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1. ABSTRACT 

This report presents our work in the development of fast-response, high-accuracy multi- 
sensor „probes of miniature size for velocity and pressure measurement inunsteady and 
turbulent flowfields, with emphasis on MEMS-based pressure probes. The fabrication and 

a ,bration (theoretical and experimental) of miniature (order of 1mm to 2mm in diameter) 5- 
ensor hem sphencal-tip probes, are discussed. The first stages of the developmen process have 

been oISncate a sensitive MEMS pressure sensor and to develop calibration algorithms and 
environments for fast-response probes. We fabricated and calibrated several generations of 
bossed-diaphragm absolute pressure sensors 100x100 urn2 to 250x250 urn" in size One of the 
challenges in the pressure sensor development is the design of sensors with sensitivity sufficient 
for    curate measurements in flow conditions most commonly of interest to the scientific and 
ndus na, community. New probe calibration techniques were introduced. Bot> theoreticaland 

experimental approaches are employed to develop calibration techniques suitable for unsteady 
and turbulent flow environments with fine time and length scales. 

In terms of probe calibration, first new steady calibration algorithm was developed that 
pushes the envelope of calibration accuracy down to 0.1 degrees in angle prediction and 0.3 /o in 
velocitv magnitude prediction. Subsequently, unsteady flow effects were theoretically modeled 
and experimentally validated. Theoretical discussions are coupled with experiments. As aiding 
tools in the development of the unsteady calibration theory and algorithms, several specia 
experimental facilities and 5-hole probes were developed, including a high-speed unsteady jet 
facility with velocity fluctuation frequencies as high as 2 KHz. 

The work resulted in a prototype MEMS-based 5-sensor probe, several embedded-sensor, 
fast response 5-sensor probes, and high accuracy steady and unsteady probe calibration and data- 
reduction aluorithms. The majority of our work has already been brought in the market with 
several companies and universities already using our probes. Several "success stones are also 
included in the appendices. The work has produced a new type of flow-diagnostics probes that 
are anticipated to prove valuable to the fluid mechanics community. They are significantly more 
ru«M.cd than hot-wires and much less dependent on repetitive and tedious calibration; provide 
much larucr measurable flow angularity; and although they are not there yet we soon expect 
them to be able to match or exceed a hot-wire's spatial resolution capabilities and compete with a 

hot-wire's frequency response. 



2. INTRODUCTION 

Multi-hole pressure probes, such as 5-hole and 7-hole probes, have in many cases 
provided the easiest-to-use and most cost-effective method for steady-state, three-component 
flow velocity and pressure measurements in research and industry environments. Especially in 
high-productivity environments, non-intrusive flow measurement techniques such as Laser- 
Doppler Vein- imetry (LDV) and Particle Image Velocimetry (PIV), although powerful, have 
been traditionally avoided, since they require painstaking efforts toward their successful usage 
Costly components, complex setups, troublesome flow "seeding" requirements, lack of 
flexibility ruggedness and mobility and ease of misalignment often render such techniques 
impractical. For steady-state measurements, multi-hole probes are often favored even over Hot- 
wire Anemometry, due to the susceptibility of the latter to frequent wire damage and the need 
for repetitive calibration. However, even after the measurement capabilities of multi-hole probes 
were expanded in the recent years, in terms of spatial resolution and frequency response, the 
current state-of-the-art of such probes is still faced with limitations. 

Although multi-hole probes have been employed in the measurement of unsteady 
flowfields (Senoo et al., 1973; Castorph and Raabe, 1974; Kerrebrock et al., 1980; Matsunaga et 
al 1980- Ng and Popernack, 1988; Naughton et al., 1993; Rediniotis et al., 1994) they have 
tvpically been limited in terms either of frequency response or minimum achievable probe size. 
For example, although Kerrebrock et al.'s (1980) probe had a decent overall frequency response 
(30 kHz) it had a rather large size (5mm tip diameter), and, although Matsunaga et al. s (1980) 
probe had a relatively small size (2mm tip diameter), it had a limited frequency response (500 
Hz) Nu and Popernack (1988) developed a four-sensor probe with a size of 5.2mm and a 
frequency response of 20 kHz. Naughton et al. (1993) developed a 5-hole probe for supersonic 
flow measurements. A small tip diameter was maintained (1.1mm) but the frequency response 
was limited to 50 Hz. Typically, in these efforts the frequency response limitations are caused by 
the need to have pressure tubing leading from the probe tip to the pressure transducers. 

From the above one can infer that the previous state-of-the-art could not simultaneously 
achieve lan>e measurable bandwidth and good spatial resolution of the fine flow structure when 
applied to turbulent flow measurements. It should be noted also that in the previous efforts, even 
in the cases of small tip diameters, the probe bodies immediately downstream of the tips were 
lan-e in size (10mm and higher) in order to provide the housing for the pressure transducers; in 
no^case were the pressure transducers "micro" in size, the size of currently available Si- 
diaphraum-tvpe pressure sensors are all in the order of millimeters. Downstream obstructions 
such as^bulky probe bodies can cause significant flow disruption, especially in flowtields of 
elliptical nature. For example, they can cause premature vortex breakdown of leading edge 
vortices (Rediniotis, 1992). To overcome these limitations we are developing MEMS-based, 
multi-sensor pressure probes that largely eliminate the limitations described above. The new 
probes combine miniature size with high frequency response and will extend the application 
regime of multi-sensor probes to unsteady and turbulent flows. 

Although probe calibration techniques for steady-state measurements are well established 
todav (Gallington, 1980, Kjelgaard, 1988, Zilliac, 1989, Houtman and Bannink, 1989, Everett et 
al    1983   Naughton et al., 1993, Rediniotis et al., 1993, Rediniotis and Chrysanthakopoulos, 



1995), largely unresolved issues persist pertaining to the calibration of such instruments for 
measurements in unsteady and turbulent flows. Siddon (1969) used a pressure probe in unsteady 
flow and examined the error introduced if quasi-steady calibration is used in unsteady flow 
environments. He concluded that only if the length scale of the unsteadiness is significantly 
larcer than the probe size, the instantaneous unsteady pressures are negligibly different than the 
quasi-steady pressures. Senoo et al. (1973) employed a three-hole cobra probe to measure 2-D 
instantaneous flow properties at the exit of a pump impeller. Recognizing the difficulty of 
calibrating the probe in unsteady flow, they utilized the steady-state calibration of the probe to 
reduce the unsteady flow data. Fur their application, arguments were presented as to why the 
followed approach did not compromise the measurement accuracy, although no quantitatively 
unequivocal proof was presented. 

A theoretical-experimental procedure for calibrating a five-hole probe in unsteady 
conditions was employed by Matsunaga et al. (1980). This was one of the few attempts to 
account for unsteady effects in the calibration and part of the approach is adopted herein. 
However, there, the theoretical part of the algorithm, which consisted of the numerical 
calculation of the perturbation potential <p around a hemispherical-tip probe, was not properly 
corrected to account for fabrication idiosyncrasies and imperfections of the specific probe. Even 
in steady-state calibration of hemispherical-tip probes, similar methods, utilizing potential flow 
equations for the flow over a sphere to relate flow angle and velocity to pressure differentials 
measured by the probe, have been employed (Kjelgaard, 1988). It is now well established in the 
community that such methods are sensitive to construction defects on the probe, if not properly 
corrected "for the specific probe geometric details. Such correction can only be derived by 
coupling the theoretical calculations to measurements of the specific probe behavior. This is a 
demanding task and although necessary if high-quality probe calibrations are desired, especially 
in unsteady calibration, has been avoided in the past. 

It" the probe is to be used in turbulent flowfields, to provide velocity and pressure 
information down to the dissipative '«jngth scales and resolve a broad bandwidth of frequencies, 
the spatial and temporal resolution issues of the calibration are accentuated. The findings of 
George. Beuther and Arndt (1984) provide good insight into some of these issues. They 
developed spectral models for turbulent pressure fluctuations by Fourier transforming the 
solution to the Poisson equation: 

c'u, cu, 
-V-p = -^T^ (2.i) 

where pis the instantaneous static pressure, S, is the instantaneous velocity component, i and 
j= 1.2.3 for Cartesian tensor notation and p is the density. Homogeneous turbulence and a 
constant-mean-shear flow were assumed. It was shown there that although the velocity spectrum 
E(k) drops off as -5/3 in the inertial subrange, the pressure spectrum was dominated by a k" ' 
behavior in the same high-wavenumber regime (k is the wavenumber). The fact that the pressure 
spectrum rolls off faster than the. velocity spectra is a potential source of measurement 
contamination of a pressure-sensitive probe by velocity signals, at high wavenumbers. 



Fuchs (1972), assuming that Taylor's hypothesis holds, derived expressions for the 
difference (error) between the static pressure measured by a probe inserted in turbulent flow and 
the true static pressure of the flow at the same location, if the flow was not disturbed by the 
presence of the probe. Fuchs further developed conditions that have to be met should this 
difference (error) be considered negligible. An important such condition is expressed as: 
d/Ax«l, i.e., the probe diameter should be small compared to the turbulent length scales to be 
resolved. It is important to realize at this point that these conditions cannot be applied straight to 
the 5-hole (sensor) probe. The 5-hole probe derives its measurements by disturbing the flow. In a 
sense, the disturbance it causes to the flow is its principle of operation. An even more important 
realization of the potential of the five-hole probe as a high-spatial resolution flow measurement 
instrument should be made. Consider a hot-wire and a high-frequency response multi-sensor 
pressure probe of the same basic dimensions (1mm effective wire length and probe tip diameter). 
Also, consider a turbulent eddy with a length scale on the same order (1mm or a fraction of it) 
being convected over the instrument. A hot wire is incapable of resolving the spatial gradients 
within the eddy. Its reading is a measure of the spatially averaged heat transfer effect the eddy 
has on the wire. The multi-sensor pressure probe, however, provides multiple discrete readings at 
spatially distributed locations within the eddy. The above reasoning serves as an introduction in 
illustrating the potential of the proposed instrument in resolving spatial gradients of length scales 
smaller than the probe diameter. Multi-hole probes are traditionally calibrated in uniform 
freestream and therefore in the absence of shear. However, there are no showstoppers preventing 
the probe from being calibrated in shear flows and thus being able to operate in and measure 
shear tlows. The instrument's capabilities can be extended to the measurement of shear or spatial 
gradients with scales smaller than the probe size, especially if an array of pressure sensors is 
distributed on the probe surface. 

In Gossweiler et al. (1994), a 4-hole, fast-response probe was introduced. The probe tip 
did not have any of the conventional geometries (conical or hemispherical) but was rather 
formed into a wedge. The tip diameter was 2.5mm and the frequency response was 45 kHz. The 
probe was used for measurements in turbomachinery related flows, however all data reduction 
was performed via static probe calibration. The unsteady aerodynamic effects on the probe 
calibration were not taken into account. The same group (Humm et al., 1994) tested several fast 
response probes with tip geometries, in order to assess the measurement error made if a static 
probe calibration is used to reduce probe measurements taken in time-dependent flowfields. 
Several error sources were identified, the most important of which are: inertial or apparent mass 
effects (potential tlow effects), dynamic boundary layer effects, dynamic stall effects and vortex 
shedding effects. For a flow oscillation frequency of 5.9 kHz, and depending on probe geometry 
and size (two probe tip sizes were tested, 4mm and 8mm), errors as high as 100% were 
identified. The highest errors were observed for wedge-type probe tip geometries, while circular 
probe tip geometries were found to reduce these errors dramatically (one order of magnitude). 
This is one of the reasons we have chosen a hemispherical rather than conical tip geometry. 
Another important result in Humm et al. was the fact that for circular tip geometries the main 
two sources of errors were inertial (potential flow) effects and spatial velocity gradient effects. 
Viscosity and circulation related errors were much smaller. 



3. CONCEPTUAL PROBE DESIGN 

Figures 3 1 and 3.2 present our initial design of the MEMS-based probe. In this type of 
probe the pressure sensor chip is mounted on the bottom of the hemispherical probe tip. For a 
hemispherical pressure probe with a diameter of 1 mm, the length of pressure tubing is no longer 
than the radius of the hemisphere (0.5 mm). The sensor chip is designed to be 0.7 mm on a side 
in order to be flush mounted on the flat side of the hemispherical tip. As shown in figure 3.1, the 
chip inteerates five sensors, one located at the center of the chip and the other four symmetrically 
distributed at the corners. Inside the probe, as much area as possible needs to be dedicated'to the 
chip Therefore, the area dedicated to electrical connections is minimized. A robust, repeatable 
assembly process is needed for inserting the minute die into the final housing. Finally, the 
hemispherical dome is hermetically bonded to the pressure sensor chip to complete the probe 
shown in fieure 3.2. 

X! 

Ribbon cable 
1 

Ribbon cable 

Polyimide-based 
ribbon cable 

Polyimide 

Figure 3.1. Layout of diced pressure sensor chip. 

Insulated fine 
gold wires 

Figure 3.2. Packaging of the 5-sensor hemispherical probe. 



During the project and as our experience with miniature machining and MEMS pressure 
sensors matured the probe design was updated to facilitate assembly. Figure 3.3 is an exploded 
view of the updated probe design, schematically showing the various components as they are 
being assembled, while figure 3.4 schematically presents a cut-away view of the assembled 
probe The tip, sealing tubes, and mounting stage are fabncated by the Miniaturization 
Laboratory as well as tools to facilitate final assembly. The tip is relatively easy to fabricate, as 
it consists'of simple drilling and counter-boring operations, although great care is taken in 
producing the hemisphere as accurately as possible. The tubes are off-the-shelf and only require 
machinine to length. The mounting stage is the most difficult piece to fabricate as it has features 
requiring "the smallest of tools and the highest precision of location. Figure 3.5 shows the stage in 
detail The stage is 2 mm diameter brass, approximately 1 mm thick. The pocket is 0.005 inches 
deep and is machined with a 0.010" diameter cutter, as are the four slots. The pocket corners are 
cleared to allow the MEMS array to be accurately positioned relative to the outside diameter of 
the staße The slots for the wiring ribbons go completely through the stage, to allow access to 
the soldering pads on the wires from the MEMS array. The stage plays a crucial role in the 
assembly of the probe components. The MEMS array, the sealing tubes, and the tip of the probe 
are placed relative to the outside diameter of the stage, which also serves as the final connection 
to the probe housing, after the sensor wires are connected. Each of the pressure sensors must be 
coupled with its corresponding hole in the tip, with no chance of leakage or cross-talk between 
ports This is accomplished by sealing all of the tubes to the MEMS array in one epoxy setting, 
then sealing the tip to the tubes in a separate epoxy setting. A fixture, referred to as the sealer 
is used to accurately position the tubes on the MEMS array, so that epoxy can be placed around 
the outside diameter of each tube. Pictures of the several fabricated components and the 
assembled probe are shown and discussed after we first discuss the MEMS pressure array, the 
relevant fabrication processes and sensor calibration. 

mounting ^^A ^g»  wiring 
stage    ;_J    Z4&S&'  ribbons 

sealing 
tubes 

mems 
array 
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Figure 3.3. Exploded view of the MEMS 5-sensor probe. 
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Figure 3.4. Cut-away schematic of assembled probe. 

Figure 3.5. Schematic of MEMS mounting stage. 



4. DEVELOPMENT  OF MEMS  PRESSURE  SENSORS  AND  SENSOR 

ARRAY 

Most commercial silicon pressure sensors are differential. The advantage is that users 
can add their own reference pressure to fully utilize the specified pressure range and sensitivity. 
This is especially important for the low-pressure sensors with a range of only a few psi or less 
How ver the presence of external rlumbing dictates that the sizes of this type of sensors can not 
be made 'smaller than 1 mm2. Furthermore, the requirement of having a reference Pressure tube 
on each sensor could become a serious disadvantage in some applications, most notably in 
arrays On the other hand, the absolute type pressure sensors with a vacuum reference are 
convenient to use and can perform equally well if the measured pressure range starts from 
vacuum i e., the full range is utilized. Also, the surface micromachined type can be as small as 
100x100 urn2 This small size, combined with the absence of plumbing, make surface 
micromachined pressure sensors ideal for use in applications where small arrays are needed (i e 
pressure probes). The most significant disadvantage of absolute pressure sensors, however, is the 
Tower sensitivity. Therefore, we have spent most of our design efforts in an attempt to improve 

the sensitivity. 

Though not commercialized, many types of surface micromachined absolute 
piezoresistive pressure sensors have been developed. Table 4.1 shows the performance 
comparison for some of these sensors. They use either polysilicon or low stress silicon nitride as 
the diaphragm and polysilicon resistors as the sensing elements. 

Diaphragm 
material 

Diaphragm 
size, ((im ) 

Pressure 
range 
(psig) 

FSO 
(mV) 

Nonlinearit 
y (%) 

Lin Poly-Si ßx100x100 100 75 0.2 

Kalvesten Poly-Si 2x100x100 5.8 3 N/A 

Liu SiN 1.5x250x250 20 25 1 

Lisec Poly-Si 1.7x80x220 7.5 18 N/A 

Jiang SiN 1x230x230 10/20/30 60/95/100 0.8 

Table 4.1. Comparison of different pressure sensor diaphragms. 

The diaphragm geometry and thickness are all well controlled. Because the gage factor 
(a measure of change in resistivity as a function of strain) of polysilicon is 3 to 5 times smaller 
than that of single crystal silicon, these sensors are generally less sensitive than the bulk 
micromachined silicon pressure sensors. Also, due to the built-in stress of the diaphragm 
material (especially silicon nitride diaphragms), the linearity is not as good. Therefore, they are 
not competitive in the individual pressure sensor market. However, potentially they can still be 
useful in such areas as profiling pressure distributions on a surface where dense sensors are 

required. 

The pressure probe requires high sensitivity in a small pressure range. All of the previous 
surface micromachined sensors simply used uniform-thickness diaphragms while some of the 
most sensitive bulk micromachined pressure sensors have more sophisticated bossed structures 

10 



on then diaphragms to achieve localized stress concentrations. Therefore we believed that it 
would be worthwhile to try the bossed structures on the surface micromachined sensors. As a 
matter of fact, the bossed structure makes the whole diaphragm suffer, i.e., less deflection on the 
center of the diaphragm. This actually could be the most important effect as the maximum center 
deflection of the surface sensor diaphragm is limited by the sacrificial layer thickness to be 2-3 

m' Based on the above consideration, we have fabricated a number of different structures. 
Fmure 4 1 shows four of these designs. The first type has the conventional uniform square 
diaphragm for comparison purposes and the second type has a double-boss square diaphragm, 
with the sensing resistors located on the thinner part of the diaphragm (near the edges and the 
center) Because their transverse gage factor is much smaller than its longitudinal one, the 
polvsilicon resistors are oriented toward the center to experience the longitudinal stress. The 
second tvpe has a thick beam connecting the double bosses and crossing the whole diaphragm, 
while the^ polysilicon resistors are placed on the narrow parts of the beam. The third type has two 
double-bossed beams perpendicular to each other. We initially expected that the stiffness of the 
diaphragms would increase from type I to type IV. Specific processing details are presented 
later Figure 4 2 presents microphotographs of the fabricated type III and IV pressure sensors. 

(a) Type I: uniform diaphragm. (b) Type II: double-bossed diaphragm. 

Jr. 

mm mm 

(c) Type III: single beam-structured 
diaphragm. 

j—v^yrr'j?^ 

mm mmm 

(b) Type IV: double-beam-structured 
diaphragm. 

Figure 4.1. Different structures of pressure sensors. 
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We have tested some of the pressure sensors in a pressure chamber. It turned out that for 
type I sensors, the full-scale output can not exceed 40 mV/5 V for any pressure range below 30 
psig. Out of our prediction, type II is worse than type I in every aspect. However, both type III 
and type IV are satisfactory. For example, type III gives 60 mV/5 V output for a full scale range 
of 10 psig (figures 4.1.a and 4.3) and type IV generates 95 mV/5 V for a full scale range of 20 
psig (figures 4.1.b and 4.4). All these sensitivities are much higher than those of the previously 
developed surface micromachined pressure sensors. Other characteristics such as optimum 
power consumption (tradeoff between SNR and possible heat transfer to flow) and temperature 
sensitivity were also measured. 

TO-      '    ' 

(a) Type III (b) Type IV 

Figure 4.2. Pictures of types III and IV pressure sensors. 

Pressure (psig) 

Figure 4.3. Pressure calibration results for type III sensor. The diaphragm thickness is 
1 urn on the thin part and boss thickness is 3 urn. The nonlinearity for all the sensors is less 

than 1%. 
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Pressure (psig) 

Figure 4.4. Pressure calibration results for type IV sensor. The diaphragm thickness is 1 
Hin on the thin part and boss thickness is 3 urn. The nonlinearity for all the sensors is less 

than 1%. 

The knowledge gained from those tests was used to design and fabricate a pressure sensor 
skin in the shape of a cross. The layout (some layers hidden for the sake of clarity) for the skin is 
shown in Figure 4.5. The central square is approximately 1.2 mm on a side and contains 5 
pressure sensors (shown as white squares). Each sensor sits atop a silicon island, but the arms of 
the cross are composed entirely of polyamide and metal lines and are completely flexible. We 
have improved upon our original flexible skin process in the areas of robustness and packaging. 
The original process (F. Jiang et al., 1997) (simplification shown in Figure 4.6) uses a wet silicon 
etch such as TMAH or KOH to create the backside cavities. For process compatibility issues, 
this choice necessitates creating the cavities early in the process, thus implying that a relatively 
fragile wafer be carefully handled through the rest of the process. The new process 
(simplification shown in Figure 4.7) uses deep reactive ion etching (DRIE) to create the cavities 
near the end of the process, after the sensors have been formed. Thus the yield increases 
significantly, wafer warpage issues are of no concern, and the processing is greatly simplified. 

Another important innovation is the fabrication of backside contacts on the flexible skin. 
In short, the aluminum metalization is sandwiched between top and bottom layers of polyamide. 
We open up the bottom layer and use electroless gold plating to deposit a composite layer of 
nickel and gold on top of the aluminum. The top layer of gold is then easily attached to other 
packaging by means of solder paste, for example. This technology can simplify packaging 
immensely, as it minimizes hand assembly. A conceptual drawing of this bond is shown in 
Figure 4.8. 

13 



Figure 4.5. Layout of the pressure sensor array. 

l.TMAHorKOH selective ly etches backside. 
nitride as dielectric layer 

2. Aluminum/polyimide/aluminum/polyimide processing on 
frontside. 

aluminum 

3. RIE etches backside using Al mask. Polyimide processing on 
backside. 

Figure 4.6. Simplified process flow for original flexible skin. 
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12. Pattern backside; RIE etches nitride; DRIE etches Si to 70 urn thick. 

13. DRIE etches avay silicon between islands; RIE removes nitride; 
Pad etchant removes LTO. 

14. Spin, cure and pattern polyimide on the backside. Electroless plate 
nickel/gold on the backside pads. 

Figure 4.7. Improved process flow using DRIE, backside contacts, and electroless plating. 
Layout of the pressure sensor array. 

PCB 

Skin 

Figure 4.8. Conceptual drawing of new packaging technology. 
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Figure 4.9. MEMS array electrical connector (socket). 

Figure 4.10. Pressure chamber for calibration of MEMS sensor arrays. 

The socket and MEMS sensor shown in figure 4.9 was subsequently placed inside a 
pressure chamber (figure 4.10) for sensor array calibration. The chamber is supplied with 
adjustable and accurately known pressure, while the signal response from all of the sensors are 
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recorded. A typical MEMS pressure sensor calibration curve is shown in figure 4.11. This curve 
shows the raw recorded voltage from the MEMS sensor without offset compensation or 
amplification. 
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Figure 4.11. Typical calibration curve for MEMS pressure sensor. 
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5. PROBE ASSEMBLY 

This sections discusses the processes involved in the fabrication of the different probe 
components and the subsequent probe assembly. Figure 5.1 shows the fabricated stage. The stage 
is 2 mm diameter brass, approximately 1 mm thick. The pocket is 0.005 inches deep, and is 
machined with a 0.010" diameter cutter, as are the four slots. The pocket corners are cleared to 
allow the MEMS array to be accurately positioned relative to the outside diameter of the stage. 
The slots for the wiring ribbons go completely through the stage, to allow access to the soldering 
pads on the wires from the MEMS array. The "sealer", is used to accurately position the tubes on 
the MEMS array, so that epoxy can be placed around the outside diameter of each tube. A 
picture of the first-generation fabricated sealer is shown in figure 5.2 against an adult's 
fingerprints to illustrate its size. Figure 5.3 shows the MEMS sensor array installed in the stage, 
while the figure 5.4 shows the assembly after the sealer is installed. The five MEMS pressure 
sensors can be seen through the openings of the sealer. Finally, in order for the reader to perceive 
the size of the probe, figure 5.5 presents pictures of the MEMS-probe on a quarter and figure 5.6 
shows the probe between an adult's thumb and index fingers. Figure 5.7 shows a typical 
miniature probe tip. 

Figure 5.1. Details of the stage inside which the MEMS pressure array is housed. 
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Figure 5.2. Picture of first-generation fabricated sealer shown against an adult's 
fingerprints. 

Figure 5.3. MEMS sensor array installed in the stage. 
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Figure 5.4. Picture of assembly after the sealer is installed. The five MEMS pressure 
sensors can be seen through the openings of the sealer. 

Figure 5.5. MEMS Sensor housing on a quarter. 
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Figure 5.6. Probe between thumb and index finger. 

Figure 5.7. Typical probe tip. 
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In order to appreciate the fabrication and assembly of the probe components, it is 
necessary to understand the processes involved in miniaturization and the challenges faced by 
the designer and the technician. We define miniaturization by the size of the cutting tools and 
part geometry, usually between 0.004" and 0.030". For example, the MEMS probe has an 
outside diameter of 0.094", but its features require a 0.010" diameter cutting tool, with material 
thickness as low as 0.004". 

The primary challenge in miniaturization arises from scaling down the torces required to 
machine the material. A miniature tool can only withstand very small forces, so that force must 
be carefully controlled and spread over the cutting surface. The parameters established in 
conventional machining usually rely on percentages to calculate depth of cut and feed rate, but 
these percentages must be adjusted to preserve the miniature tool. For example, the 0.010" 
cutting tool can cut its full diameter up to .002" deep, feeding at 0.001 inch/second, while 
spinning at 20,000 rpm (for Brass). The tool pressure and vibration might deflect the tool a full 
10% of its diameter, increasing the slot thickness an unpredictable 0.001". While 0.001" is 
considered precise in conventional machining, it is obviously a large tolerance in miniaturization, 
where the 0.004" material thickness could be reduced to 0.002" if cuts are made on both sides, a 
50% error. This unpredictability is compounded by the lack of instrumentation to accurately 
measure the result of a machining operation, particularly while the piece is fixed and located in 
the machine. Optical comparison is the best technique for measuring these small features, but it 
requires releasing the work-piece and losing its location coordinates. We can measure the end 
result but we cannot realistically change it if it is incorrect. 

A major concern of miniaturization is work-holding and locating. The precision required 
in locating a miniature work-piece is near the limit of conventional indicators, which can 
measure 0.0001". Indicators can find the center of round parts accurately, but cannot locate an 
edge or surface. To do this, a technique called "touch-off is used, where the spinning cutting 
tool is actually moved into contact with the work-piece to establish the coordinate. The precision 
o\' location or depth of cut is then dependent on the precision of the touch-of i, which is limited 
by the ability of the technician to determine the point of contact. Again,' in conventional 
machining this is considered a very accurate technique, but it is certainly less than optimal in 
miniaturization. 
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6. INITIAL EVALUATION OF UNSTEADY EFFECTS ON PROBE CALIBRATION 

As discussed in the introduction, the inertial effects due to the unsteady flow over the 
probe tip (hemispherical), are most prominent. In order to first evaluate them and subsequently 
account for them, we consider the unsteady potential incompressible flow over a sphere of radius 
a moving in a fluid at rest, with a velocity U(t) along the negative z-axis (figure 6.1). 

Figure 6.1. The coordinate system. 

The perturbation potential around the sphere is: 

4>(r,0.t) = 
U(t)a3cos6 

2r2 (6.1) 

The pressure over the surface of the sphere is given by the unsteady Bernoulli equation: 

P(r.O.t) = ?, -p(^-(V0+Qxr)-V+-V ) (6 2) 
/"t / c1 

where: 

V„ = (- U(t) cos 0, U(t) sin 9,0) (6.3) 

is the velocity of the sphere and O(t) is the rotation of the sphere. By specifying functions for 

L'(t) and  ^(t), unsteadiness in both velocity magnitude and direction can be accounted for. 
Since both effects are on the same order of magnitude, here for simplicity, we will set: 

Q = 0, Qx r = 0 (6.4) 
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The flow velocity is: 

v.vt = (£i,Iä._!_afc) 
dr   r 59   r sin 9 cty 

U(t) a3 cos6   1 U(t) a3(-sin9) 
_( p ,r 2r2 ,uj (65) 

U(t) a3 cos9     U(t) a3sin9 

2r3 

On the sphere surface (r=a): 

V„-V<t>   = (-U(t)cos9,U(t)sin9,0) 

„ - U sin 9 ns •(-U(t)cosG, ,0) 

= ^(t)coS^9-U2(t)sm2e (6-6) 
2 

I    -     -.       1                  ■, n     U2(t)sin29, 
i(V<b)- =-(U-(t)cos-9 + —— ) 
i -> 4 

Also for r=a: 

nb      a dU(t)       .      U'(t) a 
—!- = — cos 9 = — cos 9 (6.7) 
n      2    dt 2 v     ' 

Then bv combining the above into equation 5.2 we get: 

p(r.e.t)=p, -P(^-V0-V+1V ) 
c% 2 

=,P/+£(^(We-5) (68) 

- U'(t)acos9 ) 

where 

P,U2(t) 
'    4 

U'(t)acos8) (69) 

6P = (P - P,) = - (—— (9 cos- 0 - 5) 
2       4 

= ÖP, + 8P; 

from this 
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8PI = P^!)(l-^sin2e) (6.10) 

pU'(t)a 
5P: = -      2      cos9 (6J]) 

where 5P1  is the steady pressure term and 5P2 is the unsteady pressure term. If we had 
considered unsteadiness in the velocity direction as well, the last term would have been: 

pa d 
öP^ =-^--[U(t)cos0] (6.i2) 

?   rt 

By dividing these by pU2(t)/2 we arrive at: 

^-Pquasi-steadv 
6P, ,     9 

= l sin 
pU2(t) 4 (6-13) 

_ 5P, + 5P 
*- PunMeaih 

pb,:(t) 
2 

(1 - — sin: 9) - 
4 

U'(t)a 
 - COS 

U*(t) 

(6.14) 

Therefore if we consider quasi-steady probe calibration, i.e. ignore the effects of the unsteady 
pressure term, we make the following error: 

oP-i *-P unsteady   ~ ^-Pquasi-steady 

oT, + 8P, Cp unsteady 

In order to evaluate this error, let us consider a sinusoidal variation for U(t): 

U(t) = U„(l +Asin(27i f t)) (6.16) 

By introducing the non-dimensional frequency 

2TT f a 
k = ~n  (6-17) 

the error becomes 
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E = 
(l + A sin^))2 

-AK cos(0) cos(<j>) 

l--sin2(6) 
4 

AK cos(B) cos(<j>) 
(6.18) 

w here  <j> = 2rc f t . 

Figures 6 ? and 6.3 present the dependence of error E (its maximum value within one period 
of oscillation)™ the non-dimensional frequency K and the amplitude of the velocity oscillation 
A. for small (figure 6.2) and large (figure 6.3) values of K. Figure 6.2 illustrates the pointjhat 
there is a range of K values, corresponding to practical unsteady flowfields, for which the error 
made bv ienoring unsteady aerodynamic effects is negligible (less than 1%) therefore steady 
probe calibration' would provide accurate measurements. For example consider a flow with a 
mean velocity U0 of 50m/sec, an amplitude A of 20% of the mean and an oscillation frequency 
of ^50 Hz That could, for example, correspond to the unsteady flow downstream ot a circular 
cylinder (vortex shedding) 4cm in diameter. For a MEMS probe with a diameter 2a= 1.5 mm the 
resultinu non-dimensional frequency K is 0.023, which yields (from figure 6.2) an acceptable 
error ofo 5% Therefore the development of a steady probe calibration algorithm is important. 
Many such algorithms have appeared in the literature. As discussed later, the novelty of the 
steady algorithm developed and presented here resides in its achieved accuracy levels and. its 
breadth of application. 
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Figure 6.2. The maximum error in steady vs. unsteady pressure coefficent, E, as a 
"function of the non-dimensional frequency, K at discrete amplitudes, A. 
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Figure 6.3. The maximum error in steady vs. unsteady pressure coefficent, E, as a function 
of the non-dimensional frequency, K at discrete amplitudes, A. 

With that said, if one considers turbulent flows with fluctuation frequencies on the order of 
kHz or tens of kHz, the error E becomes non-negligible (figure 6.3), which stresses the need for 
unsteady probe calibration theory and algorithms as well. 
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7. STEADY PROBE CALIBRATION ALGORITHMS 

7.1. Local Least-Squares Ateorithm 

The port pressures recorded from the multi-hole probe in an unknown flow field form a 
"signature" that is used to determine the flow angularity and magnitude. The analysis of the 
pressure signature to obtain flow conditions is usually performed with a data reduction 
algorithm. The topic discussed in this section is the development of a high-accuracy data 
reduction algorithm for 5-hole (and generally multi-hole) pressure probes. 

Historically, a number of different calibration techniques have been utilized for multi- 
hole probes, all with their own advantages and difficulties. A commonly used method for 
hemispherical probe tips has been to apply the potential flow equations for a sphere to relate the 
flow angle velocity magnitude with the pressure differentials measured by the probe. Kjelgaard 
(1988) used this technique on a hemispherical tipped 5-hole probe. The potential flow calibration 
method is a direct calculation of properties from a theoretical probe model. This approach is very 
sensitive to construction defects of the probe tip. When minimizing the probe size manufacturing 
irregularities are becoming unavoidable and the relative deviation of the physical probe from the 
theoretical design is increasing. To compensate for the manufacturing defects, each probe has to 
be calibrated individually using extensive calibration routines. 

A method of calibrating multi-hole probes is to insert the probe into a flow field of 
known magnitude and direction. The probe is then rotated and pitched through a range of known 
angles, to simulate every possible measurable velocity inclination. For each of the specific angles 
the pressures from all the pressure ports are recorded and stored in a database. Angle increments 
are typically 0.5 to 5 degrees yielding a database with several thousand data points, each with a 
pressure signature that is unique for that angle inclination and velocity magnitude. A calibrated 
probe can be inserted into an unknown flow field and accurately predict the velocity vector by 
recording the port pressures and comparing them with the calibration database through a set of 
non-dimensional coefficients. By interpolation of the recorded angles and pressure coefficients in 
the calibration database the velocity vector is accurately predicted. Unless the probe is physically 
damaged the probe will keep its characteristics and only one calibration is required for the 
lifetime of the probe. 

Several methods of comparing the measured pressures with the database have been 
developed. Bryer and Pankhurst (1971) applied relationships derived from a set of pressure 
coefficients over the different flow regions of the probe. On a 5-hole probe the measuring 
regions on the probe were divided into one low angle regime and 4 high angle regimes 
corresponding to the center port and each of the peripheral ports, respectively. The calibration 
data was used to derive empirical relationships representing the relative angle inclinations and 
the magnitude of the velocity vector in terms of the measured pressure coefficients. Using the 
calibration data points, polynomial curve fits were generated that described the variation of the 
angle and pressure coefficients throughout the calibration domain. Rediniotis et al. (1993) 
derived polynomial fits for calibration data for conical 7-hole probes. Further they divided the 
port specific regions into several sections thus increasing the number of regions for which 
polynomials were used to describe the calibration coefficients. They created 8 regions describing 

28 



the low angle flow (where the center port senses the highest pressure) and 32 high angle regions 
(where any of the 6 peripheral pressure senses the highest pressure). The method of subdividing 
the regions increased the agreement of the polynomial fit through the calibration points, but did 
not necessarily ensure well-behaved calibration surfaces between data points. 

The polynomial fit techniques mentioned are global in nature, that is: they generate 
polynomial fits for relatively large sectors or regions. Though Rediniotis et al. (1993) reduced 
the region size by subdividing the sectors, the individual regions were still large and could, 
depending on the density of the calibration data, contain hundreds of data points. Using 
polynomial fits for large regions can cause the overall prediction accuracy to decline because of 
the'large number of calibration points the fit tries to model. Utilizing a local interpolation scheme 
instead of a region wide polynomial fit has also been used with multi-hole probe calibration 
methods. Zilliac (1989) calibrated conical tipped 7-hole probes for use in flow fields with high 
angularity. For each of the calibration points, the seven port pressures, the total pressure and the 
known pitch and roll angles were recorded in a database. Sets of non-dimensional angle and 
pressure coefficients were also stored in the calibration database. For a calibrated probe in an 
unknown flow field the seven port pressures were recorded and the non-dimensional coefficients 
calculated. By searching the calibration database for similar coefficient values the approximate 
flow conditions were identified. Adjacent coefficient values were interpolated to solve for 
intermediate angles and pressure coefficient values. The accuracy of this technique is dependent 
on the density of the calibration data. 

Applying the two different principles described, the regional polynomial fit and the local 
data point interpolation, a method is derived to calculate a polynomial interpolation that is local 
in nature. Using only a few selected data points that have similar angle coefficients as the 
measured angle coefficients, a low-order polynomial fit is created. The development of a local 
least-squares (LLS) data reduction algorithm is described in detail in this section. 

1 h-_- flow over a 5-sensor probe can typically be divided into two flow regimes: low-angle (or 
low-angularity) and high-angle (or high-angularity) regimes. For calibration purposes, all 
possible velocity vector orientations with respect to the probe are represented by five sectors. 
Each sector (figure 7.1.1) is identified by a number indicating the port/sensor that senses the 
highest pressure for all the possible velocity orientations in that sector. For low-angle flow, the 
highest pressure is registered by port #1 (central hole) while for high-angle flow the highest 
pressure occurs in one of the peripheral holes 2 through 5. 

The local velocity vector at any measurement location can be fully characterized by four 
variables. For low-angle flow these variables are: pitch angle a, yaw angle ß, total pressure 
coefficient A, and static pressure coefficient As. For high-angle (or high-angularity) flow the 
variables are: cone angle 0, roll angle ()>, A, and As. These variables need to be determined as 
functions of the five measured pressures or equivalently, the two non-dimensional pressure 
coefficients formed from these pressures: ba, bp for low-angle flow and b0, b$ for high-angle flow 
(Rediniotis et al., 1993; Everett et al., 1983). The two different systems of angles, (pitch angle u, 
yaw angle ß) and (cone angle B, roll angle <()), used to describe the velocity vector orientation 
with respect to the probe, in low angularity and high angularity flow, respectively, are shown in 
fmure 7.1.2. 
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Figure 7.1.1. The 5-sensor probe measurement domain is divided into 5 sectors, each 
centered on an individual pressure port, labeled 1 through 5. 

Figure 7.1.2. Definition of angles used to define the velocity vector orientation with 
respect to the probe. 

The conversion from the pitch and yaw angles to the cone and roll angles is: 

9 = cos~'(cosa-cosß) (7.1.1) 
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(J) = tan -i sin a 

vtanßy 
(7.1.2) 

For a 5-sensor probe in the low angle flow regime (highest pressure sensed by port 1) the 

following definitions are used: 

(P5  + P4  - P3 -P2) 

2-q 

(P4  + P3  ~ P2  " -P5) 
2-q 

(7.1.3) 

(7.1.4) 

A, = (Pi -P.) 
(7.1.5) 

A. = 
(P.   -Ps) 

(7.1.6) 

and the pitch angle, a, and yaw angle, ß, as defined in figure 11. The pseudo-dynamic pressure, 

q, is defined as: 

(p2 +p, +p4 +P5) 
q = Pi 4     (7.1.7) 

For a 5-sensor probe in the high angle flow regime (highest pressure sensed by one of the 
peripheral ports 2-5) the following definitions are used: 

bo = 
(P. "Pi) 

(7.1.8) 

\ = 
(P" -P") 

(7.1.9) 

A, = (P, -P.) 
(7.1.10) 

A. = (Pi -Ps) 
(7.1.11) 

and the cone angle. Ö, and roll angle, <|>, as defined in figure 7.1.2. 
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The pseudo dynamic pressure, q, is defined as: 

(P* +P~) n, ,^ q = Pi ;  (7.1.12) 

In the previous definitions p; is the highest measured pressure (at the il port). Looking 
into the probe tip: p+ and p" are the pressures measured by the peripheral holes adjacent to port i, 
in the clockwise and counterclockwise direction respectively. The input coefficients ba, be will 
be referred to as bl and bp, b«, will be referred to as b2 in the remainder of this text since many of 
the processes described below use both high and low angle definitions in the same manner. 

During probe calibration, a large set of calibration data containing the known velocity 
vector orientation and magnitude, and the 5 port pressures, is obtained for the desired range of 
Mach and Reynolds numbers, using a probe calibration setup. Then, in an actual flow- 
diaiinostics experiment, the local flow variables (three velocity components, static and total 
pressure. Mach and Reynolds number) are calculated as follows: The 5 port pressures are 
recorded and the non-dimensional pressure coefficients bl and b2 are calculated. That is ba and 
bp for low-angle flow and be and b«, for high-angle flow. The port with maximum pressure is 
detected and the corresponding low- or high-angle calibration sector is determined. The 
calibration database is then searched, the calibration points associated with the particular sector 
are identified and the n closest points to the test point (in terms of proximity in the (bl, b2) 
plane, as shown in figure 7.1.3) are retained. These closest data points are found in terms of 
Euclidean distance (in the discussion that follows, subscripts C and T stand for "calibration" and 
"test", respectively): 

D
J=J(^fcblc)j-blT))   +((b2c)J-b2T)

2 (7113) 

where the index j is the calibration point number and Dj is the Euclidean distance, in the (bl, b2) 
plane, from the tested point (blT,b2T) to the scaled coefficients of the calibration point (blc,b2c)j. 
A global scaling factor, Ab2/Abl, is introduced to bring the two coefficients bl and b2 on the 
same order. ThPs factor is defined using the maximum and minimum values of the coefficients 
found in the calibration file, and is stored in the calibration database: 

Ab2 _ (b2c)max -(b2c)min 

Abl       (blc)max - (blc)min        
(7-L14) 

Each of the n selected calibration points is represented by a circle in figure 7.1.3, while 
the test point is represented by a star. The number n is user defined. Then, a local least-squares 
interpolation is performed in order to determine the four flow variables, (At, As, a, ß) or (At, As, 
0. <})), for the test point. 
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It is necessary that the selected calibration points (blc, b2c) be uniformly distributed 
around the test point (blT, b2T) to obtain a well-behaved polynomial surface and allow for 
interpolation rather than extrapolation. A procedure checks if the closest calibration points in 
triplets form triangles around the test point in the bl-b2 plane. The original ranking of the closes 
points based on Euclidean distance, Dj, can be altered to ensure that (if at all possible) 
combination of the overall closest points forms a triangle around the test point. Typically the 
algorithm searches for two such triangles. 

At,As,a,ß,9,cp __ 

Figure 7.1.3. A local least-squares interpolation surface with triangulation in the bl-b2 
plane. 

In figure 7 1 3 the star indicates the test point (blT,b2T) and the circles at the corners of 
the triangles" indicate the closest selected calibration points (blc,b2c) that are also checked for 
the triangulation requirement. Each triangle is calculated in the following manner (figure 7.1.4): 

Figure 7.1.4. The triangulation scheme in the bl-b2 plane. 



->•       -> 

hl = APx AC (7.1.15) 

ri2 = CPx CB (7.1.16) 

JI3 = BPx BA (7.1.17) 

where P is the test point (blT, b2T) and A, B, C are three calibration points (blc, b2c)j. n,, n, 
and n;are directional vectors normal to the bl-b2 plane. If all the 3 vectors have the same 
direction the test point P is within the triangle, otherwise P is outside the triangle. 

Calibration points far from the tested point (in the bl-b2 plane) are assumed to have little 
or no influence on the calculation. Therefore, a local interpolation scheme is used and only 
calibration points close to the test point are used in the evaluation. A least-squares surface fit 
technique is used to calculate the two flow angles and the two pressure coefficients as functions 
of the independent input variables: 

a=a(bl.b2) (7.1.18) 

ß=ß(bl,b2) (7.1.19) 

0=O(bl,b2) (7.1.20) 

<}>=(Kbl,b2) (7.1.21) 

A,-A,(bl.b2) (7.1.22) 

As=As(bl,b2) (7.1.23) 

The selected closest and triangulation-checked calibration points (minimum number 
determined by the order of the polynomial surface) are used to calculate 4 separate interpolation 
surfaces. For a linear surface the following polynomial is used to describe the surface: 

f(bl.b2) = a0 +a, -bl + a2 ■ b2    (7.1.24) 

where f can be any of the dependent variables a, ß, 6, <|>, A,, As and ao, a,, a2 are the least-squares 
polynomial coefficients. After the algorithm determines the polynomial coefficients (ao, a, and 
a:),'entering the measured input coefficients (blT,b2T) into the calculated function f(bl,b2), 
interpolated values for aT, ßT, 0 T, <t> T, (A ,)T and (A S)T are obtained. The angle or pressure 
coefficient surfaces for the probe are locally smooth and do not exhibit any large gradients or 
discontinuities. The local least-squares method generates a surface that does not directly go 
through all the calibration data points, but is rather an average surface. A standard polynomial 
surface fit can exhibit large fluctuations since the surface is forced to go through all the data 
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points. The least-squares surface moderates the effect of a badly selected or measured calibration 
point. 

Subsequently, the total pressure and static pressure are calculated  from the non- 
dimensional pressure coefficients (At)i, (AS)T: 

P, = Pi "(At)T -qT (7.1.25) 

P.=P.-(^J7 (7.1-26) 

The velocity magnitude and the flow conditions are calculated using adiabatic, perfect gas 
relationships for air. Mach number from total pressure and static pressure: 

M = V(5.(e^7-,n(p^«,)-l))      (7.1.27) 

Temperature, compressible dynamic pressure and density: 

T, 
T = (17^) (7-L28) 

q„™Pr =0.7-ps-M2 (7.1.29) 

P = "^T7 (7.1.30) 

where R is the universal gas constant (287[J/kg-K]) 
The velocity magnitude is calculated by: 

. . i ~     Mcompr 

(7.1.31) 

The Cartesian velocity components for low angle: 

u = U • cos a -cosß (7.1.32) 

v = U -sinß (7.1.33) 

w = U ■ sin a • cosß (7.1.34) 

The Cartesian velocity components for high angle: 
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u = U-cos0 (7.1.35) 

v = U -sine-costt) (7.1.36) 

w = U -sinO -sin <\> (7.1.37) 

Viscosity derived from Sutherland's law: 

f ^ \3/2 

U = Mo 
J 

VTo J T + S (7.1.38) 

where S = 111 K for air. (Oo = 1-1716E-5 m2/s and T0 = 273 K for air. 
Reynolds number per unit length: 

Re      U-p 
— =  (7.1.39) 

1 (i 

The data reduction procedure described above is repeated for each separate test data point. 
The data reduction algorithm is designed to handle a wide variety of different probe types (5- 
sensor or 7-sensor, conical, hemispherical or faceted tip), any Reynolds number and any 
subsonic Mach number. 

Uncertainty Analysis 

All measured values have errors, all instruments have errors and all calculations using 
experimental data have errors. Error is defined as the difference between the measured value and 
the true value. It is often necessary to estimate the error to be able to determine the confidence 
that the measured or predicted result is within a specified range of the true value. The expected 
errors from a measurement or prediction will be referred to as the uncertainty and can be 
estimated in several ways. Example: A calculation, Z(X,Y), depends on two measurements, X 
and Y, that have associated random errors. The maximum values of the two variables due to 
these uncertainties are Xmax and Ymax respectively. Thus, there is a possibility that the result 
from the calculation will be Z(Xmax,Ymax), however it is very unlikely that the maximum 
errors of the two variables will occur at the same time. A more realistic measure for the 
uncertainty is the most probable error (Moffat, 1982). In statistical calculations the standard 
deviation can be a measure for the most probable error or uncertainty. The standard deviation is 
for multiple samples defined as: 

° = J-A(X>-X)~ (71-40) 

where N is the number of samples, Xj is the individual sample estimate, x is the average of all the 
estimates and a is the standard deviation of the data. If the measurement errors have a near 
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Gaussian distribution, the probability that the measurement is within one standard deviation 
value (x±a) is approximately 0.67 or 67 %. This probability will in many cases be too low for 
an experimenter to have any confidence in the data. By increasing the uncertainty of the error to 
two times the standard deviation (x ± 2a) a probability of 95 % is achieved. It is important to get 
a reasonable estimate for the uncertainty, since it can be just as unfortunate to overestimate the 
uncertainty as it is to underestimate the uncertainty. An underestimation can cause false security, 
while an overestimation can discard good data as being bad. For many engineering purposes one 
standard deviation will describe the uncertainty in the data and measurements that fall outside of 
three standard deviations are considered unacceptable and should be discarded. In multiple- 
sample theory where a large number of data is recorded under the same conditions, the 
uncertainty is reported as the mean value ± the standard deviation with given odds or probability. 
However, in the case of finding the uncertainty of pressure probe data, only one recording is 
done under a particular set of conditions. The uncertainty of such systems can be estimated using 
single-sample theory and is reported as the uncertainty with odds only (Moffat, 1982). 

Uncertainty Analysis of Local Least-Squares Algorithm 

To find the uncertainties of the local least-squares data reduction algorithm an extensive 
analytical and numerical analysis was performed. The procedures to find and determine the 
uncertainties of the algorithm are shown in table 7.1. 

Table 7.1. Determining the uncertainties of multi-hole pressure probe measurements. 

Procedures 
Investigate all sources of error 
A combined analytical and numerical analysis of how uncertainties in the pressure 
measurements propagate through the algorithm 
Evaluation of the LLS surface fitting procedure 
Evaluating uncertainty (standard deviation) of the algorithm using data verification test 

files 

Attention should also be directed to the problem of bias or systematic error, which is 
error that is roughly constant throughout the sampling of the data. Such errors can be due to 
errors in the reading of the reference manometer, hysteresis and temperature drift of pressure 
sensors and probe positioning and measurement. Bias errors are ignored in this analysis because 
the experimenter should identify them and they can be accounted for. Errors due to non-linearity 
and the averaged sequential recording of pressures are summed up in an uncertainty in the 
pressure reading. The errors analyzed are errors due to the data reduction technique and the 
interpolation routines. 

There are two different ways to analyze the uncertainty, the worst-case approach or the 
constant odds approach. The uncertainty of a function  R, that depends on  a number of 
independent variables x„ with associated uncertainty 5xi, can be described as: 
Worst case: 
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5R = 
OR 
ex. 

5x, + 
dR 
dx-, 

5x, + ■•■ + 
dR 
dx„ 

Sx, (7.1.41) 

Constant odds: 

5R = 
oR 

dx. 

V 
8x, + 8R 

Kdx2 

dx-. + ■■■ + 
OR 

dx„ 
8x, 

1.2 

(7.1.42) 

The general form for constant odds uncertainty predictions was shown by Kline and 
McCHntock (1953) to estimate the uncertainty in R with good accuracy. The constant odds 
uncertainty prediction requires that each of the x,'s are independent variables and that they have a 
Gaussian error distribution. 

Each of the coefficients (R = b«, b„, be, b», At and As) were differentiated with respect to 
all the pressure terms (x, = p,)- Eight expressions are derived from the constant odds equation 
shown above (Wenger and Devenport, 1998). Perturbed values for each of the pressure 
dependent coefficients are found from (tables 7.2 and 7.3): 

Table 7.2. Low angle perturbed coefficient expressions. 

Expressions for Low Angle Flow 
8b(I(p|..p5, 5p|.. 5p5, Pstatic, Spstatic, Ptotal, ÖPlotal) 

8b[i( P1-P5, 5p|.. 8p.s, Pstatic, Spstatic, Ptotal, 8ptotal) 

8At |,m ans:lc(Pl--P5, 5p 1 - - Sp5, Pstatic, Spstatic, Ptotal, ÖPtotal) 

SA,|,„> angle (PI--P5- 5pi-- 8PS, Pstatic, 5pstatic, Plotal, 8ptotal) 

Table 7.3. High angle perturbed coefficient expressions. 

Expressions for High Angle Flow 
(Sb,,( P|..p>. ftpi-- ÖP5, Pstatic, Spstatic, Ptotal, Sptotal) 

8bc,( p|..p5. 5pi.. 5p?, Pstatic, SPstatic, Ptotal, §Ptotal) 

8Alhlghanglc(pl--P5. 8p|.. 5p5, Pstatic, SPstatic, Plotal, 5p,0tal) 

5Ashmhanglc(Pl--P5, 8pi-. Sp.s, Pstatic, 8pstatic, Ptotal, SPtotal) 

It is assumed that the error introduced by the pressure transducer is normally distnbuted. 
To simulate perturbed pressure values a random Gaussian distribution of pressure perturbations 
is created Using information collected from the ESP user manual, the maximum expected error 
from the ESP is assumed to be less than 0.07 % of full scale output (FSO). The ESP unit FSO is 
10 inches of water and assuming that 0.07 % FSO equals 3a, the standard deviation of the unit is 
calculated to 0.0044 Torr. Thus, the perturbation in pressure is assumed to have a standard 
deviation (uncertainty), a=0.005 Torr and being unbiased: u=0.0 Torr. A data file containing the 



perturbation pressures was created and used as random pressure perturbations in the modified 
data reduction algorithm described above (figure 7.1.5). 

100 

50- 

0.015 '0.01 -0.005 0 0.005 0.01 0.015 

Figure 7.1.5. Gaussian distribution of perturbation pressures. 

The data reduction algorithm uses six local calibration data points to estimate one test 
point The 5 port pressures from each of these points are perturbed using random values from the 
perturbation file. Also, for each calibration data point the four non-dimensional coefficients: b,, 
b-, A, and As are calculated. A second set of perturbed coefficients is calculated from the 
expressions derived above (tables 7.2 and 7.3) using random perturbation pressure values. All the 
six calibration data points are perturbed in this manner, resulting in randomly perturbed non- 
dimensional coefficients and interpolation surfaces. The reduction is executed and the results 
from the perturbed analysis are compared to the results from an unperturbed analysis. The 
uncertainty is defined as one standard deviation of the difference between the results obtained 
from the unperturbed surface and the results from the perturbed surface (table 7.4). 

Table 7.4. Calculated standard deviation using the analytical constant odds approach. 

Data  Standard deviation  Units 
Pitch/Cone 0-1369 [deg] 
Yaw "Roll 01972 deg] 
Velocity 0-3212 f%l 

Surface Fit Evaluation 

An estimation of the errors induced from using a linear least-squares interpolation 
technique was performed. The surface fitting procedure in many conventional data reduction 
aluonthms is found to be one of the greatest sources of error. A global surface fitting procedure 
will complicate the structure of the surface because the probe tip surface on a small probe usually 
contains irregularities that will be reflected in the measured pressures and non-dimensional 
coefficients Even smaller sector sized surfaces have these problems when trying to fit an 
interpolation surface to all calibration points in that sector. A local least-squares approach can be 
more accurate, because the surface is only covering a small segment of the probe and uses few 
data points. A linear local least-squares surface can create a very good approximation to the 
actual data assumed that there is dense grid of calibration data. 
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A procedure to validate the accuracy of the LLS routine was performed using a known 
model surface. For each of the separate sectors on a 7-hole probe a surface was created using all 
the calibration data points belonging to that sector. A second order polynomial surface was 
created using surface fitting software. The resultant error (R2) of approximating a second order 
surface over all the calibration data points in each sector was reasonably good. The second order 
surface will now be regarded as a model surface because it contains similar characteristics as 

' would an actual calibration surface. Because the polynomial expression is known for the surface, 
a grid of angle coefficients is created with corresponding exact values for the angles. The new 
grid is created to have similar density and distribution of data points as the actual surface. For the 
created range of test points the exact values for the pressure coefficients and the angles are 
known through the four model surface polynomials. The new test file is reduced using a 
modified version of the LLS algorithm that only reads the test data coefficients and finds the 
closest (by Euclidean distance) 6 coefficients in the calibration file and interpolates the value for 
the test data angle. The error is calculated as the difference of the LLS calculated angle and the 
exact angle calculated by the polynomial expression for the model surface. The data reduction 
also selects which calibration points to use in the data reduction such that this method can also 
serve as a measure for the quality of the data point search routine. 

As described the surface fit is most probably not a smooth 2nd order polynomial surface 
over an entire sector and the surface might exhibit larger curvature locally. Several "worst case" 
examples were analyzed by fitting a higher curvature surface through fewer data points. 
However, the results from this analysis found that the contributing errors due to the local least- 
squares surface fit are negligible. Discrepancies between the fitted surface and the model surface 
were on the order of 10"5 degrees for angle calculations and 10"3 percent for velocity calculations. 

Evaluating the LLS Algorithm Using Test Verification Files 

When calibrating multi-hole pressure probes, a common practice is to record a separate 
test file using non-coinciding data points. The pressures and the angles for the test file are 
recorded in the same sequence as the calibration data file such that it can be used as a verification 
of the quality of the calibration and the data reduction algorithm. Several verification files from 
several different probes calibrated in different facilities were reduced with the developed 
algorithm, with excellent results. The results for a typical probe are shown in Table 7.5. As seen 
from tables 7.4 and 7.5 there is good correspondence between the calculated uncertainty and the 
measurement errors from the data verification files. The quality of the calibration and the data 
reduction is measured using the discrepancies between the angles and velocity in the verification 
file and the predicted angles and velocity (figures 7.1.6 to 7.1.9). 

Table 5. Average error standard deviations from a number of experimental test 
verification files. 

Data  Standard deviation Units 
Pitch / Cone 0.1465 [deg] 
Yaw/Roll 0.1855 [deg] 
Velocity 0-3426 [%] 
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Figure 7.1.6. Exact and predicted pitch and yaw angles for test verification data. 
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Figure 7.1.7. Absolute pitch angle error in degrees. Mean error : 0.151, max error: 1.32, 
standard deviation: 0.173. 
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Figure 7.1.8. Absolute yaw angle error in degrees. Mean error : 0.0888, max error: 0.291, 
standard deviation: 0.0742. 
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Figure 7.1.9. Absolute velocity error in percent. Mean error : 0.116, max error: 0.370, 
standard deviation: 0.0862. 
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7.2. Neural Network Algorithm 

Nomenclature: 
Bp       pitch angle pressure coefficient 
Bv       yaw angle pressure coefficient 
Bc        cone angle pressure coefficient 
Br        roll angle pressure coefficient 
a        pitch flow angle 
ß yaw flow angle 
9 cone flow angle 
<p roll flow angle 
A,        total pressure coefficient 
As        static pressure coefficient 
p, pressure reading at orifice i of the probe 
p*        pressure reading at peripheral port adjacent to port i, in the clockwise direction when 

looking into the probe tip 
p" pressure reading at peripheral port adjacent to port i, in the counter-clockwise direction 

when looking into the probe tip 
q characteristic of dynamic pressure 
e sum-squared error 
u''       weight applied to the connection to node i on layer h from node j on layer h-1 

.Y. 

• J 

h sum of node weighted inputs 

f'l' activation function for node i on layer h 

o'l output of node i on layer h 

ö'l error sensitivity per node 
a momentum coefficient 
r) learning rate coefficient 
I identity matrix 
J error Jacobian matrix 
E error vector 
C), generic pressure coefficient; could stand for any of: Bp, Bc, By, Br, A,, As 

tX), uncertainty in the calculation of Cp 

öp, uncertainty in the measurement of pressure p, 

General 

In this section, we present the development of novel neural-network-based steady 
calibration algorithm for miniature pressure probes. A backpropagation-based neural network 
calibration algorithm was developed for these probes, with flexibility in network architecture 
design and network self-optimization capabilities. In the feedforward mode the algorithm yields 
computational speeds an order of magnitude higher than those typically achieved by similar 
accuracy interpolation algorithms. The new algorithm has prediction accuracies of 0.28° degrees 
in the flow angles and 0.35% in the velocity magnitude. 
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in the aircraft control systems as we 11 «l^eareh tools iUvinvestigate wer£ 

flows (Schreck et al., 1993; Schreck and Faller, 1995, Fan_etal X. 199U 

coupled with flow measurement tools such as an ^f^^TZZi^ work, a novel 
separated and «circulating flows (Kinser and ^^^^^^^ 0f multi-hole 

neL- network ^^J^^^^^^^^^ °" ^T pressure probes (5-hole or 7-noie).    ims piu lin to 75 degrees)   The calibration data 
information taken over a large range of flowcone^^^ ~f^; variabies based on 
is then used to train a multi-layer neural ne^oA to ^ct the «oj ^ ^ 

calculated pressure coefficients. Dunng the ^J^'J^ biase, Subsequently, 
generated that contains the necessary details ot the netware       & ^ 
test data presented to the network is processed in a ^^™ t^ ^ for 
direction and magnitude based on the ^^ÄÄbt«!» data, 
non-uniform calibration gnds, dense calibration grids a"d ^tin| ° Als0, the speed in 
provides high prediction accuracy and is very ^^^^^^oc^Lonsi 

^Z^X oTaÜTÄÄ --,ng user codes (such as 

data-acquisition and data post-processing codes) extremely easy. 

Rescue in *e fli^tes, -—^^ f<^ *Ä Ä 
devetop flush a,r d- sy,ems  L.s n ,    h     «7. Larson^, ^ ^ .^^ ^ 

:rrP0^-5sXÄ ±- ^^vJaX^zzsz 
some efforts, neural networks have been su^"y

off 1,9% ^ a data systems have a 
information from the pressure measurements (R*10^^; 7^dumber of ports and are not 
different port arrangement than typical 5 and 7-hole probes a h gfer nu P for 

p,agUed by calibration issues ^'^'^.SS^fc-i*« 
example is the transportabihty of the calibration fron, one system •» measurement 

the si/.e ot the probe. 

Network Architecture 

An artificial neural network is composed of processing elements called nodes, with each 

nodes with the first layer typically having as many nodes as th re areinpu   vana 

^strTturt 5^fö£tZ?JKZZ&~ A" " 

44 



u         TV«. inmit laver accents two input elements. There are two hidden 

is^s^ÄÄ £S"»-£«~ »7* reres of the 
„eyx,Lyer. In .he figure, fl through f9 are «he ae.ivafion fimefions apphed a, eaeh uode. 

A node's output o* is given by: 

•V?=IvvJor   •■o^/ltf)         (7-2J) 
j 

where superscnpt h denotes the layer number, subscript i denotes the node in question, and 

subscript j denotes the node in the previous (h-1) layer. 

Pitch  Angle 
(r d) 

\     bias 

layer  2   fa 5^{f T^L^f 

\SA   bias 

layer   1 (ml"   @^L    ®\    j©    J5v^ 

^~T^^(~)                       bias 

Bi B2 

Fiaure 7.2.1. A tvpical network structure that takes a two-element input to train for and 
predict the pitch angle. 

The artificial neural network algorithm that has been developed utilizes coefficients 
calculated from probe calibration pressure data for the training of a set of neural network^ For 
he 7 hole probe each network utilizes two system inputs - the two pressure coefficients B (o 

B ) B (or Br) - and four system outputs - At, As, pitch a (or cone 9) and yaw ß (or roll*) 
an les! A ^e training set of data containing cone and roll angles ^^^~^ 
is taken using a calibration apparatus. The pressures are reduced to the relevant pressure 
coefficients The network uses this information as its training data and, through a training 
al^onhm adjusts its weights to minimize the resultant error between the predicted and the exac 
Äc^. Once the network is trained, measured pressure data, that may or may not 
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coincide with the training data, can be input to the network which then predicts the flow 
variables (velocity and angles) corresponding to the measured pressures. 

It was seen that if the high-angle sectors were further split up to improve the description 
of the measurement domain as shown in figure 7.2.2, higher prediction accuracy could be 
achieved (although this figure refers to a 7-hole probe, the splitting of the sectors is quite 
analogous in the case of a 5-hole probe). This was expected from our previous neural network 
experience in which it became repeatedly obvious that the more complicated the function to be 
represented and the bigger its definition domain, the harder the task of finding a neural network 
with high modeling accuracy. So the high-angle sectors were first split into low-high and high- 
hiah regimes. The high-high regimes were further split laterally (in roll). For example, sector 2 
offigure 3 was replaced by three such subsectors in figure 7.2.2: 2 (low-high), and 13, 14 (high- 
high). In this way, a 7-hole probe was split up to have as many as 19 sectors. A 5-hole probe 
would be split into 13 sectors. Care was taken to ensure that there was at least a 5° overlap (in 
cone and roll) between adjacent sectors. This is done in order to deal with calibration and test 
points that lie near the borders of adjacent sectors. 

<D 

+ O 

Figure 7.2.2. The 7-hole domain split up to enhance neural network performance. 

Artificial Learning 

An artificial neural network learns by adjusting the values of its weights through a 
training process. The training process consists of giving the neural network sample input-output 
data pairs and letting the neural network algorithm adjust the weights until it can produce the 
correct output for each input. This procedure is called supervised learning. Backpropagation is 
one method of self-correction. During this process, input is applied to the first layer of a neural 
network and propagated through until an output is generated at the last layer of the neural 
network. The output obtained through forward propagation is then compared with the desired 
output to generate an error signal. The error is then distributed back to the nodes of the previous 
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layer according to their contribution to the error. This process is repeated for all layers, updating 
the weights. The neural network is iteratively trained with several input-output vector sets until it 
has all of the training data encoded into it. Once the network has correctly encoded the training 
data, it can process input data according to the parameters set forth by the training process. It is 
important to note that the trained neural network will perform only as well as the training data 
allows. For this reason, care should be taken in selecting the set of training vectors. 

Typically, the question of error convergence to a local or global minimum arises. If the 
backpropagation algorithm converges to a local minimum, learning will then cease and the error 
of the network output may be unacceptably high. Two simple methods of dealing with this 
circumstance are to increase the number of hidden layers or to start over the training process with 
a different set of initial weights. When the backpropagation algorithm does reach an acceptable 
solution, there is no guarantee that it has reached the global minimum. But as long as the solution 
is acceptable from an error standpoint, convergence to a local minimum is irrelevant. To avoid 
the situation of the algorithm converging to a local minimum without reaching a desired 
minimum error, momentum learning was implemented in the code. Momentum learning allows 
the network to respond, not only to the local gradient of the error surface, but also to recent 
trends in the error surface. The algorithm is thus less likely to get trapped in local minima. To 
speed up convergence, adaptive learning was also implemented. Adaptive learning allows the 
learning rate to vary depending on the output error. This allows the network to adapt the learning 
rate to the local terrain of the error surface. When a larger rate is possible for stable learning, the 
rate is increased. When smaller learning rate is required, the rate is automatically decreased. 

The training algorithm accepts as its input a raw pressure data file containing the 
calibration data for the probe. This data file is then converted to training vector files for every 
sector of the probe. The training vector files are used to train the neural networks by 
backpropagation. Weight initialization is performed either by generating random weights or by 
using existing weights files from previously trained similar networks. During training, the weight 
matrices are updated using a steepest descent technique to progress towards the minimum error. 
The error is calculated at each node on the output layer as the difference in the predicted and 
known outputs: 

s,, =   df"^p(o'k'-known) (7.2.2) 
dxk 

where ö" is the error sensitivity for node k on the output layer H. The error is backpropagated 
through the network by the following recurrence relation (Freeman and Skapura, 1992; Fausett, 
1994fHagan et al., 1996; Hassoun, 1997): 

£*-' = 
df'' '(*;' [)yw':S'' ;      h = 2...H {1.23) 

i i   h-\ 1—J      M    * 
dxt k 

For each of the nodes in the hidden layers, ö1' represents the contribution of error to the network 
output. The weight changes at each node are then calculated by the following learning rule: 
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A^(r + l) = aAvi{(0 + (l-«)*;-' (7-2-4) 

where Au-«(0 is the change in weights for layer h at iteration t, o ? is the output of node j on 

is the estimated error gradient calculated for each weight, which can be 
layer h-1, and ö'o] 

expressed as: 

£1 = shoh.-] (7-2-5> 
1/1       •   J 

As previously mentioned, to aid in convergence, a momentum term a is used to dampen 

changes are discarded. 

To farther improve .he eonvergenee rate, the Levenberg-Marquard. optimization method 

was implemented (Demuth et al, 199): 

AW=(JrJ+kI)-'JrE (7.2.5) 

algorithm to insure satisfactory convergence and to stimulate learning. 

Network Optimization 

Different network architectures will obviously produce different levels of prediction mmmmm 
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architectures for 5-hole probes, 7-hole probes, conical hemtsphmcal ^*°^%£££: 
and spherical omni-probes. For the probes calibrated here, the typicd opt.mal architecture 
onsSed of one inpn, layer, two hidden layers and one output layer, and the number o  node 

Pe    nlden layer we're typically 8 and 4 for .he firs« and second hidden ^; ™^ ™ 
activation functions that worked the best were: linear, sine, cosine, hyperbolic tangent and 

sismoid. 

Calibration Hardware and Setup 

Pressure data-acquisition during probe calibration and use was performed with,a 32- 
transducer Electronic Pressure Scanner (ESP) from PSI, Inc. with a pressure range of ±10 inH20. 
The ESP pressure scanner was interfaced to a laboratory computer and was calibrated on-ln. 
The calibration was performed using the apparatus described in Kinser and Rediniotis (1996 .A 
16 bh Ä/D board from ComputerBoards was used to perform data-acquisition. A dual-ax. 
stepper-motor assembly, which is computer controlled, can vary the cone and roll angles (9,*) m 
Srf 180") and (-180°, 180°) respectively. The positioning resolution for the cahbra ion 
as embly i 0 3T in cone and 0.9" in roll. To be able to assess the accuracy of the calibration 
echmque test data were also collected which involved positioning of the probe at several known 

orientations, (o^, ßtest), or (9test, 4>test), none of them coincident with any of the onentations 

used for calibration, «xcal, ßcal) or (9cal, 4>cal), and collection of the pressures. These pressures 

were fed into the calibration routines and a predicted pair (Opred, ßpred) or (9pred' bpred) was 

calculated      The  difference  between  the  two  pairs  (04^,   ßtest)  and  (^red'   ßpred)  or 

(W W and «W *pred) * a —re of the Callbratl°n aCCUraCy' althoUSh.S°™ biaS 

errors are not included (for example due to tunnel flow angularity, as seen later in section 6). 

Calibration and data acquisition were performed in the Texas A&M 3'x 4' Aerospace 
Engineering Wind Tunnel. This is a closed circuit tunnel with a test section equipped with a 
breather so that the static freestream pressure is equal to the control room pressure. The clea 
Plexiulas test section is 4 ft. wide, 3 ft. tall and 6 ft. long. The contraction ra 10 is 9.1 The 
maximum speed achieved in the tunnel is about 150 ft/sec with freestream turbulence less than 
0.16°o. To avoid temperature fluctuations over time, there is an active cooling system to keep the 
freestream temperature at 60°F during testing. 

Discussion of Results and Error Analysis 

One of the salient features of the calibration algorithm developed is the range of available 
control over the network architecture. Typical commercial codes allow for an input layer, a few 
hidden lavers (limited number) each one with a specific activation function for the entire layer, 
Id an output1 layer with its activation function. The code developed here allows the user o 

specify different activation functions at each node. The activation functions fl through f9 in 
IZl 7 -> 1 can be selected from a database of functions or can be user-defined. These functions 
include constant, linear, quadratic, cubic, logsig, tansig, cosine, sine and exponential functions. 
These functions can be customized and the user can define new activation functions. 
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To assess the effect of using multiple activation funcüon within a^ layer, £^«£ 
network architectures were trained on data from analytical polynomials and actual probe 
Sratonfc^ first architecture had one type of activation function per layer while the 

ondemployed little functions within a layer. Both network architectures were optimized 
rough Z 10aiygonthm'sPoptimize, In the first network architecture^—^^ 

nerfonnance was found to have the following structure: four layers, 3 hidden layers each witn a 
InHS vation function: linear, quadratic, and cubic respectively. ^^[^/^ 
sectnd tvne was a simpler two-layer network. Its single hidden layer utilized 3 different node 
!ies   l^ear   auadatic   and cubic.    Both architecture have the ability to model a cubic 
^r^SÄü. test. However, the multi-function ^^<^£^ 
nodes  and 10 weights to achieve better results than the 4 layer, 10 node  34 weigh  sing e 
Letonly -network   The convergence rate for the multi-function network is markedly better 
^fi ufe 7^3 Ltrates.   Of the Two architectures, multi-function layer networks have been 
consistently found to have higher convergence rates and converge to lower error levels. 
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Figure 7.2.3. Convergence history for single and multiple activation function architectures. 

Once the network has been trained to a satisfactory level of convergence, an output 
binary file is then created which contains all the trained network information. This binary file is 
u ed by the feedforward procedure for reducing any new pressure data acquired with the 
caHbrated probe, to the velocity components and the orientation angles. This feedforward mode 
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is exceptionally fast as compared to similar accuracy local least squares interpolation techniques 
and is not dependent on the size of the calibration data file. Typically, the neural network code 
can reduce a test data file that contains 100 test points in just about 5 seconds whereas the same 
test file may take about a minute to be processed by the local least squares interpolation 
technique. As mentioned in the introduction, this increased data reduction rate of the neural 
network algorithm makes it suitable for applications like air-data systems, where several 
readings per second are required. 

A miniature 5-hole probe, 0.063" (1/16") in diameter was calibrated at a free-steam 
velocity of 70ft/sec. The high angle sectors were split up as described above to enhance the 
performance of the networks. Figure 7.2.4 shows the predictions for the flow angles both in low- 
angle and high-angle sectors. Typical calibration performance results are shown in figures 7.2.5 
in 'the form of error histograms. The error is represented along the horizontal axis, while the 
vertical axis (labeled "frequency") represents the number of points in a specific error bin. The 
error band of a specific bin is indicated by the width of the corresponding vertical bar. From 
these histograms the following error statistics can be calculated: 
pitch angle: average absolute error = 0.22° , standard deviation of error = 0.26 ° 
yaw angle: average absolute error = 0.28°, standard deviation of error = 0.34 ° 
cone angle: average absolute error = 0.15°, standard deviation of error = 0.18° 
roll angle: average absolute error = 0.17°, standard deviation of error = 0.21° 
velocity magnitude: average absolute error = 0.35%, standard deviation of error = 0.52%. 

The higher error levels in the pitch and yaw angle prediction (low-angle sector), as 
compared to the error levels in the cone and roll angle prediction (high-angle sectors) are due to 
the tact that, as previously discussed, each of the high-angle sectors was further split up to 
several sub-sectors, and each sub-sector was calibrated individually, while no such sub-division 
was applied to the low-angle sector. 

The uncertainty analysis presented below is based on the techniques discussed in Moffat, 
(1982) and their application to the multi-hole probe problem follows the procedures discussed in 
Zilliac (1993). First, the uncertainty of the pressure measurement hardware is estimated. The 
pressure scanner used was calibrated during calibration of the probe, on-line, every one hour. A 
five-point calibration was performed which accounted for transducer nonlinearities. The 
reference manometer used for calibration had an uncertainty of 0.005 Torr for the range of 
pressures used here (+/- 6 Torr). The above combination along with a one-count A/D conversion 
uncertainty of the 16-bit A/D board, yielded a pressure measurement "worst case" error of 0.015 
Torr or 0.009 inH20. Errors in angular positioning were negligible. The resolution of the cone 
and roll positioning stepper motors (0.32° and 0.9°) should not be confused with their 
positioning precision which is on the order of arc seconds. "Slipping" of the stepper motors 
could of course compromise the accuracy, especially since no angular positioning encoders were 
emploved. However, strong evidence (although not absolute proof) that no "slipping" occurred 
was the fact that at the end of a calibration session the stepper motors returned the probe, as 
instructed, to the exact orientation that it started from at the beginning of the session. If any 
"slipping" had occurred it should have happened in a fashion such that all "slipping" occurrences 
canceled themselves out, which is a very unlikely event. Bias errors due to probe sting deflection 
were also negligible at the speeds of calibration and for the specific structural design of the sting. 
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Uncertainty in the tunnel flow angularity will cause a bias error if the probe is tested or used in a 
different facility. However, for the calibration test processes followed in this work, as described 
earlier, flow angularity does not have an effect, for the following reason. Both calibration and 
test data were taken in the same facility and free-stream velocity, and the calibration apparatus 
was designed such that it maintained the probe tip always at the same location, regardless of 
probe orientation. 
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Figure 7.2.4. Neural network prediction results for: pitch angle, yaw angle, cone angle, roll 
angle. 
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The uncertainty in the evaluation of the pressure coefficients Bp , By , Bc, Br, A,, As was 
calculated using their definition formulas and constant-odds combination given by: 

where Cp is any of the pressure coefficients and 5pj is the uncertainty in the measurement of 
pressure p,. Subsequently, and in order to see how the uncertainty in the calculation of the 
pressure coefficients propagates through the neural network technique, a "jitter" approach was 
followed. The estimates of the 5p,'s were obtained from a Gaussian distribution with zero mean 
and a standard deviation of 0.005 Torr. This was chosen so that the "worst case" error in pressure 
measurement, i.e. 0.015 Torr, corresponds to three standard deviations from the mean, which in 
turn corresponds to a 99.5% probability that the pressure measurement error is smaller or equal 
to 0.015 Torr. The above allowed the estimation of uncertainty in Bp (or Bc), By (or Br) , A, and 
As for every calibration and test point, through equation (7.2.6). The obtained 5BP (or 5BC), 5By 

(or 5Br). 5A, and 5AS were used to perturb the original values of these coefficients for the 
calibration points, and the perturbed values were subsequently used as the inputs to train the 
neural networks. Once the networks were trained, they were used to reduce the test data that 
were also perturbed in the manner explained above. The predictions obtained in this process 
were compared to those obtained from the unperturbed networks and test points, and the standard 
deviation of the differences between these two yielded estimates for the overall uncertainty. The 
results are listed below: 
Standard deviation in cone angle errors: 0.24° 
Standard deviation in roll angle errors: 0.37° 
Standard deviation in velocity magnitude error: 0.72 % 

Figure 7.2.6 shows the histograms of these errors. The statistical properties of these 
histograms are very similar to the ones obtained from the actual calibration tests (figure 7.2.5). 
As seen above, the error levels obtained from the actual test are within those predicted from the 
uncertainty analysis. It should be pointed out here that the uncertainty analysis presented here 
applies strictly to "steady-state" flows. The issues of probe calibration and measurement 
accuracy in unsteady flow environments are addressed in a different section. 

In summary, a neural network based probe calibration algorithm was developed. The 
algorithm's features include flexibility in network architecture design and network self- 
optimization capabilities. The introduction of multiple activation function architectures had a 
significant positive impact on the network training convergence rates and levels. In the 
feedforward mode the algorithm yields computational speeds an order of magnitude higher than 
those typically achieved by similar accuracy interpolation algorithms. Moreover, the small size 
of the feedforward code facilitates its formulation into a subroutine and enhances its easy of 
interfacing with other software. A miniature 5-hole probe was calibrated and tested in the wind 
tunnel. The new algorithm combined with precision probe calibration hardware and procedures 
yielded prediction accuracies of 0.28° degrees in the angle prediction and 0.35% in the velocity 
magnitude prediction.   Finally, an error analysis was performed on the calibration procedures 

54 



and algorithm and yielded uncertainty levels compatible with those produced by the actual probe 
test. 
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8.UNSTEADY PROBE CALIBRATION-THEORETICAL FORMULATION 

Theory and Background 

As it has already been discussed, the unsteady calibration of the probe will have to deal 
with the modeling of the flow inertial effects. The inertial effects come from the probe-fluid 
interaction in an accelerated flowfield. If a sphere is translating in steady motion through an 
inviscid fluid at rest the drag is zero (d'Alembert's paradox). The absence of drag is due to the 
equal and opposite pressure forces on the windward and the leeward side of the sphere. This 
result is naturally not observed in experiments due to the viscous effects that are particularly 
dominant on the leeward side of the sphere. For the same sphere in accelerated translation 
through a fluid at rest, the pressures on the windward and leeward sides no longer balance and 
therels a resulting force acting in the direction opposite to that of the acceleration. The 
implications of this phenomenon for a multi-hole probe in an unsteady (accelerated) flowfie d is 
that the measured pressure on the surface of the probe no longer depends only on the total 
pressure and tip geometry alone, but also on an additional term that depends on the rate ot 
chanoe of the velocity of the fluid. This section describes a theoretical method to quantify and 
thcn°correct these inertial effects such that a multi-hole probe can be successfully used in 

unsteady flowfields. 

In incompressible, irrotational flows the relationship between pressure and velocity for 

steady fluid flow is governed by the steady Bernoulli equation: 

where p, is the total pressure and ps is the static pressure. For airflows the hydrostatic pressure 
term puh is negligible and typically disregarded, however for water flow this term can contribute 
a sicnificant portion of the total measured prepare. The following discussion of inertial effects 
wilf assume negligible hydrostatic pressure contribution. In an isentropic stagnation ot a jet ot air 
onto a solid surface (such as the tip of a probe) the local static pressure will increase to equal the 
total pressure of the flow (since at the stagnation point U=0). If now one considers a sphere 
moving in an infinite fluid at rest at a time dependent velocity, the Bernoulli equation can, tor a 

bodv-tixcd reference frame, be written as: 

p{rj)=ps~P 
dt 2 

(8.2) 

This equation describes the pressure in the fluid in terms of the position vector r and time t. For 
the sphere, the flowfield is axisymmetric such that the position vector can be described in terms 
of only two components in a spherical coordinate system, namely its r and 9 components (fig. 

8.1).  ' 
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U(t) 

2R 

Fig. 8.1. Definition of parameters for the sphere moving in an infinite fluid at rest. 

The velocity potential <j) is a scalar describing the 3-dimensional velocity vector and is 

defined by: 

The sphere velocity Jjjt) is given as: 

U{F} = U{t)cos{e)r - U(t)sin{0)ß (8-4) 

For a sphere the velocity potential can found by setting up the appropriate boundary conditions 
using a method of separation of variables and assuming axisymmetnc flow: 

<p(0j) = --U(t)Kcos{9) (8-5) 
2 r~ 

Where the radius of the sphere is given by R and U(t) is the velocity of the sphere. It is desired to 
find the pressure distribution on the sphere surface as a function of the velocity and the angle 9, 
by calculating each of the terms in the unsteady Bernoulli equation: 

. ,   d#        1 ndU{t)      (A 
Time derivative of the perturbation potential: — = --K—-—cos^l 

ot        2       at U„ 

Gradient ofthe potential: V0 = ^?+
l-^O = U(t)^cos(ey+

]-U{t)^sm(0)0 
dr       r 00 r Z r 

Scalar product ofthe disturbance velocity and the disturbance potential: 
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U\t)- V<f> = [u{t)cos{ß),-U(t)sm{e)l 
r 2        r 

1 
= U{tf cos2{0)--U{tf sin2{0) 

r=R 

The square of the disturbance potential: 

r~ 2. r 

1 
i£/(O2cos2(£)+-£/(/)2sin2(0) 
2 8 r = R 

Substitution of the above equations into the unsteady Bernoulli equation for the translating 
sphere gives the following expression for the pressure distribution on the sphere surface: 

p{0,U,t) = Ps+\pU(ty(^cos2(e)-^ 
1 DdU(t)     (as 

+ -pR — cosltfj 
2 dt 

(8.6) 

This is the pressure distribution on the surface of the sphere moving at velocity U(t) in a fluid at 
rest. The same pressure distribution would also be seen if the sphere is fixed and the flowfield is 
moving with velocity U(t). 

The term d<p/dt term is known as the inertial or apparent mass term. For steady flow the 
inertial term vanishes and the pressure distribution on the sphere is given by the term I in 
equation 8.6. However for unsteady flows the inertial term will be non-zero and therefore, in the 
case of a multi-hole probe, corrections must be made to accurately resolve the velocity 
magnitude from the measured port pressures. Term I in equation 8.6 is the steady contribution to 
the pressure distribution on the sphere and it scales with the dynamic pressure and a geometric 
parameter. Term II is only present in time dependent flowfields, is the unsteady contribution to 
the pressure distribution and scales with the fluid density, the velocity rate of change and a 
geometric parameter, different than that in the steady term. 

p{0.L\t) = \pU{ty[-{9cos{ey -5%-pR^cosiß) (8.7) 

Equation 8.7 is basically equation 8.6 re-written to identify the steady and unsteady geometric 
parameters, while the static pressure term ps has been dropped, leaving the surface pressure to be 
described as a differential quantity i.e. with respect to the static pressure. The geometric 
parameters are described by I and II (and also R) in equation 8.7 and it will be assumed that the 
general form of this equation is valid even for non-spherical shapes, such as hemispheres or 
approximate hemispheres. The only terms expected to change are the geometric terms I and II. 
Thus we shall adapt this general form to describe the pressure on the surface of the probe: 
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p(a,ß, C/, 0 = ^ pU(tf Cpsuad}. {a,ß)+X-pR ^™ Cpunsleady (a,ß) (8.8) 

Where a and ß are the flow pitch and yaw angles relative to the probe tip. For a sphere, Cpsteady is 
identical to term I and Cpunsteady is identical to term II in equation 8.7: 

CPsl,ad> = \ (9 cos(0)2 - 5)      CPureteady = cos(0) (8.9) 

Equations 8.9 are plotted versus cone angle in fig. 8.2. Notice the asymmetry of the unsteady 
pressure coefficient, which is the factor that contributes, even for an ideal inviscid flow, to a drag 
on the sphere, and is also known as the apparent mass or inertial contribution. 
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Fig. 8.2. Theoretical Cps,eady (solid line) and Cpunsteady (dotted line) for a sphere. 

For the sphere the inertial contribution has now been identified and the pressure 
anywhere on its surface can be calculated for a steady or accelerated flowfield. The magnitude of 
the inertial contribution compared to the steady contribution of the pressure on the sphere surface 
depends on the flow velocity, rate-of-change of velocity and the sphere size. To demonstrate the 
effects of the inertial term, consider a 2 mm sphere in a sinusoidally oscillating air stream with a 
mean velocity of 60 m/s, 30% amplitude and frequency 20 kHz. The true dynamic pressure of 
the flow (as in the absence of the sphere) is given directly by: 

59 



Pd>„=^pu(t)2 (8.10) 

The pressure that would exist at the forward stagnation point on the sphere surface is given by 
equation 8.7 (for 9=0). Plotting these two pressures versus time reveals that the sphere pressure 
is larger in amplitude and leads the flow dynamic pressure in phase (fig. 8.3). It is also seen that 
the sphere pressure crosses the true dynamic pressure at the peaks and in the valleys, where the 
velocity derivative is TZTO. 
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Fig. 8.3. The pressure at the forward stagnation point (dotted line) versus the true total 
pressure of the fluid in the absence of the probe (solid line). 

In the above example the surface pressure on the sphere was calculated for a known 
flowfield. however the purpose of a multi-hole probe is to treat the flowfield as unknown and 
resolve the angularity and velocity magnitude from the measured port pressures. Before all of the 
information required to resolve such an unknown flowfield can be processed, it is necessary to 
study the probe surface pressure behavior in a known flowfield. 

Comparison of Theoretical and Real Probe 

A multi-hole probe typically has a central pressure port and 4 or 6 peripheral pressure 
ports. Equation 8.8. can be modified such that each of the pressure ports has an associated 
expression that relates the flow velocity and angularity with the measured port pressure. Note 
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that the pitch and yaw angles (a, ß) are global, i.e. with respect to the probe, not local, i.e. with 

respect to the individual ports: 

p, {a, ß, U, t) = i p U(t)2 Cpstead> i(a,ß)+ X-p R ^ CPunslead>| («, ß) (8.11) 

where i indicates the ith port of the multi-hole probe. A theoretical multi-hole probe can be 
modeled as a sphere with ports at known angn'ar locations. If this theoretical probe is placed in a 
flowfield with given incidence angle, velocity and rate-of-change of velocity the corresponding 
port pressures can be found by modifying equation 8.11 to account for the angular offset in port 
locations. Denoting pressure port i with P, the forward center port with C and the stagnation 

point with X, the problem reduces to finding 0xp from fig. 8.4. 

Fig. 8.4. Finding the individual port pressures as a function of incidence angle. 

In figure 8.4, "O" denotes the center of the sphere and all lengths OC, OP and OX are equal to 
the radius of the sphere, R. From geometry, angle 9Xp is given by: 

0XI, = 2 sin" sin 
0, 

+ sin 
{ 2 ) 

2 sin 
'0P\ . (0  ^ 
\2 j 

sin ' x 
V 2 j 

cos iK) (8.12) 

where 0P and 9X is the cone angle position of the pressure port and the stagnation point, 
respectively. §x? is the difference between the roll angles of the port location and the stagnation 
point. To investigate the assumption that a multi-hole probe behaves in a manner similar to a 
sphere, a theoretical 5-hole probe based on a sphere was created. This theoretical probe had a 
center port at 8 = 0 deg., and 4 peripheral ports located at a fixed cone angle, 9 = 33 deg. and roll 
angles of 0, 90. 180 and 270 deg. (Fig. 8.5). 
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Fig. 8.5. Port numbering and definition of angle system for theoretical 5-hole probe. 

The steady pressures on the surface of this probe were then compared with the calibration file for 
a real 3 "> mm hemispherical tipped probe with port numbering identical to that of tig.8.5 and 
pressure port diameter of 0.3 mm. The probe is hemispherical within the fabrication limitations, 
i e "its shape deviates from a perfect hemisphere and each pressure ports is not a point, but rather 
spans a finite range of angles (due to the port diameter which is about 1/11 of the probe 
diameter), with the port center approximately located at a cone angle of 9 - 33 deg. This probe 
was calibrated in a wind tunnel at 30 m/s using a cone and roll angle system. The theoretics 
model was used to calculate the 5 port pressures for the same angle combinations as in the actual 
calibration file In figs. 8.6 to 8.8 the calculated and experimental pressures for the center port 
and ports 2 and 3. are compared directly. Very reasonable agreement is seen for all pressures 
Bearing in mind that for such a small probe tip the shape is only nearly hemispherical and that 
the pressure ports are not points, but rather span a finite angle, the agreement is quite good. 

Onlv modifications in the steady Cp coefficient for the sphere given in equation 8.9 are 
necessary to identically match the steady results for a perfect hemisphere. However, for a real 
probe, calibration is necessary to create a Cp curve that accounts for all of the manufacturing 
idiosyncrasies. The following discussion will assume a probe with a tip that behaves like a 
sphere (thus known steady and unsteady Cp) to derive a data reduction procedure to resolve the 
flow angle and velocity in an unknown unsteady flowfield. In a later section the calibration 
necessary to find the steady and unsteady Cp for a real probe will be discussed. 
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Fio. 8.6. Theoretical and experimental center port pressure for roll angle of zero degrees. 
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Fig. 8.7. Theoretical and experimental port 2 pressure for roll angle of zero degrees. 
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Fig. 8.8. Theoretical and experimental port 3 pressure for roll angle of zero degrees. 

Parameters of Unsteady Flowfields 

Some assumptions must be made at this point to ensure the validity of the above 
equations. We assume that there are no spatial freestream velocity gradients over the probe 
diameter. This leads to the restriction that the wave length of the oscillations in the oncoming 
fluid must be much larger than the size of the probe (Kovasznay et al., 1982): 

kR « 1 (8.13) 

where k is the wave number of the traveling disturbance/wave and R is the radius of the probe. 
Furthermore it shall be assumed that the flow oscillations are purely axial, i.e. there are no 
angular oscillations in the flowfield. There are no inertial effects caused by angular oscillations. 
Moreover, in an aerodynamic design study of probe geometries, Humm and Gossweiler found 
that for cylinders there is negligible circulation induced forces from angular oscillations. 
Assuming that these results are also valid for a sphere or a hemisphere, the probe will be able to 
resolve flows in which angular oscillations are present, assuming again that there are no 
significant gradients over the probe diameter. To characterize unsteady flows, a non-dimensional 
frequency, w* (similar to Strouhal number) has traditionally been used: 

co  = 
2R(o 

D 
(8.14) 
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However for a more general, non-periodic flow, a rate-of-change parameter K is better suited to 
non-dimensionalize equation 8.8: 

K = -dL— (8-15) 
U2 

With this, equation 8.8 reduces to: 

Cp(a,ß,K)= S^MA = CpmAa,ßhKCp„m„Ja,ß) (8.16) 

where again for a sphere, Cpsteady and Cpunsteady are given by equations 8.9. The K parameter is 
descriptive of the magnitude of the unsteady or inertial effects seen by the probe. The K 
parameter for a periodic flow will also be periodic hence it is not a constant like the non- 
dimensional frequency, co . 

Figure 8.9 shows the steady and unsteady pressure contributions for a given K value. .For 
a K value of 0.1 the measured pressure at the forward stagnation point is 10 % higher than the 
true dynamic pressure (in the absence of the probe). From the expression in equation 8.8 the 
error made in the estimate of the pressure coefficient, by ignoring the inertial term, is linearly 
proportional to the probe size and the rate-of-change of velocity and inversely proportional to the 
square of the velocity. To further demonstrate the point, consider a typical fast response probe 
with a hemispherical tip (will be considered spherical for this example). The probe has a tip 
diameter of 2 mm and is placed in a oscillating air stream at zero incidence angle. The velocity 
signal is sinusoidal at 2 kHz, with a mean of 60 m/s and 30% amplitude. Figs. 8.10 and 8.11 
shows the true velocity signal and the calculated K-coefficient for the time history. Fig. 8.12 
shows the true dynamic pressure of the flow and also the pressure that would be measured at the 
forward stagnation point. If the inertial effects are ignored, the error made in the magnitude of 
the pressure is equal to the value of the rate-of-change coefficient. For example, fig. 8.11 shows 
a maximum K-value of 0.075, which means that for the 2 mm probe in the described flowfield a 
measurement error in the port pressure of 7.5% is expected if the inertial effects are not 
accounted for. If the same probe is placed in a flowfield oscillating at 20 kHz the effect is shown 
in tigs. 8.13 to 8.15 and one can see an increase in the error from 7.5% to 75%. 

In light of these plots one must realize that both steady and unsteady probe calibrations 
are valuable, depending on the application. For a range of applications where the K value is 
sufficiently small a quasi-steady data reduction can be used with a high degree of accuracy. As 
the K. value increases, the need for unsteady calibration becomes more and more obvious. 
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Fig 8.9. The steady and unsteady contributions to the pressure coefficient Cp, vs. angle 
from the forward stagnation point (6), and with the rate-of-change coefficient, K, as 

parameter. 
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Fie. 8.10. Flow velocity with mean 60 m/s, amplitude 30% and frequency 2 kHz. 
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Fig. 8.11. Rate-of-change coefficient, K. 
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Fig. 8.12. True dynamic pressure and pressure that would be measured at the forward 
stagnation point on the probe. 
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Fio. 8.13. Flow velocity with mean 60 m/s, amplitude 30% and frequency 20 kHz. 
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Fig. 8.14. Rate-of-change coefficient, K. 
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Fie 8.15. True dynamic pressure and pressure that would be measured at the forward 
w stagnation point on the probe. 

Calculation of Flow Angle 

Steady probe calibration (see section 7) is performed to determine the relationship 
between   he port pressures and the flow incidence angle.  Two non-dimensional  pressure 
coe t aems (B, and Bp) are used to descnbe this relationship and are found from experiment^ 
cahb a'on of the probe in a steady flowfield with known total and static pressures The probe is 
oh hc>d and vavveS through a range of angles to simulate all possible angle inclinations and for 
each Ich anule the port pressures are recorded and the coefficients calculated Polynomial 

Lltlts are created that relate the incidence angle (a or ß) to the independen   pressure 
coefficients (Ba and Bp). For steady data reduction of an unknown flowfield the -dependent 
ore   u"e coe fi   ents B and Bp are calculated from the measured port pressures and the pitch and 
vaw aneS o  Z flow are given directly by their individual polynomial expressions  This 
n ocedu?    s well established for steady probe calibration and data reduction, but in an unsteady 
o   accelerated flowfield the individual pressures that compose these coefficients also contain 
Lrt     effects    q 8.11). The contribution of the inertial term in the measured pressure can be 
sSfilant tfig ll5) and the effect this has on the independent coefficients must thus be 
a'alyzed. For the port numbenng in fig. 8.5 the definitions of Ba and Bp are given as (from 

section 7): 
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B   = 
P5-P4 

i(P2+P3+p4+P5) 

(8.17) 

B/»=" 
P2-P3 

i(P2+P3+P4+P5) 

(8.18) 

As discussed in section 7 an additional set of independent pressure coefficients can be 
defined for high angle flows, however the present discussion will be limited to low angle flows 
(i e where the central pressure port sees the highest pressure). The functions in eqns. 8.17 and 
8 18 when plotted against the pitch and yaw angle for the steady theoretical model reveal that Ba 

depends mostly on the pitch angle and is nearly independent of the yaw angle. Similary Bp 

depends mostly on the yaw angle and is nearly independent of the pitch angle. This is a esuh of 
geometric symmetry and potential flow. For a well-made probe the coefficients are also very 
nearly independent. Figs. 8.16 and 8.17 show the steady theoretical surfaces for a sphere: 

CO 

Fig. 8.16. Ba surface vs pitch (a) and yaw (ß) angles for a theoretical 5-hole probe based on 
a sphere. 
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20^-25 

Fig. 8.17. Bß surface vs pitch (a) and yaw (ß) angles for a theoretical 5-hole probe based on 
a sphere. 

Fig. 8.18. Ba surface vs pitch (a) and yaw (ß) angles for a real hemispherical 5-hole probe. 
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Fig. 8.19. Bp surface vs pitch (a) and yaw (ß) angles for a real hemispherical 5-hole probe. 

Fig. 8.20. Pitch (a) surface vs Ba and Bp for a real hemispherical 5-hole probe. 
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Fi«. 8.21. Yaw (ß) surface vs Ba and Bß for a real hemispherical 5-hole probe. 

Fi"s  8 18 and 8 19 show the independent pressure coefficients for a real hemispherical 
tipped 5-hole probe. Comparing figs. 8.18 and 8.19 with figs. 8.16 and 8.17 the same trends are 
c£   however! for a real probe, there is a slight correlation between the two coefficients. 

Similarly, the angles can be plotted versus the Ba and Bß coefficients, indicating how well these 
surfaces'behave and their suitability for polynomial surface fitting (figs. 8.20 and 8.21). 

The independent pressure coefficients Ba and Bp are defined in terms of the port 
pressures p, UsiU the same expressions and dividing throughout with the dynamic pressure 

1 öplT-i the coefficients can be described in terms of pressure coefficients according to equation 
8 16 The theoretical sphere-based probe is used to generate two sets of independent pressure 
coefficient a steady set is identical to what is seen in figs. 8.16 and 8.17, the other includes the 
men a erm with its magnitude given by the rate-of-change parameter, K. For a K-value of zero 
the steady and unsteady definitions are identical, but for increasing K-values at large yaw angles 
the steady and unsteady values diverge (fig. 8.22). 

The results in fig. 8.22 are quite remarkable. The Bß coefficient show very little 
dependence on the inertial term for yaw angle up to about 30 degrees even for very large values 
of K As mentioned earlier the low angle definition of Bp is never used for angles larger than 
about half the cone angle to the peripheral ports. In fig. 8.23, the data of fig. 8.22 is plotted again 
as the difference between the steady and unsteady coefficients as a percentage of the range of Bß 

for a limited range of yaw angles. 
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Yaw Angle [deg] 

Fig. 8.22 The steady and unsteady definitions of simplified Bbeta vs. yaw angle for a 
simulated 5-hole probe with rate-of-change, K as parameter. 
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 K=0 

--K=0.1 

•-•K=-0.1 

••■ K=0.5 

■•-K=-0.5 

-15 
-5 0 5 

Yaw Angle [deg) 

Fio 8 23 The difference between the steady and unsteady definitions of simplified the Bß 

vs.'aw angle for a simulated 5-hole probe. The error is given as a percentage of the range 
of the Bß coefficient. 
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Fig 8.23 shows the error in Bß as a percentage of the range of Bß for yaw angle from -20 

X™ which may contain significant inertia! effects individualy can be used o 
calculate the independent pressure coefficients directly from eqns. 8. 7 and 8.1S. Ihese 
Meoetden. coefficfeuts can be used to find the flow angles from the polynomial surface fits 
fromthe sidy Vibration directly. Hence, no inerfial correction is necessary to find the flow 

angles using this procedure. 

« = f<B0,B„)l      ..*f<B-'M P 'Isteady 

(8.19) 

ß = n^Bß)\^(Ba,Bß)\ (8.20) 
steadv 

The fact that the inerfial contribution is negligible is remarkable and simplifies the task of 
resolvinlthe flowfield considerably. For a range of pitch and yaw angles the error in the 
independent coefficients behave as in figs. 8.24 and 8.25. 

o 
UJ 

CD 

Fig 8.24. Comparison of steady and unsteady definitions of Ba for a K value of 1.0 vs. pitch 
and yaw angle. The error is given as a percentage of the range of B«. 
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o 
UJ 

CD 

Fig. 8.25. Comparison of steady and unsteady definitions of Bp for a K value of 1.0 vs. pitch 
and yaw angle. The error is given as a percentage of the range of Bß. 

At this point it must be reiterated that a K-value of 1.0 is very large (for moderate flow 
velocities) and the errors observed are quite extreme. The actual error in degrees that results from 
the error in independent pressure coefficients is dependent on the actual flow angle. However as 
seen there is very small dependence e\en for very large values of K. Consider a theoretical 
spherical 5-hole probe with a tip diameter of 2 mm, placed in a flow with a mean velocity of 30 
m s and a sinusoidal oscillation of +/-20% and frequency of 11 kHz. The flow incidence angle is 
at zero degree pitch and 15 degrees yaw. A time series of data points is created for this flow and 
steady independent pressure coefficients are calculated. Fig. 8.26 shows the velocity signal for 
the example. At this relatively low velocity and large frequency, the maximum value of the rate- 
of-change coefficient, K is +/-0.5. Fig. 8.27 shows the 5 calculated port pressures for this 
velocity and flow angle. Note that port pressures 4 and 5 are coinciding due to zero pitch angle 
and perfect symmetry of the sphere. Port pressures 1 and 2 are nearly identical, due to the flow 
incidence angle of 15 degrees in yaw which is nearly half the angle between ports 1 and 2 (33 
deg / 2). Fig. 8.28 shows the port pressures that would be seen if there were no inertial effects. 
The independent pressure coefficients Ba and Bp are calculated from the pressures in fig. 8.27 
(that include the inertial effects) using the polynomial expressions for the flow angles (figs. 8.18 
and 8.19). The predicted and exact flow angles are shown in fig. 8.29 and the difference between 
the two in fig. 8.30. 
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Fig. 8.26. Flow velocity with mean 30 m/s, amplitude 20% and frequency 11 kHz. 
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Fig. 8.27. The five port pressures as calculated from the theoretical model. Pressures from 
ports 4 and 5 are coinciding due to perfect symmetry of the probe. 
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Fig. 8.28. The 5 port pressures that would be seen by the probe if there were no inertiai 
effects. 
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Fig. 8.29. The predicted pitch and yaw angles in degrees. 
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"ffeL. .Vom zero. The B? in terms of pressure coefficients is given as. 

B,(or./?.K) = — 
__Cp^(2^)-Cp^M)+K(Cpu^^^ (8.2!) 

c^a,ßy\t^^ß)Ac^a-ß)-'%Cpa'{a-ß)) 
1=2 ^ 

,here Cps and Cpo denote the ^^^jE^ZE^^ 
equation 8.21 the rate-ot-ehange ^««W-r™ B° coeff,cients for ports 2 and 3 are 
zero tlow incidence angle, the steady definitions;of the pes*re «oe P^ g ^ .g ^ 
cqua, and aiso «he unsteady ^..rons - eq a. Hce the ,™ ^ ^ 
regardless of the magnitude of K.. For all otner vaiu moderate K 
the unsteady term depends both on the ange andK. F« mos rflow ^ ^ 

^r,fr=^Ä 
determined. 
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The data ,„ the figures ahove are purely «heo^canand £ en fophe«  not^an 

perfect hemisphere of a ^V^^^Jt^^^ * "* ^ *«** 
experimental values for steady data,4    >»d« -»^ mors in fig. 8J0 

accurate calibration data is available. It is reasonable to oe nerformed where each of the 

were chosen as: 
Table 8.1. Original and perturbed port locations. 

Port# 

Original 
Cone [deg] 
0 
33 
33 
33 
33 

Roll [deg] 

180 
90 

Perturbed 
Cone [deg] 
1 
37 
28 

270 

35 
32 

Roll [deg] 
0 

170 
93 
268 

independent pressure coefficients are shown in figs. 8.33 and 8.34. 

Fio. 8.31. Pitch calibration surface for the spherica! probe with perturbed por« locations. 
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1.5^-2 

Fio. 8.32. Yaw calibration surface for 
the spherical probe with perturbed port locations. 

1.5-r 

1 -j 
I 

0.5 4 

L- 
O 
L— 

LÜ 

0- 

CD -0.5 

-1 - 

-1.5 

-2 

15lb-<25-20 

".--===;5;ää=" 



o 
L_ 

UJ 

CD 

20^-25 

Fig. 8.34. Comparison of steady and unsteady Bp vs. pitch and yaw angle for the perturbed 
* probe. The K-value is 1.0 and the error is given as a percentage of the range of Bß. 

Creating a time series of data with the same parameters as in the previous example, data 
reduction (using the new polynomials for pitch and yaw) can subsequently be performed. The 
new calculated port pressures are seen in fig. 8.35. The independent pressure coefficients Ba and 
B„ are calculated from the pressures in fig. 8.35 using the polynomial expressions for the flow 
anules. The error in the predicted pitch and yaw angles is seen in fig. 8.36. For the unperturbed 
probe there was no error in the predicted pitch angle, however for the perturbed probe a small 
periodic pitch error is observed. An important observation is that the range of the yaw error does 
not increase from the unperturbed to the perturbed case (the range of yaw error actually has 
decreased slightly). This shows that the prediction capabilities are not significantly dependent 
upon port location symmetry (as long as accurate calibration is available). 
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Fig. 8.36. The five port pressures as calculated from the theoretical model. Comparing with 
fig! 8.27 it can be seen that pressures from ports 4 and 5 are no longer coinciding due to the 

asymmetry in the port locations. 
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Fig. 8.37. Error in predicted pitch and yaw angles in degrees. Due to non-symmetric port 
locations an error shows up in the pitch angle. Worth noticing is that the maximum 

observed errors do not increase with the non-symmetric port locations. 



a ea D obe Each of the 5-port pressures from the perturbed probe is randomly perturbed by a 

fig. 8.39 and are in the range of 0.5 degrees. 
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:alculated from the theoretical model in addition a Fie 8 "*8. The five port pressures as a ... 
random magnitude up to 5% is added to each of the individual port pressures. 

Calculation of Velocity Magnitude 

Determinate of the velocity magnitude for a conventional multi-hole probe is typically 
done by t t'ndmg the probe local total and static pressures. The challenge is thus to determine 
u,^ two 1 sures from the 5 port pressures. During calibration, all of the port pressures, as 
v 1 s Attal and static pressure are known. By relating the total pressure to the quasi- 
d^am c pressu e formed by the port pressures a total pressure coefficient can be defined. 
Smh V the staic pressure can also be related to the port pressures using a static pressure 
Sc£n There arePa number of ways such coefficients can be defined; the best definitions are 
It which show only slight dependence on Mach and Reynolds number. One set of definitions 

is: 
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A ■P. 

'     P1-!(P:+P3+P4+P5) 

(8.22) 

A P,-Ps 
5        P,-i(P2+P3+P4+P5) 

(8.23) 

Alpha Error [deg] 

Beta Error [deg] 

-0 80 L 

OOE-00        2.0E-02 4.0E-02 6.0E-02 8.0E-02 1.0E-01 

Time [ms] 

1.2E-01 1.4E-01 1.6E-01 1.8E-01 

Fig. 8.39. Error in predicted pitch and yaw angles in degrees. The errors in the pressures 
propagate into a random error in the calculated angles, however nowhere is the data seen 

to diverge due to the noise in the pressures. 

A, and As denote the total an static pressure coefficients respectively. During steady 
calibration all of the port pressures and also the total and static pressures for all flow incidence 
aneles are known and surface fits are created for A, and As versus either the pitch and yaw angle 
(or^equivalently the independent pressure coefficients Ba and Bp). In steady data reduction the 
pressures from an unknown flowfield are first used to determine pitch and yaw angle (or Ba and 
Bp) then surface fitted values for A, and As are found from the calibration curves. Once A, and As 

are known, eqns. 8.22 and 8.23 can be solved for the total and static pressures. For an unsteady 
data reduction the total and static pressure coefficients are strongly influenced by the inertial 
effects seen by the probe and there would be significant difficulty in first finding each of the 
"corrected" port pressures, that is, the port pressures minus the inertial effects. For this work the 
static pressure is assumed to be known and constant. The flow will further be assumed to be 
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incompressible such that constant density and Bernoulli's equation can be used directly to relate 
the pressures and the velocities. The center port pressure is then given as: 

Pl(a,AU,t) = %U2CPsteadyi(«,^) + R —CPunsteadyi(a,^) 
2' 

(8.24) 

From the steady calibration a steady pressure coefficient Cpsteady can be found versus the pitch 

and yaw angle as: 

cp^M)-*^ (8'25) 

For a perfect sphere using the cone and roll angle system, the Cpsteady is given in equation 
8 9 Similarly using the cone and roll angle system the unsteady pressure coefficient Cpunsteady 
can be found from equation 8.9. The experimental determination of the unsteady pressure 
coefficient is much more complex and will be discussed in a following chapter but for now it 
will be assumed that such an expression exists. During data reduction a time history of port 
pressures p,(t) is recorded and the pitch and yaw angles are found for each point. Thus for any 
time instant both angles are known and thus the value of the steady and unsteady pressure 
coefficients Cps,adv and Cpunsteady can be determined. The problem then reduce s to soling 
equation 8.25 which is a non-linear, first-order, ordinary differential equation. Such equations 
can easily be solved for a time history of data using numerical methods. A modified Euler 
predictor-corrector scheme is used to solve the following equation for the velocity U: 

— = u(0-u(t) RCp^{a{m)) P^ Vcp_d>>(t),/?(t)) 

The first step in obtaining a solution for the velocity for the time history is to find the best 
possible prediction of the velocity at the start of the time series. However with no a priori 
knowledue of the flowfield a good prediction of the starting velocity is nearly impossible. As i 
will be shown, having a relatively high sampling rate of the data, reasonable starting guesses will 
help but is not required to accurately determine the velocity. The starting values will be set as: 

Wt  \-  r 2Pl(to) (8-27) 
L(u,"VpCp.«*Mto^(to)) 

The predictor-corrector scheme is then as follows: 

Predictor: u(tj+1)=u(tj_,)+2hU'(tj) (8-28) 

Corrector:        ü(tj J= u(tj)+h-     J+l' (8-29> 
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where h rs «he ,,me spacng in between «he data poin«s ^ *; «he <^^^X 
senes. The errors made in «he predtctor and correc.o r^s areon «he order o s    ^ 

for «he da«a reduction using the above method to be aeeurate. 

Consider a probe in a sinusoid^ varyrng flowf.eU ^™^°(J^r 

max.mum K-value for the probe tn «his flow ,s U5/fcW £ ^fin fig 8.40 Leafing 
penod and the normalized measured and total P«^?^. 0f ^e ,ime htLry ,s a problem 
significant inertial effects. As menttoned ea^^ffJH°"^^s^e velocity prediction 
area and thustwo periods - « ^^S "umerfica. approach are poor 
reveals sigmfican« errors and thus he P"d.^eaP

a ^ ^ ^ ^ M 

for this sampling rate (fig. 8.41, 8.42 . uouonng u F expected to drop by a 

period increased significantly. 
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Fig. 8.40. Normalized sphere pressure and total pressure of the flow with 10 points per 
period. 
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Fig. 8.41. Error in percent for the predictor-corrector with 10 points per period. 
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Fig. 8.42. Velocity error with 10 points per period. 
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Fig. 8.43. Normalized sphere pressure and total pressure of the flow with 20 points per 
period. 
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Fig. 8.44. Error in percent for the predictor-corrector scheme with 20 point per period. 
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Fig. 8.45. Velocity error with 20 points per period. 

Further doubling of the sampling rate shows that for 40 point per period there are small 
errors due to the predictor-corrector scheme (fig. 8.46). It is thus desired to a have a relatively 
high sampling rate for the predictor corrector method to work well. However, as most 
experimental data is low-pass filtered the accuracy of the method can, for low point densities, be 
increased hy interpolation, thus virtually increasing the point density of the sampled data. 

Experimental Determination of Steady and Unsteady Cp 

Experimental determination of the steady and unsteady pressure coefficients is sought. 
During steady calibration, the total and static pressure as well as the port pressures are known; 
hence the steady Cp is easily calculated as: 

CPs^dv.l«'/^--,  
(8.30) 

2PU- 

for each of the ports, i, at each calibration point. It is only necessary to determine one coefficient 
pair for only one of the ports (e.g. port 1) to be able to determine the velocity magnitude from 
measured pressures. Plotting Cpsleady vs. the pitch and yaw angle shows that these surfaces are 
well behaved and are well suited for sector wide polynomial curve fitting (fig. 8.47). 
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Fig. 8.46. Velocity error with 40 points per period. 
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Fig. 8.47. Steady pressure coefficient for the central port on a 5-hole probe in the low-angle 
regime (central port sees maximum pressure). 
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From the curve fit of the data the following is known: 

Cpsteadv(a,;0) = poly(a,/?) 
(8.31) 

Similarly for conventional calibration parameters increased accuracy can be achieved using 
localized'surface fitting, LLS. Additionally, the steady Cp might be dependent on Reyno ds 
number (as was found for the independent and dependent pressure coefficients). Reynolds 
number effects are usually most pronounced for probes where there is an obstruction 
immediately downstream of the probe tip, such as for L-shaped or C-shaped probes where the 
probe sting alters the flowfield impinging on the probe face. Similar to the method described in 
section 7 either a Reynolds number coefficient can be introduced or alternatively the probe can 
be calibrated at multiple Reynolds numbers and interpolation in between predictions can be 

performed. 

Experimental determination of the unsteady pressure coefficient, Cpunsteady, is more 
challenging than the steady pressure coefficient. The theoretical value is given from potential 
flow and follows cos(6) for axisymmetric flow over a sphere (fig. 8.48). 

0.875 

20^-20 

Fig. 8.48. Theoretical Cp„„,,e.dy for the central port on a sphere based probe. 

The theoretical potential flow based model determines the Cpunsteady coefficient to equal 
one for zero incidence angle. A partially theoretical and experimental study undertaken by 
Kovasznay et al found that this coefficient for a sphere should be 3 at the forward stagnation 
point Kovasznay's theoretical results are based on the sum of three potentials; the velocity 
potential for the steady flow over the sphere, the velocity potential due to the superimposed 
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velocity disturbance (assumed small) and the velocity potential for the compensating flow 
(introduced to satisfy the boundary conditions). 

For direct experimental determination of Cpunsteady, the probe must be inserted into a 
flowfield with known angularity and velocity. In addition the flowfield must be fluctuating or 
have a controlled acceleration that yields a significant rate-of-change coefficient, K. The 
unsteady pressure coefficient for each port can be found from: 

Pi{^ß)-l-pU{tfCpsleach{a,ß) 

Qw (*,/»= Y^m  (832) 

dt 
or equivalently 

V(')2 

cp„mleadMß)=2 ^  <8-33) 

Again, only the pressure coefficient for the central port is needed to resolve the velocity 
magnitude. The numerator in equation 8.33 will tend to zero for negligible inertial effects (as 
wilt the denominator for steady flow). If a periodically varying flowfield is used to calculate 
Cpunsteady special caution must be exerted to ensure that only data points where the gradient of the 
velocity is large is used. I.e. the peaks and valleys, where dU/dt is zero must be avoided (fig. 
8.49). 

Generally any data point along the time history, except where dU/dt is zero can be used 
to determine CpunsIeadv, however in the vicinity where dU/dt is small differences between the 
measured and the true pressure are also small. With given uncertainty and noise in the 
measurements, one should avoid these parts of the curves and rather use a conditional approach 
to only use values where both the numerator and denominator have significant values. 
Technically only one point is required to estimate the Cpuns,eady, but again due to experimental 
errors averaging the data for a number of test points is recommended. In fig. 8.49 a sinusoidal 
velocity signal is presented and the rate-of-change parameter, K, is calculated. Only data points 
where the magnitude of K. is significant (inside the two rectangles) should be considered. The 
predicted Cpunsteady for each such point can be calculated and averaged. The procedure is repeated 
for all values of flow angles. In a later section the experimental determination of Cpunsteady is 
performed on data from water tunnel experiments. 
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Fig. 8.49. Selection of data for determining the unsteady pressure coefficient. 
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9. DEVELOPMENT OF AN UNSTEADY FLOW FACILITY FOR 
THE CALIBRATION OF FAST-RESPONSE PRESSURE PROBES 

General 

A facility has been developed to calibrate fast-response, multi-hole pressure probes in 
both steady and unsteady flowfields. The response of pressure probes in fluctuating flows is 
dramatically different than in steady flows. Unsteady effects such as inertial or apparent mass 
effects result in pressure measurements that cannot be used directly without correction to arrive 
at the true velocity and pressure of the flow. This effect is quantifiable and in this work we show 
that potential flow solutions can predict it, however similarly to steady probe calibration the 
probe should also be calibrated in an unsteady flow to accurately determine the unsteady effects. 
An accurate and repeatable fluctuating flow is required to experimentally determine the unsteady 
pressure coefficients, and a facility using a jet of air and a variable speed "flow-pulsator" has 
been developed. Repeatable fluctuating flows are generated and axial velocity fluctuation is 
recorded with a hot-wire anemometer. The hot-wire signal is used as the reference or true 
velocity and compared with the pressures recorded by a 5-hole probe. The central port of the 
probe at zero incidence angle shows a dramatic increase in the pressure lead and magnitude with 
increasing frequency, and become non-negligible at relatively low non-dimensional frequencies. 

A theoretical and experimental investigation of the pressure distribution around a sphere 
in an unsteady flowfield was presented by Kovasznay et al. (1982). They found that the pressure 
on the surface of the sphere was composed of a term proportional to the mean velocity and a 
term proportional to the rate of change of velocity. Based on this method Matsunaga et al. (1980) 
developed a theoretical procedure for calibrating a five-hole probe in unsteady conditions. The 
theoretical part of their algorithm, which consisted of the calculation of the perturbation potential 
around a perfect hemispherical-tip, was not properly corrected to account for fabrication 
idiosyncrasies and imperfections of the specific probe. It is now well established that the 
pressure distribution over the probe tip is sensitive to construction defects. Correction of such 
effects can only be derived by coupling the theoretical calculations to measurements of the 
specific probe behavior. The unsteady effects must be either determined by experimental 
methods or if determined by theoretical or numerical methods, the response must be verified in a 
controlled unsteady flowfield. Kovasznay et al. developed a jet facility with a dual nozzle and a 
perforated spinning disk. For their experiments, the mean velocity was 20m/s, the oscillation 
amplitude was up to 6m/s peak-to-peak and the frequency up to 500 Hz. A large number of 
averages (1000-2000) was performed to reduce the random fluctuations in the jet and the 
resulting hot-wire velocity was sine-like. 

Humm (1994) designed a cart that used a DC motor to create a sinusoidal motion of the 
probe holder either longitudinally or in pitch or yaw angle. This cart was towed in a water 
channel and an oscillation in the velocity was imposed on the mean towing velocity or oscillation 
of the pitch or yaw angle was generated. A scaled up (30mm) probe was used to match the 
Reynolds number and non-dimensional frequency range typically encountered in turbomachinery 
applications. For oscillations in pitch and yaw angle large dynamic effects were identified for 
wedge-shaped probes, while for cylindrical or half-cylinder shaped probes these effects were 
much less pronounced. For longitudinal oscillations large dynamic errors were identified for all 
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probe shapes and increased with both frequency and size of probe. Following Kovasznay, Humm 
postulated a method of correction of dynamic effects based on the acceleration of the fluid using 
an inertia coefficient. 

As was found by Kovasznay, Matsunaga and others, the unsteady effects increase with 
probe size, thus miniaturization of the probe tip is desired to reduce the aforementioned dynamic 
effects. In some instances where frequencies are restricted to a few hundred Hz, pressure tubing 
can be utilized and transducers can be placed a few inches away from the tip. At lower 
frequencies the dynamic effects (inertial) from the external probe geometry can be neglected, 
however pressure transmission effects from the probe tip to the pressure transducer must be 
corrected (Iberall, 1950; Bergh and Tijdeman, 1965; Rediniotis and Pathak, 1999). 

To aid in the development of the facility and subsequently in the development of 
unsteady probe calibration theory and algorithms, a high-frequency-response, 5-sensor probe was 
developed. It is designed to house 5 Kulite pressure transducers. The relatively large probe tip 
(6mm diameter) is large enough to have significant unsteady effects at moderate velocities (30- 
100m/s) and frequencies (<1000 Hz). The Kulite pressure transducers have a high frequency 
response (20 kHz) and a pressure range of ±5 psid. A drawing of the assembled probe is shown 
in figure 8.1. The miniature pressure sensors are located near the tip of the probe to minimize the 
channel length and thus the time lag induced by the volume from the probe surface to the sensor 
diaphragm, as well as move the Helmholtz resonance frequency well above the transducer 
frequency response. The pressure attenuation was calculated following Bergh and Tijdeman and 
the resonance frequency is estimated to be well above 30kHz. 

0.5   nm 

KULITE 

T 

=4= 

—•-     ■*— 1.5   mn 

Figure 9.1. Cross-section of the assembled 5-sensor probe. 

Steady and Unsteady Probe Calibration Facility 

Multi-hole probes must be calibrated in a steady jet in order to determine the steady 
pressure coefficients needed to reduce unknown data from a steady flowfield. It is also desired to 
have a jet that can generate a controlled repeatable fluctuating jet of air for the calibration of fast 
response probes in an unsteady fashion. A steady calibration jet was developed to provide a 
steady flow of air with low turbulence and flow angularity. A pulsator was designed to fit at the 
exit of this jet to, in effect, "pulsate" the steady flow of air from the jet. Figure 9.2 presents the 
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conceptual design of the calibration jet facility and air supply system, illustrating its main 
components and structure. 

Due to availability reasons, the air supply source is not a design parameter and is fixed to 
150 psi, with the capability of delivering a maximum continuous flow rate of 0.15 nrVsec. These 
air supply specifications, in turn, dictated the choice of the air supply system components and 
specifications illustrated in figure 9.2. Before the calibration jet facility was dimensionally 
designed, it was necessary to develop a way to relate the magnitude of the unsteady probe 
calibration effects to the dimensional and operational parameters of the facility, such as speed, 
exit nozzle diameter, flow oscillation frequency and amplitude. 

Calibration Jet Facility Design 

The limitation on the available flowrates dictate the maximum size of the exit nozzle to 
achieve sufficient flow velocity, while the size of the probe sets the minimum size of the exit to 
avoid excessive flow blockage. The selected exit diameter is 38.1 mm, which give a velocity 
range of up to Mach 0.3 and a blockage of approximately 2.5% for the 6 mm Kulite probe. 
Through the use of carefully located screens, the turbulence intensity of this facility has been 
determined from hot wire measurements to be <0.3%. The settling chamber pressure is measured 
using a high accuracy pressure transducer and is controlled through a PC with a PID controller 
and a motorized valve, keeping the jet velocity within 0.2% of the set value. The jet stagnation 
temperature is continuously monitored and recorded. The flow angularity was determined by 
using a yaw probe in a "flip-over" method and corrected. A three axis computer controlled 
traversing system is used for hot-wire and probe positioning during flow mapping experiments. 
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Figure 9.2. Schematic of the calibration jet facility. 

Probe calibrations typically require the acquisition of data from a wide range of angle 
inclinations of the probe, and a complete probe calibration may take several hours to complete. 
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The maximum flow velocity is dictated by the air provided by the compressor system and as 
mentioned above this airflow is limited. The required flow rate for an exit nozzle ot 1.5 in 
diameter, is shown in figure 9.3. Keeping in mind that the maximum airflow that can be 
delivered from the compressor system is about 270 SCFM, the maximum sustainable Mach 
number is about 0.30. Decreasing the jet exit diameter to 1" by mounting an extension pipe to the 
nozzle increases the maximum sustainable Mach number to about 0.75 with the current 
compressor configuration. 

Figure 9.3. The calibration jet air flow in SCFM vs. Mach number. The upper curve is for 
an exit nozzle 1.5" in diameter. The lower curve is an exit nozzle 1" in diameter. 

The   facility   turbulence   intensity   was   measured   using   hotwire   anemometry.   The 
turbulence intensity is defined as: 

T = - 
U 

where T is the turbulence intensity, u' the rms value of the velocity fluctuations and U the mean 
velocity. The data was low-pass filtered with a cut-off frequency of 6.2 kHz. This cut-off 
frequency was decided upon after looking at the power spectrum of the unfiltered data and 
seeing that no significant fluctuations existed at frequencies higher than that. Table 1 gives the 
turbulence intensities for different mean velocities. 

Table 1. Turbulence intensity values. 

Mean velocity, U [m/s] Turbulence Intensity, T 
47 0.00346 
80 0.00445 
130 0.00376 
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The calibration jet facility is equipped with a fully automated probe positioning system 
(probe indexer) that can position the probe at a wide range of cone angles (0 to 150 deg.) and roll 
angles (0 to 360 deg.) with respect to the jet velocity. The indexing system is shown in figure 
9.4. 

Figure 9.4. Probe indexing mechanism at the jet exit. 

The flow angularity of the jet can be determined by using a 5-hole probe. The flow 
amiularity was determined by yawing the probe through a set of angle increments (cone angles, 
as "shown in fig. 9.5), the pressures from ports 1, 3 and 5 (refer to fig. 7.1.1 for port numbering) 
are recorded. Then the probe is rolled 180 degrees and the same procedure is repeated. By 
plotting a properly defined pressure coefficient vs. the yaw angle for both configurations (fig. 
9.6). the flow angularity is the angle that corresponds to the intersection of the two curves. The 
pressure coefficient is defined as: 

CP = 
Pa» 

where pJ%l. is the average pressure recorded by the three ports. The stepper motor controller 
enables very precise movement of the probe in small angle increments. The data in figure 9.6 
indicates that the flow angularity is 0.065 degrees. 

Steady Calibration and Test of Kulite Probe 

The Kulite probe was statically calibrated in the facility, at a mean velocity of 50m/s 
through a range in cone angle, 0, from 0 through 64.8 degrees in 2.7 degree increments. The 
range in roll angle.<t>. was a full 360 degrees in 5.4 degree increments. The resulting calibration 
database thus contains 1675 data points. A test of the quality of the calibration was performed by 
removing one data point at a time from the calibration file, treating that point as an unknown test 
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point and using the LLS algorithm to predict the angles with the remaining calibration data. The 
difference in the predicted angles and velocity and the recorded angles and velocity is a measure 
of the quality of the calibration. For the steady calibration of the Kulite-based fast-response 
probe the following error histograms were obtained (figures 9.7). The'histograms show that for 
steady measurements the fast-response probe is predicting the angles and velocities with high 
accuracy. 

Port numbering shown for <j>=0 degrees 

Figure 9.5. Experimental setup to determine flow angularity. 

-0.4 -0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 
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Figure 9.6. Cp vs. theta angle for 0 and 180 degree roll. 
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Fig. 9.7. Calibration quality of the Kulite probe in the form of prediction error histograms. 

Flow Oscillator Design 

Unlike the design in Kovasznay et al., featuring a dual nozzle and indirect flow 
oscillations, a more direct approach was chosen. The idea behind the design is to periodically 
restrict the cross-sectional area of the flow path and thus also change the velocity proportionally. 
The high frequencies (up to 1 kHz) restricted the design parameters. It was desired to have a 
pulsating jet that is as uniform as possible across the entire jet exit. The current design has been 
proven to perform very well. In figure 9.8 the three drawings show how a rotor and a stator with 
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three "teeth" that protrude into the flow (normal to paper plane) are combined to generate a 
periodic restriction of the flow. From left to right, figure 9.8 shows the most open position, 
followed by clockwise rotation of the rotor and a slight closing of the open area. The last figure 
shows the flow oscillator in its fully closed position. Due to the design, the area change is not 
sinusoidal, but rather saw-tooth-like. This shows up in the spectral analysis of the hot-wire trace, 
where higher order harmonics appear. The rotor is driven by a dc electric motor, and the 
rotational speed can be varied very accurately from 0 to approximately 600 Hz or from about 0 
to 1800 Hz flow pulsation. An optical encoder is used as a phase reference. 

The innermost open area of the restriction is 25.4 mm in diameter, while the outer 
diameter is the same as the jet exit nozzle 38.1 mm. The total change in area is thus 38%. In 
figure 9.9 the driving gear is mounted to the rotor and the driven gear is mounted to the 
housing/nozzle with a 65mm id ball bearing. The 5-hole fast response probe is mounted on the 
xyz traverse system. A picture of the entire facility is also shown. 

Experimental Results and Discussion 

A hot-wire system is used to measure the axial velocity fluctuations. The measurement 
plane is set 25 mm downstream of the throat, where a clean signal is observed. In figures 9.10 
and 9.11 non-dimensionalized velocity fluctuations are seen vs. non-dimensional time. The data 
shown was ensemble-averaged over eight periods, mostly to rid the data of electrical noise. In 
figure 9.10, at 400 Hz the velocity fluctuations are seen to be quite uniform with large amplitude 
for the entire range of velocities, apart from a secondary peak emerging at increasing velocities. 
In figure 9.11. at 1000 Hz, the magnitude of oscillation is low for M=0.1, but increasing with 
increasing velocity. The same trends are also seen at other frequencies, indicating that magnitude 
of oscillation is proportional to velocity magnitude and inversely proportional to oscillation 
frequency. 

Figure 9.8. The flow oscillator, showing from left to right fully open, closing to fully 
closed. 
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Figure 9.9. (upper) Flow pulsator in it most open position. A: Driving gear, B: Driven 
gear, C: xyz traverse, D: 5-hole probe, (lower) Picture of the entire facility. 
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Figure 9.10. Non-dimensional velocity fluctuations for f=400Hz, Mach 0.1-0.25. 
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Figure 9.11. Non-dimensional velocity fluctuations for f=1000Hz, Mach 0.1-0.25. 

For lower frequencies and higher velocities the magnitude of the velocity fluctuation 
approaches the theoretical maximum value of 38% dictated by the change in area at the throat. A 
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decrease in the oscillation magnitude is seen at higher frequencies and lower velocities, while the 
signal still remains sine-like. For all such measurements the optical phase reference is recorded 
and enables this reference velocity signal to be superimposed onto data from e.g. the 5-hole 
probe. Data is acquired using a simultaneous sampling and hold system with sampling 
frequencies up to 100kHz for all channels. The data is ensemble-averaged. The ensemble 
averaging is used with the pressure data to get rid of mostly electrical noise, which is non- 
negligible in the low velocity range where the dynamic pressure fluctuations are small. Whereas 
the hot-wire measures the velocity, the 5-hole probe records the pressures which is composed of 
the stagnation pressure and the acoustic pressure signal. The probe is mounted downstream of 
the nozzle exit such that the mean static pressure equals the ambient pressure. The pressures 
measured by the probe ports is thus described by the unsteady Bernoulli equation: 

H(t) = \/2pv(02+p(0+P^r {9A) 
at 

where H(t) is the instantaneous port pressure measured by the probe, v(t) and p(t) the 
instantaneous velocity and static pressure respectively and (j) is the velocity potential which 
describes the inertial contribution to be determined. Thus for measurements to be useful, it is 
necessary to accurately determine the velocity v(t), which is performed using the hot-wire 
anemometer, and the static pressure p(t), which is the sum of the mean ambient pressure and the 
acoustic pressure, which is measured with a microphone or a surface flush mount pressure 
transducer at the exit of the jet. From Kovasznay et al. the pressure measured by the probe can be 
described by: 

pv(t)2 dv(t) mi> 
//(/) = p(t) + cp ^- + cmerlial -^ (9.2) 

where cp is the steady pressure coefficient for the probe, as determined by steady probe 
calibration. c,ncrt,ai is the "unsteady"' or inertial pressure coefficient. Both of these pressure 
coefficients are unique to each pressure port and are functions of the relative incidence angle of 
the oncoming unsteady flowfield. Kovasznay et al. determined these coefficients for a sphere in 
an unsteady flowfield to be functions of the angular position on the surface from the incidence 
point. The maximum value of the inertial coefficient was found at the forward stagnation point 
and agreed well with potential flow theory, but their experimental results deviated from the 
potential flow predictions at higher angles. This stresses the need for an experimental 
determination of these coefficients. In an experimental investigation the steady pressure term is 
determined from probe calibration in a steady flow by pitching and rolling the probe through a 
range of incidence angles and recording the port pressures at each position. Similarly the inertial 
pressure coefficient can be determined by probe calibration in the pulsating flowfield. Knowing 
the exact velocity, v(t), the measured port pressure, H(t), and the pressure coefficient Cp at the 
particular incidence, the inertial coefficient can be determined. Thus the probe is calibrated both 
in steady and unsteady fashion and can be used to measure temporal three-dimensional velocity 
flowfields. As it was found by Kovasznay et al. these coefficients are believed to be only weakly 
dependent on Reynolds number and nearly independent of the fluctuating frequency. Thus a 
constant frequency calibration covers the calibration for the probe over a wide range of velocity 
and frequencies. 
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Figure 9.12. Hot-wire velocity converted to dynamic pressure and central port of 5-hole 
probe, at zero incidence angle, for f=150Hz. 
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Figure 9.13. Hot-wire velocity converted to dynamic pressure and central port of 5-hole 
probe, at zero incidence angle, for f=250Hz. 
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Figure 9.14. Hot-wire velocity converted to pressure and central port of 5-hole probe, at 
zero incidence angle, for f=350Hz. 

In figures 9.12 to 9.14 the time trace (eight-period ensemble averaged) cf the hot-wire 
velocity (converted to dynamic pressure) and the pressure at the central port of the 5-hole probe 
for Mach=0.1 and frequencies 150, 250 and 350 Hz, are shown. The data is recorded at zero 
incidence angle, such that the central port sees the forward stagnation point (where the inertial 
effects are the most pronounced). As can be seen from the figures, the phase lead and the 
magnitude of the central port pressure increases with increasing frequency (hence also increasing 
dv/dt). The same trends are also seen at higher Mach number and frequencies, thus verifying the 
need to correct the pressures even at relatively low non-dimensional frequencies, k. 

107 



10. WATER TUNNEL EXPERIMENTS 

General 

In section 8 the determination of the steady and unsteady pressure coefficients was 
covered and it was found that the factor that determines the unsteady effects is the non- 
dimensional rate-of-change parameter, K. It was also found that the unsteady or inertial effects 
increase with increasing magnitude of K. In all experimental work there are always experimental 
errors, sensitivity problems and background (electrical) noise that become predominant for all 
instruments when very small physical quantities are measured. For these reasons it is desired to 
have a magnitude of K as large as possible to ensure significant and distinguishable inertial 
effects. From the definition of K. as given in eqn. 8.7, this can be obtained in three different 
ways: large probe size, high frequency or low velocity. For air tests very low velocity will result 
in poorly read pressure signals due to the sensitivity of the pressure transducer (most miniature 
or micro pressure transducers have ranges on the order of psi). High frequency and moderate 
velocities are thus the answer for air tests. 

As it will be discussed in a later section, obtaining a repeatable, periodic, well-behaved, 
unsteady air stream is difficult and hence alternative methods for verification of the methods was 
sought. In water the much higher density provides significant dynamic pressures at low 
velocities. Also, using a large probe the frequency of the oscillation can be kept very low while 
still matching the Reynolds number range and K values that would be seen for a real 
miniature micro multi-hole probe in air. A spherical probe with a diameter of 50.8mm was 
designed and tested in a water tunnel to determine the unsteady effects and validate the inertial 
correction routine proposed in section 8. A spherical probe was chosen to verify the theoretical 
results as best as possible. Further, as shown in section 8, it is expected that such a spherical 
probe will behave similarly to a hemispherical multi-hole probe for moderate angle inclinations. 

Experimental Setup 

A system consisting of a-crankshaft and a pushrod was devised to oscillate the probe in a 
near-sinusoidal manner. By oscillating the probe in a steady stream of water the flow velocity 
relative to the profile is the mean velocity of the water tunnel plus the velocity of the probe itself 
due to its oscillatory motion. Fig. 10.1 shows the conceptual design of the system. The 
crankshaft is mounted on a dc-motor and a flywheel, connecting the pushrod to the linear motion 
system. The probe assembly is sliding on a linear bearing that allows for linear translation only. 
Fig. 10.2 shows a picture of the system. 
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Fig. 10.1. Schematic of the crankshaft linear motion system. A: dc-motor; B: flywheel; C: 
pushrod; D: linear bearing; E: potentiometer. 

Fig. 10.2. Linear motion system. 

The position of the probe mount is measured using a potentiometer with a gear connected 
to a gear rack on the linear bearing. The potentiometer is connected to a 10V voltage supply and 
the output is a voltage linearly proportional to the position of the sliding assembly. The probe 
velocity is calculated as the time derivative of the position given by the potentiometer. The linear 
motion of the sliding assembly is not exactly sinusoidal versus time for a constant rotation speed 
due to the finite length of the crankshaft (25.4mm) and the pushrod (304.8mm). 
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Fig. 10.3. Schematic of the water tunnel setup. A: linear motion system; B: vibration 
dampers; C: vertical probe mount; D: probe shaft. 

Fig. 10.3 shows the schematic of the probe assembly mounted in the water tunnel. The 
vertical probe mount is connected to the linear motion system with eight rubber vibration 
dampers. It was found that without these dampers high frequency (about 250 Hz) structural 
vibration was transmitted from the linear ball bearing to the probe shaft and a significant 250Hz 
signal was observed in the measured probe pressure. The vibration dampers cause some loss of 
rigidity in the vertical mount, however the displacement of the end of the bar was measured for a 
range of loads (simulating the loads from the acceleration). Negligible deflection was observed 
for the range of forces corresponding to the range of frequencies of testing. The probe shaft is 
mounted to the vertical mount and can be manually set to any angle from 0 to 90 degrees 
downward using a digital inclinometer with a 0.1 degree resolution (Fig. 10.4). 

A 50.8 mm diameter spherical probe (fig. 10.5) with a pressure port located at the 
forward center point was machined from aluminum. The probe head has a threaded mounting 
port for the pressure transducer and also threaded mounting for the probe shaft. A modified 
Endevco 8510B-1 transducer was used in the spherical probe assembly. This transducer in its 
original design is a fast-response 1 psig transducer with very high sensitivity (200 mV/psi). The 
transducer uses a four-arm piezoresistive bridge mounted on a sculptured silicon diaphragm and 
features an internal temperature compensation module. The original sensor was modified by 
Endevco to allow for use in water. The protective screen in front of the diaphragm was removed 
and replaced with a non-conducting gel (Endevco, proprietary), thus ensuring that the diaphragm 
is not directly exposed to water. Fig. 10.6 shows pictures of the spherical probe and the 
transducer. 
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Fig. 10.4. The complete probe assembly showing four of the eight vibration dampers 
that connects the vertical bar to the linear motion system. Probe also shown at zero 

and 20 degrees pitch angle (dimensions in mm). 
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Fig. 10.6. The modified Endevco pressure transducer and the spherical probe head. 

The modified Endevco transducer is not in production quality and thus it was expected 
that frequent calibration for zero drift and non-linearity compensation would be necessary. It 
was, however, observed that the transducer behaved remarkably well and kept a nearly constant 
calibration slope for both air and water. Significant drift in the zero-offset was observed for 
about 45 minutes in water, however after this "warm-up-time" no additional zero-offset 
compensation was necessary. Air calibration of the transducer was performed by placing the 
probe in a pressure chamber and using a Barocel pressure transducer as the reference. Figure 
10.7 shown the probe and the pressure chamber. The sensor output was amplified using an 
Entran 1MV-15 amplifier with gain of 100+/-10%. From the design values the slope should be 
around 20V psi or 2.9mV/Pa = 345Pa/V+/-10%. 

The air calibration of the transducer is shown in figure 10.8 and exhibits very good 
linearity and small zero drift; however since the transducer is used in water it was also desired to 
calibrate the sensor in water. A computer controlled traverse was used to submerge the probe 
into the water tunnel. For the first point the probe is placed such that it touches the water surface, 
then it is submerged in 1" increments. For each position the voltage was recorded and correlated 
to the pressure (given directly in inches of water). Thus, the air calibration was also validated in 
water. 
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Fig. 10.7. Calibration of the probe in pressure chamber. 
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The acceleration of the probe and transducer due to the oscillatory motion causes a false 
periodic signal to be imposed on the measured pressure. The standard version of the transducer 
has an acceleration response equivalent to 0.0002 psi/g « 1.4 Pa/g, however since the modified 
version has the gel directly on the diaphragm a set of tests were performed to quantify the 
magnitude of the acceleration effects. The probe was mounted on the linear motion system and 
data was recorded for oscillation frequencies from 1 to 6 Hz. 
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Fig. 10.9. Effects of axial acceleration on the pressure transducer. 

Fig. 10.9 shows the effects of acceleration on the pressure transducer. The acceleration in 
m/s2 is calculated from the second derivative of the position sensor. For a frequency of 3 Hz the 
maximum magnitude of acceleration is approximately 1 g and the peak-to-peak magnitude of the 
acceleration (over one full period) is about 30 Pa, i.e. a response of about 15 Pa/g or one order of 
magnitude larger than the standard version of the sensor. For all data sets the curves in fig. 10.9 
were used to correct for the acceleration effects in the pressure signals. 

The Texas A&M University Active Flow Control Laboratory's 2' by 3' water tunnel 
facility was used for the experiments. This water tunnel is a free surface, closed circuit facility 
that holds approximately 5000 gallons of water and has a 24" wide, 36" deep and 72" long test 
section. The tunnel is powered by a 25 Hp pump, with flow rates as high as 7500 gallons per 
minute yielding test section velocities as high as 0.9 m/s. The tunnel has a 6:1 contraction ratio 
and less than 1% rms turbulence level, +1-2% in velocity uniformity and less than 1 degree flow 
angularity in both pitch and yaw angles. 
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Since this is a free surface facility and the pump controller sets the flow rate in gallons 
per second the actual water level in the tunnel determines the velocity. The tunnel was calibrated 
to relate the pump controller setting, the amount of water in the tunnel (water level in test section 
at zero velocity) and the actual test section velocity. It was however found that such an 
expression further depends on the model blockage in the test section. Thus the tunnel velocity 
had to be determined with the probe assembly present in the tunnel. Determination of the water 
velocity was done by injecting dye in the water (approximately 0.3m below the surface) and 
measuring the time for the dye to travel in between two marks placed 1.5 m apart. A modified 
stopwatch with two switches fcr start and stop was used, one person starts the stopwatch when 
the dye passes the first line, and the second person stops the timer when the dye passes the 
second line. Naturally such measurements potentially have errors due to the reaction time of the 
persons starting and stopping the timer. There is also some diffusion of the dye, such that judging 
when the dye passes the start and stop lines is subject to some interpretation. For the tests, 40 
repeated samples were taken, to provide a statistical distribution of the measurement. 
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Fig. 10.10. Measured times for the water tunnel dye tests. 

As shown in figure 10.10, the mean measured time for one velocity setting was 1.78 sec 
with a standard deviation of 0.064 sec. Using a 99% confidence interval and a sample size of 40 
(no samples were rejected as outliers) the velocity was determined to be 0.845 m/s +/- 1.5%. The 
true velocity is possibly slightly different from the estimated mean, but it is believed from the 
experiments to be within the error range given. While different means of velocity determination 
could also be used, such as our PIV system, the marginally better accuracy did not warrant the 
additional complications, especially if one considers the comparative nature of the study. 
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As mentioned earlier the water tunnel test section has a free surface, which means that the 
water level drops significantly from zero velocity to operating velocity conditions. When the 
sensor is placed in the tunnel the offset is set such that even though the transducer sees a 
significant positive pressure due to the water column, the pressure given by the calibration slope 
is zero For each millimeter of water level the associated pressure is about 10 Pa hence the 
change in water level (approximately 50mm) from zero velocity to running velocity must be 
accurately known and the probe pressure must be corrected accordingly. 

During tunnel operation waves with an approximate magnitude of 5 mm peak-to-peak 
and wavelength on the order of meters were observed. Naturally, this periodic increase and 
decrease in water column above the probe will show up in the measured pressure and hence these 
waves must also be accounted for. A static pressure sensor was thus designed to measure the 
water column without measuring the dynamic effects of the water velocity. This probe uses a 
Honevwell 40PC amplified transducer with a range of 1.8 psig. (Figure 10.11). The probe in tig. 
10 1 f is placed in the water tunnel with the pressure port at approximately the same depth as the 
spherical probe. The exact depth is not crucial, since differential quantities are sought (figures 

10.12 and 10.13). 
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Fig. 10.11. The static pressure probe. 
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Fig. 10.12. Assembled static pressure probe. 

Fig. 10.13. Static probe and spherical probe mounted in water tunnel facility. 
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The motion of the linear motion system is not exactly sinusoidal for a constant rotation 
speed of the crankshaft. Viscous and fluid inertia effects will further contribute and cause the 
rotation to be non-constant hence further diverging from the sinusoidal motion. Since the 
position sensor is sampled continuously no assumptions are made on the motion, but it is rather 
measured directly. If one assumes that the rotation speed of the crankshaft is constant the 
experimental envelope is as shown in table 10.1. 

Freq. 
[Hzl 

Mean       Vel. 
[m/sl 

Max.   Rel.   Vel. 
[m/sl 

Min.    Rel.    Vel. 
[m/sl 

Max.        Aces. 
[m/s2l 

Max.    K 

[-1 
1 0.85 1.01 0.69 1.08 0.04 

9 0.85 1.17 0.53 4.35 0.20 

3 0.85 1.33 0.37 9.78 0.67 

4 0.85 1.49 0.21 17.38 2.49 

Table 10.1. The test envelope for the spherical probe in the water tunnel. 

Important parameters in table 10.1 are the mean velocity, providing insight into the 
Reynolds number and the mean dynamic pressure to be measured. The minimum velocity must 
never go below zero to avoid flow reversal. The acceleration is never above values where the 
deflection of the probe mount is non-negligible due to the vibration dampers. The K parameter is 
an indicator of the expected inertial effects to be seen by the probe. Notice the very large 
maximum magnitude of this parameter for f=3 and f=4 Hz. This is due to the inverse 
proportionality to the square of the velocity and the probe relative velocity is very low during the 
downstream motion of the probe. The mean Reynolds number for the probe at the test velocity is 
43xl03 which is in the range seen by miniature multi-hole probes in air flows. The Reynolds 
number is also sub-critical, meaning that we can expect to see laminar separation at around 80 

detirees. 

Acquisition of data, filtering and data corrections 

The three basic quantities the time series of which we want to measure are: probe 
dvnamic pressure, probe relative flow velocity and probe relative flow acceleration. The pressure 
signals from both the static probe and the spherical probe are both offset to give zero pressure for 
zero flow velocity, even though there is a significant pressure due to the water column. As the 
flow is accelerated the water level drops, the static pressure sensor will thus see a negative 
pressure proportional to the difference in water column drop. Similarly, the sphere probe sees 
this drop in pressure, but in addition it also measures the (for zero pitch angle) dynamic pressure 
of the flow To find the true differential pressure for the sphere probe the static probe pressure 
must be subtracted from the measured sphere pressure. For the entire time series, both the static 
and sphere probe pressures are sampled such that this correction is done on a point-by-point 

basis. 

The position sensor is calibrated for the range of motions where the maximum and 
minimum values are given directly by the radius of the crankshaft. As with all digitized data, the 
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present data time series are not perfectly smooth for two reasons: the resolution of the DAQ 
system (10V / 12 bit = 2.44 mV) and background electrical noise (on the order of 10 mV p-p). 
From such discretely digitized data the derivatives cannot be calculated without first smoothing 
or low-pass filtering the data. Rather than using analog filters where phase and magnitude 
information is easily lost, digital filtering of the sampled data was chosen. The topic of digital 
filtering is extensive and there is a number of filter parameters that have to be decided upon 
when designing a filter. For example, some of those parameters are: required kernel length, roll- 
off rate and stop-band attenuation. Implementing digital filters in a quasi-real-time system 
requr.es a comprehensive study on the speed of the filtering since some filters are 
computationally intensive and can be very slow. For this work, no optimization or quantification 
of speed and performance is studied, rather a stable conventional filtering technique was chosen. 
The method uses a Fast Fourier Transform (FFT) convolution technique based on the principle 
that multiplication in the frequency domain corresponds to convolution in the time domain. The 
basic function is to transform the entire time series into the frequency domain using FFT, then 
multiply the frequency spectrum with the frequency response of the filter and then transform the 
spectrum back into the time domain using in inverse FFT. Large sample sizes (2 = 16384) are 
used for all of the acquired data with 200 points per period (the sampling frequency is adjusted to 
200 x oscillation frequency). Thus for each data set more than 80 periods of oscillations are 
recorded. Filtered and corrected quantities are shown in fig. 10.14 for a frequency of 4 Hz and 
zero pitch angle. 

Fig. 10.14. Data for a frequency of 4 Hz, tunnel velocity of 0.85 m/s and zero degrees pitch 
angle. 
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Prediction of Steady and Unsteady Pressure Coefficients 

We will call "true dynamic pressure" the stagnation pressure corresponding to the 
instantaneous probe relative flow. This is the pressure the probe would measure, at zero pitch 
angle if there were no inertial effects. However, the actually measured pressure at the forward 
stagnation point has larger magnitude and leads the true dynamic pressure in phase due to the 
inertial effects. It should also be noted, as seen in figure 10.14 for zero degrees pitch, that the 
measured sphere pressure does not. cross the true dynamic pressure at the peaks (point where 
dU/dt is zero). In the valleys this is the case, however at the peaks the sphere pressure appears to 
cross the true dynamic pressure at a later point. This trend has been observed in a wide range of 
data and may be due to viscous effects. 

The steady pressure coefficient is calculated from the pressures seen by the probe in 
steady flow (probe is not oscillated) for pitch angle from 0 to 90 degrees (fig. 10.15). 
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Fig. 10.15. The steady pressure coefficient calculated from the experimental sphere data. 
The data is curve fitted and plotted up to 90 degrees. The Reynolds number is sub-critical 

and laminar separation is observed. 
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Fi<>. 10.16. Calculated unsteady pressure coefficient from experimental data at f-4Hz. 
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Fig. 10.17. Standard deviation of the predicted mean unsteady Cp. 
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The determination of the steady pressure coefficient is seen to follow theory well and the 
standard deviation of the measurements is low. Determination of the unsteady pressure 
coefficient is significantly more challenging than finding the steady pressure coefficient As 
discussed in section 8, it is necessary to chose data from a time series where the inertial effects 
are sienificant (high K-value). For each point in the time series the value K is calculated and only 
data points that are above a certain absolute value of K (e.g. above the rms value) are used to 
find an average unsteady pressure coefficient for that angle. The results are shown in figure 16. 
The aereement between the experimentally calculated pressure coefficient and inat predicted by 
unsteady potential flow is remarkable, if one considers the fact that the theoretical curve does not 
take into account viscous effects, steady or unsteady and that, as already described earlier, the 
experimental setup and procedures for the unsteady measurements are ^/teTndard 
elaborate with several potential sources for experimental error. In fig. 10.17 the standard 
deviation in the predicted mean value for the unsteady coefficient is seen to be very large 
however the large number of points used to predict the mean Cp gives a 99% confidence interval 

for the mean value. 
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Fig. 10.18. The 99% confidence interval for the predicted mean unsteady pressure 
coefficient. 

In fig 10 18 it is seen that even though the standard deviation and hence the spread in the 
data is large the mean is predicted within a narrow range due to the large number of data points 
used to estimate the mean. Increasing the accuracy of the tunnel velocity by using a continuous 
measurement such as a hot-film probe might improve the accuracy of the predated pressure 
coefficient however the largest error source is believed to be the probe velocity derived from the 
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position sensor. For the above analysis the filtered position signal is differentiated to give the 
velocity of the linear motion system directly. Potential error sources in the velocity estimation 
are: non-linearity of the potentiometer, sampling error and the differentiation of discrete data. 

The main purpose of the water tunnel tests was to evaluate the feasibility of 
experimentally determining the steady and unsteady pressure coefficients. However, it was also 
desired to test, using the water tunnel data, the velocity prediction routine given in section 8. The 
spherical probe has only one pressure sensor and predicting, from this one pressure reading, 
simultaneously the instantaneous velocity and flow angle (or probe pitch angle) is impossible. 
For this reason the pitch angle was assumed constant and known, and determination of the 
velocity magnitude follow the procedure outlined in section 8. The experimentally determined 
steady and unsteady pressure coefficients calculated above were used to predict the velocity 
magnitude for several time series of corrected sphere pressures. From the filtered data also the 
"exact" relative velocity is known and is used as a reference. 

Test Case 1: Frequency 4 Hz and Pitch Angle 0 Degrees 
The first test case is for frequency 4 Hz. The inertial effects for this test are very large 

with a maximum K value of about 2.5. This data set was also used to determine the unsteady 
pressure coefficient for zero pitch angle. The filtered probe pressure and the true flow dynamic 
pressure are shown in fig. 10.19. The data in fig. 10.20 show that the velocity magnitude is 
predicted with reasonable accuracy from the measured pressure. 

1200 

400 

■200 

Fig. 10.19. Filtered sphere pressure and the true probe relative dynamic pressure of the 
flow for f=4 Hz, pitch = 0 degrees. 
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Fig. 10.20. Velocity prediction using the modified Euler predictor-corrector method for f-4 
Hz and pitch angle = 0 degrees. 

Fig. 10.21. Sphere pressure and calculated sphere pressure from the predictor-corrector 
method for f=4 Hz and pitch angle = 0 degrees. 
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Fig. 10.22. Difference between measured sphere pressure and calculated sphere pressure 
from the predictor-corrector method for f=4 Hz and pitch angle = 0 degrees. 

In section 8 it was shown that the accuracy of the predictor-corrector method depends 
heavilv on the sampling rate or time between data points. It was shown that the error is 
proportional to the step size tö the third power (Error cc h3) thus for each doubling of the 
sampling frequency (half the time between data) the error is expected to be reduced by a factor 
of eight. It was also shown that with 20 points per period for a sine wave the expected error is 
around 5%. The data in these tests was sampled with 200 points per period and thus very small 
errors are expected from the predictor-corrector routine. In fig. 10.21 the sphere pressure is 
shown, and also the calculated sphere pressure from the velocity magnitude and rate-of-change 
calculated by the predictor-corrector method. Negligible difference between the two pressures 
are observed and plotted in fig. 10.22. 

Test Case 2: Frequency 4 Hz and Pitch Angle 20 Degrees 
For a non-zero pitch angle the measured pressure has a completely different waveform 

and phase than the true dynamic pressure of the flow. For the tests using the sphere probe the 
pitch angle is known such that the steady and unsteady pressure coefficient values are given 
directly by the curve-fitted data from figs. 10.15 and 10.16 (Cp curves). Fig. 10.23 shows the 
filtered sphere pressure and the true dynamic pressure of the flow for a pitch-angle of 20 degrees. 
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Fig. 10.23. Filtered sphere pressure and the true probe relative dynamic pressure of the 
flow for f=4 Hz, pitch = 20 degrees. 

Fig. 10.24. Velocity prediction using the predictor-corrector method for f=4 Hz, pitch - 20 
• degrees. 
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In fig. 10.23 large amplitude difference between the sphere pressure and the true dynamic 
pressure of the flow is seen. Using the predictor-corrector routine the velocity is still predicted 
well (fig. 10.24). 

Test Case 3: Frequency 2 Hz and Pitch Angle 0 Degrees 
For frequency 2 Hz the inertial effects are much smaller than for 4 Hz, but still 

significant. The experimental determination of the unsteady pressure coefficient used data 
recorded at 4 Hz. Using this unsteady pressure coefficient to determine the velocity magnitude at 
a different frequency, will show the technique's independence from frequency. In fig. 10.25 
large unsteady effects are still seen for this lower frequency (as compared to 4 Hz). Fig. 10.26 
shows that even for frequencies different from the calibration frequency the method works well 
in predicting the velocity magnitude. 

Test Case 4: Frequency 2 Hz and Pitch Angle 70 Degrees 
The steady and unsteady pressure coefficients are continuous and well-behaved up to 

about 80 degrees where laminar separation causes divergence from the potential flow solution. 
The steady pressure coefficient is negative for angles above approximately 42 degrees, meaning 
that a steady pressure at 42 degrees or higher will be negative. 
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Fig. 10.25. Filtered sphere pressure and the true probe relative dynamic pressure of the 
flow for f=2 Hz, pitch = 0 degrees. 
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Fig. 10.26. Velocity prediction using the predictor-corrector method for f-2 Hz, pitch - 0 
deg. 

Fig. 10.27. Filtered sphere pressure and the true probe relative dynamic pressure of the 
flow for f=2 Hz, pitch = 70 degrees. 
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Fig. 10.28. Velocity prediction using the predictor-corrector method for f-2 Hz, pitch - 70 
degrees. 

Fig. 10.27 shows that the measured pressure and the true dynamic pressure of the flow 
are opposite in sign with their absolute values very similar. For this high angle the velocity 
magritude is still predicted accurately in phase (fig. 10.28), but significant over prediction in 
magnitude is observed. For each of the four cases considered the velocity is consistently over- 
predicted to a lesser or greater degree. This over-prediction may be due to a number of reasons. 
The indirect method of measuring the probe relative velocity can introduce errors, which means 
that in the four examples given above the error might not be in the predicted velocity, but rather 
in the "exact" or reference velocity. Additional refinement could also be done in the starting 
points for the predictor corrector method. Due to the non-linearity of the governing equation 
some instability problems can occur in the starting region unless proper precautions are taken. 
For the above tests zero values were used as starting values and relatively slow convergence to 
the true velocity is seen. For periodic flows this may not impose a problem since a long time 
series can be used and the first few points can be discarded, however for non-periodic flows 
further refinement of the starting conditions should be attempted. 
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11 ANALYTIC PREDICTION OF SURFACE PRESSURES OVER A 
HEMISPHERE-CYLINDER AT INCIDENCE AND EXPERIMENTAL 
VALIDATION 

The utility of the hemisphere cylinder configuration lends itself to widespread 
application, with the specific application of interest to us being its use in pressure probes. An 
explicit method to estimate the surface pressures over this configuration would be of use for both 
conceptual design and for understanding the relation of the design variables. Consequently, an 
explicit equation is developed that requires only the hemisphere cylinder incidence and the 
location of the point of interest to yield the final surface flow. Surface pressures are calculated 
using perturbation potentials calculated from least square curve fits to numerically estimated 
potentials. Comparisons of the expression with experimental data show good agreement. 

Nomenclature 
Cp = pressure coefficient 
fe = source ring strength 
Kc = kernel function 
k = geometric parameter 
1 = body length 
Pn = source ring influence parameter 
r = orthogonal coordinate 
R = hemisphere radius 
U = freestream 
V„ = tangential velocity 
W = transverse velocity 
W| = lateral velocity 
w; = axial velocity 
x.y.z = cartesian coordinates, origin at hemisphere nose 
x'.y.z = cartesian coordinate:,, origin at hemisphere-cylinder juncture 

p, ^ = orthogonal coordinates 
u = geometric parameter 
/. = geometric parameter 
<P = perturbation potential 
(f> = potential 
()„ = hemisphere cylinder incidence angle 
0V = angle to the point of interest measured from the attachment line 
0 = spherical coordinate angle, measured from nose of hemisphere 

General 
The wide range of applications of the hemisphere-cylinder (H-C) configuration has led to 

numerous investigations to elucidate its aerodynamic characteristics. Hemisphere-cylinders form 
the baseline shape of many underwater vehicles, subsonic missiles as well as measurement 
probes. Both experimental (Hoang, H. T., 1991; Meade and Schiff, 1987; Meier and Kreplin, 

19S0) 
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and numerical (Ying et al., 1987) studies have clarified effects of incidence and Re number on 
surface pressure loads and on and off-surface flow topology. Generally, at low incidence for -15 
< 9 < 15 deg, the effect of the cylinder on the surface pressures over the hemisphere is marginal, 
such that the flow resembles that over a sphere. Note that 9 = 0 deg indicates the H-C nose, and 9 
= 90 deg the hemisphere-cylinder junction. For larger 9's, the source like effect of the cylinder 
results in reduced tangential velocities compared to the sphere. At zero incidence in the laminar 
sub-critical range, the minimum recorded pressures for the H-C generally occur1 at 9 * 67 (Re 
= 27.000) - 76 (Re > 290,000) deg compared to 9 * 72 deg for a sphere (Schlichting, 1979) (Re 
= 163,000). At these Re numbers, the minimum recorded pressure coefficient for the H-C is 
typically * -0.64 while that for a sphere is * -0.56. Increasing the Re past critical shows an aft 
movement of the point of minimum pressure with a concomitant increase in the minimum 
pressure attained. 

Viscous effects have a pronounced effect on the flow behavior over a H-C. At low 
incidence, pressure recovery at the intersection of the hemisphere with the cylinder generally 
causes localized flow separation in the form of a ring shaped bubble (Hoang, H. T., 1991). 
Turbulent transition generally closes the separation. As the incidence of the H-C increases, the 
separation region looses axi-symmetry and moves from the windward side towards the leeward 
side of the H-C. A localized separation bubble may still exist on the leeward surface, at x/R « 1, 
however it may terminate in two unstable foci which mark the lift off location for two "horn 
vortices". Further down the cylindrical body, cross flow separation also results in the formation 
of vortices (which may connect with the aforementioned horn vortices). This vortex formation is 
dependent on the state of the cross flow boundary layer and hence Re. Consequently, the flow 
over a H-C at incidence may be considered to be constituted of both potential (windward) and 
viscous flow regions (leeward) with the boundaries determined by the operating conditions, e.g. 
incidence. Re, turbulence, etc. The above statement combined with the fact that in the use of 
pressure probes it is mainly the pressures of the windward side that are important, viscous effects 
are of secondary importance. Pointed nose axisymmetric bodies are prone to asymmetric wake 
development for large angles of attack. The asymmetry of the vortex wake can be caused by any 
slight surface perturbation. H-C's are generally not as prone to vortex asymmetry as sharp 
axisvmmetric bodies, however, a moderately small surface perturbation in the nose vicinity of a 
H-C can cause asymmetrical vortex development. For H-C incidence angles (9H) greater than 15 
deg and less then 42 deg, the wake of the cylinder can also contain unsteadiness. The 
unsteadiness is due to periodic heaving of the vortices as they convect downstream (Hoang, H. 
T.. 1991). For incidences greater then 42 deg, H-C's exhibit vortex shedding. 

The wide ranging application of H-C configurations makes it valuable for the designer to 
have a simple analytic tool that would allow estimates of the surface pressures over a H-C at 
incidence. Traub (Traub, 1999: Traub, 1997a; Traub 1997b; Traub, 2001) has shown that 
analytic prediction methods can offer simplicity and utility to the designer, and allow a "feel" for 
the respective design variables. Consequently, an analytic method has been developed. The 
method uses the surface singularity methods of Landweber (Landweber, 1951) and Lotz (Lotz, 
1932) to estimate the perturbation potentials for axial and transverse flow, respectively. These 
potentials are then approximated using a least squares curve fit. Potential theory is then used to 
develop a final single expression which allows for pressure estimation. An experimental study 
was also undertaken to provide data for comparison. Numerous theoretical and experimental data 
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comparisons are presented. Agreement is seen to be very good, which is encouraging considering 
the simplicity of the final analytic expression. 

Theoretical Development 
As Laplace's equation is linear, the perturbation potential due to axial flow and that due to 

transverse flow can be decomposed and solved independently. For simplicity, different methods 
were used for the axial and transverse flow solutions. A brief overview of these methods is 
presented. Specific details may be found in the cited references. 
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Fig. 11.1. Effect of singularity location on the perturbation potential and predicted pressure 
coefficient over a H-C. 

Axial Flow 
Initially, the accuracy of surface and axis distributed singularity methods was investigated. 

Figure 11.1 shows comparisons (the axis method used doublets, the surface method will be detailed 
below). It may be seen that for this type of body, an axial distribution of singularities does not yield 
an accurate representation of the flow, essentially due to a discontinuous second derivative of the 
surface at the H-C juncture. It was thus decided that the surface singularity method would be used to 
model the flow despite a significant increase in complexity. The axial flow over the H-C was solved 
for using the method of Landweber, as presented by Albone (Albone, 1972). Landweber has shown 
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that by applying Green's theorem to the solution of the boundary value problem for <(>, an integral 
expression for the surface velocity may be obtained. Thus, the method consists of solving the 
integral equation for the surface velocity: 

rPU(x)v(x fds     , , ,     .      f,      T 
J,,  3    =1      where   r(x,t) = yj(x-t) 2+y2 (li.i) 

Irfxj) 

U(x) is the total fluid velocity on the body surface non-dimensionalised by the free stream 
velocity and t is the location of a unit strength source at an arbitrary location on the bodies axis of 
symmetry. This equation is solved by iteration to minimise an error function within a user 
prescribed tolerance (see Albone, 1972, for details). This method is more rapid than other surface 
singularity methods, but yields velocity on the body surface only. Within the user prescribed 
tolerance, the method is exact. The perturbation potential was found by integrating the perturbation 
velocity, using cubic splines to describe the velocities. Fig. 11.2 shows comparisons between the 
present method (i.e. Landweber's method) and the results of Vandrey (Vandrey, 1953), who used a 
surface source ring method. A least square curve fit of the present method's data is also included. 
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Fig. 11.2. Predicted axial perturbation potential over a H-C. 
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Transverse Flow 
The transverse flow was solved for using the more general, but computationally more 

expensive method of Lotz. This method uses an axial distribution of surface source/sink rings in 
combination with the no penetration boundary condition to determine the source strengths. The 
method is complicated by the behaviour of the kernel or core functions which are singular when the 
effect of the element on itself is evaluated, requiring careful implementation of suitable limits. The 
method consists of calculating the geometric Kernel: 

r=   ,     7        (G,(k2)[(r-p)-r'(x-Q]-pG2(k2)]) O1-2) 

where G, and G2 are functions of complete elliptic integrals of both the first and second kind: 

GlJ2-k2)E(k2)_     kl (11.3) 
20-A-) 

G2 = 2(-^p(E(k')-K(k2))+(E(k2)-K(k2)) (H-4) 
K 

with 

dz 
K(k:) =  [ =^   elliptic integral of the first kind 

i, Vl-A':sin: r 

/; (k:)= [ \l\-k2 sin: zd~   elliptic integral of the second kind 

a. p. k. k. x, C, and r are geometric parameters given by: 

a: =(.v-^"): +/': + p2 k2 =2rp (11.5a) 

Ar=a\~-      and     k2 =\-A2 (H-5b) 
a' +k 

The method then consists of solving for each P(x,r) by varying the running point RP(£,p), taking 
care to evaluate P=RP so as to avoid a singular solution (due to the elliptic integral Gl), (see Fig. 
11.3) where 

Pjx.r) = iP'"(^P)Ke d^     and    Px(x.rHBK'd^ (H-6) 
P 

134 



RP(CP) 
—•— 

Fig. 11.3. Theoretical development geometric variables and calculated velocity components. 

The solutions of the preceding equations are then combined in a rising power series of n for the 
source ring strengths at any fixed point location: 

f(x.r) = ftl(x,r)- 
f„(*.r) (p,(x,r)   p2(x,r) ^Pi(x,r) 

\    7i n n 
(11.7) 

Finally, the perturbation potential at any point in the flowfield is found using: 
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<f>' = -4Wcos0,.]o ,  2     2 GA\a )P&h 
4 a +k" 

(11.8) 

where W is the transverse velocity, G3 is a function of complete elliptic integrals of the first and 
second kind, i.e. 

G3 = ^[(2-k2)K(k2)-2E(k2)] 
A. 

(11.9) 

0v is the angle to the point of interest measured from the attachment line. Although tedious, the 
method does yield essentially exact solutions. Fig. 11.4 shows comparisons of the transverse 
potential between the present method and the results of Vandrey, who used a surface source ring 
method. A polynomial curve fit is also presented. 

Prediction of Pressures 
Using the axial and transverse perturbation potentials determined using the surface 

singularity methods above allows the determination of the attached flow surface pressures at any 
location on the H-C as will be detailed. As mentioned previously, the contributions of the axial and 
transverse flow can be determined separately due to the linear nature of Laplaces' equation. 

Velocity Due to Axial Flow: 0 < x/R < 1 
Figure 11.3 shows the variables used in the present development. For utility, the formulation 

uses the position variable 6 for location over the hemisphere body (rather than x/R). A least squares 
curve fit of the perturbation potential in Fig. 11.2 yields, using x/R=l-cos(6) with x'=x-R (after 
some manipulation): 

<t>'=L'Rcas(0„) 

sin(0)(0.1375 - 0.0744cos(#) - 0.1869 cos2 (0) - 0.0457 cos3 (6>) 

+ 0.1276 cos4 (6>) + 0.06404 cos5 (#)-0.0608cos6(#)-0.0658cos7(#) 

- 0.0220 cos8 (0) - 0.0026COS9 (0)) + 0.16500 

(11.10) 

The tangential velocity is then 

"    R cO 
(11.11) 

where $0l is the freestream potential (= -URcos(9)cos(9H)) plus the perturbation potential. 
Evaluation yields, where Ucos(8H)sin(6) is the freestream contribution 
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V0=Ucos(0H) 
sin(^) + 0.5115cos(Ö)-0.0115cos2(^)-1.0714cos3(ö)-0.5032cos4(^) 

+ 1.003cos5(#) + 0.8445cos6(#)-0.2496cos7(#)-0.5029cosV) 
-0.1982cos9(^)-0.026cos10(ö)+ 0.2394 

(11.12) 

Velocity Due to Transverse Flow: 0 <x/R < 1 

The calculation of the induced velocities due to the transverse component of the 
decomposed freestream is straightforward but contains a subtlety. The transverse flow induces 
two velocity components on the hemisphere surface: one lateral (w,) and one axial (w.) such that 
it opposes the velocity due to axial decomposition of the freestream. It is this component, w>, 
that is responsible for the rearward movement of the attachment line stagnation point with 
incidence. 

Using the numerical data in Fig. 11.4 gives a transverse perturbation potential of 

0'= UR sm(df/)cos(Or) 
0.7146-0.2789cos(<9)-0.1396cos:(Ö)-0.0802cos3(Ö)-0.1802cos4(Ö) 

+ 0.1363cos5(<9) + 0.4177 cos6(6>) + 0.0194cos7(#)-0.3272cos8(#) 

-0.2033cosV)-0.0369cos,0(#) 

(11.13) 

The lateral velocity component is found using 

cd> run u-, = 
R ee,. (11.14) 

where &„ is the freestream potential (= URcos(ev)sin(eH)sin(e)) plus the perturbation potential. 
Evaluation yields 

w, =-f.'sin(0„ )sin(6>, ) 
0.7146-O.2789cos(0)-O.1396cos:(6>)-0.0802coS-(<9)-0.1802cos4(<9) 

+ 0.1363cos5((9) + 0.4177cos6(/9) + 0.0194cos7((9)-0.3272coss(6') 
-O.2O33cos,(0)-O.O369coslo(£) + sin(£) 

(11.15) 

The axial component w2 is determined using 

cd> TlOl u\ = 
R ee 

Evaluation of w2 gives 

(11.16) 
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u-, = Us'm(0H)cos(9l) 

0.2407COS2 (9) sin(0) + 0.7208cos3 (9) sin(0) - 0.6815 cos4 (0) sin(0) 

-2.5O59cos5(#)sin(0)-O.1355cos6(#)sin(#) + O.2793cos(#)sin(#) 

+ O.2789sin(0) + cos(0) + 2.6179cos7(0)sin(0) + 1.8297cos8(0)sin(0) 

+ 0.3698cos9(#)sin(#) 

(11.17) 

The surface pressure coefficient is then found using 

CP=\- 
V,-vv:)

2+vv,2' 

U2 
(11.18) 

Surface Velocities: 1 < x/R < 2 
A similar procedure is used for the after-body, noting that for this region, w2 = d(j\Jdx and 
V0 = dfajcx. The resulting expressions for the three velocity components are: 

Vg=Ucos(0H) 

0.0359 + — 2.4668 - (—)211.1589 + (—)3 32.7894 - (—)4 57.1212 
R R R R 

(_)558.7740-(-)637.0220 + (-)714.4878-(-)83.4418-(-)9 0.4549 
KR R R R R 

-0.0257(-),0+l 
R 

(11.19) 

-Usm(OH)sm(0r) 

0.0141+ -3..0142-(-):l 1.5727+ (-)330.2474-(-)448.8443 
R R R R 

(—)550.2109-(—)633.4521 + (—)714.3547-(—)83.8209 + (—)°0.5731 
R R R R R 

-(—)'°0.0369 + l 
R 

(11.20) 

u\ =Ucos(9, )s\n(9ll 

3.0142- —23.1454 + (—)290.7422-(—)?195.3772 + (—)4251.0545 
R R R R 

-(-)5 200.7126 + (—)6100.4829 - (—)7 30.5675 + (—)8 5.1577 
R 

■(-)"0.3698 
R 

R R R 
(11.21) 

As before, pressures on the cylinder are estimated by substituting Eqs. (11.19) - (11.21) into Eq. 
(11.18). 
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Fio. 11.4. Predicted transverse perturbation potential over a H-C. 

Experimental Equipment And Procedure 
The wind tunnel model was manufactured from Aluminum. Relevant dimensions are 

shown in Fig. 11.5. The H-C's diameter was 1.5" (38.1mm) to accommodate the pressure 
tappings. The'hemisphere had 25 tappings in three rows of 8 (spaced 20 deg apart) in addition to 
a center tap. The pressure ports were spaced at A9 = 10 deg intervals along the periphery of the 
nose. The internal diameter of the tappings was 0.01" (0.25mm). The tappings were as small as 
possible to minimize their effect on the flow. In order to determine the length of the H-C such 
that the influence of its blunt base would be minimized, numerical experiments were undertaken 
to determine the effect of a blunt aft portion. The simulation was conducted using the surface 
vortex ring method to simulate the axial flow, and a surface source ring method to simulate the 
transverse flow, as described above. The numerical data suggested that the effects of the cylinder 
base (on the hemisphere) were minimal for base locations greater than 6 cylinder diameters from 
the front of the model. The model was attached to a pitching mechanism to allow accurate 
incidence variation of the model from 0 to 45 deg. The model could be set to 9H within 0.05 deg 
of the required value. 
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■ 20? 1     ' 20°/ 

0.01" tappings® 10c 

Fig. 11.5. Wind tunnel model details. 

The tests were undertaken in the Texas A&M University 3' x 4' continuous wind tunnel at 
velocit.es of 10 4 and 20.5m/s, corresponding to Re = 26,000 and 53,000 based on the diameter 
of the H-C At these velocities the turbulence intensity is typically < 0.3%. The wind tunnel jet 
velocity uniformity is typically within 0.1%. The tunnel has active cooling and is normally 
maintained at 20 °C for the duration of a run. 

Pressures were recorded using an ESP 32-port electronic pressure scanner with a range of 
±2500 Pa The signals from the ESP were digitized using a 12-bit A/D board giving a resolution 
of ±0 M% of full scale. The A/D's sampling frequency was 2kHz. The ESP was monitored using 
a factory calibrated Air Neotronics digital micro-manometer with a resolution of 0.1 Pa. Before 
each test the ESP was recalibrated to reduce errors. Repeated data runs yielded an estimated 
uncertainty of the data of 0.3% of full scale for a 95% (2a) confidence interval. During the 
testin" after the model was pitched to a new incidence, approximately 10-15s was allowed to 
elapse"to allow the pressures to reach their steady-state values. The model was pitched through 0, 
15 30 and 45 deg At each 8H, the ESP was sampled 200 times and averaged. No corrections to 
account for wall effects, i.e. solid and wake blockage, were applied to the data, as a large 
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majority of «he test oases would eneompass sigmfieant extents of separated flow making accurate 
aJlication of eorreetions uncertain. Furthermore, for the worst ease seenano, 9„ - 45 deghe 
comS blockage of the model and mount is less than 1.4% sugges.mg that wall effects wou.d 

be negligible. 

*m^V™J£Zte* Pressure coefficient measured over a hemisphere cylinder a zero 
mcidenceutmg Landwebers method and Eq. (11.18) are shown in Fig. 11.6. Agreemen with fce 
pre en exp nmental data is seen to be good. Also included in the figure is the potenüal solution for 
the flow over a sphere (= 1 -9/4sin2

(e)) as well as an empirical modification to his formula to 
ccount for the effect of the cylinder on the hemisphere <= l-2.07sin2(e)). As noted pnor, for 9 = 

+15 dee the presence of the cylinder has a negligible effect on the hemisphere surface pressure. For 
greater^ the cyHnder acts as a downstream source, retarding the surface velocities thus causing 
fompLtivdy higher surface pressures. The empirical relation is seen to accurately estimate the 
surface pressures over the forward 6 = 55 deg of the hemisphere. 

eH= Odeg 

ti Re = 26,000 
ORe = 56,000 - Repeated Data 

— Prediction 

— - Landweber's method 

- - 1-2.07sin (9) 

1-2.25sin2(6)        (Sphere) 

0.4 0.6 
x/R 

Fig. 11.6. Predicted surface pressure coefficient over a H-C, 6H = 0 deg. Present 
experimental data. 
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Hoang performed a comprehensive study on the behavior of a H-C at incidence. His data 
included surface pressure, surface flow topology, as well as Hot Wire and LDV measurements. 
Consequently, Hoang's data (Re= 42,000), in addition to the present experimental effort, will be 
used for prediction validation. To correctly evaluate the potential of the present expression, it is 
necessary to know its natural limitations following from the unique inherent viscous 
characteristics of a H-C. Consequently, these characteristics/flow behaviors will be discussed 
briefly although touched upon in the introduction. At the Re range of the experimental data 
included in this study, the surface flow displays a marked and systematic variation with 6H as 
elucidated by Hoang. At zero incidence, surface skin friction patterns indicate the existence of an 
axisymmetrical closed separation bubble (as mentioned prior) propagating from the H-C 
juncture. Incidence causes an asymmetry of this bubble with a leeward displacement of the 
separation borders. Increasing 9H to 10 deg sees the formation of two horn vortices (representing 
unstable foci) from the upper lateral edges of the bubble at 9V * ±130 deg. Two symmetric cross 
flow separation lines are also apparent on the cylinder at this incidence and indicate the possible 
existence of leeward vortices. These separation lines are clearly distinct from the horn vortices 
and originate approximately 2R aft of the horn vortices. Increasing incidence shows a leeward 
displacement of the separation region located at the hemisphere-cylinder juncture. Skin friction 
patterns from Hoang1 are reproduced in Fig. 11.7b-l 1.7c representing the H-C at 9H = 20 deg, as 
this is the incidence of most of the data comparisons presented in this study. A summary of the 
surface flow features is also presented, Fig. 7a. The cross flow separation line is clearly seen 
running along the side edge of the cylinder. This separation point is seen to move progressively 
windward with increasing x/R. A trace of the surfaces pressures experienced along a skin friction 
line originating from x/R = 1, 0V = 0 deg and x/R = 5, 9V = 0 showed that the movement of this 
separation line to smaller 8V (i.e. windward) with increasing x/R is not due to a more favorable 
pressure distribution downstream (the large x/R pressure distributions are more favorable). The 
trajectory of this separation line is thus probably due to the increasing boundary layer thickness 
downstream increasing the tendency for separation. Two darker lines running over the top of the 
H-C are identified as vortex induced separation lines, suggesting the presence of two vortices per 
side, a primary and secondary separation vortex. The primary vortex causes the secondary flow 
separation. Vortex induced pressure gradients convect fluid laterally outwards under the primary 
vortex core, such that the fluid encounters an adverse pressure gradient which causes the 
boundary layer to separate. The ensuing free shear layer rolls-up and forms a vortex of opposite 
rotation "(to the primary). The skin friction lines emanating from the attachment line are seen to 
progressively reduce in inclination relative to the body, see Fig. 11.7c, and at x/R > 4.8 they are 
inclined at 40 deg to the freestream. This condition corresponds to Munk's (Munk, 1923) "2a" 
type of flow (where local lift development assuming no flow separation is proportional to 
2a: here, 0H = a) and suggests that over this region of the H-C, the flow is essentially inviscid. 
Fig. 11.7d shows a sketch, proposed by Maskell (Maskell, 1955), showing a 3D representation of 
the off surface flow features detailed above. 

Hoang's skin friction data indicate that the vortex induced flow separation lines 
(associated with the leeward vortices) gradually approach the horn vortices and at 6H ~ 25 deg 
these flow features connect. The cross flow separation lines also gradually move towards 
larger 9V values (the back of the cylinder) with incidence as the axial surface flow component 
reduces relative to the transverse (effectively increasing the cross flow Re number). Beyond 
about 33 deg incidence, the presence of the horn vortices cannot be established. 
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Leeward vortex side wash pattern Attached axial flow region. 

--a^.,:    y ■■ii_>i»«^" mjZ^'^£j,',,iA<iiäm_m.f*s-t*'*'''U>&.w* tp»*w i^iL-^Hsa^-^M^^ ^ 
~i e 

... .'*-b—- 

Cross flow separation line (c) 

Horn vortices 

Leeward vortices 

Fig. 11.7. Flow patterns over a H-C, 0H = 20 deg: (a) Skin friction pattern summary, (b) 
Surface skin friction patterns, top view, (c) Surface skin friction patterns, side view, (d) 

Three dimensional off-surface flow reprasentation. 
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Theoretical and experimental comparisons for a H-C at 20 deg incidence (= 9H) are 
presented in Figs. 11.8-11.17. Values for 0V from 0 to 180 in 20 deg increments are presented to 
clearly demonstrate the accuracy of the predictions (i.e. Eq. (11.18)) as the flow develops. Figure 
8 shows predictions of the surface pressure coefficient along the attachment line. Good 
agreement over the forward envelope of the cylinder is seen. The minimum recorded pressures 
are somewhat under-predicted. The pressure recovery region is relatively well captured. 
Downstream pressures on the cylinder (x/R > 1.5) are well approximated. Notice that although 
the location of the minimum pressure region is predicted slightly too far aft, the form of the 
theoretical distribution, with a sharp pressure recovery following the suction peak, is 
representative. 

1.2r 

c 0.8 
o 

•*- 
H- 
<D 
O 
o 0.4 
<D 
1_ 
3 
c/> 
c/) 
<D 
Q. 0.0 

■0.4 
0.0 

0H= 20 deg, 6v= 0 deg 

O        Experimental Data 

Prediction 

Fig. 11.8. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 0H = 20 deg, 0V = 0 deg. Experimental data from Hoang. 

Similar trends are seen in Figure 9 (0V = 20 deg). Increasing 0V to 40 deg, Fig. 11.10, 
shows an over-prediction and under-prediction respectively of the maximum and minimum 
measured pressures, although the general form of the pressure distribution is well captured as are 
the after-body pressures. 0V = 60 deg show's similar characteristics, see Fig. 11.11. Increasing 0V 
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beyond 60 deg, Fig. 11.12, shows good correlation of predicted pressures with experiment, 
except for small'x/R where pressures are over-predicted. Pressures on the cylinder after-body are 
well captured. Also note that the x/R location of the minimum pressure is more accurately 
captured than for lower 0V, where the predicted minimum pressures are further aft than that of 
the experiment data. Increasing 6V shows increasing dominance of the cross flow w, velocity 
term (oc sin(6v)) and a reduction in the w2 (°c cos(9v)) term which opposes Ve. 
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6H= 20 deg, 0v= 20 deg 

O Experimental Data 
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Fig. 11.9. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 9H = 20 deg, 8V = 20 deg. Experimental data from Hoang. 
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9H= 20 deg, Bv= 40 deg 

O Experimental Data 

Prediction 

Fio 11.10. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
H-C, eH = 20 deg, 6v = 40 deg. Experimental data from Hoang. over a 
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Fig 1111. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
H-C, 8H = 20 deg, 0V = 60 deg. Experimental data from Hoang. over a 
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Fig. 11.12. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 0H = 20 deg, 6V = 80 deg. Experimental data from Hoang. 

For 0v > 90 deg, the experimental data shows evidence of separation effects (x/R ~ 1.25, 
see Fig. 11.13), with Hoang's data indicating the presence of a closed separation bubble laterally 
terminating in two "horn" vortices, see Fig. 11.7. These flow effects are viscous in origin, and 
could not be captured by the present inviscid method. The form of the pressure distribution, i.e. 
flat, between 1.25< x/R < 1.6 is clearly that of a closed separation bubble (despite the horn 
vortices). However, for 8V < 140 deg, pressures over the forward region of the hemisphere as 
well as the minimum pressure region are well estimated (Figs. 11.13-11.15) as are the final after- 
body pressures. Examination of Figs. 11.8-11.15 indicates that Eq. (11.18) describes the 
changing form of the pressure recovery region well, from a sharp initial recovery following the 
point of minimum pressure for small 0V, see Figs. 8-10, to a milder recovery (Figs 11.11-11.15) 
for larger By. 
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Fig. 11.13. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 9H = 20 deg, 9V = 100 deg. Experimental data from Hoang. 
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Fig. 11.14. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 0H = 20 deg, 6V = 120 deg. Experimental data from Hoang. 
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Fig. 11.15. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 9H = 20 deg, 0V = 140 deg. Experimental data from Hoang. 

For Gv = 160 and 180 deg (Figs. 11.16 and 11.17) pressures over the forward portion of 
the hemisphere are still well captured (G < 55 deg). Interestingly, pressures over the cylinder are 
well estimated despite the presence of separated flow. This is probably due to the mutual 
downwash from the leeward vortices creating a region of attached flow between them, which is 
approximately potential, as is also seen in delta wings at moderate angles of attack. 
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Fio 11 16. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 
over a H-C, 9H = 20 deg, 9V = 160 deg. Experimental data from Hoang. 

It is instructive to explicitly investigate the ability of the theory to predict pressure as a 
function of 0v at a particular axial location. This data is presented in Fig. 11.18 along with data 
from Hoang The predictions faithfully capture the magnitude and dependence of the pressure 
coefficient on 9V although accuracy improves for larger x/R. Comparisons of the method with 
the current experimental data at higher incidence, 6H = 30 and 45 deg are presented in Figs. 
11.19 and 11.20. Even at these extreme incidences, close accord is demonstrated for moderate 0V 

(< 4° dThe experimental data used for comparison in this study was acquired at relatively low 
Re number, which may cast doubt as to the validity of the comparisons at higher Re. However, 
the theoretical development is inviscid and thus would be representative for higher Re flows. 
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Fig. 11.17. Comparison of predicted (Eq. (11.18)) and experimental pressure coefficients 

over a H-C, 9H = 20 deg, 9V = 180 deg. Experimental data from Hoang. 

In summary, a potential flow based equation was developed to estimate the surface 
pressures over a hemisphere cylinder. The expression used least square regression curve fits of 
numerically generated axial and transverse perturbation potentials. These potentials were 
calculated using surface singularity methods. Numerous comparisons of surface pressure 
estimates using the resulting expression with experimental data are presented. The equation 
showed the ability to closely predict incidence effects on pressure around the hemisphere 

cylinder's surface. 
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Fig. 11.18. Effect of 8V on predicted (Eq. (11.18)) and experimental surface pressure 
coefficients, 0H= 20 deg. Experimental data from Hoang. 
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Fig. 11.19 Effect of 0V on predicted (Eq. (11.18)) and experimental surface pressure 
coefficients, 6H= 30 deg. Present experimental data. 
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Fig. 11.20. Effect of 0V on predicted (Eq. (11.18)) and experimental surface pressure 
coefficients, 6H= 45 deg. Present experimental data. 
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12 METHODOLOGY TO DETERMINE EXPERIMENTALLY THE 
POTENTIAL OF A HEMISPHERE CYLINDER RESULTING FROM 
ERRORS IN MANUFACTURING 

Nomenclature 

Cp = pressure coefficient 
p, = static pressure at port i 
R = hemisphere radius 
t = time 
U = freestream 
V(, = tangential velocity 
V, = total velocity at port i 
W = transverse velocity 
wi = lateral velocity 
w; = axial velocity 
x.y.z = cartesian coordinates, origin at hemisphere nose 
x\y.z  = cartesian coordinates, origin at hemisphere-cylinder juncture 
<fj = perturbation potential 
<p = potential 
9H = hemisphere cylinder incidence angle 
G\ = angle to the point of interest measured from the attachment line 
6 = spherical coordinate angle, measured from nose of hemisphere 

Experimental Determination of(f> 

The potential cannot be measured directly, but it can be determined from the surface 

pressures, and in turn the surface velocities (as V = W<p ), for specific orientations of the probe. The 
axial potential is a function of U, R, 6H and 9 while the transverse potential is a function of U, R, 8H, 
Oy and 9. The total potential is composed of two components, an axial and a transverse component. 
As Laplace's equation is linear, these components can be added to yield the total potential. Suitable 
orientation of the probe in a steady freestream should allow determination of the 2 potential 
components. 

Velocity and Potential due to Axial Flow: 0 < x/R < 1 
Figure 12.1 shows the variables used in the present development. For utility, the formulation 

uses the position variable 0 for location over the hemisphere body (rather than x/R). A least squares 
curve fit of the perturbation potential in Fig. 12.2 (left) yields, using x/R=l-cos(6) with x'=x-R 
(after some manipulation): 
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</>'=UR cos(0H) 

sin(0)(O.13 75 - 0.0744 cos(0) - 0.1869 cos2 (0) - 0.0457 cos3 (0) 

+ 0.1276 cos4 (0) + 0.06404 cos5 (0) - 0.0608 cos6 (0) - 0.0658 cos7 (0) 

- 0.0220 cos8 (0) - 0.0026 cos9 (0)) + 0.16500 - 0.59 

(12.1) 

}       ,=k,ailURcos(0H) 
i   U '! -..'Ulli l7Wi7( v      ^   ' 

sin(0)(0.1375 - 0.0744cos(#) - 0.1869 cos2 (0) - 0.0457 cos5 (0) 

+ 0.1276cos4 (0) + 0.06404COS5 (9) - 0.0608cos6 (0) - 0.0658cos7 (0) 

- 0.0220cos8 (0) - 0.0026cos9 (0)) + 0.16500 - cos(0) - 0.59 

(12.2) 
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Fig. 12.1. Variable definitions. 
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Fig. 12.2. Axial (left) and transverse (right) potentials. 
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Equation (12 2) includes the free stream contribution (= -URcos(e)cos(eH)). t is assumed 
in Fc Ü2 7 that e'rrors in the potential are due to geometry, and hence scale linearly with 
^^L^^c^Jco^ for this component kax,al is included. The tangential 

velocity is then 

cd>       , (12.3) VYlot-axial v 

Ve = R     30 

Evaluation yields, where Ucos(9H)sin(0) is the freestream contribution 

Vlt=kinuilUcos(0H) 

sln(Ö) + 0.5115cos(ö)-0.0115cos2(ö)-1.0714cos3(Ö)-0.5032cos4(ö) 

+1.003 cos5 (9) + 0.8445 cos6 (9) - 0.2496cos7 (8) - 0.5029cos8 (0) 

- 0.1982cos9 (0) - 0.026 cos10 (8) + 0.2394 

(12.4) 

Velocity Due to Transverse Flow: 0 < x/R < 1 f   , 
The calculation of the induced velocities due to the transverse component of the 

decomposed fr es ream is straightforward but contains a subtlety. The transverse flow induce 
ZTetocTy  omponents on the hemisphere surface: one lateral (w,) and one axtal (w:) su h that 
rocoose   Ae velocity due to axial decomposition of the freestream. It ,s thts component, ^ 
ha. B responsele for the rearward movement of the attachment Hue stagnation point w.lh 
n  dence Us.ng the numerical data in Fig. 12.3 gives a transverse perturba.ton potential of 

<f>' = L7?sin(0„)cos(0, ) 

0.7146-0.2789cos(ö)-0.1396cos:(u9)-0.0802cos5(ö)-0.1802cos4(69) 

+ 0.1363cos3(v9) + 0.4177cos6(u9) + 0.0194cos^6')-0.3272cos8((9) 

-0.2033cos»-0.0369cos10(t9) 

(12.5) 

The total potential (including the freestream potential (= URcos(9v)sin(e„)sin(e)), and assuming 

a correction constant klninsv is given by: 

|i;ir,.m4;, L'föin(öw)cos(ö,.) 

0.7146-0.2785tos((?)-0.1396cof(i9)-0.0802cos(6')-0.1802cos4(L9) 

+0.1363cos(ö)+0.4177co^)+0.0194cos7(u9)-0.3272co^(Ö) 

-0.2033cos(Ö)-0.0369cos,0(u9)+sin(Ö) 

(12.6) 

The lateral velocity component is found using 

vr, = 
c4>„ (12.7) 

R     cOv 

= -A- ,.L'sin(öw)sin(ö,.) 

0.7146 - 0.2789cos(u9) - 0.1396cos: (0) - 0.0802cos? (0) - 0.1802cos4 (0) 

+ 0.1363cos5 (0) + 0.4177cos6 (9) + 0.0194cos7 (8) - 0.3272coss (8) 

- 0.2033cosg (0) - 0.0369cos10 (0) + sin(0) 

(12.8) 
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The axial component w2 is determined using 

1 *,_ (12.9) ^ tot-transv 
\X\   = 

R    ee 

Evaluation of w2 gives 

": =*«>«. Usm(eH)cos(d,.) 

r0.2407 cos: (0) sin(0) + 0.7208 cos? (0) sin(0) - 0.6815 cos4 (0) sin(0) 
-2.5059cos5(ö)sin(ö)-0.1355cos6(ö)sin(ö) + 0.2793cos(Ö)sin(Ö) 

+ 0.2789 sin(0) + cos(0) + 2.6179cos7 (0) sin(0) +1.8297 cos8 (0) sin(0) 

+ 0.3698cos"(6>)sin(<9) 

(12.10) 

Determination of constants k,ransv. and kaxiai 

a. Set the probe with 9H = 0°. Then (JHransv = 0. 

b. Ve = \u2 + =^- where Ap,- = p« - p. (12.11) 

c. Measure Ve. Calculate /U,/-/ for ports 2-5 (9 - 42° typically). Average the values 

to get single kaxiai. 

2    k 
"T" Set the probe with 9H = 90° and align a lateral port with the flow so 9V = 0°. Then 

(t>axial= 0. Thus Ve = 0. Also w, = 0 for the port facing the oncoming flow. Rotate 
the probe through 90° after measurement to find ktransy.i for the next lateral port, i: 

2->5. 

b     w =  jf''+ —^- where Ap, = px - Pi (12.12) 
"     V P 

c Measure w,. Calculate AW,-, for ports 2-5 (9 * 42° typically). Each port will 
have its own *,„,„„,,- value. These values will then be curve fitted to provide a 
global map for all 9H and 9V (this may not be necessary, as coefficients are 
determined using differences for specific port locations, e.g. P2-P4 and P3-P5 

etc). 

Basic Concept - Dynamic Determination 
Assume a fluctuating freestream. Application of the unsteady Bernoulli equation yields: 

where i refers to port i. Freestream properties are determined using a Hot Wire. The small wire 
diameter eliminates inertial effects. A similar definition of the potential to the static case is then 

used. 

Determination of constants ktransv. and k^M 
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1. k, axial 
a.   Set the probe with 9H = 0°. Then (twv= 0. As the front port is a stagnation port, 

V, = 0. However ()>i(t) ■*■ 0. Bernoulli's equation follows as: 

\mt-P,v*P^«& 

,„«J<) = <t,(0 = ka„aV(t)Rcos(9H) 

-sin(6>)(0.1375 - 0.0744cos(6>) - 0.1869cos: (0) - 0.0457cos'(#) 

+ 0.1276cos4(^)r0.06404cos5(6')-0.0608cos6(6')-0.0658cos"(6') 

- 0.0220coss(6>) - 0.0026cosV)) + 0.16506» - cos(0) - 0.59 

with 9 = 0°. Thus the equation simplifies to: 

(12.14) 

(12.15) 

L-aM0) = M0 = -l.S9kexJJ(t)R (12.16) 

Substitition of Eq. (12.16) into Eq. (12.14) allows determination of kaxial. Note this 
method is using the front port only. 

L.    Ktransv.-i 

a. Set the probe with 8H = 90° and align a lateral port with the flow so 6V = 0°. Then 
<t>axiai= 0. Thus Ve = 0. Also w, = 0 for the port facing the oncoming flow. Rotate 
the probe through 90° after measurement to find klransv.i for the next lateral port, i: 
2—>5. Bernoulli's equation gives: 

1,1 ■, dd>(t) 
±pu(ty =-pv2_i(ty+Pl(t) + p^-L (12.17) 

b.   Calculate w.M(t) and <f>i(t) 

H, {i)=k,^     C(Msin( #„)cos(ö, ) 

0.2407 cos2(0)sin(6>) +0.7208 cos',(0)s\n(&)-Q.6815 cos\0)sm(0) 

- 2.5059 cos5(6>)sin(6>)- 0.1355 cos\0)s\n(0) + 0.2793 eos(0)sin( 0) 

+ 0.2789 sin( 0) + cos(0) +2.6179 cos'(0)sin(0)+ 1.8297 cos"(0)sin(0) 

+ 0.3698 cosv(<9)sin(0) 

(12.18) 

where 6H = 90° and 0V = 0°. 6 is the location of the lateral port tapping and is 
known. Also, the potential is given by: 

<M = 0 (/) = *„ ,t'(/)Äsin(ö„)cos((91.) 

0.7146 -0.2789cos(fl)-0.1396 cos'(ö)- 0.0802 cos'(0)-O.18O2cos4(0) 

+ 0.1363cos*(tf) + 0.4177 cos"(ö) + 0.0194 cos7«9) -0.3272 cos*(0) 

- 0.2033 cos''(0)- 0.0369 cos"'(ö) + sin(ö) 

(12.19) 

U(t) is measured by the H/W and p,(t) is measured by the pressure transducer. 
Evaluate ktransv..i for ports 2-5. Then add the axial and transverse potentials 
together. 

161 



13. PRESSURE LINE ATTENUATION 

Discussion of Available Techniques 

A pressure-measuring instrument, such as a 5 or 7-hole probe, has a dynamic pressure 
response that is dependent upon the geometric tubing that connects the measurement point (at the 
tip of the probe) to the transducer diaphragm, the gas or fluid properties and the temporal rate-of- 
change of the measured pressure. For a given tubing-transducer system the dynamic response, or 
transfer function, can be determined either from theoretical models or experimental data. 
Theoretical models use the exact geometric dimensions of the tubing and transducer system, the 
fluid properties and the time history of the pressure signal. In the measurement of periodic 
pressures, the tubing system can, for an underdamped system, resonate, resulting in higher 
measured pressures than the true pressure at the measuring point. The first studies were 
performed on resonating tubes seen in musical instruments such as organs and flutes (Helmholtz, 
1885;Rayleigh, 1894). 

Ps 
J?! V Pr 

Fig. 13.1. Schematic of the system, with inlet pressure ps(t), tube, transducer volume (V) 
and pressure transducer (pr). 

Figure 13.1 shows a schematic of the basic system, a pressure measuring transducer 
connected to a tubing system of length L and diameter 2r. The true pressure ps(t) is the 
instantaneous true pressure at the measuring point, while the measured pressure pr(t) will be 
distorted in amplitude and phase. The acoustic time lag for such a tubing system, using pure 
acoustical theory is given by (Helmholtz, 1885): 

r = — 
a 

(13.0) 

where a is the speed of sound. For the tubing system alone the resonance frequency is given by: 

a    3a   5a 

■" =4L'4Z'4T 
(13.1) 

The combination of the tubing and volume will act as a Helmholtz resonator with resonance 
frequency (for a long cylindrical tube, connected to a spherical volume): 
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J"     In 

m-~ 
I   2 

(13.3) 
VL 

with other similar relations existing for other tube and volume shapes. 

Since the 1920's there has been extensive research on aircraft pneumatic systems, where 
long pressure lines connect the measurement point, e.g. a Pitot probe to a manometer (Hemke, 
1927; Wildhack, 1937; Huston, 1946; Whitmore et al., 1987, 1988, 1990, 1990, 1991.. 1991; 
Franke and Pletcher, 1985). The response of such systems has also been studied at very low 
pressures (high Knudsen number) associated with high altitude flight (Davis, 1958; Whitmore et 
al., 1991). Another area of research has been on pressure measuring systems for high-speed 
blow-down wind tunnels with very short operating times. For these wind tunnel systems usually 
some length of small diameter steel or rubber tubing is used to connect the model to an external 
pressure transducer (see e.g. Sinclair and Robins, 1952; Bergh and Tijdeman, 1965; Franke, 
1986; Franke and Chepren, 1987). 

In recent publications pressure attenuation models have been applied to fast-response 
pressure probes that use tubing from the probe tip to the transducer (Rediniotis and Pathak, 1999; 
Gizzi and Gyaramthy, 1998; Paniagua and Denos, 2000). The theoretical models are typically 
divided into models that use a step or a ramp in the measured pressure (Wildhack, 1937; Hougen 
et al., 1963; Rediniotis and Pathak, 1999) and models that assume sinusoidally varying pressures 
(Hemke. 1927; Nichols, 1962; Karam and Franke, 1967; Tijdeman, 1969; Strunk, 1971; Holmes 
and Lewis, 1987; Benade and Ibisi, 1987). The first models used laminar Poiseuille flow for 
ramped input pressures to describe the transfer function of the system (Wildhack, 1937). This 
model was followed by electrical transmission line analogies for sinusoidally varying pressure 
inputs (Taback, 1949). Mechanical spring-mass-damper systems have also been used to describe 
the tubing response to pressure inputs (Huston, 1946). 

Further, some researchers have studied purely overdamped systems (Sincalir and Robins, 
1952), while others have discussed both underdamped and overdamped systems (Hougen et al., 
1963), specifying criteria that need to be satisfied for the system to fall under one of these 
categories. In the early NACA work for manometer readings in aircraft, Hemke (1927) used 
small diameter tubing with large lengths (20-226 feet). The experimental measurements used two 
pressure sensors where one was acting as the reference. Hemke found empirical correction 
curves for time lag and attenuation as a function of tubing length and pressure signal. Wildhack 
(1937) developed a theory based on laminar Poiseuille flow: 

P.-p.-**f (13-4) 

where ps is the actual pressure at the inlet, pr is the measured pressure and the lag constant, X, is 
defined as: 

A = ]2**LV (13.5) 
nd" p 
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where u is the viscosity of the fluid, L and d are the length and diameter of the tube respectively, 
V is the combined volume of the transducer cavity and the tube and p is the mean pressure. For a 
given tubing and transducer system the lag constant of the system can either be determined from 
the above equation or using experimental methods (Huston, 1946; Rediniotis and Pathak, 1999). 
For complex tubing systems the theoretical determination of X can be difficult and potentially 
inaccurate. Experimentally, the lag constant can be determined using a reference transducer 
measuring the pressure ps at the inlet of the tubing system with a step input while continuously 
monitoring the measured pressure pr. The lag constant for the tubing assembly can then be 
determined from: 

A = 
dprit) 

p' (13.6) 

dt 

The criterion that need to be satisfied to assume a first order model (always overdamped) is: 

co « -V (13.7) 
d2

P 

Fig. 13.2 shows the response of a tubing system using a first order model. The tubing 
system used is a 153mm long 1.96mm ID steel tube in air at standard conditions. The dimensions 
for transducer volume are based on an Endevco 8507C-2 transducer, with Vtrans=0.8mm . The 
calculated co for this tube-transducer system is 125rad/s i.e. the assumption for first order model 
for this tubing system is only valid for frequencies much lower than 20Hz. 

Huston used the analogy of a one-degree of freedom damped spring-mass system, 
identifying parameters that need to be satisfied to assume an underdamped, critically damped or 
overdamped system. Such a mechanical system is governed by the equation (13.8): 

where m is the mass of the medium in the tube, and R represents the viscous damping while 1/C 
is the elastic constant. For small volumes and small diameter tubes the volume and hence the 
mass is negligible thus the mass term can be ignored and the system is governed by viscous 
effects. For overdamped systems Huston arrived at the same basic relation as Wildhack who the 
Poiseuille laminar flow model. Taback used electrical transmission line analogy to describe the 
pressure attenuation and lag in pressure tubes. Table 13.1 gives equivalence between electrical 
and acoustic terms. These theories assume sinusoidally varying pressures applied to a tubing 
system and an instrument volume. 
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Fig. 13.2. The first order system response to step inputs. The solid line is the input step ps 

while the dotted line is the first order response, pr. The data shown is for a 153mm long 
tube with 1.96mm inner diameter, with a lag-constant, A.=3.473E-5s. 

Table 13.1. Electrical-pneumatic equivalent terms. 

Electrical Equivalent Acoustical 
Inductance Inertance (mass) 
Capacitance Volumetric Capacity 
Resistance Flow Resistance 
Current Volume Flow 
Voltage Pressure 

Using this analogy Taback arrived at: 

ps     ^smh2{aL) + cos2(ßL)    Z0   ^ sink2 {aL) +sin2 (j3L) 

~pr ~ tan-'(tan09Z,)tanh(aL))    Zr tan"1 (tan(/?l)/tanh(«Z,)) 
(13.9) 

where a is the attenuation per unit length and ß is the phase lag per unit length. Z0 and Zr are the 
characteristic impedances for the tube and the transducer volume, respectively. For a very small 
transducer volume, negligible air flows at the transducer end of the tube and Zr approaches 
infinity, hence for negligible transducer volume the above equation simplifies to: 
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^ - cosh{aL + ißt) 
Pr 

(13.10) 

Iberall (1950) derived similar expressions for sinusoidally varying inlet pressures based 
on fluid dynamics rather than electrical transmission line theory. Similarly to Wildhack he 
started with laminar Poiseuille flow, but later expanded it to include large fluid accelerations, end 
effects and heat transfer. Bergh and Tijdeman (1965) expanded upon Ibearll's theory to include 
multiple tubes with varying cross sectional areas connecting multiple volumes. This model was 
derived from the N-S equations assuming: small sinusoidal disturbance, circular tube with radius 
much smaller than its length and laminar flow throughout the system. For a single tube volume 
system, Bergh and Tijdeman found the following relation: 

k = 1 + 
y-\ J2[i :WPr 

Y     jAi2Syl?V 

-1 

(13.11) 

where k is the polytropic factor, y is the ratio of specific heats, J0 and J2 are Bessel functions of 
the first kind of order zero and two respectively. Pr is the Prandtl number and s is the shear wave 
number defined as: 

P s = r   co — (13.12) 

where r is the inner radius of the tube, co the oscillation frequency, u the viscosity and p is the 
mean density of the gas. The propagation constant, f, is defined as: 

co 
a 

J0{i-s)Y 
J,{ts)k 

I   2 

(13.13) 

where again a and ß are the attenuation and phase angle per unit length, respectively. The 
pressure attenuation can also be written as: 

^ = cosh(rL) + — - TL sinh(n) 
pr K r 

(13.14) 

where V is the tube volume and V, is the transducer volume. If one assumes negligible 
transducer volume the above equation reduces to a solution identical to that of Taback who used 
electrical transmission line theory. Figures 3 and 4 show the gain and phase angle curve, 
respectively, using Bergh and Tijdeman's model. 
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Fig. 13.3. Pressure gain vs. frequency for 153mm long, 1.96mm ID steel tube for air at 
standard conditions using Bergh and Tijdeman's model. 
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Fig. 13.4. Phase angle vs. frequency for 153mm long, 1.96mm ID steel tube for air at 
standard conditions using Bergh and Tijdeman's model. 

As seen in figures 13.3 and 13.4, unless this tube is used for very low frequencies, 
massive gain and phase angle shift will occur. The first resonance frequency as predicted with 
this method is 525Hz with a gain of 8.8. Also, Whitmore and Leondes (1990, 1991) and Holman 
(1994) arrived, based on the N-S equations, at similar solutions as those by Bergh and Tijdeman, 
but used an inverse Laplace transformed solution that holds an infinite number of harmonic 
terms. They further truncated this solution to only include the first harmonic. Thus for a tube 
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connected to a finite size transducer volume, they ignored higher order resonance frequencies. 
From Holman (1994): 

EL 

Pr 

f     \2 

CO 

\°>»j 
+ 4h' 

CO 

v^/ 
(13.15) 

where co is the frequency, with the natural frequency for the system, cop and the damping 
coefficient, h, given by: 

co„ 
13m-2 a2 

4LV 
(13.16) 

h = 
2/u    \3LV 

par' 
(13.17) 

n 

The phase angle, according to Holman, is given by: 

tf> = tan" 
-2h{colcon) 

\-{co/coJ _ 
(13.18) 

Holman's method does not predict well the properties of the 153mm tube in combination with 
the Endevco transducer used in the above example since the transducer volume is negligible 
when compared with the tubing volume. However for a second example, a 53mm long, 0.25 mm 
ID tube good predictions can be made. 

Chepren and Franke (1988) developed a numerical technique for determining the pressure 
distribution in a straight tube, using a finite difference model. A number of features were 
compared such as laminar and turbulent flow, linear and nonlinear effects, for several 
waveforms, sinusoidal, steps and ramps. Good agreement with a few experimental cases was 
shown. 

Critical Design Parameters for Pressure Tubing System for Fast-Response Pressure Probes 

A Pitot or multi-hole probe is an intrusive flow measurement technique and derives its 
flow measurement from disrupting the flowfield in an adiabatic stagnation or deceleration. The 
presence of the probe will alter the measured flow hence minimization of the probe size is 
desirable. One of the limiting factors for the design of fast-response probes is the availability of 
small, sensitive transducers. The smallest commercially available transducers are on the order of 
lmm diameter, thus mounting 5 or 7 of these transducers in a probe creates a probe that will 
have a diameter of at least 4-5mm. 
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In several cases, where a probe frequency response of a few hundred Hz is sufficient, a 
tubing system can be used from a very small probe tip (on the order of 1mm) to the transducers 
mounted downstream in a larger body. Such a tubing system must be carefully designed and 
analyzed to be able to fully reconstruct the measured pressure at the probe tip. In any process that 
involves miniaturization, fabrication accuracy and tolerances become important. The relative 
importance of some of these parameters will emerge in a comprehensive uncertainty analysis, 
however the purpose here will be to show how these parameters change the theoretical gain and 
phase angle curves. Fig. 13.5 shows the basic tubing system that could be used in a fast-response 
probe. The scale is shown for an Endevco 8507C-2 transducer with outer diameter of 2.3mm. 
The inner diameter of the tube is 0.25mm, and could be used in a 5-hole probe with a tip 
diameter of 1mm to 1.5mm and a downstream body diameter (about 50mm downstream) of 8- 
10mm. 

Transducer CaviK 

Tubine 
P^ -,Dr 

Pressure 
Transducer 

Fig. 13.5. Typical mounting of a miniature pressure transducer to a small pressure tube. 
The scale shown is for a 0.25mm ID tube and a 2.3mm OD pressure transducer (length of 

tubing is not shown to scale). 

The connection between the small diameter tubing to the larger pressure transducer 
results in a small cavity in front of the transducer, usually in the form of a cone, from the drill bit 
that was used to make the hole. The total transducer cavity will be the cavity inside the 
transducer itself (0.8mm2 for the Endevco transducer) in addition to the cavity immediately in 
front of the transducer. The following will be an example of the dimensions and tolerances in fig. 
13.5. The numbers are used as example, but the dimensions and tolerances are collected from the 
manufacturers' catalogs. The Endevco transducer outer diameter and tolerance is given as: 
2.34mm +'- 0.08mm. Inner diameter and tolerance for the stainless steel tubing is given as 
0.254mm +0.0254mm / -0.0127mm, or +10% / -5%. The drill bit used for the cavity is 2.58mm, 
with a tip angle of 110 degrees, assumed constant, but will certainly be dependent on the 
sharpness of the drill and the quality of the hole drilled. The actual mounting of the transducer to 
the part will also be subject to some uncertainty and for the sake of argument this number is 
assumed to be +0.2mm / -0.0mm. The tubing length is taken as 53mm +/- 0.1mm. Most 
uncertainty analyses use the most probable error and would use an expected error based on 
standard deviations for the above measurements. Here, however the extremes will be calculated 
for the numbers presented above using the theory of Bergh and Tijdeman. As seen in fig. 13.6a 
and 13.6b the tubing diameter has a very large effect on the response of the system. 
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Fig. 13.6a. Effect of tubing diameter on gain. The dotted line corresponds to the design 
value, the solid line to the minimum tube diameter while the dashed line corresponds to the 

maximum tubing diameter. 
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Fig. 13.6b. Effect of tubing diameter on phase angle. The dotted line corresponds to the 
design value, the solid line to the minimum tube diameter while the dashed line 

corresponds to the maximum tubing diameter. 
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Fig. 13.7a. Effect of transducer volume on gain. The solid line corresponds to the minimum 
calculated volume based on the design values and the dotted line to the maximum volume. 
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Fig. 13.7b. Effect of transducer volume on phase angle. The solid line corresponds to the 
minimum calculated volume based on the design values and the dotted line to the 

maximum volume. 

171 



Increasing the tube diameter will increase the resonance frequency and also the maximum 
gain significantly. Varying the tubing length within the prescribed uncertainties does not change 
the gain and phase curves noticeably, but the general effect for larger changes (tube length 
increase) is a lowering of the resonance frequency and maximum gain. Increasing the transducer 
volume will also lower the resonance frequency and the maximum gain (figs. 13.7a and 13.7b). 
The combined effect of both tubing diameter and transducer volume is shown in figs. 13.8a and 
13.8b. 

The dramatic effect of the tolerances is shown in figs. 13.8a and 13.8b. For the design 
values the system acts slightly underdamped, however for a smaller tube diameter and larger 
transducer volume, the gain curve shows that the system is overdamped for all frequencies. A 
number of other factors could also complicate the theoretical determination of the gain and phase 
angle curves, such as discontinuities in the tubing cross sectional area due to bends. For larger 
tubing systems, the relative importance of tolerances is less pronounced. For the 1.96mm ID 
steel tube the tolerances are the same as for the 0.25mm ID tube, and the effect of these 
tolerances is not visible in the gain and phase angle plots. 

The results from these figures shows that there is an increasing effect of the uncertainty 
in the transducer volume for decreasing tubes sizes, and that for capillary sized tubes accurate 
theoretical determination of the gain and phase angles might be impossible. This impact of the 
uncertainties call for a method of determining the gain and phase angle curves experimentally on 
the complete tubing-transducer system. 

1000 

Frequency [Hz] 

2000 

Fig. 13.8a. Combined effect of tubing diameter and transducer volume on gain. The dotted 
line corresponds to the design values, the solid line to the minimum tube diameter and 

maximum transducer volume, while the dashed line corresponds to the maximum tubing 
diameter and minimum transducer volume. 
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Fig. 13.8b. Combined effect of tubing diameter and transducer volume on phase angle. The 
dotted line corresponds to the design values, the solid line to the minimum tube diameter 

and maximum transducer volume, while the dashed line corresponds to the maximum 
tubing diameter and minimum transducer volume. 

In the design of a fast response probe that uses some tubing system, one must also 
consider transducer sensitivity/resolution issues, since the pressure sensed by the transducer is 
significantly attenuated at high frequencies. Even though accurate gain and phase angle curves 
for very high frequencies are obtained the system might still be useless in this region due to the 
attenuation of the pressure sensed by the transducer. For example, for the tubing system in figs. 
8a and 8b the attenuation at 2kHz leaves, at the trasducer, only about 38% of the input pressure 
magnitude. Thus, to resolve small scale pressures the transducer resolution must be considered 
and becomes increasingly important. At even higher frequencies, such as 10kHz the attenuation 
is even more pronounced, leaving very little pressure to be measured. Thus, the specific probe 
design, which is overdamped for almost all frequencies, might be difficult to use for e.g. 
turbomachinery flows where frequencies of 5-15kHz are typical (fig. 13.9). 

For fast response pressure measurements, an underdamped tubing system, with a larger 
diameter tube, could be used, since there is hardly any pressure attenuation at the transducer. For 
example, the 153mm long, 1.96mm ID tube with the Endevco transducer can be used up to very 
high frequencies with little attenuation in pressures (fig. 13.10). Of course for this specific 
system, care should be taken such that the amplification of the pressures at resonance frequencies 
does not overload the transducer. 

173 



Fig. 13.9. Attenuation of pressure for 53mm long, 0.25mm ID tube and Endevco transducer 
system. 

Fig. 13.10. The gain of pressure for a 153mm long, 1.96mm ID tube. 
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The above discussion aims to illustrate the point that the tubing-transducer should be 
carefully designed, depending on the frequency range it intends to measure. The system shown in 
fig. 13.10 has a relatively large size and can not be used in some flowfields where small length 
scales are to be resolved. However a combination of two or more tubes with different lengths and 
diameters (for example small tube diameter at the tip, expanding to a larger diameter at a small 
distance from the tip) can be designed to meet the frequency, transducer resolution and spatial 
resolution needs. 

Experimental Determination of Gain and Phase Angle Curves 

As noted above, the importance of accurately knowing the exact volumes and tubing 
dimensions mak'es a theoretical model nearly impossible to attain for small diameter tubes. 
Furthermore, the assumptions for e.g. Bergh and Tijdeman's model include circular cross-section 
and laminar flow, which might not be satisfied for many tubing applications. A facility was 
designed to be able to accurately determine the frequency response of tubing systems that are 
used in miniature fast-response pressure probes. Two pressure transducers are used, one at the 
inlet of the tubing system (ps) and one at the transducer end of the tubing (pr), while an 
oscillatory pressure is generated by a loudspeaker. A mid-range loudspeaker with a frequency 
range of 300-5000Hz was chosen as the driver for the system. This loudspeaker is mounted one 
of the walls of a closed cavity. On the opposite wall, two holes were drilled, equidistant from the 
center of the loudspeaker. The reference pressure transducer is mounted in one hole while the 
test tubinu is connected to the other hole (fig. 13.11). 

Reference Transducer 

Measurement Transducer 

Pneumatic Line 

Loudspeaker 

Fig. 13.11. Loudspeaker system for the determination of gains and phase angles for 
pressure tubes. 

A wide range of frequencies is scanned by the system (typically 10-5000Hz in 10Hz 
increments), and for each frequency the ratio of pr/ps as well as the phase angle is determined 
from the nearly simultaneously sampled pressures. The data-acquisition system (National 
Instruments PCI-MIO-16E-1) is used to generate the output signal (+/-10V) to the speaker power 
amplifier and acquire the pressure transducer signals. The two channels are sampled sequentially 
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with a delay of 10"6 seconds for the frequency span (up to 5kHz). This delay will only cause a 
miscalculation of phase angle of less than 3.6 degrees for a 5kHz signal, or 0.72 degrees per 
1000Hz. Since the delay time is known and constant the time stamps are adjusted accordingly. 

The data is sampled at a rate proportional to the test frequency, typically 200-1000 times 
the actuation frequency. A voltage signal is generated by the data-acquisition system as a series 
of values that form a sine wave (or any other waveform) and is connected to the loudspeaker 
through a power amplifier. A PID loop continuously monitors the input pressure ps and adjusts 
the amplitude of the signal wave to maintain a'constant rms pressure signal. The rms pressure 
level that the loudspeaker can give at very low frequencies (<500Hz) is in the range of 800Pa, 
however at higher frequencies (>2kHz), the maximum rms pressure that can be generated in the 
system is approximately 30Pa. For a constant rms pressure response the amplitude of the driving 
signal is adjusted over a wide range (from less than 0.05Vrms to more than 14Vrms). The output 
signal is connected to a Kepco BOP36-12M voltage proportional power amplifier. This amplifier 
has a fixed gain of 3.6, i.e. a IV input signal will produce a 3.6V output signal, DC to 20kHz 
(figs. 12. 13). 

PC / DAQ 

Signal Output 
Sweep 1Hz-5kHz 

Power Amp. 

Calculate Pr/Ps, 
Phase angle and 
FFT for all frequencies 

Fi«. 13.12. Schematic of loudspeaker tubing test system. The signal amplitude is adjusted at 
each frequency to maintain constant pressure rms. 
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Fig. 13.13. Pictures of the loudspeaker assembly, arrows showing the reference transducer 
measuring the input pressure ps and the location of the port for connecting the tube to be 

tested. 

The reference or input transducer and the connection for the tube to be tested are 
connected using standard NPT threaded plugs. Fig. 13.14 shows some of the tubes tested as well 
as the mounting plugs. The Endevco 8507C-2 transducer is also shown. 

'fis^mmmmä 
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Endevco 
Transducer 

Fig. 13.14. Different tubes tested. Picture also shows the Endevco 8507C-2 pressure 
transducer used in the experiments. 1) L=153mm, ID=1.96mm, 2) L=51mm, ID=1.96mm, 3) 

L=53mm, ID=0.25mm, 4) L=25mm, ID=0.25mm. 
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The Endevco pressure transducer has the capability of resolving static and dynamic 
pressures up to about 15kHz and has a diaphragm resonance frequency of 70kHz. The pressure 
range is +/- 2psi, with sensitivity of approximately 150mV/psi. The signals from the transducers 
are amplified using Entran amplifiers with a gain of 100. The combined sensitivity is calculated 
approximately as 2mV/Pa. The sensors are frequently calibrated to a Barocel pressure reference 
and the zero offset is recorded before each test. The two ports are mounted equidistant from the 
center of the loudspeaker thus equal response was expected for both transducers when flush 
mounted in the ports. The expected gain should show a flat response of 1.0 and the phase angle 
should always be 0 degrees. The measured results, however show that there is an increasing 
difference between the two measured pressures from very low frequency up to about 1400Hz 
where a significant jump is seen and the two ports see different pressures (fig. 13.15). 

1000 
Frequency [Hz] 

2000 

Fig. 13.15a. Experimental gain for transducer mounted side-by-side for three tests. 

1000 

Frequency [Hz] 

2000 

Fig. 13.15b. Experimental phase angle for transducer mounted side-by-side for three tests. 
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The design of the facility and the quality of the loudspeaker may be responsible for this 
discrepancy in the measured pressures. In figs. 13.15a and 13.15b three tests were performed for 
the same ps_nnS = 50Pa. The three tests show that the discrepancy in the measured pressures is 
repeatable for all tests. It is further assumed that this is the case for all tests such that the curves 
in figs. 13.15a and 13.15b can be used as a correction to all subsequent tests. In any subsequent 
test, the actual recorded gain is therefore divided by the gain found for the transducers mounted 
side by side and the recorded phase angle is subtracted from the phase angle curve corresponding 
to the transducers mounted side by side. 

Figs. 13.16a and 13.16b show the recorded gain and phase angle curves for the 53mm 
long. 0.25mm ID tube tested in the facility. The data was recorded with psrms=50Pa in the range 
of frequencies from f=10 to 2kHz. The step size was 10 Hz. The solid lines in figs. 13.16a and 
13.16b are the recorded gain and phase angle, respectively. The dotted lines are the corrected 
curves using the data in figs. 13.15a and 13.15b. The dashed lines show the theoretical gain and 
phase angles from Bergh and Tijdeman's theory, using the design parameters of the system. The 
difference in the theoretical model and the corrected experimental results further illustrates the 
need for an experimental procedure. Better quality signals could not be obtained in this 
loudspeaker facility, but we are currently carefully redesigning the facility with much better 
quality loudspeaker components and anechoic features. The new design uses different 
loudspeakers for different frequency ranges, such as a woofer for low frequencies, a mid-range 
for medium frequencies and a tweeter or compression driver for high frequencies. 

1000 

Frequency [Hz] 

2000 

Fig. 13.16a. Corrected gain curves for a L=53mm, ID=0.25mm tube. Solid line is raw gain 
curve, dotted line is corrected gain curve, while dashed line is the theoretical gain as 

predicted by Bergh and Tijdeman model. 
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Fig. 13.16b. Corrected phase angle curves for a L=53mm, ID=0.25mm tube. Solid line is 
raw gain curve, dotted line is corrected gain curve while dashed line is the theoretical gain 

as predicted by Bergh and Tijdeman model. 

Pressure Reconstruction Routine 

The purpose of a correction routine for a pressure sensing system is to accurately 
reconstruct the instantaneous pressure at the measurement point from the pressure measured by 
the transducer. As discussed above there might be, depending on the tubing-transducer system, 
significant pressure attenuation and pneumatic lag in such systems and a procedure is needed to 
reconstruct the pressure using the tubing-transducer transfer function. Whether the transfer 
function is found by theoretical models (not recommended for very small diameter tubes) or by 
experimental means, the accuracy of this function will determine the quality of the reconstructed 
signal. 

Data reconstruction has typically been divided into post-processing and real-time 
techniques. Post-processing is typically the method used in laboratory work and is most common 
for fast-response probe measurements. Real-time methods are such as those required, for 
example, in the control system in a fighter jet, and require a continuous flow of real-time data. In 
the past rigorous correction routines have been avoided to ensure that near-real-time, or "quasi- 
real-time" is achieved. This is due to the fact that they are computationally intensive. However, 
using modern computers this might no longer be the limiting factor. Thus, "quasi-real-time" non- 
parametric spectral methods, though computationally expensive, can be used at very high 
frequencies. One method to increase the speed of FFT transformations is the "one-in-one-out" 
method. The method results in significant lag only for the first sampled array (2N points), while 
any subsequent data point is added to the end of this array while erasing the first entry of the 
array. This way 2N points are always kept -in the array. For each sampled point, the FFT can be 
calculated and the spectrum is used as part of a correction routine. 
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Theoretical or experimental parametric models have the advantage that only a few 
parameters are needed to describe the transfer function, but often they fail to describe the system 
response accurately for high frequencies or beyond the first harmonic frequency (Whitmore and 
Leondes. 1990). The gain and phase angle parameters can be determined experimentally using a 
reference transducer at the inlet of the system, in addition to a transducer at the end of the 
system. Making sure that the system is over-determined (more states than coefficients) the 
coefficient values in the transfer function can be estimated using a least-squares fit. The 
procedure outlined in Paniagua and Denos (2000) promises to reconstruct the pressure signal 
with a high degree of accuracy in particular for parameter determination using step or ramp tests, 
rather than sinusoidal inputs. This method, or the simpler method outlined by Rediniotis and 
Pathak [30] can be used for non-periodic flowfields where the pressure value at the end of a test 
sample is at a different level than that at the beginning of the sample. For these methods special 
care must be taken when calculating the time derivative of the pressure for digitally sampled 
data, since this type of data is inherently jagged. 

For periodic flows, where the pressure signal fluctuates around a mean value, a spectral 
reconstruction technique is proposed. Whitmore and Moes (1991) developed a spectral 
deconvolution method for a high AOA flush-airdata sensing system (HI-FADS) where pressure 
ports are located on the nosecone of a F-18. The pressure reconstruction scheme is described in 
fig. 13.17. The method of Whitmore and Moes was not used exclusively on periodic flows, but 
was altered to also reconstruct non-periodic flows, with the restriction that it now was a 
parametric model, not purely a non-parametric model. For the present discussion the first step of 
the model will be analyzed and applied to periodic flows. 

Pr(t) 

Ps(t) 
A-    A    A    A 

'      J\i\ 

Windowing 

Inv. transform 
FFT-1      Ps(s) 

FFT      pr(f) 

Deconvolution 
TF-'      ps(f> 

Fig. 13.17. Spectral deconvolution scheme proposed by Whitmore and Moes. 

FFT transforms assume that the signal is perfectly periodic within the sample set. The 
purpose of a windowing function is to reduce what is known as leakage for signals that are not 
perfectly periodic within a specified time trace. The windowing function will force the beginning 
and the end of a sample set to zero, hence imposing a quasi-periodicity to the time data. There 
are a number of recognized and widely used windowing functions. Some have better 
characteristics than others when it comes to maintaining gain accuracy (e.g. flattop) and phase 
accuracy (e.g. Hanning window). Some tests might be self-windowing, meaning that the value is 
zero at both ends of the sample set. For a perfectly periodic signal with careful timing and 
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sampling a number of penods can be recorded in the sample set where the value of sample 
equals the value of sample N+l. For such a signal no windowing function would be necessary. 

1 
Pr(t) FFT     pr(f) 

■ * 

Deconvolution 
TF-«      ps(f) 1 

1 
i AAAA A_ 

!     ps(t) 
Inv. transform 

AAAA 
■*— rrl-      ps(,Sj 

Fig. 13.18. Five-step pressure reconstruction routine. 

Fi« 13 18 shows a five-step pressure reconstruction routine, similar to Whitmore and 
Moes* routine without the windowing function of the measured data. The restriction on such a 
method is that the data must be periodic, i.e. the pressure fluctuates around a constant mean 
value and several full periods must be contained in the sample set. If experimental gain and 
phase anale curves are used in the analysis, the modulus of the FFT spectrum is divided by the 
uain and the argument of the FFT spectrum is subtracted from the phase angle for the entire 
spectrum Spectral filtering can easily be performed to smooth out high frequency noise, by, tor 
example forcinsi all spectral values above a certain frequency (much higher than the frequency 
in question) to "zero. The reconstructed signal from the inverse FFT will, depending on the 
quality of the transfer function and the periodicity of the flow, quite accurately reproduce the true 

pressure. 

Test Cases 

Fi.-ure H 19 presents gain and phase angle curves for 6", 0.077ID tube. As previously 
discussed^the discrepancies above 1500 Hz are due to the poor quality of the speaker system. 
This tube svstcm was used to test our reconstruction algorithm. For that, several different 
pressure siunals were applied, at various frequencies and amplitudes. For each such test, the 
applied, recorded and reconstructed signals are presented at the figures below. 
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Fig. 13.19. Gain and phase angle curves for a 6" long, 0.077ID tube. 
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Fig. 13.20. Example 1. Pressure signal consists of: 500Hz at 100% amplitude + 1000Hz at 
50% amplitude. Prms=200Pa. Ps (red line) is the true signal and Pr (blue line) is the 

recorded signal. Massive gain can be observed. 

(■requcTio [Hz 

Fig. 13.21. FFT modulus and argument of the timetrace of fig. 13.20. 
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Fig. 13.22. Reconstructed signal for Example 1. The green dashed line is the recorded 
signal, the blue dotted line is the true signal, while the red solid line is the reconstructed 

signal. 
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Fig. 13.23. Example 2. Pressure signal consists of: 100Hz at 100% amplitude + 1000Hz at 
100% amplitude. Prms=200Pa. Ps (red line) is the true signal and Pr (blue line) is the 

recorded signal. Very little attenuation, but massive phase shifts can be observed. 

Fig. 13.24. Reconstructed signal for Example 2. The green dashed line is the recorded 
signal, the blue dotted line is the true signal, while the red solid line is the reconstructed 

signal. 
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Fig. 13.25. Example 3. Pressure signal consists of: 100Hz at 100% amplitude + random at 
25% amplitude. Prms=200Pa. Ps (red line) is the true signal and Pr (blue line) is the 

recorded signal. 

Fig. 13.26. Reconstructed signal for Example 3. The green dashed line is the recorded 
signal, the blue dotted line is the true signal, while the red solid line is the reconstructed 

signal. 

187 



I— 1 1 T 1 1 1 1 1 r 

F: \ 

r- H 
K',    i    i   :'--\   /_, V   r    i   >.-'v>\ l '■ 

\ ) 

M \   / "i   ! 

^ 
V-' 

I    i V V   ■' 1 

114 IM116 H.01I* 
124 no> on:s 

Ps 
Pr 

Fio 13 27 Example 4. Pressure signal consists of: random at 100% amplitude. 
Prms=200Pa. Ps (red line) is the true signal and Pr (blue line) is the recorded signal. 
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Fio n 28 Reconstructed signal for Example 4. The green dashed line is the recorded 
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APPENDIX: SUCCESS STORIES 

OUR PROBES AND THE X-34 

One of our customers, Orbital Sciences 
Corporation of Dulles, Virginia, is the 
primary NASA contractor for the X-34 
fight vehicle. The X-34, a single-engine 
rocket plane, will fly itself using onboard 
computers. The vehicle is approximately 
58 feet long, 28 feet wide at wing tip and 
11 feet tall from the bottom of the 
fuselage to the top of the tail. 

The X-34 launches from an L-1011 
airliner and reaches altitudes of up to 
2?(>.()()<) feet and travel up to eight times 
faster than the speed of sound. 
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Orbital has been utilizing our 
line of seven-hole probes 
beginning with the wind 
tunnel testing of the X-34. 
Orbital tested a 1/30 scale 
model of the X-34 and the L- 
1011 in the wind tunnel of 
Calspan Corp. The X-34 
model was equipped with 
three custom designed seven- 
hole probes, one in the nose 
and two on the wing, as 

shown in the figure above (probes labeled A, B and C). Three-dimensional velocity data was sampled 
from the probes as the X-34 model was moved away from the L-1011 model, simulating the drop tests, 

scheduled to be conducted later. 

In addition to the wind tunnel tests, Orbital also 
utilized a set of seven-hole probes on the full-scale 
drop test model. Three probes were again used in the 
same locations as the wind tunnel model. For these 
tests, the X-34 will be mounted underneath the L- 
1011 and flown on "captive-carry" flights to allow 
the Federal Aviation Administration to approve 
modifications to the L-1011. 

When powered flights begin for X-34, the 
demonstrator will be carried aloft and separate 
from the L-1011 before igniting its rocket engine. 

Following the powered portion of flight, the un- 
piloted X-34 will land horizontally, initially on a 

dry lakebed and eventually on a runway. The 
pictures above and to the left show our probes 
installed on the wing and nose of the full-scale 
aircraft, respectively. 
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OUR PROBES HELP NASA 
A\D BOEING STUDY WE AERODYNAMICS OF HIGH-LIFT 

CONFIGURA TIONS 

degree elbow, with one of the stainless steel connecting tubes. 

We joined NASA Langley, 
the Boeing Company and 
Aeroprobe Corp. in an effort to 
design and study novel high-lift 
wing configurations. The 
configuration to be tested was a 
20% scale airliner wing, as shown 
in the figure on the left, installed in 
the test section of the 14'x22' 
tunnel of NASA Langley. 

Four miniature 7-hole 
probes were designed and built. 
They were subsequently calibrated 
at the NASA Langley Flow 
Modeling and Control Branch. The 
four miniature 7-hole probes were 
identical and their design is 
illustrated in the figure below. It is 
worth-noticing that the probe tip 
diameter was only 0.065". The 
back of the probe was formed into 
a bullet-shape afterbody to 
minimize unsteady vortex-shedding 
effects. Each one of the ports on 
the probe tip communicates, 
through internal tubing and a 90- 

202 



2.875 

0.25 

Connecting Tubes 

All probes were calibrated at the NASA LaRC Probe Calibration Tunnel (PCT). This 
facility is a variable density pressure tunnel that can independently control Mach number, 
Reynolds number, and total temperature.  The four probes were calibrated at Mach numbers 

ranging from 0.1 to 0.8, in 
increments of 0.1, and at free- 
stream total pressure of 17, 32 and 
60 psi which yielded a Reynolds 
number   (per   unit   length)   range 
from    2.5-10 m       to 52-Kfm'. 
Angles can be predicted to within 
0.6 degrees with 99 % confidence 
and velocity magnitudes can be 
predicted to within 1.0 % also with 
99 % confidence, while the 
corresponding uncertainties 
(standard deviation of the error 
distribution) are less than 0.2 
degrees in angle prediction and 
less than 0.35% in velocity 
magnitude prediction. 

The figure above shows one of the probes installed on the wing. 
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Our Probes   Used   in DOE's  Renewable  Energy Re 
search 

DOE's National Renewable Energy Laboratory (NREL) is planning to test a 10-meter diameter 
research wind turbine in the world's largest wind tunnel. The test will use NASA 's 24.4 by 36.6 meter 
(80' bv 120j wind tunnel. The tunnel is part of the National Full-Scale Aerodynamics Complex (NFAC) 
at the NASA Ames Research Center in Moffett Field, (Silicon Valley) California and is primarily used for 
determining low- and medium-speed aerodynamic characteristics of full-scale aircraft and rotorcraft. 
The tunnel is powered by six 18,000-hp fans that produce test section wind velocities up to 50 m/s (115 

mph). 
The NREL "Unsteady Aerodynamics" research wind turbine is extensively instrumented to 

measure structural loads and aerodynamic responses of a rotating airfoil. We fabricated five 7-hole 
probes and installed them on one of the blades, as shown in the figure below. The probes are installed on 
special booms mounted on the blade leading edge and rotate with the blade. The probes provide 
measurements on the flow magnitude and direction, as seen by the blade. The turbine will be tested in the 
tunnel in a 2-bladed. fixed-pitch (stall-controlled) configuration. It will be operated at constant RPM with 
the rotor oriented upwind or downwind of the tower, and the hub in either rigid or damped-teetered 
configurations. An extensive range of pitch angles, pitch motions, yaw positions, and wind velocities are 
planned. NREL researchers focused wind tunnel test objectives to meet recommendations of an 
international science panel of wind turbine aerodynamics experts. 

f^f 

*-*>      HJTä.T- .1^J>H.4». 

The five 7-hole probes were installed on one of the turbine blades to measure the 
flow magnitude and direction, as seen by the blade. 

The NREL research turbine has been field-tested in various configurations since 1989 at DOE's 
National Wind Technology Center (NWTC) located near Boulder, Colorado. It has been operated in 
outdoor atmospheric turbulent wind conditions up to 31 m/s (70 mph), and has been exposed to winds 
above 65 m/s (145 mph) with the rotor parked. The figure below illustrates one of those test, during 
which, amongst else, probe data was acquired and flow visualization was performed. The probes can be 
seen installed at the leading edge of the top (black) blade. 

Test data have been made available to the research community through International Energy 
Agencv Annex XIV and Annex AT///. Reports summarizing results of the atmospheric turbine tests have 
demonstrated the extremely complex dynamic nature of the typical wind turbine operating environment. 
Highly turbulent wind and sheared inflow conditions are major factors that contribute to the comp'exity. 
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Testing in a controlled wind tunnel environment will eliminate these factors, and resulting data will 
■ :-- ;--.-■-■■'■'r^?-^:r'rv^^nm   provide information from which a significant 

portion of the complex inflow-induced operating 
environment is removed. This will enable 
researchers to isolate and characterize specific 
dynamic stall responses and 3-D rotational 
effects under benign steady-state operating 
conditions. Resulting data are needed to 
improve and validate enhanced engineering 
models for designing and analyzing advanced 
wind energy machines. A three-week wind- 
tunnel test period is scheduled to take place in 
the first half of 2000. Pictures from the rig setup 
procedures in the tunnel are shown in the 
figures below. Close inspection reveals the 
probes mounted on the black blade. 

The probes were installed at 
the leading edge of one of the 
blades (top, black blade) and 
used during turbine field tests. 

The turbine rig is in the process of being set-up for tests at the NASA Ames 
80'xl20' wind tunnel. Close inspection reveals the probes mounted on the 

black blade (left picture). 
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Embedded Transducer Probe Technology 

Our embedded transducer probes bring all 
of!he innovations that we have brought to 
the instrumentation community to the 
unmanned aerial vehicle (DA V) market. 

• State of the Art Calibration 
• Xeural    Xctwork-Based    Pressure-to- 

l elocity reduction 
• Seven     years    of    multi-hole    probe 

construction experience 

The embedded transducer probe features a 
self-contained control computer, which 
acquires the voltages from the transducers 
and then reduces the pressures to velocity 
components, on-line. The control computer 
uses very little power requiring just 12 volts 
DC. Outputs from the computer are in the 
form of voltages, which are scaled to a 
predetermined range. These voltages can be 
hooked directly into your flight data system 
and represent the airspeed U, angle of 
attack, a, and yaw angle, ß. 
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Our embedded transducer probe technology- 
is also available without the control computer 
unit for use in laboratory situations. 
Embedding the transducers within the probe 
body greatly increases the frequency response 
of the probe. This makes the embedded 
transducer probe an excellent instrumentation 
choice for cases where the measurement of all 
three velocity components, static and dynamic 
pressure is required with a high frequency 
response. We have designed and fabricated 
probes with frequency response as high as 
100 Khz. 

MARS AIRPLANE PACKAGE 

AIR-DATA SYSTEM PROBE 

Electrical Connections 
Five Hole Probe Head „ 

Body Contains Five Embedded 
Absolute Pressure Transducers 

Data Reduction returns: 
- u. 

-p 
Local Static Pressure 

- Local Total Pressure 

The figure above shows a close-up picture of 
a hemispherical-tip five-sensor embedded 
transducer probe we recently designed and 
fabricated for one of our customers, General 
Electric. The stringent probe design 
specifications included, amongst else: 
• Frequency response of at least 20Khz 
• Operating temperatures as high as 

400 °F 
• Small enough size to fit between the 
stages of a range of different turbine 
engines, where flow measurements were 
desired 
The 'ibullet" shape tip measures 'A" in 
diameter and 'A" in length and houses 5 
miniature Kulite pressure transducers. 

To coincide with and celebrate the 100th anniversary of the Wright Brothers' historic first 
powered flight. NASA has planned an ambitious mission to the red planet that features the 
deployment of an autonomous aircraft to sun'ey Mars from the air. One of the vendors that 
XASA selected to submit proposals for this project was Aurora Flight Science Corporation of 
Manassas. I 'irginia. The air data system had to be capable of measuring the angle-of-attack and 
side-slip of the aircraft and the absolute dynamic and static pressure. The outputs are to be 
recorded as part of the mission 's scientific data and used for aircraft control. We were able to 
adapt our current embedded transducer technology to the air data system, overcoming the 
technical difficulties of the harsh conditions in the Martian atmosphere, which is over 100 time 
less dense than that of Earth 's and the temperature goes through wild swings of over 100° C. All 
of these objectives were met along with the need for the final package to weigh less than 100 
grams. 
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GRYOGENIC Embedded KULITE PROBE 

MANIFOLD KULITE 

1.5   nr\ 

To achieve physics-based flow modeling as 
we!! as validate control approaches in flow 
control applications, high-accuracy flow 
diagnostics instrumentation is necessary. So 
far. no instrument was available that could 
provide simultaneous information on the 
three components of velocity, the static and 
total pressure at a measurement pqjnt, 
especially in a cryogenic wind-tunnel 
environment. The objective was to develop 
such an instrument that can provide such 
information in complex, unsteady flows, 
especially in high Ma, high Re cryogenic 
conditions. *^ ^-i*-Sfei%:«sl': ' 

The instrument was developed for the NASA Langley Flow Modeling and Control Branch 
and was used in separation control experiments over wings in realistic flow conditions at the 
cnogenic wind tunnel at NASA Langley. A schematic of the probe dimensions and structure is 
shown above, as well a picture of the completed probe. The frequency response of the probe was 
lKhz and could operate at temperatures as low as 180 °K. 
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Five    Embedded    Kulite 
Pressure Transducers 

The figure on the left shows a 
'   i^' /       picture of the internal probe 

'"-^' if.-/-jA  structure,  illustrating details 
*   of    the    Kulite    transducer 

<*   housing  scheme  inside  the 
probe. 

The probe was used in wind-tunnel experiments of Active Control of Shock-Induced 
Separation (lead by Seifert & Pack at NASA Langley). The wing model used is illustrated in 
the figure below and was called the "Hump " model. The cryogenic tunnel conditions allowed the 
achievement of high Reynolds and Mach numbers (M=0.2-0.75) at relatively modest velocity 

magnitudes. 

The experiment was designed to 
access the effectiveness of tangential 
oscillatory blowing excitation 
(introduced between the green and 
pink strips in the figure) in reducing 
or eliminating shock-induced 
separation. The function of the probe 
(shown in the schematic mounted 
downstream of the trailing edge) was 
to study the dynamic velocity and 
pressure effects. Very successful 
separation control was demonstrated 
which opens new horizons in the use 
of thicker (t/c=20-25%), more 
efficient airfoils as well as the 
introduction of new techniques for 
fast control of forces and moments on 
a wing. The probe data also provided a database for CFD and Control tools validation. 
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