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1     Introduction 

A realistic mathematical model for a watershed-reservoir-dam system should 
involve some inherently random components leading to a probabilistic represen- 
tation. A closed-form solution for the response of the system to a given water- 
input event proves difficult to obtain, if not impossible, in view of the complexity 
and ultimate nonlinearity of the governing formulations. Consequently, to arrive 
at useful conclusions in the study of a given system, the analyst must conduct a 
large number of numerical simulations of possible realizations. For this proce- 
dure to be practical in exercises of risk assessment of spillways and dam 
nonoverflow monoliths under flood hazard, the associated mathematical model 
must be effective and economical. This report introduces a new engineering 
model for flood-risk analysis of watershed-reservoir-dam systems designed for 
application in multiple mathematical simulations while capturing the essential 
characteristics of the physical system. 

Hyetographs for a given basin are built by inserting rational elements into the 
current state of practice (U.S. Bureau of Reclamation (USBR) 1976,1977). A 
simplified representation of the watershed is introduced at the level of the fun- 
damental unitgraph. All subsequent compositions are mathematically rigorous, 
leading to a convolution integral for a rational watershed-output hydrograph. 
The reservoir is represented by a nonlinear ordinary differential equation formu- 
lated on the basis of the principle of continuity and on the assumption of a con- 
vex reservoir. The spillway discharge is modeled using the von Mises 
semiempirical expression for a wide-weir flow (Street, Walters, and Vennard 
1996). Deterministic interpretations of the model provide insight into physical 
behavior through parametric studies on the occurrence of hydrograph peaks, re- 
sponse spectra, and residual reservoir pools. Stochastic interpretations of the 
model provide insight into the resulting response random processes and the asso- 
ciated hazard curves necessary for subsequent evaluations of the probabilities of 
overtopping, overstressing, overturning, and sliding failures (Ellingwood 1995, 
de Bejar 1999). 

The relevant features of the USBR recommended practical procedure are re- 
tained in the model. Soil Conservation Service (Miller and Clark 1960) maps of 
probable maximum precipitation (PMP) during extreme storms are adopted as 
mean values of extreme-value distributions. USBR empirical factors for the de- 
termination of excess rain are directly implemented as are the Soil Conservation 
Service (SCS) charts for cover-and-land-use complex coefficients. 
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To focus on the effect of a few essential factors on the system response and 
to keep the formulation sufficiently simple to promote physical insight, only the 
basic random variables are included in the watershed stochastic model: (a) storm 
magnitude and (b) watershed characteristic centroidal lag time. The study of the 
random process representing the variation in reservoir-pool in response to the 
water-input event is conducted with and without the presence of noise in the 
reservoir, for mutual comparison among the resulting hazard curves. 
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2    Analytical Models 

The physical system to be modeled consists of three major components (Fig- 
ure 1): the watershed or drainage basin, the reservoir or excess-rain storage, and 
the spillway-dam structure, generally equipped with a gate system for flood con- 
trol and evacuation. 

The U.S. Weather Bureau in collaboration with the U.S. Army Corps of En- 
gineers have developed empirical charts to estimate the 6-hr, 10-square-mile PMP 
as the result of a uniform storm on such 'a point' within the basin area (USBR 
1976,1977). The proper chart to be applied depends on the specific geographical 
location of the project site. The charts are built for U.S. zones either east or west 
of the 105° meridian. To be specific, the model developed here applies to U.S. 
watersheds east of the 105° meridian, but a parallel development may just as eas- 
ily be formulated for U.S. western watersheds. 

Subsequently, the point-storm PMP is scaled up on the basis of empirical 
charts for the size of the specific drainage area under consideration and for several 
values of storm duration to estimate upper bounds of cumulative total rain falling 
uniformly over the watershed. These estimates of precipitation are taken as the 
known PMP distribution in time in the deterministic formulations, or as mean val- 
ues of the extreme-value distribution of the largest values, type I (Gumbel distri- 
bution) in the probabilistic formulations. 

The watershed represents the first filter in the system. A substantial portion of 
the falling rain is lost as the result of a variety of factors. Among the main factors 
contributing to rain loss are (a) evaporation and transpiration, (b) retention by 
vegetation and by topographic details of the terrain (including minor ponds), and 
(c) surficial infiltration and deep percolation, depending on the type of soil cover 
and geological characteristics of the region. The difference between total rain and 
losses other than those from rapid-drainage flowing-through-cover soil water is 
the excess rain defined here as runoff. 

Runoff is evacuated relatively rapidly from the watershed via open channels 
and rivers that lead to the reservoir entrance (point B in the schematic representa- 
tion in Figure 1), where the runoff flow Q(t) can be measured (Figure 2). 

The storm total rain is translated into incremental runoff using semi-empirical 
transformations (Miller and Clark 1960) that include consideration of a complex 
index to classify the watershed according to the cover soil and the land use. This 
piecewise-constant effective water-input history is applied to the watershed hourly 
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Figure 1.   Schematic plan view of a watershed-reservoir-dam system 

Figure 2.    Longitudinal section of analytical model of a reservoir 
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during the first 6 hr of storm and, thereafter, in incremental time intervals of 6,12, 
and 24 hr, respectively. It should be noted, however, that the order of hourly pre- 
cipitation during the first 6 hr of storm cannot be predicted. Therefore, in this 
model the specific order of the rain steps for a given storm is subjected to aleatory 
permutation, whether the representation is deterministic or not. 

Figure 2 shows the longitudinal section of the analytical model for the reser- 
voir component in the system. The input flow Q(t) represents the response of the 
watershed to the water-input event. The spillway outflow q(h(t), c) at the opposite 
end of the reservoir (Figure 3) depends on the discharge coefficient c. This, in 
turn, is a function of the weir elevation z and of the reservoir elevation h(t) itself, 
giving rise to a highly nonlinear governing differential equation for the response. 
The reservoir water level over the spillway crest h(t) is directly related to the 
storm-water storage and represents the hazard on the dam structure whose safety 
is to be evaluated later in terms of the potential modes of failure of overtopping, 
overstressing, overturning, and sliding instability. For simplicity, the pool level at 
the beginning of the storm is considered to be that of the spillway crest, but any 
other convenient datum may be defined by the analyst at will. 
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Figure 3.   Transverse section of analytical model on nonoverflow dam monolith 
(Spillway crest is schematically represented by the dotted line) 
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Notice that the model differs from the real reservoir by the fact that the bot- 
tom of the reservoir may be randomly covered with sediments over time and also 
that our topographical surveys are imperfect, particularly in the vicinity of the 
boundary of the reservoir. The corresponding effects on the governing differential 
equation for the reservoir response are optionally included in the probabilistic 
version of the model by adding a Gaussian noise component to the input random 
process. 

Convex Unitgraph 

The convex model for the response of a watershed to a water-input event is 
based on the principle of continuity and on a postulated linear relationship be- 
tween the response flow Q(t) and the watershed storage S(t). When the storm in- 
flow is constant, the governing differential equation may be expressed (Dingman 
1994) as: 

ds    ( 1 1 c 

where T* = centroidal lag between the inflow and outflow hydrographs 

This is taken as a constant characteristic of the watershed. The solution to this 
equation under zero initial conditions is: 

where k* = 1/T* 

This result indicates that the output response approaches asymptotically the inflow 
©o as far as the termination of the water-input event t^ At this time, the recession 
limb of the response starts an exponential decay toward the zero-flow value. This 
means that the time to concentration of the model tends to infinity, similarly to the 
time to concentration of a real watershed. The recession limb of the response is 
given by: 

Qi.t) = qpk-e~k*{t~t(o) t>ta (3) 

where qpk = QCO is the maximum value of the outflow 

Notice that the only parameter characterizing the response is T*, which may be 
estimated as: 

T* = ±- (4) 

where 

Lr  = length of the longest reach in the drainage basin (distance between 
points A and B along the stream in Figure 1) 
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Uw = velocity of propagation of the flood wave 

The convex unitgraph is defined in this investigation as the outflow response 
of the watershed to a constant-rate water-input event with a total volume of unit 
value (usually a volume of rain with 1 in. of depth and uniformly distributed over 
the whole drainage area). The duration of this constant-rate water-input event is 
the unit period, which in this model is taken as 1 hr. 

Watershed Response Hydrograph 

The watershed response hydrograph is obtained by superposition in time of 
the scaled hydrographs corresponding to the actual incremental effective rain vol- 
umes (usually expressed in inches of rain uniformly distributed over the whole 
watershed area). Analytically, this procedure can be generalized by considering 
the response to a unit-volume input rain concentrated at the origin of time. In 
other words, the watershed output response is, in this case, the unit-impulse re- 
sponse function u(t), as the input rain is a Dirac delta function at the origin of 
time, i.e., a zero-duration unit-volume rain at t = 0. In this case, the governing 
differential equation for the watershed becomes: 

T*.^- + u(t) = 8(t) (5) 
dt 

with initial condition u(0) = 0. The general solution of this equation is: 

M(0 = A-«-**' (6) 

The constant of integration A may be obtained by integrating Equation 5 over 
the infinitesimal time interval (-£,+£) and taking the limit as e->0 to get the unit- 
impulse response function as: 

u(t) = k*e-k*t t>0 (7) 

The watershed response hydrograph to an inflow with the rate of rain r(t) may 
be obtained by superposition in the time domain and is given by the convolution 
integral: 

t 

Q(t)=jr(t-T)-u(r)-dT t>0 (8) 

In fact, the response to r(t) = C0o= constant may also be obtained as the expres- 
sions in Equations 2 and 3 by direct evaluation of Equation 8. 

Figure 4 shows a family of these responses for a storm with magnitude fflb 
= 100 Ksec-ft acting during 4 hr. The parameter T* for the family of curves var- 
ies from a value T* = 25 hr (a slow-evacuation watershed) to a value T* = 2.5 hr 
(a rapid-evacuation watershed). The 'slow' watersheds have smaller peak values 
of outflow and larger residual flows at the end of the period under consideration 
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wO=     100 
FUNDAMENTAL CONVEX WATERSHED RESPONSE 

TIMEfhr/10] 
100 

Figure 4.    Family of convex-watershed responses to a uniform runoff flow w0 

acting during a finite time interval (4 hr). Curves in the set are 
characterized by the centroidal lag time T* 

(10 hr). On the other hand, the 'rapid' watersheds often get almost to the asymp- 
totic value fflb within the storm duration and rapidly decay toward zero residual 
flow upon storm termination. 

The procedure described up to this point to construct the inflow design flood 
hydrograph into the reservoir (i.e., the watershed outflow hydrograph) is shown in 
the flow diagram in Figure 5. This schematic structure is followed in both the 
deterministic and the probabilistic versions of the model being constructed. 
Again, the probabilistic model concentrates on the effects of a random water-input 
event magnitude and of a random watershed centroidal lag T*. 
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GEOGRAPHY: 6-hr pt. storm 

ADJUST: 48-hr A-cum. storm 

TIME DISTRIBUTION OF PRECIPITATION 

I 
RUNOFF 

SOIL/COVER RETENTION RATE 

CENTROIDAL LAG: T 
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1 
SCALE UNITGRAPHS 

I 
SUMMATION OF UNITGRAPHS 

I 
INFLOW DESIGN FLOOD HYDROGRAPH 

Figure 5.    Procedure to construct an inflow-flood hydrograph for a typical 
reservoir 
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3    Deterministic Studies 

An examination of the physical quantities entering the deterministic formula- 
tion for the response of the watershed-reservoir-dam system to a water-input event 
and its sensitivity to variations in those quantities proves to be insightful in re- 
vealing the fundamental nature of the relations involved. 

Watershed Routing 

In this model, the response of the watershed-reservoir-dam system is followed 
for a time interval of 60 hr after the beginning of the storm, which is assumed to 
last 48 hr. The subscript I = 1,2,.. .,6 refers to the first six 1-hr intervals; I = 7,8,9 
refers to the time intervals following the first 6 hr of storm duration with time 
lengths of 6,12, and 24 hr, respectively; and i = 10 refers to the last 12 hr of rain- 
free history of response. 

The procedure to determine the incremental runoff during each of these inter- 
vals follows the standard and well accepted recommendations in practice (Miller 
and Clark 1960; USBR 1976,1977). According to the geographical location and 
extension of the watershed, the 6-hr 'point' PMP is distributed in time and ex- 
pressed as the accumulative rain fall in the actual-size watershed at the end of 
each of the intervals described above fc, i = 6,..,9). This distribution may be ex- 
pressed as: 

n+5=aiP i' = l,...,4 (9) 

where 

p  = 6-hr 'point' PMP 

a, = empirical coefficient 

Likewise, the accumulative rainfall at the end of each of the first six 1-hr intervals 
may be expressed as: 

ri=bir6 i=l,...,6 (10) 

where 

r6 = the accumulative total rain at the end of 6 hr of storm, as provided by 
Equation 9 
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bj = empirical coefficient 

Therefore, the incremental total rain corresponding to each of the first 1-hr inter- 
vals is given by: 

^ = 1 (11) 
Art = rt -IJ_X i = 2,...,6 

Again, the order of these first six 1-hr incremental contributions to the total 
precipitation cannot be predicted, and they are given an aleatory permutation, after 
which the accumulative total rain is recalculated according to: 

r^^ (12) 
ri=ri_1+Ari i = 2,...,9 

Next, the accumulative and incremental effective precipitations (direct runoff) 
are calculated. These calculations require the estimation of the local hydrologic 
soil-cover complex number (5), according to the soil-series classification and the 
combined land use at the site (USBR 1976,1977), modified according to the an- 
tecedent conditions. The U.S. Soil Conservation Service (Miller and Clark 1960) 
recommends the use of the following fit to estimate runoff (based on numerous 
statistical studies and assuming the initial abstraction as Ia = 0.2-5): 

(14) 

OMUif. i=1_9 (13) 
Fl       ri-O.SS 

where pt = accumulative runoff at the end of the i-th time interval, and 

Ap1=p1 

*Pi=Pi-Pi-i i = 2,...,9 

where Apt = incremental runoff corresponding to the i-th time interval 

There is a physical lower bound for the hourly loss during each interval 
(Miller and Clarkl960). In this model, the hourly loss is not allowed to be less 
than 0.05 in. Upon insertion of this minimum value, the incremental runoff is 
recalculated for each interval as: 

Ap*=Ari-ALi i=l,. ..,9 (15) 

and 

*        * 

T     * <16> 
Pi=APi+Pi-l i = 2,...,9 

where ALt is the total loss corresponding to the i-th interval, and symbols with an 
attached asterisk correspond to the recalculated quantities. 
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The watershed routing is completed using the convolution integral of Equa- 
tion 8 reformulated for computational analysis. When the input effective precipi- 
tation is represented by a piecewise constant function, Equation 8 gives 

e(0=X^-^*'M) 
i=\ 

i.e., 

9 
Q(t) = ^(Recess). (17) 

where 

(Recess)i = contribution of the recession limb of the response to the i-th in- 
crement of direct runoff when acting alone during the time inter- 
val ending at tt 

qPhi   - corresponding maximum response, as in Equation 3, and 

Q(t) = ^(^cess).+pj+l 

i=l 
tj<t<ia) j>0 (18) 

when the response is evaluated within the (/+l)-th interval and t0 = 0 

Reservoir Routing 

The outflow from the routing of rain fall through the watershed represents the 
inflow for the reservoir component. Based on the principle of continuity, the gov- 
erning differential equation for the reservoir routing in terms of the pool at the 
upstream face of the dam, h(t), is given by (Jiang 1998): 

dh _Q(t)-q[h(t),c] 

dt ~       G[h(t)] (19) 

where 

Q(t) = inflow from the watershed given by Equations 17 and 18 

q(h(t),c) = outflow through the spillway weir 

c = corresponding discharge coefficient 

G(h)   = gradient of variation of the reservoir storage as a function of the 
reservoir pool 

Notice that other outlet works may be included in q(h(t),c), if present. In this 
model, for simplicity, only a rectangular spillway weir is considered. The outflow 
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through a rectangular weir may be estimated by (Street, Watters, and Vennard 
1996): 

q[h(t),c] = ^b.c.^-h(tf2 (20) 
3 

where 

b = weir length 

c = discharge coefficient 

g = acceleration of gravity 

Von Mises has developed a simple semiempirical expression for the coefficient of 
discharge as (Olson 1961): 

c = 0.611 + 0.075-^ (21) 

where z is the height of the spillway crest over the reservoir bottom (Figure 3). 

The reservoir storage may be regressed empirically as a quadratic function of 
the reservoir pool (Jiang 1998), leading to a linear fit for the corresponding gradi- 
ent, so that it may be expressed as: 

G(h) = a + ßh (22) 

where a, ß are empirical coefficients for the reservoir being considered. 

Inserting Equations 17,18, 20, 21, and 22 into Equation 19 leads to a nonlinear 
ordinary differential equation for h(t) that can be solved numerically (The Math- 
Works 2000). 

Computational Analysis 

The watershed centroidal lag is estimated in the computational implementa- 
tion of the model using the empirical equation inferred by the California High- 
ways and Public Works (Miller and Clark 1960): 

T* = 
r ,, \0.385 
'11.9-L3 ' 

H 
(23) 

where 

L = length of the longest watercourse in miles (i.e., the distance between 
points A and B along the stream in Figure 1) 

H = elevation difference (between the same points A and B in Figure 1) 
infect 
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T* = obtained in hours 

Figure 6 shows a Graphical User Interface (GUI) implemented in Matlab 6.0 
(The MathWorks 2000) with the data for a sample watershed-reservoir-dam sys- 
tem in zone 7 east of the 105° meridian. The program builds the hydrographs for 
the inflow design flood into the reservoir and for the pool, for the design storm 
(PMP), and provides the analyst with instant feedback. The command Plot Hy- 
drographs on the lower right corner of the GUI invokes the callback routines that 
execute the convex routing algorithm with immediate results useful for either the 
design of new hydraulic structures or the evaluation of existing facilities against 
overtopping. 
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0 20 40 
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Figure 6.    GUI designed for ready estimation of deterministic design 
hydrographs 

Surface Hydrographs 

The watershed outflow hydrograph and the associated reservoir pool hydro- 
graph are then generated for a drainage basin with a continuously varying 
centroidal lag. Figures 7 and 8 show the resulting surface hydrographs for a 
rather severe design storm with PMP = 30 in. Notice the pronounced peak of the 
hydrographs (i.e., of the trace of the corresponding surface on the plane T* = 
constant) for watersheds with rapid evacuation characteristics (relatively short r*) 
and the small residual quantity at the end of the response history. Watersheds 
with slow evacuation characteristics (relatively long T*) tend to remain flat in 
time, and therefore show larger residual quantities at the end of the response 
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Figure 7.   Three-dimensional representation of a typical watershed outflow 
hydrograph surface (Deterministic PMP = 30 in.) 

RESERVOIR POOL HYDROGRAPH (PMP-30 in.) 

t*m o    o 
time ft r] 

Figure 8.   Three-dimensional representation of a typical reservoir pool 
hydrograph surface (Deterministic PMP = 30 in.) 
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history. Figures 9, 10, 11, and 12 show these hydrographs for selected PMP spe- 
cific values of 30 and 20 in., respectively. The trends in the family of curves re- 
main the same with the smaller magnitudes of response associated with the 
smaller design storms. 

Similarly, hydrographs for watershed outflow and for the corresponding res- 
ervoir pool are built for a fixed watershed, with a varying magnitude of the water- 
input event (PMP = 15 to 35 in., @5 in.). Figures 13 and 14, and 15 and 16 show 
two sets of hydrograph families for a rapid-evacuation watershed (T* = 5 hr) and 
for a slow-evacuation watershed (T* = 15 hr). Both sets tend to support the basic 
assumption under the standard unitgraph superposition principle applied in prac- 
tice that the response hydrographs essentially retain their shapes with the ordinates 
amplified in proportion to the magnitude of the water-input event (PMP). 

140 

120 

100 

C 80 
■ 
o 
a> 
to 

O 60 

40 

20 

WATERSHED OUTFLOW HYDROGRAPH (PMP=30 in.) 

\T*=2.5,5.0,..,2S.0hr 

30 
time [hr] 

Figure 9.    Family of traces of the hydrograph surface shown in Figure 7 with a 
set of planes T* = constant 

16 Chapter 3   Deterministic Studies 
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Figure 10. Family of traces of the hydrograph surface shown in Figure 8 with a 
set of planes T*= constant 
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Figure 11. Family of traces of a watershed-outflow hydrograph surface built for a 
deterministic PMP = 20 in. with a set of planes T* = constant 
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Figure 12. Family of traces of a reservoir-pool hydrograph surface built for a 
deterministic PMP = 20 in. with a set of planes T*= constant 
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Figure 13. Family of reservoir inflow-flood hydrographs built for a deterministic 
watershed with a relatively short centroidal lag time (7* = 5 hr) for 
several values of the water-input event PMP 
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RESERVOIR POOL HYDROGRAPH (T*=5hr) 
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Figure 14. Family of reservoir-pool hydrographs built for a deterministic water- 
shed with a relatively short centroidal lag time (7*= 5 hr) for several 
values of the water-input event PMP 

WATERSHED OUTFLOW HYDROGRAPH (T*=15 hr) 
60 

_EMP=35.0,30.0,..,15.0 in. 

30 

time [hr] 
60 

Figure 15. Family of reservoir inflow-flood hydrographs built for a deterministic 
watershed with a relatively long centroidal lag time (7*= 15 hr) for 
several values of the water-input event PMP 
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RESERVOIR POOL HYDROGRAPH (T*=15hr) 
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Figure 16. Family of reservoir-pool hydrographs built for a deterministic water- 
shed with a relatively long centroidal lag time (T*= 15 hr) for several 
values of the water-input event PMP 

Response Spectra 

The peak values of response in terms of the watershed outflow and the reser- 
voir pool may be recorded for a continuous variation of the centroidal lag and with 
the magnitude of the water-input event (PMP) as a parameter. The resulting fam- 
ily of curves constitute the response spectra for the response quantity under con- 
sideration. Figures 17 and 18 show the response spectra for the watershed 
outflow Q(t) and for the reservoir pool h(t). 

The set of response spectra for the watershed outflow is very sensitive to the 
particular order of the resulting aleatory permutation of the hourly storm precipi- 
tation values during the first 6 hr of the water-input event. More unfavorable 
system responses are obtained when the largest incremental rain value occurs 
during the sixth storm hour than the responses for those storms in which the larg- 
est incremental rain value occurs during the first hour. This sensitivity becomes 
apparent for the rapid-evacuation watersheds (those with relatively short 3"*), as 
evidenced by the nonsmooth gradient of Q,max with respect to the storm magni- 
tude (PMP) in Figure 17. 

By contrast, the set of spectra for the reservoir pool exhibit relatively smooth 
transitions when the storm magnitude (PMP) is varied. There are two fundamen- 
tal reasons for this behavior: (a) the peak response of h(t) for a given hydrograph 
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Figure 17. Family of watershed outflow spectra for several values of the water- 
input event PMP 
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Figure 18. Family of reservoir pool spectra for several values of the water-input 
event PMP 
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systematically shows a delay with respect to the peak of Q(t) (Figure 6), occurring 
at some time-distance of the particular hourly incremental rain lumps during the 
first 6 hr of storm, and (b) the peak response of h(t) occurs after a second filter in 
the system has acted on the water input to the watershed. The reservoir pool 
spectra in Figure 18 can be closely approximated by the following useful mathe- 
matical expression: 

,    ,    \h[(T*)-h2(T*)\ t 
K^=h{T*)+l 20 

JA{PMP-15)       PMP>\5      (24) 

where 

^(r*) = 47.15-8.416-ln(r*) 

Ä2 (T *) = 16.82 - 0.5192 • T * +0.007423(7 *f 

and the PMP is given in inches of rain. 

Residual Response 

Similarly, the residual values of response in terms of the watershed outflow 
and the reservoir pool at the end of the observed history may be recorded and rep- 
resented graphically, as in Figures 19 and 20, respectively. Now the recorded 
values take place at a far time-distance of the local rain distribution during the first 
6 hr of storm, and the resulting curves exhibit smooth gradients with the magni- 
tude of the water-input event (PMP). The watershed residual outflow in Figure 19 
can be closely approximated by the following mathematical expression: 

Qr=Qrl{T*)+[-Qr l(T*)~Qr2(T*) i. (PMP-15)    PMP>\5     (25) 

where 

ßrl(r*) = -0.6571 + 0.1253-r*+0.01648(r*)2-0.0003444(r*)3 

Qrl {T *) = -0.06143 - 0.01471 • T * +0.008029 (T *f - 0.0001489 (T *f 

and the PMP is given in inches of rain. 
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Figure 19. Family of residual watershed outflows, at the end of the history being 
considered (t = 60 hr), for several values of the water-input event PMP 
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Figure 20. Family of residual reservoir pools, at the end of the history being 
considered (t = 60 hr), for several values of the water-input event PMP 
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Likewise, the reservoir residual pool in Figure 20 can be closely approximated 
by the following mathematical expression: 

ftr=Mr*)+ ^(PMP-15)       PMP>15     (26) 

where 

hrl (T *) = 3.481 + 0.3569 • T * +0.001561(7 *f - 0.0001452 • (T *f 

and 

/V2 (T *) = 1.921 + 0.2061 • T * -0.001773(r *)2 - (2.S17E -5)• (r *)3 
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4    Probabilistic Studies 

Instantaneous Response Distributions 

Next, two fundamental variables into the routing of the water-input event 
through the watershed-reservoir-dam system, namely the storm magnitude and the 
watershed centroidal lag, are assumed to be random. The 6-hr 'point' storm mag- 
nitude is modeled with the extreme-value distribution type I, of the largest values 
(Gumbel distribution), with mean value given by the deterministic assessment of 
the 6-hr 'point' PMP (Miller and Clark 1960; USBR 1976,1977) and with a coef- 
ficient of variation estimated as 0.1. The watershed centroidal lag is assumed as 
log-normally distributed, with mean value given by the deterministic assessment 
and with a coefficient of variation estimated as 0.3. Our objective in this investi- 
gation is to identify the instantaneous distribution of the response hydrograph for 
the reservoir pool, h(t), since this represents the effective hazard on the dam 
(de Bejar 1999). Sampling is conducted on the basis of Montecarlo simulations 
(Benjamin and Cornell 1970). 

The best distribution is judged to be the log-normal distribution, fitting the 
data well, while being sufficiently simple for engineering applications. Figure 21 
shows the quantile-quantile plot for the random variable natural logarithm of the 
reservoir pool at time = 24 hr, i.e., ln[h(24)], resulting from 10,000 simulated re- 
alizations of the routing of a random storm through a random watershed, with all 
other parameters in the deterministic system described in Figure 6. The approxi- 
mate alignment with a straight line is indicative of the goodness-of-fit for engi- 
neering applications of the underlying log-normal assumption for the distribution 
of h(24). Figure 22 shows the nonparametric probability density function corre- 
sponding to the 10,000 simulations. Likewise, Figures 23 and 24 show the corre- 
sponding results of the 10,000 simulations for h(12). Again, the log-normal 
distribution is considered satisfactory for most of the data, except possibly at the 
tails of the distribution, where the major deviations from the model occur, as 
expected. 

Finally, the peak values of h(t) resulting from the 10,000 simulations are also 
processed, and again the log-normal distribution is selected as the most conven- 
ient for engineering applications. Figure 25 shows a box plot for the random vari- 
able ln[h,max] on the basis of 1,000 simulations. Only six deviant points are 
identified at the upper end of the presumed log-normal distribution, and only one 
deviant point at the lower end of the distribution. In fact, Figure 26 shows the 
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Figure 21. Quantile-quantile plot for loge [h(24)] based on 10,000 simulations 

Figure 22. Nonparametric probability density for loge [h(24)] based on 
10,000 simulations 
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Figure 23. Quantile-quantile plot for loge [h(12)] based on 10,000 simulations 
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Figure 24. Nonparametric probability density for loge [h(12)] based on 
10,000 simulations 
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Figure 25. Box plot for loge [h,max] based on 1,000 simulations 
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Figure 26. Quantile-quantile plot for loge [h,max] based on 1,000 simulations 
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corresponding quantile-quantile plot that confirms the goodness-of-fit of the log- 
normal distribution for most of the data (again, a few deviant points are identified 
at the tails of the distribution). Figure 27 shows the corresponding nonparametric 
probability density function on the basis of 1,000 simulations. 

3.6 3.8 

Figure 27. Nonparametric probability density for loge [h,max] based on 
1,000 simulations 

Time to Peak Reservoir Pool 

The time (T) to reach the maximum reservoir pool (h,max) is another random 
variable of interest in the routing process. On the basis of 10,000 simulations, the 
resultant time for the maximum reservoir pool appears as a cloud of points with 
no particular pattern. However, upon transformation of both random variables 
(centering about the mean, followed by scaling down by the corresponding stan- 
dard deviation), the data are fitted reasonably well by a cubic polynomial. In 
terms of normalized variables, one obtains: 

y = -0.19-0.7 -jc + 0.21 -xl -0.028-*J (27) 

where y and x are the normalized time and maximum reservoir pool, respectively. 
This fit is shown graphically in Figure 28. Notice that the sum of residuals 
(= 68.8) for this particular set of simulations is satisfactorily small for practical 
applications. (This sum of residuals is not significantly reduced by increasing the 
degree of the fitting polynomial up to 10 deg). 
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Figure 28. Cubic regression to estimate the time of occurrence of the maximum 
reservoir pool, h,max, based on 10,000 simulations 

Noise in the Reservoir 

Consider that the bottom of the reservoir may be randomly covered with 
sediments over time; that our topographical surveys are imperfect, particularly in 
the vicinity of the boundary of the reservoir; or that the actual values of the regres- 
sion coefficients a and ß for the gradient of reservoir storage with changes in res- 
ervoir pool may deviate randomly from the theoretical estimations. The influence 
of these factors on the reservoir response can be modeled by including a Gaussian 
noise term in the governing differential equation for the reservoir (Jiang 1998). 
The result of such formulation is equivalent to adding to the reservoir pool re- 
sponse obtained before (upon solving Equation 19) the contribution to the re- 
sponse from the Gaussian noise term, h(t), which is governed by the following 
zero-initial condition Itö stochastic differential equation (Larson and Shubert 
1979): 

dh(t) dW0(t) 

dt      G[h(t)]      dt 
(28) 
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where 

h(t) = total reservoir pool response (including the contribution from the 
noise) 

dW0(t)/dt = white Gaussian noise 

<T= noise intensity 

This expression may also be written as the following special case of the 
Langevin's equation: 

^W-ö^J-^W <29) 

where Wo is the standard Wiener process. 

The solution for this unpredictable noise is given by the following Wiener 
integral: 

n{t) = c]^) (jo, 

which may be expressed in discrete form for numerical calculations as the fol- 
lowing Itö summation: 

fr^a+B-h(tk) tk=o 

where 

AW0(tk) = W0(tk+1) 

W0(tk) = zero-mean Gaussian process with variance Atk= tk+\ -tk= At, and 
At = time-step 

The empirical value of the noise intensity, a, needs to be identified for the 
cific reservoir under study, and it is arbitrari] 

for numerical calculations in this investigation. 
specific reservoir under study, and it is arbitrarily taken as <7= 3.5E+4 ft sec" 

Figure 29 shows the mean function for the reservoir pool assumed to be given 
by the deterministic response hydrograph for the watershed-reservoir-dam system 
with the input data described in Figure 6. The evolution of the corresponding 
response random process assumed as log-normally distributed is also shown in 
Figure 29. Notice that, generally, as time increases along the recession limb, there 
is less dispersion in the prediction, since the response variances decrease. The 
pool response to the water-input event with noise in the reservoir is included in 
the figure, for comparison with the corresponding response without noise. In gen- 
eral, the presence of the noise increases the dispersion of the response random 
process under consideration. Figure 30 shows the flood hazard curve for the res- 
ervoir pool, with and without noise in the reservoir, assuming the response ran- 
dom process to be log-normally distributed. Notice that the noise causes the 
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Figure 29. Mean function of the reservoir pool and schematic representation of 
the random process h(t), assumed log-normal, with and without noise 
in the reservoir (for clarity, probability density functions appear 
amplified by a factor of 50) 
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Figure 30. Flood hazard curve for the random process h(t), assumed log-normal, 
with and without noise in the reservoir 
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hazard to increase substantially. For example, given that the crest of the nonover- 
flow section is, say, 30 ft above the level of the spillway crest, the probability of 
overtopping turns out to be 6.2 percent for a noisy reservoir, as compared to 
2.4 percent for an ideal reservoir. Figure 31 represents a parallel development for 
the flood hazard curve, assuming that the reservoir pool response process is nor- 
mally distributed. Now the probability of overtopping is 4.5 percent for a noisy 
reservoir, as compared to 0.4 percent for an ideal reservoir. 
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Figure 31. Flood hazard curve for the random process h(t), assumed normal, 
with and without noise in the reservoir 

In general, the magnitude of the hazard is increased when the response proc- 
esses as taken as log-normally distributed, as compared to the results with the 
normal assumption. The log-normal assumption for the response process has been 
proved in this investigation to be applicable to the probabilistic simulation of rout- 
ing of a water-input event through a watershed-reservoir-dam system. Therefore, 
the use of the log-normal distribution is recommended for practical applications to 
real systems in the field. 
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5    Conclusions 

The following conclusions are derived from this investigation: 

a. A rational theoretical model has been developed to represent the routing 
of a water-input event through a watershed-reservoir-dam system and to 
assess its response in terms of the inflow design flood into the reservoir 
and the resulting reservoir pool. 

b. Both deterministic and probabilistic implementations of the model allow 
ready computational analysis, useful for both design and for situational 
assessment. 

c. System response random processes are best modeled as log-normally 
distributed. 

d. Noise in the reservoir component is easily included in the probabilistic 
formulation of the model and has an important influence in the magnitude 
of the resulting hazard. An accurate assessment of the noise intensity may 
prove difficult in practice, but realistic reliability assessments can be con- 
ducted using bounds on the noise intensity. 

e. The model provides direct evaluation of the probability of overtopping in 
a given flood scenario and provides the fundamental hazard curve for 
complete risk analysis of the dam structure, including the possible sliding, 
overstressing, and overturning modes of failure. 
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