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SCHIESTEL'S DERIVATION OF THE EPSILON EQUATION AND TWO EQUATION 

MODELING OF ROTATING TURBULENCE 

ROBERT RUBINSTEIN* AND YE ZHOIJt 

Abstract. As part of a more general program of developing multiple-scale models of turbulence, Schi- 

estel suggested a derivation of the homogeneous part of the dissipation rate transport equation. Schiestel's 

approach is generalized to rotating turbulence. The resulting model reproduces the main features observed 

in decaying rotating turbulence. 

Key words, dissipation rate equation, rotating turbulence, two-equation turbulence models, multiple- 

scale turbulence models 

Subject classification. Fluid Mechanics 

1. Introduction. The dissipation rate transport equation continues to resist systematic derivation, 

either from the governing equations or even from statistical closures. Much of the closure-based work is 

summarized in [1]; more recent work is summarized in [2]. In many respects, the most successful derivation 

of the e transport equation is due to Schiestel [3]. Among the successes of the derivation is a rather good 

value Cd =1.5 and the demonstration that necessarily, Ga > Cei- 

It is well-known that the derivation of the e equation in rotating turbulence encounters additional 

difficulties because rotation does not appear explicitly in the exact transport equation for the dissipation 

rate. Instead, the effect of rotation is indirect, entering only through quantities like the turbulent time- 

scale. In the present work, the e transport equation is treated by combining Schiestel's arguments with the 

phenomenology for rotating turbulence of Zhou [4]. The most direct generalization of the argument of [3] 

leads to a rotation-sensitized e equation with the same form as the standard e equation, but with an increased 

value of Ce2; a model of this type was proposed by Okamoto [5]. A simple modification of the argument of 

[3] yields instead a model of the form first proposed by Bardina et al [6]. The implications of these models 

for decaying rotating turbulence are discussed. 

2. Review of Schiestel's derivation. We begin with a split-spectrum model of high Reynolds number 

turbulence, 

_,. ,       f  CK
2 if K < K0 

(2-1) E K   = {    r.     2/3   -5/3     -r      ^ V        ' I     CKC  *   K      ' if K > KO 

In Eq. (2.1), K0 is the inverse integral scale of turbulence which marks the transition between the inertia! 

range and the large scales. Eq. (2.1) is a special case of the models introduced in [3] in connection with 

multiple-scale turbulence models. This is no more than a schematic model of the actual energy spectrum; 

however, as stressed in [3] and [7], to derive a two-equation model, it is essential that the spectrum be 
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parametrized in some simple way. Use of a more complex model like the von Kärmän spectrum would lead 

to essentially the same results. 

Denote the energy in the inertial range by 

(2.2) k=\cKe^K-0
2" 

and the energy in the large scales by 

1 
(2.3) ko = -CK

3
0 

Assume that the spectral descriptors in Eq. (2.1) are functions of time: e = e(t) and K0 = n0{t). It follows 

from Eq. (2.2) that 

(2.4) k = CMe-1/V/36 - 62/V/3«o) 

This equation does not lead to the desired e equation directly, because it contains the new unknown k0. 

To solve this problem, we postulate 

e 
(2.5) KO = -ß 

E{K0) 

based on a very similar proposal in [3]. In view of Eq. (2.1), Eq. (2.5) is equivalent to 

3 

2' 

3 
(2.6) KO/KQ = —zßt/k 

Then Eqs. (2.4)-(2.6) give 

2 k 
(2.7) k=--e-ße 

3e 

which can be re-arranged as 

(2.8) ,=yP_|(1+/3)£ 
with a rather good value for CeX and a value for Ce2 which depends on the choice of ß.   This result is 

essentially Eq. (27) of [3]. 
Following Reynolds [8], the constant ß can be fixed by appealing to the behavior of the large scales of 

motion during decay. Differentiation of Eq. (2.3) gives 

(2-9) ^=3-*° 

and differentiation of Eq. (2.2) gives 

(2.10) 

Assuming that decay is self-similar, so that 

(2.11) 

Eqs. (2.9)-(2.11) lead as usual to 

(2.12) 

fco «0 

k _ 2 e     2 Ko 

k      3 e     3 Ko 

k      ko 
k      ko 

e _    11 e 
~e~~~&k 



corresponding, in Eq. (2.8), to ß = 2/9. 
It would seem that this argument solves the problem of deriving the homogeneous e transport equation, 

since it gives the values Cei = 3/2 and Ce2 = 11/6. But one can object that the assumption Eq. (2.6) is 

another way of stating the final result: this equation states that the integral scale KQ
1
 satisfies a transport 

equation in which the production term is absent. Indeed, writing 

dk3/2 _3fc1/2;      kz'2 . 
dl   e    ~ 2   e e2 (2-13) 37— = 0—*-^e 

and substituting 

k = P 

(2.14) e=^[C(1P-C(2e] 

leads to 

which shows that the absence of a production term in the length-scale transport equation is equivalent to 

Ca = 3/2. 
The injection of energy at large scales can certainly cause the integral scale to increase; at the same time, 

turbulence production might be expected to it to decrease through the enhancement of small scales. Eq. 

(2.5) states the dominance of the first process over the second. Although the validity of this approximation 

is uncertain, the success of the argument is undeniable, and it seems reasonable to ask what conclusions will 

result if the same argument is applied to another problem. 

3. Rotating turbulence. To derive an e equation for rotating turbulence, we will combine the argu- 

ments of the previous section with Zhou's phenomenological model of rotating turbulence [4]. Briefly, this 

model postulates that strong rotation replaces the nonlinear time scale kje by the inverse rotation rate fi-1; 

closure theories lead to 

(3.1) e ~ K
4
TE(K)

2 

where by hypothesis, T oc fi-1, hence 

(3.2) E(K) = C%V&K~
2 

For notational simplicity, fi will denote twice the absolute value of the rotation rate throughout. 
Adding a model for the large scales, we obtain the analog of the split-spectrum model of Eq. (2.1) for 

rotating turbulence, 

J Cn2 if K < K0 (3"3) £(")-j ca^feK-2   ifK>KQ 

Again, we have the energy of the large scales, 

1     , 
(3.4) ko = -CK

3
0 

and the inertial range energy 

(3.5) * = C%Vn~eKÖl 



Note that the definition of the integral scale implied by Eq.  (3.5) differs from the non-rotating result Eq. 

(2.2). 
Following Schiestel, we differentiate Eq. (3.5) to obtain 

k _ le     k0 
(3-6) k ~ Ye ~ * 

As before, we must specify an equation for the inverse integral scale K0 in order to complete the model. 
The simplest possibility is to retain Eq. (2.5). In this case, substitution of the rotation-modified spectrum 

Eq. (3.2) again leads to Eq. (2.6), but with a new constant of proportionality, 

(3.7) «O/KO = -7«/fc 

Following the previous steps, we find instead of Eq. (2.8) 
2 

(3.8) e = 2^P-(2 + 27)^ 

with the definite prediction that Cei = 2 and C£2 > 2. 
The constant 7 can be evaluated by assuming that the constant ß in Eq. (2.5) is independent of 

rotation. Tentatively accepting the non-rotating result ß = 2/9 suggested earlier, Eq. (2.5) with the 

rotation-dependent energy spectrum Eq. (3.2) leads to 7 = 2/9 and to the value Ce2 = 22/9. In decaying 
rotating turbulence, Eq. (3.8) predicts power-law decay in time, but with a smaller exponent than non- 

rotating turbulence: indeed, following [8], we have 

(3.9) fc(t)~r1/(<7«>-1) 

and the increase in C£2 due to rotation from 11/6 to 22/9 implies a reduction in the decay rate. 
The model of rotating decaying turbulence implied by Eq. (3.8) has been advocated, for example in 

[5], and more recently in [9]. The value Ce2 = 22/9 in rotating turbulence can be compared to the values 

Ce2 « 2.8 recommended in [5] and Ce2 - 8/3 suggested in [9]. 
However, the available data is also consistent with the conclusion that in rotating turbulence, energy 

transfer is suppressed completely, and energy becomes trapped in the largest scales of motion, where it 

undergoes purely viscous decay. This picture, which is inconsistent with any kind of power-law decay, is 

advocated for example by [10] and [11]. Which description of decaying rotating turbulence is correct remains 
controversial; for now, we would like to explore some models which are consistent with the second viewpoint. 

The derivation of Eq. (3.2) assumes that the time-scale in strongly rotating turbulence is the inverse 

rotation rate. This idea suggests replacing Eq. (2.6) by 

(3.10) £ = -yn 

in the strong rotation limit. Eqs. (3.6) and (3.10) yield the e equation in the form 

(3.11) e = 2^(P-e)-7'fie 

The rotation dependence found in Eq. (3.11) coincides with that of the well-known Bardina model [6]; we 

argued previously [1] for the strong rotation limit of this model on the basis of simplified closure arguments. 
Integration of the Bardina model for decaying turbulence in the strong rotation limit gives the results that 

e decays exponentially in time, but that the kinetic energy approaches a constant; if viscosity is included in 

the analysis, then the kinetic energy undergoes purely viscous decay. 



Although these conclusions are consistent with numerical and experimental observations [10], the as- 

sumption Eq. (3.10) underlying the present derivation has the consequence that the integral scale grows 

exponentially. This was cited in [9] as evidence against the Bardina model itself, although [11] argued that 

quite different two-point behavior can be consistent with the same single-point model. 

The difficulty is not so much with Schiestel's formalism, but with applying Eq. (3.10), an isotropic 

result, to rotating turbulence. In rotating turbulence, the Taylor-Proudman theorem forces the large scales 

of motion to be nearly two-dimensional. Consequently, the integral scales parallel and perpendicular to the 

rotation axis are unequal [10]. 

It is rather difficult to capture this effect in any isotropic model. But suppose that we combine Eqs. 

(3.6) and (2.9) to give 

k _ 1 e     1 fco 
(3-12) fc = 2e~3fco~ 

and simply postulate the large rotation limit of Eq. (3.11) for decaying turbulence 

(3.13) - = -yn 

Then we obtain 

fc 1  ,_.     1 fco 

or equivalently, 

(3.15) fcfco73 = *(0)to(0)1/3e^'n«/2 

instead of the self-similarity postulate Eq. (2.11) for non-rotating turbulence. Unlike the argument leading to 

Eq. (3.8), which like the derivation for isotropic turbulence assumes that the energy decay of the large scales 

and the inertial range scales is linked by self-similarity, the present derivation instead allows the dynamics 

of the large scales and the inertial range scales to be different. 

The problem of decaying rotating turbulence is defined by the energy equation together with Eq. (3.13) 

and either Eq. (3.14) or Eq. (3.15). Numerical integration will be required to solve these equations in 

general, but it is evident that these equations are consistent with the limits 

e = 0 

fc = 0 

fco — const. 

K0 = const. 

(3.16) 

while 

(3.17) 

Thus, the kinetic energy in the inertial range vanishes, the energy transfer vanishes, but the kinetic energy 

in the large scales and the integral scale both approach constants in the absence of viscosity. 

Let us summarize the differences between the two dynamic descriptions of rotating decay. Power-law 

decay, but with a reduced exponent, follows if the decay of both the large-scale energy and the inertial range 

energy is linked through the self-similarity assumption Eq. (2.11). The alternative description, which leads 

instead to Eqs. (3.16) and (3.17) allows the large-scale and inertial range energies to evolve independently. 

The argument also implies that in the long-time limit, viscous dissipation and energy transfer are unequal: 

energy transfer can vanish, but viscous dissipation is always nonzero. 



4. Conclusions. SchiestePs derivation of the e transport equation has been generalized to rotating 

turbulence. By assuming that the basic scale relationship Eq. (2.5) applies to both non-rotating and rotating 

turbulence, we are led to the e equation in the form Eq. (3.8). This equation implies algebraic decay in 

time of decaying rotating turbulence with a smaller decay rate than non-rotating turbulence. Replacing 

Eq. (3.8) with the rotation-dependent hypothesis Eq. (3.10) leads essentially to the Bardina model, which 

implies a completely different description of rotating decay: the nonlinear energy transfer vanishes and 
in the absence of viscous effects, energy approaches a constant. By ignoring the two-dimensionality and 

rotation-independence of the large scales, this argument leads to an incorrect description of the integral 

scale in decaying rotating turbulence. By modifying SchiestePs argument, the Bardina model is shown to be 

consistent with saturation of the integral scale. 
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DISPLACEMENT MODELS FOR THUNDER ACTUATORS HAVING GENERAL LOADS 

AND BOUNDARY CONDITIONS 

ROBERT WIEMAN-, RALPH C. SMITHt, TYSON KACKLEY*, ZOUBEIDA OUNAIES§, AND JEFF BERND' 

Abstract. This paper summarizes techniques for quantifying the displacements generated in THUN- 

DER actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. 

The PDE models for the actuators are constructed in two steps. In the first, previously developed theory 

quantifying thermal and electrostatic strains is employed to model the actuator shapes which result from the 

manufacturing process and subsequent repoling. Newtonian principles are then employed to develop PDE 

models which quantify displacements in the actuator due to voltage inputs to the piezoceramic patch. For 

this analysis, drive levels are assumed to be moderate so that linear piezoelectric relations can be employed. 

Finite element methods for discretizing the models are developed and the performance of the discretized 

models are illustrated through comparison with experimental data. 

Key words. THUNDER actuators, shape model, displacement model 

Subject classification. Structures and Materials 

1. Introduction. THUNDER actuators offer the capability for generating large strains and forces due 

to a variety of mechanisms including improved robustness through the manufacturing process and increased 

electromechanical coupling due to their inherent shape. However, the full capabilities of these actuators 

have not yet been completely quantified either experimentally or analytically due to their relatively recent 

genesis and the fact that their behavior differs quite substantially from standard unimorphs or bimorphs. 

In this paper, we discuss modeling techniques for quantifying the displacements generated by THUNDER 

actuators in response to applied voltages for a variety of boundary conditions and exogenous loads. The 

development of corresponding finite element techniques is also addressed and the accuracy of the resulting 

finite dimensional models is illustrated through comparison with experimental data. 

Model development is considered in two steps: (i) the characterization of the actuator shape as a function 

of the manufacturing process and (ii) the development of a PDE model for the actuator behavior based on 

Newtonian principles. The first component has been addressed in previous investigations [3] and only those 

details necessary for the development of the subsequent PDE model will be discussed. As detailed in [3], 

the characteristic curved shape of THUNDER actuators is due primarily to differing thermal coefficients 

in the constituent materials, which produce thermal stresses in the combined actuator during cooling, and 

secondarily to the reorientation of dipoles during repoling. We note that the quantification of strains due to 
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thermal gradients has been investigated for a variety of applications (e.g., see [2, 4, 5, 6]) with certain aspects 

having been considered for THUNDER actuators [3, 7]. The quantification of stresses and strains due to 

repoling is based on domain theory for general ferroelectric materials [8, 9, 12, 13]. Thin shell theory is then 

employed to develop PDE models which quantify the stresses and displacements throughout the actuator 

when voltage is applied to the piezoceramic patch. For this analysis, it is assumed that the actuators are 

operating at low to moderate drive levels for which linear piezoelectric relations are adequate. Techniques 

for extending these models to regimes in which the piezoelectric response is nonlinear and hysteretic are 

under investigation and will utilize methods outlined in the concluding remarks. 

Because the PDE model is infinite dimensional, approximation techniques must be considered to obtain 

a finite dimensional model which is appropriate for implementation. This is accomplished through a hybrid 

finite element approach utilizing linear and cubic Hermite basis functions. This numerical approach differs 

from that employed in [14], where a NASTRAN model was employed to predict dome heights, in that the finite 

element method was developed directly for the PDE model used to characterize the physical mechanisms for 

the actuator. Hence the resulting finite dimensional system incorporates the physical properties associated 

with the differing constituent materials thus permitting a detailed analysis of various aspects of the actuator 

dynamics (e.g., stresses or strains at various points along the length of the actuator). This approach also 

permits direct extension of the numerical method to nonlinear structural models for high drive level dynamics 

as well as models which incorporate the hysteresis and constitutive nonlinearities inherent to piezoceramic 

materials at moderate to high drive levels. 

The manufacturing conditions for THUNDER are outlined in Section 2 and a model which quantifies 

the resulting curved shape is summarized in Section 3. The PDE model quantifying the displacements is 

then presented in Section 4 along with boundary conditions which characterize a variety of experimental 

setups. The numerical approximation techniques are discussed in Section 5 and examples illustrating the 

performance of the resulting finite dimensional model are presented in Section 6. Finally, future work, 

including techniques to extend the model to nonlinear and hysteretic regimes will be outlined in Section 7. 

2. Actuator Geometry. THUNDER actuators are typically comprised of a piezoceramic wafer, a 

metallic backing material, hot melt adhesive layers, and an optional metallic top layer as depicted in Fig- 

ure 2.1a. As detailed in [3], materials commonly employed for backing layers include aluminum, stainless 

steel and brass while LaRC-SI is employed as the adhesive. 

During the manufacturing process, the materials are placed in a vacuum bag and heated to 325° C under 

a pressure of 241.3 kPa. During the cooling process, the LaRC-SI solidifies at approximately 270° C and 

subsequent cooling produces curvature in the actuator due to differing thermal coefficients of the constituent 

materials. Because the Curie temperature for PZT-5A (350° C) is in the proximity of the manufacturing 

LaRC-SI Film 

LaRC-SI Film 

] Aluminum 

PZT Wafer 

Stainless Steel 

(a) (b) 

FIG. 2.1. (a) Components of a THUNDER actuator; (b) Curvature observed in a THUNDER actuator. 



temperature, the final step in the fabrication process is comprised of repoling the material through the 

application of a sustained DC voltage. 
As illustrated in Figure 2.1b, THUNDER actuators have a characteristic dome shape due to the man- 

ifestation of differing thermal properties in the PZT and backing material during the cooling process and 

the rotation of dipoles during repoling. In general, curvature will occur in both component directions in a 

rectangular actuator; however, for the models developed here, we consider actuators whose width is small 

as compared with the length so that motion is predominantly in one dimension. Finally, we note that the 

curvature in the actuators occurs only in regions covered by the piezoceramic patch and the end tabs remain 

straight. 

3. Model for the Manufacturing Process. A necessary step before developing a model which 

predicts the actuator displacements under various drive conditions is the quantification of the curvature 

produced in the manufacturing process. We summarize here the characterization of the stresses produced 

during cooling and repoling which in turn produce the curvature. Details regarding this component of the 

model can be found in [3]. 
To accommodate various constructions, we consider actuators with N layers and consider a coordinate 

system in which the x - z plane corresponds with the outer edge of the backing material and the ^-coordinate 

extends through the thickness of the actuator. The width of the jth layer is denoted by bj while hj indicates 
the thickness of each layer as depicted in Figure 3.1. The Young's modulus and thermal coefficient for the 

jth layer are respectively denoted by E5 and aj. The strain at the outer edge of the backing material (y = 0) 

is denoted by e0, and re denotes the curvature at the neutral axis. The change in temperature during the 
bonding process is indicated by AT. To incorporate the strains due to repoling, it is also necessary to employ 

the Poisson ratio v and saturation electrostriction \s for PZT-5A. 
As detailed in [3], the balancing of forces and moments due to thermal and electrostatic stresses yields 

the linear system 

(3.1) A£ = f 

where £ = [eo, re]T and 

" Ef=i EMhj - A;-i)       -§ Ef=i EM*} ~ hU) " 

I Ef=i EM*} ~ A?-i)    -I £f=i EMh] - hU) 

EJLi EjbjiajAT - 3/26v\,)(hj - fy-i) 

I Ef=i EibjiajM - 3/Mv\.)(ti} - /»!_!> 

The Kronecker delta, defined by 

1 ,    if y is in the piezoceramic layer 

A = 

(3.2) 

/ = 

6= . 
0 ,   otherwise 

isolates the electrostatic strains due to repoling to the piezoceramic layer. 
To solve for e0 and re, and hence obtain the final radius of curvature R = 1/re, it is necessary to 

obtain values for Ej,aj for each of the constituent layers in addition to determining u\s for the PZT 

compound being employed. While the Young's modulus and thermal coefficients are catalogued for various 
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FIG. 3.1. Orientation of the composite THUNDER actuator with five layers. 

PZT compounds and various metallic backing materials, they are temperature-dependent, and not easily 

quantified, for the LaRC-SI. Hence these parameters are typically estimated through a least squares fit 

to data for the constituent materials and specific manufacturing conditions under consideration. Details 

regarding the validity of the model for a variety of materials and geometries can be found in [3]. 

4. Displacement Model. The system (3.1) quantifies the radius of curvature R = 1/K for differing 

constituent materials, material dimensions, and manufacturing conditions. In this section, we develop models 

quantifying displacements produced in the actuators through the input of voltages to the PZT or applied 

loads. Because end conditions crucially affect the measured displacements, we consider a variety of boundary 

conditions. Finally, we consider low drive regimes in which the relation between applied voltages and 

generated strains are approximately linear with minimal hysteresis so that linear piezoelectric relations can 

be employed. 

When modeling the actuator, we consider two regimes. In the first, the entire actuator (including 

the tabs) is assumed to have the same initial curvature. This approximation to the geometry significantly 

simplifies the numerical implementation of the model but imposes the assumption that the tabs are initially 

curved. In the second configuration, only that region covered by PZT is assumed to be initially curved and 

the end tabs are taken to be flat in the absence of an applied voltage or load. This accurately represents the 

initial configuration of the actuator after the manufacturing process. One of the objectives when validating 

the model is to compare the performance of both models and ascertain tab dimensions when the latter model 

is sufficiently accurate. 

4.1. Model 1. We consider initially the model which results from the assumption that the tabs have 

the same curvature as that portion of the actuator covered by the PZT patch. The radius of curvature is 

denoted by R (recall that R = 1/K can be predicted using the model summarized in Section 3) and the 

backing material is assumed to have width b, thickness h, and Young's modulus E. The corresponding 

parameters for the PZT layer are respectively denoted by bpe, hpe and Epe. The backing material is assumed 

to extend from 6 = 0 to 6 = L and the region [71,72] covered by the patch is delineated by the characteristic 

function 

(4.1) Xpe 
1     ,  71 < 7 < 72 

0    , otherwise 

where ji = R6± and 72 = R62 and 61,62 denote the angles subtended by the patch. The longitudinal and 

transverse displacements, which are coupled due to the curvature, are respectively denoted by v and w. 

Under the assumptions of linear displacements, negligible rotational effects and shear deformation, and 



linear stress-strain relations, force and moment balancing yields the static equations 

_1 dN0 

(4.2) 
Rdß   ~q$ 

1 d?Me      1 nT      „        1 d2Me 
+ -p;Ne = in - R2  d62       R "     TO     Ä2  <$2   ' 

Here TV« and M# denote the internal force and moment resultants and M6 represents the external moment 

generated by applied voltages to the patches. Finally, qe and qn respectively denote applied longitudinal 

and normal loads to the actuator. As detailed in [1], the modeling equations (4.2) are consistent with the 

restriction of modified Donnell-Mushtari shell equations to the actuator geometry. 

The internal resultants incorporate the material properties of the backing material and PZT and, as 

derived in [1], are given by 

(4.3) 

hpe (dv       \       a2 d2w" 
_ll  [dß + W)     2R? dB2 . 

-Eh3 d?w     „ 
~ 12R2 dö2 +   pe 2R \ 

dv       \       a3 d2w 
dß+W) ~ 3R2 de2. 

Xpe(8 

Xpe(0) 

where a2 = (h/2 + hpe)
2 - (h/2)2 and a3 = (h/2 + hpe)

3 - (h/2)3. 

For low to moderate drive regimes in which the linear piezoelectric equations are sufficiently accurate, 

the external moment generated by the PZT in response to an applied voltage V is 

(4.4) Me = ^^V(h + hpe)Xpe(e) 

where (fei is the linear piezoelectric constant. 

We note that the model (4.2), with resultants given by (4.3) and (4.4), neglects material contributions 

due to the LaRC-SI. If desired, these contributions can be incorporated in the manner described in [1]. We 

also note that in the strong form (4.2), differentiation of the discontinuous material parameters and patch 

inputs yields unbounded components in the model. This necessitates the consideration of an appropriate 

weak form of the model. As a prelude, however, it is necessary to specify appropriate boundary conditions. 

We consider four sets of boundary conditions which model the constraints commonly employed in ex- 

periments: fixed-end, pinned-end, sliding-end and free-end conditions. These boundary conditions can be 

applied at either end of the beam; to simplify the discussion, we summarize them at the left end (6 = 0) and 

note that similar expression hold at 6 — L. 

(i) Fixed-End Conditions 

(4-5) dw -(0) = 5(0)=0 

v(0) = 0 

d 

de 

(ii) Pinned-End Conditions 

(4.6) 
v(0) = 0 

w(0) = Me(0) = 0 



(iii) Sliding-End Conditions 

u,(0) = u(0)tan(&) 

(4.7) Mfl(0) = 0 

Ne{0) = -Qe{0)tM4>c) 

(iv) Free-End Conditions 

(4.8) N9(0) = Me{0) = 0 

In the sliding end condition, Qe denotes the shear force resultant and 4>i,4>c respectively denote the 

initial angle of the actuator and the angle obtained after a load is applied (see Figure 4.1). It can be noted 

that to within a first-order approximation, <fo and (f>c are related by the expression <j>c = & + ^§. Finally, 

for implementation purposes, it has been observed that physically reasonable results can be obtained with 

the approximation Qg = 0 which is typically enforced in first-order shell theory. This yields the natural 

boundary condition Ng = 0 which is easily implemented. 

We note that care must be exhibited when specifying boundary conditions at the left and right ends of 

the actuator to ensure model well-posedness. For example, the specification of free-end conditions at both 

x - 0 and x = L will yield rigid body modes and hence will not enforce unique solutions since solutions 

differing by a constant will be equivalent. For the experiments reported in Section 6, fixed-end conditions 

were enforced at x = 0 and sliding-end conditions were employed at x = L. 

To accommodate the discontinuities due to the patch and to reduce smoothness requirements on the 

basis functions employed for numerical approximation, we consider corresponding weak forms of the modeling 

system. The state space is taken to be X = L2(Q) x L2(tl) where Q = [0,L]. The test functions depend 

upon the boundary conditions under consideration. For fixed, pinned, or sliding-end boundary conditions at 

0 = 0 and free-end conditions at 6 = L, we respectively employ the spaces 

V = {(4>,<p) eHxxH2\ cj>(0) = 0,^(0) = ^'(0) = 0} 

(4.9) V = {(<f>, v>) € H1 x H2 \ 0(0) = 0, p(0) = 0} 

V = {{& p)€HlxH2\ tp(0) = (f>(0) tan(^)} . 

We note that the constraints Me(L) = Ne(L) = 0 are natural boundary conditions which do not require 

any restriction of the underlying Sobolev spaces. Analogous definitions are employed when considering other 

combinations of boundary conditions. 

A weak form of the model is then 

jf{5"*3-**}*-0 
(4.10) 

for all (</>, if) in the appropriate space V. 



Y = 

Y = s+t 

= L 

FIG. 4.1. Geometry and arclengths of the composite actuator. 

4.2. Model 2. A second model is derived under the assumption that the actuator region covered by 

the patch is curved while the tabs are initially straight. This model is constructed by coupling flat and 

curved beam models through appropriate interface conditions. 

To specify the geometry, we let 7 denote the arclength with 7 = 0 at the left end of the actuator 

as depicted in Figure 4.1. We assume that the tabs have equal length t and that the portion covered by 

the piezoceramic patch has arclength s = (92 - 9X)R. The region covered by the patch is denoted by 

Qpe = [71,72] = [t,s +1] while 0, = [0,1] again denotes the domain for the full actuator. The characteristic 

function xPe, defined in (4.1) delineates that portion of the structure covered by the patch. For the tabs, 

the arclength is designated by 7 = x whereas it has the form 7 = R0 in the curved portion of the actuator. 

For the curved portion of the actuator, force and moment balancing again yield the coupled relations 

1 dNe 

(4.11) 
R d0 

1 d2Me 

= qe 

R2  de2       R 
+ -^Ne = qn 

1 d?Me 

R2 de2 

where Ne,Me and Me are defined in (4.3) and 4.4). The tabs have infinite radius of curvature which yields 

the uncoupled relations 

d2Mx 
(4.12) 

where the resultants are given by 

(4.13) 

dN* 
dx 

= Qx dx2 ■ Qn 

Nx=Eh 
dv 

Mx = - 
Eh3 (fw 

'dx    '    "'" 12   dx2 ' 

Finally, the displacements and slopes at 71 and 72 are coupled through the interface constraints 

lim v(j) =   lim «(7) 
7-Py, 7->7a 

lim v(j) =  lim v(j) 
7-+7^" 7-^72" 

(4.14) lim »(7) =  lim w(y) 
7->7j~ -Y-vy? 

lim-^(7)= Um
+d£(7) 

lim 10(7) =   lim w(j) 
7->72~ 7~+72

f 

lim-£(7)= 1im
+^

(7)- 
Formulation of the model in terms of the arclength 7 yields the unified relations 

= 1i 

(4.15) 

dNy 

dj 

dPMy      1 A7      „      dPMy 



with 

(4.16) 

iV, 

M-v 

„, ,'dv     w + ED 
dv hr,eW 

Five  i    "t" 

-Eh3 d2w 

12    di1 + S0, 
Ü2 dv 

Yrf7+ 2R 

R 

Ö2W     03 crw 

ö2 d2^ 

3 d72. 

Xpe(7) 

Xpe(l) 

M7 = 
-Epedsi 

V{h + hpe)XpeXl)- 

The radius of curvature is taken to be R = oo for the tabs. When employing the formulation (4.15), it 

must be noted that the second derivatives may not exist at the points 71 and 72. Finally, fixed, pinned and 

sliding-end boundary conditions are enforced by employing the constraints (4.5) - (4.7) at 7 = 0 or 7 = L. 

The construction of the weak model formulation is analogous to Model 1 with the exception that second 

derivatives of the transverse test functions may not exist at the interface points [71,72]- To illustrate, the 

space of test functions for an actuator with fixed-end conditions at 7 = 0 and sliding-end conditions at 7 = L 

is 

V = jw>,y) e H1 x H2 I <f>(0) = 0,<p(0) = <p'(0) = 0,<p(L) = <j>(L)tan{</>i)  and 

lim <p"h)^  lim (^"(7), lim (^"(7)^  limV'fr)} . 
7->71 7->7+ 7~+72 7->72 J 

Analogous spaces are employed for the remaining combinations of boundary conditions. A weak form of the 

model is then 

(4.17) 

'^ + Ä^-**' + Mr*yaJ 
^U = 0 

for all ((j>, (p) e F. 

5. Numerical Approximation Techniques. To approximate the solution of (4.10) or (4.17), we 

consider Galerkin techniques with basis functions chosen to satisfy smoothness requirements as well as 

boundary and interface conditions. We consider first the system which arises when discretizing the model 

for the uniformly curved actuator. 

5.1. Model 1. We consider Galerkin approximation for v and w which are respectively based on linear 

and cubic Hermite functions. To define the bases, consider a uniform partition of [0, L] with gridpoints 

$i =ih,h = L/N,i-0,---,N. For i = 1,• • •, N - 1, linear splines are taken to be 

{ (e-Oi-r)   ,  0e[0,-i,0i] 

(fli+i-0)   ,   0e[0iA+i] 

0 ,    otherwise . 

(5.1) <t>i(ß) = h 

The cubic Hermite basis functions employed to specify w and w' are given by 

f (9-9i-1)
2[2(9i-9)+h]       ,   6e[9i-i,0i] 

(ei+1 - 0)2[2(9i+i - 9) - h]   ,  ee(9iA+i] 

0 ,   otherwise 
V«(0) = ft3  i 



and 

<pa(0) {6i+1-e)2(e-6i)  , öeiöiA+i] 

0 ,    otherwise . 

As detailed in [11], all three sets of basis functions vanish identically outside the interval [0j_i,0j+i]. The 

basis functions <j>0,<poo,<poi and <t>N,<pNo,<PNi are defined similarly on the intervals [O,0i] and [0JV-I,0JV] 

(see [11, pages 49 and 57]). The essential boundary conditions (i)-(iii) summarized in (4.5)-(4.7) are enforced 

by omitting or forming linear combinations of the boundary basis functions. 

The displacements are then represented as linear combinations of basis functions with coefficients de- 

termined by enforcing the constraints provided by the weak form of the model. To illustrate, consider the 

discretization of the model satisfying fixed-end conditions at 9 = 0 and pinned-end conditions at 6 = L. The 

approximate solutions are taken to be 

N-l 

vN{6) = £ VJMO) 

in the subspace HN C V. Analogous expressions are employed for other combinations of boundary condi- 

tions. 
A matrix system is obtained by considering the approximate solution in (4.10) with basis functions 

employed as test functions (this is equivalent to projecting the system (4.10) onto the finite dimensional 

subspace HN). This yields the linear relation 

(5.3) Kv = f 

where v = [vi, • • ■, UJV-I , m, • • •, WN-I, Wi, ■ ■ ■, ™N\ denotes the vector of unknown coefficients. 

5.2. Model 2. The formulation of approximation techniques for Model 2 is accomplished in a similar 

manner. In this case, we consider uniform partitions on each of the subintervals [0,7i], [71,72], [72, £] and 

define basis functions on each subdomain. The displacements vN = [v^,v^,v^] and wN = [w?,w!?,wg] 

are defined in a manner analogous to (5.2) with the interface conditions enforced through the constraints 

<(7l)=<(7i) ,    <(72)=^(72) 

<(7i) = ^(71) ,    <(72)= ^(72) 

dug.   x     dug.   .        dw?.   .     dug.   . 

Orthogonalization against the test functions then yields a corresponding linear system 

Kv = f 

which can be solved to obtain the displacement and slope coefficients at each of the nodes in the subdomains. 



6. Experimental Validation. In this section, we illustrate the performance of the combined model 

through comparison with experimental data. In the first example, the strain model outlined in Section 3 is 

used to predict the shape of a variety of actuators as a function of the manufacturing process. This provides 

the initial geometry employed in Section 4 when characterizing displacements generated through voltage 

inputs to the patches. The performance of the displacement model is illustrated in Example 2. 

6.1. Example 1. Actuator Shape 
The model summarized in Section 3 quantifies the thermal and electrostatic strains and resulting changes 

in curvature generated during the cooling and repoling of the actuator during the manufacturing process. 

This provides a means of characterizing the radius of curvature and dome height for an actuator as functions 

of properties of the constituent materials as well as the dimensions of these materials. We consider in this 

example an actuator construction comprised of a stainless steel bottom layer, LaRC-SI, PZT-5A and a 

protective LaRC-SI top layer (there is no metallic top layer). The width of all materials was 0.5 inches and 

the PZT was 1.5 inches in length while the stainless steel was 2.5 inches in length. Hence s = 1.5 and t = 0.5 

in Figure 4.1. The PZT was 8 mils thick while the LaRC-SI had a mean thickness of 1 mil. Actuators were 
constructed with steel thicknesses ranging from 1 mil to 20 mils to illustrate the effect of backing material 

thickness on the final dome height of the actuator. Note that the dimensions of the THUNDER devices 

considered here permit the use of the 1-D model. 
The dome heights h predicted by the relation (3.1) are compared with experimental data from actuators 

having steel thicknesses ranging from 3 mils to 20 mils in Figure 6.1. In the model, the parameter values 
Epe = 177 x 109 N/m2, ESI = 7.45 x 109 N/m2, Esteel = 173 x 109 N/m2, ape = 0.8 x 10~7, aSI = 46 x 10-6 

(23-150° C), asi = 60 x lO"6 (23-150° C), asteei = 9.8 x lO"6, As = 0.6 x 10~3 and v = 0.3 were estimated 
through a least squares fit to the full data set. It is observed that the model predicts both the trends and 

magnitudes for the dome heights to within 5% relative accuracy for all steel thicknesses except 6 mils for 

which the relative error was 8%. This provides a characterization of the actuator shape which can then be 

employed when modeling subsequent displacements or forces. 

* 
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20 

FIG. 6.1. Model predictions and experimentally measured dome heights h as a function of steel thickness. 
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6.2. Example 2:. Actuator Displacements 

To illustrate the performance of the displacement model presented in Section 4, we consider the con- 

struction described in Example 1 for actuators having fixed-end conditions at the left edge (7 = 0) and 

sliding-end conditions at the right edge (7 = L). Model 2 was used to predict the displacements generated 

at the patch center (7 = t + s/2) for a variety of steel thicknesses and input voltages. 

For fixed voltage levels, model predictions for the displacement to voltage ratio as a function of steel 

thickness are compared with experimental data in Figure 6.2a. It is observed that the model accurately 

predicts the displacement for actuators having steel thicknesses of 3 mils, 8 mils and 10 mils with discrepancies 

observed at 1 mil and 6 mils. We note that the LaRC-SI has the same thickness as the steel at 1 mil and 

we hypothesize that in this case, unmodeled viscoelastic properties of the LaRC-SI may be dominating the 

elastic properties of the steel. The error in the 6 mil prediction reflects the discrepancy observed in the dome 

height prediction for that thickness. 

To further illustrate the performance of the model at low drive levels, the predicted displacements for 

input voltage levels of 20 V, 80 V and 120 V are compared with experimentally measured displacements in 

Figure 6.2b. The steel thickness in this case was 10 mil. It is observed that within this (approximately) 

linear range, the model accurately predicts the displacement for a variety of input levels. 

7. Concluding Remarks. The model described here provides a technique for quantifying both the 

initial shape of THUNDER devices due to the manufacturing process and displacements generated by ap- 

plied voltages. The actuator shapes were modeled through the quantification of thermal and electrostatic 

strains while Newtonian principles were used to derive PDE models characterizing displacements for a va- 

riety of boundary conditions and exogenous loads. Both components of the model were illustrated through 

comparison with experimental data. 

It should be noted that linear theory was employed when deriving both components of the model and 

degradation of performance is expected in high drive regimes. The extension of both components to nonlinear 

regimes is under current investigation. The extension of the thermal model to include nonlinear effects is 

being considered in the context of theory in [10]. To incorporate the constitutive nonlinearities and hysteresis 

inherent to piezoceramic materials at moderate to high drive levels, the models developed in [12, 13] are 

•jo.oe 
I 

0 

x   Experimental Data 
O   Model Predictions 

- 

■ ■ 
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- * - 
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0 50 
Voltage (V) 
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FIG. 6.2. (a) Model predictions and measured displacements as a function of steel thickness; (b) Modeled and measured 

displacements as a function of input voltage: xxxx (Data),  (Model). 
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being combined with the current model to accommodate large inputs. Finally, nonlinear shell theory will be 

employed to ascertain limitations in the linear PDE presented here when displacements are large. 
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