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1 Introduction

Background

The Georgia Environmental Protection Division (GEPD) is concerned about
the effects of increased nutrient loadings into Allatoona and West Point Lakes
from point and nonpoint sources due to projected population growth in the region.
West Point Lake is located in the Chattahoochee River basin and receives loads
from Atlanta, a large metropolitan area, in addition to agricultural runoff from the
watershed (Kennedy 1995). Allatoona Lake is located in the Coosa River basin
and, although not as developed as the Atlanta area, the watershed has undergone
significant development associated with the growth of Atlanta to the north.

A number of government- and private-sponsored water quality investigations
have been conducted studying the effects of point and nonpoint source pollution
on water quality in both reservoirs (Georgia Department of Natural Resources
1993). Water demand and nutrient loading will most likely increase in the future.
The ability to predict the effects of increased nutrient loading in West Point and
Allatoona would allow GEPD to set waste load allocations and better manage the
reservoirs for water quality in the future. To meet this goal, the GEPD has
requested the assistance of the Water Quality and Contaminant Modeling Branch
at the U.S. Army Engineer Research and Development Center to develop a water
quality model for Allatoona and West Point Lakes.

Objective

The objective of this study is to provide a calibrated water quality model for
Allatoona and West Point Lakes capable of predicting future water quality condi-
tions resulting from changes in water allocations, point/nonpoint nutrient
loadings, and reservoir operations.

Approach

CE-QUAL-W?2, a two-dimensional, longitudinal and vertical hydrodynamic
and water quality model, was chosen for the study. The model is recognized as the
state-of-the-art reservoir hydrodynamic and water quality model and has been
successfully applied to over 100 different systems in the United States and

Chapter 1 Introduction



throughout the world. It is the reservoir model of choice for Tennessee Valley
Authority, U.S. Bureau of Reclamation, U.S. Geological Survey, U.S. Army
Corps of Engineers (USACE), and U.S. Environmental Protection Agency
(USEPA).

The model consists of a hydrodynamic module that predicts water surface ele-
vations, horizontal/vertical velocities, and temperature. The hydrodynamics are
influenced by variable water density resulting from variations in temperature, total
dissolved solids, and suspended solids. Seventeen water quality state variables and
their kinetic interactions are included in the water quality module. They are:-

(1) Conservative tracer.

(2) Coliform bacteria.

(3) Total dissolved solids or salinity.

(4) Inorganic suspended solids.

(5) Labile dissolved organic matter (LDOM).
(6) Refractory dissolved organic matter (RDOM).
(7) Detritus.

(8) Phytoplankton.

(9) Phosphate phosphorus.

(10) Ammonia nitrogen.

(11) Nitrate + nitrite nitrogen.

(12) Dissolved oxygen (DO).

(13) Organic sediments.

(14) Total inorganic carbon.

(15) Alkalinity.

(16) Total iron.

(17) Biochemical oxygen demand (BOD).

Any combination of the above state variables can be included in a simulation,
but care must be taken to ensure that all relevant variables are included. The state
variables included for this study were variables 5 through 13. These included all
relevant variables for computing algal/nutrient/DO interactions and their effects
on water quality within the reservoirs.
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Site Description

Allatoona

Allatoona Lake is located in northwest Georgia approximately 72 km
upstream of Atlanta, GA (Figure 1). The damsite is 78 km north of Rome, GA,
and 8 km due east of Cartersville, GA. The drainage area above the dam is
2,845 km? and is composed of 12 distinct sub-watersheds. Construction was
completed in late 1949, and filling was completed by May 1950. The U.S. Army
Engineer District, Mobile, operates the project for purposes of flood control,
hydropower, and recreation.
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Allatoona
Reservoir

Figure 1. Allatoona Reservoir with location of sampling stations

The dam is a concrete gravity-type dam and is one of the oldest Corps of
Engineers multipurpose projects in the southeast. It has a total length of 311 m
and a maximum height of 58 m. The spillway is controlled by 11 tainter gates,

9 of which are 12.2 m by 7.9 m (width by height, respectively) and 2 of which

are 6 by 7.9 m. There are two main generating units that have a capacity of
36,000 kilowatts (kW) each and one small generating unit that has a capacity of
2,000 kW within the intake structure. The openings for the main units and small
unit are at elevations 244.5 m and 225.6 m (as referenced to the National Geodetic
Vertical Datum (NGVD)). Power generation can cause water surface elevations to
vary as much as 1 m/day because of the small size of the lake.
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West Point

West Point Reservoir is located in west-central Georgia approximately
112 km downstream of Atlanta, GA (Figure 2). The damsite is 5 km north of West
Point, GA, and 44.8 km downstream from Buford Dam. The drainage area above
the dam is 8,754 km? and represents about 40 percent of the Chattahoochee River
Basin. The construction of West Point Reservoir was authorized by the Flood
Control Act of October 23, 1962. Construction began in 1965 and was completed
in February 1965. The Mobile District operates the project that provides for flood
control, hydropower, recreation, fish and wildlife enhancement, and streamflow
regulation for downstream navigation.

GEORGIA

ALABAMA

\ West Point

Figure 2. West Point Reservoir with location of sampling stations

The dam is a gravity-type dam with a total length 0f 2,211 m and a maximum
height 0f 29.6 m. The dam consists of an intake powerhouse structure, a nonover-
flow section, a gated spillway located on the main river channel, and a left
embankment retaining wall that supports an earth embankment on the east abut-
ment. There are two main generating units and one small generating unit within
the intake structure. The openings for the main units are at elevations 184.5 m and
170.1 m (NGVD), and the opening for the small unit is at 193.5 m and 184.4 m
(NGVD). The small unit has the capability to take water from the upper 4 to 5 m
of the lake to maintain a minimum flow with higher DO concentrations when the
main units are not operating.
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2 Input Data

The following data are required for an application of CE-QUAL-W2:

a. Initial conditions.

- Bathymetry

- Water surface elevation.

- Temperature.

- Water quality constituents.
b. Boundary conditions.

- Inflow/outflow.

- Temperature.

- Water quality.

- Meteorology.

These data are used to set initial conditions at the start of a model run and to
provide time-varying inputs that drive the model during the course of a simula-
tion. Additional data such as outlet descriptions, tributary and withdrawal loca-
tions are also required to complete the physical description of the prototype. In-
pool data including water surface elevations, temperatures, and constituent
concentrations are also required during model calibration in order to assess the
performance of the model.

A clear distinction needs to be made regarding initial and boundary conditions
and in-pool data. In-pool data have no effect on model performance — they are
used only to assess model performance. Initial and boundary conditions are of
greater importance because they directly affect model performance. Unfortunately,
boundary conditions are rarely determined with a frequency that most modelers
deem sufficient to accurately describe the forcing functions that are responsible
for observed temperature and water quality conditions. Such is the case for both
Allatoona and West Point as will be discussed below.
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Bathymetry

CE-QUAL-W?2 requires that the reservoir be discretized into longitudinal
segments and vertical layers that may vary in length and height. An average width
must then be defined for each active cell where an active cell is defined as poten-
tially containing water. Segment layer heights for West Point and Allatoona were
constant while segment lengths varied. Once the segment lengths and layer
heights were finalized for each reservoir, average widths were determined for each
cell from sediment range data provided by the Mobile District.

Allatoona

The Allatoona grid is shown in Figure 3. The grid consists of five branches
comprising 39 active segments and a maximum of 22 layers. Segment lengths
varied from 0.8 to 3.2 km. The main branch represents the Etowah River. The
remaining branches represent Little River, Stamp Creek, Rowland Creek, and
Little Allatoona River, respectively. A comparison of computed volume-elevation
curve and Mobile District data is presented in Figure 4. The computed volume-
elevation curve closely matches the Mobile District data.

West Point

The West Point grid is shown in Figure 5. The grid consists of six branches
with a total of 29 active segments and a maximum of 11 layers. Segment lengths

Branch 1 2 3 4 5

Figure 3. Allatoona computational grid
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Figure 4. Allatoona volume-elevation curve

varied from approximately 1 to 6 km and layer thicknesses were set to 2 m. The
main branch represents the Chattahoochee River. The remaining branches repre-
sent Yellowjacket, Whitewater, Wehadkee, Stroud, and Maple Creeks, respec-
tively. A comparison of computed volume-elevation curve and USACE data is
presented in Figure 6. The computed volume-elevation curve closely matches the
USACE data.

Branch 1 2 3 4 5

Figure 5. West Point computational grid
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Figure 6. West Point volume-elevation curve

In-Pool Data

Allatoona

In-pool data for Allatoona were received from the A. L. Burruss Institute at
Kennesaw State College and GEPD. Observed data received from Kennesaw
State College were collected as part of the USEPA Clean Lakes Program and were
collected monthly in 1992-1994. During the Clean Lakes study, temperature and
DO were the only constituents collected as profiles. All other constituents were
collected as photic zone averages. Data received from the GEPD were collected as
a supplement to the Clean Lakes Program Study and to provide an expanded data
base for developing a water quality model. These data were collected monthly in
1996 in addition to Clean Lakes data.

West Point
West Point Lake in-pool profile data were obtained from a report prepared by

Radtke, Buell, and Perlman (1984) for 1979. Data were also received from GEPD
for 1996 and 1997.

Initial Conditions
The following options are available for setting initial conditions in the model: }

(1) Initialize all cells in the grid to a single value.
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(2) Initialize all cells in the grid based on vertical variations.

(3) Initialize all cells in the grid based on vertical and longitudinal
variations.

For all calibration years, simulation start date and initial conditions at each
reservoir were set to the first date that data were collected. For all years, initial
conditions for phosphorus, ammonium, nitrate-nitrite, algae, LDOM, RDOM,
labile particulate organic matter (LPOM), and refractory particulate organic matter
(RPOM) were set using option 1 since there was little variation in concentrations
throughout the reservoirs.

For the 1993 Allatoona calibration, the starting date of the simulation was
January 26 when conditions were essentially isothermal. Therefore, option 1 was
used to set initial conditions for temperature and DO. For 1996, the starting date
was April 25 when the lake was more stratified, so initial conditions of tempera-
ture and DO were set with option 2. In 1979, West Point Lake initial conditions
for temperature and DO for all years (except DO in 1994) were set using option 2
because of the vertical variation in temperature and DO. For the 1996 calibration
at West Point, initial conditions for temperature and DO were set using option 2.

Boundary Conditions

Meteorology

Hourly meteorology was obtained from the U.S. Air Force Environmental
Technical Applications Center in Asheville, NC, for Columbus and Atlanta, GA.
Data required by CE-QUAL-W2 for surface heat exchange were air temperature,
dew point temperature, wind speed and direction, and cloud cover.

Inflows

Mobile District provided calculated daily average inflows measured every
hour for the years 1979, 1996, and 1997 for West Point and 1992, 1993, 1996,
and 1997 for Allatoona. Inflows were calculated based on daily average outflows
and changes in water surface elevations. During calibration, discrepancies in the
computed and observed water surface elevations were reconciled by adding or
subtracting the appropriate amount of flow using the distributed tributary option.

Outflows

Mobile District provided daily average outflows for all calibration years for
Allatoona and 1979 and 1997 for West Point. Outflows for 1996 in West Point
were furnished on an hourly basis. Lack of more frequent outflow data for 1979
and 1997 could have impacted the calibration of the model to both reservoirs.
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Inflow temperatures

Only monthly inflow temperature data were available for the main branch of
West Point and Allatoona. Missing data were filled in using a program that uses
meteorological data and depth of the stream to calculate water temperatures.
Temperatures were then adjusted to match the values at the most upstream lake
station since they were most affected by the upstream inflow temperatures.

Inflow constituent concentrations

Water quality inflow concentrations for other constituents of the main branch
for West Point and Allatoona Lake were also very limited. When observed con-
stituent concentrations were not available at the boundary of the grid for each
reservoir, data at the most upstream station were used. These were then adjusted
to match the observed profiles at the most upstream lake station.

Although inflow concentrations of labile and refractory dissolved and particu-
late organic matter (LDOM, RDOM, and LPOM) were not monitored at West
Point Lake or Allatoona Lake, their boundary concentrations were estimated from
total organic carbon (TOC). The assumption was made that the majority of the
TOC was refractory. To remove the uncertainty of these assumptions, data would
have to be collected for the different forms. Listed below are the equations used in
estimating these constituents from TOC.

LDOM = [(TOC - algae) * 0.75] * 0.30 1)
RDOM = [(TOC - algae) * 0.75] * 0.70 0
LPOM = (TOC - algae) * 0.5 3)

Inflow algal concentrations were estimated from chlorophyll a (chla) data.
CE-QUAL-W?2 requires algal concentrations in units of grams of organic matter
(OM) per cubic meter. Measured chla concentrations were in units of micrograms
of chla per liter (ug chla/l) and were converted to gm OM/m’ using the conver-
sion factor 65 as recommended by the QUAL2E and CE-QUAL-W2 user manuals
(Brown and Barnwell 1987, Cole and Buchak 1995).

The conversion equation is written as:

pmgchla, mg . gm ,10°1, 652m OM _ 0.065 gmOM
1 10°pg  10°mg m® gm chla m?

Q)

It was assumed that the chla measurements were corrected for pheophytin
according to procedures in Standard Methods (American Public Health Asso-
ciation, American Water Works Association, and Water Pollution Control
Federation 1985).
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3 Calibration

The concept of calibration/verification of a model has changed in recent years.
Previously, calibration was performed for a chosen year with coefficients being
adjusted to give the best comparison between computed and observed data. Verifi-
cation involved applying the model to another year without changing coefficients.
In reality, if the results for the verification year were inadequate, both years were
revisited and coefficients adjusted until an adequate fit of both years was
achieved, essentially making both data sets calibration years. Including additional
years for calibration further obscures the distinction between calibration and
verification data sets.

Additionally, although not done in this application, there is no reason to
expect that all water quality calibration parameters should remain constant from
year to year. For example, sediment oxygen demand (SOD) and nutrient fluxes
can and do change over time; otherwise, there would be no purpose in using a
model to determine a system’s response to changes in loadings. There is no reason
to expect that SOD in 1979 would be the same as SOD in 1997 in Allatoona
Reservoir. The only way to account for these changes would be to model all the
years from 1979 to 1997 and hope that whatever changes in SOD and nutrient
fluxes that occurred over the years would be captured by the model. Indeed, this
would be the best way to gain confidence in a model’s predictive ability. Clearly,
however, this is not feasible as the data do not exist to drive the model for this
period.

Successful model application requires calibrating the model to observed
in-pool water quality. If at all possible, two or more years should be modeled with
widely varying hydrology and/or water quality if corresponding water quality data
are available. For West Point, 1979, 1996, and 1997 were used for calibration. For
Allatoona, 1992, 1993, 1996, and 1997 were used for calibration. The more years
included for calibration, the more confidence one can have in model predictions
under future conditions.

Graphical and statistical comparisons of computed versus observed data were
made to evaluate model performance. When interpreting temperature and water
quality predictions from CE-QUAL-W?2, several points need to be kept in mind.
First, temperature and water quality predictions are averaged over the length,
height, and width of a cell, whereas observed data represent values at a specific
point in the reservoir. Second, meteorological data were obtained from a station
located approximately 80.5 km (50 miles) from the reservoir. Third, exact times
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observed data were taken were not available, so model output was taken at

12 noon for comparison. Fourth, inflow temperatures were estimated from mete-
orological data. Fifth, measurement errors also exist with regards to measured
depths, temperatures, and water quality. As a consequence, expecting the model to
exactly match measured observations is unrealistic.

Two statistics were used to compare computed and observed in-pool observa-
tions. The absolute mean error (AME) indicates how far, on the average, com-
puted values are from observed values and is computed according to the following
equation:

% | Predicted - Observed |
Number of Observations

AME =

&)

An AME of 0.5 °C means that the computed temperatures are, on the average,
within + 0.5 °C of the observed temperatures.

The root mean square error (RMS) indicates the spread of how far the com-
puted values deviate from the observed data and is given by the following
equation:

©

: 2
RMS = \/Z (Predicted - Observed)
Number of Observations

An RMS error of 0.5 °C means that 67 percent of the computed temperatures are
within 0.5 °C of the observed temperatures.

Table 1 gives the values for all hydraulic and water quality parameters avail-
able for adjustment in the model. It may seem like there are a large number of
coefficients available for water quality calibration. However, of the 46 coefficients
available for adjustment, 20 involve the temperature rate multiplier function used
in the algal and nutrient compartments. Of the remaining 26, seven involve
stoichiometric relationships that are basically fixed, leaving 19 coefficients for
calibration. Experience has shown that the model provides good results with the
default values for algal rates and half saturation coefficients. For nutrient
calibration, the only coefficients adjusted are typically the sediment release rates
for ammonium and phosphorus. For DO, the only coefficients usually adjusted are
the zero-order SOD rates and possibly the organic matter decay rates. As a result,
the amount of “curve fitting” has been kept to a minimum. Values in bold face
represent parameters that are different between reservoirs.
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Table 1
Water Quality Coefficient Calibration Values
Coefficient [ Variable | Allatoona | West Point
Hydraulic
Horizontal eddy viscosity AX 1.0m’s”’ 1.0m’s”’
Horizontal eddy diffusivity DX 1.0m‘s” 1.0m’s”’
Chezy bottom friction factor CHEZY 70m”s’ 70m”s’
Wind-sheltering WINDSH 0.7 0.85
Fraction solar radiation absorbed at water surface BETA 0.45 0.45
Light extinction for pure water GAMMA 0.25m” 0.25m”
Coefficient of bottom heat exchange CBHE 7.0*10°°Cm’'s' | 70*10°°Cm"'s’
Water Quality
Algae
Growth rate AG 2 day”’ 2day”
Mortality rate AM 0.1 day” 0.1day”
Excretion rate AE 0.04 day 0.04 day’
Respiration rate AR 0.04 day™ 0.04 day™
Settling rate AS 01ms”’ 01ms"'
Phosphorus half-saturation for algal growth AHSP 0.003gm~ 0.003g m~
Nitrogen half-saturation for algal growth AHSN 0.014gm” 0.014gm™>
Light saturation intensity ASAT 75Wm* 75 Wm*
Fraction of algae to POM APOM 0.8 0.8
Lower temperature for minimum algal rates AT1 10°C 10 °C
Lower temperature for maximum algal rates AT2 30°C 30°C
Upper temperature for maximum algal rates AT3 35°C 35°C
Upper temperature for minimum algal rates AT4 40 °C 40 °C
Lower temperature rate multiplier for minimum algal rates AK1 0.1 0.1
Upper temperature rate multiplier for minimum algal rates AK2 0.99 0.99
Lower temperature rate multiplier for maximum algal rates AK3 0.99 0.98
Upper temperature rate multiplier for maximum algal rates AK4 0.1 0.1
Phosphorus to biomass ratio BIOP 0.005 0.005
Nitrogen to biomass ratio BION 0.08 0.08
Carbon to biomass ratio BIOC 0.45 0.45
Phosphorus
Sediment release rate (fraction of SOD) | PO4R 1 0.002 day™ ] 0.005 day™
Ammonium
Ammonium decay rate NH4DK 0.12 day’ 0.12 day”’
Sediment release rate (fraction of SOD) NH4R 0.05 0.125
Lower temperature for ammonium decay NH4T1 5°C 5°C
Upper temperature for ammonium decay NH4T2 25°C 25°C
Lower temperature rate multiplier for ammonium decay NH4K1 0.1 0.1
Upper temperature rate multiplier for ammonium decay NH4K2 0.99 0.99
Nitrate
Nitrate decay rate NO3DK 0.03 day™ 0.05 day™”
Lower temperature for nitrate decay NO3T1 5°C 5°C
Upper temperature for nitrate decay NO3T2 25°C 25°C
Lower temperature rate multiplier for nitrate decay NO3K1 0.1 0.1
Upper temperature rate multiplier for nitrate decay NO3K2 0.99 0.99
Organic matter
Labile DOM decay rate LDOMDK 0.12 day”’ 0.12 day’
Refractory DOM decay rate RDOMDK 0.001 day” 0.001 day’
Labile to refractory DOM decay rate LRDK 0.01 day”’ 0.01 day”
Labile POM decay rate LPOMDK 0.08 day’ 0.08 day™'
POM settling rate POMS 05ms’ 05ms”
Lower temperature for organic matter decay OMT1 5°C 5°C
Upper temperature for organic matter decay OMT2 25°C 25°C
Lower temperature rate multiplier for organic matter decay OMK1 0.1 0.1
Upper temperature rate multiplier for organic matter decay OMK2 0.99 0.99
Sediment decay rate SDK 0.08 0.08
Oxygen
Stoichiometry for ammonium decay O2NH4 4.57 4.57
Stoichiometry for organic matter decay 020M 1.4 1.4
Stoichiometry for algal respiration decay 02AR 1.1 1.1
Stoichiometry for algal growth decay 02AG 1.4 14
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Allatoona
Water surface elevations

Water surface elevations are predicted by the model based on the interactions
between inflows, outflows, evaporation, and precipitation. Since the inflows
provided include the effects of evaporation and precipitation, these options were
not used during calibration. Any discrepancies between computed and observed
elevations were eliminated by including either positive or negative inflows in the
distributed tributary inflow file. Distributed tributary inflows enter the surface
layer of all segments in a branch and are apportioned according to the surface
area of each segment. As shown in Figure 7, predicted elevations closely matched
observed elevations.

Allatoona Reservoir
Computed vs. Observed Water Surface Elevation

2601
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Water Surface Elevation, m
N N N N N
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N
&
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250
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Julian Day

Figure 7. Computed (lines) vs. observed (symbols) water surface elevations

Temperature

Results for temperature calibration at station 01, the station closest to the dam,
are given in Figures 8-11. Results for the other stations are given in Appendix A.
Overall, the model is reproducing the observed temperature profiles accurately.
Most of the discrepancies between predicted and observed temperatures occur in
the epilimnion. Epilimnetic temperatures are influenced primarily by surface heat
exchange that is in turn a function of the accuracy of the meteorological data.
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Figure 10. 1996 computed (...) vs. observed (x) temperatures at station 01
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Figure 11. 1997 computed (...) vs. observed (x) temperatures at station 01

Also, epilimnetic temperatures are influenced by the time of day the data were
taken and can change several degrees over the course of a day. The time at which
the profiles were taken was not available for this study.

An important aspect in any model application to different calibration sets is
that the model capture the differences in temperature between calibration years.
For example, the temperature profile on September 19, 1992, is different than on
September 22, 1993, and the model is capturing this difference, indicating that the
model is accurately reproducing the response to different forcings. This gives
increased confidence in the model’s ability to accurately respond to different
forcings for management scenarios.

Dissolved oxygen
Calibration results at station 01 are given in Figures 12-15. Results for the
other stations are given in Appendix A. Overall, the model is doing a good job of

reproducing the observed spatial and temporal patterns of DO depletion in
Allatoona. The model is capturing the timing of the onset of oxygen depletion in
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Figure 13. 1993 computed (...) vs. observed (x) DO at station 01
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Figure 14. 1996 computed (...) vs. observed DO (x) at station 01
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Figure 15. 1997 computed (...) vs. observed DO (x) at station 01

the springtime, the development of hypolimnetic anoxia in summer, and the
increase in DO with depth during fall overturn. It should be pointed out that the
only kinetic rate parameters manipulated during calibration were the SOD and
sediment nutrient fluxes. This is appropriate and necessary since a mechanistic
description of carbon diagenesis and subsequent SOD and nutrient fluxes is not
included in the current version of the model. All other kinetic coefficients relating
to algal/nutrient/DO interactions were set to their default values.

Discrepancies between computed and observed DO occur mainly in the epi-
limnion and metalimnion. The model tends to underpredict surface DO and over-
predict DO at the bottom of the thermocline during the summer months. These
trends have been seen on a number of other reservoirs and are thought to be due to
the inability of the model to exactly describe algal dynamics in these zones. This
in turn is thought to be due to the inability to properly model nutrient dynamics in
the photic zone. If dissolved inorganic phosphorus concentrations are accurately
reproduced (typically at detection levels), then there is usually insufficient phos-
phorus available in the model to sustain high algal productivity levels required to
generate supersaturated DO levels in the epilimnion. Much research needs to be
done in this area in order to accurately determine nutrient recycling rates in the
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photic zone that impact algal production. It should be stressed that this is a short-
coming common to eutrophication models and is not unique to CE-QUAL-W2.

Discrepancies are also observed during overturn when the model is computing
greater epilimnetic DO concentrations. This is most likely due to not including the
effects of chemical oxygen demand induced by reduced iron, manganese, and
sulfide. These were not included in the model because of a lack of observed data.

While it is important to point out the shortcomings of model predictions, it is
also important to emphasize model capabilities. For Allatoona, the model is
capturing complex DO profiles on July 1, 1992, and May 26 and June 9, 1993.
The model also accurately represents the depth of the oxycline during fall over-
turn. The AME for station 01 is less than 0.7 mg/1 for all the calibration years,
indicating that model predictions are, on the average throughout the water
column, accurate to within 0.7 mg/1 of the observed data.

It should be pointed out that a point-to-point comparison of model predictions
with observed data is the most rigorous means of evaluating model output. Many
modelers will compare computed versus observed contour plots or average model
output and observed data over space and/or over time in order to determine if the
model is capturing general trends in the observed data. Although appropriate for
determining the proper temporal and spatial scales of resolution suitable for a
given model, these methods of presentation also obscure a model’s shortcomings.
The point to be made is that the method of presenting model results in this report
is intended to show the model’s shortcomings as well as strengths in order to
provide more information as to the model’s capabilities and limitations when used
as a management tool.

Nutrients

Results for ammonium, nitrate-nitrite, and dissolved inorganic phosphorus
calibration are given in Figures 16-33. Where mixed samples over the photic zone
were taken, the figures include all the sampling stations located along the length
of the mainstem. The 1992 and 1993 data are mixed samples taken over the depth
of the photic zone. Vertical profile data were available only for 1996 and 1997.
For 1992 and 1993, the model generally captures the spatial trends in ammonium
from the upstream to downstream stations. For 1996 and 1997, the model repro-
duces the increases in hypolimnetic ammonium and phosphorus during the sum-
mer stratification period and their decreases during fall overturn for the station at
the dam.

When interpreting model predictions, it is also important to examine the
observed data to determine what is occurring in the system and whether or not the
spatial and temporal changes in the observed data can be reproduced by the mech-
anisms represented in the model. For example, the large increase in ammonium
concentrations throughout the reservoir from June 8 to June 30, decrease from
June 30 to July 14, increase from July 14 to July 28, and decrease from July 28 to
August 10 must have some physical or chemical explanation for the rapid change
in the observed data in order to ensure that the model can reproduce the observed
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Figure 16. 1992 computed (x) versus observed (¢) ammonium mixed over the photic zone depth
for the mainstemn stations (continued)
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Figure 17. 1992 computed (x) versus observed (¢) ammonium mixed over the photic zone depth
for the mainstem stations(concluded)

Chapter 3 Calibration



January 27, 1993 February 22, 1993 March 21, 1983
08 0.8 0.8
0.7 0.7 0.7
0.6 0.6 0.8
05 0.5 05
04 04 04
Fos Fos Fos .
02 . 02 02
. [ ]
R o xoxo P x x x X X X x X
00— . PO 00—8—s—s o PO 0.0 A . A
1 2 3 4 5 [ 7 1 2 3 4 5 6 7 2 3 4 S5 6 7
Station Number Station Number Station Number
April 12, 1993 April 28, 1993 May 10, 1993
08 08 08
0.7 0.7 0.7
0.6 0.6 06
0.5 . 05 0.5
04 04 04
L] '] °
Fos Fos Fos
L] °
02 X 02 02
o1 x oaf » o ° e ' am
X x  x x x % X x § X X ¥ x
1 2 3 4 5 ] 7 1 2 3 4 5 6 7 2 3 4 5
Station Number Station Number Station Number

Figure 18. 1992 computed (x) versus observed (+) ammonium mixed over the photic zone depth
for the mainstem stations, January 27 — May 10
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Figure 19. 1992 computed (X) versus observed (¢) ammonium mixed over the photic zone depth
for the mainstem stations, May 24 — October 20
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Figure 20. 1996 computed (...) vs. observed (x) ammonium at station 01
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Figure 21. 1997 computed (...) vs. observed (x) ammonium at station 01

data. Residence time during this period is too great for the advection of varying
boundary conditions to be responsible for the observed pattern, leaving internal
kinetic interactions as the only possible explanation.

The only possible kinetic reactions that could be responsible for the observed
pattern of increasing and decreasing ammonium concentrations from June 8 to
June 30 to July 14 are decay of autochthonously produced organic matter to
ammonium and subsequent nitrification or uptake by algae. This would require a
large algal bloom with a resulting production of particulate and/or dissolved
organic matter through excretion and/or die-off of the algae. The resulting organic
matter decay would result in the production of ammonium. Nitrification or algal
uptake would then have to take place in order to decrease the ammonium concen-
trations from June 30 to July 14. The process would have to be repeated from
July 14 to July 28 to August 10. The observed algal and nitrate-nitrite data do not
provide strong support that the above mechanism was occurring. The nitrate-
nitrite profiles as well as their differences between years are also well represented.
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Figure 22. 1992 computed (x) versus observed (e) nitrate-nitrite mixed over the photic zone for
mainstem stations (May — July)
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Figure 23. 1992 computed (x) versus observed (e) nitrate-nitrite mixed over the photic zone for
mainstem stations (August - October)
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Figure 24. 1993 computed (x) versus observed (s) nitrate-nitrite mixed over the photic zone for
mainstem stations (January 27 — May 10)
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Figure 25. 1993 computed (x) versus observed (s) nitrate-nitrite mixed over the photic zone for
mainstem stations (May 24 — September 22)
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Figure 29. 1992 computed (x) versus observed (¢) phosphorus mixed over the photic zone for
mainstem stations (June 30 - September 18)
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Figure 30. 1992 computed (x) versus observed (¢) phosphorus mixed over the photic zone for

mainstem stations (September 28 — October 28)

Algae

Predicting algal biomass is probably the most difficult task for any water
quality model. Algal biomass in the model is represented as grams organic matter
(dry weight)/cubic meter and measurements are represented as micrograms of chla
per liter. In order to compare the two, model output (or measured chla concentra-
tions) must be converted into the same units requiring a conversion factor between
organic matter and chla. This information was not measured for either Allatoona
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Figure 31. 1993 computed (x) versus observed (s) phosphorus mixed over the photic zone for
mainstem stations
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Figure 32. 1996 computed (...) vs. observed (x) phosphorus at station 01

or West Point, and, therefore, the default value of 65 for the conversion of chla to
OM was used. Additionally, the model represents only a single algal assemblage,
whereas the prototype usually has different dominant algal types with different
organic matter (OM) to chla ratios depending upon the time of year. Further
complicating model predictions is that the samples for 1992 and 1993 represent a
mixed sample of chla over the photic zone depth requiring that the output from
the model be mixed over the best estimate of the photic zone depth.
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Figure 33. 1997 computed (...) vs. observed (x) phosphorus at station 01
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The model also represents the algal assemblage using only one growth rate,
settling rate, excretion rate, mortality rate, temperature dependency on kinetic
rates, etc., whereas in the prototype these values change depending upon the
dominant algal group. Variable algal types could be represented in the model, but
rarely is there sufficient information to distinguish between the dominant algal
groups depending upon the time of year, thus making it hard to justify modeling
more than one algal group. Adding to this the sparsity of (or more commonly the
complete lack of) algal and nutrient loadings at the upstream boundary, then the
ability of the model to even be on the same page as the observed data is a major
accomplishment.

In spite of all these difficulties, the model can still be a useful management
tool if the model captures the trends in algal biomass spatially and temporally
regardless of whether the model accurately computes the “actual” biomass
concentrations. For example, the model consistently overpredicts the algal
biomass in spring (based on an OM to chla ratio of 65) and early summer for
1992 (Figures 35-35) but does capture the trend in decreasing biomass from the
upstream to the downstream stations. In July and August, the model is capturing
not only the spatial trends but is also closely simulating the biomass concentra-
tions. In late summer and early fall, the model again overpredicts the algal bio-
mass but captures the spatial trend of decreasing biomass from the upstream to the
downstream stations. The model could be made to more accurately represent the
actual concentrations in the spring and fall by using different OM to chla ratios.
However, without measured data to support the different ratios, varying the OM to
chla ratios is not justified and becomes simply an exercise in curve-fitting.

Similar results were obtained for 1993 (Figures 36-38). The model captured
the onset of the spring bloom from April 12 to April 28, but the biomass was
overpredicted using the OM to chla ratio of 65. The model captured the spatial
trends in algal biomass throughout the simulation period and also captured the
differences between 1992 and 1993 during late summer. Results for 1996 con-
tained some vertical resolution. The model again overpredicted biomass in the
spring and fall (Figure 39).
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Figure 35. 1992 computed (x) versus observed (s) algal biomass (August — October)
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Figure 36. 1993 computed (x) versus observed (s) algal biomass (January 27 — May 10)
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Figure 37. 1993 computed (x) versus observed (o) algal biomass (May 24 — August 9)
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Figure 38. 1993 computed (x) versus observed (e) algal biomass (August 23 — October)
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Figure 39. 1996 computed (...) versus observed (x) algal biomass

West Point

Water surface elevations

As shown in Figure 40, predicted elevations closely match observed elevations.
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West Point Reservoir
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Figure 40. Computed (lines) versus observed (symbols) water surface elevations

Temperature

Results for temperature calibration at station 03, the station closest to the
dam, are given in Figures 41-43. Results for the other stations are given in
Appendix A. As in the Allatoona calibration, the AME is less than 1 °C for all
dates for all calibration years, although the results are not as accurate as the
Allatoona calibration. The model accurately represents the differences in the
thermal regimes between Allatoona and West Point with no adjustment of
hydraulic calibration parameters except for wind-sheltering. As can be seen from
the results, the model captures the less pronounced changes in temperature over
depth in West Point when compared to Allatoona.

Discrepancies between computed and observed temperatures are believed to
be due primarily to the lack of accurate inflow temperatures. Inflow temperatures
for both Allatoona and West Point were generated from meteorological data since
observed data were either insufficient or lacking for the inflow temperature
boundary condition. Since West Point has a much shorter residence time than
Allatoona, any errors in inflow temperatures will be more apparent in West Point
than in Allatoona.

Dissolved oxygen
Results for DO calibration at station 03 are given in Figures 44-46. Results
for the other stations are given in Appendix A. With the exceptions of SOD and

nutrient release rates, all kinetic coefficients were the same for Allatoona and
West Point. For 1979, the model quite accurately predicts the DO regime in
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Figure 41. 1979 computed (...) vs. observed (x) temperatures at station 03
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Figure 44. 1979 computed (...) vs. observed (x) DO at station 03

West Point with the glaring exception of June 15. As was noted in the discussion
for temperature, West Point is more sensitive to any errors in boundary conditions
due to the shorter residence time, and it is believed that the discrepancy between

computed and observed DO on June 15 is due primarily to inaccurate water

quality boundary conditions. In contrast to Allatoona, the model has less of a
tendency to overpredict DO at the bottom of the chemocline.
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Figure 45. 1996 computed (...) vs. observed (x) DO at station 03
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Figure 46. 1997 computed (...) vs. observed (x) DO at station 03

DO predictions for 1996 considerably underestimate epilimnetic concentra-
tions while in 1997 epilimnetic concentrations are overpredicted. Clearly, this is
not a problem with the model formulations as there is no consistent bias towards
overprediction or underprediction of epilimnetic DO concentrations. The model
accurately reproduces epilimnetic DO in 1979, underpredicts it in 1996, and
overpredicts it in 1997. Again, this is most likely due to inaccuracies in inflow
water quality loadings and their resultant effects on algal production. It should
also be pointed out that it is evident from the different epilimnetic DO concentra-
tions for the various calibration years that the model is quite sensitive to
differences in loadings between the years.
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The model also accurately represents much of the differences in the DO
regime between years. The profiles for May and September in 1979 and 1996 are
good examples. Differences in the DO regimes between Allatoona and West Point
are also well represented.

Nutrients

Results for ammonium, nitrate-nitrite, and dissolved inorganic phosphorus
calibration at station 03 are given in Figures 47-55. Results for the other stations
are given in Appendix A. As in the Allatoona calibration, the model accurately
captures the increase in hypolimnetic ammonium and phosphorus concentrations
during summer anoxic conditions and their decrease during fall overturn. With the
exception of a few dates, the model is also capturing the trends in nitrate-nitrite.
Again, this is thought to be due to the sparseness of boundary condition loadings.
However, the model is clearly capturing some of the differences between years
(August and September for 1996 and 1997).

Algae

Algal data for West Point were only available for 1979 and 1996. Results are
given in Figures 56-77 for stations 10, 07, 05, and 03. Keeping in mind all the
problems associated with predicting algal biomass discussed previously for
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Figure 47. 1979 computed (...) vs. observed (x) ammonium at station 03
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Figure 48. 1996 computed (...) vs. observed (x) ammonium at station 03
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Figure 49. 1997 computed (...) vs. observed (x) ammonium at station 03

Allatoona, the model predictions are at least on the same page as the observed |
data. Further complicating West Point predictions is the shorter residence time

compared to Allatoona. The shorter residence time means that inflow concentra-

tions for algae and nutrients need to be measured more frequently if they are to be

accurately reproduced.

Chapter 3 Calibration 37



38

, M

-10

=B

=20

=25

Jan 22, 1979 May 2,1979 Jun 15, 1979

‘RMSI— 031

AME== 031"

AME= 022
lRMS n 024

xT

AME
AMS

:

Q.
0.

W

73
AT}

X% xy

|

Jul 23,1979 Aug 22, 1979 Sep 18, 1979

=30

1 2 3

0O r

Depth, m

20 |

25 |-

=30

1

2

N b

P
&
N L
[e]e]

3 1 3 1

Nitrate-nitrite , mg I
Oct 16, 1979 Dec 1, 1979

x,

AME= 01
AMS ==

o

L |

2 3

Figure 50. 1979 computed (...) vs. observed (x) nitrate-nitrite at station 03
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Figure 52. 1997 computed (...) vs. observed (x) nitrate-nitrite at station 03
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Figure 53. 1979 computed (...) vs. observed (x) phosphorus at station 03
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Figure 55. 1997 computed (...) vs. observed (x) phosphorus at station 03
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Figure 57. Computed (...) versus observed (x) algal concentrations for stations

10, 07, 05, and 03 for May 4, 1979

g

26

Algae

,mg i1

Jun 15,1972 Jun 15, 1979 Jun 15, 1979  Jun 15, 1979
AME= 087 gs - AME=032 AME= 063
1 IRMISI- °|87 1 RMS- 1 IRMSToaz IRMISI- Ol-esj
0051 162 263 O51 162 263 O61 162 263 061 162 253

Figure 58. Computed (...) versus observed (x) algal concentrations for stations
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Figure 60. Computed (...) versus observed (x) algal concentrations for stations
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Figure 61. Computed (...) versus observed (x) algal concentrations for stations
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Figure 62. Computed (...) versus observed (x) algal concentrations for stations
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Figure 63. Computed (...) versus observed (x) algal concentrations for stations
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Figure 65. 1979 computed (...) versus observed (x) algal concentrations at station 07 for all
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Figure 67. 1979 computed (...) versus observed (x) algal concentrations at station 03 for all
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Figure 70. Computed (...) versus observed (x) algal concentrations for stations
10, 07, 05, and 03 for June 25, 1996
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Computed (...) versus observed (x) algal concentrations for stations
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Figure 72.
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Figure 73. Computed (...) versus observed (x) algal concentrations for stations
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Figure 76. 1996 computed (...) versus observed (x) algal concentrations at station 05 for all
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4 Discussion

A water quality model is a simplified description of what in reality is a very
complex world. Numerous problems are associated with numerical water quality
models. First, the solutions of the governing equations are only approximations
since they cannot be solved analytically. As a result, error is immediately intro-
duced at the start of any model development and subsequent application. Second,
simplifying assumptions are normally made about the fully three-dimensional
governing equations that may or may not have an effect on the results depending
upon the application. In the case of CE-QUAL-W2, the most important assump-
tions are the lateral averaging, hydrostatic pressure, and the turbulence model.
Lastly, model predictions are assumed to be constant for a given model cell,
whereas the real world is a continuum of gradients in water quality.

For water quality, the most serious limitation is that the model assumes that
only one algal assemblage is sufficient to describe what is occurring over time.
Additionally, zooplankton are not modeled, thus eliminating any top-down control
of algal standing crop. Carbon is modeled using two DOM fractions and a single
fraction for POM, when in reality there are a multitude of carbon forms. Carbon
deposition, decay, and subsequent nutrient recycling in the sediments are modeled
in a very simplistic manner. Lastly, and probably most importantly, the boundary
conditions for water quality are scant at best. This is most important for systems
like West Point with a relatively short hydraulic residence time.

Despite all these problems, numerical models have been shown to be one of
the most cost-effective tools for managing water quality among our Nation’s water
resources when used appropriately. For the application of CE-QUAL-W?2 to
Allatoona and West Point, the model accurately captured their thermal regimes.
Dissolved oxygen and nutrients were also well represented by the model.

The largest discrepancies were in comparisons of observed and computed
algal concentrations. Factors contributing to this discrepancy are the use of one
algal compartment, no zooplankton compartment, and sparse data for inflow
concentrations of algae and nutrients. However, for both reservoirs, the model was
able to capture the spatial trend going from upstream to downstream for many of
the sampling dates. Also keep in mind that much of the observed data were a
mixture over the photic zone depth and model results are an approximation to a
mixture over the photic Zone.
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The overpredictions of algal biomass in early spring could have been due to
carbon to chlorophyll ratios used in converting model output (grams organic
matter dry weight) to measured chla data. If the dominant algal group in the
spring was diatoms, then the C:chla ratio in the prototype would be much lower
than what was used in the model. Using a more appropriate value for diatoms
would bring the predictions much closer to observed values while still retaining
the model’s ability to capture the spatial trends.
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5 Conclusions

CE-QUAL-W?2 has been calibrated for temperature and algal/nutrient/DO
interactions for Allatoona and West Point Reservoirs. When using the calibrated
model as a management tool, one would have the most confidence using the
model to investigate how operational changes would affect temperature and water
quality — particularly DO. The model accurately captures the physics of both
reservoirs. Any alteration in the physics should be predicted with a high degree of
accuracy.

Although the model is not as accurate regarding its representation of algal
dynamics, the model is responsive to changes in loadings as is evidenced by the
different behavior of the model’s algal predictions for different calibration years.
When used to address reductions in nutrient loadings, the model would provide a
worst-case scenario since the model does not include a sediment diagenesis com-
partment that keeps track of nutrient delivery, transformation, and subsequent
release back into the water column. Thus, the long-term removal of nutrients from
internal recycling is not modeled. Conversely, when evaluating the effects of
increased nutrient loadings, the model would provide a best-case scenario since an
increase in internal nutrient recycling would not be represented.

As with nearly every water quality model study, the most serious shortcoming
of the present calibration is lack of loading information sufficient to have a high
level of confidence that the model is accurately reproducing the observed data.
However, one important point to keep in mind is that these results were obtained
for four calibration years for Allatoona and three calibration years for West Point.
Additionally, none of the kinetic coefficients differed between the two reservoirs
except for sediment nutrient release rates, nitrate decay, and sediment oxygen
demand. Kinetic coefficients that did not vary between reservoirs used the default
values. These are the same values used in the application of the model to Weiss,
Neely Henry, and Walter F. George for the Alabama-Coosa-Tallapoosa/
Apalachicola-Chattahoochee-Flint study. The results were obtained with an
absolute minimum of “curve fitting” (Tillman, Cole, and Bunch 1999).

Depending upon the amount of scrutiny that the model application will
receive, it may be prudent to collect an additional year’s worth of data with the
sampling designed specifically to provide the necessary information to support the
model — particularly for the algal compartment. This would primarily entail
obtaining more frequent inflow and outflow boundary conditions and delineation
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of the dominant algal populations over the growing season. The next version of
the model will include the ability to model any number of algal groups.
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Appendix A
Temporal and Spatial Trends In

Water Quality

The following plots are included to provide a complete assessment of how
well the model is capturing temporal and spatial trends in the water quality data.
Two types of plots are presented. The first type of plot includes all the dates at
one station location to allow assessment of the model’s ability to reproduce
temporal trends in water quality at the given station. The second type of plot
includes all the mainstem stations on a given date in order to allow assessment of
the model’s ability to reproduce spatial trends in water quality.
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Figure A3. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
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Figure A8. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for stations
along the mainstem, July 1
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Figure A9. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for stations
along the mainstem, July 14
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Figure A10. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, July 28
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Figure A11. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 9
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Figure A12. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 24
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Figure A13. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 19
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Figure A14. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 29
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Figure A15. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, October 15
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Figure A16. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, October 29
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Figure A17. 1992 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, December 18
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Figure A18. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
station 09
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Figure A19. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for

station 18
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Figure A20. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for

station 39
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Figure A21. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
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Figure A22. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, January 26
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Figure A23. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, February 23

Mar 23, 1993
Sta 45 Sta 39 Sta O3 Sta 18 Sta 13 Sta 09

or {‘ - - - = -
E -m ' - - — = I~ ' ~
-l ‘ ‘ : ‘ ”
-0 | - - - - =
50 - - - - -

E= Q79 AME= 122 AME= ANME= 1 AME= 078 AME= 051

-0  RUS=8% | AWS=iF| | nms—l%gg . AVE=138] | RME—I%S nMs-lg.gtsl

O 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Sts O1
o -
-0 - £
g 2
- L
=l
U AEsose
-80

O 10 20 30 40

Figure A24. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, March 23
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Figure A25. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, May 26
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Figure A26. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, June 9
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Figure A27. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, June 30

A14 Appendix A Temporal and Spatial Trends in Water Quality



Jul 29, 1993
Sta 45 Sta 38 Sta 03 Sta 18 Sta 09 Sta 01
0 r — r - x} - r
N AN AN
g - - N B - -
.30 - L L L L L
Bl _ l l _ [
-6o AME= 188  AME=108[ AME= 197 [ AME= 169 |~ AME= 0568  AME= 069
o AMS= 171 , RMS= 114 RMS=206|  RMS=186|  RMS=070|  RAMS=085
O 1 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 © 20 30 40 O 20 30 40
Temperature, °C

Figure A28. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, July 29
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Figure A29. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, August 11
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Figure A30. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, August 25
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Figure A31. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, August 31
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Figure A32. 1993 Allatoona Reservoir computed (...) versus observed (X) temperatures for
stations located along main axis of the reservoir, September 22

Oct 7. 1993
Sta 45 Sta 39 Sta 03 Sta 09 Sta O1
o r - r - -
N A _
g "2 T N - g B
o L . I ] I
<o | i - B L \
=50 - AMEs= 272 [~ AME= 139 | AME= 098/ AME= 0684 AME== 044
-0 , Rl\llIS - I?_76 ) RIV[IS - |‘|.42 . RMS -— |1.05 RMS - l0.80 HMS - '0.48| ‘

1 ]
O 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Temperature, °C

Figure A33. 1993 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations located along main axis of the reservoir, October 7

A16 Appendix A Temporal and Spatial Trends in Water Quality




Apr 24,1996 Jun 5,1996 Jun 26, 1996 Aug 15, 1996 Sep 24, 1996 Oct 15, 1996

o_ — — —~ —
-0 | - - - -

20 L

TRy
T
T
x

Depth, m
8

5

061 AME== 167 AME= 0.80 AME = O,
0.65 , RMS= 163 , RMS= 104 RMS = Q.7

1
O 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 0 20 30 40 10 20 30 40

64  AME=O.
74

AME = AME= 0.31
RMS = RMS = O . RMS-|O'41|

Temperature, °C

Figure A34. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
station 09
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Figure A35. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
station 18
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Figure A36. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
station 45
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Figure A37. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, April 24
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Figure A38. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, June 5
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Figure A39. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, June 26
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Figure A40. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 15
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Figure A41. 1996 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 24
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Figure A42. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
station 09
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Figure A43. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
station 18
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Figure A44. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for

station 45
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Figure A45. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, May 6
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Figure A46. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, June 5
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Figure A47. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, July 3

Depth, m

888658

o

-10

Sta 45

Jul 30, 1997
Sta 18 Sta 09
AME== 068/ AME= 081"
, RMS= 071 , AMS= 084

Sta 01

AME= 068
HI\{IS - 086

O 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Temperature, °C

Figure A48. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, July 30
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Figure A49. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 27
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Figure A50. 1997 Allatoona Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 23
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Figure A51. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
station 05
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Figure A52. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
station 07
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Figure A53. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
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Figure A54. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, January 22
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Figure A55. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, March 20
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Figure A56. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, May 1
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Figure A57. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, June 12
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Figure A58. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, July 25
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Figure A59. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 21
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Figure AB0. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 18
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Figure A61. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, October 15
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Figure A62. 1979 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, December 10
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Figure AB3. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
station 05
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Figure A64. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
station 07
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Figure A65. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
station 10
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Figure A66. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, May 8
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Figure A67. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, June 4
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Figure A68. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, June 25
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Figure A69. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, July 30
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Figure A70. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 8
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Figure A71. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 18
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Figure A72. 1996 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, October 23
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Figure A73. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for
station 04
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Figure A74. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for

station 05

Appendix A Temporal and Spatial Trends in Water Quality

A31




May 16, 1997 Jun 19,1997 Jul 10,1997 Aug 7,1997 Sep 4, 1997 Oct 2, 1997
°r i ¥ T r ¥
=10 4 [ - g - S L
E § i
-5 - - - ~
-20 — - - o
-m - L] -— [ - [ L] r - - -

O 1 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40 10 20 30 40

Temperature, °C

Figure A75. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for
station 07
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Figure A76. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for

station 10
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Figure A77. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, May 15
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Figure A79.

stations along the mainstem, July 10
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Figure A80. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, August 7
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Figure A81. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, September 4
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Figure A82. 1997 West Point Reservoir computed (...) versus observed (x) temperatures for
stations along the mainstem, October 2
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Figure A83. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for station 03
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Figure A84. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for station 09
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Figure A85. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for station 13
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Figure A86. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for station 18
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Figure A87. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for station 39
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Figure A88. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for station 45
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Figure A89. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, May 27
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Figure A90. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, June 8
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Figure A91. 1992 Aliatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, July 1
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Figure A92. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, July 14
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Figure A93. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, July 28

Aug 9, 1892
Sta 45 Sta 39 Sta 03 Sta 18 Sta 13 Sta 09
0o - % ~ - -
- ?,J 5 F//f V/("‘ c//g
E i i 3
ol l l '
-40 |+ - - -
=50 - AME= 058 AME = O, AME== 0.76] AME= 080" AME= 0.78]" AME== 118
- AMS= 082 [AMS=0  AMS= 067 ,AMS = 108 [AMS= 110 . - |
o & 10 ® 5 0 ® 6 1 1B E © B 6 10 % 5 1©© B
DO, mgr'
Sta O1

Depih, m
£ &

RMS = 139
o -] 10 16

-60 - AME= 0.86
I S B

Figure A94. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, August 9
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Figure A95. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, August 24
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Figure A96. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, October 15
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Figure A97. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along

the mainstem, October 29
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Figure A98. 1992 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, December 18
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Figure A99. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for station 03
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Figure A100. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for station 09
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Figure A101. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for station 18
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Figure A102. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for station 39
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Figure A103. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for station 45
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Figure A104. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along

the mainstem, January 26
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Figure A105. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, February 23
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Figure A106. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along

the mainstem, March 23
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Figure A107. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, May 26
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Figure A108. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, June 9
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Figure A109. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, June 30
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Figure A110. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, July 29
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Figure A111. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, August 11
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Figure A112. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, August 25
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Figure A113. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, August 31
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Figure A114. 1993 Allatoona Reservoir computed (...) versus observed (x) DO for stations along

Figure A115. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for station 09

Appendix A Temporal and Spatial Trends in Water Quality A49



Apr 24,1996 Jun 5,1996 Jun 26, 1996 Aug 15, 1996 Sep 24, 1996 Oct 15, 1996

o~ :/f - _
=10 + I L ,
E 0 | 3 o~ | <
-30 |- - = - = -
-0 - - - - - -
AME= 067 AME= 095 Q.8 AME= O0.68 AME= 083 AME= 080
-0 IRMS':'-= 074 IRI\AST‘I.OG |RMS'T= 098 IRMS|=1'4° lRMS'F'I.ﬁ IRMS?O.SOI
(o] ] 10 1B B © 16 ] 10 1B 6 10 1B 6 10 1B -] 10 16

Figure A116. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for station 18
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Figure A117. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for station 45
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Figure A118. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, April 24
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Figure A119. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, June 5
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Figure A120. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, June 26
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Figure A121. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, September 24
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Figure A122. 1996 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, October 15
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Figure A123. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for station 09
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Figure A124. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for station 18
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Figure A126. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for stations along

the mainstem, May 6
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Figure A127. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for stations along

the mainstem, June 5
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Figure A128. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, July 3
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Figure A129. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, July 30
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Figure A130. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, August 27
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Figure A131. 1997 Allatoona Reservoir computed (...) versus observed (x) DO for stations along
the mainstem, September 23
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Figure A132. 1979 West Point Reservoir computed (...) versus observed (x) DO for station 05
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Figure A133. 1979 West Point Reservoir computed (...) versus observed (x) DO for station 07
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Figure A134. 1979 West Point Reservoir computed (...) versus observed (x) DO for station 10
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Figure A137. 1979 West Point Reservoir computed (...
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Figure A138. 1979 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, June 13
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Figure A139. 1979 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, July 25
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Figure A140. 1979 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, August 21
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Figure A141. 1979 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, September 18
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Figure A142. 1979 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, October 15
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Figure A143. 1979 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, December 10 .
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Figure A144. 1996 West Point Reservoir computed (...) versus observed (x) DO for station 05
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Figure A145. 1996 West Point Reservoir computed (...) versus observed (x) DO for station 07
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Figure A146. 1996 West Point Reservoir computed (...) versus observed (x) DO for station 10
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Figure A147. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, May 8
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Figure A148. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, June 4
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Figure A149. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, June 25
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Figure A150. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, July 30
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Figure A151. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, August 8
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Figure A152. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, September 18
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Figure A153. 1996 West Point Reservoir computed (...) versus observed (x) DO for stations along

mainstem, October 23
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Figure A154. 1997 West Point Reservoir computed (...) versus observed (x) DO for station 05
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Figure A155. 1997 West Point Reservoir computed (...) versus observed (x) DO for station 07
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Figure A156. 1997 West Point Reservoir computed (...) versus observed (x) DO for station 10
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Figure A157. 1997 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, May 15
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Figure A158. 1997 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, June 19
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Figure A159. 1997 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, July 10
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Figure A160. 1997 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, August 7
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Figure A161. 1997 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, Septenmiber 4
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Figure A162. 1997 West Point Reservoir computed (...) versus observed (x) DO for stations along
mainstem, October 2

Appendix A Temporal and Spatial Trends in Water Quality




Nutrients

Allatoona

=10

-20

Depth, m
§ 8

8

Apr 24,1996 Jun 5, 1986 Jun 26,1996 Aug 15, 1996 Sep 24, 1996 Oct 15, 1996

- - - x

T AME=00d = AME=QO1 AME= 0.0 AME= 0.2 AME= 0.03 AME= 004

AMS= 0.0 AMS = 001 AMS = 00 AMS= 018 [AMS= 004 RMS= 005

o 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Ammonium . mg -

Figure A163. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for

station 09
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Figure A164. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for

station 18
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Figure A165. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for

station 45
Apr 24, 1996
Sta 45 Sta 18 Sta 02 Sta 01
O p— — — —
-0 b - - -
€ 20| 3 . 5
S
_40 — - - =
AME== 0.00 AME= 0.01 AME= 0.00 AME== 0.00
50 ,AMS = 0.09 AMS = 002 ,AMS = 0.00 RMS = G.00
o 1 2 3 1 2 3 1 2 3 1 2 3
Ammonium . mg r

Figure A166. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for

stations along the mainstem, April 24
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Figure A167. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for

stations along the mainstem, June 5
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Figure A168. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for
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Figure A169. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for
Sep 24, 1996
Sta 45 Sta 18 Sta 09 Sta 01
o - - - —
-0 F - 3 -
K -30 - = & »\\,
-0 = L - \ -
AME= 0.01 AME= 0.04 AME= 0.03 AME=~ Q.34
RMS = 0.01 RMS = 0.05 RMS = 0.04 ARMS == 055
_50 1 1 i 1 i 1 1 | I |
o] 1 2 3 1 2 3 1 2 3 1 2 3
Ammonium . mg i~

Figure A170. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for
stations along the mainstem, September 24
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Figure A171. 1996 Allatoona Reservoir computed (...) versus observed (x) ammonium for

stations along the mainstem, October 15
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Figure A172. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for

station 09
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Figure A173. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for

station 18
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Figure A174. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for

station 45
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Figure A175. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for
stations along the mainstem, May 6

Jun 5, 1997
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Figure A176. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for
stations along the mainstem, June 5
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Figure A177. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for
stations along the mainstem, July 3

Aug 27, 1997
Sta 45 Sta 18 Sta 09 Sta O1
0 r -~ -
-10 E\ ber k-
3

e -0 A\ >
-.g_ -30 | - * )
8 4ol _ L\

-60 - AME= 0,07 AME= 0.07[" AME= 027 AME= O 11

o AMS= 0110 RMS= 010 RMS= 0.41 [AMS=0Q76

(o] 1 2 3 1 2 3 1 2 3 1 2 3

Figure A178. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for
stations along the mainstem, August 27
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Figure A179. 1997 Allatoona Reservoir computed (...) versus observed (x) ammonium for
stations along the mainstem
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Figure A180. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for station 09
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Figure A181. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for station 18
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Figure A182. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for station 45
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Figure A183. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for stations along mainstem, April 24
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Figure A184. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for stations along mainstem, June 5
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Figure A185. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for stations along mainstem, June 26
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Figure A186. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for stations along mainstem, August 15
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Figure A187. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for stations along mainstem, September 24
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Figure A188. 1996 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for stations along mainstem. October 15
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Figure A189. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for station 09
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Figure A190. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for station 18
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Figure A191. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for station 45
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Figure A192. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for stations along mainstem, May 6

Jun 5, 1997
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Figure A193. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for stations along mainstem, June 5

Nitrate-nitrite , mg "1

Jul 3, 1997
Sta 45 Sta 18 Sta 09 Sta O1
or - -
-10 } %‘, L
g o i \T T
£ .30 | L !" L
E ol i i
[ MESSE[  AESSE  AECER]  AECR
o 1 2 3 1 2 3 1 2 3 1 2 3

Figure A194. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
for stations along mainstem, July 3
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Figure A195. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for stations along mainstem, July 30
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Figure A196. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite

for stations along mainstem, August 27

Sep 23, 1897
Sta 45 Sta 18 Sta 09 Sta O1
o r _
S X
g -~ } s
£ .30 : 3
§ _40 - -
50 AME= O AME= 0.0 AME= Q.08 AME= 0.04
RMS = 0.0 AMS= 0.0 AMS = 0.85 RMS = 0.0
_eo t i | L 1 1 1 I J
o] 1 2 3 1 2 3 1 2 3 1 2 3
Nitrate-nitrite . mg I

Figure A197. 1997 Allatoona Reservoir computed (...) versus observed (x) nitrate-nitrite
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for stations along mainstem, September 23
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Figure A198. 1996 Aliatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 09
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Figure A199. 1996 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 18
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Figure A200. 1996 Allatoona Reservoir computed {...) versus observed (x) bioavailable
phosphorus for station 45
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Figure A201. 1996 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, April 24
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Figure A202. 1996 Allatoona Reservoir computed {...) versus observed (x) bioavailable
phosphorus for stations along mainstem, June 5
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Figure A203. 1996 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, June 26
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Figure A204. 1996 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, August 15
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Figure A205. 1996 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, September 24
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Figure A206. 1996 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, October 15
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Figure A207. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 09
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Figure A208. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 18
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Figure A209. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 45
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Figure A210. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, May 6

Jun 5, 1997
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Figure A211. 1997 Aliatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, June 5
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Figure A212. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, July 3
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Figure A213. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, July 30
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Figure A214. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, August 27

Sep 23, 1997
Sta 45 Sta 18 Sta 08 Sta O1
0 > 1 [~ %3
1 4 i u
-10 N - —x\ -
i LN N :
E . S .
£ -30 - - - -
i
8 _40 - f - - x{
-80 - AME= 0.02]" AME= 0.02 AME= Q.08 AME= 0.03
RMS = 0.02 AMS = 0.0 RMS = O RMS= 003
_eo 1 1] 1 1 k) 1 1 1 1 1 1 —]
00 01 02 03 04 01 02 03 04 01 02 03 04 O1 02 03 04
Phosphorus . mg -1

Figure A215. 1997 Allatoona Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, September 23
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Figure A216. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable

phosphorus for station 09
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Figure A217. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable




Apr 24,1996 Jun 5,1996 Jun 26,1996 Aug 15, 1996 Sep 24, 1896 Oct 15, 1996
0F rx g E ki F
10 B ..! i ... 5 -
£ o - - : :
g
Q ®r i - - - -
_40 b — -~ (— - -
AME= 003 AME= 0,04 AME= 004 AME= 0.04 AME= 004 AME= 004
o L TV5=004 RMS=004  RMS=004 RMS=004  RMS=004  RMS=004
00 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 01 02 03 04 O1 02 03 04
Phosphorus  , mg I’

Figure A218. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 45
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Figure A219. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, April 24
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Figure A220. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, June 5
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Figure A221. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, June 26
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Figure A222. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, August 15
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Figure A223. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, September 24

Appendix A Temporal and Spatial Trends in Water Quality A87




Oct 15, 1996

Sta 45 Sta 18 Sta 09 Sta O1

o cox e [rx X
-10 b - = -
£ 2 L - i -
K 2 r B g -
-40 | = - -

AME= 0.04 AME= 00 AME= 003 ' AME= Q.02

_ AMS=004  RMS=00 , RMS=003 | RMS=003

00 01 02 03 04 01 02 03 04 01 02 03 04 O1 02 O3 04

Phosphorus

. mg Il

Figure A224. 1996 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, October 15
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Figure A225. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 09

Depth, m

May 6,1897 Jun 5,1997 Jul 3, 1997

Jul 30, 1897 Awug 27, 1897 Sep 23, 1897

M r [ % e 3% o [
H ‘? <} x\\; S\
5 4 o _ :
- = - ) - -
AME= 002 AME™ 001" AME= 0020 AME= 0.04" AME= .05~ AME=0.02
, RMS= l0.02 , RMS=0.01 ) RMS - lO. , BMS=0.08 , AMS=0.07 . RMS - l0.02J

00 01 02 03 04 O1 02 03 04

Phosphorus

., mg -1

01 02 03 04 01 02 03 04 01 O2 03 04 O1 02 O3 04

Figure A226. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for station 18
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Figure A227. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
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Figure A228. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
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Figure A229. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
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Figure A230. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable

phosphorus for stations along mainstem, July 3
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Figure A231. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, July 30
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Figure A232. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, August 27
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Figure A233. 1997 West Point Reservoir computed (...) versus observed (x) bioavailable
phosphorus for stations along mainstem, September 23
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