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EDITORIAL

QFT & RFDM International Symposia. Past, present and future.

Much of the current interest in frequency domain robust stability and robust performance dates from the original
work of H.W. Bode (1945), and I. Horowitz (1963). Since then, and during the entire second half of the twentieth
century, there has been a tremendous advance in the state-of-the-art of robust frequency domain methods. One of
the main techniques, introduced by Prof. Isaac Horowitz in 1959, which characterises closed loop performance
specifications against parametric plant uncertainty, mapped into open loop design constraints, became known as
Quantitative Feedback Theory (QFT).

Since the seventies until now, the association of the Air Force Research Laboratory (AFRL-USA) with the
Department of Electrical and Computer Engineering of the Air Force Institute of Technology (AFIT-USA) has
resulted in a large amount of research in QFT. In fact, the first research grant that Prof. Horowitz, the founder of
QFT, received was in 1973 from the Air Force Office of Scientific Research (AFOSR). Further support came from
their European Office Aerospace Research and Development (EOARD). Indeed, much of the early Air Force
support for Prof. Horowitz came through EOARD.

Great strides were made by the U. S. Air Force researchers in the application of QFT to the design of robust
multivariable flight control systems. Prof. Constantine H. Houpis of AFIT, along with his graduate students, and
in conjunction with Prof. Horowitz, extended the state-of-the-art in the development and application of QFT. Asa
result Prof. Houpis, as General Chairman, with the sponsorship of AFRL, organised the first international scientific
meeting on QFT, with the name: Quantitative Feedback Theory Symposium. 1t was held at Wright Patterson
Airforce Base, Dayton, Ohio (USA), in August 1992. As Prof. Houpis stated in those days, “Quantitative feedback
theory (QFT) has achieved the status as a very powerful design technique for the achievement of assigned
performance tolerances over specified ranges of plant uncertainties without and with control effector failures”.

The awareness of the power of QFT to solve real world problems has evoked the interest and involvement of a
greater number of control engineers and researchers. The methodology has been used to solve SISO, MISO, and
MIMO plants, single and multiple loops, linear and nonlinear processes, lumped and distributed plants, etc. Since
1989 until 2000 there have been published 322 international papers on QFT: 210 at international scientific
conferences and 112 at international scientific journals of the Science Citation Index (data according to INSPEC
and the QFT Symposia). Figure 1 shows the evolution.

QFT Publications (1989-2000)
according to INSPEC + QFT & RFDM Symposia
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Prof. Horowitz said in the first QFT symposium: “there is room in QFT for highly diverse talents: the
nonmathematical practical engineer with physical insight and inventive talent, the skilled mathematician interested
in existence theorems and abstract generalisations, up to the stubborn, even plodding researcher who by hard
dedicated work acquires deep understanding of this subject”. However, he also said “QFT is as yet in its infancy,
pointing to vast, available problems areas”.



Since then, there has been an increasing interest in the frequency domain methods. The second international
symposium was held at the Purdue University, West Lafayette, Indiana (USA), in August 1995, with the name:
Quantitative and Parametric Feedback Theory Symposium. The third one was at the University of Strathclyde,
Glasgow, Scotland (UK), in August 1997, with the name: Symposium on Quantitative Feedback Theory and other
Frequency Domain Methods and Applications. The fourth symposium was held at the University of Natal,
Durban, South Africa, in August 1999, with the name: International Symposium on Quantitative Feedback Theory
and Robust Frequency Domain Methods.

Now, I would like to introduce the fifth international scientific meeting being held this year at the Public
University of Navarra, Pamplona, Spain, for which I am keeping the same name as the last symposium:
International Symposium on Quantitative Feedback Theory and Robust Frequency Domain Methods (QFT &
RFDM). Its purpose is to bring together practitioners and researchers in the field of frequency domain methods
and to promote the development of these methods and their practical application. The Symposium covers new
developments in Quantitative Feedback Theory and Robust Frequency Domain methods, algorithms, software and
applications.

The number of papers that have been published in the five international symposia is 138 (= 37 + 18 + 27 + 21 +
35). Their distribution per symposium is shown in Figure 2. In terms of subject, at the beginning almost 95% of the
papers were about QFT, and only 5% about other Robust Frequency Domain Methods. However, from the third
symposium until now the rate has been stabilised in 62% about QFT against 38% about other RFDM (Figure 3).

The total number of authors that have attended any symposium is 253 (= 61 + 41 + 43 + 42 + 66), and the number
of different authors that have attended the symposia is 190. Their distribution per continent and symposium is
shown in Figures 4 and 5.
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Among the set of 190 different authors that have attended the symposia, 15 of them have been present in more than
60% of the events. They are: I. Horowitz, C.H. Houpis, F.N. Bailey, Y. Chait, M.A. Franchek, S. Jayasuriya and
0.D.I. Nwokah from USA; E. Eitelberg and E. Boje from South Africa; M. Garcia-Sanz and A. Baifios from Spain;
P.O. Gutman and O.Yaniv from Israel; P.S.V. Nataraj from India; and B.C. Wang from Taiwan. In this context
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only one author has taken part in all of the symposia: Prof. Constantine H. Houpis.

The number of countries participating in the biennial symposium has increased through the years, as it is shown in
Figure 6. The number of different countries that has attended the symposia is 16. Table I shows the countries

where the authors came from per symposium.

Number of Countries
13
T3 ---
L T -
11T e e -
S U [ PO -
ed oo e e o
R NSO N AU N S N -
Y e I e e et T et 12 |---
5+--4  |-----=1  }---==- L F---""1 10 |---—--- ---
441 |e-o-a- 8 |------ O | 1 L. .
3 4 — = 7 _________________________ U
0 IR [ [ Ut A Y o
B I At I o
0 . : . .
1st 2nd 3rd 4th 5th
Symposium
Figure 6
Table I. Authors distribution per countries
America Europe Asia Africa
Symp| {USA [Mexico| Brazil | UK | Spain | France | Germany | Poland | Sweden|Switzer | Portugal Treland | Israel’ | Taiwan | India | South SUM
land Africa
1st 44 1 0 4 0 0 0 0 0 0 0 0 5 3 3 1 61
2nd | | 29 1 0 2 1 0 0 0 0 0 0 0 2 3 2 1 41
3rd 11 0 0 10 6 6 3 1 0 0 1 0 4 0 0 1 43
4th 5 3 0 7 9 1 2 0 2 3 0 0 0 4 0 6 42
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The countries with the most representation, in terms of number of authors, are the four that have been organisers:
USA (38.7%), United Kingdom (9.1%), South Africa (4.7%) and Spain (17.8%); plus Israel (5.9%).

Two countries have attended the five symposia: USA and South Africa. Five countries have attended four: Mexico,
United Kingdom, Spain, Isracl and Taiwan. Three countries have attended three: France, Germany and India. Two
countrics have attended two: Sweden and Portugal. Four countries have attended one symposium: Brazil, Poland,
Switzerland and Ireland.

More than 60 successful engineering control applications of robust frequency domain methods, mainly QFT
controllers, have been reported through the five symposia. The following list highlight the next real
implementations:

e  Flight control: F-16 flight control system, Lambda remotely-piloted airplane, C-135 military transport aircraft,
UH-60 Black Hawk helicopter flight control, SAAB AB flight control system, Advance combat aircraft,
Autopilot flight control design, Missile control systems, X-29, etc.

e Process control: Distillation columns, Continuous stirred tank reactors CSTRs, Heavy oil fractionator, pH
neutralisation process, Heating systems, Multiple-effect evaporator, Gasifier control, Superheater temperature
control, Cooling machines, Arc welding penetration control, Pinch weld quality control, Hydraulic positioning
systems, Storage vessel processes, Flow control, Pneumatic positioning system, etc.

e Robotics: Distributed mechanical structures, Flexible beam with variable coupling, 3 DOF Robot
manipulators, Autonomous path tracking robot, SCARA Robot manipulator, etc.

e Combustion motors control: Aircraft engines, V-6 fuel-injected combustion engine, Allison Pd-514 aircraft
turbine engine, GE16 variable cycle engine, Ford 4.6L-2 valve V-8 fuel injected engine, Turbofan engine, etc.

e  Special vehicles control: Intelligent vehicles, Autonomous vehicles, Fast Ferry control, Citroen BX active
suspension, etc.

e Electronics systems control: 741 BIT Operational amplifier, Audio power amplifier, Fixed point DSP, DC
motor position servo prototype, etc.

Power systems control: Fast control coil system of a Tokamak, Aero-electric power station, etc.
Biological systems control: Active sludge wastewater treatment plant, etc.
Advanced systems: Flight telescope control, Earthquake simulator machine, etc.

After the large covered itinerary, we can state that the international QFT & RFDM symposia have reached the
maturity of a periodic and referenced scientific meeting on Robust Frequency Domain Methods. Progress has been
made in having IFAC take over the management. The outlook in IFAC assuming the sponsoring of the symposia is
favourable. We expect a final decision later this year. Until then, I would like to thank all the people and
institutions that have worked and supported the symposia, since the first ideas of Prof. Isaac Horowitz and the first
symposium organised by Prof. Constantine Houpis, and from many different countries and through the years.
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SOME PECULIARITIES OF LOAD SHARING CONTROL

Eduard Eitelberg
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Abstract: In the recently published book, ‘Load Sharing Control” ( Eitelberg, 1999), a
frequency domain, loop-by-loop load sharing control system design methodology was
developed and demonstrated with engincering examples. A number of new concepts were
introduced in order to characterise some peculiarities that are not relevant in single-loop
control systems, or have been overlooked in the general multivariable control system theory.
Some of these concepts and peculiarities will be elaborated during this presentation.

Keywords: load sharing, cross sensitivity, stability, floating supply.

1. INTRODUCCION-THE CONCEP OF LOAD
SHARING

In many engineering and in most economic systems,
the burden of producing material, energy, goods (or
signals in general) to satisfy some demand is shared
between two or more distinct sources with limited
supply capabilities (plants, suppliers, controllers, ... )
— these sources share the load. In fact, all systems,
where at least one output depends on at least two
inputs, are load sharing.

Figure 1 defines the basic additive load sharing
structure with N supply plants Pj, the associated
supply and manipulated variables ysi and u;, a
common plant 4, a common output y and a common
disturbance d — the load. Disturbance may be added
after the 4ccumulator’ 4, without affecting the
general validity of the presented results.

Some prominent load sharing examples are:

e  process steam supply by multiple boilers to a
common header with y signifying the header
pressure;

e  boiler feed-water pumps in parallel and in series
with y signifying the total feed-rate;

e electric power supply grid with multiple power
stations with y signifying the grid frequency;

e  competitive markets with multiple suppliers for
substitutable goods or services with y signifying
the price.

u Y
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Figure 1: The basic load sharing system model.

In my book ‘Load Sharing Control”, fundamental
properties of load sharing control systems are
investigated and procedures for designing independent
and co-ordinated control systems are derived



constructively and demonstrated. It is shown there that
systems with multiple feedback loops often
(unintentionally) contain load sharing structures of
significance to the designer. The load sharing
properties and abilities of some new and some well-
known industrial multi-loop and multivariable
feedback control structures are analysed in this book.

2. CONTROL OF LOAD SHARING SYSTEM

The primary control problem is to control the
common output y via the supply plants P;. The same
load d can be balanced by an infinite number of
combinations of the individual supplies ysi. In real
systems, there are generally very strong technical,
economic and political reasons to prefer certain
combinations over others. Therefore, maintaining
some predetermined distribution of the load between
individual supply plants is the secondary control
problem. In special cases, however, control of one of
the individual supplies yg; may be the most important

task.

One could attempt to counteract the influence of load
variation on y by feed-forward only. Despite the
undeniable usefulness of load feed-forward, the
practical difficulties of measuring the total system
disturbance/load accurately and the uncertainties in
the supply plants Pg make it seldom sufficient on its
own. Hence, with or without feed-forward, a feedback
control system from y to at least some of the
individual u; has to be designed.

There are N feedback signal transfers to define —
from y to each ;. In addition, the system can have N
independent reference signals r; for each independent
supply plant. Figurc2 shows one possible
implementation of these 2N design degrees of
freedom.

Figure 2: Independent load sharing control system:
with common load d and output y; and N individual
supplies yg;, supply plant inputs u;, supply references
ri, and feedback measurement or transmission

noises/errors n;.

An independent implementation of load sharing
control is an attractive option, especially when
individual supply plants P; are in geographically
distant locations. Power plant control for grid
frequency stabilisation is implemented in many plants
individually, see Knowles (1990). Sometimes
individual supply plants are supplied with built-in
load control instrumentation, such as the small
electrode boilers that are used in the textile industry,
industrial refrigerant compressors and others. These
'packaged deal' supply plants are designed to work
well when carrying a specified load range alone. They
are sometimes implicitly expected to work just as well
or better when sharing a load — they might, but not
without additional control system design effort.

It is convenient to introduce the individual supply
loop transfer function as

Li(s)= A(s)P,(s)G; (s) (1)

L; represents the feedback loop around the supply
plant P; when all other supply plants Pj are ‘on
manual' — allG;j = 0 for j# i. This is not necessarily

the same as having all the other plants physically

disconnected from the load, because that could
significantly modify the accumulator 4 — for
example, the steam volume or the rotating inertia.

Now, the load regulation loop transfer function around

the accumulator is simply

N N
L(s)=§Li(s)=A(s)§P,»(s)G;(s) )

The common output in Figure 2, is given by

N N
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A detailed expression for individual supply outputs, in
Figure 2, is given by
L

=P

AT F N F_ F

J
A il

The pre-eminence of the load regulation loop L is
evident in the first right-hand term of eq. (3). In order
to eliminate the effect of the load D on the system
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output ¥ a high-gain loop L is needed. As a minimum,
in order to justify the introduction of feedback, the
design must achieve |[L(j@)>>1 in some (usually
fow) frequency range. This technical expression of
the previously mentioned primary control problem
will remain in the focus for the rest of this
presentation.

A high gain L can only be achieved by implementing
some of the individual supply loops L; with high gain
in the required frequency range — seeeq. (2). As a
first rough idea, all load sharing supply loops must
have a gain in the order of |L|. This is evidenced by
the first right-hand term of eq. (4). The supplies with
|Li(jw)|<<|L(jo)| do not participate in the load sharing
at the corresponding frequency w — as if they were
bn manual’

This discussion brings us to the first peculiarity of
Load Sharing Control.

Cross sensitivity:

Pair-wise discrepancies between feedback signal
errors (N;—N;) and mismatches between the

filtered references ((Fy/G)R;~ (F/G)R;) — see
eq. (4) — are amplified by the 'supply distribution
cross sensitivities' (LL)/(A(1+ L)) in the

individual supplies Y. If both loops number i and

Jj are high-gain supply regulating loops then the

cross sensitivity between them has a quadratic

numerator |L;L] that dominates the denominator.

Independent load sharing control systems are
generally unsuitable for high gain control due to
potentially  infinite supply distribution  cross
sensitivities. The supply outputs in loops with high
gain in the independent controllers G; or plants P; are
hugely sensitive to differences in independent
measurement errors and output references — the
supplies will saturate easily and thus not be party to
controlled load sharing.

The electrical power supply grid frequency is
essentially controlled independently by a number of
power plants by feeding the difference between an
independent  frequency  reference and  the
independently measured grid frequency through a
generally low-gain proportional controller to the
turbine governor valve, see Knowles (1990). It should
be noted, that the grid frequency control loop for an
entire area, or country, does have high gain in the
single central controller (Glover and Sarma, 1989).

Cascaded control systems contain two or more loops
around some common plant. Hence one needs to be
concemned about the cross sensitivity and some other

load sharing peculiarities. Cascaded control system
design is handled quite thoroughly in my book.

Further, it is shown in my book that MIMO control
systems can become inoperable due to large cross
sensitivity — this is the case when the controlled plant
is strongly interacting in the sense of Bristol’ relative
gain (Bristol, 1966). In 1998/1999, I was involved in
an automotive component production scheduling and
productivity improvement project. Fundamental
market changes had been followed by a drop in the
achievable production rates to somewhere between 50
and 70%. This is a very interesting story but must be
left for another occasion. Besides a number of
significant middle and top managerial deficiencies (in
my very carefully considered opinion) there was an
interesting technical problem with one of the
manufacturing bottlenecks’— an aluminium brazing
furnace. The original multivariable control system
contained temperature control loops that had high
cross sensitivity from temperature sensors to
individual heaters. My analysis indicated that small
temperature measurement errors led to such
dramatically uneven heater power distribution that
local thermal safety switches tripped the furnace.
Management was very sensitive to the resulting loss
of production and had suspected sabotage! The
problem and its solution are described in my book and
have been published separately (Eitelberg, 1999a). In
essence, I simplified the control system structure and
eliminated the high cross sensitivity. The general idea
is as follows.

An alternative implementation of the 2N design

degrees of freedom is shown in Figure3. For

convenience of designing and operating the whole

system and in view of the presence of a co-ordinating

controller, a common master reference is added — it
does not add another degree of freedom for control.
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Figure 3: Co-ordinated load sharing control system:
with common load d, output y, master
sensor/transmission noise ny, and master reference rpy,;
as well as N individual supplies yg, supply plant
inputs u;, and supply references/biases b;.



The feedback control co-ordination is achieved by
using a common master controller Gy,. The possibly
dynamic feedback blocks C; distribute the feedback
control effort between the individual supply plants P;.
It is assumed that the gains of all (except possibly
one) C;P; are sufficiently low. The accumulator 4 may
have high gain, but this does not help in load
disturbance rejection. Any necessary high gain for
load regulation is implemented in the master
controller Gp,. Because of the availability of the
master refercnce Ry, the gains of all (except possibly
onc) F; (fecding into closed loops) can and should be
kept low.

Although the independent and co-ordinated control
systems are formally equivalent for the purpose of the
combined supply control in the linear regime with
respect to the common output y, the co-ordinated
control structure has no such cross senstitivity problem
with high gain feedback as was the case in the
independent control structure, because the high gain is
provided by the common equipment in the load
control loop. If necessary, the plant gains can be kept
low with local supply regulating feedback loops
around the individual plants.

Now I would like to turn the attention to peculiarities

that help to understand the design of load sharing

systems. In this context, there is no difference
between independent and co-ordinated load sharing
control structures. Fifteen years ago I heard Professor
Horowitz stressing the difference between design and
implementation and 1 agree. For example, a good

design can be badly implemented — like in an
independent structure with high cross sensitivity —
but good implementation of a bad design makes no
useful sense.

3. CONTRIBUTION OF A SUPPLY PLANT TO
GLOBAL PERFORMANCE

Important design insights are gained by defining the
feedback loop transfer function around an individual
supply plant P; under the condition that all other loops

are closed:

L. N
L= with L =L-L;=3L; (5
1+L =]

j#i

Ly is important for determining the conditional
stability and limit cycling conditions for the plant P;
but it has other uses as well. Ly is called the
conditional supply loop transfer function, as opposed

to the individual supply loop transfer function L; that
assumed all other loops to be open. L_; is the load
control loop transfer function when P; is 'on manual'.

By elementary substitution, one can show that

A+L)=@0+L_;)0+Lg) (6)

All zeros of (1+ L), that are not zeros of (1 +L_;),
must be zeros of (1 + Lg). A zeroof (1 +L)y=(1+L_
)+ L; can be a zero of (1 + L_;) if and only if, at this
zero, L;=0 as well. This permits us to judge the
stability of the entire load control system from the
design of the individual supply control loop.

Stability:

Stability of the closed conditional supply loop
transfer function Lg; around any individual supply
plant P; guarantees stability of the overall load
control closed loop L, if none of the right half-
plane poles of 1/(1+ L_;) is cancelled by L; in

eq. (5).

The closed loop load regulation is characterised by the
first right-hand term in eq. (3). It can be split into the
contribution of Lg; and all the other supply loops as

A A1
1+L 1+L_; 1+Lg

Q)

Equation (4) expresses each supply plant's share in
load regulation as L;/(1 + L), which can be expressed
as

L; L
—1 _ Sl 8
1+ 1+Lg ®

I should point out that eq. (8) does not indicate the
share of supply number i in the total load, merely its
share in the dynamic load regulation. The former
depends on the freely prescribed load reference or bias
too. Now the contribution of supply number i to the
control system performance can be clearly stated.

Contribution to performance:

The individual supply plant P; improves the load
regulation by the factor 1/(1 + Lg;) as indicated by
eq. (7) and carmries Lg/(1 + Lg) of the total load
variation as indicated by eq. (8).



4 SUPPLY AUGMENTATION WITH FAST
PLANT

The following design scenario is quite common in

load sharing systems. A set of N-1 plants are

operating, but an additional plant is needed. If this

need has arisen due to increased load, then the

management should seriously consider buying more
of the same — because of the familiarity with the
plant and because of the relative ease of slotting an

identical plant into the existing load sharing control

system.

However, if this need has arisen due to inadequate
speed of load regulation with the existing complement
of the supply plants, then a faster (and probably more
expensive) plant Py must be considered. The existing
control system speed is obviously limited by the non-
minimum phase-lag characteristics of the existing
plant. Note that a new and more expensive plant may
actually have lower running costs and perhaps even
lower total cost of ownership, or it may increase the
overall profit of the business despite higher running
and total costs! Some economic and safety related
aspects are discussed in my book.

One can proceed conservatively (cautiously) and use
the existing load control loop as is, with allowance for
the possible but usually quite simple modification of
the accumulator 4. This way, taking the additional
plant Py out of the loop returns the total system to a
previously designed known stable operational mode.
The existing load control loop transfer function is L.y
and the new conditional supply loop Lgy= La/(1 + L_
») will be designed so that the augmented system is
stable. Equation (7) indicates the improvement in the
load regulation and eq. (8) indicates the load share
that the additional plant has to be able to balance with
its own supply.

The algebraic simplicity of this design problem
suggests a similar simplicity of the quantitative
feedback design. I think I have moved significantly in
this direction but much still remains to be done.
Horowitz (1993) uses the very powerful concept of
'design perspective' to judge various properties and
consequences of a successful design before the actual
feedback system design. His main concern is
satisfaction of low frequency specifications and
judging the necessary gain cross-over frequency @,
as well as other consequences. I prefer the ‘reverse’
perspective —  from known gain cross-over
frequencies to judging the best possible performance.
This frequency domain perspective’is solidly based
on the understanding of the analytic function phase
and magnitude integral relationships. Bode and then
Horowitz must be credited with recognising the

tremendous importance of these abstract mathematical
relationships for the design of feedback systems.

One of the most important of these relationships, in an
approximate form, states that the average magnitude
slope of a stable minimum phase-lag transfer function

is 40 dB/decade/(r radians) = 0.222 dB/decade/degree
of phase angle. An extremely important consequence
of this relationship is the elementary fundamental
relationship between the achievable gain cross-over
frequency @y, and the non-minimum phase-lag
characteristics of the equipment in the loop. For
example, in a practical design, @y < 1/Tg where Ty is
the dead-time (transport delay). In my book, other
relationships are derived as well.

The corresponding design perspective is shown with
the help of straight line approximations on the Bode
magnitude plot in Figure 4.

dB L'n
Ly N
L"y ’/,\
Ly ' \
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Figure 4: Design perspective when Ly is faster than
Ly

Thus, if a phase margin of @4 is required then the
loop transfer function will 'roll-off' at about 30 dB/dec
around the gain cross-over frequency @gc. If not only
unconditional stability, but also ‘'unconditional
stability margin' is required, then this roll-off cannot
be exceeded for any frequency below @y In reality,
the non-minimum phase-lag component will reduce
the phase margin for the assumed roll-off, but the
amount of reduction depends on the required gain
margin (among other things).

If the accumulator A4 is an integrator (or integrating),

then the above unconditional stability margin of w4
may be an unaffordable luxury and a roll-off of closer
to 40 dB/dec may be needed below the gain cross-over
frequency @, — to makeL dominate 4 in 4/(1 + L)
at low frequencies.

With these explanations, one can start by assuming
that the slope of L_y in Figure 4 is often in the vicinity




of =30 dB/dec with a phase angle of about —3m/4 = —
135°. The gain cross-over frequency of Ly @y .y is
determined by the non-minimum phase-lag of the
existing plant. The new plant Py has for example
smaller dead-time and the corresponding loop Ly has
a corrcspondingly higher maximum gain cross-over
frequency @y n, but the same slope of, say, -30
dB/dec.

If Ly has the same slope of —30 dB/dec for all w <
Wy N, as indicated by L'y, then all load regulation will
be done in a stable manner by the totally dominating
new plant. In this case, all the other supply plants are
kept at a constant individual supply level either by
their bias set-points or in the manual mode and the
fecdback design is trivial. However, the new plant
must be sufficiently powerful to cover all load
excursions.

If the new plant is not sufficiently powerful, one can
still design a totally dominating loop transfer function
around it. However, the fast regulation dynamics is
enabled only when the new plant is not saturated.
Either L= Ly or L= Ly. The individual supply biases
affect the load level(s) at which the switch-over
happens. Figure 5 illustrates this design. The
usefulness of this option is doubtful.
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Figure 5: Illustration of load distribution between slow
and dominating fast loop. The fast supply limits are 0
and 60. The slow supply limits are 0 and 200, it is
biased to 150.

The power and (especially the operating) cost of the
new plant can be limited by requiring Ly to regulate
only in the frequency range where L cannot —
around and above @y y. This is achieved by reducing
the roll-off of Ly as indicated in Figure 4. Note that
Ly does not have to be horizontal, it just has to cross
L.y at some 'hand-over' frequency @y, (< Wy N, tO
be determined by the designer) — Horowitz (1963,
Chapter 8) uses the term 'transition frequency' in a
similar design situation. The corresponding magnitude
of the conditional supply loop Lgv = Ly/(1+ L y) is

indicated by the thick line in Figure 4. According to
eq. (7), the load regulation is improved in the
approximate frequency range of @y to Wy p-

The hand-over frequency ay., must be significantly
less than @y .y in order to avoid regulation gaps in
the frequency range below @y, and in order that
significant gain can be put into the new loop Ly.
According to eq. (8), the new plant carries the entire
dynamic load in the frequency range from @y, to
@y v and the old plant set follows load changes below
Wh.o — slower than it would do without the new plant.
Therefore, the choice of the hand-over frequency .,
is a matter of compromise.

If, around the hand-over frequency .o (<@c,-n)s the

slopes of Ly and Ly are -30 and 0 dB/dec

respectively, then the slope of Lgy is +30 dB/dec. This

yields a sufficiently small Lgy phase angle of 135° at

W, (a low frequency phase margin of 45°).

Sometimes, Ly is made zero at steady-state. This is so

in the inner loop design of the plant modifying

cascaded system by Horowitz (1993) and it happens

automatically when the 'valve position control scheme’

of Shinskey (1988) is inserted into a control loop. This

requires positive slope of Ly at some low frequency.

If this positive slope is designed around the hand-over

frequency, such as indicated by L"y in Figure 4, the

overall system may become unstable. If, for example,
the slope of Ly is 20 dB/dec, around @, (<Wgc-N)s

then the slope of the conditional Lgy is +50 dB/dec.

This yields an Lgy phase angle of 225° at @y, — and
an unstable system!

The above conservative design process results in a
Bode magnitude plot of the load control loop transfer
function L that looks like a terraced mountain side. In
a single loop system this would generally indicate
under-design. Furthermore, perhaps more importantly,
the 'corner' at @,., introduces a slow mode at about
this frequency in addition to the intended dominant
closed loop fast mode at about @y y. The general
problem of slow modes in control systems with
wiggling’ loop transfer functions is analysed in my
latest book (Eitelberg, 2000).

Although the slow supply redistribution mode at @
cannot be avoided in the supply plant outputs, its
residual in the accumulator output can be reduced to
zero by 'straightening out the terrace’ in L. That means
that the hand-over will have to take place along the
line L'y in Figure 4 and some low frequency portion
of L must become (significantly) steeper than the
previously mentioned —30 dB/dec. If the hand-over
frequency @, is sufficiently low the modified Ly



will be conditionally stable, otherwise it will be
unstable without the new loop closed and operating
within its supply limits. The main condition for overall
stability is that Ly dominates L.y by magnitude where
the non-minimum phase-lag is significant in Ly —
then one should be able to design a stable L with the
gain cross-over frequency @ y 0f Ly.

The advantage of increasing the hand-over frequency
@y, is in more small signal load regulation burden
falling on the existing plants and correspondingly less
on the new plant. Therefore, according to linear
system theory, a less powerful and cheaper new plant
needs to be purchased than in the case of the cautious
design.

Achieving better small signal economy or
performance with unstable (or conditionally stable)
Ly could (and very probably would) be a Pyrrhic
victory! Even temporary saturation of the plant Py by
sufficiently large load deviations can lead to overall
system limit cycling (‘instability' of the linear system
theory). In my opinion, this is the most amazing
peculiarity of load sharing systems.

Avoid Pyrrhic victories:

Base your design of the conditional supply loop
L¢y on an unstable (or conditionally stable) closed
loop L.y, only if you really know what you are
doing (or if you have adequate insurance).

Be very circumspect when designing master
controllers for combined plants with fixed load
sharing structures — important information is in
the individual loops.

Be very circumspect when tuning slow loops

while fast loops are operating — impressive
(small signal) linear performance can be achieved

at the cost of potentially disastrous (large signal)

operating problems.

I did not suspect the above stability problem during
my development of the design procedures, it surprised
me when I could not make one of my apparently good
designs work, took some considerable effort to
explain, and much more effort to overcome the
obstacle without compromising the performance.
Figure 7 gives an idea of what can be achieved with
some non-trivial design effort.

I should point out that well-designed cascaded
feedback loops inherently suffer from the ‘Pyrrhic
victory syndrome’ A solution seems to be in
acquiring an inner loop sensor with sufficiently wide
range. This is a question of implementation which
goes beyond what I can explain here, but see Eitelberg
(1999).
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Figure 7: Illustration of load distribution between slow
and floating fast supply. The fast supply limits are 0
and 60, it is biased to 20. The slow supply limits are 0
and 200. Same plant and load as in Figure 6, different
control system structure.

5 CONCLUSION

Two of the arguably most interesting peculiarities of
load sharing control are the cross sensitivity and the
Pyrrhic victory syndrome (the conflict between small
signal performance and plant operability). Both
concerns are just as relevant in general multivariable
control systems.
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Abstract: The Aero-Electric Power Station is the ultimate solar power station, utilizing the dry, hot air
of Earth’s desert zones. By spraying water at the top of e.g. a 1200 m tall chimney with a diameter of
400 m, the air is cooled by evaporation and flows downwards through turbines at the bottom,
generating 380 MW of net electric power. The Aero-Electric Power Station is still on the planning
stage, and this paper belongs to a long series of feasibility studies.

The current “truth” model of the Aero-Electric Power Station is a one-dimensional computational
partial differential equation model, having the air density, the air velocity, the temperature, the
humidity of the air, and the mass of the evaporating droplets as state variables, combined with a turbine
model whose state variables are the air velocity through the turbine and the rotor angular velocity.

The external weather conditions, defined as the air pressures, temperatures, and humidity at the top and
bottom of the tower, determines the optimal operating point, i.c. the optimal water spray flow and
turbine velocity that give the largest net power. The gross power produced by the turbine is partly
delivered to the grid that is assumed to accept all it gets, and partly to pump sea water to the lower
water reservoir at the bottom of the tower, and from the lower reservoir to the upper reservoir at the
top. The reservoirs make it possible to use the pumping power as a control input in addition to the
spray flow rate.

For each operating condition it is possible to approximately model the Aero-Electric Power Station
plant as an uncertain unstable irrational transfer function, with the deviations from the nominals of the
delivered turbine power and spray flow as control inputs, and the deviation from the nominal of the
rotor velocity as the output. Changes of external humidity and temperatures are typically very slow
with diurnal and slower variations, and hence these changes can be taken into account by slowly
changing the operating condition. The same holds with respect to the slowly varying mean external air
pressures. Wind changes, however, will cause significant disturbances in the external air pressures at
the top and bottom of the tower in the frequency range 0.002 — 0.2 Hz. Therefore deviations from the
nominals of the external top and bottom air pressures are included as disturbances in the model for
regulation, whereby the regulator is to be designed to keep the rotor velocity constant at its nominal
value. Thus the plant model has two disturbances (external air pressures at top and bottom), two control
variables (turbine power, and spray flow), and one output (rotor velocity), without a cascaded structure.
Hence this problem is a paramount case for robust load sharing control.

It turns out the set of possible operating conditions impose such a large uncertainty in the transfer
function model that it is impossible to solve the regulation problem with one linear feedback regulator.
The set of operating conditions is thus divided into overlapping subsets. For each subset a robust linear
feedback regulator is designed by QFT, in such a way that the load of regulation is shared between the
two control inputs. Gain scheduling should then be implemented to follow the slowly changing
operating condition from subset to subset.

In this paper the load sharing QFT design is demonstrated for one subset of operating conditions, with
closed loop simulations using the “truth” model. Problems that remain to be solved include, inter alia,
the design of the gain scheduling algorithm, the use of feed-forward from disturbances, and the
development of a multi-turbine three dimensional “truth” model and the solution of the subsequent
MIMO design problem.




1. Introduction

The Aero-Electric Power Station 1is the
ultimate solar power station, utilizing the dry,
hot air of Earth’s desert zones. By spraying
water at the top of e.g. a 1200 m tall chimney
with a diameter of 400 m, the air is cooled by
evaporation and flows downwards through
turbines at the bottom, generating 380 MW of
net electric power. An artist’s view of an Aero-
Electric Power Station is found in Figure 1.
The Acro-Electric Power Station is still on the
planning stage, and this paper belongs to a
long series of feasibility studies. An overview
of the principles and main design issues is
found in e.g. Gueta (19993), Zaslavsky (1997)
and Zaslavski et al, (1999).

Onc of the major operational problems of the
Aero-Electric Power Station is to avoid so

called salt spray. The water sprayed at the top
of the tower will of course be salt ocean water,
in order not to waste costly and scarce fresh
water. If the droplets evaporate completely,
powdered salt will pass through the turbines
and potentially harm the surroundings. Studies
have shown that at optimal operation, the
amount and size of the droplets should be such
that the evaporation increases the salt
concentration in the drops from 4% to about
20%. Then the remaining salty drops will be
collected outside the turbines, and led back
into the ocean. As an additional benefit, the
humid outlet air will in part dew irrigate the
surrounding areas. It is clear that to avoid salt
spray, efficient feedback control might be of
importance. The present study does not deal
with the salt spray avoidance control problem
directly, but with maintaining the operation
near optimum.

Qggﬁ ﬁ&,ﬁm%d @k%

Figure 1. An artist’s view of the Aero-Electric Power Station. Note that this view is inexact since the
drops will not evaporate completely, but exit through the turbines to be collected outside.
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Figure 2. The air temperature inside, Tin,

and outside, T

our the tower vs. altitude, when water

droplets of diameter 150 um are sprayed at the top of the tower, in a quantity sufficient to saturate the

air with vapor.

The thermodynamic principle of the Aero-
Electric Power Station is the different adiabatic
heating of the humid and cool air inside the
tower and the dry and hot air outside the tower,
as displayed in Figure 2. The cool and humid
air inside the tower is heavier than the outside
air and flows downwards. The created
pressure difference between the inside and
outside air at the bottom of the tower drives the
turbines. The potential gross energy due to the

cooling, E, [J/m®] is given by

A T -T
E = [ (pu(x) =P (%))sce= pgH, .

)

where P, [kg/m®] is the density of the air

inside the tower, O, [kg/m’] is the density of
the air in the atmosphere, g is the constant of
gravity, H . [m] is the total height of the tower,

andT, [K] and T, [K] are the temperatures

out

inside and outside the tower, respectively.
Note that E, is approximately proportional to

the mean difference between T and T,

T T. denotes the mean inside

Tour “Lin - in

temperature. It is hence important to spray a
sufficient quantity so that the air inside the
tower is saturated with vapor and the

temperature profile follows the wet adiabatic at
all heights, as T, in Figure 2. With an

in
insufficient spray discharge, complete
evaporation will take place at some height, and

from that height and below the T, profile will
be parallel to the dry adiabatic of 7, in

out

T,

Figure 2, and hence m Will be less

out

than maximal.

A slow initial cooling at the top of the tower
will decrease the value of E_ in (1). It has

been shown (Zaslavski et al, 1999) that for net
power optimal operation, surplus spray
discharge is necessary, in order to ensure fast
evaporation and a fast drop in temperature at
the top of the tower, see Figure 2.
Consequently, water drops will exit the
turbines together with the humid air. Ideally,
infinitesimal droplets should be used.
Available spraying equipment is capable to
produce droplets with a diameter of 150 um.
The optimal surplus discharge is such that the

1



size of the droplets will decrease to a diameter
of about 87 pum at exit, thus also avoiding salt
spray. As stated above the salt concentration in
the droplets will increase from 4% to 20%, the
latter figure also being the limit for efficient
water vapor evaporation from the droplets at
the bottom of the tower. Larger surplus spray

discharge will increase gross power
production, since a large part of the kinetic
energy of the remaining droplets can be
retrieved in the turbines, but net power

production will decrease due to the pumping
losses.

2
d
-
=
e
@
2
[
P
a
i
=
@
oy
B
g
S
o
Entrance velocity [n/s]
[0-200--150 g@-150--100 [3J-100--50 [3-50-0 mo-s0 [I50-100 g@100-150
[J150-200 gg200-250 E9250-300 [J300-350 [J350-400

Figure 3. Potential net power [MW] as function of constant entrance air velocity, and constant spray
rate, for a 1200 m high tower with diameter of 400 m, sprayed with droplets of 150 um diameter. An
ideal tower model with an ideal turbine is used for the computation. The weather conditions are
Touf top,1)=293 [K], T, (bottom,t)=304 [K], atmospheric vapor density (humidity) = 20 [kg water/kg
air], Pyu(top,t) = 93000 [Pa], P, (bottom,t) = 106700 [Pa], where t denotes time [s].
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Figure 4. Net power [MW] as a function of constant rotor angular velocity and constant spray
discharge, for the tower and conditions described in Figure 3. The computation is done with a static
model that approximates the "truth" model in steady state with at most 15% error (Horesh, 2001), and

the turbine described in section X.
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The power production is proportional to the
product of air mass flow, and the air pressure
difference between inside and outside air at the
bottom of the tower, (or, alternatively, head at
the turbine). Both of these variables are
functions of the entrance velocity of the air

1op [m/s]. In Horesh (2001),

on which this paper is based, it is shown that in

into the tower, Vv

steady state, V,,, is a monotonous function of

the turbine rotor angular velocity, n [rpm], for
the studied weather conditions. It can be
shown, (Zaslavsky et al, 1999) that there exists
an optimal constant entrance velocity for
which the net power production is maximized.
Figure 3 shows the potential net power as a
function of constant spray rate and constant

Vigp - The dependence of the net power on

constant spray rate and constant rotor velocity
is similar, see Figure 4.

The “truth” model of the Aero-Electric Power
Station is a one-dimensional computational
partial differential equation model, having the
air density, the air velocity, the temperature,
the humidity of the air, and the mass of the
evaporating droplets as state variables,
developed in Borshchevski (1998). The “truth”
model took its current form in Horesh (2001)
where Borshchevski’s model was combined
with a variable rotor speed turbine model,
Ekelund (1994), whose state variables are the
air velocity through the turbine and the rotor

angular velocity. The model is described in
Section 2.

The external weather conditions, defined as the
air pressures, temperatures, and humidity at the
top and bottom of the tower, determines the
optimal operating point, i.e. the optimal water
spray flow and turbine velocity that give the
largest net power. The gross power produced
by the turbine is partly delivered to the electric
grid that is assumed to accept all it gets, and
partly to pump sea water to the lower water
reservoir at the bottom of the tower, and from
the lower reservoir to the upper reservoir at the
top. The reservoirs make it possible to use the
pumping power as a control input in addition
to the spray flow.

Figure 4 is generated by a static model from
Horesh (2001) that approximates with at most
15% error the steady state of the current
“truth” model (Section X) for the weather
condition defined in the figure caption. The net
power was computed for combinations of the

spray rate Q [m%/s] and rotor velocity n

[rpm] in a grid in Figure 4. The net power Ny
[Watt] and the pumping power, N, [Watt],
follows from the computation. In this way
optimal operating points are found also for
other given weather conditions, yielding set
points for all input and output variables.

.‘°\.o
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Figure 5. Wind spectrum, from Freris (1990)
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For each operating condition it is possible to
“locally” model the Aero-Electric Power
Station plant as an uncertain unstable irrational
transfer function, with the deviations from the
nominals of the delivered turbinc power (or
equivalently rotor load torque) and spray flow
as control inputs, and the deviation from the
nominal of the rotor velocity as the output.
Changes of external humidity and temperatures
are typically very slow with diurnal and slower
variations, and hence these changes can be
taken into account by slowly changing the
operating condition. The same holds with
respect to the slowly varying mean external air
pressures. Wind changes, however, will cause
significant disturbances in the external air
pressures at the top and bottom of the tower in
the frequency range 0.002 - 0.2 Hz, see Figure
5. Therefore deviations from the nominals of
the external top and bottom air pressures are
included as disturbances in the model for
regulation, whereby the regulator is to be
designed to keep the rotor velocity constant at
its nominal value. Thus the plant model has
two disturbances (external air pressures at top
and bottom), two control variables (turbine
power, and spray flow), and one output (rotor
velocity), without a cascaded structure. The
local transfer function model is described in
Section 3.

It turns out the set of possible operating
conditions impose such a large uncertainty in
the transfer function model that it is impossible
to solve the regulation problem with one linear
feedback regulator. The set of operating
conditions is thus divided into overlapping
subsets. For each subset a robust linear
feedback regulator is designed by QFT, in such
a way that the load of regulation is shared
between the two control inputs, using the load

sharing ideas of Eitelberg (1999). Gain
scheduling should then be implemented to
follow the slowly changing operating condition
from subset to subset.

In Section 4 the load sharing QFT design is
demonstrated for one subset of operating
conditions. The design was done with Qsyn —
the Toolbox for Robust Control Systems
Design, Gutman (1995). Some Closed loop
simulations using the “truth” model are
presented in Section 5. The results and their
implications are discussed in Section 6. One of
the conclusions is that QFT is eminently suited
to solve this challenging control problem.

Problems that remain to be solved include,
inter alia, the design of the gain scheduling
algorithm, the use of feed-forward from
disturbances, and the development of a multi-
turbine three dimensional “truth” model and
the solution of the subsequent MIMO design
problem.

2. The one-dimensional “truth” model

In this section a short overview is given of the
computational one-dimensional partial
differential model of Borshchevski (1998)
which is partially based on Gueta (1993). In
this model, the tower is sliced into 4 =20 m tall
slices (cells), and the time is discretized by
6 =0.05 seconds, such that a pressure wave
that travels with the speed of about 340 m/s
will hit each slice at least once in discrete time.
Let j denote the time step, and i the cell
number. The balance equations defining the
operation inside the tower follow. The air
mass balance equation (continuity equation) is

o 6
P, ()= p,Gj-D+ - (UG p,(-1)-U+14-1) p, (izj'l))+;Sv(iti) 2

where p, [kg/m3] is the humid air density, U [m/s] is the air velocity, and Sv [kg/mzls] is the vapor

source. The momentum balance equation is

o
UG, J) =U(i,j—l)—;U(i,j—1)(U(i+1,j—l)—U(i,j—1))—

(RG-1, )(p, G j=DT G j-D)=-p,i=LHTG=L D))+ 3

9
hp, (i, j=1)

UG,j-1>) 6 S.G,j
vol g—f Gj-1" | 6 SN

2H,

h PG j=1)




where R [J/kg/K] is the gas constant for air, T [K] is the temperature of the air, g [m/s/s] is the
constant of gravity, fis the friction coefficient, H, [m] is the height of the tower, and Sp [N/m2] is the
momentum source due to drag. The energy balance equation is

7]
T(@,J) =T(i,j-—1)—;U(i+l,j—l)(T(i,j—l)—T(i—l,j))—

6 RG,j-1, . . L .

- TG, -D(UGE+, j-D)=UG, j-1)) - 4
YT WUG+1,j-D=UG, j-1) @
6 W) L UG f

_—i: p, G, j-DCG, j-1) C/(,j-1) 2H,

where C, [J/kg/K] is the specific heat of air at constant volume, and Sp [3/m%s] is the energy source
caused by the interaction with the water drops. The vapor balance equation is

w,(, j) = wb(i,j—l)+%(U(i,j—1)wb(i—1, ) —U(i+1,j—l)wb(i,j—l))+%su(i, b))
)

where @, [kg water/m’ air] is the vapor density. The equations for the evaporation of a drop, E
b p y q y

[kg/s], the mass of a drop, m, [kg], the drop diameter, d, [m], and the velocity of a drop, U , [m/s], are

Ed (l7 J) = “P,,(ly ])G”Dadd (l’ ]) (wd (l9 J) - a)a (l7 ]))
dm,
=E (i,J
", (i)
()
6m
d,=73 2
p,
- - 8P4, (i.J)
U, (l’])zU(”1)+ 0.687
18, (1+0.15R £**")
o D
where o is the Sherwood number, Da is the Sv )=~ A Ed (l’ J) ™)
diffusion coefficient, d, [m] is the water drop
diameter, @, [kg water/kg air] is the where n,is the number of drops in cell i at
. - . 3, - time j , and A, [m?] is the cross section area of
saturation humidity of the air, p, [kg/m’] is the tower.
the density of the drop, X, [kg/m/s] is the The momentum source due to drag in (3) is
elasticity of the air, R is the Reynolds given by
number, and @, [kg water/kg air] is the n,
1 . S, =—*gm, 8)
humidity of the air, computed from (5). The A

4

vapor source in (1) and (5) is given by
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The indices i , j are dropped for convenience.
The equation for the energy source caused by
the interaction with the water drops is

n

S, :-;;—(v-kandd (T,~T)+LE,)

ar,

—L = v-knzd,(T,-T,)+LE
df mdcl"l( a d( a d) d)

®

where v is the Nusselt number, &, [J/(Ksm)]

is the thermal conductivity of air, T, [K] is the
temperature of the drops, and L [J/kg] is the
evaporation encrgy for water. C,; [J/K/kg]=
drop specific heat at constant pressurc. The
indices i ,j arc omitted.

The boundary conditions for the tower are
governed by the following equations. The
humid air density at the top of the tower,

p,(0,2/0.05) [kg/m®] is given by

P ,t

£,(0,1/0.05) = P (t0p1) (10)
RT:)ut (top’t)

where P (top,t) [Pa] is the outside

atmospheric air pressure at the top of the
T, (top,t) [K] the
atmospheric temperature at the top of the
tower, and, as mentioned above, R [J/kg/K] is
the gas constant for air. The air velocity at the
bottom of the tower, wo(f) = U(61, 10.05)
[m/s] is given by

tower, is outside

_maD, (1)

Voo (1) = ” 1)

where m is the number of turbines, D [m] is the
diameter of the turbine, and v (f) [m/s] is the
velocity of the air through the turbines, given

(12).T,, (top,t) constitutes the
“@, the

atmospheric vapor density equals @, (O, j)in

below by

boundary condition for while
(5). The initial water drop velocity at the top of
the tower, U, (0, j), is neglected since it
tends very quickly to the drop velocity in (6).
The initial drop diameter, d, =d, (O,j)
[m], is assumed to be constant in this study =
150 pm, but could be used as a control
variable. The initial mass of a drop follows
from (6). The spray flow rate, 0,,(f) [m¥s], is a
control variable, from which the number of

initial water drops, n, (0, j), follows from
d, (0, ]) and (6).

The turbine model is adapted from Ekelund
(1994), and contains two differential equations.
The differential equation for the air velocity
through the turbine, vy, (t) [m/s] , is

Cp
2L,

Vo (1) = (1)) (12)

(v;ot (t) - vlzur

where C » is the efficiency of the turbine and
diffuser system, given by a table (Krivchenko,
1994) L, [m] is the length of the turbine, and

Vo) [m/s] is the “potential” air velocity,
given by

25600(3200-n(t)- p+ 2\/—82944q2n (1)’ +81¢°H,,, +2500p°H ,,q°) 4
Yo = 81q +2500p° zD’
J _I)in (61’-,)—Pout(6]’j)
gp, (61, /)
61, j

P, (61, ]) - p_“(__L)

RT (61, j)

(13)
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where n(f) [rpm] is the rotor angular velocity, p
and ¢ are constant turbine parameters,

H [m] is the “potential” head, computed

according to static head in Pnueli and
Gutfinger (1992), P;i,(61,)) = P,(bottom,#/0.05)
[Pa) is the internal pressure at the bottom,
P,(61,)) = Pyu(bottom, #0.05) [Pa] is the
atmospheric pressure at the bottom, see the
atmospheric model in Wallace and Hobbs

(1977).  Pu(0j)= P, (top,t/0.05) is a
boundary condition. 7(ij) is given by (6),
70,) =T, (top,1/0.05) is the boundary
condition for (6), and R [J/kg/K] is the gas
constant for air. Note that it is via (13), (11)
that the water spray enters as a control variable
that influences the air velocity through the

turbine in (12).

The differential equation for the rotor angular
velocity, n(t) [rpm], is

n(t) =
J 8n(t) P V60 ) m-n)

1 (D0 _(_2_75 j N, (®)
T

14)

where JT [kgmz] is the turbine moment of

inertia, m is the number of turbines, and N, (¢)

[W] is the power delivered from the turbines.
Note that

Ny (0= Ny (1) + 1, (1), (15)

where N, (t ) [W] is the net power delivered
to the grid, and N, (t) [W] is the pumping

power. The pumping power needed to lift the
water from the bottom of the tower to the
sprayers is

)= p,80,(t)(H, +Hy,)

N, (t
. ,

(16)

where H.; [m] is the loss of head in the water
intake and in the sprayer, and 7],is the

efficiency of the pumps. When optimizing the
steady state operation, (16) is used. (16)
prescribes that Ny(f) cannot be a control
variable independent of Q. (7). If there is water
storage capacity at the bottom and top of the
tower, Ny(f) may however be used as an
independent but limited control variable. In
this paper it is assumed that for dynamic
regulation, Q,(f) and Ny(?) are independent,

and that the capacities of the storage tanks are
sufficient.

3. The linear model around an optimal
operating point.

With the tower-and-turbine model in Section 2,
and a given constant weather it is possible to
find the constant spray flow rate Q,, and rotor
angular velocity n that maximizes the net
production of electrical power, Ny

To compute N, for given Q,, and n, one may,
e.g. solve the equations in Section 2 in steady
state, i.e. letting all derivatives and differences
with respect to time in each cell be zero.
Another route is to simulate the model in
Section 2 until steady state is reached which is
however very time consuming. In Gueta
(1993) a simple “ideal” model of the tower
without turbines was assumed and the
optimum was found with relative ease. Figure
3 is generated with the method of Gueta
(1993). Horesh (2001) formulated a simplified
algebraic steady state model based on the
equations in Section 2, that was shown in few
cases to give an optimum at most 15% off the
the optimum found by simulating the equations
in Section 2 to steady state. Figure 4 is
generated with the use of the simplified model
in Horesh (2001), combining equidistantly
gridded values of Q,, and n. The local optima
in Figure 4 are due to different values turbine
efficiency as a function of Q,, and n.

One may notice Figure 4 that the optimum is
not very sensitive to Q€ [16,18] m>/s for n

= 30.7 rpm.
The results both in Figure 3 and Figure 4
indicate that insufficient spray flow (in Figure

4, Q <16 m’/s) causes the net power to

decrease sharply. In Figure 4 the decrease of
turbine efficiency contributes to the sharp
decrease in net power for insufficient spray
flow. Surplus spray flow also decreases net
power but in a less drastic way, since the
potential energy of the water drops may be
partly recovered. This fact is beneficial for
avoiding salt spray.

In view of Figure 4, one possible way to
control the aero-electric power station is to
make use of an extremum-seeking controller
(Sternby, 1979) whereby set points for Q,, and
n are “probed” in the vicinity of the current set
point, in order to track an optimum that is
changing slowly due to the slowly changing
weather conditions. Such a configuration will
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require feedback control to keep @, and n at
their respective set points. An extremum-
seeking controller has to be designed wisely in
order not to lose too much produced power
during probing due to local optima and the
sharp drop in net power due to insufficient
spray flow.

In this paper another approach is taken. It is
assumed that a pre-computed operating table
prescribes the operating points for the spray
flow rate, and turbine rotor angular velocity,
00 [m3/s]and no [rpm] respectively, as a
function of current weather, yielding the
corresponding net optimal power, Ny [W]
and pumping power N,o The task of the
feedback controller is to keep An zero, where
An =n —ny, using AQ,, = Q.. — Q0. and ANy,
= N, — Ny, thereby, in view of (15), keeping
the net power Ny = Ny, in response to micro-
meteorological ~ wind  induced  pressure
disturbances, whose spectrum is given in
Figure 5. Such a scheme is feasible if the water
storage tanks are sufficiently voluminous to
accept temporary deviations from nominal
levels until the operating points are adjusted

anew with the use of the operating table. In
fact, the storage tank water levels may be used
as indicators that new operating points are
needed.

In this section the simplified linearized model
around an operating point is presented. For the
detailed development, see Horesh (2001).
Section 5 contains the design of the feedback
controller.

By linearizing the turbine equations (12)-(14)
around the state operating point [ng vm,o]T, one
gets a second order state space description with
constant coefficients:

{x(r>=Ax<z>+[Bl|Bz]w<z>

y(t)=Cx(t)

an

where x(f) = [An(f) Av(D]" = [((1) — no)
Vurl®) = Vo) T, w() = [ANR(t) AHpo()]'=
[(Ni(®) = M) (Hpodl®) — Hporo) 17 = [(N(5) =
NpO) (Hpm(t) - HpotO) ]T ’ since Nnct Nnct()y J’(t)
= An(t)= (n(t) - ng),

(60 Y 70,D°C,v,,0 60 Y 370,D°C v,
Ao \27 8J,n,’ 2 8J.n,
verCp avpm vlurOCp ’
L on| L,
60 1 0
B=[B |B,|=|\ 27 )J,mn, VuroC, OV, | [-and c=[0 1].
0 L, 9H,,|

From (17) the transfer function from w to y is easily computed,
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where the delay e ' was inserted to reflect
the dynamics of the turbine to load power

changes. While £ (s) connects y with a
physically manipulable control input, ANy, the
input into sz(s)is the intermediate variable

AH,,.. It is thus necessary to find the transfer
function or frequency function from AQ,, to
AH,,,, as well as the transfer functions from the
assumed pressure disturbances at the top and
the bottom, AP,(f) = Pou(top, )~Poun(top, 1),
and APy, () = Poy(bottom, £)—P,,g(bottom, ),
respectively, to AH,,. In fact, AH,, was
chosen as a control input in (17) rather than
e.g. Avy or Av,, because this enables the
decoupling between the tower and the turbine.
Approximate expressions for these frequency
functions were developed in Horesh (2001),
and summarized here.

Assuming that the tower is filled with an ideal
gas than undergoes in isentropic process, then

the pressure changes AP(x,t) [Pa] around a

2 2 2 3
+ (@J ﬂ'-puD Cp vturo

<
Q
<

wrd 3 pot

8J,L.n, n, on

2

stationary point can be modeled with the wave
equation,

*AP(x, *AP(x,
d (zx 1) _ 2 ) (2x t) 19
ot ox

where ¢ [m/s] is the velocity of sound. Assume
further that the boundary condition at the top
(i.e. equal to the pressure disturbance at the
top) is sinusoidal, with frequency @ [rad/s],

AP, (t)=AP(0,t)=A, sin(wt).  (20)

top

The turbine imposes the boundary condition

0AP(H,,t)

=0. 21
™ @n

Then (19)-(21) yield that

AP(x,t)= A, sin(ot) (cos (—alx)+ tg (2 H, )sin (—alx)) (22)
c c c

From (22) it is easy to find that the resonance
frequency is @, = (mc)/(2H,)=0445
rad/s for H.=1200 m. According to Figure 5,

the subset of the micrometeorological range in
which the pressure disturbance has a
significant contribution is about to 0.02
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Hz=0.126 rad/s, and hence one may assume
that @ < @_ . Then, one has from (22) that

_ A, sin(at) _ 1 AP(O,I)

- cos(@wH. /c) ~ cos(wH, /c)
23)

AP(H ,t)

By the use of Bernouilli’s equation (Pnueli and
Gutfinger, 1992) on which also equation (13b)
is based, one gets

AIiﬁm (t)

1

" gp.(H_.1)cos(oH_Jc)
(24)

Equation (24) can be interpreted that a
sinusoidal pressure disturbance of sufficiently
low frequency is amplified with a frequency
dependent gain. If the time dependent variable

p,(H_,1) is replaced by an uncertain constant

p, that covers the range of p_ (H_,1), then

one gets the frequency function

1

£, cos (wH_])
25)

AHPOI(jw): APlop(ja))‘

Note that for @ = @, and its harmonics (25)

has infinite gain. In the “truth” model, the gain
is but very large. In a similar way, one finds

AR, (j)

1
AH jw) =
"'"(J ) g[)acos((oLD/c)
(26)

where Lp [m] is the length of the diffuser.

For the details of the development of the
approximate transfer function from AQ, to
AH,,,, see Horesh (2001). It is based inter alia
on an averaging procedure of the equations in
Section 2. With reference to (4), (6), (9), the

use of the approximation 6w, =—C 6T / L

where O, [kg water/kg air] is the change in
humidity of the air due to the temperature
change 6T [K], and C,, [J/kg/K] is the

AP(0,1).

specific heat of air at constant pressure, one
may obtain the following approximation for
the static dependence of the temperature
change AT [K] at the bottom of the tower as a

result of a change of the spray flow AQ,

[m’/s],

d, AU’ 1
AT =202 |1 | & A0 1)
6Qw0 O-Dadd }/ C

pa

where U [m/s] is the average air velocity,
d, [m)] is the average drip diameter, and ¥ is
the difference between the temperature
gradient for humid and dry air, as in Figure 2.
However evaporation is a dynamic process, see
(6a) that may be approximated by a linear first
order model and the droplets have a finite
velocity, see (6d), which causes a delayed
response. One may therefore turn (27) into a
dynamic equation in the Laplace domain,

(28)

AT (x,s) is the Laplace transform of the
temperature change x m down the tower,

7, =(d,’A0) /(6QwooDac7d) [s] is the
time constant of the evaporation of the drops,
of. (6b), and x/U, [s] is the time delay of the

droplets. With the help of Bernouilli’s
equation, (1) may be turned into an an
alternative formula for AH,,,

AH _ J‘H‘ —AT(x) (29)
pa ) T

where T =7_;n [K] is the average temperature

inside the tower, we get from (28), (29) after
integration
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where also AQ (s) was replaced by

e " AQ,_(s) in order to represent in a simple
way the dynamics of the spraying equipment,
whereby AQ, (t ) should from now on be
interpreted as the command to the spraying

equipment. The model (18), (25), (26), (30) is
now complete..

It can be shown that the plant parameter values
for the studied aero-electric power station are
such that one of the poles of Pi(s) and Py(s) is
unstable. Let the unstable pole be —p;, and the
stable pole —p,. Let -z; be the zero of Py(s), &,

H,

c

1—e ™ | AQ,(s), (30)

the high frequency gain of Pi(s), k, the high
frequency gain of Pz(s) k, = kz/(gﬁa) ,
and

1 U 1)g =
kQ=:-——-(1——j—Ud. (31)

With this simplified notation, the block
diagram of the plant model (18), (25), (26),
(30), (31) isdrawn in Figure 6, and its
frequency function becomes, with § = jw,

MESLCIC) vgaiSOIE 25 s e

AQ, (s) 2o (5)
where
kGt
R(s)_(sm)(ﬁpz)
— k, . ko _e‘ﬁx o
B G Gy
P(s)= u
’ (s+p,)(s+p,)cos((sH,)/(jc))
P (s)= k:
(s+p,)(s+p,)cos((sL,)/(je))

It should be pointed out that the model errors
introduced by the approximations is partly
“compensated” by letting the parameters have
an extended uncertainty range with respect to
the ensuing robust control systems design.

The set of all operating conditions is
characterized by the following set of uncertain
parameter ranges (nominal values are

underlined): p;€[-0.054, -0.015], p»,e[0.33,
0.71], ze[0.27, 053], ke[24, 5.11-10™,
ke[0.006, 0.071], kpe[1.28, 21]-10%
7,€[0.09, 0.11], 7,€[3.3, 50],7, €[1.8, 2.2],
H,=1200, U, €[9.5,19], k,=k»/12, L;=160, and
c=340.
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Figure 6. Block diagram of the plant model (18), (25), (26), (30), with the parameters defined in (31)

and above.

Black diagram
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(¥ ] 10°

\
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Figure 6

Figure 7. Block diagram of the initially closed loop system, stabilized by the proportional regulator k =
10° in the ANy(t) loop. The plant block represents the block diagram in Figure 6.

4. Load sharing QFT design for regulation

The control systems should be designed such
that for all operating points the following
specifications be satisfied: i) the closed loop
system must be asymptotically stable; ii)
include an integrator such that An(f) —0 for
step disturbances; iii) the gain of the output
sensitivity function must be less than 2 for all
frequencies; V) |An(j@)/AP,(j)|<0.001 and
|An(j 0)/APyo(j@)<0.001 for @ < 1 rad/s,
excluding a small frequency range around the
resonance 0.445 rad/s ; v) minimum use should
be made of the control variable ANj(?).
Specification iv implies that all disturbances in
the micrometeorological range are damped, as
well as disturbances near the first resonance
frequency. Specification v is meant to ensure
that that ANy(f) will be operated within the
capacity of minimal storage tanks.

It turns out the set of possible operating
conditions impose such a large uncertainty in
the transfer function model of Section 4 that it
is impossible to solve the regulation problem
with one linear feedback regulator. It is also
even impossible to stabilize the closed loop
system with AQ, only, because of the
combination of an unstable pole, significant
delay, and uncertainty. On the other hand it is
easy to understand with root locus arguments
that it is possible to

stabilize k B, (s)/(1+kB(s))  with a

sufficiently large & provided 7,is sufficiently

small, i.e. globally stabilize the closed loop
system with a P-regulator in the ANy, (#) loop.
In our system k = 10° was sufficient. The
initially closed loop is displayed in Figure 7.
The compensated open loop, kPi(s), is
displayed in a Nichols chart in Figure 8,
together with the uncertainty templates for the
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global set of operating conditions. It follows
from Figure 8 that the sensitivity specification
iii is satisfied. The still insufficient disturbance
rejection is demonstrated in the Bode diagram
in Figure 9 of |An(j @)/ AP op(j @)
=|P3 (ja))/(l + kP, (ja)))| for the closed loop

configuration of Figure 7.

It should be noted that no attempt was made to
make the ANy(f) loop satisfy specifications

beyond stability and sensitivity, since, firstly,
as mentioned above, this was found impossible
for the full uncertainty set emanating from all
operating points, and secondly, specification v
prescribes that as much as possible of the
feedback burden should fall on the AQ,, loop.
It is however important that the system may be
globally stabilized by a simple controller in the
ANy(?) loop, even if other control loops fail.

-10 :
80 180 -140

-100 0 deg &0

Figure 8. Templates of the open loop kP(s) for the parameter combinations characterizing the
complete set of operating conditions (full uncertainty set), in a Nichols chart. The nominal plant is

marked with the template frequencies [rad/s].
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Figure 9. The disturbance transfer function |An(j@)/AP(j@) =|P3(ja))/(1+kP](ja)))| for the

closed loop configuration of Figure 7 in a Bode diagram. Due to finite numerical resolution, the
resonance peak at 0.445 rad/s does not reach infinity. The plant cases cover the full uncertainty set.

Due to the failure to find one linear feedback
regulator to solve the problem of regulation,
the set of operating conditions is thus divided
into overlapping subsets. For each subset a
robust linear feedback regulator is designed by
QFT, in such a way that the load of regulation
is shared between the two control inputs, using
the load sharing ideas of Eitelberg (1999).
Gain scheduling should then be implemented

to follow the slowly changing operating
condition from subset to subset, but this topic
is not treated in this paper.

Here, we will demonstrate the design for one
particular subset of operating conditions. It is
defined by the following shrunken parameter
intervals (nominal values are underlined):
p1€[-0.042, -0.029], p-€[0.55, 0.60],
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71€[0.44, 0.46], ke[2.77, 3.05]10°
k,€[0.020, 0.024], koe[3.31, 4.851-10%,
7,€[0.09, 0.11], 7,€[5.3, 11.9],7, €[138,

2.2], H=1200, U, €[9.519], k=kJ12,
Lp=160, and ¢=340.

According to Eitelberg (1999) the “slowest”
loop should be closed first, which in the
present case is the loop whose control input is
the water discharge AQ,,. Closing this loop first
will also satisfy specification v. The open
conditional water discharge supply plant is
given by the transfer function from AQ,. to An
in Figure 7,

L, (s) =2 (33)
1+kP (s)

whose templates for the shrunken uncertainty
are given in Figure 10. Due to the significant
phase lag and time delay in Ly(s), it was found
possible to satisfy only closed loop stability
together with an 8 dB output sensitivity
specification, rather than specification iii, see
Figure 11. It was not possible to raise the
bandwidth further. However, an integrator was
included in the controller Gy(s),

2-0.7s s

2-0.6s s J(
1+

+ 2
0.02  0.02

3107 14— | 1+—— | 1+
0.0003 )\ 0.002

G, (S):

thus satisfying specification ii. See Figure 12
for a block diagram of the system. Figure 13
displays the Bode diagram of
|An(j )/ AP o (j @)=

IR, (jo)/(1+ kR (jo) + G, (j) B, (jo)))
for the configuration in Figure 12. Clearly
specification iv is not satisfied. Hence an

70F )
| /
-ty \ \

10 r )
\

s N
s| 1+ I+—— | 1+
( 0.0007 ]( 1000 j(

4.1
&0} o~ /%g\f

-+
0.009  0.009° ]
34

R) ’ ) : N
— |1+ 1+
0.03 0.0011 0.01

additional AN, loop stronger than the
previously designed P-regulator has to be
designed, also to meet specification iii. The
ANy, loop could also be made such that
specification iv be satisfied in a “robust” way,
and to increase the bandwidth in order to get a
rapid disturbance response.

deg

<120 L oms b "
1400 A3 000 800

R4 14 400 <30 0

Figure 10. Templates for (33) for the shrunken uncertainty set, in a Nichols diagram. The nominal is

parameterized by frequency, [rad/s].
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Figure 11. The nominal compensated open conditional water discharge supply loop G(s)Ly(s) from
(33), (34), in a Nichols diagram, together with Horowitz bounds emanating from the closed loop output
sensitivity specification, \S1<8dB.

Black diagram
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Figure 6

Ay(s)

Figure 12. Block diagram of the system after the closure of the conditional water discharge supply loop
with the controller Gy(s) in (34). AN m is the control input for the subsequent final control loop.
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Figure 13. Bode diagram of \An(ja)/AP(j@)| =|P, (j@)/(1+ kR, ( jo)+G, (jo) P, (jw))| which is

the disturbance transfer function for the closed loop configuration of Figure I12. Due to finite
numerical resolution, the resonance peak at 0.445 rad/s does not reach infinity. The plant cases cover
the shrunken uncertainty set.
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The open conditional supply loop for the The templates of an( s) for the shrunken

design of the final ANy, controller is given as uncertainty set are displayed in Figure 14. In

the transfer function between AN, and An in order to attenuate IAn(j@)/AP,(je)! further in
Figure 12, the frequency range [0.0002, 0.03] rad/s, cf.
Figure 13, the following disturbance rejection
Pls was introduced:
L,(s) (+) (35)

396001

L 1 1

00 -50 0 50 100 150 200
deg

Figure 14. Templates for 109L53(s), with Lgy(s) defined in (35) for the shrunken uncertainty set, in a
Nichols diagram. The nominal is parameterized by frequency, [rad/s]. Notice the size of the templates
in comparison with Figure 8.
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Figure 15. The nominal compensated open conditional pumping power supply loop Gf (S)LS3 (s)
from (35), (37), in a Nichols diagram, together with Horowitz bounds emanating from (36).
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| an(s) | _|es+2:107)(s+5-10%)
18P, (5) 7| (s+2107)s5+5) |
(36)

The nominal compensated open conditional
pumping power supply loop Gf (S)LIa (s) ,

together with the Horowitz bounds emanating
from (36), with

10° (1.67s2 + 0.5s+0.0002)

@37

is displayed in Figure 15. Comparing Figure
14 and Figure 15, it is clear that specification
i is satisfied. The block diagram of the final
system is found in Figure 16. Figure 17
displays the Bode diagram of
|An(j )/ AP o (j @)=

|2 (jo)/(1+(k+G, (jo)) B (j®)+G, (jo) B, (jo))

for the configuration in Figure 12.

G =
i s* +1000s” +9s +0.025
Black diagram
—AR[s)
R &Pwp[s)
[S}
»> Gd(S] w AD,(S)
» 10% o3 )] any
Figure 6
o (7 f[S)

Figure 16. Block diagram of the final control system. G{s) is given in (37), and G(s) in (34).
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Figure 17. Bode diagram of the disturbance transfer function for the closed loop configuration of
Figure 16, M(a@)/APoio)l =|P,(jo)/(1+(k+G, (j@)) R (jo)+G, (jo)P, (jo)). Due to

finite numerical resolution, the resonance peak at 0.445 rad/s does not reach infinity. The plant cases

cover the shrunken uncertainty set.
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Figure 18. Bode diagram of the disturbance transfer functions |\An(j@)/AP(j@) from Figures 9, 13,
and 17, for the nominal case of the shrunken uncertainty set.

5. Simulations.

The “truth” model of the Aero-Electric Power
Station in Section 2 will not exhibit the infinite
resonances seen in Figures 9, 13, 17, and 18,
since internal damping and friction is not
neglected. To check the control system, the
pressurc disturbance at the top was however
defined at a frequency near the first resonance,

AP, () =10-5in(0.45¢) (38)

1

Rater Spend v, time

in a simulation where the final controller
defined in Figure 16, and the plant was defined
by the “truth” model in Section 2. The results
in Figures 17 and 18 make us expect an
attenuation of about -40 dB. Figures 19, 20, 21
display the time domain response of n(z), and
the control signals AN,(), and Q,(9),
respectively. It is clearly seen in Figure 19 that
An(t) is attenuated to an amplitude of about
0.075 (around the nominal ny=34 rpm) that is
by —42 dB in comparison with (38).

3418 T y v - T v T
ETRLANe
&JJUJ
=
3
5
7
g M
&
3
3395
: H i H . : ,
. : . ‘ ) i .
339 L : i H
¢ 20 42 B & 95 120 148 183 180 0
tere [s]

Figure 19. The simulated response of n(t), as a result of a disturbance according to (38) in a
simulation where the controllers of Figure 16 were integrated into the truth model of Section 2.
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Figure 20. ANy(t) The simulated response of ANy(?), as a result of a disturbance according to (38) in a
simulation where the controllers of Figure 16 were integrated into the truth model of Section 2. Note

that N, = (27tn/60)M , where M [Nm] is the control torque exerted on the axis. With ng=34 rpm, it

holds that 3.56M=n. Note in the figure the controller needs about 3 MW peak-peak for control
purposes which is negligible in comparison to the produced net power.
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Figure 21. The simulated response of AQ.(f), as a result of a disturbance according to (38) in a
simulation where the controllers of Figure 16 were integrated into the truth model of Section 2.

6. Conclusions

The general conclusion is that it is possible to
design a regulator for the Aero-Electric Power
Station that satisfies stringent specifications,
using QFT and load sharing, for an uncertainty
set around a given operating point. Indeed one
might perceive a certain over-design in this

paper.

However, the design results implicitly
demonstrate the trade-off between the size of
uncertainty and achievable specifications. If
the disturbance attenuation specifications are
relaxed then the design problem would have

been solvable for a larger uncertainty set
around the chosen nominal. With larger local
uncertainty sets it will become easier to design
the global regulator by gain scheduling among
the local regulators. One way to gain schedule
is to switch regulators when the operating
point belongs to the intersection of two
adjacent uncertainty sets, for which local
controllers were designed. Such robust gain
scheduling is impossible if robustness and
uncertainty sets are not taken into account in
the local regulator design stage.

Another interesting issue is the presence of the
resonances at harmonic frequencies, see Figure
Damping these is a problem similar to echo
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cancellation in telecommunication systems or
active vibration damping. In this paper no
special measures were taken except strong
attenuation, but one could contemplate e.g.
comb filters or other measures.

It is expected that Aero-Electric Power
Stations will contribute significantly to the
needs of electrical power during the 21
century, particularly in desert areas where part
of the power will be used to desalinate sea
water. It is expected that their controllers will
be designed using QFT.
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Abstract: A recent result characterizing the set of all stabilizing Proportional-Integral-Derivative (PID)
controllers for a given linear time invariant (LTI) plant is used here to address the issue of achievable
performance with PID control. Specifically, we show how to determine constructively a) the attainable set
of closed loop characteristic roots b) the set of achievable frequency responses and c) a prescribed set of
loop shaping specifications. Items a) and b) utilize standard results from parametric robust control theory
on polytopic sets of polynomials and transfer functions. The problem of loop shaping for the given LTI
plant using PID controllers is formulated as a set of gain and phase specifications to be attained pointwise
at a prescribed set of frequencies. By describing these in the Nyquist plane with prescribed tolerances
specified using rectangular windows we are able to formulate the loop shaping problem as a linear
programming problem parameterized by a proportional gain. This combined with the linear constraints
describing the stabilizing set allows us to constructively intersect the stabilizing and specification sets and
obtain a yes or no answer to the question of whether a given loop shaping specification can be achieved
using some controller from the set of stabilizing PID controllers. The usefulness of such a formulation in
control system design cannot be overstated and is illustrated here

1. INTRODUCTION!

via electronic tubes, transistors, and integrated circuits

Despite revolutionary advances in control theory, the
PID controller retains its status as one of the most
widely used control techniques. This is largely due to
its built-in characteristics. It provides feedback; it has
the ability to eliminate steady state offsets through
integral action; it can also anticipate the future
through derivative action. In fact, the PID control has
gone through and adapted to many technological
changes ranging from pneumatics to microprocessors

! This research was supported in part by NASA Grant NCC-
5228 and NSF Grant HRD-9706268.
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(Astrom et al., 1995). However, the research in PID
control mainly focused in implementation issues such
as auto-tuning, gain scheduling, continuous
adaptation, etc...

In recent years, attention has turned to more
fundamental issues which provide theoretical insights
into PID control in the modern control context. One
notable development is the determination of the set of
all stabilizing controllers for a given single-input,
single-output plant and the resulting efficient
computational schemes for depicting this set. This
development revealed interesting aspects of the set




and the topology of the stabilizing set can be
exceedingly complicated (Datta et al., 2000). It was
found in (Datta et al,, 2000) that, for a fixed

proportional gain K ,, the stabilizing set is
characterized by a sct of linear inequalities in the

integral gain K,and the derivative gain K . As a

result, the two dimensional stabilizing set in K, -K
space, for fixed K, becomes a union of bounded or

unbounded convex polygons.

The present paper builds on the above development
and investigates the following questions. First, for a
given single-input, single-output linear-time invariant
system, how can we characterize the entire root space
in the complex plane that is achievable for closed loop
poles by all possible choices of stabilizing PID
controllers? Second, what is the achievable frequency
response in the Bode plot sense? In this paper, these
two questions arc elegantly answered by using the
result of in conjunction with standard results in
parametric control theory (Bhattacharyya et al., 1995;
Keel, 1994) on polytopic sets of polynomials and
rational functions.

Answers to above questions are directly related to the
achievable performance of PID controllers. For
example the achievable frequency responses give us
the maximum achievable gain and phase margins.
Despite extensive use of PID controllers, these
questions regarding the achievable performance of ID
controllers have never been analytically investigated
before.

We next consider the problem of loop shaping for a
given LTI plant with a PID controller. The loop
shaping problem can be stated as follows: the designer
desires that the frequency response of the open loop
controlled system should have prescribed gain and
phase, within tolerances, at a chosen set of
frequencies. This is a standard approach to design: for
example, see (Zbao et al, 1996) and references
therein. Our approach to this problem consists of
requiring that the frequency response of the controlled
system loop gain function should pass through
prescribed rectangular windows in the Nyquist plane.

This formulation in conjunction with the
characterization of all stabilizing PID controllers
(Datta et al., 2000) leads to a linear programming
problem whose solution determines the set of PID
controllers attaining the specifications within the
stabilizing set. The advantage of this formulation,
from the designer's point of view, is that it gives a yes
or no answer to the question of whether a given loop
shaping specification can be achieved with a PID
controller from the stabilizing set. In case the answer
is yes the entire set attaining specifications is also
obtained, and in case the answer is mno, the

specifications have to be relaxed or changed. An
example is given for illustration.

2. CHARACTERIZATION OF ALL STABILIZING
PID CONTROLLERS

The central result underlying the characterization of
all stabilizing PID controllers for a given SISO LTI
plant is the Generalized Hermite-Biehler Theorem
(Ho et al., 1999), which is essentially a root counting
formula. An alternative root counting formula was
given in (Keel et al., 2000). This is the version we use
here. To state this, let

8(s)=8,s" +--+0;5+9, )
=5, (s1)+58, (s7)

where 4, (s)and &, (s?)are components of

S(symade up of even and odd powers of s,

respectively. Then for every frequency @ €R, we
write

d(jw) = p(w)+jg(®) @

where p(0)=6,(-0?) and g(@)=w3d,(-w?) .
Let r(!) denote the open right half plane (RHP) (open

left half plane (LHP)) roots of the given polynomial.
Introduce the notation:

+1 if x>0
Sgr[x]=4—-1 if x>0 3)
0 if x=0
and let
d* f(x)
9 ()= | Q)

i

Theorem1 (Keel et al., 2000): Let the nonnegative real
zeros of g(w) be
0=w) <@ <, <<,
with respective multiplicities k;, i=0,1,---,¢, and let
@pyg =00
Then A. degree[ & (s) ] is even,
1-r = Sgr[g ™ (@)1(Sgnp*™" (@)~ SgnLp(@))])
H
+Y Sgnlg® (@) (Sgnlp(@,)) - Sgnl p(@;.1))

i=1

B. degree[ 6 (s) ] is odd,
1-r=Sgnlg™ (0¢)1(Sgn[p*™ ()] - Sgnl p(@))])
1—1
+Y Senlg™ (@,))(Sgnl p(@;)] - Sgrl p(@;.1)])

i=1

+ Sgnlg*) (w,)]- Sgrl p(@,)]




We apply the above results to the PID problem. Let
P(s) be a given plant and C(s) be a PID controller
where

_N(s) _N.(s*)+sN,(s%)
D(s)  D,(s2)+sD,(s%)

P(s) ®)

and
K,+KPs+KDs2

N

C(s)=

(6)

Then the closed loop characteristic polynomial
becomes

8(s,K,,Kp,Kp)=sD(s)+(K; +Kps*)N(s) @)
+KpsN(s)

Let us introduce

N(-s)=N,(s*)=sN,(s?). (8)

Then it is easy to verify that we have

8(s, K1, Kp, Kp)N9)|,_,, = P(@.K[,Kp)

®
+jq(@, K p)

where

p(@,K;,Kp)=p (@) +(K; —Kp®®) py(®)
q(@,Kp)=g,(0) + Kp q,(®)

with

p1(@)=-0’[N,(-0*)D,(~0*) = D, (-0’ ) N, (-»*)]
p2(@) =N, (~0%) + 0’ N, (-0°)

4,(®) = 0[D,(~0*)N (-0*) + 0D, (-0* )N, (-0?)]
3,(@) =[N, (-0")- 0’ N, (-0”)]

Let r(-)and /(") denote the number of open RHP and
open LHP roots of the given polynomial (),

respectively. Then we see that

I8(s,K;,Kp,Kp)N(=5)) —r(8(s,K;,Kp,Kp)N(-5))
[((6(s,K;, Kp,Kp))—r(8(s, K}, Kp,Kp))]
+ [N (=) = r(n(=s))]-

From the definition
o,[1=r()-10), (10)

we therefore conclude that &(s,K;,Kp,Kp)of n”
order is Hurwitz if and only if

6,[6(s, K}, Kp, KpIN(=)]=n+[(N - 5) = r(N(=s))]
(1D
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Now let us observe eq. (9). It is easily seen that the
coefficients of the polynomial p(w, K ;, K ) are linear
functions of K;and K,, andKpalso appears
linearly in the coefficients of the polynomial
g(@,K p). Thus, once we determine the real positive

roots, 0=@y <@, <w, <--<w;_of g(w,Kp)for a
fixed value of Kp, we can determine the set of sign
sequences Sign p(w;,K;,Kp), i=0,1,---,1 that
satisfy the condition given in eq.(11) from the
Theorem 1. Each of these sequences is a set of linear

inequalities, in K;and K, to be solved to determine
the stability region in (K,,K)space. By repeating
this over the K, axis, the entire stability region in
(K;,Kp,Kp) is obtained. In the following sections,

we use the above characterization of the stabilizing set
to constructively formulate and solve the problems
related to achievable performance with PID control.

3. ACHIEVABLE CLOSED LOOP POLES

In this section, we consider the problem of
determining the root space attainable in the complex
plane where the closed loop poles can be obtained by
all choices of stabilizing PID controllers. We call this
set the achievable root space. In other words, it is not
possible to find stabilizing PID controllers, for the
given system, such that the closed loop poles can be
located outside the achievable root space. Let

N(s) _ n, 8"+ mys +ng

Ps)= - P
D(s) s"+d,;s"" +-+dis+d,

. (12)

Then the characteristic polynomial is

5(s)=sD(s)+(K; +Kps +Kp s2) N(s)
=+ Kpn, )s" +(d,y +Kphy g +Kpny,y)s”
+(d,y +Kpny, 3 +Kpn, o +Km, )s" 4o
+(dy +Kpny + K ny)s +Kng,

(13)
The coefficients of the characteristic polynomial
8(s)are linear functions of the controlier

parameters K;, Kpand K . Furthermore, it was
established in the previous section that the stability
region in (K;,Kp)space, for every fixed K,, is a
single polytope or a union of polytopes. For each such
polytope, with fixed K, the set of characteristic
polynomials in eq.(13) is a polytope. Therefore, by the
Edge Theorem (Bhattacharyya et al., 1995; Bartlett et
al., 1988) the boundary of the root space of the set of
S(s)can be determined by computing the root loci

along the exposed edges of this polytope. By
repeating this computation over the stabilizing range




of Kp, we can determine the set of characteristic
roots achicvable. The example given in Section 6
illustrates the use of this root space computation in
design.

4. ACHIEVABLE FREQUENCY RESPONSES

The open loop transfer function of the system with the
PID controller is

L(s) = C(s)P(s) (14)
As C(s) ranges over the stabilizing set, L(s) ranges
over the corresponding stabilizing set which we
denote as Stab (L). The frequency response of each
L(s) in Stab (L) is the set of achievable frequency
responses. As we have seen before, the stabilizing set
is described for a fixed K pby linear inequalities in

(K;,Kp) . Thus, the set of achievable L(s) transfer
functions for a fixed K, by a polytopic set of transfer

functions. This fact allows us to determine the
corresponding achievable Bode plots by Stab (L)
using results on frequency response of polytopic sets
of transfer function developed in (Bhattacharyya et al.,
1995; Keel, 1994). Basically, the Bode magnitude and
phase envelopes that are achievable can be obtained
by scanning the exposed edges of the polytope. Once
again, the example in Section 6 illustrates the use of
this in design.

5. LOOP SHAPING VIA PID CONTROLLERS

In this section, we consider the problem of loop
shaping, i.e, for the given plant P(s), find C(s) such
that magnitude and phase plots of the loop transfer
function L(s)=P(s)C(s) are as close as those of a
prespecified loop transfer function L,(s). Typically,
the complete description of Ly(s) is not known.
Instead, data points (magnitude and phase) over
several frequencies are available. It is important to
note, at the outset, that, from the properties shown in
Sections 3 and 4, it is necessary that the frequency
plots of Ly(s) (or data points over chosen
frequencies) must lie inside the admissible envelopes.
Otherwise, it is impossible to determine a stable set
(K;,Kp,Kp)that approximates L(s). However, it
is in general difficult to find a stabilizing controller
that has the magnitude and phase plots of its loop
transfer function to exactly coincide with those of a
chosen L (s). Therefore, it is reasonable to attempt to

achieve these within tolerances. To formulate this
problem, write
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L(jw) = P(jo)C(jo)

_ P(jw)I:(Kl - sz.D) + joKp
jo
C(jw)
=[P, (jw)+ P, (jo)[(K, -@’Kp)+ joK p]
P(jo) JjaC(jo)
. J@
=[(K; —@*K )P, (®) - 0K pP;(@)]
R(w,K;,Kp,Kp) (15)
+ JI(K; —0*K )P, (0) - 0K p P, ()]
Hw,K; Kp,Kp)

Let @,,---@, denote the prescribed set of frequencies
where we wish to enforce frequency response
specifications. As state before, these specifications
must be stated with some tolerance so that the chances
of finding a controller are improved. This leads to the
following set of linear inequalities on the real and
imaginary parts of L(j®;).

o <R®,,K;,Kp,Kp)Se;", i=L-,k (16)
ﬂi_gl(wi3K13KP,KD)£ﬂi+a i=17"'9k (17)

for all selected i. The set of loop gain transfer
functions attaining the specifications above may be
denoted as Spec (L). This set is depicted in Figure 1.

Note that this set of inequalities describing Spec (L) is
linear in (K;,Kp). To determine if the specification
can be met, they need to be solved in conjunction with
the stability conditions. In other words we need to
intersect the stability set Stab (L) with the
specification set Spec (L). Since the latter are linear in
(K,,Kp)for a fixed Kp, our strategy for design is

clear. First, fix Kp to solve the linear programming
problem in (K,,K ) obtained by adding the stability

conditions to the loop shaping conditions in egs.(16)
and (17).

Fig. 1. Loop shape satisfying specifications

Repeat this procedure for different values of Kp
within the stabilizing range. If no solution exists to




such linear programming problems, the specifications
cannot be achieved. Conversely, the set of all
(K;,Kp)which satisfy the augmented linear

programming conditions for a given K represent the

set of solutions that achieve the specifications. This
type of computation is illustrated in the example.

6. EXAMPLE
Consider the control system with the plant

3 42
P(s):N(S)— s —4s" +s5+2

D(s) s +8s* +325% +465% + 465 +17

and the PID controller be
K
C(s)=Kp +—I+KDS.
s

The characteristic polynomial is

5(s,K;,Kp,Kp)N(=s)=[s2(~125® ~180s* —183s”
+75)+(K; +Kps?)(=s® +14s* —175% +4)]
+s[(—s® — 655 +2465* — 2257 +34)
+Kp(~s® +145* —175% + 4)].

We have

P, (@) =-120° +1800° ~1830* - 750°
P, (@) =0° +140* +170% +4
71(0) = —0° + 650" - 2460° +220° + 34w

g, (W)= 0" +140° +170° + 40
and

8(s, K1, Kp, Kp)N(=s)|,_,

=p(w,K;,Kp)+ jg(®,Kp)
where

p(@,K;,Kp)=p(@)+(K; - Kp0?) p, (@)
g(w,Kp)=g,(0) +Kp g,(®)

For a fixed K, we compute the distinct finite zeros
of g(w,Kp)with odd multiplicity’s, say, w, =0,
@, ;. We have

degree[6(s,K;,Kp,Kp)|=n=6
degree[N(s)l=m=3
I(N(-s))=2
r(N(-s))=1.
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Suppose, for example that K , =- 4, then we have
w, =0, @, =0.4265, w, =2.3639, w; =7.4531.
From eq. (11),

1(6(53K19KPaKD)) - 7(6(5=K15KP,KD))
required to be 6
—[I(N(=s)) ~ r(N(—s))J =7 (required for stability)
2-1=1

By applying the formula in Theorem 1 (for the odd
case) we have

7 = Sgnlg(@o,~4))(Sgnlp(@e, K 1, K p)]
- Sgn[p(w,K;,Kp))
+ Sgr[g(@,,~H))(Sen[p(@y, K 1, K p)]
- Sgn[p(w,,K;,Kp)D

+ Sgn[g(w, ~M))(Senlp(@,,K ;. K )]
~ Sgn[p(e4,K;,Kp)])

+ Sgnlg(w;,~4)ISgnl p(w3, K1, Kp)]  (18)

Since
Sgr[q(wy,—4)]=1, Sgnlg(w;,~4)]=-1,

Sgn[g(w,,~M] =1, Sgnlg(w;,~4)]=-1,

the only feasible sign sequence that satisfies eq. (18)
is

{Sgnl p(wy, )], Sgnl p(@,, )], Sgnl p(®,, )], Sgnl p(w;, )]}
={, -11 -1.

This leads the following set of linear inequalities in
(K;,Kp) space that characterises the stabilising

parameters.

p1(@g) +(K; —Kp wé)P2(wo)>0
pr(@)+(K; —Kpof) py()<0
p1(@,)+(K; —Kp 03) py(@,)>0
pi(@)+(K; -Kp ‘032)P2(w3)<0

(19)

Typically, the loop shaping constraints are selected
using Bode plots. A designer selects a number of
frequencies of interest, and the upper and lower
bounds of magnitude and phase at each selected
frequency. These selected windows can be
reinterpreted in terms of the Nyquist plot windows in
our formulation, as shown in Figure 2. Thus the
wedge shaped regions are approximated by
appropriate rectangular windows shown in the figure.

For this example, we select four frequency points of

interest, a)i' for i=1,2,3,4, in this example and




2

,(:41\ Bound of Phase

e Bound of Magnitude

Fig. 2. Bounds of magnitude and phase

approximate the corresponding wedge shape windows
by rectangles, and have

o <R K, Kp,Kp)Se", i=1-k
ﬂi—SI(w;’KI’KD)Sﬂi+7 i=17"'9k

where (o] ,@;") represent the lower and upper limits

of the real and image parts of the rectangle shown in
Figure 1. Thus, the additional linear inequalities are

R(a);,KI,KP,KD)gaiJ', i=1,2,3,4
—REwiyKlsKP3KD)S_ai_’ i=1:25354 (20)
1] ,K;,Kp)<B;” , i=1,234
—I(w] ,K;,Kp)<—B;" i=1,2,3,4

As discussed, the region satisfying the set of
inequalities in eq. (19) gives the stabilizing parameter
set. On the other hand, the set of inequalities in eq.
(20) gives the set of controller parameters satisfying
loop shaping conditions or specifications. Therefore,
by solving egs. (19) and (20) simultaneously, we have
the controller parameter set satisfying both
stabilization and loop shaping conditions. Figure 3
shows these two sets.

Fig. 3. Stabilization and loop shaping for Kp=-4

Figure 4 shows admissible Bode plots (bounded by
dotted lines) that correspond to the stabilisation
region. This means that any Bode plots passing
outside this region cannot be realized by any

stabilizing PID controllers when Kp= - 4. w; for
i=1,2,3,4 indicate the set of design frequencies and
the envelopes depicted by solid lines are the design
envelopes. The design objective is to find a set of
controller parameters that results the Bode plots of the
corresponding loop transfer function L(ja) located
inside the design envelopes.

Finally, we select a set of controller parameters inside
the loop shaping region shown in Figure 3, that is
Kp=-4, K;=1, Kp=2
or
— 45 +2s*

Cs)= 1—-4s+2s
The controller is verified in Figure 5. With this PID
controller, feedback stabilization as well as loop
shaping are achieved.

Bode Tubes for Designed Region and Stabilizing Region when kp = -4

pe

Sain (Dh)

o

Phase (Degrees)
S Py

Frequency @ {Radians/Second)

Fig. 4. Admissible Bode envelopes and design

envelopes for K= -

Bode Tubes for Designed Region and Stabilizing Region when kp= -4

Gain (Ob)

Phase (Degrees)

10 10? 10’ 10
Frequency & (Radians/Second)

Fig. 5. Admissible Bode envelopes and design
envelopes for K , = - 4, and Bode plots of L(j®)
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Figure 6 shows the achievable closed loop poles
discussed in Section 3. As expected, the achievable
closed loop poles from the design set are inside those
from the stabilization set.

Imaginary Axis

-6 -4
Real Axis

Fig. 6. Achievable closed loop poles and design
closed loop poles for Kp=-4

7. CONCLUDING REMARKS

In this paper we have given procedures to determine
the performance achievable by a control system
consisting of a given LTI plant in closed loop with
PID controllers. By exploiting recent results giving a
“linear" characterization of the stabilizing set of
controllers we are able to determine the root space
attainable and the frequency response attainable.
Moreover we have developed a loop shaping
procedure based on linear programming that can
systematically search through the stabilizing set and
determine a PID controller if it exists. We expect
these results to significantly impact design
methodologies for PID contro! and to further research
on PID controller performance.
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Abstract: PID controllers are widely used due to the ease in their design and implementation.
Existence conditions of Quantitative Feedback Theory (QFT) controllers have been
established by previous studies. In this paper, some of these results are extended to the PID

controller implemented with a filter in the derivative term.

It is shown that the PID

controller gains cannot span the entire real space for a proper plant family. In addition, the
Nevalinna-Pick interpolation problem is used to establish a lower limit on the peak
magnitude of the nominal complimentary sensitivity function. Also, certain plant structures
are excluded from PID control if stability is to be achieved.

Keywords: Loop transfer, PID, QFT, Robust performance, Sensitivity function, SISO,

Stability criteria, Time delay.

1. INTRODUCTION

In traditional QFT, the controller is obtained by
shaping the nominal loop transfer function, L, on the
Nichols chart that has the stability and performance
bounds superimposed on it (Horowitz, 1991). This
stage relies heavily on the experience of the designer.
Several existence conditions for QFT controllers have
been developed in order to establish, a priori, if the
tedious process of loop shaping can produce a
controller for the general robust performance problem
(Jayasuriya and Zhao, 1994). In this paper some of
these existence conditions are extended to the case
where the controller structure is constrained to be a
PID controller according to:

1 sk k,s?+k,s+k
Ko () =k [1+—+——2 | ==L 2273 (1
o () *’[ k,s Ts+1] s(Ts+1) )
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where k is the controller gain, k; is the reset time,

k, is the derivative coefficient and T is the time
constant of the filter in the derivative term. k;, k, and
k; are defined as k, +ka, kp +T/k,, 1/k,

respectively.

2. STABILITY OF A TWO DEGREE-OF-
FREEDOM QFT PROBLEM

The QFT problem for a single-input-single-output
(SISO) system is stated (Nordgren et al., 1994):
synthesize a controller such that the uncertain
feedback system is internally stable and:

1)

is exponentially stable Vo € Q c R*®

(Robust Stability) where a is the vector of q
bounded and  continuous uncertain



parameters belonging to the differentiable
manifold Q.

2) Al0)< T, (j0)] < B(®) Vo (Robust

tracking performance), T = FL
1+L

<M;(0) Vo,

3) Mwn=ﬁ{@5

Vo e Q (robust disturbance
accommodation)
The above is a statement of the general QFT robust
performance problem. It was shown in Nordgren et al

(1994) that robust performance of a system is
guaranteed if

’M'l(co)s(oc,jconr|H(a,ju))m(w)|Sl, Vo, Voe Q

subject to the satisfaction of the robust stability
condition of H = I—LI: Vo e Q where the general
+

uncertain plant family is given by
P(s) = P(a,)[1+A,(s)]

and

A, (jo)| < m(e) € RH™,

KII(s+2, )TT(s? + 28 0,5+ o
: ! ) NVo<o,

$* TI(s +p, TI(s? + 28, ;s + 00
k 1
P(a,s) =

Vozw,

where

L(o,s) =K pp (S)P(0,8),

L(s) =Kpp ($)P(s), L, (s) =L(et,,8) =Ky ()P, (5)
P (s) =P(0,,8), o, is the Horowitz’s universal high
frequency (defined as the frequency after which the
phase variation of the parametric plant set is
essentially zero) and M(w) is the infimum of all
kszi9Cj9§]swjawlsTspk
belong to o.. It is noted that the tracking specification
can be transformed to a sensitivity specification. It is

also noted that the relative degree of the plant remains
constant over the plant set.

sensitivity specifications.

A condition on the feasibility of the QFT problem is
that the feedback system involving only the
parametric plant set P(o,s) is robustly, internally

stable Voe Q.
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Define
, N

L(Q,s)=K NE:s) i
D(,s)
Defining A(,s) = A(a,s), Voe &, as an uncertain
polynomial function, letD, be the semicircular
contour varying along the imaginary axis from —jR to
jR avoiding the poles of L'(Q,s) on the imaginary
axis by arbitrarily small semicircles centered at these
poles and then into the right-half plane from (0, +R) to
(0, -R) along a circle of radius R, centered at the
origin and chosen such that all right-half plane zeros
are included in it.  Stability is established by the
following theorem for the general plant with time
delay:

THEOREM 1: (NORDGREN ET AL., THEOREM 2)

Given the loop transmission function,
, N Q —sT
L(Q,s)e™ =K NEysje ™ R assume that
D(L,s)
=K Ny (€, s) is strictly proper and that there
D(Q,5)

is no closed right half plane, {,, pole-zero

cancellation in L (Q,s). Then the time delay
feedback system with the characteristic function given
by:

Z(Q,s) = D(Q,s)+Ke ™" N(€,s) =
a (Q)s" +..+a,(Q)+Ke™[b, (s +...+b,(Q)]

has no zeros in the closed set D, € , if and only if:
i) for Vse Dy

and
ii) 0e Z(Q,s), Vse oD where dD,, is the contour

of Dy

some o =0, Q,7Z(x,,s)#0

Proof:
See (Nordgren et al., 1994 )

For the special case of plants without time delay, the

above theorem reduces to the lemma in Jayasuriya and

Zhao (1994) given here as Lemma 1.

Let the proper compensator transfer function be

N XC) Ny (25)
Q. (5) D, (0,5)

o

and the plant be P(a,s)=

and strictly proper:




Lemma 1:[Lemma 2.1 (Jayasuriya and Zhao, (199¢)]

G(s) stabilizes the whole plant family if and only if:

i) there exists an o, € Q such that
G(s) stabilizes P(s,0.,)
ii) 0¢ 3,(jo,Q), Voe [0,.0]  where

8, (jo, Q) A 1+ K ppp (j)P(joo, @)
Q,(jw)N, (jo, &)
Q, (j@)D, (jw, o)
iii) there are no imaginary axis pole-
ZETo cancellations in
Q, (JO)N, (joo, o)
Q,(jw)D,, (ju, )

Proof:
See (Jayasuriya and Zhao , 1994)

Robust stability thus requires the zero-exclusion
principle given as condition (i) in Lemma 1 and
discussed in Jayasuriya (1993). To satisfy the robust
stability condition, there should be no closed right-
half plane pole-zero cancellations in the product
P(s)K(s)pp, where K(s)rp Kpp(s)=G(s)is the
controller of equation 1 in this situation.

Also  there exists an o=o,such that
P,(jo)=P(jw, 0 )# 0 or P(jo,0,) does not contain
any imaginary-axis poles or zeros. In other words,

according to condition (ii) of Lemma it can be shown
that:

L(Go)s 0]

If there is no o, such that P(jw, o, )#0 then there
must exist several fixed frequencies ®,,...0, such that

Vo, VoeQ 2)

P(jo,,00)=0(ore) Voec Q  and no  more
imaginary-axis poles or zeros.

3. EXISTENCE CONDITIONS OF QFT
CONTROLLERS WITH A PID STRUCTURE

In this section, results would be developed that deal
specifically with PID controllers. Let the parametric
plant be:
N, (s,00 _
P(s,0)=————e™", ae Qe R*?
D,(s,0)

where o is the uncertain parameter vector of length q.

N
Let the PID controller be K, (s) =—5% as given
L (s

by equation 1. The loop transfer function is
N N,

N(EQ
L(S,(X) — P e—sr — ( 9S) e—sr .
D D, D(Q,s)

P
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It is assumed that P(s,cr) is strictly proper. K (s),

as implemented here, is proper. The characteristic
polynomial is:

3(s, o) = D(Q,s) + KN(Qs)e™ ?3)

where N (5,0) =p, (0)s™ +...+ Py, (@),
D, (s,0) =pg, (0)s” +...4p, (@), m<n.

N, (s)=k;s’ +k,s +k;, and D, (s)=Ts> +s.

The coefficient of the highest order term in (s, o) is
Tp,, withorder = (nt+2).

Allowing no change in plant order, i.e.
Tp,, #0 VPe g. Inother words, 0¢ p,,(€).

The controller has only two poles, one at the origin
and one at -T. To avoid loss of degree in the loop
transfer function, and also to insure it is proper, there
can be no pole-zero cancellation of the controller
poles. As is seen from the stability theorem given
earlier, the pole at the origin cannot be cancelled.
This reasoning lead to the following Lemma.

Lemma 2:

Plants of the form sP'(o,s) where P'(a,s) is of the
NP (S,(X) -5t

fi 7

D, (s, 0)
rational polynomials with no zeros at the origin cannot
be stabilized by PID control.

with N, (s,&) and D (s,0)as

Proof:

Since no pole-zero cancellation is allowed on any of
the controller poles (at —T and 0) in order to insure it
is proper, it follows that the plant cannot have a zero
at the origin since this would cancel the pole of the
controller at the origin

From the third condition of Lemma 1 follows
corollary 1:

Corollary 1:

Since there are no right half plane poles of K, (s) , it

is not possible to have closed right half plane pole-
zero cancellation in the loop transfer function




NPNk -st . .
L(s,o)) = ¢~*" provided such do not occur in the
Pk
plant transfer function.

This makes thc condition, that there be no right half
plane pole-zero cancellation, of Lemma 1 and
Theorem 1 unnecessary.

The next corollary is only applicable to strictly proper
plants.

Let the nominal plant be P(s,a_)=P, (s).

Corollary 2: [Corollary 2.2 (Jayasuriya and Zhao,
1994)]

, N, (s,0)
The plant family P(s,0)=———
D, (s,0)

P

stabilized if Oe {P, (5)/P(s, o)}, .

cannot be

Proof:

The loop transfer function is L(s, o) = P(s, 0)K , (5) -
But

Kpp(s)= _ML

L6040 Lol Ly 5,09= )
Pea,) PO P.G)

From Lemma 1 the robust stability is achieved if
L,(s) is stable and

. . P(j
S(iw,0) =1+ L, (j0) 242Y 4 0 Ve @, oe[0,e]
P, (jw)
C))
PG
8(jo,0) =0 if and only if L, (ja) 0%
P, (jw)
which is true if and only if the polar plot of L (jw)
-P,
intersects the value set 2 () . Since the plant
P(s, o) ojo

is strictly proper and K, (s) is proper, L (jw) is
strictly proper so that limL_(jo)=0. So if
W—yoo

Oe {P,6)/ PG, )} ;. = 8(s,0)|_,_ =0 and the

plant family cannot be stabilized.

For a plant family that is proper the following
corollary is useful.

Corollary 3:

P
For a proper plant family, let RAOK ={¢}, a
P(s,0) ).

value set, then the PID controller parameters must be
such that {¥}e L, (jo)| __.

Proof:

8(jo, 00) =1+ L, (j0) 292D L ¢ for stability.
P, (jo)
o
So if L, (j0) YUY _ 1 then the plant family is
P, (i)

unstable Voe Qor Ywe [0,] which is true if and
only if the polar plot of L _(jo) intersects the value

{ P, (5)}
set §———— .
P(s,0) |,

P, (jw)

Let Voe Q, {——
P(jo, o)

} € {¥}, a value set,

then for stability L, (jo)| __ ¢ {¥}.
Since L_(jo) =P, G0)Kpp, (jw) and P, (jw) is fixed,
then certain values of K, (s) must be excluded.

Sometimes the PID controller is implemented without
the filter in the derivative term. In such a case,
corollary 3 reverts to the general case of the zero
exclusion principle.

Corollary 3 leads to theorem 2 below.

THEOREM 2:

P, (s

f {—-ﬂg)—} is finite (plant is proper) then the
P(s, o) smjom

PID controller (implemented as a proper transfer

function) parameter gains cannot span the entire real

space.

Proof:
Follows from corollary 3.

Another result that will be developed uses the theory
that parameterizes all stabilizing controllers and
solves the Nevanlinna-Pick interpolation problem.
Certain theorems and definitions useful in developing
the results are first reviewed.

Let RH™ be the family of all stable, proper, real and
rational functions.




THEOREM 3:

Assume PeRH”. The set of all stabilizing
controllers, G for which the feedback system is

internally stable is: G = {——Q- :Qe RH” }

1-PQ
. N
If P is no longer assumed to be stable let P = M be

the coprime factorization of P over g and let X, Y be

two functions in RH™ satisfying the equation NX +
MY = 1.

THEOREM 4:

The set of all G’s for which the feedback system is

internally stable is given by: X+MQ :Qe RH™
y g y: YNQ .

Theorem 4 reduces to Theorem 3 when Pe RH™.

THEOREM 5:

Let C=N_ /M, be a coprime factorization over

RH". Then the feedback system is internally stable if
and only if (NN, +MM_ )" e RH".

Theorems 3 to 5 are well known theorems and the
proofs are omitted. For the proofs see, for example,
(Doyle et al, 1992).

Let {a,,..a,}, {b,,..b,} be sets of points in the
complex plane such that for a;, Re s > 0, a,,...a, are
distinct and |b;|<1 i=1,...n.. Thenif |G| <1, the

Nevanlinna-pick (NP) problem is to find G such that
G(a;)=b,, i=L...n., that is, the graph of G is to

pass through the point (a;,b;) where Ge RH™ and
6. <1.

Definition 1:

The NP problem is said to be solvable if G exists.
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Definition 2:

Associated with the NP problem data a,,b,,i=1,..n

. . . . 1-bb,

is the n x n matrix A whose ij element is —,
a; +a,

called the pick matrix.

Definition 3:

The NP problem is solvable if and only if Q20.
Lemma 3:
If the NP problem is solvable, then Q 20.

Proof:
Doyle et al, 1992

Definition 4:

Let A be the matrix with ij™ element — and B
a; +a,
: b;b;

with elements —

a; +a,
Then the pick matrix, A =A—-B.
Lemma 4:

|

If at least one of the b, #0, then vy, = \/X—_
where A, is the largest eigenvalue of A”B. For
the NP problem G(a;)=1vb;,i=1...n, y=20 the
maximumYy is 7y, suchthat y<vy_. .

Proof:
(Doyle et al., 1992)

For the standard 2-dof system, the transfer function
from the reference input to the output is:
PG

“1+PG

(5)

_X+MQ
T Y-NQ
T =N(X + MQ) ©)

Since P = E, G , then
M

The frequencies at which 1+ P(s, a)G(s) =1+L(s, )
is zero are characterized by L(s, oc)‘ . -1 or
P, (jo)

LoGoy=-pe ">

and the system is unstable.




P(jo,0) - P (jw)
P(jo, o)
L,(jo) _ L,(jo)P(jo o)
1+L (jo) P(jo,0)-P,(jo)
_ P, jOK(jo)P(jo, o)

P(jo,0)-P, (jw)

1+L, (jw) =

so the plant family is stable if and only if:

LG | [P GoRGoPGon] o 6 )
1+L,(jo)| | P(jo,0)-P,(jo)
(7)
Let
. L,(jo)
Ymin - Ksl:ljg?lgiﬂg m - (8)
Define T, (s) = 1 (NX+NMQ)

v
The following NP interpolation problem is then
posed: Find T, such that the following interpolation

conditions are satisfied:
To(z}):lNX(z}), i=L...n
Y

where z;,i=1,...,nare the zeros of NM including
those at infinity. It is assumed that plant is strictly
proper. Satisfaction of the interpolation condition
implies:

NMQ(z;) =0 ®

This further imply no right hand plane zero
cancellation in NM and Q and it follows that Q must
be stable.

The pick matrix is

A=A-7'B

1 _ bigj t

a; =2;,

where A, =——, o= L
178 43, " a +a;]
and b, =NX(z;). z; are the right half plane zeros

of NM.

Therefore, v, for which the problem is solvable is

-

A7B.

where A, is the largest eigenvalue of

Then a stabilizing controller exists such that:

u;gfw] min K 10

> Ymin

PO
1-P, /P
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Since
K P, € [f,00] Ve [0,0], 0 Q
I_PO/P u’ Ed b

wherepe Q.

Let W, = igf ]u then the following corollary is

obtained.
Corollary 4:
If ° <u_. , then the family of plants is
L, | H i y p
L PP
robustly stablc[i.c. {l+£ ‘;t KP ]") J

The above corollary can be used to check if a
compensator, Kppp (that stabilizes the nominal plant)
is robustly stable. In other words, if we can find a
member of the plant family for which the maximum

L
peak (i.e. L since any member of the family
+

0 [leo
can be chosen as the nominal) value specified is
violated, then that K is unacceptable.

Theorem 6:

P, (jo) |

1-P, (jo)/P(jo,00)|
L,(jo)

1+L,(jo)

entire family P(s,c).

If inf minK(jo) > Yo » Where

we[0,0] aef2

, then K stabilizes the

=3

.= min
Yomin K stabilizin g

Proof:
Follows from corollary 4.

Theorem 6 is a variation of Theorem 3.1 in
(Jayasuriya and Zhao, 1994):

P(jo, o)
P(jo,0) P, (jo)
exists a stabilizing controller for the entire family

If >%Y,..» then there

in
©c[0,00] 2R

P(s,0) where 7y, . =Ksni1£11f_ 1—4_% .
ilizin g| o JO -

Corollary 5:

Let inf S =l

© éfﬁ,m]nLo’ Hr




If v, <gr and the plant family satisfies the

conditions of Lemma 1, then the QFT controller
satisfies the performance specification characterized
in terms of the maximum allowable peak ., on the

complimentary sensitivity function.
Proof:
Obvious.

This corollary is useful in verifying whether a given
controller can achieve a specified allowable peak
value.

4. CONCLUSION

The result that the PID terms cannot span the whole
real space have been shown by using the zero
exclusion principle and the requirement that there can
be no right half plane or imaginary axis pole-zero
cancellations in forming the open loop transfer
function. This restriction on the pole-zero
cancellations was used to exclude plants with a zero at
the origin from possible PID control as implemented
in this paper. The Nevalinna-Pick interpolation was
used to establish a lower limit on the peak magnitude
of the complimentary sensitivity function. This would
be useful in controller performance analysis to check
if a specified peak value of the complimentary
sensitivity function can be realized.
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POINTING CONTROL FOR PRECISION FLIGHT TELESCOPES
USING QUANTITATIVE FEEDBACK THEORY

Anthony E. Bentley

Control Subsystems Department, Sandia National Laboratories, Mail Stop 0501, PO Box
5800, Albuguerque, New Mexico 87185-0501

A pointing control system is developed and tested for a flying gimbaled telescope. The
two-axis pointing system is capable of sub-microradian pointing stability and high
accuracy in the presence of large host vehicle jitter. To achieve the design specifications,
high-accuracy, high-resolution, two-speed resolvers were used, resulting in gimbal-angle
measurements stable to 1.5 microradians. In addition, on-axis inertial angle displacement
sensors were mounted on the telescope to provide host-vehicle jitter cancellation. The
feedback compensation was designed using Quantitative Feedback Theory.

1. INTRODUCTION

The two-axis gimbaled telescope is shown below in
Figure 1. This project was funded to retrofit the
telescope (which was built over ten years ago) to
incorporate the latest advances in servo technology
and thereby achieve an “order-of-magnitude” im-
provement in pointing accuracy and line-of-sight
stability. The telescope was retrofitted with preci-
sion resolvers and new (higher torque) motors. On-
gimbal Inertial Angle Sensors were also added to
enhance inertial pointing stability. A servo system
was developed that blends feedback from the resolv-
ers together with the inertial angle sensors to achieve
less than one microradian line-of-sight pointing
stability or jitter, £1.5 microradian pointing resolu-
tion and £30-microradian accuracy.

This paper will describe, the new servo system
including each sub-system, namely: the gimbal,
Inertial Angle Sensors (IAS), resolvers, Inertial
Measurement Unit (IMU), feedback compensators,
motor power amplifiers, and IAS notch filters. The
pointing performance of the refurbished telescope is
also presented.

Two separate models were used depending on the
operating mode of the telescope. For large re-target-
ing maneuvers, the telescope is a Multiple-Input
Multiple-Output (MIMO) servo system with signifi-
cant non-linear interactions between the two gimbal

axes. However, for small maneuvers, gimbal inter-
actions can be ignored—which reduces the model to
two de-coupled Single-Input Single-Output (SISO)
systems with disturbances. The command input is
labeled “R” while the main output is the inertial
pointing angle. Although, the gimbal angle is also an
output, it will not be controlled independently of the
inertial pointing angle. Axis de-coupling is possible
because both axes of the telescope are balanced—the
center of mass is very close to the center of rotation.

Elevation 1AS

Elevation
Motor

Azimuth £

Inertial Azimuth
Angle Motor &
Sensor Resolver

Figure 1. Telescope gimbal.
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A simplified flow graph of the servo system is
shown below in Figure 2. While only one axis is
shown, with a few parameter substitutions the flow
diagrams for both are identical. In Figure 2, and
throughout this study, the telescope angle definitions
arc as follows. The gimbal angle of either axis with
respect to its base is referred to as “0,” the inertial
gimbal angle is “Y,” and the angular position of the
gimbal base is a disturbance and is therefore labeled
“D.” The relationship between these angles is: 8 =Y
-D.

Figure 2. Single-axis (de-coupled) servo model

The pointing resolution and accuracy requirements
are imposed on the gimbal angle 6 measurement and
are achieved by using high accuracy resolvers and
resolver-to-digital converters. The resolvers provide
absolutc knowledge of the gimbal angle relative to
the telescope base to *30-microradian accuracy.
This is a physical limitation of the resolvers due
mainly to alignment limitations. The resolvers
provide an output, which is an analog modulated AC
signal. In order to use the resolvers as feedback
sensors, the output must be demodulated and
digitized. The resolver-to-digital converter circuits
provide digitized resolver measurements that are
stable to 22 bits. Thus the resolution of the resolvers
is 2 / (2%%) = 1.5 microradians.

The reference command “R” is the absolute line-of-
sight pointing requirement on the inertial output “Y.”
Because there is no low-frequency inertial sensor on
the telescope, we have no absolute DC measurement
of the inertial pointing angle “Y.” Thus, “Y” must
be estimated based on the attitude of the vehicle “D”
(which acts as a disturbance) as measured by the
Inertial Measurement Unit (IMU) and the gimbal
angle 6. An on-board navigation processor computes
the inertial command needed to track a point on the
ground, and subtracts from that command the attitude
of the vehicle, to issue the gimbal command “C”
which is the absolute pointing requirement on the
gimbal angle 6. These navigation computations are
not part of the servo system as described in this
paper. The command input to the servo system
herein described is the gimbal command “C.”

The commanded input “C” is the desired gimbal
angle 8, which if followed perfectly at low frequency
would cause the telescope to track the desired point
on the ground. It contains both the inertial attitude
data of the vehicle “D” and the line-of-sight informa-

tion from the navigation solution. However, the
high-frequency information contained in the com-
mand “C” is less than ideal for frequencies above
about 2 Hz due to bandwidth limitations of the IMU
as well as a variable latency in the vehicle attitude
data stream. Thus the on-gimbal Inertial Angle
Sensors (IAS) are used as local feedback sensors to
cancel high frequency telescope jitter.

In summary, the accuracy and resolution of the
telescope are performance measurements on the
gimbal angle ©, while the absolute line-of-sight and
line-of-sight jitter specifications are requirements on
the inertial angle “Y.” All four requirements must
be met in order for the telescope to track a point on
the ground with a stable (jitter-free) image.
However, since all pointing requirements are related
by the equation 6 =Y — D, the two outputs 8 and Y
need not be controlled independently of each other.
The system accuracy and absolute line-of-site
performance limit how closely the telescope can
acquire and center a given target in the field-of-view.
Once a target has been acquired, the system resolu-
tion limits how well the target can be tracked. The
line-of-sight jitter determines how much shaking and
blurring are seen in the final image. Assuming that
the servo system has large DC gain, the accuracy and
resolution specifications are both meet by the
resolver and resolver-to-digital converter designs,
while absolute line-of-sight requirements are the
responsibility of the aforementioned navigation
processor (not described in this paper). Finally, the
line-of-sight jitter requirements are met by the
careful design of the servo system whose description
follows herein.

The plant in Figure 2, labeled P(s), models the effect
of gimbal inertia “J,” that is: P(s) = 1/( Js9). In
reality there are also structural resonances in the
plant P(s) that are not represented in the model. The
telescope was being refurbished while the servo
controls were being designed, so it was not available
for study and identification of structural resonances.
Because of a tight delivery schedule, neither was
there enough time nor opportunity to fully study the
plant once the refurbished telescope was completed.
Thus, the structural resonances were never incorpor-
ated into the plant model. However, the effects of
said resonances were successfully dealt with in an
empirical manner using notch filters installed shortly
before delivery of the telescope. This is described in
a subsequent section of this paper.

The input to P(s) is torque “t,” while the output is the
inertial angle “Y.” The torque input to P(s) comes
from two sources: 1) W(s) which collectively
represents the motor windings, the power amplifiers
(which deliver current to the motor), and a feedback
compensator, and 2) F(s) which represents gimbal
friction. Of course, friction opposes the relative
motion and thus carries a negative sign.

The gimbal angle © is measured by two high-

accuracy resolvers (a 1x and a 64x resolver). In
Figure 2, the resolvers together with the Resolver-to-
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Digital (R/D) converters are lumped together and
labeled Q(s)—and for simplicity, will hereafter be
referred to as the resolver. The inertial angle “Y” is
measured with a Systron Donner Inertial Angle
Sensor' (IAS) and is labeled H(s) in Figure 2.

Because H(s) rolls-off at low frequencies, another
sensor was needed to cancel the low-frequency
components of the disturbance “D.” A connection to
the Inertial Measurement Unit (IMU) on the host
vehicle was added to the telescope pointing system to
provide low-frequency feed-forward cancellation of
the base disturbance. Of course, since the IMU is
located off-gimbal, a transformation is necessary to
convert host attitude data into gimbal coordinates.
The frequency response of the IMU together with the
coordinate transformation are lumped together in
Figure 2, and labeled B(s). The transformed host
attitude data are subtracted from the desired pointing
angle “R” to produce the commanded angle “C.”
This calculation, together with the coordinate
transformation are computed on a navigation
processor outside the servo controller system as
described in this report, however, these components
are shown in Figure 2 for completeness.

Finally, there is the compensator G(s). The function
of G(s) is to blend the low-frequency data coming
from B(s) and Q(s) with the ‘high-frequency”
feedback data coming from the inertial sensor H(s)—
producing a “smooth” transition between the two
Sensors.

2. IDENTIFICATION OF FIXED COMPONENTS

In this section we identify the transfer functions of
those components in the servo that are fixed in the
sense that they are not available for modification by
the design process. We also quantify the uncertanties
in their parameters. For exam;z)le, elevation gimbal
inertia is estimated at 0.6 kg-m”. This estimate was
made prior to the telescope being completed so for
design purposes elevation inertia was allowed to vary
between 0.5 and 0.7 kg-m’>. Azimuth gimbal inertia
depends on elevation angle 6 as per Equation 1
below. For an elevation angle of 90 degrees, azimuth
inertia is approximated at 1 kg-m?, for 180° it is
estimated at 0.75 kg-m2.

J,, =0.35 + 0.4 cos*(0) + 0.65 sin’(8) kg-m*> (1)

The Inertial Angle Sensor H(s) is a band-pass device
whose bandwidth is between 2 Hz and 10 kHz. The
theory of operation, application and evaluation of the
1AS is further explained in Reference 1.

The nominal transfer function of the IAS is, given by
Equation 2 below, has been found to vary slightly
with temperature. The manufacturer provided four
different transfer functions to represent H(s) at
various temperatures (Equations 3 through 5). This

! Harold Morris, “The Inertial Angular Displacement
Sensor, Theory and Application,” (Systron Donner
Inertial Division), February 18, 1987.

set of four was used to represent the variation in H(s)
as a function of temperature.

3
H (= s [s+187][s+27.6] i @
[s+201][s + 4][s +1](s> +17s +15" ]
3
o= s [s+151][s;6.9] 2 3
[s+163][s+4][s+2][s” +21s+15 ]
3
H3(s); s”{s+151][s +8.5] ~ )
[s+163][s +4][s +1][s +20s +15 ]
H (s)= s’ 5
RO (5)

2
[s+047)(s> +17s+13°]

A Bode plot of the IMU, B(s) was provided from the
host vehicle contractor From this plot, a nominal
transfer function B,(s) was empirically determined
that matched the Bode plot. The transfer function,
given by Equation 6 (excluding the time delay), is
shown below. For design purposes, the dominant
pole at 300 rad/sec was varied £ 20%, while its
damping ratio of 0.6 was varied = 10%. A sample
space of sixteen variations on B(s), plus the nominal,
was used to represent the uncertainty in the IMU.

300 (1000)[0.205s +1]

B(s)= > >
[0.201s +13[s” +360s +300 ][s +1000]

(6)

The nonlinear behavior of bearing friction was
simulated with the Dahl friction model>—whose dif-
ferential equation is shown below in Equation 7. The
telescope manufacturer estimated the Dahl friction
model parameters as shown below in Table 1.

dF _ J : (de )_F_ de
~——=absq1- — lope) — 7
it absq1-sign i F }(s ope) " @)

max
Axis Running Torque Fr.x Slope (Nmy/rad.)
(Nm x 10?%)
Min. Nom. Max. Min. Nom. Max.
ElL 5 10 21 3.5 7 14
Az. 21 42 85 26 52 104

Table 1. Dahl friction model parameters

In order to include the nonlinear effect of bearing
friction into the design process it was convenient to
convert the nonlinear Dahl effect into an equivalent
frequency response. This was done using the de-
scribing function technique. That is, the response of
the nonlinear model to various sinusoidal inputs was
measured, and the input/output transfer function was
derived from these data. Sinusoidal inputs to equa-

2 p. R. Dahl, “A Solid Friction Model,” The
Aerospace Corporation, Space and Missile Systems
Organization Air Force Systems Command, Report
No. TOR-0158 (3107-18)-1, May 1968.
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tion 7 produce outputs with the same fundamental
frequency, plus higher harmonics due to the non-
linear nature of Equation 7. The describing function
technique tests the nonlinear system at one frequency
at a time. The transfer function is determined at each
frequency by ignoring the harmonics and computing
the input/output ratio for the fundamental.

Accordingly, the Dahl equation was simulated at var-
ious frequencies, under various conditions. The
input to the Dahl model simulations was the first
derivative of angle with respect to time (theta dot),
and the output was bearing friction torque. When the
data for these simulations were reduced, it was found
that the Dahl frequency responsc varies as a function
of both frequency, and input magnitude. The Dahl
friction behaves much like a single-order low-pass
filter—whose roll-off frequency is a function of not
only the Dahl parameters of F,,. and Slope, but also
a function of input magnitude. From these data, it
was empirically determined that the describing
function equivalent of Equation 7 could be written as
shown in Equation 8. (Note that because the input to
the Dahl equation is d6/dt instead of 8, Equation 8
must be multiplied by “s” in order to yield the
transfer function F(s) with bearing friction as the
output and 0 as the input.)

F(s)| slope
S s+a ®)
7 e slope ® input magnitude
Where: a = i d g

4 Fmax

3. DESIGN PROCEDURE

Applying standard flow graph techniques to Figure 2
yields the transfer function shown below in Equation
9 for the inertial angle “Y.” The first term in Equa-
tion 9 is the response due to the control reference
signal “R,” while the second term represents the
system response due to the disturbance “D.”

RGWP . pp[F+Gw(Q-B)] ©)

Y =
© 1+P[F+w(GQ+H)] 1+P[F+w(6Q+H)|

The design goals for this project were: 1) 1.5 pradian
pointing resolution—that is, steady-state pointing to
within one bit of the 22 bit commanded gimbal
angle, 2) 1 microradian RMS line-of-site pointing
jitter in the presence of host vehicle attitude disturb-
ance “D” and 3) high agility—that is, fast re-target-
ing capability. Note that the transfer function for
goal 1 is represented in the first term of Equation 9,
while the stability performance (goal 2) is represent-
ed in the second term of Equation 9. The most chal-
lenging design goal is the stability criterion.

3.1 Resolver to Digital (R/D) Converter Design

By observing the second term in Equation 9, it is
clear that the system response to disturbance “D” can
be significantly reduced by designing Q(s) = B(s).
That is, we want the frequency response of the
resolvers to match as closely as possible that of the
IMU shown in Equation 6.

An Analog Devices chip (AD2S80A) was used for
the R/D converter. It is a “type II feedback system”
that requires external compensation to achieve the
desired closed-loop response.” The converter can be
summarized as shown in Figure 3. In order for the
transfer function of Q(s) to closely match that of the
IMU B(s), another pole was added to the compen-
sator, as shown in Figure 4. This produced the
desired closed-

Oin kis+a) | Oout
s*{s+h) loop response
shown in
Equation 6.

Figure 3. Block diagram of R/D converter

Bin + kis +3) | c Bout
— om -

Figure 4. Modified block diagram of resolver-to-
digital converter

3.2 Design of Feedback Sensor Blending
Compensator G(s)

The most challenging aspect of this design was that
of the compensator G(s). The function of G(s) is to
blend the low-frequency data coming from B(s) and
Q(s) with the high-frequency feedback data coming
from the inertial sensor H(s). The effective feedback
sensor is the composite G(s)Q(s) + H(s). Since H(s)
rolls-off for frequencies below 2 Hz, we want to use
the resolver feedback data from Q(s) for all frequen-
cies below 2 Hz, and use the inertial angle sensor
H(s) for all frequencies above 2 Hz. Therefore,
ideally G(s) should cut-off Q(s) sharply at 1 Hz,
however, this presents a significant problem. Factor-
ing the equation G(s)Q(s) + H(s), reveals zeros in the
right-half of the s-plane—resulting in unstable poles
in the closed-loop system, (since according to root-
locust analysis, closed-loop poles “seek” the open-
loop zeros at high gain).

Using the root-locus technique, it is possible to
modify G(s) to cause G(s)Q(s) + H(s) to have all
zeros (and poles) in the left-half plane. However,
this proved to be quite difficult when taking into
account the divergence in H(s) and Q(s) due to temp-

3 Mark L. Schirmer, “Using Laplace and Fourier
Transform Techniques to Model the Performance
of Resolver to Digital Converters,” (Analog
Devices Inc.: Memory Devices Division, 3 Techno-
logy Way, Norwood Massachusetts)
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erature and component variations. That is, finding a
compensator that meets this specification (no right-
half-plane poles and zeros) is relatively simple for
each combination of H(s) and Q(s) individually. But
finding one compensator that satisfied this criterion
for all combinations of H and Q in the set proved to
be quite impractical using the root-locus technique. It
was therefore necessary to find another method.

Quantitative Feedback Theory (QFT) is ideally
suited for such a design challenge. Typical QFT
designs specify upper and lower performance bounds
on the closed-loop frequency response. In this case
the design specifications on G(s)Q(s) + H(s) were
quite simple: 1) First we needed a smooth transition
between the Q(s) and H(s) feedback sensors (that is,
there should be no significant peaking over the
desired operating range). 2) Secondly the composite
sensor GQ + H must be minimum phase (no right-
half-plane zeros). To be more precise on the first
specification, smooth transition was defined as
-2.3 dB < I1GQ + HI £ 2.3 dB for frequencies less than
100 Hz. Here +2.3 dB was used for the upper and
lower bounds which correspond to damping ratio of
about 0.42—that is, the composite feedback sensor
GQ + H should have no poles or zeros with damping
ratios less than 0.42. Designing to both of these
specifications simultaneously, while taking into
account plant uncertainty, turned out to be relatively
simple using QFT.

Designing to requirement 1) is straightforward using
QFT, however, meeting criterion 2) requires some
problem manipulation. The sensor equation simply
needs to be rearranged to fit the classical QFT
approach: GQ + H=H(1 + GQ/H) = H(1 + L), where
L = GQ/H.

If 1 + L is minimum phase and stable, then the
composite sensor GQ + H will be also. As long as G
and Q are stable, and H is minimum phase 1+L will
be stable. To guarantee that 1+L is minimum phase
the Nyquist criterion needs to be satisfied. Since
L(s) has neither right-half plane poles nor zeros, we
can simply design L(s) to have no encirclements of
the critical point. On the Nichols chart, the critical
point is found at 0 dB and -180 degrees. Thus if L(s)
crosses 0 dB to the right of this critical point, then we
will have no encirclements, and our system will be
stable and minimum phase. Ideally, of course, we
would want to have some phase margin when L(s)
crosses 0 dB, so we will stay a considerable distance
away from the critical point—specifically, we will
stay outside the 2.3 dB Nichols chart contour.

Figure 5 shows the Nichols plot of the compensated
nominal plant GL,(s) = GQ,/H,. The performance
bounds were defined as -2.3 dB <1GQ + HI<2.3 dB
with respect to the nominal plant Q,/H,. At each
frequency where bounds were calculated, there are
two bounds shown in Figure 5. The dashed lines
represent the upper bound of IGQ+HI<2.3 dB,
while the solid lines represent the lower bound
-2.3<IGQ + HI. As long as the compensated nomi-
nal plant GL,(s) lies below the dashed lines, and
above the solid lines at each frequency, the design
criteria will be satisfied for all combinations of Q and
H in the set. A lead-lag compensator G(s) was de-
signed to meet the design specifications at all freg-
uencies—G(s) is
given in Equa-
(10) tion 10.

27[s +4]
G()=———
[s+9][s +12]

40 = ; !
TS :

20

Magnitude (dB)

10+ e,
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1 i
-140 -120
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Figure 5. Nichols plots of GQ,/H, with bounds on GQ + H.
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Figure 6 shows a Bode plot of GQ(s) along with
H(s), and a simulated disturbance D(s) as measured
by B(s). This sample disturbance is taken as the ab-
solute worst case that could be expected on the host
vehicle. Note the large spike at 4.5 Hz. Figure 7
shows the Bode plot of the composite sensor

G(s)Q(s) + H(s).

3.3 Redesign of Feedback Sensor Blending
Compensator G(s)

The simulated host vehicle pointing error d(t) con-
tains a 6 microradian jitter at 4.5 Hz. The host
vehicle attitude data from B(s) is sampled at 40 Hz,
and contains a variable latency. Every other sample
has a maximum latency of 15 milliseconds, with the
remaining samples having a latency of 25 millisec-
onds. Since this delay is not inside the feedback
loop, it will not affect stability, but it severely
restricts thc disturbance rejection performance.
Detailed simulations revealed that because of this
variable latency, attenuation of the 4.5 Hz jitter was
quite difficult. The impasse is due to the fact that the
4.5 Hz disturbance is measured by both the inertial
angle sensors H(s) as well as IMU B(s), but is
corrupted in B(s) by the variable latency. The delay
becomes more significant at higher frequency, caus-
ing the two sensors B(s) and H(s) produce conflicting
information on D(s) at 4.5 Hz, which seriously limits
disturbance attenuation.

Ideally, we would have rolled-off B(s) at a lower
frequency so it would not see the 4.5 Hz. However,
as it turns out, a certain amount of over-lap between
the two sensors is needed in order to satisfy the mini-
mum phase requiremcnt.* Thus, another approach
was needed to further attenuate D(s). To accomplish
this, G(s) was modified (as shown in Equation 11) to
purposely violate the upper bound IGQ + HI 2.3 dB
for frequencies local to 4.5 Hz. The idea was to
allow the 4.5 Hz jitter to come through the feedback
sensor with a higher gain so that it could be acted
upon more aggressively than its neighboring
frequencies. In an effort to emphasize the uncorrupt-
ed information coming from H(s) with respect to
B(s), a gain of

42{s + 4] 3 was added to
-7t a1
X [s +14][s +12] D1 He).

* This conclusion is not immediately obvious and is
not proved in this paper. It was reached while
attempting to shape the nominal loop GQu/H,.
Suffice it to say that while shaping the loop it
became clear that the QFT bounds could not be

satisfied without some frequency overlap between

Q and H. The high-frequency roll-off of Q is

provided by G and if G is rolled off at too quickly

the nominal loop approaches the critical point and
ultimately violates the Nyquist criterion.
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Figure 6. Bode plot of G(s)Q(s) and H(s) along with
D(s)B(s).
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Figure 7. Bode plot of G(s)Q(s) + H(s)

This significantly improved the disturbance attenua-
tion at 4.5 Hz, however, when the servo was imple-
mented on the actual telescope, large structural
resonances in the inertial angle sensor mounts that
attach the Inertial Angle Sensors to the telescope
were discovered. The lowest of these resonances
were too close to the system bandwidth to effectively
notch-out, so it became necessary to sacrifice per-
formance in order to avoid exciting the structural
resonances. (These resonances will be discussed
later in this report.) The gain on H(s) was thus
lowered from 3 to 1.5. The Bode plot of the
composite sensor GQ + H in Figure 8 includes the
gain of 1.5 on the inertial angle sensor H(s).
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Figure 3. Bode plot of composite sensor G(s)Q(s) +
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3.4 Design of Feedback Compensator W(s)

As mentioned in the system overview, W(s) collect-
ively represents the motor windings, the power amp-
lifiers (which deliver current to the motor), and a
feedback compensator. The power amplifiers were
designed as current drivers with current feedback
from the motor windings. This effectively removed
the motor winding dynamics from the design
process, and the bandwidth of these amplifiers was
large enough to be ignored with respect to the design
of W(s). The driving factor in the design of W(s)
was that of disturbance attenuation. The desired
pointing stability is +1 microradian.

The worst-case host-vehicle attitude data contains
disturbances of about 250 microradians at low freq-
uency and +5 microradians at 4.5 Hz. For design
purposes, it was assumed that the disturbance D(s)
would be no greater than the bound shown in Fig-
ure 9—derived by taking the Fourier transform® of
the azimuth data shown in Figure 22. To achieve a
factor-of-two design margin, the system was design-
ed to attenuate this disturbance down to £0.5 pradian.
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Figure 9. Fourier transform of D(s) with maximum

disturbance limits.

To accomplish this, an attenuation of 55 dB is
needed at low frequencies and 22 dB is needed at the
higher frequencies. The only other quantitative spec-
ification imposed on the design of W(s) was the
stability criterion—that the closed-loop system must
have less than 2.3 dB of peaking.

Nichols chart stability and disturbance attenuation
bounds were calculated from Equation 9 with respect
to Ly(s). To stabilize the servo loop, a compensator
W(s) was designed as given by Equation 12. Fig-
ure 10 shows the intersection of the stability and dis-

* The FFT data presented in Figure 9 has been scaled
such that there is a one-to-one correspondence in
magnitude between the time d(t) and frequency
D(s) domains. That is, the £5 pradian time-domain
disturbance at 4.5 Hz shows up in the FFT data as a
spike of magnitude 5 microradians at 4.5 Hz.
Likewise with other frequency components of the
disturbance d(t).

turbance attenuation bounds. Also in Figure 10 is
shown the Nichols plot of the compensated nominal
loop W(s)Ly(s) = W(s)Py(S)[G(s)Qu(s) + Ha(s)].
Note that the servo system is stable, and meets the
bounds at all frequencies. A Bode plot of the open-
loop compensated system is shown in Figure 11.

Az. EL
Kk x10% bfs + a] a| | 500 170

W(s) = ——————— where,| b | =] 4400 2800 | (12)
a[s +b] k 9 2
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Figure 10. Nichols plot of compensated nominal
loop W(s)Ly(s) with bounds.
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Figure 11. Bode plot of open-loop system W(s)L(s).

A Bode plot of the closed-loop disturbance attenua-
tion is shown in Figure 12 along with the disturbance
attenuation design criteria—which are met at all
frequencies. The disturbance attenuation criteria
were derived from the disturbance bound shown in
Figure 9, which was derived from the FFT of the
simulated disturbance data d(t).

53




-10 4

(93
=]

N
o

Magnitude (dB)

[o]
[=]

4
o

90! - SOt

107 10 10° 10 10

Frequency (Hz)
Figure 12. Disturbance rejection Bode plot.

3.5 Design of the Inertial Angle Sensor Notch Filters

The system was first tested on a single-axis gimbal
with the same resolver, Inertial Angle Sensor (1AS)
and roughly the same inertia, torque and bearing fric-
tion as the actual telescope. This provided an ideal
test-bed for debugging servo hardware and software.
However, once implemented on the actual telescope,
structural resonances on the IAS mounts caused the
telescope to oscillate. The single-axis test gimbal did
not exhibit this phenomenon since the IAS was
mounted rigidly at the center of the gimbal, while the
makeshift telescope mounts, being retrofits, were sig-
nificantly more compliant (see Figure 1). The open
loop” frequency response of the servo system was
measured using a network analyzer, and is shown in
Figure 13. This revealed several destabilizing
resonances starting at about 200 Hz.
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Figure 13. Open-loop frequency response showing
resonances in the IAS mounts

The tight delivery schedule did not allow time to
fully analyze and re-design the controller to account
for these structural resonances. Instead, in-line notch
filters were added to modify the IAS feedback sensor
transfer function to ignore the jitter data at certain
frequencies. The notch-filter board provided a maxi-
mum of six, second-order active-notch filters, toge-
ther with a third-order low-pass filter for each axis.

" The input for these measurements was motor
current while the output was angular displacement
as measured by the Inertial Angle Sensors (IAS).

The transfer function of the notch filter is shown in
Equation 17, while that of the low-pass filters is
shown in Equation 18. Note that for elevation, @; is
infinite. The specific notch frequency for each filter
is given in table 2 in Hz.

)

s’ +w?
N(s)=—; 5
s +2(0.18)Yws+w

406 504 2500 5000
555 635 720 875

Az. 264 335
EL 335

Table 2. Notch filter locations in Hz

wlzwz[s+cq3]
tos+o[s+o,)

LP(s) =
o,]s?

Az EL (18)

0 5000 1500
@, |={1000010000
o, 1500 oo

where:

The frequency responses of Figure 13 provided a
general idea of what notch filters would be needed.
However, the process used to select the number of
filters used as well as their frequencies (described
below) was not based on this preliminary data—since
it was gathered before the telescope was entirely
assembled, and would most likely be different than
the final configuration. Also, since each notch filter
ads unwanted phase lag below the notch frequency it
was important to not use more notches than absolute-
ly necessary to avoid eroding the phase margin.

The notch filters were selected as follows. The loop
was closed around the telescope and allowed to
resonate while the dominant oscillation frequency for
each axis was measured. A notch filter was then
built to eliminate that frequency and inserted in front
of the IAS signal. The loop was again closed, while
the next most dominant mode was identified. This
continued until all oscillations were eliminated. The
low-pass filter was then added to roll-off all high
frequency resonances. The azimuth low-pass filter
includes a zero at 239 Hz needed to restore phase
margin that was lost due to the several notch filters.

IMPLEMENTATION RESULTS

Figure 14 shows the telescope step response. The
top graph in Figure 14 shows the gimbal angles in
degrees, while the bottom graph shows the output of
the Inertial Angle Sensor (IAS) in microradians.
Figure 15 shows actual in-flight pointing perform-
ance with typical host vehicle base motion disturban-
ces. The azimuth pointing jitter as measured by the
IAS’s over this time interval is 295 nanoradians
(rms) while the elevation pointing jitter is 385 nano-
radians (rms). Note that both axes exceed the design
goal of 1 microradian pointing stability.
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Figure 15. In-flight tracking performance
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CONCLUSIONS

Quantitative Feedback Theory (QFT) provided a
simple, yet powerful design tool which resulted a
solution that exceed the performance goal of
1 microradian pointing stability in spite of large host
vehicle pointing errors. One of the most challenging
aspects of this project was the blending of feedback
and feed-forward sensors to achieve optimum’
performance. These feedback sensors included the
gimbal resolvers and Inertial Angle Sensors (IAS),
whose signals were blended with the variably-
delayed host vehicle attitude data coming from the
Inertial Measurement Unit (IMU). The blending of
these sensors was greatly simplified using QFT.
Using this technique, design trade-off options could
be easily weighed against each other in terms of cost
versus performance benefit.

Another significant challenge was overcoming the
structural resonances in the telescope. The perform-
ance goal of 1 microradian pointing stability resulted
in a relatively high gain/bandwidth controller. Be-
cause of the large bandwidth, several structural reso-

nances were excited, causing pointing performance
degradation. Several notch filters were added to the
controller to eliminate the possibility of exciting
these structural resonances. The extra phase lag
introduced by these notch filters decreased the phase
margin of the closed-loop system, which in turn
further degraded pointing performance. Ultimately
the optimum’ trade-off between gain-bandwidth and
stability margin was obtained to produce a controller
that exceeds the design goals without exciting
structural resonances.

All components of the feedback compensator and
notch filters were implemented in analog hardware.
Thus, the controller modifications, which were
necessary to avoid exciting the structural resonances,
were more difficult to create. Because of the short
design cycle, it was not possible to fabricate new
printed circuit boards in time to meet the delivery
schedule. Therefore, all modifications had to be
carefully reworked on the original flight hardware.
This provided another significant challenge.

Yet despite these obstacles, the pointing control
system was delivered on time, with measured in-
flight performance that meets the design goal with
significant margin.
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Abstract: Feedback theory is much less popular now than 5 years ago. However, there is
little question that the problem of achieving desired system tolerances from Uncertain Plants,
at minimum Cost of Feedback, will remain an important, enduring one for many future
generations. Although much progress has been made, it is minuscule in comparison with the
extent of the problem. The purpose here is to suggest some significant QFT research
problems, some tantalizingly on the boundary of the unknown. There have been in the past
many suggestions for improvements in Feedback Synthesis. Most have been illusory, e.g. the
Smith Regulator [9], because they were formulated in a qualitative context, without the
disciplines of quantitative uncertainty and performance specifications, degrees of freedom,
sensor noise, plant modification etc. Without such disciplines, it is impossible to properly
evaluate competing techniques. The reader is referred to the 1991 Survery papr for some

background, I. Horowitz, 1991, Survey of QFT, Int. J. Control, 53, 2, 255-91.

1. SINGULAR G COMPENSATION

Consider a SISO plant whose range of uncertainty
includes right half-plane (thp) poles and zeros, some
even so close as to appear like dipoles. Ordinary
design (even only for stability for one plant case at a
time) results in impractical, negligibly small stability
margins. In this approach [1], the Stability Problem is
separated from the Sensitivity problem, by
transforming the SISO system into a MIMO system
for stability purposes, by use of MIMO compensation
(G a matrix). It was shown that stability can then be
achieved over the entire plant set. However, the
system stability is highly sensitive to the G
compensator. Since G can be a simple digital
controller or active network, it can usually be
designed much more 'robust’ than a typical plant P
(which may be highly complex and massive in extent),
so much has been achieved. This is a fantastic result,
violating normal Feedback tradition. Somehow, the
very high system sensitivity to the plant, has been
shifted to the G compensator. Note that Performance
Sensitivity has been sacrificed. The loop transmission
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has been dedicated to Stability. What is the
mechanism involved here? Can similar results be
obtained for highly uncertain unstable, 'nmp' nonlinear
plants? There has been hardly any follow-up to this
pioneering work.

2. NONLINEAR NETWORK SYNTHESIS

The following is a classical much-researched LTI
synthesis problem: Given a desired transfer function,
find a passive (or active) network for this purpose. An
equivalent nonlinear problem is: Given a set Fi(s) of
transfer functions and a set of deterministic signal
inputs Ri(s), find a network such that for a given
desired output set Yi(s), each Yi has the transform
Yi(s) = Fi(s)Ri(s). This is a very difficult problem.
See [2] for a stab at it using Linear Time-Varying
(LTV) elements, but with unsolved problems of
sensitivity and stability. Obviously, such nonlinear
network synthesis would be tremendously useful in
feedback design, and in other applications.




3. THE SISO MULTIPLE-LOOP FEEDBACK
PROBLEM (WITH AND WITHOUT PLANT
MODIFICATION)

(a). There is available a finite (n) number of internal
sensors, in addition to the usual output sensor, giving
a (n+2) degree of freedom system (one due to the
prefilter). The research objective is to find a
systematic means of designing the available n+l1
feedback loops, to satisfy the quantitative
specifications at minimum cost of feedback, i.e. with
consideration of the n+1 sensor noise sources. (b). The
solution of this permits solution of the much more
complex analogous MIMO problem, i.e. given a n by
n MIMO plant, with m available internal feedback
sensors, and the usual n output sensors, develop a
synthesis procedure for exploiting the available
freedom to satisfy the quantitative specifications, with
minimum cost of feedback. The ‘equivalent
disturbance' technique described in [3], enables the
solution of this problem, by means of the above SISO
technique of (3a). Furthermore, for both 3a, b, the
techniques arc applicable to Nonlinear, Time-Varying
Plants, because for NO Plant Modification systems,
the desired outputs determine the Plant internal
signals. Needless to say, this is a much more complex
problem if 'plant modification' is allowed [4, 11]. It is
surely time for QFT rescarchers to provide some
competition to Prof. B. C. Wang in the very important
area of Feedback Systems with allowed plant
modification. So far, he and his students have had the
field to themselves.

4. NON-DIAGONAL COMPENSATION IN
MIMO FEEDBACK SYSTEMS.

There has been disappointingly little work in this area.
Most design problems have apparently been solvable
by diagonal compensation. One might tackle this, by
formulating a design problem which is not thus
solvable. The ill conditioned high purity distillation
column Challenge Problem (1992 CDC Conference)
is herewith suggested for this purpose (see P. 419 of
Ref. 5). Besides being on the verge of
uncontrollability, the Plant has up to one minute pure
time delay. To best of author's knowledge, the only
solution to this Challenge Problem has been due to
QFT. The H-infinity solutions offered at the
Conference (Brighton, Gt. Britain), were quite
inadequate. The QFT solution [5] was forced to use a
nondiagonal prefilter, and barely satisfied the specs.,
but diagonal G was satisfactory. It is suggested that
the specifications be made more difficult, in order to
force use of nondiagonal G. This should be a good
problem for thorough study of nondiagonal
compensation in MIMO systems.
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5. LOAD SHARING (PARALLEL PLANT)
CONTROL

H. W. Bode, the great pioneer of feedback theory once
noted that after he had deduced the 'cost of feedback'
in single loop systems (see [5, Sec. 10.8]), he devoted
much time to decrease of the cost, which was
achieved by others [7,p.400]. It involves use of a
family of plants, with feedback available from the
outputs of the individual plants to the inputs of other
family members. The relation between cost and
benefits of feedback can then be dramatically different
that in the normal feedback system. For example, in
the single loop system, 40 db of feedback over (0,10)
tps has a cost of about 400rps [5, 291]. But in a
properly designed 2-plant parallel system, for the
same cost, 80 db of feedback is available [7]; 120 db
in a 3 plant system. Eitelberg [6] has pioneered in the
control and stability aspects of these systems, but
much work remains to be done to integrate this, to
achieve the available superior Sensitivity properties of
such systems.

6. COST OF FEEDBACK REDUCTION BY
MEANS OF SPECIALIZED NONLINEAR
DEVICES

FORE is a simple first order device which responds
linearly to input r(t) not equal to zero, but its output is
zero when the input is zero. It has been shown [8] that
for a large class of systems, this nonlinear device can
be used to significantly reduce the cost of feedback,
especially for plants with large high\ frequency gain
uncertainty It should be emphasized that many
nonlinear devices have been suggested in the
literature, which have describing function models
which promise such properties (have phase lags
smaller than in LTI elements, for the same magnitude
slopes). The difficult challenge is how to integrate
such nonlinear elements into a systematic quantitative
design technique. To best of author's knowledge, this
has been done only by FORE. There must surely be
many more such nonlinear elements, awaiting the
ingenious inventor.

7. TIME DOMAIN QFT, TIME-VARYING
FEEDBACK, ON_LINE IDENTIFICATION

The great progress made by QFT has been thanks to
its Frequency Domain formulation, because thereby
the real time-domain system (differential equations,
convolution), is transformed mathematically into an
algebraic system, (transforms, multiplication), in the
complex domain. One can hardly visualize achieving
analogous results by working in the time domain. In a
brilliant tour de force [10), Barnard has presented a
Time Domain QFT synthesis theory for the two-
degree-of- freedom SISO system.




Obvious criticisms are: its lack of the 'cost of
feedback' concept, the effect of sensor noise, the
difficulty of extensions to multiple-loop structures, the
high mathematical expertise needed for practical
design, compared to the very much simpler
mathematics needed in Frequency Domain QFT, and
the latter's easy, flexibility of extension to highly
complex structure systems. Nevertheless, a detailed
consideration and comparison of Barnard's work,
would be highly desirable. No doubt much insight will
be thereby obtained in time-transform relations in
QFT, and the basic feedback mechanism. Also, one
might then think in terms of time-varying feedback,
for example if there is significant change in the extent
of plant uncertainty as a function of time.

The latter idea is related to of On-Line Identification,
almost totally ignored in existing QFT. There can be
no question that even gross identification could
tremendously reduce the cost of feedback. For
example, suppose the zero frequency uncertainty,
which is say 1000 to 1, could be even sloppily
measured by a 2 to 1 error factor, then the LTI
uncertainty is only 6 db rather than 60db; similarly for
high\_frequency uncertainty the Oscillating Adaptive
system is intended to do precisely that, and disciplined
(quantitative) study of its many forms has led to a
scientific theory for such systems, revealing feedback
problems for which it is superior to ordinary LTI
systems.[1 2].

Consider the following simple scheme for on-line
identification, applied to the following: a 3 pole, 1
zero Plant, with Transfer Function: [s(3)+As(2) +
Bs(l) +C] / [Ds(l)+ E}, where s(i) is s to ith power . In
the time-domain, by repeated integrations (from 3 to
7), and letting I(m)y represent the mth integral of y(t)
over some fixed interval, one obtains a set of 5
simultaneous equation in the unknowns A, B, C, D, E.
For example, the first is: y +(Iy) A + (I2y)B + (I3y)C
= (12u)D +(I3u)E, where u, y are the plant input and
output. The fifth equation is (I4y) +(ISy)A
+(16y)B+(I7y)C = (I6u) D + (I7Tw)E. This is an ill-
conditioned set of simultaneous equations, but can be
readily solved, and gives good results. One must
decide of course on interval of integration etc.
Identification is then good, but only in absence of
measurement noise; quite poor otherwise. The
following technique was found useful to obtain fairly
good results for even fairly significant y (output
unbiased measurement) noise. A variety of methods
can be used to do finite-time interval smoothing of the
noise contaminated y(t), giving say yx(t). Then use
yx(t), instead of y(t), to obtain the needed 5 equations
to solve for A, B,.E. One can experiment to find
better preliminary modification of the y(t)
measurement. This can, of course, be done to u(t) it
is also noisy. The fair success achieved by the above
primitive technique, suggests that online identification
is highly worth pursuing. The eventual objective is a
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Unified theory for the optimum combination of
ordinary QFT, and On - Line Identification. Sensor
noise must be included, if the theory is to be
meaningful.

8. DISTRIBUTED SYSTEMS

The Ordinary, Lumped (differential or difference)
equation is a very small subclass of Distributed
Systems (partial differential or difference equations).
For many years, it was mainly treated by
approximation, as a cascaded multiple loop system.
By means of the double transform, QFT was extended
to y(x,t) type pde systems, involving only 2 variables
[13]. An extension of the Nyquist Criterion was
essential, because it is in the same mathematical
language that is used in QFT quantitative design.
Without it, QFT would be seriously impaired. Prof.
Yakar Kannai was prevailed upon to supply us this
essential tool [14]. However, the above [13] approach
is pretty well limited to 2 variables x, t. By a brilliant
tour de force, Dr M. Kelemen broke through this
seemingly impenetrable barrier, basically extending
QFT rigorously to Distributed (PDE) systems. This is
done by Laplace Transform for the time variable, and
Fourier Series for the others, or in many cases, Green
functions, as in several of the references below. As
with lumped multiple-loop systems with Plant
Modification, in which advanced research has been
the exclusive domain of one group, so QFT
Distributed System theory has been almost the sole
domain of one individual with various coworkers.
(The author acknowledges the assistance of Dr.
Kelemen in the following, briefly summarizing

significant features of the progress made in
Distributed QFT system theory). The System
quantitative performance specifications can be

functions of space or other non-directional variables,
as well as of time (directional variable), to be
achieved despite the Uncertainties in the analogous
distributed plant variables. The same applies to the
Boundary Conditions, which are absorbed as
Disturbances [15]. As to be expected, Existence
conditions are more complex than in Lumped systems.
Other QFT features are carried over, such as
applicability to Multiple-Loop, and to
Nonlinear/Time-Varying Systems. However, the
issues are very complex, as can be seen in Fritz-John
[16]. Even for a linear PDE, the transfer function will
be non-rational in the Laplace variable, with the other
variables entering as highly nonlinear coefficients.
The kind of great care one must take with lumped
nonmininum- phase unstable systems is essential for
the simplest PDE problem.

Even the simplest problem, like the heat equation with
zero boundary conditions, involves a considerable
amount of computations; the transfer functions are
non-rational, and the time domain simulations are far
from trivial.



A laboratory tested DETAILED QFT DESIGN
procedure, with non rational plant, parametric
uncertainty and boundary conditions, is described in
[17,18]. A systematic theoretical study has been made
concerning the enhancement by linear distributed
feedback, of stability of LTI PDE plants. The space
variable was assumed unbounded. So rational
functions in two variables, Laplace and Fourier were
involved. The main technical innovation was
extension of the Gaarding hyperbolicity condition to
infinite time. The PDE problem was thereby
transformed into an ODE one in time, with
coefficients the Fourier transforms on the space
variables of the plant equation [19]. The conclusion of
both these references is: Arbitrary regularity in space
of the data (initial conditions) leads to arbitrary
polynomial enhancement in time of stability, and
uniformly in space applicable to both exponential and
undamped plants -poles in left plane, but not bounded
away from imaginary axis- the degree of stability
depends not only on the system, but on the DATA
(initial conditions and the input functions, both
distributed in space) as well. This phenomenon is
typical of distributed systems, but is lost in any finite
dimensional approximation. Are such results the best
obtainable, or is exponential enhancement of stability
possible in general? See Sun [20] for some results.
The practical designer need not be skilled in the
mathematics of the above, only be aware of the
practical limitations, so that he does not try to do the
impossible. The extension to nonlinear PDE plants
can be done with the second Nonlinear QFT
Equivalent Disturbance technique. This is to be
attempted [22].

The above cryptic summary reveals that THE DOOR
HAS BEEN OPENED TO THE CREATION OF A
TRULY QUANTITATIVE FEEDBACK THEORY
FOR UNCERTAIN DISTRIBUTED SYSTEMS.
THERE IS TREMENDOUS AMOUNT OF
RESEARCH TO BE DONE, BOTH OF A PURE
MATHEMATICAL NATURE, AND ESPECIALLY
OF APPLIED COMPUTATIONAL NATURE.

9. THE SECOND QFT NONLINEAR TECHNIQUE

This method was originally meant for disturbance
attention for Nonlinear Plants [22], in which the
highest derivative of the plant output y appears
linearly, and the input u appears linearly. The
nonlinear terms become disturbances in an overall LTI
equivalent system, and the design problem is one of
disturbance attenuation of a LTI plant with only high-
frequency gain uncertainty, which is a relatively easy
design problem. Unlike the first QFT nonlinear
technique, there is no need to solve backwards from a
family of acceptable y, to the resulting family of u; no
need for plant templates and possibly difficult loop
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See

shaping -- a considerable saving in deign labor.
[5, Sec. 14.11], of a 4 by 4 highly interacting,
uncertain, nonlinear time-varying mimo problem,
solvable by this technique, within half a day without

use of a computer. It is possible also to apply the
technique to the Command input problem, by use of a
nominal output, so that the allowed deviation from the
nominal becomes a disturbance. It is also very
convenient to use this technique to guarantee
Quantitative stability, i.e. quantitative performance in
response to deviations in original command or
disturbance sets, or plant set, or of compensators, even
for designs originally made by first QFT nonlinear
technique, in which the nonlinear/time-varying plant
set is replaced by an equivalent LTI plant set (see
forthcoming book by Bafios, Horowitz, Notes for
European Nonlinear Course, Universidad de Murcia,
Spain, September 2000). However, the applicability
constraints noted in first sentence above is a very
severe shortcoming, and the eliminations of the
restrictions worthy of significant research.  One
suggested bullike method to generalize the technique
is as follows: (a) the nonlinear plant output y terms
are treated as before, available from the specifications
on the outputs due to the disturbances (they must
include the bounds on the derivatives of the output, up
to highest order). One solves backwards (as in the first
QFT nonlinear technique) to find the nonlinear plant
input u terms, and combines them with (a) to obtain
their resulting extremes. Then, all the nonlinear terms
due to both input and output, (and mixed ones), appear
as equivalent disturbances, on a LTI plant with only
high-frequency gain uncertainty. The design problem
then becomes again, to shape the LTI loop to satisfy
the performance bounds on y. The extra work needed,
cf the simple problem is solving backwards for the u
inputs. But there is still no need for plant templates,
and the loop shaping is much easier than in the first
QFT nonlinear technique.  For the case of nonlinear
y terms with leading nonlinear derivatives, the plant
prefilter technique of [23] can be used. It is worth
investing much research effort to generalize and
streamline this equivalent disturbance technique,
because of its relative simplicity and versatility.

Conclusion: One can obviously conclude from all the
above, that it is fallacious to say that most OFT
problems have been solved. Rather, as of this date
only a tiny part of the battle for "Achieving Desired
Quantitative Performance Despite Uncertainty” has
been won.
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Abstract:This paper shows how the pre-filter may be designed in quantitative feedback
design of single-input, single-output systems with tracking error specifications (Eitelberg,
2000). The method uses gain and phase information for the pre-filter design. The design is
conveniently performed on the log polar complex plane using standard CAD tools.

Keywords: Quantitative feedback design; QFT.

1. INTRODUCTION

Eitelberg (2000) investigated quantitative feedback
theory (QFT) design for single-input, single-output
systems with tracking error specifications. This note
shows how the pre-filter is designed for this approach.

A two-degree-of-freedom control system is shown in
Fig. 1. As usual in quantitative control system design,
it is assumed that the linear(ised) plant transfer
function is an element of a set, P(s)e {P}, and this

may include structured and unstructured uncertainty.
(The dependence on the Laplace variable, s, or
projection onto the imaginary axis (j) will not be
shown where it is obvious from the context.) In order
to undertake engineering design, there must also be
some closed loop specifications available. In most
QFT work (see Horowitz (1991 or 1993) for a general
reference), the tracking (and other) specifications are
assumed to be only on the magnitude of the closed
loop transfer functions. As Eitelberg (2000) has
argued, bounding the closed loop transfer function
within a disk around a nominal (model) performance
often makes engineering sense. Such performance
specifications result in sensitivity designs for tracking
performance. They are compatible with norm-based
methods, but the exact (structured and/or unstructured)
plant uncertainty description is retained. QFT design
with norm bounded specifications has previously been
discussed for example by Horowitz (1979, 1991), and
Nwokah, Jayasuriya & Chait (1991).

Given the system in Fig. 1 and client-specified model,
M(s), with model output, Y,,(s) = M(s) R(s) , the design
task is to specify feedback controller, G(s) and pre-

filter, F(s) to meet relative tracking error
specifications. The relative tracking error transfer

function, EJ , of the k™ plant is defined as follows:
EJR=Y, Y 1

Eitelberg (2000) does not use a model reference (i.e.
M(s) =1) which means that the relative tracking error
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must become large at frequencies where the closed
loop transfer function (reference to output) has low
gain. A model reference extends the frequency range
over which the relative tracking error specification is
useful as it captures knowledge of the expected closed
loop roll-off. Eitelberg (2000) accounts for
unstructured uncertainty in the measurement system
and pre-filter. This important consideration will not be
pursued here. Let H=I (no significant measurement
dynamics) and D=0 (no disturbance as tracking
behaviour is the subject of the paper). Define the

complimentary sensitivity, Ty =(I+L; ) Ly, with
L,=P,G. Simple specifications on the relative
tracking error would be to contain the relative error
(element-wise) within a disk of client-specified,
frequency-dependant radius, 4(),

By ()| = [M(j) ~Tx (jo) Fje0) < 4(@)
VPk € {P}

@

A two-degree-of-freedom design is required to
properly solve the design problem with minimum
feedback bandwidth and to take care of unstructured
and structured uncertainty in the plant. The design is
performed at a set at of discrete design frequencies, a,
i=1,2...

2. PRE-FILTER DESIGN

Suppose that a controller, G, has been designed to
meet or exceed the feedback design constraints. The
pre-filter, F, can then be designed to satisfy the
tracking error specification, eq(2). A simple approach
to the design of F is to make use of the assumption
that the nominal relative tracking error is zero,

F=Fy=MIT, 3

By correct (realistic) specification of the model, M, the
designer can ensure that F is rational, (strictly) proper
and stable (even if L, is transcendental). The model
would be required to exactly anticipate and replicate




right hand plane transmission zeros and other
singularities in the nominal loop transfer function. If,
as would be usual, the model is approximate, direct
application of eq(3) may yield nuisance right hand
plane singularities with small residuals that should
obviously be discarded. Direct use of eq(3) may also
result in a pre-filter of unnecessarily high order for
practical problems.

To avoid high order feedback controllers, practical
QFT designs usually have higher bandwidth than
strictly necessary, meaning that there is some over-
design. As opposed to “standard” QFT designs where
the choice of nominal plant is arbitrary, there may also
be over-design as a result of a poor or constrained
choice of the nominal plant. At each design frequency,
@, any over-design of the feedback controller can be
exploited to reduce the complexity of the pre-filter by
finding the exact region (around F;) within which F
may lie. For any particular L, M, and 4, eq(2) is a
linear fractional mapping of F and therefore results in
simple quadratic inequalities on a plant by plant basis.

For example, (unknown) F = rel/®) , and (known)
T=L/a+L)y=xe®, M = ye/B gives,
(ycos(a)—xrcos(¢+ﬁ)))2 +

4

+(ysin(a)-xrsin(p+ B)))* < 42 @
Eq(4) can be solved for r, given any ¢ € [-360°, 0°],
for example using the Matlab QFT toolbox
(Borgesani, Chait & Yaniv, 1998). The solution of
eq(4) for a particular plant case and design frequency
will divide the complex plane of F into acceptable and
unacceptable regions. If the feedback controller design
was successful, by construction, there is a non-empty
intersection (over the plant set) of the acceptable
regions for F at each frequency (or at worst the point,
F=M/Ty). (F(s) must satisfy Bode gain-phase
relationships and, as discussed above, correctly
specifying the model will ensure that a proper, rational
and stable F(s) exists.) Usually, in QFT the pre-filter is
designed by magnitude only but the design outlined
here is conveniently undertaken on the log-complex
plane (arg{F} vs. dB{F}). The intersection of the
regions given by eq(4) at frequency @ provides an
exact bound for the design of F(m).

3. EXAMPLE

The example is based on Example 2 in the Matlab®
QFT toolbox (Borgesani, ef al, 1998).

Original specifications:
k

Plant: P(s)=———

an (s) s(s/a+1)

Tracking specifications:

,a,ke [1,10]_

0.6584(s+30 . 120
2—(‘——) <|Ty/r (o) 5‘ 3 > |
s2 +45+19.75 |53 +1752 +825+120|
Design Nominal (specifically chosen):

3
Rols)= s(s/3+1)°

s=jw

Approximately equivalent tracking error
specifications, (illustrated at s=/3 in Fig. 2):
Model response (for specific Pg)

M(s)= L

(s/4Y +14s/4+1
Tracking error tolerance:

A(w):’ 0.12s |
(574 +12574+1fs/1141)
The original feedback controller design,
6(s)= (s/1.1+1)s/114+1)
(s/43+1)((s/1ooo)2 +1.5s/1000+1)

s=jw

obviously satisfies the above tracking error bounds.
The constraints on the pre-filter design are illustrated
in Fig. 3 along with the (original) pre-filter,

F(s)= ! that  satisfies the

(s/4)* +14s/4+1
constraints with low order and low bandwidth.

4. CONCLUSIONS
This paper has shown how to design the pre-filter in
quantitative feedback design with tracking error
specifications
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Figure 3 — Pre-filter design for tracking error specifications (dashed lines = “below” bounds, solid lines =
“above” bounds)
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Abstract: Multivariable systems are currently considered one of the most challenging problems within Control
Engineering. Loop interaction reduction and stability under the presence of plant uncertainties as well as system
integrity are some of the problems attached to those processes. In this context, some previous papers have dealt with
the loop coupling reduction in the QFT frame, taking into account the definition of a coupling matrix. Those
techniques are applied in order to design the controller of a SCARA robot manipulator.
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1. INTRODUCTION

Consider a nxn linear multivariable system, -see
Figure 1-, composed of a plant P, a non-diagonal
controller G, and a prefilter F, where PeP and
P is a set of possible plants due to uncertainty.

The quantitative feedback design problem
(Horowitz, 1979) of specifying a controller G, and a
prefilter F to achieve certain tracking specifications
will be considered. This work will focus on those
systems with a high interaction level due to loop
coupling.

T(s)

Fig. 1. Structure of a 2 Degree Of Freedom system
composed of a linear uncertain plant P(s), an two
designed elements: a feedback controller G(s) and a
prefilter F(s)

In the last decades, many papers dealing with the
design of controllers for uncertain multivariable
systems have appeared: Rosenbrock (1970) used the
Inverse Nyquist Array; Kidd (1984) extended the
Direct Nyquist Array to uncertain systems; Horowitz
(1979), and Horowitz and Sidi (1980), first used the
Schauder's fixed point theory to justify a quantitative
multivariable  technique, improving it later
(Horowitz, 1982); the Perron-Frobenius root method
was used by Boje and Nwokah (1997 and 1999) in
the QFT frame, as well as Yaniv (1995) and
Francheck et al. (1997) included non-diagonal
elements in the feedback controller; OReilly and
Leithead (1991) proposed the Individual Channel
Analysis and Design -ICAD-, etc.

Analogously to the gamma function of ICAD, the
loop interaction with non-diagonal elements was
studied in order to reduce the loop coupling in
(Egafia and Garcia-Sanz, 1999; Egafia and Garcia-
Sanz, 2000) and (Garcia-Sanz, and Egafia, 2002).
This yielded the development of a new design
methodology for fully populated matrix controllers.

In this paper a controller design of a multivariable
controller for a two-input/two-output SCARA robot
arm is presented. Thus, the present work is a detailed




application of some considerations -explained in
Egafia and Garcia-Sanz (1999; 2000) and Garcfa-
Sanz and Egafia (2002)- about multivariable design
techniques for uncertain systems with a strong
coupling behaviour.

The arrangement of the paper is the following. In
Section 2 the performance specifications for the
design problem are stated. In Section 3, a detailed
description of the controller design is explained, and
Section 4 concludes the paper emphasising the most
relevant ideas.

2. UNCERTAIN MODEL AND PERFORMANCE
SPECIFICATIONS

The process to control is a SCARA robot arm,
manufactured by Adept Technologies. Figure 2
shows the Adept One robot manipulator, and Figure
3 the two joints -angles q; and g,- that are
considered in this paper.

In order to present the control of two joints of a
SCARA robot arm, in this Section the plant model
and the desired performance specifications are
presented, as well as a brief description of the
theoretical principles that will be applied.

2.1 Plant Model

The Lagrange equations' method is used to find
Equation (1) and Equation (2), which describe the
dynamic behaviour of the two-link system. The real
inputs are torques 7; and 7, -applied through power
amplifier as u; and u,- commanded by electrical
motors on joints 1 and 2, and the outputs are angles

q; and q.

Figure 2. Adept One SCARA robot

Figure 3. Considered joints of SCARA robot arm

(p1 +2-p; 'cos(qz))-(':il +(p2 +Pp;-COs (qz ))QZ +

. ) u
+r-q,+7 'Sgn(ql)zrl:?l )

(pz +p; ~cos(q2))-£j, +p,-q,+

U,
— 2
T @

+1,q, + T, 5gn(q,) =7, =

where k is the power amplifiers' gain, 1; are
coefficients of viscous friction, 7; Coulomb friction
parameters associated with link 7, and

2 2 2

p, =L+, +m, -x| +m2-(11 +x2)
2
p,=1,+m; -x;

p;=m, 1 -x,

denoting I;, moment of inertia of the i-th link; mj,
mass of the i-th link; 1,, length of link 1.

Input signals u; and u, will be computed in counts
[ct] and will be commanded to the robot motors by
the amplifiers. Hence the robot parameters included
in Table 1 are multiplied by a gain of 75 [ct/N-m]
due to the power amplifier equipment.

Table 1: Coefficients of uncertain plant

Minimum | Maximum | Nominal
prk [cts*/rd] 719 813 766
prk [ct-s%/rd] 186 200 193
pyk [ct-s¥/rd] 134 230 182
ri-k [ct-s/rd] 67 381 224
ro'k [ct-s/rd] 11.6 91.9 51.75
Tk [ct] 344 358 351
Tk [ct] 262 323 292.5

Now it is possible to consider the Coulomb frictions
as disturbances and the cosine value of g, as an
uncertain parameter h between -1 and +1. Taking
into account Equation (1) and Equation (2), it is easy
to find the following transfer functions, which are
the elements of the plant P defined as,

I:Q1}=M.|:u1i|=|:M11 M12i|_|:u1i| 3)
Q, u, M, M,]||u,




Ma8)= =) . X
- iz
I
M (s) (p]+23-'pA3(.s})1)s+rl 11( o
where

A=z,-5%+z,-5+z, ®)

with the following coefficients,

z, :pz'(pl +2:p, 'h)_(pz +p; 'h)z
Z,=p, 1+, '(Pl +2"p3 h)
Z,=1,T,

2.2 Specifications

Consider the quantitative feedback design problem
(Horowitz, 1979) of specifying a controller G, and a
prefilter F, to achieve certain tracking specifications
A(0)=1{a, (@)} and B(@)=1{p; ()} for the function

Ty = {ti}”"},
by() <™ (j0) € ay(w) for i, j=1L..n (9
when,

y=I+P-G[' ' P.-G-F-r=T-F-r=T,-r
(10

and where all the matrices are 2 X 2.

The desired performance specifications are the
following,

e robust stability: at least 50° lower phase margin
and at least 1.8333 (5.26 dB) lower gain margin
(not simultaneously),

e control signals lower than 32767 [ct] for
disturbance  rejection of and tracking
commands,

e reduction of coupling effect as much as
possible,

e tracking specifications on [Ty ( (o} are to

achieve tracking tolerances defined by,

(11

<[eY® (j @) <b(w) for i=12

where,
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3.52(s/30+1)

a(w) = 12
(@) s +2.0.75-3.5-5+3.57 (12)
22
b(w) = 13
@) (s +2:15.2-5+2%)-(s/10+1) (13)

The design presented below is part of a normal
engineering design process, and is the first approach
to design a competitive controller for the Adept One
robot arm. The above specifications are limited by
the achieved sampling time for the practical
implementation, that is actually 10 ms. Further
designs for force control are subjected to the
improvement of this critical parameter.

2.3 Brief description of theoretical principles
Garcia-Sanz and Egafia (2002) include a detailed

description of the transfer function matrix of the
system T expressed as in Equation (14).

Tr'~( (d) d] ( )'I'Gd-r'+
( S
) @

+(2,)" -G,
(1+(i>d)' .Gd] ~(i'd) o (14

13 (13 Gb) T)- r=

Il
/_\

denoting P as the plant inverse, and ﬁd, f’b, G,

and G, the diagonal part -subscript d- and

non-diagonal part -subscript b- of P and G
respectively.

The term of Equation (14) that includes the non-
diagonal parts G, and IA’b of the feedback controller
and the plant inverse is called the coupling matrix C.

One hypothesis is needed to simplify the expression
of each element of the coupling matrix C.

Hypothesis H1: suppose that,

‘tjj ) (i’ij +8; 1 >>|tkj (ﬁxk + 8 X:for k=#j (15)
Note that diagonal elements #; will be larger than the
non-diagonals #;, so that after all, this Hypothesis H1
is quite reasonable. Then every element of the
coupling matrix ¢; obeys the following Equation
ae),

;- (By + ;) (16)

where 8; is 1 when i and j are equals. Otherwise, 0.

Cy = &y '(l*dij)_



On the other hand, it is possible to approximate the
diagonal elements #; of the transfer function matrix
of the feedback loop as Equation (17).

(|
‘= &g Pij

= ] 17
I a7

Hence the elements ¢;; of the coupling matrix can be
written as,

&j Py

Gy = &y '(l—dij)_m'(ﬁij +gij) (18)
i P

It is important to emphasise that the non-diagonal
elements of the controller G, will be designed to
reduce coupling interactions taking into account

Equation (18).

Moreover, an optimum non-diagonal controller g:™
was previously proposed in Egafla and Garcia-Sanz
(1999) defining the nominal plants ﬁUN and f)}j as
those which minimise the non-parametric
uncertainty radii Ap; and Ap; that comprise the
plant templates,

~N

o Pi ..
gijm=gij'ﬁ;,,f0r1¢_] 19)

iy

Francheck et al (1997) stated a multivariable
technique to design fully populated controllers under
the presence of uncertainty. As their work pointed
out, for this purpose a sufficient condition to include
non-diagonal elements is,

Condition C1: the plant P and its inverse P are
stable and do not have any hidden unstable mode.

This limitation is an inherent constraint for any
similar technique, and therefore it is also an
important remark to consider hereby. Note that the
plant model described in Equations (3)-(7) achieve
the above-mentioned condition.

The system is required for a last condition about the
Relative Gain Analysis -denoted as RGA- proposed
by Bristol (1966). Skogestad (1996) demonstrated
that robustness could be only achieved for non-'ill-
conditioned" multivariable uncertain plants. The
relationship between condition number and RGA
analysis was also included in the same paper,
concluding that large RGA elements -above 10- lead
to 'ill conditioned' plants. To summarise, the
condition considered here can be expressed as
follows,

Condition C2: The plant P is not 'ill-conditioned' for
any of the possible plants in the whole set 2.

3. CONTROLLER DESIGN

In this Section, one controller system is tested on the
Adept One SCARA robot arm: a controller designed
by a non-diagonal technique (Egafia and Garcia-
Sanz, 1999; Garcia-Sanz and Egafia, 2002).

The first step suggested by Garcia-Sanz and Egafia
(2002) is the RGA in order to pair input and output
signals and to quantify how much coupled the
system is.

Due to RGA properties, for 2x2 systems only one
element of the RGA matrix A is necessary: the sum
of the elements of every row or column is I.
Therefore, for a system like this, A;; equals A, and
A, equals Ay. In addition, perfect decoupled
systems yield diagonal elements equal to 1, and the
rest of them equal to 0.

Figure 4 shows the first element A;; for all the
possible plants due to uncertainty. At low
frequencies -below 0.06 rd/s - the coupled behaviour
is very low, but as far as the frequency increases the
system presents a more coupled dynamics. At a
frequency of 0.2 rd/s the element A;; reaches a
maximum value of 1.8 that is rather high. The
required bandwidth of the system derived from
tracking specifications lies between approximately 2
and 3.5 rd/s. In those frequencies the maximum
value of A, is greater than 4.5. Hence, the robot arm
presents a very coupled behaviour.

5

Al

107 10" 10° 10’ 10

Frequency (rd/s)
Figure 4. Element A;; of the Relative Gain Analysis
Matrix

This analysis also yields a very obvious result angle
q: will be controlled by motor 1, and angle q; by
motor 2. Thus the sequential technique may be
applied as follows.

e  Step 1: Design of the first loop controller, g;;.

Through standard loop-shaping the controller of
Equation (19) is found, satisfying all the
performance specifications.
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_1.65-10° - 5% +4.384-10° - 5 +2.619-10°
(s +829.25+1.545.10°)- 5

&n

(20)

e Step 2: Design of the decoupling element of
control effort u; on angle qs.

Taking into account the optimum controller of
Equation (19), the controller g, of Equation
(21) is searched minimising the coupling effect
¢, that can be obtained from Equation (18) for
this case.

6.187-10" - 52 +1.666.10" - 5 +9.815-10"

82
(21)

o Step 3: Design of the second loop controller,
g22.

The controller of the second loop is to be
designed. However, note that the dynamic
behaviour that now can be observed acting on
input u, and getting measures from angle q, is
not the stand-alone plant M>,, but the following

equivalent plant M3, ,

(Mzz gn tM,, 'gn)"Mn

M, =M, —
# z 1+M, g, +M, -8y,

(22)

Then through a standard QFT loop-shaping the
controller of Equation (23) is designed.

_4.218-10° .57 +1.119-10" -5 +6.3-10"
(s +3870-5 +3.177-10°)- 5

g2

(23)

e Step 4: Shaping of the closed loop to satisfy
tracking specifications.

Open loop prefilters of Equation (24) and
Equation (25) are included in order to satisfy
time domain specifications for reference
tracking.

143
- 24
h 52 +7.5620-5+14.3 24)

: 3.026
s +6.355-5+3.026

S (25)

The non-diagonal controller is composed of the
feedback controller G -with the elements of
Equations (20), (21) and (23)-, and the diagonal
prefilter F -Equations (24) and (25)-.

T1130-5° +9372-10° - 5% +1.748-10° - 5 + 3.461- 10
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Figure 5: Experiment with the non-diagonal
controller

The controller was implemented using a sampling
time of 10 ms. One experiment is shown in Figure 5.
The reference for angle q; is commanded from 0 up
to 20 degrees, while the reference for angle q, is
constant. The influence of the coupling effect with
the non-diagonal controller is lower than 1 degree
and the designed specifications are achieved.

Integral elements are included in both diagonal
controllers in order to remove steady-state errors.
These elements present a fairly good behaviour in
spite of the Coulomb friction terms or the
uncertainties.

4. CONCLUSIONS

This paper has demonstrated the use of the
non-diagonal controllers for uncertain systems. In
spite of some limitations on the use of those
elements -with unstable or non-minimum phase
elements-, if sufficient conditions are satisfied these
techniques work perfectly even for uncertain
systems, and robustness is not affected by
uncertainty.

This controller design is the first approach to obtain
a competitive control system for the reference
tracking of a robot manipulator. A further goal
subjected to the improvement of sampling time is
force control.
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IDENTIFICATION FOR ROBUST CONTROL OF A FAST FERRY
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Abstract: The interval transfer functions from wave height to pitch and heave movement
described in this paper are interpreted as a family of transfer functions whose coefficients
are bounded by some know intervals and centred at nominal values. The nominal model is
obtained by a non-linear least square algorithm of identification applied in the frequency
domain. Once the nominal model was obtained, then the tightest intervals around each
coefficient of the nominal transfer functions was created while satisfying the membership
and frequency response requirements. Different model validation tests was made (Bode
plots and simulations). These tests show that the uncertainty model obtained is a valid
interval model and it can be used for robust control design.

Keywords: Identification algorithms, Optimization problem, Robust performance.

1. INTRODUCTION

The main problem for the development of high speed
ship is concerned with the passenger’s comfort and
the safety of the vehicles. The vertical acceleration
associated with roll, pitch and heave motion is the
cause of motion sickness. The roll control is the most
attractive candidate for control since increasing roll
damping can be obtained more easily. However,
shipbuilders are also interested in increasing pitch and
heave damping. In order to solve the problem
antipiching devices and pitch control methods must be
considered. Previously, models for the vertical ship
dynamic must be developed for the design, evaluation
and verification of the results.

The number of published investigations about ship
modelling is immense. For example, non-linear
models in 6 degrees of freedom are shown in Fossen
(1994) and Lewis (1989). These models are
theoretical and they are obtained from the equations of
a rigid solid partially immersed in water.
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Obtaining a very accurate mathematical model of a
system is usually impossible and very costly. It also
often increases the complexity of the control
algorithm. A trend in the area of system identification
is to try to model the system uncertainties
(Bhattacharyya et al, 1995) to fit the available
analysis and design tools of robust control.

The interval functions described in this paper are
interpreted as a family of transfer functions from wave
height to pitch and heave movement whose
coefficients are bounded by some know intervals and
centred at nominal values. The nominal model
(Aranda et al., 1999b; Aranda et al., 2000) is obtained
by a non-linear least square algorithm applied in the
frequency domain. Once the nominal model is
obtained, then the tightest intervals around each
coefficient of the nominal transfer functions are
created while satisfying the membership and
frequency response requirements.




2. IDENTIFICATION METHODOLOGY

The method describes in this paper follows the steps
of classical identification diagram (Ljung, 1989;
Schoukens and Pintelon, 1991; Sédertrom and Stoica,
1989). A model test was carried out in the towing tank
of CEHIPAR (Madrid, Spain). The model was free to
move in heave direction and pitch angle. The wave
surface elevation was measured at 68.75 m. forward
from model bow. Different regular and irregular
waves and ship speed were tested. A set of simulated
data (Aranda et al., 1999a) has been generated by the
program PRECAL (which uses a geometrical model
of the ship to predict her dynamic bechaviour),
reproducing the same conditions of the experiments
with regular waves.

Two transfer functions are identified (see Figure 1):

e Gp(s): transfer function from wave height (m) to
pitch movement (°).

o Gy(s): transfer function from wave height (m) to
heave movement (m).

PITCH (°
» G S
WAVE HEIGHT (m)
HEAVESm)
Gy(s)

Fig. 1. Blocks diagram of the identified system

The identification is made in the frequency domain
and uses the simulated data of magnitude and phase
obtained by the program PRECAL in the encounter
frequency @ (i=1,2,...,25) for the transfer functions

Gp(jmi) and Gu(o.;).

G,(jo,) = Re(G,(jo)+ /im(G, (o)) (1)
G,(jw,)= Re(GH (o, ))+ J Im(GH (]we,))

In general, the estimated transfer functions
G,(s)and G, (s) canbe written in the following form:

m m-1
’”mﬂs + X S +..... +x"+1 (2)

s+ x,8" ot x,

n+m

G(s)==

where m is the number of zeros and n is the total
number of poles. The parameter vector is:

P: (xl’xZ "“’xn’xn+19"'5xn+m+1) (3)

The estimation of the parameter vector P is made by
a non-linear least squares procedure that uses the
following cost function (Schoukens and Pintelon,
1989):
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K(i’>=ZKRe(G(jwek))—(Re(G‘(jwek»+... @)
+j(ImG(j@,)) - ImG(jw,))

A number of considerations need to be made based in
a priori knowledge of the ship dynamics. So, there are
three constraints in the identification process of the
models:

e The models must be stables.

e The gain of Gp(s) must tend to zero in low encounter
frequencies.

e The gain of Gy(s) must tend to one in low encounter
frequencies

The solution to a non-linear least squares problem
with constrains is described for example in
Soderstrom  and  Stoica (1989), and can be
programmed using MATLAB.

3. INTERVAL MODELLING

Bhattacharyya et al. (1995) describes a method to
obtain the family of linear time invariant systems
G(S) by letting the transfer function coefficients lie in
intervals around those of the nominal G(s). This
method is adapted to our problem. Let

y(jo,)=D(jo)u(jo,) i=12,..N &)

where ®,;,0:2,...,0y are the test encounter frequencies
and the complex number u(je,;) and y(jo;) denote in
phasor notation the input-output pair at the frequency
o,; generated from an identification experiment.
Suppose that G'(s) is the transfer function of a linear
time-invariant system which is such that G'(jo,) is
closest to D(jw,) in some norm sense. In general it is
not possible to find a single rational function G'(s) for
which G](j )=D(jox;) and the more realistic
identification problem is to fact identify an entire
family G(s) of transfer functions which is capable of
validating the data in the sense that for each point
D(joy;) there exists some transfer function G; € @(s)

with the property that G'(jwe;)= D).

Let the nominal transfer function G'(s), which has
been identified by a mnon-linear least squares
procedure explained in the previous section, and the
transfer function G(s) with the form:

2 m I m-1
XpimiS +x,,+ms +.,.,.+x"+] (6)

G(s)=




The family of linear time-invariant systems G(s) is
defined by :

G(s)={6(s): % € [x, ~w, - ,x, +w, €1 Vi} (D)

where wy; are to be regarded as weights chosen apriori
whereas the €’s are to be regarded as dilation
parameters to be determinated by the identification
algorithm and the data D(jo,;).

3.1 Weight selection

Suppose the test data consists of N data points
obtained at corresponding frequencies,

D(jw,) ={D(jw,)= o, + jB; i=12,..N} (8)
the I model is defined as:

D(jw,) i=
c,uwc):[ A ©)

G'(jw,) =12l =LI+1,.N
The model Gy(jw,) is identical to the nominal
identified model G'(jw,) with the 1* data point
replaced by the I* component of the test data D(jc).
Now the 1¥ identified model G/(s) is constructed,
which is identified from the 1¥ data set G,(jw). Let

G,’(s)z

The models G'(s) must be identified with the same
method used to identify the nominal model G'(je).
The weight vector W is :

!
Xpmel ™ Xnemsl

J(ll)

The weight selection is an important stage because an
inappropriate selection may results in an unnecessarily
large family.

3.2 Computation of the intervals of the transfer
Sfunction coefficients.
Replacing s=j; in (6):

2

3
R (23 ) Zh I e TR — @ o
Gl = (T % ’g : )

) e ey
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if G(ja;) is made equal to the data set D(jo,) for a
particular encounter frequency o, then:

D(jwei)=ai+jﬁi=d1+j.d2

Operating, the next pair of equations are obtained:

F; (ai,ﬁi,x;,...,xin+m+1 ): (lx,dl —[)'idZ)—nl =0 (14)
F, (0, Biox! rooos X et )= (Byd1 +0,d2) —n2 = 0

X, for all i is defined by:

i=l..,n+m+l
% =xtwel (15)
Y =L.....,N
Rewrite (14) in terms of a matrix equations:
- =1 _
A-X+AW-E =-E (16)
AW E'=-B-E
where:
A= a, - ﬁiwzi aiweiz - ﬂiwcia . -1 0 weiz 0 mzi4
B ao, - ﬁiwm'z aiwm‘3 0 o, 0 wei3 0

klwein
E=
ko,
o, sin=048,.. B, sin=048,...
, = ~ B, sin=1509,.... k= o, sin=159,.... a7
—o,; sin=2,610,.... - B, sin=2,6,10,....
B, sin=37]11,... ~o,; sin=37]11,...
w, 0
W=
0 Xnam+l
gi:h’ ...... e'x,,]r
P T
B=A4-%

€ is the vector of the dilation parameters obtained

for the encounter frequency .. Here it is assumed
without loss of generality that A(e;,o;,p;) has full
rank. Then the minimum norm solution & i can be

computed as:

El=W (474 A (B+E)  (18)




In Table 3 and Table 4 the model interval of Gy(s) and

After finding £ | for all I=1,.,N, the dilation
Gp(s) are showed.

parameters of the intervals of the transfer function

coefficients are determined as follows: Table 3: Model interval of Gy(s)
. . Lower Nominal Upper
£, = m,in{oyé’x‘l} &, = mIax{O,exll} (19) X Interval value Interval
X1 79.95 80.35 83.50
X» 139.79 142.61 143.09
X3 139.63 142.94 144.56
4. RESULTS X4 106.31 106.59 109.02
Xs 35.88 42.62 43.09
X6 12.98 16.43 16.52

In Table 1 and Table 2 different model structures

(where m is thc number of zeros, n is the total number X8 -6.81 -6.78 -6.28
of poles and nps is the number of simple poles) are X9 25.99 26.02 26.35
showed for heave and pitch movement, at several ship X10 -5.14 -0.92 -0.81

X1 -0.14 3.21 3.28

speed. The cost function and mean square error can be
comparcd when the model structure is reduced.

Table 4: Model interval of Gp(s)

Table 1: Model structures for heave movement

Ship Model Value of Mean X Lower Nominal Upper
speed  Structure thecost  square Interval value Interval
(knots) _ (m,n,nps) _function _error (m’) Xy 49.71 50.08 50.87
20 (4,6,2) 0.0383 0.0143 X 80.70 83.73 84.31
20 (3,5,1) 0.0692 0.0141 X3 91.03 91.84 92.42
20 (2,3,1) 0.0696 0.0138 X4 63.45 63.99 66.07
30 (4,6,2) 0.0385 0.0111 Xs 28.31 28.73 28.95
30 (3,5,1) 0.1012 0.0115 X6 6.19 9.85 9.95
30 (2,3,1) 0.2381 0.0170 Xg -53.07 -52.57 -52.48
40 (4,6,2) 0.0471 0.0112 Xg 12.55 13.21 13.47
40 (3,5,1) 0.1045 0.0113 X10 -6.79 -6.05 -4.59
40 (2,3,1) 0.4510 0.0125 X1 0.25 0.53 2.74
In Figure 2 Bode plot of Gy(s) and data obtained by
PRECAL are showed.
Table 2: Model structures for pitch movement Bode plot (*) Experimental () Model
o
Ship Model Value of Mean & .
speed Structure  the cost square error .
(knots) _ (m,n,nps) function (WD) éﬁ -
20 4,6,2) 0.1213 0.1056 ¥
20 (351 01228  0.1052 S R A P R
30 (4,6,2) 0.0938 0.0995 s
30 3,5,1) 0.0946 0.0998
40 (462 00942  0.1214 I S I A A R
0 Gs) 00989 01226 g oot T L L
IR SN
The model interval was obtained for each of model SRt At AR N
structures show in Table 1 and Table 2. For example, 99 S S R el
the transfer functions of model structure (4,6,2) for a * ”
heave movement and pitch movement at 40 knots are: Frequency of encounter (rad/seg)
. , , Fig. 2. Bode plot of Gy(s) and data of PRECAL
, 3.2195* — 0.94235% + 26.035° ~ 6785 + 80.35
Gy ()= program.

$© 4164357 + 426257 +106.65° + 142957 +142.65 + 80.35

In Figure 3 Bode plot of Gp(s) and data obtained by
- : 7985 PRECAL are showed.
2

\S)DJG 1Y —AO.UD IS +313.L 15

Gr(s)= s
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Bode plot (*) Expenimental (-) Model
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Fig. 3. Bode plot of Gp(s) and data of PRECAL
program.

Figure 4 shows the output of Gyu(s) and the measured
heave in the CEHIPAR when the input was irregular
waves at 40 knots and SSN=5.

mean square error 0.0111

HEAVE (metres)

TIME (seconds)

Fig. 4. Simulation of Gy(s) and measured heave at 40
knots and sea state number (SSN) equal to 5.

Figure 5 shows the output of Gp(s) and the measured
pitch in the CEHIPAR when the input was irregular
waves at 40 knots and SSN=5.
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mean square error 0.1214

PITCH (degrees)

" . . L i ) \
(3] w0 23 1o 3 40 45 4D
TIME rseconds\

Fig. 5. Simulation of Gp(s) and measured pitch at 40
knots and sea state number (SSN) equal to 5.

5. CONCLUSION

In this paper continuous linear models for vertical
dynamics of a high speed ship has been showed.
These models were identified by a non-linear least
square algorithm applied in the frequency domain.
Once the nominal model was obtained, tightest
intervals around each coefficient of nominal transfer
functions was created while satisfying the
membership and frequency response requirements.
Different model validation tests was made.
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Abstract: This paper describes the design of a robust QFT (Quantitative Feedback Theory)
controller for the control of the changing of a ship’s course in the presence of disturbances.
A linear model is used with uncertainties in the parameters obtained from the non-linear
model of the ship. The required performance specifications and the existing number of
plants determine the bounds which the system must not violate. The results are compared
with those obtained with a conventional PID controller by means of genetic algorithms.

Keywords: ship control, ship autopilots, marine systems, control systems, ship model,
course-changing control, plant templates, bounds, QFT control.

1. INTRODUCTION

In any physical process which one aims to control,
certain performance specifications must be fulfilled. If
the mathematical model of the system is not exact or
if there are external disturbances, that is, if the system
presents uncertainties, it is then necessary to use
robust control techniques in the design of the
controller. Among the different techniques available,
the QFT (Quantitative Feedback Theory) method
developed by Horowitz (1992) has been chosen for
this work. With this model, the physical dimension of
the problem is maintained at all times and an adequate
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balance is achieved between the structure level of the
process and the complexity of the problem.

The above method is applied in this work for the
course-changing control of the ship, the R.O.V.
Zeefakkel (Fossen and Paulsen, 1992), using for the
design of the QFT controller the first order Nomoto
model (Nomoto, et al., 1957) which relates the
heading angle with the rudder angle. Saturation effects
have been taken into account in the design. The results
are compared with those of a conventional autopilot.
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Fig. 1. Block diagram of a conventional steering system

2. MATHEMATICAL MODEL OF THE VESSEL

Figure 1 shows the block diagram of a ship steering
system with a conventional autopilot (PID controller).
Saturation effects have been taken into account both
in the rudder angle and in the speed of change of this
angle.

The command applied is ¥, which represents the
desired heading and ¥, is the heading error. The
control signal of the controller which acts as a
command to the steering gear is &, and represents the
rudder angle required to correct the deviation from the
heading. The actual value of the rudder angle is d and
yis the ship’s course.

The mathematical model of the ship’s dynamics
between the rudder angle signal & and that of the
ship’s course  assuming that the relation is linear
(Van Amerongen and Udink Ten Cate, 1975), can be
represented (Nomoto, et al., 1957) by the transfer
function:

s) = (1

v K(1+ sT,)
) s(1+ sT))(1+ sT,)

or equally by the differential equation:
T, T, +(T, + T, Jji +yr = K(3 + T30) (2)

where K, T; T, and T; are the parameters which
represent the ship’s dynamics. These parameters are
basically determined by the dimensions and forms of
the vessel and also depend on operating conditions
such as ship speed, load or ballast situation, draft, trim
and water depth.

Equation (1) is usually approximated by

K
Y5y =—— ®)
) s(1+ sT)

with T = T1 + T2 - T3.

Expressed as a differential equation:

Tiji + 1 = K6 (4)

This attractively simple model provides a reasonably
accurate representation of the performance of vessels
when they keep a straight course or one with only
slight changes. However, if the characteristics of the
vessel’s rotation are to be studied, a non-linear term
(Van Amerongen and Udink Ten Cate, 1975) can be
added to the linear model:

T,T, +(T, + T, )y + KH g () = K(6 + T35) )

where Hg () is a non-linear function of y which is
obtained from the relation between y and & in the
steady state by means of the spiral test. This can be
approximated (Van Amerongen and Udink Ten Cate,
1975) by:

Hy(y)=by’ +by  (6)
If equation (4) is used, we get

Ty + H () = Ko Q)
with
Hy(y)=ny +nyr (8)

3. CONTROL PROBLEM

An autopilot must fulfil two objectives: course
keeping and course changing. In the first case, the
control objective is to maintain the ship’s heading
following the desired course (¥[t) = constant). In the
second case, the aim is to implement the change of
course without oscillations and in the shortest time
possible. In both situations, the operability of the
system must be independent of the disturbances
produced by the wind, the waves and the currents.

The course followed by a vessel can be specified by
means of a second order reference model (Fossen,
1994):

¥(6)+ 280, ¥(0)+ ow(t)=0y, O




where @, is the natural frequency and { (0,8 <{<1)
is the desired damping coefficient of the closed loop
system.

As an application of the proposed methodology, the
simulation of the behaviour of a vessel of 45m in
length, the R. O. V. Zeefakkel, is performed. The
model’s parameters at a speed of 10 knots are (Fossen
and Paulsen, 1992):

K=05s', T=31s, n;=1, n3=0.4s2

4, DESIGN SPECIFICATIONS

The aim of the design of this work is that the vessel
should make a fast change of course following,
without oscillations, the course determined by the
values { = 0.9 and «, = 0.07 rad/s and that this course
should be maintained despite the effect of bow waves
in the order of 1m in significant height. (Moyano, et
al., 2000) It is considered that these may lead to
variations in the course of up to 1°.

The non-linearities in the ship model mean that the
performance in response to changes in course may
vary. The prior study of this effect has led the authors
to consider for the model design the vessel given by
equation (3) with the following uncertainty in the K
and T parameters (at a speed of 10 knots):

K e [0.21, 0.5]
T e [29.5, 31]

Despite the fact that the model is non-linear, the QFT
model for linear SISO systems with parametric
uncertainty will be used, incorporating the two-
degrees-of-freedom control system shown in figure 2.
This includes a cascade compensator, G(s), and a
prefilter F(s) (both LTI) in order to reduce the
variations in the output of the system caused by the
uncertainties in the plant parameters and disturbances.

Autopilot d

Ship
+
Y, + s, + v
> Fs) () GE P(s) > >
A

Fig. 2 Block diagram of the two degree-of-freedom
control system

The system must fulfil robust stability and robust
tracking specifications (Houpis and Rasmussen, 1999;
Yaniv, 1999):

For the robust stability margins, the phase margin
angle should be at least 45° and the gain margin 2 dB.
Thus, the robust stability specification is defined by:
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Robust tracking: The change of course must be
defined within an acceptable range of variation. This
is generally defined in the time domain but is
normally transformed to the frequency domain, being
expressed by:

TRL(jw)STR (ja))S Try (j(‘)) an

where Tg(s) represents the closed loop transfer
function and Tgi(s) and Try(s) the equivalent transfer
functions of the lower and upper tracking bounds. In
this case, the following is specified:

T..\s)=
k ( ) s3+b s2+cs+a
with a =269.5%¥10°%, b = 181*107, ¢ = 118.3*10™

12)

7 (s)= 195%10* 5 +49*10~ 13
KR s +112%107 s +49%107

for o< 0.4 rad/s, as shown in Figure 3.

10? 10" o
w (md/sac)

Fig. 3 Robust tracking specifications.

As mentioned above, the aim of the design is to
maintain the course even when there are bow waves.
No disturbance rejection restriction has been specified
because the simulation considers only waves of a
reasonable force.

5. SIMULATIONS

The following nominal plant has been chosen for the
design:

(14)




and the following set of frequencies for the design has
been established:

Q =1{0.03,0.07,0.1,0.2, 04,1, 1.2} (15)
Using the Matlab QFT Toolbox (Borguesani, et al.,

1995) the plant templates are computed for each
frequency, as shown in Figure 4.

PLANT TEMPLATES

i

Magnude (48)

S S B K F Y 5
-a00 250 -200 150 100 50 o
Phave (deguees)

Fig. 4 Plant Templates.

On the basis of the performance specifications and the
plant templates, the robust stability and robust
tracking bounds are calculated. The intersection of all
of the bounds at the various frequencies is shown in
Figure 5.

INTERSECTION OF BOUNDS

N

Magntude (@@)

Phuse (dograes)

Fig. 5 Intersection of bounds.

For the design of the G(s) controller, the Nichols
Chart is used, adjusting the nominal open-loop
transfer function Ly = PyG (P is the nominal plant) in
such a way that no bounds are violated, as shown in
Figure 6.
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Fig. 6 Shaping of Ly(jw) on the Nichols chart for the
nominal plant.

The controller obtained is:

GG)_18045*1o4s3+62538*104s2+1657*10*s+3692*1o*
s* +168.53%107%s° +203.23¥107s% +18.73*107s

(16)

With this controller, the robust stability specification
is fulfilled but not the robust tracking specification, as
can be seen from Figures 7 and 8. The solid line
shows the response of the system and the dashed line
represents the specifications.

o (4B)
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Fig. 7 Robust Stability




i T T T T T

udo (4B}

Magn

i
[
l |
| [ 1 | [
80L — - — JE R e R e e
i 1 [ [
! I [ [
0 - 4 = B T T B
' i |
I [ | |
B0 g — o s o
10" 10

Froquoncy (rad/sec)

Fig. 8 Robust Tracking

By adjusting the prefilter:

(5)= 128.89%107°

= Sriassorios 7

a restriction on the frequency response of the system
is obtained such that it is maintained within the limits
imposed in the design. It is also verified that the
control structure designed allows the ship’s course to
fit the specifications for various course changes. As
examples, Figures 9 and 10 show the results for
changes in course of 10° and 30° respectivelv.

Course (dag)

: L L . : n n " :
0 20 40 60 20 100 120 140 160 180 200
Time (sac)

Fig. 9 Course changing manoeuvre. y, = 10°

Courso (deg)

0 20 40 ) 0 100 120 140 160 180 200
Time (sec)

Fig. 10 Course changing manoeuvre. y, = 30°
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The change of course manoeuvre obtained with QFT

design has been compared with that of a vessel with a
conventional PID controller which has been tuned by
means of genetic algorithms:

2
. 48. .1
G(s)=15523 7s“ +448.37s+0

(18
447375 +4473.7s )
Figure 11 shows a change of course manoeuvre of 10°
for the two controllers and Figure 12 illustrates the
required variations in the rudder angle (control
signal).

Courso (dog)

L L L L L
] 200 400 800 800 1000 1200
Time (eec)

Fig. 11. Change of course manoeuvres for the QFT
(solid line) and PID (dashed line) controllers.
Reference heading (dotted line).

Ruddsr angle (deg)
a
T ‘{7
S

L L L L L
o 200 400 800 800 1000 1200
Time (vec)

Fig. 12. Rudder Angle. QFT signal control (solid
line), PID signal control (dotted line)

6. CONCLUSIONS

This paper describes the use of the QFT robust control
technique which is highly suitable since the system
presents uncertainties and disturbances. Robust
stability and robust tracking specifications have been
imposed. The results have been compared with those




obtained using a conventional PID controller. It can
be observed that a more satisfactory result is obtained
with the QFT controller in the response of the system
at the expense of an increase in the complexity of the
control.
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Abstract. Variable speed compressors and electronic expansion valves are among the most
successful devices recently developed in the cooling systems control field. Currently, the
researcher's expectancy points to new automatic control schemes for the next generation of
cooling machines, however, some difficulties must be solved before new schemes can be
used in practice. Multivariable output feedback control of cooling processes is a difficult task
mainly due to the existing cross-coupling among inputs and outputs. This paper proposes a
control scheme that allows the freezing power and the super heating to be independently
controlled. It introduces a frequency domain based control design procedure that includes
robustness analysis and controller validation. Finally, it presents simulation results.

Keywords: Cooling Systems, Multivariable Control, Frequency Domain.

1. INTRODUCTION

The improvement of power consumption efficiency of
industrial devices is one of the main issues for the
incoming decades. In the last century of the industrial
age, the world population has virtually exploded,
nature has been almost devastated and energy
resources have been depleted. In spite of that, the
human living comfort has become a priority for most
of the whole world population, even for the third
world people; and because of that, energy per-capita
consumption should continuously increase in the
future. It is a fact that the next decades are going to
testify a continuous and strenuous search for new
devices and technologies to save energy resources.
The energy consumption by heating and cooling
systems in commercial and industrial buildings
corresponds to approximately 50% of the world
energy consumption (Imbabi, 1990). Heating and
cooling systems are high-energy consumption

processes and their operation in commercial and
industrial buildings is still inefficient. The just arrived
worldwide energy crisis has started a search for new
energy-saving cooling systems.

It is already known that the solution for the poor
operation of heating and cooling systems relies on the
proper choice and design of automatic controllers.
Low-cost controllers such as On/Off and SISO PID
controllers are the standard ones in the heating,
ventilation and air conditioning (HVAC) industry.
However, their low energy efficiency causes an extra-
undesired energy burning (Machado, 1996). Time
varying thermal loads and time delays in the control
loop are among the most challenging difficulties
remaining to be solved for the next generation of
cooling machines (Arguello et al, 1999).

Most today controllers are only capable of dealing
with constant thermal loads, in practice, thermal loads
are time varying. The temperature sensor location is
another difficult in the control field of HVAC devices.
The natural position for the sensor is close to or even




inside the target environment; currently, the sensor is
usually located close to the freezing power source (to
avoid time delays in the control loop).

Furthcrmore, to optimize energy efficiency, the
gencrated freezing power must respond to thermal
loads variations keeping the super heating as steady as
possible. Conventional single-input single-output
(SISO) control of cooling machines is not capable of
independently control the freezing power and super-
heating due to the existing inputs-outputs cross-
coupling interactions.

Several control strategies to deal with the control
problem of time varying processes, time delays and
1/0 cross coupling have been proposed by the control
community. Among them, robust control, adaptive
control and intelligent control are the most important.
A drawback of these new sophisticated alternatives is
that they arc usually expensive and required advanced
computational resources. To face time-varying
thermal loads, time delays and I/O cross coupling;
new low-cost multi-input multi-output (MIMO)
control strategies must be explored.

This paper introduces a MIMO control scheme for a
cooling machine based on the vapor compression
cycle that permits the independent control of its output
variables. It is shown that the proposed strategy
permits to control the freezing power keeping the
super heating almost unperturbed. Figure 1 shows the
schematic diagram of a cooling machine of this type.

Lo
Condenser -
Y Valve Compressor
-
- A
Boiling .
Evaporator .
- Liquid i _ Vapor
‘ el -
= Super Heating
Q

Figure 1. The Cooling System.

2. OUTPUT FEEDBACK CONTROL

Output feedback has been the industrial standard for
control purposes not only to shape the plant response,
fulfilling performance specifications, but mainly to
deal with output disturbances and model uncertainties.

Traditionally, the industrial control community has
relied on the intrinsic robustness of output feedback
controllers to face the control design problem for
SISO plants. A diversity of tuning algorithms has
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been successfully developed and applied to SISO
control of industrial plants. Behind this success there
has always been a property that exists for all physical
system, the dominance of the low-frequency poles in
the system time response. This fact has been the
background of nearly every robust control design
technique. Considering this concept in the controller
design, there is no need for solving the modeling
problem as rigorously as it could be required without
the pole dominance property.

Several attempts have been made to extend the SISO
design techniques to the MIMO case. With some
exceptions, the success of MIMO control design also
depends on the pole dominance property. In this
context, the size (order) of large-scale MIMO systems
becomes less important when compared with the
usually strong input-output cross-coupling existing in
MIMO systems. In recent years, the research has been
focused in new decoupling techniques. It is worth to
mention the pioneer contributions from Bristol (1966),
Kouvaritakis (1979), Mees (1981), McAvoy, (1983)
and Grosdidier and Morari (1986). Characteristics of
these techniques are: the control design procedure is
usually carried out in the frequency domain; low
frequency models are, in general, accurate enough for

control design in this environment; model
uncertainties are easily represented in the frequency
domain; output disturbances are usually low

frequency signals.

3. MIMO CONTROL - A BRIEF REVIEW
This section presents a brief review of the basic
concepts on multivariable control systems. The
following is based on the books from Maciejowski
(1989) and Skogestad et al (1996).

The system output, y(s), is given by

y(s) =T(s) P(s)r(s)+ S(s)d(s) = T(s)m(s)

¢y
where r(s) is the reference input, d(s) represents the
disturbances and m(s) is the measurement noise.

In this case, S(s) is known as the output sensitivity
function and is defined as

S(s) =[1 +G()K ()]’ )

the system closed loop transfer function (or
complementary sensitivity), 7(s), is then given by

T(s) = S(s)G(s)K(s) &)

The input sensitivity function is defined as




§,(5)=l +K()G)]™ @
and its corresponding complementary function as

Ty(s) = K(s)G(s)S,(s) 5)
A multiplicative model for plant uncertainty is

G(s)=Go()I +W(s)] 6

Hence, the following criteria to assess the system
performance and stability can be established:

a) The criterion for nominal performance is defined
by

1
wp(s)

(7

” SE)W, (S)HW <1 & G[S(s)]<

where G[.] is the greatest singular value of [.] and
W,(s) is a performance weighting matrix given by

w,(s)=w, ()] (8)

b) In the case of non structured uncertainty (NSU), the
criterion for robust performance is given by

Y&, ()8, (5)+Fw ()T (9)

where Y= min(plant condition number, controller
condition number)
and the criterion for robust stability (NSU) by

[T, (9. <1 & FIT(s))< (10)

i

where G[.] is the greatest singular value of [.] and
W,(s) is an uncertainty weighting matrix given by

W, (s) = wi(s)I] (11)

¢) In the case of structured uncertainty (SU), the
robust performance condition is given by

u(oes)) <1 Yo (12)
where, the matrix Q(s) is defined
On(s) Op(s)
= 13
g”[&ﬂ)&ﬂj ()

with
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On(s) = Wp(s) So(s)
01, () =w,(5) Sy(s) Gy (s)

0,,(5) = —w; () K(5) So(s) (14
05(5) = —w; (5) K(5) Sy (5) Gy (s)
So(s) = +Gy()K(s))"
and the robust stability condition (SU) by
1On())<l Vo (15)

Equations from (7) to (15) are used in Section 6 to
validate the controller design.

4. THE COOLING SYSTEM MODEL

This paper is concerned with the control of cooling
systems based on vapor compressor. The system
inputs are the expansion valve opening position,
which defines the mass flow rate (MFR) and the
compressor speed, which controls the volume flow
rate (VFR). The system outputs are the super heating,

AT, and the freezing power, Q,, (Figure 2).

~ MFR() Te)

Cooling
System

VER()

Q)

Figure 2. The Open Loop System.

Figure 3 shows the cross coupling between inputs and
outputs. Ideally, only the expansion valve would be
used to regulate the super heating and only the
variable-speed compressor would be used to control
the generation of freezing power. (Gjz(s) = Gy (s) =0
in Figure 3). Unfortunately, this is not the case.
Actually, each of the outputs is a function of both
inputs (the valve opening position and the compressor
velocity). This means that Gy5(s) and G;(s) can not be
neglected in practice.
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Figure 3. The Cooling System Cross Coupling.

In this case, the system dynamics can be defined by a
matrix transfer function of the form:

[Ar(s)] _ |:G11(S) Glz(s)}[MFR(s)} 16)
O (s) Gy (s)  Gy(s) || VFR(s)

Equation 16 can be written as:

rl=[6®]ue)] (17a)
with
Gy (s) Gy (s)
G(s)| =
[()] [GZI(S) Gzz(S):|
Y;(s) AT(s)
Y] =} = 17b
)] {Yzm} [Ql(s)] (170
V)] = Ui(s)| _ | MFR(s)
Us(s)| | VFR(s)

Several models for cooling systems can be found in
the literature (Koury, 1998; Machado, 1996;
Outtagarts, 1994). In this work, the cooling system
model identified in Machado (1996) has been used
throughout the analysis and simulation.

In this case,

[ -562
Gin(s)= _(45s+l)}
_[2.49(-705+1)
G2 ()= " 5o 525 +1) ] (18)
Gy (5) = 33.89(-36.37s+1) ]
| (25.655+1)(67.795+1)
6oy (5) = 22.20(6305+l):|
| (805 +1)(90s+1)

Equation 18 shows that the plant is a non-minimal
phase and a non-strictly proper system. Also, the
conditioning numbers of the controllability and
observability matrices of state space realizations of
this plant are of the order of 10* showing that cooling
systems are, in general, ill-conditioned plants.
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5. THE 2x2 MIMO CONTROL LAW

In this work, the nominal performance criterion was
specified as

1 2005
w,(s) 50s+1
And the criterion for robust stability was chosen as

()] < — = 20)

w,(s) 0.1s+1

GlS(s)] < (19

Equation 20 shows that to fulfill the robust stability
criterion the plant should be made strictly proper. This
can be achieved by the proper inclusion of a low-pass
filter in the control loop of the form

[F(s)]=[1 (1)

o)
0 Fy(s)

The practical consequence of this is that the
compressor speed will change smoothly during the
system transients. The proposed design strategy is
basically a frequency-domain procedure. In this case,
the MIMO controller design is carried out in two
steps. First a MIMO pre-compensator, K;(s), is
designed to scale the system and reach diagonal
dominance at low frequency and then a MIMO
controller, K,(s), is designed to meet performance
specifications such that the controller will have the
final form

K )]=[F©]K )&, ()] (22)

Thus, the MIMO control law has the form:

w©]=lFEIK K OIRE Y] (3,

= [F&)IK©]EE)]
where
_ [ AT(s) Setpoint
ko)) = 101 () Setpoint:|
B [ AT (s) Error (23b)
[E(S)] - _Ql(s) Error}
—Ku(s) Ky (s)
K =
KT =0 Kzz(s)]
and

1 0 || Kn(s) Kpp(s)
. _ 24
K7 (5] !:0 FZZ(S)][KZJ(S) K22(s)} o

all entries of K(s) have the general form of SISO PID
controllers, thus, the MIMO PID controller is given by




Ki Ki
X Kp“+—s‘—‘+Kd”s Kp12+—s—12+Kd12s (25
S)=
Ki Ki
Kp,, +—;2l+Kd21 s Kpy +—~—;22 +Kdy, s

Also, to have a proper controller a low-pass filter must
be included in every single PID (omitted here for
simplicity). Figure 4 shows the MIMO controller
structure.

Ey(s) MFR(s)
- Kui(s) -+ -
)
= Kps)
- Kai(s)
Ex(s) \ VER(s)

= Kunls) =+ = Fyuls) -

Figure 4. The MIMO PID Controller Implementation.

This leads to a closed loop matrix transfer function
that can be approximated at low frequencies) by

[AT(S)}z[T“(S) 0 ][AT(S)Setpoint:| 6
O] | 0 Ty (s) || O,(s) Setpoint

And since the closed loop system is diagonal
dominant at low frequency, the independent control of
superheating and freezing power is tangible as it is
shown in the next section. Figure 5 shows the block
diagram for the closed loop system.

JYEG® MFR()
~T(s) - T(s)
Setpoint MIMO Cooling
Control System
Qi(s)
Setpoint _ Ex(s) VFR(s) Qi(s)
+1

Figure 5. The Closed Loop System.

Several techniques for multivariable control design
can be found in the literature (Maciejowski, 1989;
Skogestad, 1996; Ho & Xu, 1998). An acceptable
performance is reached with
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[ 1
F, -
(%) _80s+1]
[ (0.206352 +0.17245 +0.0106)
Kyi(s)=
s(3s+1)
- @7
(0.597852 +0.02995 + 0.0005)
Ky(9)=
| s(1.3s+1)
[ (031795 +0.26575+0.0163
Ky (5| 031798 )
| s(1.3s5+1)
(1352052 +0.06765+0.0011)
Ky (s)=
s(3s+1)

Finally, the closed loop transfer function has the form

T(s) =[1+ Gy ()K £ ()] Gy(s)K 5 (5) (282)

Y= [Rs)] (28b)

6. SUMMARY OF THE DESIGN PROCEDURE
a) Design a low-pass filter to compensate the plant

for strict properness such that the open loop
system be given by

[69)]=[Go)][F(s)] 292)
b) Design a pre-compensator to decouple the pre-

filtered plant at low frequencies such that the
open loop system be given by

[6)]=[Go@IIF®]Ki()] 29

¢) Design a MIMO PID controller based on the

decoupled pre-filtered plant such that the open
loop system be given by

[6(9)]=[Go )] [F) K, 9)]K, )] (299)

d) Compute the MIMO controller MTF as

K- @]=[F®IK @K ()] (29d)




7. EXPERIMENTAL RESULTS

Simulation results are presented here to illustrate and
validate the controller performance.

Figure 6 presents the frequency response of the
nominal plant Gy(s); it shows the super-heating
(quadrant II) and freezing power (quadrant IV)
frequency responses; it also shows the strong effect of
the 1/O cross coupling (quadrants I and III). Figure 7
presents the frequency response of the plant with pre-
filtering (Equation 29a); it shows the performance of
the low-pass filter, F(s), making the plant strictly
proper (quadrant I). Figure 8 shows the plant
frequency response with pre-filtering and pre-
compensation (Equation 29b); it also shows
(quadrants 1 and IIT) how the effects of the I/O cross
coupling were eliminated by the pre-compensator

K/(S).

Figures 9, 10 and 11 present the step responses of the
nominal plant Gy(s), the plant with pre-filtering and
pre-compensation (Equation 29b) and the closed loop
system (Equation 28), respectively.

Finally, Figures 12 and 13 show, graphically, the
controller performance and validation and also the
robustness analysis based on Equations 7 to 15.

8. FINAL COMMENTS

Classical on-off controllers for cooling machines have
already shown to be inefficient for energy saving
purposes. Variable compressor speed operation has
recently emerged as the solution for the energy
consumption minimization problem. The searching for
an inexpensive compressor speed controller is
currently on the focus of the attention of the control
community and although some fine results can be
found in the technical literature, the final solution is
still under investigation.

This paper has introduced a designing procedure of
MIMO controllers for cooling machines based on
vapor compression. The proposed technique has been
applied to an ill-conditioned, non-minimal phase and
non-strictly proper model of an existing cooling
machine showing excellent performance in analysis
and simulation. The controller performance and
stability robustness has been assessed and validated
through well-known criteria. The results have shown
that independent control of superheating and freezing
power in cooling systems is a feasible task and that
the proposed MIMO controller scheme has a unique
potential for saving-energy-oriented control.
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QFT CONTROL DESIGN FOR AN APPROXIMATELY LINEARIZED
PNEUMATIC POSITIONING SYSTEM
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Abstract: In this work, a block-oriented approximate feedback linearization for control of
a pneumatic cylinder positioning system is briefly introduced and a rather detailed
discussion is presented on the uncertain linearization residual characterization based on
the describing function technique. With the limitation of the Bode’s gain-phase
relationship, making use of the characterized gain-phase information leads to a good
trade-off between performance and stability in the loopshaping, thus the conservativeness
of the QFT robust control design is significantly reduced and high control performance is
achieved. Simulation and experimental results are shown.

Keywords: feedback linearization, pneumatic systems, friction, robust control,
uncertainty, position control, describing functions.

NOTATION

» D denotes Laplace or differential operator.
¢ The square bracket “[]” in the expressions, like
G(D)[q(u)] or G_I(D)[q(u)] , is used to define

that the bracketed component [g(u)] is to be
located on the input side of the linear dynamics

G(D) or G (D).

¢ The term with an over-head “~” represents its

A

corresponding estimate, e.g. G(D) is the estimate

of G(D) and in the perfect case G(D) = G(D).

« N with its corresponding subscript represents a
sinusoidal input describing function, SIDF.

1. INTRODUCTION

High precision positioning of a pneumatic actuator in

the presence of high friction has long been a challenge
topic, because of the substantial inherent
nonlinearities within the system. Xiang (2001)
proposed a block-oriented approximate feedback
linearization technique for the control and modelling
of pneumatic actuator systems. By this technique, a
controlled pneumatic system can be considered to be
composed by some series and parallel connections of
blocks -- nonlinear elements and linear sub-systems.
Feedback linearization is then implemented based on
the block level units. It is shown that high control
performance is achieved by this fairly straight forward
approach. Due to the system uncertainties and
constraints, there might be considerable uncertain
linearization residuals left. In this case, if high
robustness is pursued for the final pneumatic servo
system, it is quite appropriate to select a robust control
technique for the controller synthesis of the
approximate linearized system.

One of the rather attractive robust control techniques
is the quantitative feedback theory (QFT) which has
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been used effectively in a variety of control
applications, such as flight control, Houpis (1995).
Originally developed by Horowitz and Sidi (1972,
1978) and Horowitz (1973), it is aimed at designing a
feedback controller so that pointwise frequency
response specifications on closed loop tracking and
disturbance rejection are met in spite of large
parametric and/or unstructured plant uncertainty.
Comparing to other robust control techniques, such as

H_ control, QFT can take into account phase

information in the design process. Thus it can provide
a somewhat less conservative framework for making
trade-off between performance and stability. But, as
the linear time invariant control can not breakthrough
the Bode’s gain-phase relationship, large system
uncertainty will exert even greater limitation on
control system performance. To overcome the
problem, nonlinear QFT and some other nonlinear
techniques, such as the reset control and nonlinear lead
compensator, have been explored in quite a few
works, such as Glass and Franchek (2000), Banos and
Barreiro (2000), and Zheng et al (2000). But as one
would expect, there are still many open questions and
techniques to be formalized in nonlinear QFT, Banos
and Barreiro (2000).

Rather than seeking a nonlinear control algorithm, the
work presented here focuses on characterization of the
uncertain linearization residual or the linearized
system, based on the sinusoidal input describing
function, SIDF, technique, Taylor (1999). It is shown
that the conservativeness of the QFT robust control
design can be significantly reduced by making use of
the characterized gain-phase information of the
linearized (uncertain) system. With the limitation of
the Bode’s gain-phase relationship, making use of the
possible gain-phase information leads to a good trade-
off between performance and stability in the
loopshaping, thus results in high control performance.
A convincing demonstration of this, presented in this
work, is the position control design for the friction
compensated pneumatic system where there exists
considerable linearization (friction compensation)
residual due to the slow force generation dynamics.

The organization of the following sections is as:
Section 2 gives a mathematical description of the
concerned pneumatic system and a brief introduction
of the block-oriented approximate feedback
linearization; In section 3, a rather detailed discussion
is presented on the uncertain linearization residuals
characterization for both the inner force generation
loop and outer motion control loop; Based on the
characterization results, in section 4, QFT controller
design is presented; Some experimental position
control results are shown in section 5; The final
section gives the conclusions and discussion.

2. CONSTITUTIVE EQUATIONS AND BLOCK-
ORIENTED APPROXIMATE FEEDBACK
LINEARIZATION

As shown in Fig. 1, the pneumatic system concerned
in this work is made up of a horizontally mounted
0.032x0.4 rodless cylinder, two 3/2 way solenoid
spool servo valves with a nominal flow rate of 500 I/
min, two analog pressure sensors and an optical
incremental position sensor with a resolution of 5 pm.

The supply pressure is 7 X 10° Pa. The maximum
static cylinder friction force is about 15-20% of the
maximum static cylinder force. This means that the
nonlinear friction force is so significant that it is taken
as the main disturbance force.

y
—_—
" Fp
-
P1 1)

S

uz——iﬁlf'ﬁ'\. @Ps

P1:P2: Y

Uy

Controller

N

Figure 1: Rodless pneumatic cylinder positioning
system

With the assumptions that the supply pressure p; and
the supply air temperature T are constants;
temperatures are uniform throughout of the system; air
can be considered as an ideal gas; the kinetic energy of
the air is negligible; the flow force effect on the spool
can be neglected; and the servo valve’s model can be
simplified as an input nonlinearity followed by a
normalized Hurwitz dynamics, then the pneumatic
actuator system can be described by the following
equations.

¢ Motion equations
my+fy = F-F,(3)  0sysl ()
F = A(p;-py)

where, for i = 1,2, p; represents the ith chamber’s

0<pg<p;<ps @

pressure; m, I, A, y, f,, anr()')) , Dgr and p are the

payload mass, cylinder stroke, piston area,
displacement, viscous friction coefficient, nonlinear
friction force, atmosphere and supply pressure
respectively.

+ Pressure build-up equation

. RT . n
b= (o-iw)i S
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where yy >0 is the effective initial displacement

corresponding to the non-working volume; n, R, T are
specific heat ratio, gas constant, and supply air

temperature respectively; For i = 1,2, Q; and y;
represent the ith chamber’s mass flow rate and
corresponding displacement (y;=1-y,=y)
respectively.

¢ Mass flow rate equations

p,:C
g; = _f/’_f"qqp(pi)Gvo(D)[qu(”i)] @
Pg;
1 .= —<bp
(p) T )
q,(p;) =
R R
1-b Pri = Py

Pgi=PpPp P,;=pg while G ,(D)lg,(u;)]20

pdl' = pat, pul. = pi while GVO(D)[t]u(u,—)] <0

where for i = 1,2, u;, p,; and pg; represent the ith
chamber’s corresponding valve input, up and down
stream pressure respectively; b and c, represent the
critical pressure ratio and specific heat constant
respectively; G,o(D) stands for the normalized
Hurwitz valve dynamics; g,,(u;) represents the lumped
effective valve nonlinearity which is supposed to be
hysteresis-like as in Xiang and Wikander (2001). Eq.
4 and 5 originate from Sanville (1971), but the fixed
effective orifice cross section area is replaced with

G,o(D)[g,(x;)] and the discharge coefficient is

neglected here.

From Eq. 1, 2 and 3 it can be seen that the coupling
between the pressure build-up and piston motion is

mainly defined by the measurable variables p, y and y.

If y and y are treated as two exogenous disturbance
signals in the pressure build-up process, then the
whole servo system can be decomposed into two
cascaded, inner pressure and outer motion control,
sub-systems. Let

L,:= chﬁ/A ©)
N,(yiP;) = —yip; @)
Ny (y;) :=n/(y;+ ) ®

where L, is a lumped constant; N, and Ny represent the
nonlinear blocks through which the two exogenous

disturbance signals, y and y, act on the inner pressure

sub-system. With these notations, for i = 1,2, the
pressure build-up model can be re-expressed in the
following block-oriented form.

13i = (Lppu,'qp(P,')Gvo(D) [q,,(ui)] + Nv().’i: P,'))Ny(yi)

®

Now select the valve input signal u; as

a1~ -1 A-1~-1 " -1

U, = 4qyu (GVO(D)[Puiqp (p,')Ny (y[)]Up,» (10)
c-17-1 e S

-Lp Gvo(D)[puigp (PIN,(yip)])
where v, is the introduced equivalent linear pressure
control signal. By substituting Eq. 10 into 9, it is
evident that when the estimates tend to be their
corresponding true values and if all the inverse
functions can be exactly realized, the pressure build-
up system is reduced to the linear subsystem

pi = G,(D)[v,,] (11

where G (D) := LvaO(D) .

Based on this linearized pressure build-up model, an
inner pressure controller can be designed with just
some linear feedback control law. Let G(D) represent

the ith chamber’s closed pressure control loop
dynamics, with the presented symmetric or
asymmetric pressure control strategy given in Xiang
(2001), the force response can be expressed as

F = Gp(D)[F (12)

refl
Assuming Gp(D) is of minimum phase, the force
reference can be chosen as

-~ -
where v,, is the introduced equivalent linear motion

control signal. Substituting Eq. 13 into 12 and then the
result into Eq. 1, gives

my +£,y = Gp(D)[v,,]-8:(3, D) (14)

where

. . -1 i .
8,3, D) = F,r(y) = GE(D)Gp (D)[Fnfr(y)] (15)
represents the nonlinear friction compensation
residual. If the inverse of Gg(D) can be exactly

realized and the estimate of the nonlinear friction tends
to be its true value, then Sfr — 0, and the linearized

motion control system is reduced to

my+f,y = Gp(D)[v,,] (16)

3. CHARACTERIZATION OF THE
LINEARIZATION RESIDUALS

Due to the system uncertainties and limitations,
perfect cancellation of all the nonlinear effects is
impossible, which means that the existence of
linearization residual is unavoidable. So, how to
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GF Nouter

Figure 2: Linearization and inner-outer cascaded control design

characterize the lincarization residual, to reduce its
adverse effects on the overall system and how to
design a high performance control system despite the
existence of considerable linearization residual will be
the main QFT control design problems. Moreover,
solving these problems will relax the requirement on
modelling and linearization accuracy. Since the
pressure p, corresponding to the force F measurement,
is introduced for the linearization, a cascaded
feedback control structure shown in Fig. 2 seems to be
a superior choice. In the figure, the inner and outer

N (the nonlinear

loop nonlinearities Ny, ... N, ...

friction) and their corresponding compensators

~1 ayn
Ninner and GF Nourer are shown conceptually. The
controllers to be designed include the inner feedback

controller C, outer feedback controller C

inner? outer

F

outer” Even

and outer feed forward controller C

though QFT is a well established robust control
technique, a good characterization of the approximate
linearization residual will definitely facilitate the
trade-off making between the performance and
stability in the loop shaping of the QFT control design,
thus result in high control performance. In
characterizing the inner-outer linearization residuals,

~q ~qn
Ninner vs Ny,,.. and GF Nouter vs N, .., the
following facts and assumptions are admitted.

al) In both inner and outer loop feedback
linearization, “under” nonlinearity
compensation strategy is employed, which
means that after the linearization the nonlinear
effect is either totally removed or considerably
reduced but the residual still possesses its
original nonlinearity’s characteristics and does
not lead to an unstable plant.

a2) Considering the input constraint, sensor noise
and the limited compensation improvement

~-1
effect, the linear dynamics inverse GF is not

implemented, Xiang (2001).

a3) The two chamber pressures, p; and p,, are

controlled symmetrically, and are kept varying
around a selected base pressure such that in

most cases g, = 1.

a4)  The estimation (measurement) errors of %Y,
p; and p, are negligible.

Consequently, it is supposed that the linearization
residuals can be described in a structure of their
original form, but with less nonlinear effects,
especially in low frequency range. In accordance with
frequency domain QFT control design, all the
linearization residuals will be characterized with the
describing function technique, one of the approximate
ways of representing the frequency response of a
nonlinear system.

3.1 Inner Loop Linearization Residuals

Except for the nonlinear friction force, i.e. the outer

loop nonlinearity N, .., all other nonlinearities are

supposed to be in the inner loop. The inner loop

nonlinearity N, mainly consists of valve

inner
nonlinearity g,,(u), flow rate related nonlinearity ¢,(p)
and p,, as well as piston motion coupling N, and N,.
Substitute Eq. 10 into 9. Let

o R WEES R Bty
0:=p,iq,N,G 14,(qu (Gvolpuigp Ny 1 (A7)
[30 = (Boo'*‘Nv)Ny
—(}.’i—BOO/P,')Ny P = _BP,'

(18)

where
O WA Ul WESS B I
B()() = Lppuiquvo[qu(q“ (—LP Gvolpui Uy Nv])):|
B := (3 — Boo/P)N,

19)

Then, the pressure build-up system can be represented
as

. ~-1

= AL Gyolay(dn (0, )]+

p pYvold . P BO (20)
= aLvaO[qu(qu (Upi))]_Bpi

With N, representing the valve nonlinearity

compensation residual’s SIDF, then from Eq. 20, the
linearized pressure build-up system plant transfer
function can be expressed as
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L a —
G,(s) = ;;LBGV()(s)Nqu 1)

In this way the linearization residuals in the inner
pressure build-up system are lumped in three terms,
ie. o, B and N,,. When all the estimations tend to be

their corresponding true values and when all the
inverse functions can be exactly realized,

o—1,B—0 and Ny, — 1. Now, characterization
of the inner loop linearization residuals is reduced to

characterization of these three terms.

Valve nonlinearity residual Nqu. The valve

nonlinearity g,(u) is a lumped hysteresis-like input

nonlinearity. It represents the integrated effects of all
the nonlinear elements from valve input to valve
effective opening. In Xiang and Wikander (2001),
experimental results show that with either dead-zone
inverse or backlash inverse the hysteresis-like
nonlinear effect, in frequency response (describing
function), can be considerably reduced. By
assumption al), the linearization residual is still a
hysteresis-like nonlinearity and can be simplified as a
backlash hysteresis -- the simplest representation of
hysteresis. The backlash SIDF shows that when the
input amplitude decreases lower than certain value
both gain and phase will decrease greatly, Slotine and
Li (1992). With small amplitude input, considerable
phase lag may cause control problem, such as limit
cycles. The condition for a limit cycle occurrence is
when the loop transfer function C(s)G(s) is intersected
with the negative inverse of the nonlinearity, backlash,
describing function -1 Nqu. To avoid limit cycle, the
controller C(s) must be designed such that the
intersection can not occur.

Flow rate related nonlinearity compensation residual
-- the o term. By assumption al) and a3), the flow rate
related nonlinearity compensation residual o has a
similar but less effect on the inner system than its
original nonlinearity p,g,. This means that the effect

of the compensation residual « is between the two
extremes, totally un-compensated and compensated,
cases. Supposing the effect of N, in o term can be

negligible, then the investigation can be carried on in
a fixed cylinder piston case e.g. 0<y = Yfix < ! and
Yfir 1s @ constant. Referring to Eq. 9, to characterise the

o term, a simulation model as depicted in Fig. 3 is
used, where u represent the valve opening. The SIDF

u 1 p
L, L, 2
A N

Figure 3: N}, in un-compensated case

simulation on this model is conducted with the method

given in Xiang and Wikander (2001). With N,

representing its simulated SIDF, the gain and phase
plots of N, are shown in Fig. 4 and Fig. 5, where the

Describing Function Amplitude vs. Frequency and Amplitude of Input

SIDF Gain (dB)

0.5

Amplitude To1? Frequency (rad/sec)

Figure 4: Np gain plot

Describing Function Phase vs. Frequency and Amplitude of input

SIDF Phase (degree)

05 X

Amplitude 0 102 Frequency (rad/sec)

Figure 5: N » phase plot

input and output have been normalized. From these

figures it can be seen that

e When the input sinusoid’s frequency is high, the
output signal p is small due to the integrator
effect, and thus the pqu’s effect is small.
Otherwise, p,q,’s effect will become more and
more significant with the increase of input
amplitude. At the maximum input amplitude
point, p,q,’s effect will get most serious while
when the input amplitude tends to be zero, the
system tends to be a pure linear integrator system.

* p,4p’s nonlinear effect results in a considerable
drop in the SIDF gain, but also considerable
reduction of phase lag. The later feature, in fact, is
favourable for the servo control.

Fig. 6 shows both the linear_case and the most
seriously nonlinear case of N,. For the system
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Figure 6: the system of Np followed by an integrator

depicted in Fig. 3, when p,g,, is replaced with o, it is
reasonable to suppose that the system’s frequency
response is located in the shadowed area of Fig. 6,
which represents the equivalent family of linear time
invariant plants (ELF) corresponding to the
compensation residual o. Its area and shape depend on
the flow rate related nonlinearity compensation
quality. In the perfect case of flow rate related
nonlinearity compensation, o = 1, the ‘no nonlinear
effect’ case indicated in Fig. 6. So the main
characteristics of the flow rate related nonlinearity
compensation residual is to result in gain decreasing
and phase ‘lead’. Since the phase ‘lead’ caused by the
flow rate related nonlinearity compensation residual is
beneficial, and since normally this effect occurs with
large input amplitude and low frequency, the phase
problem is believed to be not crucial. So, for controller
synthesis simplicity, the phase effect of the o term can
be neglected. In this way, o can be taken as a bounded
scalar, i.e. o € [o,0,]. The value of the lower bound

oy and upper bound o, should be positive and around

the ideal value o ;, ., = 1.

Motion coupling nonlinearity compensation residual-
-the P term. Referring to Eq. 3, when the displacement
y and velocity y are taken as an external signal, the
system from flow rate to pressure can be considered as
a first order system. Furthermore, for the ith chamber,
when y; 20, it is a stable plant. By assumption al),
the linearization is supposed to be realized in the way
such that B > 0. From Eq. 19, it can be seen that the

amplitude of B is also dependent on the displacement.
With the decreasing of the corresponding chamber

volume, the amplitude of B will increase. The P term,
here, is supposed can be characterized as a scalar

varying in the range of [0,8,] .The specification of the

upper bound depends on the compensation quality and
displacement range.

3.2 Friction Compensation Residual

When the force loop dynamics is not fast enough and
when the nonlinear friction effect (especially the
stiction effect) is significant, like the case in the
presented pneumatic positioning system, friction
compensation is difficult and the compensation
residual is considerable. There are quite many aspects
that affect the residual. But first of all, a friction model
which can give a more explicit description of the
friction behaviour in low velocity and at velocity
reversal is desired. Among the so many friction
models, the LuGre dynamic friction model proposed
in Canudas de Wit et al (1995) is considered here to be
a satisfactory one, and it is used in this work. It can be
expressed as

F, = anr+fvv = 0z +0Z+fv

fr
7= V—ﬂz
g(v) (22)
1 —w/v)
gv) = G—O(FC+(FS—FC)e )

where v = y is the velocity, z the virtual friction state,
o stiffness coefficient, 6; internal damping
coefficient, F, Coulomb friction, F static friction and
v, Stribeck velocity. Detailed discussion on nonlinear
friction compensation is presented in Xiang (2001).
For the friction compensated positioning system,
careful characterization of the compensation residual
will facilitate the controller synthesis to achieve high
positioning performance.

As discussed in Xiang (2001), the dynamics inverse

effect, the GF](D) term in Eq. 13, for output
nonlinearities compensation would be limited by the
control input constraint and sampling frequency. By
making a trade-off between the compensation effort
and the compensation effect improvement, Gp(D)

inverse is not used in the friction compensation. So
Equation 13, in fact, is reduced to
Fref= 'l)m+anr (23)

As aresult, Eq. 15 can be represented as

8,3, D) = F,,(3) - Gp(D)[Fnfr()] (24
In characterization of the friction compensation
residual Sfr()'r, D), supposing that the friction

estimation error can be neglected, Eq. 24 is reduced to
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8.3, D) = (1= G(D))[F,;(»] (25)

Since the behaviour of nonlinear friction and the
behaviour of the friction affected system are
interacting with each other, an investigation on the
integrated system is more appreciated. Accordingly a
simulation model presented in Fig. 7 is used for this

1 - Gr(s) | Fapr () [

Figure 7: Simulation model for the characterization
of friction and friction compensation residual effect

investigation. In this simulation, Gg(D) is a second

order linear dynamics characterised with w, = 78

rad/sand &, = 0.65 ; The payload mass m = 5.5 kg;

The force input signal F is a sinusoidal signal with
amplitude of a = [0.012, 0.015, 0.02, 0.03, 0.04, 0.05,
0.06, 0.08, 0.09, 0.1, 0.13, 0.15, 0.2, 0.3, 0.4,
0.5]1x 600 N, and frequency of =1, 2, 4, 6, 8, 10,
12, 20, 30, 40, 60, 80, 100, 150, 200] rad/s; The LuGre
friction model parameter values used in the simulation
are

(o} G; Vg F ¢ F s fv
(N/m) (Ns/m) (m/s) ™) N) (Ns/m)

1.15e5 1500 0.01 60 80 95

When there is no nonlinear friction, the system from F
to v is linear and its SIDF, represented with NV, is equal

to its frequency response function, i.e.
Ni(a,®) = 1/(m-jo+f,) (26)
To check how the nonlinear friction F,,. and friction

compensation residual Sfr affect the linear system of

N;, two cases are considered. First, the no

compensation case, i.e. the system defined by Eq. 1;
The simulated SIDF is represented with N, 5. And the

last, the compensated case, i.e. the system defined by
Eq. 1 but with F, 5 term replaced by &, of Eq. 25; The

simulated SIDF is represented with N,

Fig. 8 and Fig. 9 show the gain and phases change of
the linear system N, caused by the nonlinear friction

F - Some facts can be seen From the plots. First, with

the increase of frequency, the nonlinear friction’s

max(|N])) = 0015

~. 200

05 ™S o
a’a _ 100
max \0/0 ® (radls)

Figure 8: Gain change caused by the nonlinear
friction
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[
[
50
%0 100
=)
N
1= 50
N
! 0
<&
=
12 g
N 1
0
05 100
a’a
max ® (rad/s)

0 200

Figure 9: Phase change caused by the nonlinear
friction

max(‘X/l!) = 0.015

200

100

8/ 8max 0o o (rad/s)

Figure 10: Gain change caused by friction
compensation residual

effect will decrease very much. This phenomenon can
also be seen in Gifvert (1997). Second, at low
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frequency and small input amplitude range the
nonlinear friction causes a considerable gain drop.
When the input amplitude and frequency tends to zero
the gain almost drops to zero. And the last, the
nonlinear friction has the effect of reducing phase lag
(a nonlinear damping effect), but in the near zero
frequency range this effect tends to zero. The
characteristics of the nonlinear friction effect can also
be seen in the solid lines of Fig. 12 and Fig. 13.

= 100
Q

[0}

jl

4]

& 50.

<2
12,
N o

}

w
1=
N -50.

1
" 200
’ . 100
a’/a \\\\ T
max 0o ® (rad/s)

Figure 11: Phase change caused by friction
compensation residual

Fig. 10 and Fig. 11 show the nonlinear friction
ccmpensation effect for the system that has a
¢-msiderable force generation dynamics. In other
+ds, they show how the liner system is affected by
t'+~ nonlinear friction compensation residual. From the
plots, it can be seen that even though there is a
considerable force generation dynamics, the nonlinear
friction compensation is still quite effective especially
in the low frequency range. The friction compensation
effect can be seen more clearly by comparisons of the
gain and phase changes before and after the
compensation in 2D plots as shown in Fig. 12 and Fig.
13. It is noted that gain drop caused by the nonlinear

PvRre

3
~0.002 i

1
-0.004 fy

a maximum residual point

~0.008| ¥/ —
[Ng| - [N/ dashed tine

Gain change (m/s/N)

~0.008/. i
0.008 5/ compensated case

[Nl - |V, solid Tine

uncompensated case

-0.01

-0.012——
0 150 200

100
o (rad/s)

Figure 12: Comparison of the gain changes caused
by Fp and O

Z 7\75 - é NI
dashed line
compensated

Phase change (degrees)

Lﬁnﬁ -£N,
) max | solid line
{ un-compensated

50 100 150 200

Figure 13: Comparison of the phase changes
caused by F,p, and 8

friction can be compensated effectively. But this effect
depends on the sinusoid’s input amplitude and
frequency. The smaller the input amplitude the larger
the residual (amplitude) left and at a certain frequency
point the residual reaches its maximum value for a
given input amplitude. This maximum residual
frequency will increase with the increase of sinusoidal
input amplitude. From Fig. 13, it is also noted that the
increase in SIDF gain by the compensation is at the
cost of phase loss (see the dashed line). In
characterization of the friction compensated system, it
is important that the main features, in the most
frequently appeared cases, can be captured such that
with the limited system capacity, high control
performance can be achieved, while a relatively large
uncertainty can be tolerated. From Fig. 12 and Fig. 13,
it can be seen that the envelope formed by the four

lines, the un-compensated & = F and a2 = a,,
lines, and the compensated a = F and a = a,,,

lines, includes almost all the compensated case gain
lines and phase lines, except the compensated case

0.012
0.01§3
\ un-compensated: 8= a,,,,; 2= F;
%\ 0.008} )
E £\  lingar case
£ 0.006f & \ /
] O \
6] E 7 compefisated: 2= Fy; @ =48y,
3 ‘\
0.004
< N ;(}unds
N
by uncertainty model
0.002 !
| S N e
S
0
0 50 100 150 200

Frequency (rad/s)

Figure 14: Uncertainty (residual) gain modelling
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phase lines corresponding to a<F,. The main

purpose to characterize a uncertainty or a uncertain
system is to determine its upper and lower bounds. To
do so, in Fig. 14 and Fig. 15, the nonlinear friction and

un-compensated: 8 = F; 8= 8y,4y

-10 Sga
& )
-20 %
2 -30F y ‘ iy
5] R , \
B 40! i - < compensated: = Fy; 8= &g
3 FA / ’/ i
~ N i -
9 -50| x4 N\ o
E \ . = -
A, -60 CE
> \_ ‘ - .
-70 N lingar case
56
-80 /Z \§ d N
oo DY uncértainty model i
50 100 150 200
Frequency (rad/s)

Figure 15: Uncertainty (residual) phase modelling

friction compensation residual effects on the linear
system from force to velocity are depicted in the gain
and phase plots (not the above ‘gain change’ and
‘phase change’ plots). With the under compensation
assumption al), an uncertainty gain model shown by
the area between the two thick solid lines in Fig. 14
and phase model shown by the “x” marked clusters in
Fig. 15 seems reasonable. The two thick lines
represent the upper and lower bounds which include
most of the area of the mentioned envelope and the
linear case. The lower bound in low frequency range is

higher than the un-compensated case @ = F| line. It

is used to indicate the friction compensation effect.
The better compensation, the closer to the upper
bound. To characterize the uncertain system from
force to velocity, the uncertain model structure is
selected as

k
G,/(s) = ;—:ya—(l +4,(5) an
y

ky € [kyd, kyu], a,e [ayd, ayu]

where ky, and a, represent the two uncertain parameters
of the structured model, they are bounded with their
corresponding upper and lower bounds of ky, k. a4
and ay, respectively; A,(s) represents the additive un-
structured uncertainty. The structured model
parameters, k, and a, and Ay(s) values are obtained
through manual fitting. For the cases of k, =
0.08:0.01:0.12 and a, = 10:2:20, the structured
model’s gain and phase distribution are shown with
the “x” marked clusters in Fig. 14 and Fig. 15. Most of
the phase ‘lead’ (nonlinear damping, friction, caused
phase lag reduction) cases are not included in the
structured model. But this phase ‘lead’ information

will be used to decide the phase margin selection in the
following outer loop controller synthesis. The gain
distribution by the structured model is assigned in a
way such that it is located in the middle of the target
area and that it covers most of the area, except for
some area in the high frequency range which is
difficult to fit with the structured model. The next step

is to select ,Ay(s)l values such that the envelope

formed by the upper and lower bounds described by

k
lGVl(s)|upper = max ;’:‘Va_y 1+ IAy(S)l)
IGVI(S)|lower = min ky (1~ |Ay(S)|) (28)
+ ay

k, € (0.08,0.12], a, € [10, 20]

will cover almost all the target area. For the interested
frequency points |A y(u))l is selected as

'Ay(m)] =1[0,0,0,0,0,0,0.1,0.1,0.2,0.3,0.5
0.5,0.5,0.5,0.5]
o =[1,2,4,6,8, 10, 12, 20, 30, 40, 60
80, 100, 150, 200]

As a result, the uncertain (linearized but with
linearization residual) system from force F to position
y can be represented as

(29)

k
Gy(s) = —Z=—(1+A(s))

(s+ ay)s (30)

ky€ [kypky,).a,€ [a,,a,,]
It should be noted that the @ < F_ compensated cases

are not included in the outer loop plant model, but the
phase lag in the low frequency range (refer to Fig. 13)
will be considered in the controller synthesis.

4. CONTROLLER DESIGN

It is well known that to increase feedback controller
amplitude will increase the system’s input and output
disturbances rejection capability, and is one of the
main ways to improve tracking performance for an
uncertain system. But for a real system, feedback
controller amplitude will be limited by many other
factors, such as input constraint, sampling frequency,
sensor noise, un-modelled dynamics and/or
nonlinearities, especially in high frequency range.
With a limited bandwidth or loop cross-over
frequency, the loop’s gain-phase relationship is
limited. How to utilize the above characterized gain-
phase information to make trade-off between
performance and stability in the loopshaping will be
the main problem in the presented QFT controller
design work.
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4.1 Inner Loop Controller Design

For the inner controller design, the valve nonlinearity
compensation residual, N, qu will not be involved in the
plant. Its effect will be considered in the Nichols chart.
Referring to Eq. 21, the inner loop plant can be given
as
L o
G, (s) = -k
(s+B)(s/w, +20 /o, +1)

Be [0,0.15],00€ [0.9, 1.1]

(€2))

©,=310,¢,=07,L, = 24x10°

The control design objective for the inner loop is to
design a controller such that, without causing limit
cycles and within the given bandwidth, the loop gain
should be as high as possible in the interested
frequency range, ¢.g. low frequency range, while
keeping enough phasc and gain margin. Fig. 16 shows

Lo ‘ .
3 Joop plot £
a0, oop plo —a
30 /
—_ stability (margin) bound / !
a |
= 20 o j “
3 L 1/;"“7";" o d i
g 1o / - \2‘ e
& 8 N l/ _
= 9. -0 - PO
-10| @ =80 rad/s— < 1
LT '
20 e " bandwidth limitdtion i

el i i .
-250 -200 -150 -100
Phase (degrees)

Figure 16: Inner loop QFT controller design

the inner loop design. The bandwidth of the closed
loop is selected to be 80 rad/s. So the loop amplitude,
at 80 rad/s frequency point, must be lower than the
bound. The margin bound is calculated such that the

amplitude of the closed inner loop, Gzclp(jm) ,
satisfies

. C,; )G, (jo
|GaepU)| = inner U, %)

_ ——| S|, 0€ [0, )
1+ Cpppe V)G (J®)

(32)
Here and in the following p is decided according to the
algorithm given in Borghesani et al (1994). For the
inner loop, W = 1.2. This corresponds to at least 49.2°

phase margin and at least 1.83 dB gain margin. In the
controller synthesis, it is also important to make the

loop plot and the —1/Ngy plot as parallel as possible
so that the possibility of generating limit cycles can be
reduced to the lowest level. The designed inner
controller is

0.00035> + 2.35 + 299
s + 8445 + 2318565 + 17920144

c (33)

inner(s) =

4.2 Outer Loop Controller Design

The outer loop motion part plant is already defined by
Eq. 30 and 29, where kyd = 0.08, kyu =0.12,

ayy = 10 and a,, = 20. So the overall outer loop
plant can be given by
Gy(5) = Gypeyp($)G,(5) (34)

The outer loop controller design task is to design a
controller for G(s), such that within the limited

bandwidth, the positioning accuracy can be as high as
possible. Two important facts, which can be seen in
Fig. 13, Fig. 14 and Fig. 15, which have not been
considered in Eq. 30 and 29, are

+ Inlow frequency and small input amplitude cases,
the friction compensation residual will cause
relatively large phase lag. This implies that these
cases are phase critical.

« In the high frequency range, the friction effect has
in fact almost not been compensated due to the
considerable dynamics of the force generation
loop. As a result, there are small gain and large
phase ‘lead’ in this frequency range.

These two facts implies that to get a high positioning
accuracy, especially high steady-state positioning
accuracy, the only possible way is to considerably
reduce the phase and gain margin so that in the low
frequency range the loop’s gain can be higher and the
phase lag is small. In this work, p = 7 is selected. This

corresponds to at least 8.2° phase margin and at least
1.14 dB gain margin. Fig. 17 shows the design of the

S — —
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Figure 17: Outer loop QFT controller design

outer loop controller. The designed feedback and feed
forward controllers are




3 2
6.7¢9s” +8.4ells” +7.4el13s + 1.4el5 35)

Couter(s) =
outer s4 + 3334s3 + 2.4e6s2 +7.5e8s + lell

F 1
Couter(s) =7 2
s /50" +2s/50+1

(36)

5. EXPERIMENTAL POSITIONING RESULTS

Experiments are conducted with the pneumatic rodless
cylinder positioning system presented in section 2. To
test the robust performance and robust stability,
system and experimental parameters are changed from
test to test, but with no controller parameter
modification. The default payload is 5.5 kg and the
default friction compensator parameters arel

Go Gy Vg Fc Fs fv
(N/m) (Ns/m) (m/s) (N) (N) (Ns/m)

Chamber1 le5 1500 0.016 26 65 95
Chamber1 les 1500 0.01 26 95 125

Inertia force forward and viscous force forward are
involved, in order to reduce tracking error. In every
figure, there are two rows; The upper one shows the
comparisons of different positioning with their
corresponding references; All the references are after

F
outer

one part of the reference generator; The lower one
shows the closed-up positioning error, and the transit
behaviour can be seen more clearly there. All the

the low-pass filter, C (s) , which is designed to be

positioning experiments show a <5 um (sensor’s
resolution) steady-state positioning error. Fig. 18
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Figure 18: Normal positioning for payload of 5.5 kg
and 15.5 kg

shows some normal positioning cases with payload
changed from 5.5 kg to 15.5 kg. With this change of
payload, only the overshoot is seen to be increased a

little bit. Fig. 19 shows the 0.5 mm small positioning

0.201-

0.2005 r—//T*-——-———“N\
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021 ,’/“/‘ }‘\ \\\\
’0.1995'/ L¥——

Yo (M)

y

0.199
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Figure 19: 0.5 mm small positioning for payload of
5.5 kg and 15.5 kg

cases with payload changed from 5.5 kg to 15.5 kg.
Small positioning means small displacement, small
pressure reference and thus small control input. In this
case, the uncertainty is substantial. With the change of
payload, only a little bit slower response is seen. Fig.
20 shows four cases: change and without change of

04

2 3 4 5
Time (sec)

Figure 20: Change and without change of friction
parameter; With and without velocity de-coupling

friction parameter, with and without velocity de-
coupling. For both chambers, the friction compensator
parameters are changed simultaneously as:

-13 and F —20. The without velocity

Cldefault sldcfa\xl!
de-coupling case is to set N, = 0 in Eq. 10. From the

figure, it can be seen that all the changes in the
compensator parameter cause no obvious deviation in
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positioning performance. Fig. 21 shows the position
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Figure 21: Position tracking for payload of
5.5kgand 15.5kg

tracking control results for random tracking
references. For payload m = 15.5 kg the tracking error
is seen somewhat larger than for payload m = 5.5 kg in
the high frequency range (fast reference change).

6. CONCLUSIONS

With the introduced block-oriented feedback
linearization technique, the nonlinearity compensation
is fairly effective. The linearization residual and
finally the linearized system are characterized with the
presented method. The conservativeness of the QFT
robust control design can be significantly reduced by
making use of the characterized gain-phase
information of the linearized (uncertain) system. With
the limitation of the Bode’s gain-phasc relationship,
making use of the possible gain-phase information
leads to a good trade-off between performance and
stability in the loopshaping, thus results in high control
performance. For further reduction of the
conservativeness of QFT robust control design, some
other frequency domain nonlinearity modelling
techniques, such as the general describing function
method, may be worth exploring. For a high accuracy
positioning, it is required that the overall closed loop
system amplitude frequency response should be unit
from the DC case to a quite large frequency range, and
with no or only small peaks. Efficiently creating such
a result by the interaction of feedback and feed
forward loop shaping is worth further investigating.
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Abstract: This paper presents a method of computing frequency response bounds on the
elements of a decentralised controller for a MIMO system for guaranteed closed loop
stability. The proposed technique uses the structured singular value. It generates stability
bounds that can be plotted on the Nichols chart and incorporated into the QFT loop shaping

procedure.

Keywords: Decentralised control, structured singular value (SSV), quantitative feedback

theory (QFT).

1. INTRODUCTION

Grosdidier and Morari (1986) have derived some
techniques of using the structured singular value for
computing stability bounds on the diagonal closed loop
elements which can be used in an independent design
for decentralised control systems. We note here that the
same approach can be extended to find frequency
response bounds on the elements of a diagonal
controller. The main idea is to associate an uncertainty
with the (structured) controller for a fixed plant model
and use the SSV to analyse the stability of the closed-
loop system. The bounds obtained impose both
magnitude and phase constraints on the controller and
are expected to be useful in a QFT type loop shaping
synthesis procedure.

Matrices are represented here by upper case bold face
letters while scalars are in lower case. Subscript ij
refers to the ij™ element of a matrix. I, is the identity
matrix of order n. The frequency argument (s or jo) is
omitted in most expressions.

Consider first the feedback system comprising of an
nxn plant P, with a diagonal feedback controller K =

107

diag(k;). If P is stable, then the loop shown in figure 1
is stable for all stable K satisfying

Ik [<——, i=1.n Vo (1)
H(P)
where p(-) is the structured singular value
corresponding to the diagonal structure of K. This
follows directly from the definition of the structured
singular value and the fact that the spectral norm of a
diagonal matrix G(K) is the magnitude of its largest

element (max;k;).

P(s) w—(—

+

K(s)

Figure 1: Plant and diagonal controller.

Inequality (1) gives a magnitude bound on the elements
of K or in other words restricts them to lic within a
circle of radius 1/uw(P) centred at the origin. It is
possible to numerically optimise such bounds so as to
obtain larger regions within which the elements of K(s)
are constrained to lie. Further, this development does



not require any additional assumptions on the unstable
plant poles.

The next section presents the method of doing this. A
simple 2x2 example is then given. Extension of the
principle to deal with uncertain plant models is also
discussed.

2. STABILITY BOUNDS FOR CONTROLLER
ELEMENTS

Consider a nxn plant P. Let K(s) = k(s)I,, (where k(s)
is a scalar transfer function) be a diagonal controller
that stabiliscs P.

Though the existence of a rational stabilising k(s)
cannot be proved, it is generally not difficult to find a
real rational k(s) such that k(s)I, stabilises a given
unstable plant. Since k(s) multiplies each of the
characteristic gain loci of P(s) (K(s) is trivially
commutative) one can shape the frequency response
k(jw) such that the loci of k(jw)A(P(jw)), taken
together, encircle the point (-1,0) the required number
of times (Maciejowski, 1989).

Now, it is expected that there exists a perturbation of
the frequency responses of the controller elements
around k(jw) for which the closed-loop remains stable.
Let A be an additive perturbation with the same
diagonal structure as the controller. The perturbed
controller can be represented as
K(s)=k(s)I, +A

wherc A is a diagonal perturbation matrix. The
structured singular value can be used to obtain bounds
on |A;.

Figure 2. Schematic 2

The block diagram of the corresponding p-test is
shown

in figure 2. The part in the dotted line M = P(I-kP)" is
identified with the stable plant of (1).

The system is stable if

|Ai,-|<——1—, i=l.n Vo )
H(M)

This bound can be very small especially at frequencies
where the compensated characteristic gain loci

k(jw)A(P(jw)) pass close to the point (-1,0).

We now replace k(jw) by a complex number z, which
can be optimised to obtain a larger perturbation radius
than that obtained from (2).

As is well known, the computation of p(M) is a non-
convex problem and so is replaced by a tight upper
bound, fi(M), (for instance the Perron root A,(M)) the
computation of which is a convex problem. This upper
bound is a smooth function of the elements of the
matrix. Hence given M=P(I-zP)!, [i(M) is a well-
behaved function of z. It is therefore possible to use
numerical (gradient bascd) search techniques to find a
(locally) optimal z such that (M) is minimised. This

in turn maximises the perturbation radius /(M) on

the elements K; when applied to (2). The controller
k(s) no longer lies at the centre of the allowed
perturbation sets of K(s).

We further add the constraint
[z(w) - k(w) | <

— 3

R(M)
This ensures that the original nominal controller k(s)I,
lies within the optimised bounds.

Now by using a connectedness argument, it is possible
to deduce that the loop remains stable for all controllers

K, such that each of the elements Kj; (jo) lies within a
circle defined by the optimised z(w) and 1/E(M)

values above.

Fact: Given a stabilising controller k(s)I,,, and complex
valued function z(w) such that (3) holds, the closed
loop system of figure 1 is stable for all diagonal K such
that,

1

H(P(jo)(I, —2(@)P(jo)™

Vi Vo (4)
i.e. each element of K lies within a circle centred at z
and with a radius l/ nwPda, —2zP))"! at the frequency
.

|K; (jo)-z(w)| <

Proof: From the definition of y, (4) implies
det(I,, — (K — 2L, )(P(I, —zP)™")) =20
= det((I,, —zP)— (K —zI , )P)det((I,, —zP) ™) #0
= det(f, —KP) #0

The closed loop characteristic polynomial of figure 1,
det(I,-KP) is non-zero for all controllers satisfying (4).
Hence, the number of encirclements of the origin by
det(I-KP) does not change for this entire set of
controllers satisfying (4).

Further, since one controller in the set, k(s)I,, gives a
stable closed loop, the entire set represented by (4)
gives a stable closed loop. .
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The circles obtained from the above formulation at any
specified frequencies can be transferred onto the
Nichols chart and used in conjunction with other
bounds (derived from performance requirements) in a
QFT type design procedure. Such bounds are expected
to prove particularly useful for non-diagonally
dominant systems for which stability cannot be easily
addressed in the framework of classical frequency
response methods.

For specific problems, it might be possible to further
improve the bounds by having different centres and
perturbation radii for each of the loops. The former can
be achieved by replacing zI, by Z = diag(z), the z;s
being the centres of the discs for each of the loops. A
diagonal scaling factor can also be introduced to have
different perturbation radii in each of the loops if
required.

3. AN EXAMPLE

Consider the simple 2x2 plant model taken from
Maciejowski (1989).

1 [(s—l) $ }
P=———— )
1.25(s+D)(s+2)|-6  (s-2)

Since the plant is stable, we first compute the
unoptimised bound on the controller elements resulting
from (1). The plot of 1/u(P) is shown in figure 3.

10 e

1 (P)
3

10 10° 10"
Frequency (rad/sec}

Figure 3: Unoptimised magnitude bound on the
controller elements

The corresponding circles representing the bounds on
the controller elements in the complex plane are shown
(dotted) in figures 4 a-c for 3 frequency points (® =
0.1, 1.12 and 7.0 rad/sec) lying below, approximately at
and above crossover respectively.

Since the plant is stable, we can choose the initial
stabilising controller k(s)=0 and optimise the bounds.
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(a) Bounds on K;; at ® = 0.1 rad/sec
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(b) Bounds on K;; at ®= 1.1 rad/sec

1 J
©=78

imag

=20 ) e =

25—
25 -20 -15

0 s 0 5 10
real

(c) Bounds on K;; at @ = 7.8 rad/sec

Figure 4: Initial (dotted) and improved (solid) bounds
on the controller elements at 3 frequency points.

The optimised bounds (on Kj;, I=1,2) obtained after 15
iterations of an optimisation routine based on
sequential quadratic programming are also shown
(solid) in figures 4 a - c. If the optimisation is
continued further, the bounds at some frequencies
expand further and tend towards half planes.

The circles shown in figure 4 can easily be transferred
onto the Nichols chart to generate quadratic bounds
that can be incorporated into a sequential or
independent design procedure based on QFT.



3. EXTENSION TO UNCERTAIN PLANTS
3.1 Norm bounded uncertainty

The above idea can be easily extended to incorporate
plant model uncertainty if the uncertainty is modelled
as a norm bounded structured perturbation as in

conventional p theory.

Figure 5 shows the block diagram of the plant P with a
structured uncertainty A, wrapped around it. The
additive perturbation of the controller is denoted by Ay
The initial stabilising controller K(s)=k(s)I, is to be
chosen so as to robustly stabilise the nominal as well as
perturbed plants.

Figure 5: Plant with norm bounded uncertainty

This nominal K(s) can be designed by plotting the n
plant eigenvalue templates and shaping k(s) such that
the compensated characteristic loci of the nominal plant
have the required number of encirclements and in
addition the compensated eigenvalue templates at a
chosen set of frequency points avoid the critical point,
(-180°,0dB), on the Nichols chart.

Without loss of generality let A, be scaled such that
G(A,)<1. Also introduce a scaling factor D=dl,(d

R ) into the A, loop as shown in figure 6.

Figure 6: Block diagram for equation (6).

Now invoking the main loop theorem (Doyle and
Packard, 1993), we have an extended p test for the
system of figure 6.
The system in figure 6 is stable if

|Akii|<d VivVo (6)

where d is chosen such that

HM) <1

(1 here being with respect to the augmented structure
of A, and A, appended together). A formal proof of
this follows from Skogestad and Morari (Theorem 1,
Appendix). In this formulation, d is the radius of
perturbation and should be maximised.

Again, k(jw) can be replaced by a complex number z
which is optimised such that d is maximised subject to
the constraint u(M) <1.

3.2 Enumerated plant set

When a finite set of linear models for the plant are
available, a common stability constraint on the
controller frequency response can be obtained by using

an augmented matrix M .

Given m plant models, the matrices M;, i=1..m are
defined as (refer figure 2.)
M, =PI, -kP,)™" i=l.m
We then define the augmented matrix
M = diag(M; M, - M),
generating the block diagram shown in figure 7.

Inequality (2) can then be applied (replacing M by M )
to compute the required controller bounds.

Figure 7: Block diagram for the augmented system for
an enumerated plant set.

5. CONCLUSIONS

A technique based on the numerical optimisation of the
SSV for computation of stability bounds in
decentralised control has been discussed. The
presentation addresses only diagonal controllers and
cannot handle other general decentralised control
structures. However, the method is expected to be
potentially useful in applying quantitative techniques to
non-diagonally-dominant systems.
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Abstract: This paper presents a method that uses QFT for choosing the initial open-loop
transfer function and the using a robust loopshaping approach to consider unknown
coprime uncertainties. Thus, this methodology considers not only the robustness
properties of the shaped plant, but also those of the real plant. This technique is
presented by way of an example using a model of a Neutralization process. Simulation
results show the benefit of using this technique: the plant is controlled in a range of pH
values, despite variations of the plant parameters, obtaining good performance at the
desired working points. To apply the methodology presented in this paper it is only
necessary to consider the possible uncertainty in the nominal model and using available

software to design the controller.

1. INTRODUCTION

As it is well known, the essence of robust control is to
model the uncertainties themselves and to incorporate
them in the design procedure of the control system,
with the aim of ensuring stability and performance at
all working points. Usually it is possible to identify
multiple local linear models at different operating
regions, which can be used to evaluate the expected
uncertainty of the nominal model. Then this
uncertainty information is used to design a controller
that ensures robust stability and performance.

Among all the available Robust Control techniques
the H,, Loop Shaping (H,,LS) procedure (McFarlane

and Glover, 1990) has been chosen, because it has
been proved to be efficient to solve realistic problems.
The approach involves the robust stabilization to
additive perturbations of normalized coprime factors
of a shaped plant. Prior to robust stabilization, the
open-loop singular values are shaped using pre- and
post- compensators. Then, the resulting shaped plant

is robustly stabilized with respect to coprime factor
uncertainty using H,,, optimization.

One difficulty of the H, LS design method is that it

does not directly address the robustness properties of
the real plant, but rather it is concerned with the
shaped plant, and, unfortunately, there is no direct
connection between the robustness of the shaped and
unshaped plant. This paper shows a methodology that
solves this problem by considering the robustness
properties of the real plant in the selection of the
weights of the shaped plant. This selection is done
using ideas from Quantitative Feedback Theory
(Horowitz, 1962, 1992; Yaniv, 1999; Houpis and
Rasmussen, 1999). Once selected a robust shaped
plant the controller is designed by application of the
H,,LS design method.

This technique is presented showing an example of
designing a controller for a pH neutralization
processes. This process plays an important role in
chemical plants, such as biological, wastewater

Author to whom correspondence should be addressed. This work was supported by the CYTED (Proyecto

Precompetitivo VII-5) and CICYT (Proyecto TAP97-1144)



treatment, electrochemistry and precipitation plants.
However, it is difficult to control a pH process with
adequate performance due to its nonlincarities, time-
varying properties and sensibility to small
perturbations when working near the equivalence
point (Palancar ct al., 1996).

2. H,,LOOP SHAPING

H,.LS, as introduced and solved in [5], considers the
stabilization of a plant which has a normalized left

coprime factorization: G=D"'N. That is, N and D

arc stable transfer function matrices
(N,DeRH®) such that there exists
X, Y e RH*  which fulfils the identities

* * *
NX+DY=I and NN +DD =I (Where H
denotes HT(—§)).

Ay (O Ay
u R y
i » N - p >
K |«

Figure 1: Coprime perturbed plant

In this technique two uncertainty blocks are used, as
depicted in Figure 1, one on each of the factors in the

coprime factorization: G=(D+Ap )#1(N +AN),

where AD,ANERH°°. The objective of robust

stabilization is to stabilize the nominal plant G and
the family of perturbed plants defined by

G= {D +ap) ' IN+AN)lap  an]L < e}

where € is the Stability Margin. Objectives of Hy LS

are the maximization of this Stability Margin and
achieving good input-output performance. It can be
shown that this is equivalent to find a stabilizing K

[ﬂ(l +GK)~ D1

be calculated by solving an Algebraic Riccatti
Equation, as shown by [12].

that minimizes vy = , which can

oo

Compared with other H,, design methods, the main
advantage of the H,LS method is that it does not

require the so-called y-iteration to calculate the
optimal controller. Also there are available relatively

114

simple formulas to calculate the controller. On the
other hand it does not (directly) include any closed-
loop specification, which must be included by
considering, instead of the nominal plant, a shaped
plant. In practical designs, the Loop Shaping Design
Procedure (LSDP) can be applied (McFarlane and
Glover, 1990). The complete design procedure is the
following:

1. Using pre- and post-compensators (W1 and Wj)
the singular values of the nominal plant (N3 are
modified to give a desired loop shape:
Gg =W GW5,, which should not contain
unstable hidden modes.

2. Gg is considered to be perturbed by normalized
coprime uncertaintics, and an optimal feedback
controller Kg is then synthesized using the H, LS

approach.

3. The combination of the H, LS controller and the
compensators  gives the final controller:
K = W2K8W1

Different methods to select the compensators have
been studied:

e Wright and Kravaris (1991) propose the use of
the Inequalities Method

e Pantas and Walsh (1996) the use of the Phase
Crossover Frequency

s  Tang et al. (1996) the use of Genetic Algorithms

e Tadeo et al (2000) show the use of graphical
loopshaping techniques for designing a controller
for a laboratory plant

In order to consider the robustness properties of the
real plant in the design, this paper shows a
methodology that solves this problem by considering
the robustness properties of the real plant in the
selection of the weights of the shaped plant, using
QFT.

Following similar ideas as those in (Tadeo et al.
2000), the QFT GLS method is applied to obtain an
open-loop transfer function L, which then is robustly
stabilized by application of the H.LS approach,
obtaining a robust open-loop transfer function Lyj... It

is important to notice that the available information
about uncertainties in the model and performance
specifications is considered when applying the QFT
method to design L(s). When applying the H, LS
method the uncertainty is considered unknown and
coprime.

3. USING QFT FOR ROBUST LOOPSHAPING

The Quantitative Feedback Theory (QFT) is a well-
known controller design technique, introduced by




Horowitz (1962), to solve the problem of designing
controllers in the frequency domain. The main
advantages of using this technique are the possibility
of including performance and  robustness
specifications in the design, without losing the
physical insight of the problem. The design
methodology is presented in Horowitz (1992), Yaniv
(1999), Houpis and Rasmussen (1999). Short
overviews can be found in Horowitz (1991) and
Niksefat and Sepehri (2001). Roughly speaking it
consists of two main steps:

e  First, design a controller using the Nichols Chart
to meet the robustness specifications, taking into
account the physical properties of the system and
the performance requirements.

e Second, designing a prefilter to meet the
performance specification.

This paper proposes to combine this QFT technique
with the H_ LS technique to include the maximization

of the Stability Margin for Coprime Uncertainties in
the QFT design. The basic steps proposed are:

1. Use QFT to design an initial open-loop transfer
function, with minimal robustness characteristics,
taking into account the physical properties of the
system and the performance requirements. This
open look transfer function is designed by
manually adding poles and zeoes, to yield a stable
nominal closed loop, while at the same time
satisfying all bounds.

2. Use H,LS to augment the QFT controller for

increasing the Stability Margin for Coprime
Uncertainties.

3. Design a prefilter to meet the performance
specification. This prefilter is required to bring
the response withing the robust tracking
specifications.

Steps 1 and 3 use standard QFT, with the only
modification that, as the controller will be augmented
to increase its robustness, the robustness
characteristics are relaxed using a less restrictive
stability bound. That is, instead of using a robustness
parameter of p=1.2 or 1.3 we propose to use p=1.5, as
the robustness of the controller will be taken care of in
the second step.

The technique is now presented by way of an example
in process control.

4, EXAMPLE: PH CONTROL PROCESS
4.1. The Plant

The process under study is the neutralization of an
aqueous solution with Hydrochloric Acid (HCI) in a
Continuous Stirred Tank Reactor (CSTR). The
experimental setup (described in detail in Tadeo et al,
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1996 and Tadeo et al., 2000) is shown in Figure 2. It
consists of a CSTR where a liquid of variable pH is
mixed with a solution of high concentration of HCI.
This liquid is fed from the tank using a pump, which
produces a variable flow depending on the level of
liquid in the tank. The liquid in the mixing tank
overflows (outlet not shown), so the volume of liquid
in the tank can be considered constant. The control
variable u is the flowrate of the titrating stream. The
output variable y is the hydrogen ion concentration in
the effluent stream.

Due to the nonlinear dependence of the pH value on
the amount of titrated agent the process will be
inherently nonlinear. Moreover, variations of the
buffering effects could make the process time-varying.
Both effects make the process difficult to control with
classical process control techniques (Palancar et
al.,1996).

Although the modeling of pH-control processes has
been well studied (Gustafsson et al, 1995), in this case
it is only necessary to have a simplified model,
because when designing the controller the available
information on plant uncertainty can be considered.
This model was obtained based on first principles, and
then validated in the real plant, by carrying out
experiments at different working points. Also
experiments were carried out by eliminating one of
the streams, to check the shape of the titration curve.
The experimental results were consistent with the non-
linear model. Details on the experimental setup and
the model can be seen in (Tadeo et al, 2000)
Assuming the input liquid is pure water, that the HCI
has constant concentration, and there is perfect
solution, mixing, and no buffering, the following
model can be obtained:

dNg __9oNg _9aNd _ 9aNa

dt M M M
dNgy ,
—d_N,-N
gt T dThd

pH = —10log(Ng)

Here, t is the sensor time constant, M the mass of
liquid in the tank, q, is the acid mass flow, q is the

liquid mass flow, N is the acid concentration in the

tank, N:jn is the measured concentration and N, is

the input acid concentration. The model parameters
were estimated using measured data.

It can be seen that this simplified model corresponds
to an static logarithmic non-linearity and a dynamic
model which is bilinear in one of the states. To reduce
the number of non-linearities in the model, it was




decided to do the calculations working with
concentrations, taking the antilogarithm of the
measured pH, which is a common practice in
industrial pH control:

m _ 1n-pH
Nd =10

Observe that although the assumptions looks quite
restrictive, deviations from the assumptions in the real
system can be considered in the robust control design
as unmodeled dynamics. This is one of the advantages
of using a robust control approach.

Control
pH signal
measurement

Contro! Acid Stream

ﬂﬂ?

N Peristaltic
Liquid Tank jj—_—— Pump
[
Liquid Pump Mixing Tank Acid’

Figure 2: Laboratory Plant

4.2. Controller Design

First the effect of parameter variation on the transfer
function was studied. The uncertain non-linear model
was approximated by a set of local linear
approximations. Assuming the parameter variations
uncorrelated, the non-linear model was linearized
considering the extreme values of each uncertain
parameter. This approximation is suitable for slowly
varying parameters.

First Step: Design using QFT

For QFT design the plant is modelled as the second
order transfer function, with two real poles: the faster
pole given by the sensor dynamics and the slower pole
from the pH dynamics:

G(s) = _ kK
(s+a)(s+b)
where the sensor pole is supposed constant:
b=10.012725

and the following parametric variations have been
measured:

K e [-0.000004649,-0.00007469]

ae [0.25,2]

It can be secen that there are important parametric
variations, as the dominant pole position varies 800%
times, and the gain 1600%.

To design the initial controller usign QFT we consider
two kind of design specifications:
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- Minimum Phase and Gain Margins (type 1).
Design parameter: p=1.5. (This value is selected
so big, as the unmodelled dynamics will be taken
care of in the second step by the H, LS process)

- Tracking Properties (type 7):
0.0013

s2 +0.04s +0.0013

= Upper limit: Gy(s) =
=  Lower limit:

GL(s)= !

5.10'053 + 4.25107s2 +1.1510% +1

The design was carried out using QFT Toolbox in
Matlab (Borghesani et al., 1995), as is now described:

First, the set of plants and templates were calculated: a
set of 80 plants were obtained by parameter sweeping
(their frequency responses are shown in Figure 3), and
the corresponding templates (shown in Figure 4)
calculated at the following frequencies:

w = [0.00001, 0.0001, 0.001, 0.01, 0.1, 0.5, 1]

In the next steps the robust stability and tracking
bounds (shown in Figures 5 and 6) were calculated
using the Matlab QFT Toolbox. Based on these
bounds a controller was design for the nominal plant
(see Figure 7). The selected controller was:

3.901(%) 5780 1XS’6-00301+ 1)

KarT(s) =
S S
553 830 * 0.00301% 1)
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CE,, .
©
= 400

20
~
@
To B
©
@«
G150
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Frequency (rad/sec)

Figure 3: frequency response of linearized
plants
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Figure 5: Robust Stability Bounds

Figure 8 shows the open loop transfer functions for
this controller with the worst-case plants: the fastest
and the slowest plants. Figures 9 and 10 show the
corresponding closed-loop transfer functions, and
figure 11 the step responses.

. ._Bounds de Tracking

|
i
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Figure 6: Tracking Bounds

e Open-loop: -134.01deg,20.24dB
Closed-loop: -4.29deq,0.58dB
Frequency:

-250 -200 -150 -100
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Figure 7: QFT Design
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Second Step: H, Loop Shaping for the pH plant

Once an adequate open-loop transfer function
LQFT() have been selected, the design can be made

more rtobust by considering additional coprime

uncertainties of LQpT = D™IN. These uncertainties

include additional unmodelled dynamics, giving
additional robustness. The resulting compensator K¢
can be included in the feedback controller block by
augmenting the controller designed using the GLS
method. Kg is a stabilizing compensator of L and of

the set of uncertain plants such that
G= {D +Ap )—1(N+ AN)/”[AD AN]LO < 8}.

Therefore, the robust controller can be calculated as
follows:

Khe =KaFTKs

This method was applied to design a controller for the
pH control plant. The obtained Algebraic Riccatti
Equation was solved using the Matlab Robust Control
Toolbox (Chiang and Safonov). Considering the
desired loop-shape the one calculated using QFT, the
H,LS method was applied, and an optimal

calculated. Before reduction, the

compensator
controller was:

8.619s% + 2.757s3 + 0.158652 + 0.002028s + 0.000004097

14.2029s% +1.4293s3 + 0.12423s2 + 0.002830s + 0.000001870

The characteristics transfer functions are shown in
Figure 13 for the nominal plant.It can be seen that the
shapes are adequate, and improved from the QFT
design.

The open-loop shape when this compensator is
included (LHo. =LqFTKg) is shown in Figure 14 for
the worst-case plants. It can be seen that the overall
effect of the compensator is a gain reduction,
especially at high frequencies. The open-loop cut-off
frequency is decreased, so a reduction on the speed of
response of the closed-loop system is achieved. The
feedback system with the designed open-loop transfer
function presents good robustness characteristics:
With the nominal plant, the Gain Margin is 27.7dBs
and the Phase Margin is 59.9°. Also there are good
disturbance rejection properties, as can be seen from
the Sensitivity Frequency Response in Figure 15.
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Figure 15: Sensitivity Frequency response

The order of the controller was further reduced using
the balanced truncation method (Green and Limebeer,
1995).
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Third Step: Prefilter Design

The final step of the technique proposed in this paper
is the design of a prefilter using standard QFT. This
method was applied to our case study, selecting the
following Prefilter that fulfills the specifications:

_ (s/0.002767 + 1)(s/0.005882 + 1)
(s/0.001212 +1 )(s/0.03323 +1)

It can be seen in Figures 16 and 17 that the transfer
function from the reference to the output fulfills the
stability and tracking specifications.

Robustness Properties

-50 -

Magnitude (dB)
&
(=]

10° 10'

ap) epnjuben

Figure 17:Prefilter Design- Tracking Check

Finally, the characteristic transfer functions where
calculated for the feedback system with the final
controller and the designed prefilter: the frequency
and time responses of the command tracking
properties are shown in Figures 18 to 20. It can be
seen that using the technique presented in this paper,
good command tracking and robustness properties are
obtained: With the nominal plant, the Gain Margin is
27.7dBs and the Phase Margin is 59.9°, there are good
command tracking and disturbance rejection
properties.




Step Response with final controller and prefilter
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Figure 18: Command Step Response with prefilter

Complementary Sensitivity with prefilter: FK «G/(1+K <G)
50 :

Rty

~300

1o 0t 107 167 10°

Figure 19: Complementary Sensitivity frequency
response with Prefilter

Control Sensitivity with final controller and Prefilter FK /(14K 1~G)

g

A8 i i B '
10 10: v 0 e

Figure 20: Control Sensitivity Response with Prefilter

5. CONCLUSIONS

H,, loopshaping is an appealing approach for
controller design, as it addresses explicitly the
problem of mode! uncertainty. However this design
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method does not directly address the robustness
properties of the real plant, but rather it is concerned
with the shaped plant.

This paper has discussed a methodology that solves
this problem by considering the robustness properties
of the real plant in the selection of the weights of the
shaped plant. Then a shaped plant is selected
following the Quantitative Feedback Theory ideas.
Once selected a robust shaped plant the controller is
designed by application of the H,, loopshaping design

method, following McFarlane/Glover ideas.

This three step design methodology makes possible to
take advantage of the positive properties of the H,,

loopshaping design method, but considering at the
same time the robustness properties of the real plant.
Also it is a natural way of considering two-degrees-of-
freedom control systems. The application of this
technique in a case study has shown its advantages for
designing controllers for a real plant. It must be
pointed out that it may be necessary to re-examine the
robust stability and robust performance conditions
with the final controller, as there is not guarantee on
robust performance for the final controller. If these
robustness are too strict, it may be necessary to relax
them and repeat the design.

The idea shown in this paper of combining graphical
and robust loopshaping has been shown to be
promising. Compared with other robust control
approaches this technique is more intuitive to the
control engineer, thanks to the fact that the design
parameter is the open-loop transfer function itself.
Further work must be done to extend the proposed
technique to multivariable systems and to ensure that
the final controller fulfills the robustness conditions
stated in the first step of the design.
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Abstract: This paper analyses the phase specifications problem in QFT. An algorithm is
proposed aimed at achieving pre-specified closed loop transfer function phase and magnitude
variations taking into account the plant uncertainty. A two-degrees of freedom feedback
control structure is used and a new type of boundary is included to satisfy these objectives.
As the control effort heavily depends on a good estimation of these boundaries, the proposed
algorithm allows avoiding over-design. Copyright© 2001 IFAC

Keywords: phase characteristics, phase contours, control system synthesis.

1. INTRODUCTION

Quantitative Feedback Theory (QFT) is a robust
control design method where system uncertainty is
typically of parametric nature, commonly given in the
form of templates (see Horowitz (1982) for a survey
of the technique). QFT uses a two-degrees of freedom
(2DoF) feedback scheme (Fig. 1), where it is assumed
that the uncertain system is represented by a transfer
function P(s) belonging to a set of plants P, while G(s)
and F(s) are respectively the compensator and pre-
compensator to be synthesised in order to meet robust
stability and performance specifications.
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Mg)
Fig. 1. A 2DoF feedback system

In QFT, closed loop specifications are given in the
frequency domain, in terms of admissible bounds on
closed loop transfer functions. Then, specifications are
combined with the uncertainty of the system (given in
the form of templates) to obtain limits or boundaries
on the frequency shape of the compensator G(s). In
addition, nominal specifications are used to shape the
pre-compensator F(s). This paper focuses in the
analysis of the problems associated with the
simultaneous consideration of magnitude and phase
specifications for the closed loop transfer function
(which can be of interest, for instance, in problems
dealing with co-ordinated movement in robotics).

Few works about phase specifications and their
applications can be found in the QFT literature
(Bailey and Kallel, 1992; Holt and Lee, 1989). The
way in which these papers address the problem differs
from the approach used in this paper, which mainly
consists of shaping F(s) and G(s) to achieve some
nominal phase and magnitude specifications using a
new set of boundaries. Another important point not




previously considered is the computation of multi-
valued boundaries. For instance, the algorithm
proposed by Bailey and Kallel (1992) to compute the
phase tracking boundaries did not exploit the fact that
boundaries can be multiple-valued.

The consideration of multiple-valued boundaries may
have an important practical relevance, as the control
effort is dircctly related with them. This fact was
pointed out in (Bailey ez al., 1988) and considered in
the subsequent works, but general solutions to this
problem have not been found. The computation of
multiple-valued tracking boundarics has been
analysed in (Moreno er al.,1997) and extended
(Moreno, 2001) to include also phase tracking
boundaries to guarantec certain closed loop transfer
function phase variations (from reference input to
system output). The consideration of phase
specifications results in new type of boundary (the
nominal phase tracking boundary), which is
developed in this work.

The paper is organised as follows. After some
preliminaries in Section 2, thc subsequent Sections
show different aproaches for solving the phase
specification problem. Section 3 considers a first
algorithm usign a design viewpoint. In Section 4 a
much less conservative solution is investigated. An
example is developed in Section 5.

2. PRELIMINARIES

The problem that will be cosidered in this work is the
design of a control system (Fig. 1) to satisty tracking
specifications, considering a nominal value of the
closed loop transfer function T=FGP/(I+GP) and
allowed deviations. P is any element of a set of plants
P. For the nominal value and allowed variations, the
specifications are given for both magnitud and phase.

G can be designed to meet variations over both
magnitude and phase of the closed loop tranfer
function 7(s). The role of the pre-compensator F(s) is
to fix the nominal value of T{s), but due to the fact
that phase and magnitude of 7(s) are related, by the
Bode’s Integral assuming minimum phase systems, or
analogous constraints for unstable and nonminimum
phase systems, phase and magnitude can not be
independently manipulated in design.

Usually, F and G are designed without taking into
account the phase specifications in the design process,
then a satisfactory design can be obtained meeting
variations over the nominal magnitude of T(5) and
variations over the nominal phase of T{(s), but this is
not the general case.

In robotics, the robot motion control problems can be
separated into two categories: positioning and
contouring. In contouring problems, the robot tool tip
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is commanded to follow a specific path. Here the
spatial contour tracking accuracy of the robot is of
paramount concern since it directly influences the
quality of the final product. These cases can be
handled using phase specifications. In (Eitelberg,
2000) this problem is solved using tracking error
magnitude specifications.

Throughout the paper the following notation will be
used:

£ A set of plants.
W: A finite set of frequencies.

L(s): G(s)-P(s) with Pe

Ltemplate(o): {L(jw): Pe g} With oe W
. L)

X L)

T(s): F(s)X(s)

X ={X(s): Pe p}

It will be said that R is a crossing set of transfer
functions if 3X,, X, e R:|X, (o) =|X,(jw)| for
some @ > 0. The set of frequencies in which there is
crossings is noted by Lf(X) ={0 < @ < @, }, where

%], X, X, €]

o, = Sup@) >0:|X,(jo) :|Xj(ja))
For this type of set X, M, (X) is defined as

. abs(X,(jo)|, - |X, )|, ): X, and X, e X i# ],
we LF(X)

the maximum difference between the magnitud of
transfer functions belonging to X for all frequencies in

L (R).

3 A SOLUTION FROM THE DESIGN VIEWPOINT

Given design specifications over a frequency set W
(Fig. 2a), the problem is to find G(s) to satisty them
(satisfying a set of boundaries). Once G has been
obtained, F has to be designed to achieve nominal
specifications (Fig. 2b). In Moreno et al. (1997) an
algorithm to compute the boundaries over the nominal
open loop transfer function (equivalently over G(s)) is
presented. This algorithm is based on the construction
of a 3D surface, where the boundaries are simply
contour lines. Here, to compute a new set of
boundaries the same idea is used.
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Fig. 2. (a) Specified T(s) magnitude and phase
variations

(b) Allowed magnitude and phase of 7(s)

The main problem is that two objectives (phase and
magnitude specifications) have to be met with only
one degree of freedom, F. The G(s) degree of freedom
will be used too, in order to satisfy a new set of
boundaries which guarantee that finally, using F, both
objectives can be met.

A sketch of the algorithm is:

Algorithm 1
1. Compute P, € g such that

/Ysup(w)z‘ Pm (]w)G(jw) ‘ = max
1+ P, (joyG(jo)| ™
where Pe gpandwe W .

L(jw)
1+ L(jow)

2. Choose F = B,
sup
In step #1, the point P, has been calculated for each
L-template(w) in such a way that the M-contour
passing through the point P, is the maximum M-
contour passing through the /Z-template(w). The
algorithm guarantees the achievement of a desired
shape of the nominal magnitude but not necessarily
the shape of the nominal phase (in general, the
maximum N-contour passing through the shifted
template does not pass through the point P,). It can
be demonstrated (Moreno, 2001) that by using this
algorithm, the phase specifications shown in Fig. 3
can be met, in which the upper phase bound for each
frequency in W is modified such that the phase band
for each frequency is the double of the original
specification. In order to guarantee a proper F(5), the
pole-zero excess of Xg,, must be less or equal than the
pole-zero excess of B,,.

Fig. 3. Phase specifications that can be fulfilled using
the algorithm

125

Thus, allowing a (conservative) modification of the
original phase specification (Fig. 4), the previous
algorithm gives a solution to the problem.

Original specifications Derived specifications

T A m A

T A © —p T A o
—k— ‘
.—_....._»m L

Fig. 4. Transformation of the original specifications

The computation of Xy,,(@) is very easy to implement
if Ris not a crossing set of transfer functions. The
maximum M-contour passes through the same point

L, (@P,G) for all the L-templates, so
L

‘erup(s)= M(S) :
1+L,(s)

From the design viewpoint, this algorithm is a
conservative solution to the phase specification
problem, because the derived specifications are more
restrictive than the original ones. Obviously, if the
plant is a single integrator with uncertain gain and a
0dB robust stability specification is used, the
transformation shown in Fig. 4 is not needed, as the
maximum M and N contours pass through the same
point of each template. In this particular case the
above algorithm is not conservative. For example, if
the uncertain plant and the compensator are given by

P(s)e = {'S‘ k= 0.01,0.05,0_1,0.5,1} @)
G(s)= 6s+5
N

a set of non-crossing open loop transfer functions
(Fig. 5a) and a crossing set ® in Fig. 5(b) are
obtained. There exists a maximum in the set of open
loop transfer functions but this is not the case when
obtaining X(s), due to the location of open loop
transfer functions on the Nichols Chart, as can be seen
in Fig. 6.

The original specifications in this example are given
by the following transfer functions (corresponding to
the curves shown in Fig. 7):

B,(s)= 1.2;10g .
(s+10)(s+10")(s+1.2-10")

B/(s)= 5-10°
(s+10)(s+5)(s +10%)?




o(/s) AT[(dB) AIT()
0.1 0.0017 1.1458
1 0.1703 11.3099
10 6.9897 63.4349
100 26.0314 87.1376
1000 46.0207 89.7135
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Fig. 5. (a) Set of open loop transfer functions.
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Fig. 6. Situation of the set of open loop transfer
fuctions on the Nichols Chart

Using the aigorithm in (Moreno et al., 1997), the
magnitude and phase tracking boundaries can be
computed (Fig. 8). The nominal open loop transfer
function (Fig. 9) can be obtained using computer tools
(Borguesani ef al., 1995) . The result is

_ 4336s" +230880s® +726610s” +297840s +1.952

G(s)— 5 4 3 2
0.000125s° +1.25s5* +46.82s° +100.7s" +19.65 +1

Fig.10 shows the magnitude and phase plots of X in
the set X .

Bode Diagrams

fihase (deg); Magnitude (4B}

Frequency (rad/soc)
Fig. 7. Original specifications
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Fig. 8. (a) Magnitude tracking boundaries.
(b) Phase tracking boundaries

Then, the proposed algorithm can be applied to obtain

F(s), given as result

150000s° +1.506-10°s° +5.259 -10"2s* +2.772-10" s> +
F(s)= 7 7.6 T 3.4
433657 +9.566-107 5% +5.263-10"5° +3.298-10"s* +
+8.72-10" 52 +3.574-10" 5 +2.342-10°
+3.644-10"5% +9.077-10"s* +3.574-10% 5 +2.342-10°

In Fig. 11, both magnitude and phase of the closed
loop transfer functions T(s) are shown.
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Fig. 11. T(s) transfer functions and specifications

X, has been selected belonging to the set X, but it
can be observed in Fig. 12 that this selection is
incorrect, because X is a crossing set of transfer
functions. The approximation in this case has
provided good results because M, (R) is small.
Obviously, there exists a relation between M (X) and
the situation of nominal open loop transfer function in
Nichols Chart. So, when the Z-template is near of
point (-180°,0dB) M, () is higher.
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Fig. 12. functions at low

In this example, a robust stability specification of 0.2
dB has been used, this being related with the
approximation error incurred when selecting X,
belonging to the set X.

This example has shown that the computation of X,
can be performed by defining an approximation error,
using a robust stability specification. The difficulty in
computing X, is another of the main drawbacks of
the algorithm.

4. ANEW TYPE OF BOUNDARY

The idea developed in this Section is based on using
the 2DoF scheme to satisfy the shape of both the
nominal magnitude and phase specifications instead of
using only the F(s) pre-compensator for these

purposes.

In the loop shaping , the allowed region of the Nichols
Chart has to be restricted to a zone such that the
maximum M and N contours passing through the
template cross the same point. This is possible only
for a template with all its points lying at the same
phase (an integrator with uncertain gain). In general,
a new specification has to be defined directly related
with the approximation error. A new type of boundary
is proposed to satisfy these objectives, which is called
the Nominal Phase Shaping Boundary. This boundary
provides an allowed region C(w of the Nichols Chart
given by the following expressions:

C(w)=
(x, y)e Nichols Chart:

max Angld LU GUO) | o1 EGOCUD) 1 5,)
Pep 1+ P(jo)G(jw) 1+ P, (jw)G(jw) |~

with x = B (jo)yG(jw) ,and y = Angle(F,(j@) G(jw))

with P.U@)yGUw) _ ~~ PUO)G(®) & and
1+P,(jo)yG(jw) ¢ 1+P(jo)yG(jw)
P, € g being the nominal plant.

In order to compute this region, the next algorithm
(based on Moreno et al. (1997)) is used. For each
frequency @, the template is shifted over the Nichols




Chart and, for each phase and each magnitude, the
difference between the maximum N-contour passing
through the template and the N-contour passing
through the point P, (the maximum M-contour passes
through this point) is computed. This generates a
surface in a threc-dimensional space, in such a way

that thc new boundary at frequency @ can be
computed by taking a section of this surface

corresponding to a constant value & ).

In the following we use the notation:
L,=le’*

Algorithm 2

1. Choosc a phase vector and a magnitude vector
2. For each phase ¢ and each magnitude /
1f (-180°,0dB) ¢ Template, then

L,(jo) _
Py (jw)/ P(jw)+ Ly(jw)

L,(jw)
R (jw)! P, (jw)+ Ly(jo)

S(9,)) = max Ang]e(
e (0

Angle(

else
S(¢,1)=360°
end
end
3. Boundary = contour line of S for the height & )

The region of Nichols Chart above this boundary is
the allowed zone. Due to the shape of the N-contour in
the Nichols Chart, it can be asserted that the
satisfaction of this restriction is compatible with the
satisfaction of the magnitude and phase tracking
boundaries.

Furthermore, the shape of this new type of boundary
can be characterised from the shape of the templates,
which can be typified within three types T, T,, and T3
(Fig. 13)

O T;: The largest magnitude points are situated at
the greatest phase (right part of the template).

Q T, The largest magnitude points are situated at
the smallest phase (left part of the template).

Q Ts;: There exist more than one
corresponding to the largest magnitude.

point

T1 T2 T3

Fig. 13. Examples of the three types of templates Y
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O Closed (the allowed region is the exterior of the
boundary) in the case T, and T;. Due to the fact
that at small magnitudes, the phase of the
template points is the same that the N-contours
passing through these points.

O Open (the allowed region is above the boundary)
in the case T, .

In addition, &) can be used in the algorithm as a
parameter to obtain less conservative results

(restrictiveless boundaries for greater values of & )).

5. AN EXAMPLE
Consider the uncertain plant (taken from Horowitz
and Sidi (1972))
Ps)= ™ with ke [110] and ae [110]
s{(s+a)

The working frequencies are W = {1,2,10} rad/s, the
nominal point is k = a = 1, and the specifications
given by

5-10"
B,(s)= 3 3 3
(s+10)(s+10°)(s +5-10")(s +107)
10]0
B/(s)= 333
(s +10)(s +1)(s+10%)
Tracking  specifications  (allowed  magnitude

variations) are given by 3.01, 6.99 and 20.04 dB for W
= 1,2 and 10 rad/s respectively. The phase tracking
specifications (allowed phase variations) are 45°
63.44° and 84.29° for the same W. Finally, 0.1° is
used as a nominal phase shaping specification for all
we W. In Fig. 15, the magnitude tracking boundaries
(a), the phase tracking boundaries (b), and the nominal
phase shaping boundaries (c) are shown.

Bode Diagrams

Phase (deg); Magnitude (dB)
2
=

-0 e

Frequency (rad/sec)

Fig. 14. Phase and magnitude specifications for 7(s)
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Fig. 15. (a) Magnitude tracking boundaries.
(b) Phase tracking boundaries.
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As done in the previous algorithm, using computer
tools (Borguesani ef al., 1995) the nominal open loop
transfer function can be designed (Fig. 17). The
obtained G(s) compensator is given by
o +D)
G(s)=0.028—00L

41
Goooo ™

Before computing F(s), it is important to check if
specification are satisfied for other frequencies which
are not considered in the initial working set W . In our
case, at low frequencies the specifications are violated
(Fig. 17).
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Fig. 16. Loop-shaping of nominal open loop transfer
function

Bode Diagrams
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Fig. 17. X(s) transfer

Thus, two new frequencies 0.01 and 0.1 rad/s are
included in W. In this way, the next set of
specifications is given by:

@ (1ps) A7) (dB) AT (deg)
0.01 0.0004 0.5729
0.1 0.0432 5.7106

1 3.0103 45.0000

2 6.9897 63.4349
10 20.0432 84.2894

The boundaries corresponding to these new two
frequencies are included in Fig. 18.
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Fig.

The nominal open loop transfer function is now (Fig.
19)
R
+
0.1101

s
(10000 I

( 1) +I)( 1

s
+

0.08572
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+1)(5000+1)

§
0.01072
1)(

G(s) = 9.544-

s K
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Fig. 20 shows how specifications are satisfied over the
whole frequency axis. The selected precompensator is
given by:

_9184005° +1.379 10 s° +4.606-10"s* +4.721-10"s” +

7 9433000s” +6.613-105° +1.044-10"s° +4.823-10"s* +
+9.748-10"s? +5.442.10" s + 4,772 -10"

+4.816-1075 +9.797 10" 5% +5.446-10" 5 +4.772- 10"

F(s)

Fig. 21 contains the final result of the design stage
using the proposed algorithm.

6. CONCLUSIONS

In this paper, the problem of dealing with phase
specifications in QFT has been studied and two
algorithms have been proposed to solve it. The first
algorithm (a sketch has been included in the text) is
based in the transformation of the original
specifications, often leading to a conservative solution
from the design viewpoint. The second algorithm is
based in the inclusion of a new type of boundary in
the loop-shaping stage. Both algorithms use the 2DoF
controiler to solve the phase nominal shaping
problem.
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Abstract: Based on the observation that inclusion of a system in a family of Bode
diagrams implies inclusion on the respective family of step responses, some ideas about
a new geometric approach for the robust performance problem for interval systems
are presented. This approach allows to deal with classical time specifications such
as overshoot, settling time and steady state error. Two examples are presented with

remarkable results.

Keywords: Parametric uncertainty, interval systems, robust performance

1. INTRODUCTION.

Given the parametric uncertain plant

- b(s,q)
P(s,q) = — 1
(s,4) 2(.3) (1)
where § = (G1,-.-.dp), & = [¢; ,q; ], robust

performance problem consists on finding a con-
troller so that the closed loop response at each
instant t* € [0,00[ belongs to the interval
[m~(#*),m™T (¢*)]. Functions m~(t) and m™ (¢) de-
note the lower and upper bounds on the closed
loop output. Usually, the kind of bounds one looks
for is that of a low order system (first or second
order). In this case, bounding functions will be
derived from bounds on time domain specifica-
tions such as overshoot, settling time and steady
state error. These control specifications can be
easily mapped to an uncertain reference model.
For instance, if a “second order response” is de-
sired with overshoot & € [0%, 10%)], settling time
te € [ls,4s] and steady state error 1%, then
control specifications can be given by means of
the reference model

K

M(s,T) = 1+2§~C)Ln . (%)2

2

Fig. 1. Unit step response of the reference model

(2).

where T = (K,&,@,) and K = [0.99,1.01], £ =
[0.5912,1], @, = [1,6.7664]. Bounding functions
m~(t), m*(t) correspond, thus, to the lower and
upper envelope of the response of the uncertain
reference model (figure 1). In general, the un-
certain reference model will consist on a set of
first and second order terms shaping the desired
bounding functions.

Definition 1.1. Given an uncertain system G(s, q),

with output envelopes g—(t), g*(t), a trajec-
tory y(t) is said to belong to the output space
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of G(s,q), denoted by Vg, if g7 (t) < y(t) <
gt (t), Vt € [0,00[. The output space is then
the functional interval [¢~ (¢), g (¢)] (Bondia and
Picé, 2001).

Consider a first order uncertain system, for in-

stance:
[0.75,1]

— 3
1+[2,4]s (3)
In this case, the output envelopes are generated
by two members of the family, in particular:

G(s,q) =

o0 - e Gi) 4
o)~ 1 Ga(o) G

These members also define the envelopes of the
Bode diagrams of the family (frequency en-
velopes). Any member with a Bode diagram
within the frequency envelopes will have an out-
put within the output envelopes. This can be
generalized for any system of relative degree one,
for instance:
y 1.538s + 0.8
Ga(s) = J o382 4 45 1 1

as shown in figure 2.

(6)

s F(s) — . _.?(;)7__; 3,5_;*

Fig. 3. TDF control structure.

Based on this observation some ideas about a new
geometric approach for the robust performance
problem for interval systems are presented. The
use of an uncertain reference model as shown
above allows to deal with classical time specifica-
tions such as overshoot, settling time and steady
state error in opposition to current methodologies
(Zhou, 1998; Bhattacharyya et al., 1995; Barmish,
1994: Ackermann, 1993). Two examples are pre-
sented with remarkable results.

2. MAIN RESULT.

From the above observation the following is con-
jectured.

Lemma 2.1. Given a reference model M (s,T) and
an uncertain plant G(s,q), let M{jw*) and
G(jw*) be their images in the complex plane
for s = jw*, respectively. f G(jw*) C M(jw*),
Vw* € [0,00] then Yo C V.

If a two degrees of freedom (TDF) control struc-
ture is considered (figure 3), the resulting closed
loop system is:
. F(s)C(s)P(s,qa)
Gie(5,Q) = ——F~%5—=+ 7
IC( q) 1+C(S)P(8,q) ( )
where F(s) is the prefilter and C(s) the loop
controller. By lemma 2.1, the system will fulfill
the specifications whenever

Gie(jw*) € M(jw*), Vw* €0, 00] (8)

Denoting by H(s) the inverse of the loop con-
troller, H(s) def 1/C(s), the following result holds.

Theorem 2.1. Gic(jw*) C M(jw*) if and only if

H(jw*) 507 C F(jw*) gz — 1 V™ € [0, 00[.
Proof: (sufficiency) By (7),
F(jw*)C(jw*)P(jw") ,
- - C M(jw” 9
1+ Cjw*)P(jw*) ~ (%) ©)
must hold, for all w* € [0, oc[. Operating, to get a
unique instance of P(jw*),

F(jw*
PV oMy (10)
cGonPGen) +

Fjw?) .
- C M(jw*) (11)
H(]w*)‘ﬁ(jlw—,) +1
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Fig. 4. Image of the inverse of a first order system.

Set inclusion is invariant under division by F(jw*),
thus

1 1
. C — (12)
H(jw ) oy +1 -~ FGw7)
(Jw=) (Gw™)

The above condition will hold whenever set inclu-
sion holds for the denominators. Therefore,

a1 o
}I(jw)m+1§F(]w )W (13)

.ok . 1
H(JW)WQF(JLU )W—l (14)

Necessity is proved using similar arguments. m

The control synthesis problem for robust perfor-
mance consists on finding a prefilter F(s) and a
loop controller C(s) = 1/H(s) so that theorem
2.1 holds. It is, thus, a set inclusion problem.

2.1 Inverse reference model image set.

The reference model M(s,7) will usually be an
uncertain system of first or second order. In this
case, an analytic description of 1/ M(jw*) can be
obtained.

First order reference model. Let
k
1+7s

M(s,T) = (15)
with k& = [k, k*] and ¥ = [r~,7*]. For a fixed
frequency w*,

1 1
The image of 1 + jfw* is a vertical line with
endpoints 1+ j7~w* and 1+ jrTw*. Considering
without loss of generality positive gain, multipli-
cation by 1/k expands or contracts this vertical
line without changing the phase. Thus, the result-
ing image set is the polytope shown in figure 4.

Second order reference model. Let
. k
M(s,F) = - 5 (17)
1+265 + (£)

with k = [k7, k%], € = [€7,&F], @ = [y, w;i].
For a fixed frequency w*,

1
M (jw*, F)

S(w*,F) (19)

=%
[¢d
=
Y = F[ =

The image of S(w*,T) consists on a union of
vertical lines. For @ = w* /&y,

S(@,7)=1-& + j2@ (20)

which corresponds to a vertical line with end-
points 1 — @% 4 j26~@ and 1 — @* + j2&+@. As
On = [wy,w], then @ = [w*/wi,w*/w;], pro-
ducing a sweep of the vertical line on the complex
plane. Multiplication by 1/k converts this vertical
line into a polytope, as for a first order reference
model. Therefore, 1/ M(jw*) will result from a
sweep of polytopes on the complex plane (figure
5). Vertices A to F' will depend on w* and can be
obtained evaluating (18) for the following values
of the uncertain parameters:

o W <wy
A= (k&0 wy)
B = (k*,&T,wy)
C — (k1,6 ,wy,)

D= (k= ¢t W)
E— (k7,7 ,wt)
F— (KT, ,wt)
o w, <w*<wt
A= (k7,0 wy)
B = (k7,6 ,wy)
C— (k*,&,wy)

D= (k&N wh)
E = (k7,6 ,w)
F = (k% ¢7,wh)
“ w2 uf
A= (k7,0 wy)
B — (k7,&,wy,)
C— (k%7 ,wy)

D — (k&% w)
E = (kT ¢h,wh)
F— (k6 ,w)

The arcs AD, CF obey the expression:

1
AD = = (1-&* +2¢Fjw)
1
CF=1r (1-&®+2¢ jw)
o<t (21)
Wn Wn
For w* = 0 the image set is the interval
[1/kT,1/k7].
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2.2 Inverse plant image set.

The image set 1/P(w*) will depend on the way
the uncertain parameters appear in the transfer
function of the plant. Considering independent
uncertainty structure, the image of b(jw*,q) and
a(jw*,q) are both rectangles, thus, 1/P{w*) re-
sults from the quotient of two polytopes (in par-
ticular, rectangles). As the next lemma shows, this
can be obtained by quotients of edge-vertex pairs.

Lemma 2.2. Let @, and @ be two complex plane
polytopes with vertex sets V1 and V5 and edge sets
IZ) and I%y, respectively. Then,

A I
8 (Q—) CHYE (22)

where O() denotes the border of the complex
plane set (-).

Proof: See (Bhattacharyya et al., 1995). m

F, / Vs is the quotient of the rectangle a(jw*, @) by
each vertex of b(jw*,q), resulting four rectangles
scaled and rotated. V;/FEs is the quotient of each
vertex of a(jw*,q) by the rectangle b(jw*,q). As
the inverse of a line segment is an arc of a circle
crossing the origin, this will lead to a set of convex
and concave arcs (figure 6).

In the case there is no independent uncertainty
structure, more complex image sets will result. In
this case, their convex hull can be used instead,
although this will lead to conservativeness.

2.3 A geometric interpretation.

Condition (14) has a natural geometric inter-
pretation (figure 7). H(jw*) is a complex num-
ber multiplying the image set 1/P(jw*). There-
fore H(jw*) expands (or contracts) this set by
|FI (jw*)| and rotates it with respect to the origin
by ZH(jw*). Sweeping on |H(jw*)| from 0 to

] — ote— -
DA% 0 S WU MO S N S
1/MGw) =1 o
M7 | Gu)|
b
I . 1/P(ju")
£, 4F(jw?) ) i
ZH{Go
i L ZRMC
RMC
o SRS SOSURTRTES SOVOURRTE S
—— 3 2 1 o 1 2 3
Re

Fig. 7. Geometric interpretation of theorem 2.1.

oo, H(jw*)/P(jw*) describes a cone with origin
at (0,0) (open loop cone, OLC). On the other
hand, ZH (jw*) determines the orientation of this
cone. Similarly, F(jw*) expands (or contracts)
the image set 1/M(jw*) — 1 by |F(jw*)| and
rotates it with respect to the point (—1,0) by
£F(jw*). Sweeping on |F(jw*)| from 0 to oo,
F(jw*)/M(jw*) — 1 describes a cone with origin
at (—1,0) and orientation determined by ZF (jw*)
(reference model cone, RMC). Given F(jw*), the
cone with origin (0,0) and minimum width which
inscribes to F(jw*)/ M(jw*) — 1 will be denoted
as zero reference model cone, ZRMC.

Sweeping on the frequency from 0 to co, |F(jw*)|,

LF (jw*), |H(jw*)| and £ZH (jw*), must be chosen
so that theorem 2.1 holds.

Let Séf and Sz be the left and right side of the
cone C and q%, ¢ their angles with respect to the
real axis for a fixed frequency w* (to ease notation
this dependency will not be denoted explicitly).

Definition 2.1. The width of the cone C is defined
as follows:

width(C) & ¢t — ¢ (23)

Proposition 2.1. If there exist F(jw*), and H (jw*)
so that (14) holds, then
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width(ZMRC) > width(OLC)  (24)

Proof: As H(jw*)/P(jw*) moves along the
OLC, if (14) holds, then OLC must necessarily be
contained in ZMRC, yielding (24). m

Proposition 2.2. width(ZMRC) > width(OLC)
if and only if

¢—Z'_1\1RC’ - ¢BLC 2 d)gl\/IRC - ¢5LC (25)

Proof:  (refer to figure 7) ¢%ure — $oLc
represents the angle OLC must be rotated with
respect to the origin to overlap the left side of both
cones (Sfy pe = Sp1c)- Respectively, ¢y pe —
$5 1o represents the angle OLC must be rotated
with respect to the origin to overlap the right side
of both cones (87, pc = Sg1c)- Therefore,

() if Zppe — ore < bzmrc — Pore then
when the right side of both cones overlap,
the left side of OLC has already overpassed
the left side of ZMRC. Thus, width(OLC) >
width(ZMRC),

(b) if $Zrre — $orc > $Zmne — $ore then
when the right side of both cones overlap, the
left side of OLC is in the interior of ZMRC.
Thus, width(OLC) < width(ZMRC),

() if $Zpre — $o1c = Pzmrc — oL the
same angle will produce overlapping of the
left and right side simultaneously. Thus,
width(OLC) = width(ZM RC).

Let F(s) be considered a gain: ZF(jw*) = 0,
VYw* € [0,00[. Then, ZMRC will remain fixed
and OLC will be rotated by ZH(jw*). In this
case, ¢g§;}w - ¢5fg correspond to the bounds
on £ZH(jw*) which will lead to a solution of the
problem.

Corollary 2.1. Let -

ZH* (jw) = ¢}MRC (w) - Q%Lc(w) (26)
ZH™ (jw) = ¢2MRC(w) - ¢6Lc(w) (27)
If F(s) is constant then

(a) if Yw € [0,00] ZH (jw) € 0 < LH*(jw)
then robust performance can be obtained
with H(s) = K.

(b) if Yw € [0,00] LH*(jw) > H™ (jw), then
robust performance can be obtained with
a dynamic loop controller. An analysis of
ZH% (jw) and £ZH™ (jw) gives us the struc-
ture of H(s).

The problem of controller synthesis can be ad-
dressed by an iterative process. From ZH~ (jw)

Im
N

it ST THGen PG
RMC .
Flu)[M(jw) -1

Fig. 8. Proportional controller design for first
order systems.

and ZH7*(jw) the poles and zeros of C(s) =
1/H(s) are selected (phase shaping). Then, F(s)
and the gain of H(s) are changed until theorem
2.1 holds.

3. EXAMPLES.
3.1 First order

Let the uncertain plant

— I{P
T 1+ Fps

P(s,q) (28)
with K, = [20,50] and 7, = [10,40]. A time
constant between 0.1 and 1.5 seconds and a steady
state error of 1% is desired. This specification is
matched to the reference uncertain model

K
1+ 7s

M(s,T) = (29)
with K = [0.99,1.01] and # = [0.1,1.5]. The
images of 1/ M (jw*)—1 and 1/P(jw*) correspond
to polytopes of the form shown in figure 4. These
polytopes will move along the cones RMC and
OLC, respectively, due to [F(jw*)| and |H (jw*)|.
If F(s) and H(s) are considered gains (a propor-
tional controller is sought) the orientation of RMC
and OLC will remain constant with frequency and
the value of their modules must be found so that
situation in figure 8 holds for every frequency.

A point p = z+ jy belongs to F(jw*)/ M{jw*)—1
if

turtz —y < —1tw* z < E_%{]c:)_) -1 (30)
—p — F(jw”)

TV -y > T w mZ—F—l(3l)

Making the change of variables z = Z, y =

w*f, dependency with frequency can be avoided
simplifying to a great extent the design. A point
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F(jw*)
K+t

K-
Hint
H™ g+ HQw")
Fig. 9. Solution space.

p = &+ jw*q belongs then to F(jw”)/M(jw*)—1
if

tEog< -1t igf—gfj’—)—l (32)
Fjw®
TTE-g> -1 T2 gf,i)—l (33)

Due to convexity of both image sets, condi-
tion (14) will hold whenever the four vertices of
H(jw*)/P(jw*) belong to F(jw*)/M(jw*) - 1.
This leads to the following equations

-1 K} < H(jw) < -TtK, (34)
TP < H(iw P
T —Tp J ot -
N . - o KT -
H(jw)— + K~ < F(jw*) < H(ju")—=x + K
Ky K
(35)

Bounds on F(jw*) are affine functions on H (jw*).

The maximum value admissible for F'(jw*) is that

given by

. K-KHKT = K7) ger

I](7w ) = ’i+ ’Z_ [ =e int
Ky K- —Kp K+

which correspond to the intersection of the
bounds in (35). Thus, the pairs (H (jw*), F(jw*))
leading to a solution of the problem are given by

(' 1) ( *)J{ ‘e ( x)“ +
J J K- J K+

p
H(jw") € [H™,min{Ht, Hint}] (36)
py def =77 KF b def —TtKy
TT =T 7t — T;_

whenever H;,, > H~ (figure 9).

For the plant (28) and the model reference (29)
the solution space is given in figure 10(a). For
H(s) = 0.6826 (C(s) = 1/0.6826 = 1.4650) and
F(s) = 1.0238 inclusion (14) holds (figure 10(b)).
In figure 10(c) a simulation of the closed loop
system is shown. As it can be seen, specifications
are fulfilled.

1 K, > 0 has been considered here. Similar expressions
are derived for negative gain.

JO2E e D - ,\I”

1.015
0.
(a) n
16
14 R
/’/’
1.2 -
1 e
0.8 7
/4/ P
06 -
04
0.2 T
0
(b) 0.01 0.015 0.02 0.025 0.03 0.035

y(t)

Fig. 10. (a) Solution space for H(s) and F(s) (b)
Inclusion of image sets for w* =1 (¢) Closed
loop response.

3.2 Second order

Let the uncertain plant

K,

P(s,q) = (37)

- ~ 2
14267 + ()

@n,p

with K, = [0.3,0.5], § = [0.4,0.5] and @pp =
[1,1] and the reference model

K
1+262 + (wi)z
with & = [0.99,1.01], £ = [0.7,1] and @, =
[10,15].

Considering F(s) = 1, bounds on ZH(s) are

obtained applying corollary 2.1. These bounds
determine the structure of the controller. For

_ s(1/24s5 4 1)
His) =3 +0.9s+1

M(s,§) = (38)

(39)
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Fig. 11. (a) angle bounds (b) Open loop vs. closed
loop response.

the angle bounds hold (figure 11(a)). Sweeping on
the frequency, the gain of H (s) must now be found
so that theorem 2.1 holds. For a gain of 0.055
specifications are fulfilled (figure 11(b)), although
a complete inclusion of the image set does not
hold for every frequency (lemma 2.1 is sufficient,
but not necessary). The resulting controllers are

F(s)=1 (40)
_18.1818(s® + 0.9s + 1)
Cle) = s(1/24s+1)

(41)

4. CONCLUSIONS.

A new geometric approach for the robust per-
formance problem for interval systems has been
introduced. Tt arises from the observation that
inclusion of a system in a family of Bode dia-
grams implies inclusion on the respective family
of step responses. On the contrary to current
approaches which deal with frequency domain
specifications, this new approach allows to deal
directly with classical time domain specifications,
such as overshoot, settling time and steady state
error by means of an uncertain reference model.
The remarkable results obtained in the examples
presented here motivate a further study on the
methodology. A deeper study must still be done
concerning lemma 2.1.
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DIGITAL IMPLEMENTATION OF CONTROLLERS
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Abstract: A competent quantitative feedback control system design must
not ignore the effects of digital implementation of the designed analog
controller. Two of the most important and significantly quantifiable effects
are: the loop effect that reduces stability margins; and the signal effect
that refers to both, aliasing at the ADC and reverse aliasing at the DAC.
The often observed huge sensitivity to control algorithm evaluation
accuracy is not a control system design issue — it need not arise if the
controller is implemented in the form of a velocity algorithm.
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1. PROBLEM STATEMENT

All real systems (Pg(s) in Figure 1) and most
of  their (engineering) performance
specifications are in continuous-time.
Hence, it is most natural to carry out the
control system design in continuous-time.
However, it must yield all relevant data for
the digital control system implementation
as well — including the sampling
parameters. The effect of sampling (if any)
must be visible in the continuous-time
design.

On the other hand, generally and
unfortunately, there can be no one-to-one
correspondence between a continuous-time
design and its (partial) discrete-time
implementation. The control engineer must
learn to live with a certain amount of

ambiguity.

computer/up

Fd ] G.l7]
ADC

Figure 1: Simple SISO feedback system
with digital controller. H(s) may contain an
anti-alias filter.
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The following philosophy is followed in the
recently published book “Control
Engineering Course Notes” by Ed. Eitelberg
{2000).

Approximate the designed
continuous-time controller by
using, for example, one of the
suitable simulation methods.
Simulation methods, in general,
yield sufficiently good approximation
at ‘low frequency’ where the
performance is specified. Then
analyse the stability of the resulting
closed loop system. This can be
done by transforming the whole
sampled control loop into a form
where the stability is determined on
the imaginary axis. This process is
significantly simplified and can lead
to very useful design procedures
when the last transform is the
inverse of the above controller
approximation (simulation) method.

This basic philosophy is illustrated
schematically in Figure 2. The implicit and
(especially) the explicit Euler methods, with
the step-size of T, would be very simple to
use for the controller approximation stage.
Indeed, much attention has been given to
the explicit Euler method (s = (z—- 1)/7) by
Middieton and Goodwin (1990), who use
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the corresponding inverse transformation
z= 1+ wT in Figure 2. They actually use ‘¢
instead of ‘w’, but the method is the same.
Both of these Euler methods lead to the
system stability boundary approaching the
imaginary axis only for (very) small T
relative to all system time-constants.
Therefore, neither of these two methods can
be generally recommended for quantitative
control system design, as the stability
cannot be judged along the w-plane
imaginary axis. Nevertheless, explicit or
implicit Euler methods can be used for the
controller approximation in many cases —
even though they are not good enough for
stability analysis.
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Figure 2: Philosophy of control system
design with digital equipment in the loop.
Dashed arrow indicates approximation and
solid arrows indicate exact correspondence.
(Here: Gyul(w) = Gs(w), w= (2/D(z1)/(z+1)
and 1/Tis the sampling rate.)

The simplest rational transformation into
the w-plane with the stability boundary on
the imaginary axis is based on the
trapezoidal rule — the T-transform:

2. SAMPLING EFFECT ON CONTROL
SYSTEMS

We follow the philosophy of Figure 2 and
assume that some  continuous-time
controller transfer functions Fg(s) and Gg(s)

have been designed, yielding the loop
transfer function
Ls (S)st(s)H s(s)Ps(s) (2)

The ‘simulation/approximation’ controller
algorithms are obtained as

T z4+1) T z+1

2 z-1 2 z-1
Gz(z)st[— ] Fz(z)=Fs(_ } (3)
For the pre-filter Fg(s) other approximations
can be used without any effect on the

following analysis of the feedback loop
performance.

Now the inverse T-transform is used,
yielding

Gy (W)= G s(w) (4)
and

[HP], (w)=[zp ](%ZT—/Z] (5)

with

1}

G, (w)[HP ]w (w)

Gs(w)EP ], (v)

Ly (w)
(6)

i

The first term Gg(w) of Ly (w) is formally
equal to the first term Gg(s) of Lg(s) when we
set w=s. It would be wuseful for the
continuous-time design if, similarly, we
could somehow relate the entire loop
transfer function L, (w) to Lg(w). There is
indeed a very |useful approximate
relationship which was originally derived by
Eitelberg (1988), see also (Eitelberg, 2000).

We assume that FHg(s)Ps(s) is composed of a
strictly proper rational part [HP|g(s) and a

dead-time term e °@ as
H(s)Ps(s) =[mp J(s) e ™ (7)

Under some realistic conditions (see

Eitelberg, 2000) we obtain

k
[HP], (w)=[HP ] (v )(1+w ZA;TJG; : ;EJ
k=ceil(Ty/T) A=kT-T4

8)

It is convenient to define Ty=kT-A
(0<A<T) as the loop dead-time which
includes any delays caused by the digital
equipment.

Even when the continuous-time system has
no dead-time or non-minimum phase-lag
zeros, the digital equipment in the loop
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always introduces the non-minimum phase-
lag term (1 - wT/2) into the feedback loop
L,{w). For A # 0, the zero of (1 + w(2A-T)/2)
is further from the complex plane origin
than the zeros of the all-pass term that
result from the analog dead-time or digital
implementation delays. Hence, for any A,
the dominant non-minimum phase-lag
term is always (1 — w7/2). Because of the
multiplicity of these non-minimum phase-
lag zeros, the loop gain cross-over frequency
can be limited to much less than the 1/T
from a single right half-plane zero.

A control system designer must not ignore
the effect of digital equipment on analog
signals — aliasing by the analog to digital
converter (ADC) and reverse aliasing by the
digital to analog converter (DAC) — as
distinct from the above described loop
effect. The corresponding expertise is
assumed for the purpose of this
presentation.

3. CONTROLLER DESIGN PROCEDURE WITH
“1-sT/2’

The previous section characterised the
sampling effect in the w-domain. Strictly
speaking, a design specification should be
translated from the s-, or w-domain to the
w-domain as well, before a controller
design can be executed. However, it can be
suggested that there is no practical control
engineering need for the proliferation of
complex domains: s, z, w, 6, and who
knows what else. In particular, replace the
variable w in eq. (8) with s. That means,
formally,

k
[HP]W (S)Z[HP ]S(S)(l+s ZA*T)(I—slej

2 1+sT/2
(9)

Since Gy/s) = Gs(s), we can design in the s-
domain by using ‘1-sT/2’ with appropriate
multiplicity (alone and in the all-pass term
of eq. (9)) as the only (dominant) effect of
the digital equipment in the loop — the
‘loop effect. 1t is true, that the frequency
values around 27/ T and above lose some of
their usual meaning (they cannot get
through the digital equipment without
being aliased into the Nyquist frequency
band), but this is beyond the loop gain
cross-over where only the stability margins

are specified (the Nyquist stability criterion
remains valid). Furthermore, this approach
makes it easier to simultaneously visualise
the ‘signal effects — aliasing and reverse
aliasing in the feedback loop — in Figure 3.

Figure 3: Loop and signal effects of digital
control equipment. ‘1-sT/2’ indicates the
dominant ‘loop effect’. Dashed lines indicate
non-linear formation of effective low-
frequency aliased disturbance dj in the
ADC and high-frequency reverse-aliased
disturbance d;,] in the DAC.

This design philosophy is demonstrated
with the following simple example.

Example 1: Digital controller in the loop.

Let the plant, performance, and stability
specifications be given as

1+ /10
PS(S)= S(J.—{—S/O,l)’ H S(s)::L (10)
. 1 1
|S(ij=}m SlOO =-40dB, (11)
w<0.03

<3dB, Vo (12)

. 1
Rl

Due to considerations of computing time,
only first-order difference equations are
allowed as control algorithms and it takes
one sampling interval to evaluate the
algorithm. Figure 4 shows the plant
frequency response Pg(jw) on the sensitivity
chart background. A loop Lg(jo) =
Py(jo) Gs(jw) is (over-) designed so that it
satisfies the low frequency specification in
eq. (11) and leaves phase reserve for the
stability margin in eq. (12):

1+s/0.3

Gs(s)=3 1+s/7

(13)
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Figure 4: Feedback loop design. Ls
indicates continuous design and Lw
indicates digital implementation.

With this phase reserve, a lower sampling
rate can be tolerated than with a smaller
phase reserve. In this example, because of
the algorithm evaluation delay (dead-time)
of T, the loop effect is (1-sT/2)?/(1+sT/2).
This would limit the loop gain cross-over
frequency to about 0.5/T, when 0.2z phase
margin is allowed (cf. Eitelberg, 2000).
Equation (12) is equivalent to at least 0.25x
phase margin and leads to a lower gain
Ccross-over frequency limit. The
corresponding Ly (jo) = Pgsljo)Gs(jo) (1-
joT/2)2/(1+joT/2) is shown in Figure 4 with
the lowest possible sampling rate

YT=4.5 (14)

The control algorithm is found from eq. (13)
by substituting s = (2/T)(z- 1}/(z + 1). The
discrete-time transfer function is

217 +140 21T —140
z+

GZ(Z)= 1T +2 7T~;T+? (15)
Z+———
7T + 2

The corresponding algorithm is

1T —2 & 21T +140 21T —140
= u + e+ e

- i-1

7T + 2 7T+2 1 7T +2

+1

0.125u}, +40.69e,~38.06e,
(16)
u;‘ denotes the computer internal sequence

of the control values. Due to the mentioned
delay, the physical computer output (plant
input) is defined by

*
u; =uj, =0.1250u,, +40.69e,, —38.06e,,
(17)

-1.2 -1 -0.8 0.6 -04 -0.2 0

Nevertheless, eq. (16) is programmed in the
computer and not eq. (17). This example
with PAM-DAC (pulse amplitude modulated
digital to analog converter) was originally
implemented with analog and digital
electronic components, see (Eitelberg,
1988). A Simulink implementation is shown
in Figure 5. Input limits had to be included
so that a (fair) comparison with a PWM-
DAC (pulse width modulated digital to
analog converter) implementation is
possible.

Figure 6 shows the system’s ability to
reduce sinusoidal output disturbances and
to alias high frequency noise. Notice, that
only frequencies above 2zf/2 = =n/T =
14.137 rad/[time-unit] — far beyond the
loop gain and phase cross-over frequencies
— will be aliased. The aliased frequency in
dy is 2n/ T - 28.244 = 0.03 rad/[time-unit]
for the dashed line and 2#n/T - 28.24 =
0.034 rad/[time-unit] for the dash-dotted
line. d, amplitude is transferred to the
output without change because |L/(1 + )|
= 1 at these frequencies. In real systems,
one is very unlikely to see such clean
sinusoidal aliasing.

O ime ]
Clock To Workspace

u

40.692-38.06 ~ s+
22-125z 10s 2+s 5

Discrete G + delay Ac;ua;or Plant cope

To Workspace1
Figure 5: Simulink block diagram with

PAM-DAC (Pulse Amplitude Modulated
Digital to Analog Converter).
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Figure 6: Disturbance rejection with PAM-
DAC. Solid line shows the y response to d*
= §in(0.03%) with n = 0. The dashed and
dash-dotted lines show the y responses to a
100 times smaller sensor noise, n =
0.01 sin(28.244%) and n = 0.01 sin(28.24%)
respectively while d* = 0.
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The PWM-DAC (Pulse Width Modulated
Digital to Analog Converter) Simulink
implementation is shown in Figure 7 and
Figure 8 shows this system’s ability to
reduce sinusoidal output disturbances and
to alias high frequency noise.

Figure 8 illustrates the role of the signal
dya in Figure 3 — the dominant conversion
frequency of 4.5 Hz is clearly visible. In this
example, no anti-alias filters are
implemented. This causes a slight problem,
because the PWM-generated reverse-aliased
frequencies in d;, are aliased back into the
system bandwidth via dy and the result is
sensitive to the relative offset between ADC
and DAC. In particular, the conversion
frequency f, (and its harmonics) alias
precisely into a constant bias — this is
clearly visible in Figure 8. This can happen
with PAM-DAC only if the converted signal
is held for lesser duration than the
conversion interval.

O———> |
Clock « To Workspace

Rate

<
Offset
€ 40.692-38.06
72125z
Discrete G + delay

To Workspace1
Figure 7: Simulink block diagram with

PWM-DAC. The block PWM evaluates
(u[3*rem(u[1]*u[2],1) < (u[5]-u[4]))*u[3]+ul4].
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Figure 8: Disturbance rejection with PWM-
DAC. Solid lines show the y response to d*=
sin(0.03¢) with n = 0. Dashed line shows the
y response to n = 0.01 sin(25.3% while d*=
0. The sampling rate is 9/2, but the PWM
rate is varied as indicated in the figure.

Figure 4 indicates a theoretical gain margin
of about 12dB = 4 and a limit cycling
frequency of about 4 rad/[time-unit]. This
is confirmed experimentally for both, PAM
and PWM, implementations.

This example can be made more practical
with an anti-alias filter 1/(1+s7T/2). The
digital equipment together with this
simplest of filters yields a modified
equivalent (1-sT/2)2/(1+sT/2)2. The
improvement in high frequency noise
transfer properties, especially with the
PWM implementation, would be significant.
There is an additional way to reduce the
PWM-induced reverse aliased d,,. In Figure
7, the PWM rate can be set independently
of the sampling frequency in the block
‘Discrete G + delay’. For example, Figure 8
illustrates the effect of changing 9/2 to 10
in the block ‘Rate’.

End of Example 1.

For plant modes and disturbances above
the sampling rate, additional filtering may
be necessary — see (Eitelberg and Boje,
1991) or (Eitelberg, 2000) for some suitable
design procedures.

4. IMPLEMENTATION WITH VELOCITY
ALGORITHMS

Direct implementations of the control
algorithms tend to calculate very small
differences between large numbers. This is
only mildly visible in eq. (17) because of the
slow sampling rate relative to the controller

corner frequencies. These numerical
problems are strongly compounded in
direct implementations of high order

control algorithms. One of the remedies can
be an implementation of the algorithm in
the FSR form (incorrectly called FIR).
However, this tends to require summing
very many small numbers.

Here, the often recommended remedy of
splitting the discrete transfer function (and
the corresponding algorithm) into series- or
parallel-connected sections of maximum
second order is followed (Phillips and Nagle,
1984; Middleton and Goodwin, 1990).
Consider the second order controller
section:
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U(s) bys®+bs+b,

E(s=)

Gs(s)'_“ (18)

g2+ a;s+a,
The algorithm is defined by
Gz(z)zGs((le)(z—l)/(z+1)) and can be

written as

bzoz2 +b,z+b,

Go(z)= (19)

2 trazztay

Assume now, that the a, and by, are
implemented with some small errors Ady;
and Ab,;. These implemented

a,;=a,tAa,; and b,;=b, ;+Ab,;
correspond to a different continuous-time
controller

- b s2+b s+b
a= L oar 2
Gs(s)= (20)

2 | A N
s +a(ls+a2

The continuous-time coefficients relate to
the discrete-time implementation errors as

b, =by+Ab, —Ab, +Ab,,,

» Ab,, —Ab
~ 20 T2
b =by+ :

T
- Ab_, +Ab_ +Ab
b, =b, +—= 21 z, (21)
T
A Aa
a; al—-—;ﬁ,
_ +Aa . tAa,,
a2 2 T2

See (Eitelberg, 2000) for the derivation of
eq. (21). Clearly, small T leads to extreme
sensitivity in the actually implemented
control system — even for very small
implementation errors of the algorithm
coefficients. Consider, for example, the
coefficient ap which is equal to the square
of a second order controller denominator
corner frequency. For example, if the
sampling rate is 100 times the corner
frequency then ap7? = 107*. Let the ‘other’
denominator coefficient a,; (ay; » -2 for
small 7) be implemented with a 12-bit
mantissa, then the 0.5LSB round-off error
of ay is a clearly very small 2712 = 0.00024
(0.012% of |az | = 2) — but the relative
error of ay due to Aay is 0.00024/107% =
2.4 (240% of ap)!

Now, never mind how exact the
implemented algorithm coefficients a,; and

b,; are, we still have the problem of working
with very small differences of large
numbers in the direct implementation of
even first order algorithms.  This
phenomenon is somewhat easier to analyse
in any of the equivalent (canonical) state-
space formats, some of which are
recommended for digital filter
implementation (Phillips and Nagle, 1984).
Any rational proper SISO controller transfer

function (such as in eq.(18)) can be
modelled in the time-domain by state
equations

:Y=Ax+Be

(22)
u=0Cx +boe

Application of the Laplace, T-, and inverse
z-transforms yields directly an explicit
(state space) controller implementation
algorithm

-1
T e.te.
X; = I:I——A] {[I—i——T Ai|xl._l +T‘B—J—ﬂ-}
2 2 2

u;=Cx ;+hye;

(23)

For small T, the recursion equation for x;
has the same coefficient precision problem
as the above analysed direct
implementation. However, here it is easy to
modify the algorithm by first evaluating the
state increment and then adding this
increment to x;;. Add and subtract x;;
from the right-hand side of the difference
equation in eq. (23). After simplification, the
algorithm is now evaluated in the
numerically well-conditioned sequence

1
e.+ e;
Ax .= T[I—EAI {Ax ,_1+B—J-——-’;l}
2 ¥ 2

x,= x,; ., +Ax; (24)

u;= Cx 1.+b0e1.

There is one slightly arguable problem with
this algorithm — Ax; can only be evaluated
after the ADC releases the new measured
e; In order to avoid this, a linearly
transformed state vector w; is introduced
with yet to be defined transformation
matrices M and N so that x;=Mv ,+Ne,.
Two specific choices that were derived by
Eitelberg (2000) yield
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B T T? T T?
Avi_ T I—-—2-A av, .+ I—-EA Be,,

(25)
or
r T1
Av;= T[I“;A} {avi +Be., }
vi= vig tAv;
r T (26)
uVi:C I-;A