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Abstract 
The aim of the proposed research is to understand how nanoscale laminates with optimal 

strength, ductility, and elevated temperature stability can be engineered through the selection of 
component chemistry, component layer thickness, and interfacial and grain boundary structure. The 
first effort is to develop computational tools to model the deformation and fracture processes in 
nanoscale laminates based on a well-known intermetallic system. The second effort is to apply the 
computational tools to at least one additional laminate system. 

Research Objectives^ 
Develop computational tools based on the observed physical phenomena of dislocation motion 

and fracture, so that strength can be predicted as a function of layer thickness, interfacial structure, 
and crystal orientation. 

Summary of Research Findings and Activities 
Transmission of Slip and Cracks Across Interfaces 

Ultimately, multilayer samples fail by the propagation of slip and or cracks across interfaces, so 
that the cross section under tension fails by a combination of plastic necking or fracture. Figure 1 
shows a side view of a 120nm/120nm y-Ni(Al)Y-Ni3Al multilayer that was pulled to failure in 
tension. The noticeable plastic deformation is evidence of the large amount of slip propagation 
across interfaces that can accompany failure. 

A dislocation analysis indicates that the critical resolved shear stress for the leading dislocation 
in a pile-up to transmit across the interface can be approximated by 

T transmit (N) _       N      ^ Tint 1\ *        *       2e(h,s) 

\£ 27th/b   N|i' bs 
where u.' = fi/(l - v) is a function of the effective elastic shear modulus u. and Poisson's ratio v and 
xint* is the strength of the interface to slip transmission, expressed as the critical resolved shear 
stress to push a dislocation across the interface. The relation also shows that the strength of the 
interface consists of the value, tcoh*, for a coherent interface, plus the additional strength associated 
with pinning by misfit dislocations with spacing s. Our modeling with P.M. Hazzledine at UES, 
Inc. suggests thaty-Ni(Al)/y'-Ni3Al multilayers have a larger xint* at larger h, when interfaces are 
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Figure 1: SEM image of a side view of a 120nm/120nm y-Ni(Aiy/-Ni3 Al multilayer that was 
pulled to failure in tension. 

semi-coherent, and have a smaller xint* at smaller h ( < 50nm), when interfaces are coherent. In fact, 
we have substituted into the above equation the dislocation theory solution for the equilibrium value 
of s as a function of h. 

When Transmit (N) and IcLS (N) are equated, the result is that multilayers have a critical layer 
thickness at which the criticäTresolved shear stress for pile-up transmission is largest. 

Figure 2 shows that there is a multilayer design curve relating the strength of interfaces to the 
layer thickness. For stronger interfaces and/or large layer thickness, the multilayer is predicted to 
deform by confined layer slip, with subsequent pile-up and ultimately dislocation transmission. 
Multilayer strength in this regime is expected to increase with decreasing layer thickness. For 
weaker interfaces and/or smaller layer thickness, the multilayer is predicted to deform first by 
dislocation transmission across interfaces and then multiple layer slip. In this regime, decreasing 
layer thickness is not expected to significantly increase multilayer strength. 

Figure 2: A plot of interfacial strength to slip transmission versus individual layer thickness for 
multilayers, showing two distinct plasticity regimes. 
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Our focus effort over the past year has been to understand how Tcoh* depends on the properties 
of the A and B phases and the interface between them. This work is motivated by our observation 
that the room temperature plastic strength of multilayers may be increased by increasing the 
resistance of interfaces to slip transmission. A simple model is considered in which a screw 
dislocation lies parallel to an interface and glides along a slip plane that is perpendicular to the 
interface. A Peierls model of the dislocation is used, and the evolution of the dislocation core is 
studied during dislocation transmission across the interface. A significant finding is that the 
strength of the interface to transmission can be increased by making the easier to slide. This is 
accomplished by decreasing the unstable stacking fault energy of the interface. Figure 3 shows the 
critical core configurations during transmission of a screw dislocation across interfaces that have a 
larger (Figure 3 a) versus smaller (Figure 3b) unstable stacking fault energy, assuming an elastic 
modulus mismatch of 10%. The interfacial sliding traps the core and produces an interfacial 
strength that is more than three times the interfacial strength for a nonsliding interface (Figure 3a). 
Current efforts are to simulate the transmission of a dislocation from the disordered y-Ni(Al) phase 
into the ordered Y-NißAl phase. 
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Figure 3(a): Critical core configuration for a screw dislocation as it transmits across interface into a 
material with an elastic modulus that is 10% larger, based on a Peierls model analsis. The unstable 
stacking fault energy assigned to the interface is large enough so that the interface does not slide. 
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Figure 3(b): Critical core configuration for a screw dislocation as it transmits across interface into a 
material with an elastic modulus that is 10% larger, based on a Peierls model analsis. The unstable 
stacking fault energy assigned to the interface is 60% ofthat used to produce Figure 3a. The 
spreading of the dislocation core into the interface produces significant trapping of the dislocation 
in the interface. 
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Morphological Stability ofy-NUAlW-NuAl Multilayers at Elevated Temperature 
Near the end of this award period, we"began heating y-Ni(Al)Y-Ni3Al multilayers to various 
temperatures and times to study the morphological stability at elevated temperature. Figure 4(a,b) 
show SEM micrographs of 120nm/120nm [001] texture samples after heating for 20 hours at 800C 
and 1100C, respectively. At 800C, there is noticeable evidence of morphological breakdown, in the 
form of y-Ni3Al layers which have pinched off. At 1100C, complete breakdown has occurred and 
a particulate morphology is produce, with cuboidal particle which appear to be oriented to the local 
[001] crystallographic direction in the surrounding y-Ni(Al) phase. Current efforts are to study the 
effect of precipitates, stress, and crystallographic texture on the stability of this system. 
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Figure 4(a): SEM micrograph of a y-Ni(Al), Figure 4(b): SEM micrograph of a y-Ni(Al) 
Ni^Al 120nm/120nm multilayer after expos Ni^Al 120nm/120nm multilayer after expos 
to 800C for 20hrs in Argon, followed by cool to  1100C  for 20hrs  in Argon,  followed 
to room temperature. cooling to room temperature. 
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