q and R 
were determined, by trial-and-error, to be- 

Q = ^T   R = . °-48 

1- (l-0.2z "'Xl-O^z-2) 

Figure 5: Simple Closed-loop Control System 

Analysing the resulting feedback controller yielded 
the following margins: Gm = 23dB's, &m = 81° and 
Am = 0.77sec. The design was completed by letting 
Wi equal to the ideal response model M-, and solving 
to determine the servo or reference controller. The 
resulting Simulink performance is illustrated in 
figure 6. 
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Figure 6: Performance of LQG controller 

4.3 Generalised predictive controller design 

The GPC can also be designed utilising a two-stage 
strategy. Initially the servo parameters may be 
selected to realise the desired nominal response to 
set-point changes and subsequently a single design 
polynomial, denoted the ^-polynomial, may be 
utilised to enhance the regulator performance or 
increase the robustness of the controller. A difficulty 
with the GPC strategy is the large number of 
parameters (six in all) which must be initialised prior 
to commissioning. Preliminary work on these 
parameters was mainly concerned with their effect on 
the servo performance and resulted in the 
development of a number of tuning rules to yield a 
variety of servo performances, Lambert (1987) and 
Söeterboek (1992). However, these rules usually 
require the simultaneous specification of a number of 
parameters and, hence, are less than intuitive. This 
difficulty was assuaged with the work of Mclntosh et 
al (1991) who presented a number of simple tuning 
strategies which allowed the user to vary the closed- 
loop speed of response over a full range by adjusting 
a single active tuning parameter whilst all other servo 
parameters remain fixed. One of these strategies, the 
so called detuned model-following configuration 
utilises a polynomial - the P(z') polynomial - to 
place the closed-loop poles and hence GPC can be set 
up to follow the closed-loop model M(z') = 1/P(z ). 
Letting 

P(z_1) =1-1.483z"1 + 0.5488z~2 

with the remaining parameters initialised as outlined 
by Mclntosh et al (1991), completed the design of 
the GPC servo response. The properties of the 
feedback controller, in particular the robustness of 
the control law - may now be improved by including 
the ^-polynomial. Again a frequency-domain 
approach, see O'Mahony and Downing (2000), was 
utilised where T(z') was designed to guarantee 
robust stability i.e. to ensure that equation 5 was 
satisfied at all frequencies for the estimated model 
uncertainty. This philosophy led to the following 
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Figure 7: Performance of GPC 

parameterisation of the 7-polynomial- 

7(z"1) = (l-0.17z"1)2(l-0.14z-1)2(l-0.33z-1) 

The GPC controller yielded the following margins: 
Gm = 13dB's, 4>m = 73° and Am = 0.75sec with the 
Simulink performance of figure 7. 

5.    MODEL UNCERTAINTY AND ROBUST 
PERFORMANCE 

The requirement for good high-frequency closed- 
loop performance is consistently referred to in the 
robust control literature and is primarily due to the 
fact that model uncertainty tends to be predominantly 
high-frequency in nature. In the case of the dc motor 
model uncertainty arises from (a) neglected dynamics 
and (b) non-linearities over the operating range of the 
motor. The former is evident from figure 2 and was 
discussed in §3.0. The non-linearity displayed by the 
plant is primarily a function of the magnitude of the 
applied step as illustrated in figure 8(a) where a 
number of step inputs of different magnitudes are 
applied to the motor and the resulting responses 

5 10        15       20       25        30        35        40       45        50 
Time (samples) 

Figure 8(a):    Open-loop response of dc motor at 
different operating regions. 
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Figure 8(b): Open-loop response of dc motor 
with, and without applied load 

recorded. The process dynamics also vary 
considerably with the applied load as illustrated by 
figure 8(b) where the unloaded response is compared 
with the response that results when 100% load is 
applied. 

The real-time performance of all three controllers is 
illustrated in figures 9, 10 and 11. Figure 9 illustrates 
the closed-loop response for small set-point changes 
while figure 10 depicts the response for larger set- 
point variations - in both cases the motor is unloaded. 
In Figure 11 the performance of all three control laws 
is compared when 100% load is applied to the motor. 
Clearly all three controllers perform well (almost 
equivalently) despite the significant dynamic 
variations present. It could be argued that, of the 
contesting designs, the GPC performs better for 
relatively small uncertainties (figures 9 and 10) in 
that very tight tracking with minimal overshoot was 
achieved. However, in the presence of more severe 
mis-modelling (figure 11) the LQG and CPP design 
perform slightly better in that lower overshoot 
results. 
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Figure 10: Performance of three controllers for 
large set-point change 
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Figure 9: Performance of three controllers for small 
set- point change 
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Figure 11: Real-time comparison of the three control 
laws for fully-loaded motor 

6.    DISTURBANCE COMPENSATION 

The foregoing analysis has experimentally evaluated 
the servo performance of the three controllers in the 
presence of considerable model-mismatch and 
illustrated the robust performance of each of the 
designs. However, a contesting requirement is that of 
disturbance rejection, and the design of any servo- 
system requires that the controller effectively reject 
any disturbances that may result in the controlled 
variable deviating from the set-point. Thus the 
performance in the presence of two different types of 
disturbances is evaluated. Firstly a deterministic 
disturbance, in the form of a step load offset, was 
applied to the motor. As noted by Shinskey (1990) 
such load upsets are particularly demanding as they 
contain a wide spectrum of frequencies and demand a 
permanent shift in controller output. This disturbance 
was added to the process input and the combined 
signal then applied to the motor. The results are 
illustrated in figure 12. 
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Figure 12: Deterministic disturbance rejection 

Figure 13: Input sensitivity function 

In addition the effect of measurement noise was 
evaluated. Theoretically this may be accomplished by 
examining the input sensitivity function as illustrated 
in figure 13 for each of the designs. Most 
significantly the performance of the three controllers 
varies considerably in this regard. The chosen GPC 
design is clearly unsatisfactory with an input 
sensitivity function of almost +10dB's at high- 
frequencies. Thus while this controller is relatively 
robust to mis-modelling it is quite sensitive to the 
effects of high-frequency measurement noise. In 
contrast both the LQG and CPP controllers are 
suitably parameterised at high frequencies and should 
perform well in practice. This is verified by the 
results of figure 14 which illustrates the performance 
of each of the controllers in real-time. As indicated 
by figure 13 the CPP design is least sensitive and 
displays a smooth control signal while the 
performance of the LQG design is also acceptable. 

7.    CONCLUSION 

In this paper three alternative 2-DOF control laws 
were designed and evaluated in real-time on a dc 
servo-motor system. It should be noted that though 
the GPC and LQG controllers have 2-DOF structures 

\\y m ri H 
Eli       f      i!i 

-0.2; 

-0.3 

I I'  ll 

0 50 100    Time (Samples)      150 

Figure   14:   Control   signal   deviations   in  the 
presence of measurement noise 

the servo and regulator dynamics cannot be 
independently designed. In the GPC case the servo 
parameters affect the regulator loop, though the 
regulator parameter, the ^-polynomial, does not 
affect the nominal servo performance. Hence tuning 
begins by setting the servo parameters and 
subsequently the ^-polynomial is designed to supply 
any additional robustness requirements. If the servo 
parameters are subsequently changed the regulator 
performance will be affected and might require the 
re-design of the 7-polynomial. The situation is 
reversed for the LQG controller in that the regulator 
parameters affect the servo performance and 
consequently must be designed first. Subsequently 
the tracking controller is determined. As with the 
GPC if the regulator parameters are subsequently 
modified the tracking controller will need to be re- 
designed to maintain the desired closed-loop 
behaviour. Thus an advantage of the proposed CPP 
control law is that the tracking and regulatory 
controllers are completely independent and may be 
arbitrarily designed according to the requirement of 
each loop. 

Furthermore since each loop is equipped with only a 
single tuning parameter the controller design is 
simple and may be easily adjusted for 
performance/robustness. This is not the case for the 
GPC where five parameters dictate the tracking 
performance and must be initialised a-priori. With 
the LQG controller the regulator loop requires that 
two transfer functions (four polynomials) be 
designed prior to implementation. 

Considering the simplicity of the CPP structure, the 
performance achieved is rather unexpected. In terms 
of robust performance the controller performance 
equals that of the GPC or LQG controllers. The 
disturbance rejection capability is practically 
identical to that achieved by the LQG and in terms of 
the integral of absolute error (IAE) criterion, no 
worse than that achieved by the GPC. As indicated 
by figures 13 however, the GPC design utilised in 
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this application is very susceptible to the effects of 
high-frequency measurement noise and both the 
control signal and process output exhibit very large 
variance. The use of either the LQG or CPP 
controllers results in a significantly reduced process 
variance and both perform almost identically in this 
regard. However, the CPP controller results in a 
much smoother control signal and is consequently the 
controller of choice for this application. 
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Abstract 

History shows that Prof. Isaac Horowitz was often ahead of the curve in his feedback control 
research, especially in developing quantitatively-driven design procedures. In some topics, his 
work was so out of line with the main stream that it has received virtually no recognition from 
the control community until a few decades later. In this paper we present recent research that 
was directly motivated by Horowitz's pioneering work on reset controllers in the 1970's. Reset 
controllers are linear controllers that reset some of their states to zero when their inputs reach 
a threshold. Horowitz motivated their use by showing that with qualitative design, they can 
exhibit better performance tradeoffs than those in linear, time-invariant systems. This paper 
supports and advances his thinking by presenting recent theoretical and experimental results on 
reset control. 
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1    Introduction 

It, is well-appreciated that Bode's gain-phase relationship [1] places a hard limitation on per- 
formance tradeoffs in linear, time-invariant (LTI) feedback control systems. Specifically, the need 
to minimize the; open-loop higli-freqnency gain often competes with required high levels of low- 
frequency loop gains and phase margin bounds. To illustrate this point, consider the standard 
linear feedback control system in Figure 1. The plant P(s) represents the dynamics of a typical 
electro-mechanical system modeled as a double integrator for the rigid-body dynamics and a sin- 
gle- resonance below 100 Hz to capture structural flexibility. The generic loop frequency response 
\PC{jco)\ is required to have sufficient bandwidth and large low-frequency gain for speedy response 
and positioning. Conversely. \PC(ju))\ needs to be small at high frequencies to suppress residual 
vibration. We plot \PC(JLO)\ corresponding to a stable closed loop against these two specifications 
in Figure 1 to illustrate this tradeoff. 

o- C(s) Pis) 

a) LTI feedback system. 

1Ö1 

105 

10° 

105 

101' 

residual 
vibration 
supression 

fast 
positioning 

10 10    Hz 10 10* 

(b) Low/High frequency LTI tradeoffs (forbidden 
areas shaded). 

Figure 1: Tradeoffs in LTI systems. 

This low/high frequency performance tradeoff is defined by Bode's gain-phase relation which 
limits how fast \PC{ju)\ can transition through unity-gain while maintaining closed-loop stability 
and adequate phase margins1. In this context, to achieve additional residual vibration suppression, 
one needs to sacrifice bandwidth and positioning speed. Another factor which exacerbates this 
tradeoff is the non-collocation of actuators and sensors which, technically speaking, results in right- 
half plane zeroes in P(.s). The fact that one cannot reduce \PC(JCü)\ infinitely fast beyond crossover 
implies that there exists a frequency range near this crossover where sensor noise is amplified. 
Horowitz termed this necessary evil as the "cost of feedback" [1]. 

The above inherent conflict in LTI control motivated researchers to consider, as early as the 
1950's, classes of "hard" nonlinearities, including elements such as reset, limiter and saturation: e.g., 
see [2]-[10]. This paper focuses on the so-called class of reset controllers which are LTI systems with 
mechanism and law to reset some or all the controller states to zero. For example, the grand-daddy 
of reset controllers is the Clegg integrator which is a linear integrator whose output is reset to zero 
whenever its input crosses zero [3]. The describing function for this reset element has magnitude 
slope equivalent to that of a linear integrator, but with only 38.1° degrees of phase lag. This 51.9° 

'A typical loop gain slope at cross-over is at best -30 dB/dec in a minimum phase system. 
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degree improvement in phase lag over its linear counterpart suggests the possibility of a compensator 
supplying the required bandwidth with a much reduced gain at high frequencies. However, despite 
this favorable describing function, it was not until the work of [11] that a quantitative control design 
procedure was developed around Clegg integrator, and [12] further generalized the resetting concept 
to higher-order systems. In fact, the objective of this paper is to motivate Horowitz's contributions 
to reset control through recent theoretical, simulation and experimental work. 

Reset control action resembles a number of popular nonlinear control strategies including relay 
control [13], sliding mode control [14] and switching control [15]. A common feature to these is the 
use of a switching surface to trigger change in control signal. Distinctively, reset control employs the 
same (linear) control law on both sides of the switching surface. Resetting occurs when the system 
trajectory impacts this surface. This reset action can be alternatively viewed as the injection of 
judiciously-timed, state-dependent impulses into an otherwise LTI feedback system. This analogy is 
evident in the paper where we use impulsive differential equations; e.g., see [16] and [17], to model 
dynamics. This connection to impulsive control helps to draw comparison to a body of control 
work [18] where impulses were introduced in an open-loop fashion to quash oscillations in vibratory 
systems. We also would like to point other recent research and applications of reset control found 

in [19]-[21]. 
In terms of applications, the class of electro-mechanical systems is a natural fit for reset control. 

For example, a storage device's read/write head during seek mode slews to a specific track on the 
memory medium (magnetic or optical) to gather data. At high speeds, the head typically exhibits 
undesired mechanical vibrations at the end of a slewing movement. Even though the head may be 
nominally positioned over the desired track at this time, read/write cannot commence until this 
residual vibration sufficiently damps out. From a servo design viewpoint, settling time is the single 
most overriding factor limiting performance improvement in some storage devices. As it turns 
out, reduction of settling time involves a tradeoff; that is, the faster (larger control bandwidth) 
the read/write head slews towards its destination track, the more it vibrates when slewing stops. 
Unfortunately, LTI control is hamstrung by Bode's gain-phase relation to sufficiently improve this 
situation. This tradeoff phenomenon is not specific to the storage devices industry, but is endemic to 
a large class of electro-mechanical systems where high-performance is critical. It is our experimental 
experience with such systems that motivated us to explore control solutions outside the realm of 
LTI controllers. 

The paper is organized as follows. The next section provides a conclusive example to demon- 
strate the advantage in using reset control. After that, Section 3 writes out the dynamical equations 
of reset control systems and in Section 4 we present recent theoretical results on this class of reset 
control systems. Finally, Section 5 describes Horowitz's design procedure for FORE reset systems 
followed by three applications. 

2    Motivation: Overcoming Limitations of Linear Control [22] 

In this section we give an example comparing reset to linear feedback control. In this example, 
control specifications are not achievable by any linear feedback control, but achievable using reset. 
Consider the standard linear feedback control system in Figure 1 where the plant P(s) contains an 
integrator. Assume that C(s) stabilizes. In [23] it was shown that the tracking error e due to a 
unit-step input satisfies 

/*OC 

e{t)dt = 
Jo Kv 
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A 
where the velocity constant Kv is defined by Kv = Ums^sP{s)C{s). Alone, this constraint does 
not imply overshoot in the step response y: i.e.. y(t) > 1 for some t > 0. However, introduction of 
an additional, sufficiently stringent time-domain bandwidth constraint will. To see this, consider 
the notion of rise time /,,. introduced in [23]: 

*r = sup{r:y(t)<|, *e[0,T]}. 

The following result (see [22]) is quite immediate. 

Fact:   // /,■>■/£: 
overshoots. 

:  i.e..   the rise time is sufficiently slow,   then the unit-step response y(t) 

To illustrate this result consider the plant P(s) in Figure 1 as a simple integrator. In addition 
to closed-loop stability suppose the design objectives are the following: 

• Steady-state error no greater than 1 when tracking a unit-ramp input. 

• Rise time greater than 2 seconds when tracking a unit-step. 

• No overshoot in the step response. 

To meet the error specification on the ramp response, this linear feedback system must have velocity 
error constant Kv > 1. Since tr>2>^, the above Fact indicates that no stabilizing C(s) exists 
to meet all the above objectives. However, these specifications can be met using reset control with 
a first-order reset element (FORE) described by 

v.r(t)    =    -bur{t) + e{t):    e(i)^0 

«,.(/+)    =    0; e(i)=0 

where /;, the FORE:s pole, is chosen as b = 1. Indeed, it can be shown using results from Section 4 
that that this reset system is asymptotically stable and has zero steady-state tracking error e to 
constant r.  Figure 3 shows a simulation of this control system's tracking error e to a unit-ramp 

r 
^ 

e 1 

FORE 
"r 1 

s 

y 

Figure 2: Reset control of an integrator using a first-order reset element. 

input. The steady-state error is one. In Figure 3 we also show its response y to a unit-step input 
and see that its rise time tT is greater than 2 seconds and has no overshoot2. Thus, this reset 
control system meets the previously stated design objectives that were not attainable using linear 

feedback control. 
2The step response in Figure 3 is deadbeat. This occurs since (u,y) = (0, r) is an equilibrium point. 
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(a) Tracking-error e to a unit-ramp input r. (b) Output response i/toa unit-step input r. 

Figure 3: Responses of the reset control system in Figure 2. 

R 
Ur 

C(s) P(s) 
y 

Figure 4: Block diagram of the reset control system. 

3    The Dynamics of Reset Control Systems 

The class of reset control systems considered in this paper is shown in Figure 4 where the reset 
controller R is described by the impulsive differential equation (IDE) (see [16]) 

xr(t)    =    Arxr{t) + Bre{t);       e{t) ^ 0 

xr{t
+)    =   ARrxr(t); e(t)=0 

ur(t)    =    Crxr(t) (1) 

where xr(t) € Rn'' is the reset controller state and ur(t) G R is its output.   The matrix ART G 
Rn'xn' identifies that subset of states xr that are reset. For example, in this paper we will assume 

that the last nrr states xrr are reset and use the structure ART 0 0 
Illustrations of (1) include the Clegg integrator [3] described by 

Ar = 0;    Br = 1;    Cr = 1;    ARr = 0 

and the FORE [12] having 

Ar = b;    Br = 1;    Cr = 1;    ARr - 0. (2) 
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The linear controller C(.s) and plant P(s) have, respectively, state-space realizations: 

xc{t)    =    Acxc{t) + Bcur{t) 

uc(t)    =    Crx(.(t) 

and 

xp{t)    =   Apxp{t) + Bpuc(t) 

y(t)    =    Cpxp[t) 

where x,.(t) £ R", xp(t) £ R"'1 and y(t) £ R.  The closed-loop system can then be described by 

he IDE 

x(t)    =    Acfx{t);    x(t) $ M;    x(Q) = x0 

x(t+)    =    ARx(t):    x(t)£M 

y(t)   =   C,,x{t) (3) 

where 

A A 
A(,= 

Ap BpCc 0 
0 Ac BcCr 

— rjj-üp 0 Ar 

A, 
I 0       0 
0"     Inc        0 
0      0     ARr 

Cd = [ Cp   0   0 ] 

and where the reset surface M is the set of states for which e = 0. More precisely, 

M = {i : Cdt = 0;   [0 0 /„,.„]£ ^ 0}. 

As a conseqiKHice of this definition. 

x(t) £ M     =»     x{t+) $ M. 

The times t = t; at which the system trajectory x intersects the reset surface M are referred to as 
reset times. These instants depend on initial-conditions and are collected in the ordered set: 

T(x0) = {/,■ : U < ti+i;x(ti) GM,i = l,2,...,oo}. 

The; solution to (3) is piecewise left-continuous on the intervals (ti,ti+i\.    We define the reset 

intervals T; by 

Ti+i    =    ti+i-ti,    i£N. 

We make the following assumption on the set of reset times: 

Resetting Assumption: Given initial condition x0 £ R", the set of reset times T{x0) is an 
unbounded, discrete subset of R+. 

Unboundedness of the set of reset times implies continual resetting. If this condition is not 
satisfied, then, after the last reset instance, the reset control system behaves as its base-linear 
system. We avoid such trivial cases. Discreteness of T(x0), together with this unboundedness, 
guarantees the existence and continuation of solutions to (3). Finally, in absence of resetting; i.e., 
ARr = /, the resulting linear system is called the base-linear system. 
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4    Theory [24]-[29] 

An impediment to more widespread use and acceptance of reset control undoubtedly lies with 
the fact that such systems are nonlinear and nonsmooth and lack a specifically tailored theoretical 
framework to address stability and performance issues. The problem of analyzing closed-loop 
stability of feedback systems with reset controllers appears to be the main factor for their limited 
use in applications until recently. Moreover, even simple, low-order plants can be destabilized by a 
Clegg integrator, even though describing function analysis would predict otherwise. For example, 
the plant 

v s2 + 3.s - a 

is stabilizable by a linear integrator for all a. hence, describing function analysis would "predict" 
that the loop is stable when a Clegg integrator is introduced3. However, as our new stability results 
in [24] show, the Clegg system to be unstable if |(5 + 2a) -2| > 1 and stable otherwise. As a matter 
of fact, the system is unstable if a = -6 while describing function analysis inaccurately "predicts" 
stability. 

Motivated by this situation, in this section we present a number of recent results that can be 
used to analyze stability, transient and asymptotic behaviour of reset control systems (proofs are 
omitted and can be found in the references). 

4.1     Stability 

First, we state some general Lyapunov-like stability conditions for our reset control systems which 
are similar to the analysis in [16] and [30]. 

Theorem 1:      Under the Resetting Assumption, the reset control system, described in (3) is 

qua dratically stable4 if and only if there exists a ß € Rn'r such that 

Hß{s) = [ßCp 0 Inrr] (si - Aci)~
l 0 

J-nr, 
(4) 

is strictly positive real (SPR)C 

Theorem 1 gives an easily-testable condition for the quadratic stability of the reset control 
systems described by (3). This condition is also key in showing that reset control systems enjoy 
other properties. Before we present these results, we formally introduce first-order reset elements. 
Consider the reset control system with a reference input as shown in Figure 5 and described by the 
following IDE 

x{t)    =   Ac£x{t) + Bcir{t);    x(t) £ M;    x(0) = 0, 

x{t+)    =   ARx(t); x(t) E M, 

y{t)    =   Cclx(t) (5) 

3The describing function of a Clegg integrator is i£p- exp~J 

4 See [29] for a definition of quadratic stability for this class of reset systems. 
5A transfer function X(s) is said to be strictly positive real if X(s) is asymptotically stable, and Re[X(juj)] > 

0,   Vw > 0. 
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whore 

and where 

B ct AR = 
I   0 
0   0 

A 
M = {£ : r(t) - Cc(i = 0;   [0 0 /„,.„]£ ¥= 0}- 

Analyzing the BIBO stability of (5) requires every bounded input6 r to produce a bounded output 

r      r 
\   e    ► 

i 

FORE 
ur 

C{s) 
uc 

P{s) 
y 

—,—+ 
)        " 

Figure 5: Block diagram of a FORE reset control system. 

y. To begin this analysis we let x( be the state of the base-linear system: that is: 

x((t) = Aclx({t) + Bclr(t)-    .T(0)=0 

and take z = x - X(. We partition 

■I'L 

Xr 
;   z = 

ZL 

Zr 

X( 
X(L 

Xlr 

Applying the transformations: 

A 
zL(t)   =   xL(t) - xaXt)-, 

A 

to (5) we obtain: 

Zr(t)      =     Xr(t)-Xtr(t) 

zp(t)    =    AzL(t) + Bzr(t) 

zf(t)    =    -CzL(t)-bzr(t);      t£T{0) 

zr(tf)    =    -xfr(U); tGT(O). (6) 

Before we present our next result we need to flesh out a hidden problem. Specifically, we need 
to rule out the possibility that the reset times n converge to zero. This is still an open problem. 
However, in real time implementations, the sampling time establishes a lower limit on T;. With the 
standing assumption that there exists a lower bound a such that n > a, a > 0, we can now state 
our BIBO stability result. 

Theorem 2: The reset control system (5) is BIBO stable if it is quadratically stable; i.e., there 

exists a ß such that Hß(s) in (4) is SPR. 

GA signal z is said to bounded if there exists a constant M such that \z{t)\ < M for all t. 
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4.2    Steady-State Performance 

In this section we study the steady-state performance of the reset control system in (5) and show 
that it enjoys an internal model principle and steady-state superposition property. We introduce 
an internal model principle for the reset control systems by considering a model of the reference 
signal r inside the loop as part of L(s) = P(s)C(s). We can state the following theorem. 

Theorem 3: Under the Resetting Assumption, if the loop L(s) contains an internal model of 
r, and if there exists a ß such that Hß(s) in (4) is SPR, then the reset control system described in 
(5) achieves asymptotic tracking of the reference input r. 

We now introduce an additional input to the control system as shown in the Figure 6. This 
system can be described by 

x(t)    =   Acix(t) + Bctnit) + Bc£r2(t);    x(t) $ M;    x{0) = x0 

x{t+)    =    ARx(t): x{t) e M, 

y(t)    =    Cc(x(t) (7) 

A 
where 

M = {£ : n(t) + r2(t) - Cc(i = 0;   [0 0 /„,.,.]£ + 0}. 

The next result gives a steady-state superposition result. If the loop L(s) contains an internal 
model of one of the inputs signals, say r2, then this result claims that the steady-state response to 
r\ + r-2 is simply the steady-state response to r\. 

Corollary 4: Consider the reset control system with two inputs r\ and r2 described in (7). 
Suppose the Resetting Assumption is in force, L{s) contains an internal model of r2 and there 
exists aß such that Hß(s) is strictly positive real (SPR). Then, the steady-state error, lim^oo e(t) 
is independent of r2. 

~~\ e 1 

R 
ur 

C{s) 
uc ns) y 

Figure 6: Block diagram of a reset control system with two inputs. 

4.3    Transient Performance 

In this section we analyze the reset control system (5) for a special class of second-order loops. 
We consider the case of r(t) = ro and prove that the step-response maximum occurs during the 
time interval (t\,ti + TO). The proof of the following can be found in [26]. 

Theorem 5: Consider the reset control system described in (5) utilizing FORE with PC(s) = 

s(s+2Cw ) an<^ rW = r°' Let Mr = supt>0 \y(t) — ro\ denote the step-response maximum.  Then, 

Mr =     max     \y(t) 
te[ti,ti+T0} 

ro| 
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From Theorem 5 the step response maximum Mr is equal to the peak response in the first reset 
interval [t\,t\ +TQ). In [12]. this overshoot value has been explicitly computed in terms of b. (, and 

con as repeated below: 

Mr = e   ^^ - A 

where , ,,,., 
n[l,f-'C2(-<"-2C/?(l-4C-,^)(^"/^]i 

a\ß-r-<"-fl(1^2C8)c-^3} 

C > 0.5 

C < 0.5 

a = e 

l^2Cß + !i2 

■ arcros ( UJC IT — arCCOS ( 
;    ß = -r\    v = 

6'    r       vT^C5 

and where UJC is the unity-gain crossover frequency of \L(JUJ)\. 

Since the reset control system (5) behaves as a linear system before its first reset, then its rise 
time is that of its base-linear system (~ ^). The 2% settling time ts can be computed using [26] 
adjacent intervals of y are shown to be scaled copies of each other. Indeed, using this, the settling 

time is computed as 
k,TT 

0^? U)n 

where A: is the smallest integer satisfying |?>n(r0)|   MT < 0.02. 

5    Experiments [27],[31],[32] 

In this section we describe three applications of Horowitz's FORE controller, two experimental and 
one in simulation (complete details are shown only for the first). Before we proceed, let us review 
the unique design procedure developed in [11] and [12]. 

5.1     Horowitz's Design Procedure [11],[12] 

Consider a reset system as shown in Figure 4. As mentioned in the introduction, the design of 
the reset controller proceeds in two steps and involves interplay between the design of the linear 
element C and the reset network FORE. The rationale introduced in [12] is to first design C 
so that the linear closed-loop response satisfies both the disturbance rejection and sensor-noise 
suppression specifications (at the expense of violating the gain/phase margin constraint). The 
next step involves choosing pole b in FORE to improve the overshoot response. [12] showed that 
resetting action reduces overshoot. Indeed, under a standard assumption of dominant second-order 
response, they related this overshoot to the crossover frequency wc (\L(juc)\ = 1) and phase margin 
of the linear design and the pole of the reset element as shown in Figure 7. Finally, it is crucial to 
understand that performance does come with blind reset. In fact, doing so most likely will results 
in a worse performance than that of the underlying LTI system (see [32]). 

It is important to note that the design procedures in [11] and [12] do not involve describing 
function analysis. They studied in detail the transient behavior of a feedback system with either 
Clegg or FORE reset element subjected to step inputs. By assuming second-order dominance, they 
computed the resulting overshoot (Figure 7) and discovered the possibility of increased undershoot 
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Figure 7: Reset control system for the flexible mechanism. 

following the overshoot. The detailed and unique analysis in [12] of the nonlinear transient behavior 
which includes a departure from second-order dominance and noise response is a must read for its 
invaluable QFT-like design insight. 

5.2    Flexible Mechanical System 

The benefits of reset control have also been realized in experimental settings. Here we describe 
a laboratory setup in which we applied both linear and reset control to the speed control of the 
rotational flexible mechanical system shown in Figure 8. This system consists of three inertias 
connected via flexible shafts. A servo motor drives inertia J3 and the speed of inertia J\ is measured 
via a tachometer. The controller was implemented using dSPACE tools [33]. A more complete 
description of this experiment can be found in [27]. 

dSMCE Board 

w~ 

Filter -4 

' J     'MB"     *..'*] 
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(a) Schematic. (b) Experimental apparatus. 

Figure 8: The experimental rotational flexible mechanical system. 

A block diagram of a linear feedback control system is shown in Figure 9 where the plant P(s) 
was identified from frequency-response data of the flexible mechanical system as: 

P(s) = 
46083950 

(s + 1.524)(s2 + 3.1s + 2820)(s2 + 3.62s + 9846)' 
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Wc posed the following specifications to illustrate the limitations and tradeoffs in LTI design and 
their subsequent relief using reset control: 

1. Bandwidth constraint:   The unity-gain cross-over frequency u)c. defined by \PC(juc)\ =    1, 

must satisfy uc > Sir. 

2. Disturbance, rejection: Low-frequency disturbances are to be rejected; specifically, 

d(jU}) 
< 0.2.   when u < n: 

3.  Sensor-noise, suppression: High-frequency sensor noise is to be suppressed; i.e.. 

n{ju) 
< 0.3.   when w > 107r; 

4. Asymptotic performance: Zero steady-state tracking error to constant reference r and distur- 

bance d signals. 

5. Overshoot: Overshoot in output y to a constant reference r should be less than 20%. 

u 
■ ► 

a 

r                e 

~^Q * _   X C(s) P(s) -rV l ► 

1 

r \       H 

Figure 9: Block diagram of the linear control system. 

The first two constraints translate into minimum-gain requirements on the open-loop gain 
\PC(jco)\ at low frequencies while the third specification places an upper bound on this gain at 
high frequencies. The fourth specification requires C(s) to contain an integrator and the fifth 
specification requires a phase margin of approximately 45° assuming second-order dominance. 

Using classical loop-shaping techniques we were unable to meet all of the above specifications. 
To illustrate this diffculty, consider two candidate, stabilizing LTI controllers: 

1281489(fi + 4.483)(s2 + 3.735s + 2851)(s2 + 5.158s + 10060) 

and 

Cl ('S) ~~ s(s2 + 295.1s + 22330) {s2 + 126.2« + 8889)(s2 + 239s + 27560) 

1075460(s + 7)(s2 + 3.662s + 2798) (s2 + 5.419s + 9876) 
C2(,s) _ s{s + 209.6)(s + 35.8)(s2 + 132.8s + 12050)(s2 + 375.9s + 66930)' 

Figure 10 compares the Bode plots of the corresponding loops Li(jto) = Ci{ju)P(ju) and L2{ju) = 
C<2{ju))P(juj). Loop L\ fails to satisfy the sensor-noise suppression specification at w = 10-K. This 
specification can be met by reducing the gain of Li{ju) as done with L2{ju). This is verified by the 
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Figure 10: Bode plots of L\ and Lo- 

time response y to 5 i7^ sinusoidal noise n in Figure 11. Since both designs stabilize and since both 
low-frequency gains are constrained by the first two specifications, Bode's gain-phase relationship 
[1] dictates that £2(ja;) must have correspondingly larger phase lag as verified in the phase plot of 
Figure 10. The reduced gain in L2(JOJ) comes at the expense of a smaller phase margin and hence 
larger overshoot as shown in the step responses in Figure 11. Extensive tuning of these controllers 
failed to yield a design meeting all specifications. 

A        LTl design 1 
LTI design 2 

. 

j.' 
K^P*~ 

J: 
l: 

f 
1 

0 0.2 04 06 0 

(a) Simulated output y to n{t) = sin(107rt). (b) Simulated output y to r(t) = 1. 

Figure 11: Comparison between LTI designs L\ and L2 • 

Now we turn to reset control design where we exploit its potential to satisfy the above specifi- 
cations. The design procedure consists of two steps as developed in [11] and [12]. First, we design 
a linear controller to meet all the specifications - except for the overshoot constraint; C2{s) is a 
suitable choice. The second step is to select the FORE's pole b to meet the overshoot specification. 
In this respect, Figure 7 provides a guideline for this choice and we selected b = 14. The resulting 
reset control system is shown in Figure 12. Note that the Hß theorem (Theorem 1), developed as 
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an analysis tool, can be use to modify the loop response at the frequency range where the SPR 
condition is violated. In this application, however, the results in Section 4 show that this reset 
control system is quadratically stable and asymptotically tracks constant reference inputs r. 

d 

Figure 12:  Reset control system for the flexible mechanism. 

We also compare the performance of the LTI (using LA) and reset control systems. Figure 13 
shows that the reset control system has better sensor-noise suppression to a, 5 Hz sinusoid which 
does not come at the expense of a worse transient response (as seen in the LTI tradeoff experienced 
by controller C2(.s)). The reset control system has comparable transient response as shown in 

Figure 137. 

reset control do 
LTI deelgn 1 

(a)   Experimental   steady-state   response   y   to 
r(t) = 0.5 and n(t) = 0.2 sin(107r^). 

(b) Experimental output y to r(t) = 0.5. 

Figure 13:  Comparison of reset and LTI performance. 

Finally, we compare the performance of the LTI (using Li) and reset control systems to white- 
noise (Figure 14). 

5.3    Tape Backup 

This feedback control design problem involves disturbance attenuation and sensor-noise suppression 
for a tape-speed control system. There are several subsystems in a tape-transport system such as the 
tape-speed and the tape-tension control subsystems. We focus on the tape-speed control subsystem 
consisting of a motor and belt-driven capstan wheel as shown in Figure 15. The capstan's friction 
force pulls the tape past the read/write head and a frequency-to-voltage converter measures the 

7The small steady-state oscillation is due to ripple in the the tach-generator. 
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Figure 14: Comparison of output y power spectra when n is white sensor noise. 

tape-speed error relative to a 3.15 kHz master-tape speed. This tape-speed error signal is then 
fed back to the controller. Unlike conventional tape devices that use motor current as a measure 
of tape speed, this scheme measures tape-speed errors directly, thus providing a more accurate 
measurement of the physical variable to be controlled. In this context, P represents the dynamics 
from the motor voltage u (volts) to the tape speed error y (volts) as measured by the frequency 
to voltage converter, d is the lumped disturbance accounting for eccentricities and mechanical load 
variations and n models sensor noise. Eccentricities produce periodic disturbances related to the 
rotational speed of various mechanical parts such as reels, capstan, etc', while mechanical load 
variations are modeled by a broadband disturbance signal. 

Capstan 

^J 
/   Bel 

, 
-up Reel              / 

Frequency 

to voltage 

/ 
/ 

Motor 
Controller 

Supply Reel 

(a) Schematic. (b) Apparatus. 

Figure 15: The tape backup system. 

The controllers were digitally implemented on a TMS320C30 DSP system (32-bit floating point, 
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33 MHz 16-bit, volts dynamics range A/D and D/A channels) using a 1 kHz sampling rate. The 
controller integrator was implemented using an analog operational amplifier since it had a larger 
dynamic: range than possible in this digital implementation. 

To simulate the step disturbance d and sensor noise n, a square-wave (with four-second period) 
and 10Hz sinusoid, respectively, is introduced at the output of the frequency-to-voltage converter 
(see Figure 15). The response to this excitation was measured for both the linear and reset con- 
trollers. The experimental results are shown in Figure 16. They show that both systems have 
similar disturbance- rejection and transient behavior. Reset control improves sensor-noise suppres- 
sion by 4-5 dB. Finally, the tape-speed servo was excited with filtered white noise n, (50 Hz 
bandwidth) and measured the averaged voltage spectra of the frequency-to-voltage converter out- 
put for both the linear and reset control systems. The results, plotted in Figure 16, show that 
reset control provides an improvement in broadband sensor-noise suppression of 4 - 6 (ID over the 

3 - 10 Hz frequency range 

(a) output 
noise ii. 

y to step disturbance d and periodic 

10 
Frequency (Hz) 

(b) output y power spectra when n is white sensor 
noise. 

Figure 16: Comparison of reset and linearresponses. 

A more complete description of this experiment can be found in [31] and [32]. It is interesting 
to note the slight difference between the original FORE block diagram in [12] and the one used 
in these (e.g., Figure 12) experiments . [31] suggested that since between reset instances FORE 
behaves like the LTI -^, then the controller C(s) be augmented with the zero s + b. This innovation 
completely decouples the two design steps in [12]. Indeed, all the FORE implementations discussed 

in this Section use this idea. 

5.4    Wafer Stage 

From a control design view point, a semiconductor wafer stage exhibits similar difficulties seen in 
data-storage devices as described earlier. The schematic shown in Figure 17 is a prototype wafer 
stage experimental setup consisting of an airfoot (to minimize friction), a translator and a chuck 
(please refer to [35] and [36] for more details). 

Three-dimensional position control is achieved by linear motors and a laser interferometer pro- 
vides position information with a resolution of 13 nanometer (nm). The performance objective 
is to precisely and quickly position the semiconductor wafer stage. Once positioned, the masked 
wafer is exposed to light as part of the photo-lithography process in semiconductor manufacture. 
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(a) Schematic view of a wafer stage. 

Figure 17: A wafer stage. 

(b) Block diagram of a wafer-stage feedback con- 
trol system. 

A typical process involves moving the stage through 20 positions each 10 mm apart.  Due to the 
fine features of the laser-generated mask, position accuracies of 50 nm (50 * 10" m. are required. 
Since this mechanical positioning system is inherently flexible, there exists a tradeoff between the 
speed at which the wafer stage is translated and the resulting residual vibration. To illustrate, 
consider the block diagram of a wafer-stage feedback control system in Figure 17 where P denotes 
a single-axis of wafer-stage dynamics relating input force u to wafer stage position y. F and G 
respectively denote feedforward and feedback compensators and e the tracking error. The control 
objective is to minimize the time for a 10 mm point-to-point repositioning of y. 

An experimental set-up of this wafer stage is described in [35]. They identified a 16th-order 
model of a non-minimum phase P which is described by the frequency response in Figure 18. 
The key specification is the tracking error e settling time of 50 nm,. The control design consists 
of designing the command signal / as well as the compensators G and F. To briefly illustrate 
achievable performance, consider the design of [35] where / is the classic bang-bang command 
signal. 

Alternative command signals / have been suggested (e.g., [37]-[40]) to minimize this residual vi- 
bration. Some techniques simply minimize the high-frequency content of the command signal while 
more sophisticated techniques minimize the frequency content of the command signal at the plant's 
resonances. Such techniques can significantly improve performance. For example, [35] designed a 
so-called "limited jerk" command signal which reduced the 50 nm settling time. However, while 
careful design of command signals can suppress residual vibration, its success depends on accurate 
knowledge of the plant's resonances. In addition, attenuation of the command signal's spectrum 
necessarily reduces the input energy thereby slowing setpoint response. This leads to the question 
of whether the feedback compensator G can be redesigned to improve settling time. From control 
design viewpoint, a high-bandwidth feedback loop is needed for small rise time and fast settling 
time. However, a high-bandwidth loop also amplifies those plant resonances near crossover, thus 
contributing to residual vibration. Hence, speed and suppression of residual vibration are conflict- 
ing objectives for feedback of such systems as concluded in [35]. Despite this seemingly negative 
scenario, one can dramatically reduce settling time through the novel use of so-called reset control. 

A comparison of the residual tracking errors between the linear and reset controllers with bang- 
bang command is shown in Figure 19. The settling times are 0.158 sec and 0.140 sec, respectively, 
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Figure 18: Frequency response of the wafer stage in the x-direction. 

showing an improvement due to the reset action. Moreover, reset action reduced the steady-state 
amplitude of the residual vibration by factors of 3 and 1.5 for bang-bang. This property can be an 
important factor in future control of wafer stages since increased positional accuracy will be needed 
to keep pace with shrinking semiconductor circuit dimensions. 

(a) reset control. (b) LTI control. 

Figure 19: Comparison of stage tracking errors for bang-bang command. 
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6    Conclusions 

This paper described recent theoretical and experimental work in the area of reset control 
systems what was motivated by Prof. Horowitz's pioneering work. The experimental work directly 
borrowed from his quantitative design procedure, and the theory evolved around his unique FORE 
element. It appears to the authors that reset control is an important class of controllers that calls 
for further research and more experimentation by control engineers. 
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Abstract: Evolution Strategies (ES) are stochastic optimization techniques obeying an evolutionist 
paradigm, that can be used to find global optima over a response hypersurface. The current inves- 
tigation focuses on robust controller synthesis under QFT methodology, using the unsupervised 
learning capabilities of ES's issued from their evolutionist paradigm. ES has proven efficiency over 
high dimensional search spaces. QFT synthesis can be considered as a low dimension problem but 
highly non linear due mainly to the boundaries and Hurwitz conditions for the closed loop transfer 
function. In [4] following also the evolutionist paradigm (Genetic Algorithms), a loop-shaping 
proposal can be found. 

Keywords: Evolution Strategies, QFT synthesis, QFT loop-shaping 

1     INTRODUCTION 

One of the most important steps in QFT synthesis is loop shap- 
ing of the open loop transfer function, in order to satisfy speci- 
fications given as boundaries. This step has been usually done 
manually by trial and error, and obviously a good design is 
strongly based on the experience of the designer. Although 
loop shaping can be clearly alleviated by the use of efficient 
CAD programs, including the popular Matlab QFT Toolbox 
[2], there is a need for developing methods for automatic loop 
shaping, overall in those problems where a high order con- 
troller is necessary, being this an important open problem. 

It is well known that optimal loop shaping is a hard nonlinear 
optimization problem, and although there is a number of theo- 
retical results that may be found useful [6, 1] as well as non- 
linear programming [12] and convex optimization techniques 
[3], an efficient (non-conservative) and complete solution to 
the problem has not yet been found. Recently, as an alternative 
to these optimization techniques, Chen and Ballance [4] have 
applied genetic algoritms (GA's) to this problem. Comparison 
with the Evolutive Strategies (ES's) approach can be done ob- 
serving that in GA's the search space is a chromosomal length 
consequence, and for a many scaled parameterization problem 
(polynomial coefficients), the a priori chromosomal codifica- 
tion can insert unnecessary non linearities and limitations in 
the search space. The ES's has a native multiscaled behaviour 
and has good hill-climb properties. Also the ES's know the 
search space dimension while the GA's does not (chromosomal 
codification destroys that nice information). 

In this work, evolution strategies are used to find an optimal 
loop shaping, using algoritms developed previously by the first 
author [9]. This technique has also been used for approach- 
ing other difficult optimization problems, e. g. Hamiltonian 
controller synthesis [10] 

The ES's developed application can be used for building con- 

trollers with numerator and denominator given degrees. Can 
also be used to improve previous hand made controllers. The 
process can be started from scratch or from a previous seed 
found through an interpolation procedure. That interpolating 
facility can be used when we know by heart the closed loop 
posible shape. Points are given interactively at the boundary 
frequencies and the facility gives as result the best Hurwitz in- 
terpolating pair {Gc(ir, s),Gp(s)} where GC{-K, S) is the con- 
troller configured by the IT parameters, and Gp{s) is the nom- 
inal plant. This result can be used as a seed in an ES's global 
searching procedure. The examples presented in this paper 
were all obtained directly from scratch. 

2    PRELIMINARIES 

Simulated Evolution is based on the collective learning pro- 
cesses within a population of individuals, in the quest for sur- 
vival [7]. Each individual represents a search point in the space 
of potential solutions to a given problem. 

There are currently three main lines of research strongly related 
but independently developed in simulated evolution : Genetic 
Algorithms (GA), Evolution Strategies (ES), and Evolutionary 
Programming (EP). In each of these methods, the population of 
individuals is arbitrarily initialized and evolves towards better 
regions of the search space by means of a stochastic process of 
selection, mutation, and recombination if appropriate. 

These methods differ in the specific representation, muta- 
tion operators and selection procedures. While genetic algo- 
rithms emphasize chromosomal operators based on observed 
genetic mechanisms (e.g., cross-over and bit mutation), evo- 
lution strategies and evolutionary programming emphasize the 
adaptation and diversity of behavior from parent to offspring 
over successive generations. 

Evolution is the result of interplay between the creation of new 
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genetic information and its evaluation and selection. A single 
individual of a population is affected by other individuals of 
the population as well as by the environment. The better an 
individual performs under these conditions the greater is the 
chance for the individual to survive for a longer while and gen- 
erate offsprings, which inherit the parental genetic information. 

The main contributions in the evolutionary computation ap- 
proach are: 

• Model regularity independence. 

• Parallelization to cope with intensive cost fitness compu- 
tation. 

• Population search x individual search (classical). 

• General meta-heuristics. 

• Good convergence properties. 

Evolution strategies lead to algorithms that reproduce the pro- 
cess of neo-Darwinian organic evolution. The reader is directed 
to [7] for a general survey and [9] for applications in control. 
The main ingredients are: 

t Time or epoch. 

tt(7T,er) Individual. 

TV Exogenous parameters. (Search Space). 

er Endogenous parameters. (Adaptation). 

P(t) Population. P(t) = \JWi(-Xi,(Ti) 

$(/(TT)) Fitness. *(/(*r)) : $iM -> 5R+ 

operators (Mutation, Selection, Variation, etc.) 

Briefly, After the fitness definition, the evolution procedure fol- 
lows according [11 ] the next algorithm: 

ti-0 
initialize P(t) 
evaluate ®(P(t)) 
while not  terminate 

P'{t) <— variation P(t) 
evaluate $(P'(*)) 
P(t + 1) ^-select P'{t)öQ 
t<-t+l 

end 

Here Q is a special pot of individuals that might be considered 
for selection purposes, e.g. Q = {0, P{t), ■ • ■}. An offspring 
population P'(t) of size A is generated by means of variation 
operators such as recombination and/or mutation from the pop- 
ulation P(t). The offspring individuals (ti^o-») € P(t) are 

evaluated by calculating their fitness represented by $(/). Se- 
lection of the fittest is performed to drive the process toward 
better individuals. 

In evolution strategies the individual consist on two types of 
parameters: exogenous ir which are points in the search space, 
and endogenous cr which are known too as strategic param- 
eters, thus jj = tt(7r,<T)- Variation is composed of mutation 
and self-adaptation performed independently on each individ- 
ual. Thus 

S(TT', a') <- mutate(t)(7r, •)) U adapt (ft(■, cr))        (1) 

where mutation is accomplished by 

„'. = TTi + Ui ■ N(0,1) (2) 

and adaptation is accomplished by 

a\ = a% • exp{r' • JV(0,1) + T ■ N(0,1)} (3) 

where r' oc {\/2n)~l and r tx (-s/2,Jn)~l. 

7V(0,1) indicates a normal density function with expectation 
zero and standard deviation 1, and n the dimension of the 
search space (n = ||-7r||). 

Selection is based only on the response surface value of each 
individual. Among many others are specially suited: 

• Proportional. Selection is done according to the individual 

relative fitness p%) = ^g^)) 

• Rank-based. Selection is done according to indices which 
correspond to probability classes, associated with fitness 
classes. 

• Tournament. Works by taking a random uniform sample 
of size q > 1 from the population, and then selecting the 
best as a survival, and repeating the process until the new 
population is filled. 

• (X,fj,). Uses a deterministic selection scheme. \i parents 
create A > \i offsprings and the best p are selected as the 
next population [Q = 0]. 

• (A + p). Selects the p survivors from the union of parents 
and offsprings, such that a monotonic course of evolution 
is guaranteed [Q = P(t)] 

3   LOOP     SHAPING     BY     EVOLUTION 
STRATEGIES 

In the following it is assumed that a set of boundaries has been 
computed for the corresponding frequencies. The problem of 
fitting a rational transfer function to these boundaries is consid- 
ered, by using evolution strategies. The main assumption is that 
the number of zeros and poles has to be previously specified. 
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Search Space A real polinomial Xn (s) is represented by 

Xn(s)=J2Cisi c„n^(s2 + aiS + bi) 

cn{s + b0)n"ll(s2 + aiS + bi) 

n even 

n odd 

(4) 

where the binomial (s2 + o^s + h) can have real or complex 
roots, depending on whether a2 -4fe; > 0 or not. The controller 
Gc(s) is a transfer function represented by 

Gc(s) 
Nc 

Dc = K- 
-o)n '/2, S   + a;S ■ 

s + pojIÜL-tis2 + CjS + dj 
(5) 

where the terms (s + z0) and (s + po) appeared only when 
the numerator and/or denominator degrees m, n are odd. This 
parameterization of the controller defines the search space IT, 

given by 

7T = {if, z0, {ai,bi}™/? ,po, {ci, di^Hj 

An alternative search space could be 

NZl(8)_Z?bis
i 

Gc(s) = 
DCn(s) E?^ 

where 

7r = {{feJ™0'{ai}"=o} 

(6) 

(7) 

(8) 

However, in the case of high order controllers is preferable to 
use 6 instead 8 because of the scale differences between the 
coefficients in the second formulation. The first formulation is 
also amenable for easily assuring, when demanded, controller 
inner stability as well as cancellation. 

Feasible Search Space Among all posible controllers, we select 
those which make stable the closed loop system. The nominal 
plant is represented by 

Ng(s) 
Gp(S) ~  DP

a(s) 
(9) 

so the closed loop transfer function 

G(s) = 
N^(s)m(s) 

D<n(s)Dp
g(s) + N^s)Np(s) 

(10) 

Hurwitz representatives are allowed and non Hurwitz are pun- 
ished and so excluded from the search. 

Boundary Associated Penalties 

Boundaries are weighted following [5] according to barrier 
functions (Fig. 1). We prefer the smooth barrier instead drastic 

Figure 1: Typical boundary barriers. The horizontal plane cor- 
responds to the Nichols plane. In the vertical axis is represented 
the barrier value 

because the ES's intrinsic knowledge feedback is more graded 
and helpful. 

Fitness Function. 

For a given controller, that is a given individual or element of 
the search space TT, the fitness function include the quantity that 
is to be optimized as well as the restriction of the problem. In 
our case, it contains the boundaries through the barrier func- 
tion, and the cut-off frequency and the high-frequency gain as 
measures to be minimized. 

function fitness{n) 
given Gc(7r,ju;) 
calculate D(TT,JOJ) = 1 + GC(TT, JLO)GP(JLO) 

if D(TT,JLJ) is Hurwitz 
/ = knvc + k2B(Gc(n,JLo)Gp(JLu)) + k3C(Gc{n,ju))Gp(jw)) 

else 
/ = oo 

end 
return / 

Here fci, &2, &3 are ranging constants, uic the cut-off frequency, 
B(-) the boundaries barrier function and C(-) the feedback cost. 

4    CASE STUDY 

The problem considered is the autopilot design problem pro- 
posed by [12]. The goal is find a feedback controller Gc, and a 
forward controller Gr for the family of plants 

Gp(s) 
k(l + j 

k, z,p, £, wnaccording to: 
(ID 
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Nichols Charts Nichols Charts 

s.    20 

0.25 dB 
0.5 dB 
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_;-6dB 
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0.5 dB 

• ;„_----1-da. _ ^ -~l dB 
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-20 dB 
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Open-Loop Phase (deg) 

Figure 2: Evolutive Strategies Solution for 3th order controller Figure 3: Thomson's 3th order solution 

nominal 
k 0.2 [0.2, 2.0] 
z 0.5 [0.5, 0.75] 

P 1.0 [1.0, 10.0] 

Wn 5.0 [5.0, 6.0] 

4 0.8 [0.8, 0.9] 

such that the closed loop system is stable and in addition 

TL(u) < Gr(joj) 
Gp(juj)Gc(juj) 

l+Gp(jL0)Gc(JLu) 
< TU(Lü)      (12) 

The technique described in the above Section is applied. As a 
result, a third order controller 

Gc(s) = 3.66 
s2/96.6128 + s/7.571 + l 

s3/885474 + s2/8132.8 + s/49.5633 + 1 
(13) 

Nichols Charts 

--;---';';.; 
3 dB 
-6 dB 

12 dB 

-20 dB 

The Nichols plots of the boundaries and the fitting of the open 
loop function is given in fig. 2. The boundaries where build 
from the nominal plant at the frequencies 0.2, 1.0, 2.0, 5.0, 
10.0 and 1000.0 [rad/s]. 

For comparison purposes a fitting with a proper third order con- 
troller has been made. The result is 

Gc(s) = 3.44 
(s/1.45 + l)(a/5.55 + l)(a/17.21 + 1) 

(s/0.49 + l)(s/41.22 + l)(s/146.58 + 1) 
(14) 

while the solution proposed by Thomson [12] is: 

(8/2+l)(*/4 + l)(*/6+l) 
cl j       (S/0.5+l)(s/80 + l)(s/r00+l) *■   ; 

Comparison of results for this case can be seen in figures 3, 
4 and 5. The order 4th controller can be also easily obtained, 

-350      -300      -250      -200      -150      -100       -50 
Open-Loop Phase (deg) 

Figure 4: Evolutive Strategies solution 

with the results shown in figure 6 and the indices evolution can 
be seen in fig. 7 

(s + 0.428) (s + 2.62) (s + 7.235) (a + 37.885) 
c[S) (s + 0.42)(s + 0.9)(s + 89.023)(s + 212.25) 

(16) 

As a result, it can be seen that evolution strategies gives 3th 
order controller that results in a loop gain transfer function 
with small static gain and small cut-off frequency. The solution 
found for the 4th order controller has almost the same shape, 
thus no much improvement was attained with the higher order 
controller in this case. 

Closing the applications we show a couple of examples ex- 
tracted from the MATLAB toolbox (demol,demo2) that also 
where solved in [4] 
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Nichols Charts 

-300      -250      -200      -150      -100       -50 
Open-Loop Phase (deg) 

Figure 8: demol. Nichols chart (controller 1x2) 

Figure 5: From left to right, top down: fitness, feedback 
cost, cutoff frequency, barriers penalty for the 3th controller. 
Those are bilogarithmic plots in which horizontal axis mea- 
sures log10 (fitness_evaluations) 

4.1    demol 

Nichols Charts Gp(s) 

B      20 

0.25 dB 
0.5 dB 

'   .-  ;.-----i-OB.._ 

{s+a)(s+b) 

k£ [1,10], a€ [1,10],   b€ [20,30] 
(17) 

-~l dB 

■3 dB 

_ j-6dB 

.--12 dB 

-20 dB 

closed loop specifications 

1) Robust stability. 

2) Robustness margin 

Gp(JLj)Gc(JL>) 

-350      -300      -250      -200      -150      -100       -50 0 
Open-Loop Phase (deg) 

Figure 6: and Evolutive Strategies Solution 4th order 

l + Gp(jw)Gc{ju) 

3) Output perturbation rejection: 

< 1.2 VGP e op, u > 0        (18) 

Y{ju) 
Dijuj) 

< 
(JOJ)

3
 + 64(jw)2 + 748(jw) + 2400 

{juj)2 + 14.4(jc;) + 169 

4) Input perturbation rejection 

Yiju) 
V{jw) 

< 0.01,  to < 50 

w < 10 

(19) 

(20) 

ES's solution: 

Gc(s) = 
140.69(5/104.82 + 1) 

(s/104.82 + l)2 + 6.537 
(21) 

[4] solution: 

Figure 7: From left to right, top down: fitness, feedback 
cost, cutoff frequency, barriers penalty for the 4th controller. 
Those are bilogarithmic plots in which horizontal axis mea- 
sures log10(fitness_evaluations) 

Gc(s) = 379- 
s/42 + 1 

s/247)2 + s/247 + 1 
(22) 
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compensator 1126.71 -(s+1.82855)/(s+272.881) 

-250      -200      -150      -100 
Open-Loop Phase (deg) 

Figure 9: demo2. ES's Nichols chart (controller 1 x 1) 

4.2   demo2 

>P = \ Gp{s) = 
ka 

sis ■ 
ke [1,10], BE [1,10] i-    (23) 

Closed loop specifications: 

Gp(ju))Gc(juj) 
Gp(jio)Gc(JLü) 

< 1.2 VG*p 6 Gp, to > 0 

TL(LO) < F(juj) 
Gp(juj)Gc{juj) 

1 + Gp(jUj)Gc(JL0) 

TL{UJ) 
120 

Tv{u>) = 

I7(ju)2 + 828(jw) + 120 

0.6854(jw + 30) 

(ju>)2 + 4(jw) + 19.752 

ES's solution: 

[4] solution: 

Gc(s) = 

[2] solution: 

Gc(s) = 1126.71 
s + 1.82855 
s + 272.881 

6.753 x 1065 +1.3947 x 107 

s2 + 3.4834 x 103s + 1.6218 x 106 
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Abstract: This work makes use of the Schauder fixed point theorem to develop a quantitative 
approach to the stability problem of nonlinear QFT designs. The method is applied to 
nonlinear systems having a linear high-frequency behavior, and is specially well suited for 
systems with hard memoryless nonlinearities. 
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1.        INTRODUCTION 

Quantitative Feedback Theory (QFT) has been 
developed for nonlinear and/or time varying systems 
([1]). Several rigorous techniques are available in the 
literature for usual closed-loop specifications such as 
tracking or disturbance attenuation. However, the 
(BIBO) stability of these designs has not been 
explicitly considered. The reason is that the designs 
inherently achieve the desired specified performance 
over the specified sets of command and disturbance 
inputs. The latter sets must be compact, but can have 
arbitrary numbers of elements. If one is concerned 
about the effect of any other conceivable input class, 
he need only include it in the final total input sets. 
Also, It is easy to formulate the sets so that small 
deviations in any input, results in small deviations in 
the output. However, this paper shows that for a 
specific nonlinear problem class, one can readily 
formally include quantitative BIBO stability in the 
design process. Some previous ideas in this direction 
are given in [2]. 

Alternatives approaches to nonlinear stability in QFT 
have been developed recently [3-5], based on absolute 

stability results such as that the Circle and Popov 
criteria, that has been adapted as synthesis tools, 
generating specific stability bounds. Absolute stability 
results may be conservative in many cases, thus it 
becomes apparent the strong interest in developing 
another approaches to nonlinear stability. One 
direction is the application of multiplier theory and 
harmonic balance [5]. In this work, an approach based 
on Schauder fixed point theorem is developed, using 
typical QFT reasonings, to develop quantitative 
stability results. 

It is worthwhile to mention that a very important area 
of research in stability of nonlinear systems has its 
roots in the application of the contraction mapping 
fixed point theorem. One of the seminal works in this 
direction is [6], from where small-gain theorem, loop 
transformations, etc.. can be derived. This work 
emphasizes the use of a less restrictive fixed point 
result, that is Schauder theorem, for deriving practical 
rules in order to design stabilizing feedback 
compensator in the presence of potentially large 
uncertainly. 
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2.    QUANTITATIVE STABILITY 

Let pe:U —>Y be a nonlinear system parameterized 
by the parameter vector 06 0, with U and Y linear 
spaces of inputs and outputs signals, respectively. Let 
Us c: U and Ys c Y be subsets of bounded signals in 
their respective spaces. Consider an uncertain 
nonlinear plant defined as the set p = {pe| 0e0}, 
and that each nonlinear system pe may be 
decomposed in the following way (Fig. 1): for each 
output y in Ys such that j^ = pe(u) for some input u in 

Us, 

from where 

y=Pou=PyAu+dyft') (1) 

where   P, y>6> a linear time-invariant system with 
transfer function Py,Q(s), defines the set P={Py,B\ yeY, 
0e0}, and the disturbance signal dy,e defines the set 
D = {dy,o, JeY, 0E0}. For bounded outputs, the 
corresponding disturbance set Ds is also defined as Ds 

= {dy,Q | ye Ys, 6e 0}. It is assumed that Ds c Us, that 
is that the disturbance is a bounded signal when 
corresponding to a bounded output. 

Consider the systems p and P embedded in a two 
degrees of freedom feedback structure, following Fig. 
2, where we have considered r and d as inputs to the 
feedback system, for stability purposes. A standard 
definition of BIBO closed-loop stability is the 
following: the nonlinear feedback system is stable if 
for every bounded signals re Rs and de Us, we have 
that we Us and ye Ys. 

The second structure in Fig. 2 poses a linear feedback 
problem, where the disturbance signal is now dL = d + 
dy,Q, where obviously dLe Us when de Us and dy e Ds. 
We would like the linear system to be stable in the 
above sense: for every bounded signals reRs and 
dhe Us, and for every 0e 0, we have that uLe Us and 
yhe Ys. If G can be designed to stabilize the linear 
feedback system in that way, then for each reference 
input r, each disturbance input d, and each parameter 
vector 0, a mapping <p:Y -> Y is defined for each 
bounded output y in Ys. It is given by 

yL = <p(y) = PyfiG{\ + PyeG)-> Fr + Pyfi (1 + PyfiG)~x (dyß + d) 

(2) 
and cp(Ys) c Ys if the feedback system is stable. If, in 
addition, every mapping cp is continuous over Ys, a 
convex and compact subset of a Banach space, 
Schauder fixed point theorem is applicable. Thus, for 
every bounded signals reRs, de 
Ds and every 0e 0 there exists a bounded signal y e 
Ys that satisfy (note that the fixed point y depends on 
the signals r, d, and the parameter vector 0, however 
by notational simplicity it is not explicitly shown) 

y^^P.fll+P.^Fr 

+P,(\+P,HG)-\d,H+d)       (3) 

y" + GP .   v* = P . „F r + P . tt (d .    + d) 

and finally using the decomposition (1) 

\y =Py.ß(u +dy.g +d)=pg(u +d) 

[u =GFr^Gy 

(4) 

(5) 

that is, y is also the output of the nonlinear feedback 
system, that becomes stable in the sense that for every 
bounded signals r and d, we have that v is also 
bounded. A similar reasoning can be done to show 
that u is also bounded, then the nonlinear feedback 
system is stable. 

The above method is rather general. Two simplifying 
assumptions are: i) choose dy$ = 0 in (1) and then 
solve the equivalent linear problem using the first 
QFT nonlinear method, and ii) choose Py,e 

independent on the output y and then applying the 
second QFT nonlinear method. In practice, it is more 
convenient to choose Pyi8 independent of the output y. 
Thus the second QFT nonlinear method is applicable, 
that will be the approach followed here. 

Moreover, the designer may be interested in a more 
restricted sense of stability, in which the set Ys may 
be related with the size of the inputs r and d, e.g. finite 
gain stability: the output is bounded by a linear 
function of the inputs bounds In this sense, not only 
the output is bounded for bounded inputs, in addition 
the size of the output is proportional to the input size 
(see Section 3). The class of nonlinear plants that will 
be first considered in this work is the given by the 
following differential equation 

yl"\t) + fy(y(t),y'(.t),..y-l)(t),e) = 

corresponding to nonlinear systems in which the 
leading derivatives enter linearly, thus the system 
have a linear high frequency behavior. The set of 
bounded outputs can be defined with respect to the set 
of references and disturbances inputs as 

\ye Y | \\y\\ < a0\\r\\ + ß0,\\y'\\ < ßlt...,\\y
l"-n\\ <} 

I ß^reR^deD, J 

where ß0 is an allowed bias over the output y(t), and 
both the gain Qb, the bias ß0, and the rest of bounds 
are finite constants. 
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3.        CASE STUDY: UNCERTAIN VAN DER 
POL SYSTEM 

An uncertain Van der Pol system is given by [7] 

p„ : u -> y,y + Ay(By2 -\) +Ey = ku 

Ae [l,3\Be [l,4j£e [-2,-llJte [30,120] 

G=(A,B,E,k) (7) 

By simplicity, in the following we consider two cases: 

i) stability with respect to disturbances, that is r = 0, 
and ii) stability with respect to references, d = 0. 

A possible decomposition of the nonlinear plant is 
(note that as discussed above, the linear equivalent 
plant does not depend on y, thus second QFT method 
is applicable) 

d„a=- 

s2 -As + E 
AB  .   , 

-yy 
(8 

In addition, the first derivative of the output must be 
bounded to guarantee that the output is bounded to 
satisfy (10). Then 

Td(Q)nd\dL\<ßx 

or making simplifying assumptions as above 

1 

G(0) Va d + ^l{yy2
+2y2) 

k *A 

(14) 

(15) 

now assuming that the maximum value of the second 
derivative of the output is given by ß2, we obtain 

-L-^+O^OSA2 +2ß1
2))<ßl    (16) 

and finally 

(51+0.4(j32)30
2+2j81

2))Mrf G(0)> 
ßi 

(17) 

Clearly, the solution will be the maximum of right 
hands of(13)-(17), that is 

Case#l:r = 0 
a) Definition of bounded inputs and outputs 

Ds ={/€L=o,|4<50,|J|<51} (9 

Ys={yeLx,\\y\\<ß0,\\y\\<ß,}        (10) 

DLts = 

dL=d + d e \deDs,d g = 

AB 
r 

yy2,ye Ys, Ae[\,3\Be [1,4] 
(11) 

b) Stabilization of the linear equivalent problem (the 
method based on specifications over the dc-gain of 
closed loop transfer functions is used [1]). First, the 
output must be bounded according to (10) 

TM-    m 
l + P(s)G(s) 

(12) 

d,eDs=> Ik II < IId\\ + \\dyfi II < S0 + 0.4 • ft ß0 

and although an exact solution is possible, a 
reasonable approximate solution can be obtained, by 
doing 7^0) = 1/G(0), resulting in 

G(0)> 
ßo 

(13) 

G(0) > max 

(g0+0.4/3,/30>, 

ßo 
(5,+0.4(^2/30

2+2i31
2))/x, (18) 

c) Some numeric values for fa = 1.3 and /J>=100 (this 
bound has to be chosen large enough) 

s„ (H^o) >, (|HI^5.) ßo AMI*/».) ß, (W^jS,) G(0) 

l 5 l 5 17 
l 5 0.05 5 26 
3 10 1 5 18.2 

3 100 1 5 41.6 

3 100 3 5 125 
3 100 3 50 79.3 

The table indicates that relatively low values of G(0) 
guaranty quantitative stability with respect to 
disturbances. 

Case#2:«/ = 0 
a) Definition of bounded inputs and outputs 

Rs="t"ei-.IHI^Po.|HI^Pi} 
Ys=\ve L„,\\y\\<aAr\\+J0,\\y\\< ß^reRsf- 

(19) 

DL,S= \dL=dyß\dy, 

1(20) 

B . ̂ 2^ey,^6[l,3l5£[l,4] 

(21) 
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b) Stabilization of the linear equivalent problem. First, 
the output must be bounded according to (20) 

Tr (OK ||r|| + Td (0)/i„ |K || < «0 HI + ß0 

(22) + P(s)G(s)  ov '    l + P(s)G(s) 

re Rs=>\\r\\<p0 

«/, e Ds =» J|art|| ^ 0.4 ■ Ä(«olH + Ä)2 

Again by using Tr(0) = 1 and Tj(0) = 1/G(0), a 
reasonable approximate solution is given by the 
quadratic inequality 

OAß^ß^rf +(0.iß0ßla0fid -(a0 - nr)G(0)}\r\\ 

+ OAß0
2ß1ßd-ß0G(0)<0   (23) 

that should be satisfied for ||r| < p . Of course, the 

treatment is easier for the case Ob = 0. Because of the 
solution of (23) is more involved, only the case OQ = 0 
will be treated here for simplicity. Then, for «o = 0 
(23) is reduced to the linear inequality. 

//rG(0)|r| + 0Aß0
2ß^d - ß0G(0) * 0 (24) 

which is easily solved by doing 

(firp0-ß0)G(0) + 0Aß0
1ßlnd<0 

and finally the solution is (being ß0 > /nrp0) 

0Aß0
2ßltid G(P) >. 

ßo'PrPo 

(25) 

(26) 

Also the first derivative of the output must be bounded 
to guarantees that the output is satisfy (20). Then, a 
condition similar to (15) is obtained: 

Vr\n+- 
1 

:P« G(0) 

from where (being ßx > /4pi) 

^0>/+2^) 
k 

*A (27) 

G(0)>^Ä1Ä 
ß\~PrP\ (28) 

The solution is the worst-case value, given by 

G(0) > max 
0Aß0

2ß^d   QA^d{ß
2ß2+2ß2) 

ßo-ßrPo ßl-PrP\ 
(29) 

c) Some numeric values (for /^ = 1.3, j82=100—this 
bound has to be chosen large enough) 

p„ di'ii^Po) '. (IHI
£
P.) So (IMI*A>) A dW^A) G(0) 

i 5 2 20 69 
i 5 5 20 127 
i 5 5 50 175 
3 5 5 50 590 
3 5 10 50 425 
3 20 10 50 426 

As a result, assuming the linear equivalent problem is 
solved for (linear) stability , affordable dc-gain values 
of the feedback compensator are obtained for the 
stability of the nonlinear control system. Comparing 
Case #1 and Case #2, it is seen that the values of the 
required dc-gain G(0) are bigger in the second case. 
This is quite reasonable, since in this case the 
compensator has to deal not only with the reference 
input, but also with the disturbances given by the 
nonlinear dynamics. In any case, typical values of 
G(0) in the different design given in the literature 
[7,8] are big enough to conclude that those designs 
also guaranty quantitative stability in the sense define 
above. 

4. HARD NONLINEARITIES 

The quantitative stability method developed in Section 
2 is specially well-suited for systems with hard 
nonlinerities z = N(y) which can be decomposed as z = 
Ky +T](y), where \r\(y)\ < M. This type of systems 
include common nonlinearities such as Coulomb 
friction, backlash, deadzone, etc. In the framework of 
QFT, these systems have been studied in [9]. In the 
following, the quantitative stability method is applied 
to these type of systems. In general, we assume that 
the nonlinearity r\ can be represented as a disturbance 
dy associated to the closed loop output y. For 
example, in the Example 1 of [9], where the control of 
a motor driving a load is considered, the plant can be 
transformed to the system of Fig. 3, where in this case 

l»7Ö0l < 0-2. 

It will be briefly shown how the quantitative stability 
method can be easily applied obtaining very efficient 
results. Here we define bounded signals spaces as Rs = 
Ds = Lm and 

Ys={yeLj|H|</yj||<A} 

Assuming that the linear equivalent feedback system 
(taking dy as a disturbance) is stable (note that for 
linear time invariant systems Loo-stability and In- 
stability are equivalent), the nonlinear original system 
will be automatically stable. Note that in this case no 
extra   conditions   are   needed,   providing   that   the 
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constants ß0 and ßx are computed a posteriori. Thus 
the only conditions are that the closed-loop linear 
tranfer functions, from the inputs of the feedback 
system (for example the reference r and a disturbance 
d) and dy to the rest of signals be stable. Obviously, 
some extra restrictions can be incorporated to shape 
these transfer functions in order to obtain appropriate 
tracking and/or disturbance attenuation, and thus 
obtaining less conservative bounds ß0 and/?j. This is a 
very convenient method for guarantying stability for 
this type of nonlinear systems. Note that underlying 
theory based on Schauder fixed point theorem gives a 
rigorous answer to the problem. 

5. CONCLUSIONS 

In QFT nonlinear designs it is guarantied that for a 
prescribed set of references and/or disturbances, the 
closed loop output belong to a set of acceptable 
outputs. In general, small deviations from those 
references and disturbances, that is inputs to the 
control systems, result in bounded outputs. The 
incorporation of BIBO stability for more general 
inputs is possible without leaving the QFT framework. 
In this work, quantitative stability has been 
introduced, in the sense that for given inputs bounds 
and specified output bounds, conditions have been 
derived over the open loop functions. The result is 
based on an appropriate application of Schauder fixed 
point theorem. 
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