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Abstract 

The slingatron mass accelerator is described for several track configurations 
(shapes), and numerical simulations of this accelerating mass traversing a given 
track configuration are presented. The sled is modeled as a point mass that 
interacts with the slingatron track using both a conventional and a new empirical 
velocity dependent friction law. The closed loop circular slingatron was found to 
produce high maximum sled velocities provided the gyration angular speed is 
always increasing. In contrast several spiral shaped slingatron tracks reveal that 
high maximum sled velocities are obtainable with the gyration speed held 
constant. In fact, a slingatron constructed out of semi-circles is shown capable of 
generating high velocity sleds in such a way that no initial sled injection is 
necessary. Choosing the proper initial gyration phase with an empirically 
determined friction model allows the mass sled to gain ever-increasing velocities 
when placed in a semi-circle slingatron. The sled bearing pressure and its total 
acceleration are examined and presented. 
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Abstract 

The slingatron mass accelerator is described for several track configurations 

(shapes), and numerical simulations of this accelerating mass traversing a given track 

configuration are presented. The sled is modeled as a point mass that interacts with the 

slingatron track using both a conventional and a new empirical velocity dependent 

friction law. The closed loop circular slingatron was found to produce high maximum 

sled velocities provided the gyration angular speed is always increasing. In contrast 

several spiral shaped slingatron tracks reveal that high maximum sled velocities are 

obtainable with the gyration speed held constant. In fact, a slingatron constructed out of 

semi-circles is shown capable of generating high velocity sleds in such a way that no 

initial sled injection is necessary. Choosing the proper initial gyration phase with an 

empirically determined friction model allows the mass sled to gain ever-increasing 

velocities when placed in a semi-circle slingatron. The sled bearing pressure and its total 

acceleration are examined and presented. 



Nomenclature 

A = acceleration vector 

A„ = n component of A 

Ai = m component of A 

D = sled diameter 

F = force vector acting on sled F = |F| 

F/7 = n component of F 

Fj_ = m component of F 

f = spin frequency of gyration vector 

f = time derivative of gyration frequency f 

i, j, k = Cartesian unit triad 

L= sled length 

M= mass of sled 

m = normal unit vector on concave side of track 

n = normal unit vector anti-parallel to the track 

P = bearing pressure 

R = sled radius vector |R| = R 

r = gyration vector |r| = r 

s = displacement 

t = time 



V = velocity V = -Jx2 +y2 

V = relative sled velocity 

x = abscissa of sled 

y = ordinate of sled 

a = orientation angle = (j> - 27t[_(</>/2^)j 

5 = differences betwee 

6 = lock-in angle 

Y = ratio of specific he; 

A = radius of curvature 

M = coefficient of fricti 

P = diameter of circle 

+ = orientation of R 

Xj/ = orientation of r 

Vo = initial value of y/ 

11= absolute value 

(•)= d( )/d<* 

0- d( )/dt 

0- average value 

x = vector product 

[_xj= greatest integer < x 



Introduction 

A mechanical method for accelerating a mass to high velocities has been proposed 

by D. A. Tidman2 using a device called the slingatron1. Several closed loop slingatron 

configurations have previously been examined. For these configurations the accelerated 

mass (called a sled in this report) interaction with the slingatron track was modeled with 

magnetic levitation1 or with a mechanical friction force that is proportional to the normal 

force exerted by the track2 on the sled. This report presents numerical simulations of 

slingatrons having several different track configurations. The sled and track interaction 

continues to be treated as a normal force friction model but now the friction coefficient, 

/j., is either a constant or an empirically determined function depending on the sleds 

velocity relative to the slingatron track. 

These simulations reveal that the mass can be accelerated to very high velocities 

for each track configuration (track shape) examined here. Generally, the calculations 

show that spiral shaped slingatrons will produce high velocities for constant gyration 

speeds and the single loop circular slingatron will produce high velocities for sufficiently 

high gyration acceleration. We emphasize that the main reason this happens is that the 

sled locks into a constant phase angle as it transverses the slingatron track. When this 

occurs the sleds velocity is optimally increased for each 2n revolution of the sled. This 

will continue until the frictional force dominates the component of the Coriolis force that 

is parallel to the slingatron track. However, there are cases where parameters can be 

chosen so the parallel component of the Coriolis force is always greater than the force 

due to friction. In such cases one will find that the non-relativistic sled velocity increases 



indefinitely. In the spiral slingatrons lock-in occurs almost instantaneously while for the 

single loop circular slingatron lock-in occurs after a sufficient amount of time has passed. 

Theory 

Sled of Mass M 

Figure 1 Schematic of a general slingatron 

Figure 1 shows a sled of mass M moving along a track with position R + r and 

corresponding velocity V = R + r. The sleds velocity is assumed large enough so that it 

stays in contact with the track at all times. In fact, the velocity may be large enough to 

cause mass loss due to abrasion or evaporation, i.e.. M * 0. The force F acting on the 

sled can be written as F = F^m + F7/n where m and n are unit vectors pointing normal 

(toward the concave side of the track) and anti-parallel to the track. Therefore, 

n = -R'/R' and m = n x k for unit vector k pointing out along the normal to the plane 



of the track. Calling the unit vectors along the abscissa and ordinate i and j allows the 

momentum equations, see Fig. 1, to be written as 

(Mx + Mx)= -(sinfoXFJR'- F//R)+ cosfoX^R + F„R'))/JR'
2
 + R2 

(My + My)= -(sin^XFj.R + F;/R')+ cosfoX^R - F±R'))/VR'2 + R2 

with Cartesian coordinates (x,y) in the (i, j) plane which are constrained so that 

(1) 

x = R cos(^) + r cos(^) 

y = Rsin(^) + rsin(^)' ' 

The parallel force F„ is assumed to be caused by friction and therefore the standard 

friction model is represented as 

F„ = //(V)FX 9 V = |^|VR'2 + r2 (3) 

for which V is the sled velocity relative to the track. Now solving Eqs. (1) for F± and 

F„ and then including Eq. (2) and Eq. (3) results in the following differential equation 

v_   ^2
(//(R

2
-RR" + 2R'

2
)+R'(R + R")) 

R2+R'2 

[ ((M(^ + //^2)+M^)sm(^-^)+(M^2->^(M^y + M^y))cos(^y-^))rR, 

M(R2+R'2) 

| {(M(y/2 - yip)- juMy/)sm(y/ -0)-(M(I}S + yyr2) +M^)cos(^-^))rR' 
M(R2+R'2) 

M 

Equation (4) is general enough to account for many slingatron configurations as long as 

the motion takes place in the i, j plane.   The configurations are obtained by specifying 

the ^ dependence of the vector R(^) giving the shape of the slingatron track.   The 



friction coefficient,//(v), the time dependent mass, M(t), and the gyration angle, y/{t), 

must also be given in order to numerically integrate Eq. (4) 

Circular Slingatron 

This report considers several possible track configurations all of which treat the 

length of the gyration arm, |r| = r, as a constant.  The first consideration is the circular 

slingatron ^ defined by 

|R(^)| = constant. (5) 

In general we have found that any slingatron will optimally accelerate a sled to high 

velocities whenever the lock-in angle, 9 = y/ - (f>, is very close to constant i.e. 

6 ~ 0 hence 
(6) 

y/ « ^ and y/ «<f> 

Using the constraints given by Eq. (5) and Eqs. (6) simplifies Eq. (4) to the following 

expression 

$ = bj>2 

r(sin(fl) - fj, cos(fl)) - //R (7) 
r(//sin(6»)+cos((9))+R 

for constant  ß   and  M.    This is easily integrated to give us the sleds velocity 

V = Vx2 + y2 as 

U(ot/2rRcos(0)+R2+r2 

v = ' MV ,—7Vn • (g) 
l-^(o)bt 



A plot of Eq. (8) is shown in Fig. 2 for 0 = njA 0(o) = 0 and 0(o) =n. One can see that 

the non-relativistic velocity V becomes infinite at the time t, = l/^(o)b whenever we 

force 0 to be constant1'2. 
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Fig. 2 Velocity vs. time for the circular slingatron 

The values of tx change rapidly in regions where 0 « Tin, n = 0,1,2••• and therefore a 

plot of t„(0) is given in Fig. 3. 

Fig. 3 \J$) vs. time for the circular slingatron 

Equation (7) shows that b = 0 whenever 



e = ±2 tan-1 \j{a2 -\)n2 + a2 + a /(a - l)ju)± n n, n = 0,1,2 

assuming [a2 - ljju2 + a2 > 0 
(9) 

These results used in Eq. (8) produce two time independent velocities given by 

V = U(o)| U]{a2 - l)ju2 + a2 +1 N/u2 +1.    A small amount of algebra reveals that 

constant velocities occur when the normal force becomes so large that friction prevents 

the sled from accelerating along the circular track. Hence, the sleds velocity stays 

constant. 

Instead of demanding the constraints given by Eqs (6) lets now consider a circular 

slingatron with an accelerating angular gyration speed such that 

y/ = i//0+2xft + nf t2. (10) 

Numerically integrating Eq. (4), subject to Eq. (10), produces the velocity, with initial 

conditions ^(0) = 0 and ^(o) = 2nf, plotted in Fig. 4. Here we see that high velocities 

are obtained for f * 0. 
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Fig. 4 Velocity vs. time for the driven circular slingatron 



The corresponding lock-in angle, 9 = y/-<p, found in Fig. 5 becomes relatively constant 

when sled velocities become large. 
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Fig. 5 Lock-in angle vs. time for the driven circular slingatron 

Even though high sled velocities can be obtained with a circular slingatron it is 

encumbered with the difficulty of creating an easy exit port for the high-speed sled. To 

alleviate this mechanical difficulty we will next examine possible open loop spiral 

slingatrons. 

Archimedes Spiral Slingatron 

We now focus our study on configurations that are not closed loop slingatrons. In 

particular, we examine spiral shaped tracks having open ends, which have the advantage 

of an easy exit for an accelerated sled entering free flight.  Following Tidman2 we first 

examine an Archimedes spiral shaped slingatron track given by 

R = Ri+r^sin(^0) (11) 

for which the constant R; is the initial radius and spacing between adjacent spirals is 

determined by sin(^0). The gyration speed is now held constant so that the expression 

given in Eq. (10) is replaced with 
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y/ = y/0 + In f t (12) 

Tidman3 presents a first order analysis for a sled with M = 0 and ju held constant. 

Putting Eq. (11) into Eq. (4) and keeping first order terms, i.e. terms first order in 

O —,ju\, leads to the simple equation with 6 = y/ - <j> 
vR     J 

V'/V = (rsm{e))/R(<f>)-jU. (13) 

Integrating this result shows that the average increase in velocity, AV, for the sled during 

a 2n  revolution of a single spiral leads to the following expression for averaged 

quantities 

AV/cycle « 2*(V) [(r än(ö))/<R^)> - ft] ■ (14) 

With this motivation we now place Eqs. (10-11) into Eq. (4) and follow with numerical 

integration to produce the velocity plot, V(t) = yx2 +y2, found in Fig. 5.   The initial 

conditions are ^(o) = 0, ^(o) = 2ni and the sled mass plus the coefficient ju are both 

held constant. 
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Fig. 6 Velocity vs. time for the Archimedes spiral slingatron 
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We immediately see that the maximum velocity has the same order of magnitude as that 

found for the circular slingatron, see Fig. 2, but does so in far less time and requires no 

acceleration of the gyration arm. The radius R(^) changes so that the lock-in angle, 9, 

stays relatively constant until the sled has reached its maximum velocity as shown in 

Fig7. 
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Fig. 7 Lock-in angle vs. time for the Archimedes spiral slingatron 

Inspecting Eq. (14) one can infer that the maximum velocity occurs where the frictional 

force, between the sled and track, balances the parallel component of the Coriolis force as 

the sled moves along the spiral track. A plot presented in the following section will 

provide numerical confirmation of this conclusion. 

Semi-Circle Slingatron 

The next slingatron configuration examined, is constructed using a sequence of 

semi-circles3 having increasing radii, see Fig. 8. 
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Fig. 8 Schematic of the semi-circle slingatron 

We note this slingatron continues to have the sled exit advantage found for the 

Archimedes slingatron. However, this track has the added advantage in that large sled 

velocities can be obtained without the need of initial sled injection, i.e. ^(o) = 0   and 

^(o) = 0, provided the slingatron has been scaled up to a sufficiently large size. All of 

the previous slingatrons plus the small-scale high frequency version of the present 

slingatron require initial sled injection, ^(o)*0, in order to obtain large maximum 

velocities. Because of these advantages a more thorough investigation including sled 

pressure loads and an empirical friction model, incorporating mass loss M < 0, is 

presented. According to Fig. 8 the semi-circles in the upper half plane are described by 

R = Rj+2 8|_<|>/27rJ 
R' = 0 

R" = 0 

8 = 7crsin(vj/0) 

(15) 

and applying the law of cosines to this geometry we find for the semi-circles in the lower 

half plane having center coordinates at {S,6) are described as 

13 



R = öcos(<f>)+yl(Ri+2öy>/2x]+ö)2-ö2sm2(<!>) 

p,_   £Rsin(^) 
S cos(^) - R 

, _ R'2 + 2«? R'sin(^)+S R cosfc) 

(16) 

£cos(^)-R 

Putting Eq. (15) and Eq. (16) into Eq. (4) followed with numerical integration leads to 

sled velocities shown in Fig. 9. 

Ri=100cm r=20cm f=50cps %=it/4 n=0.005 
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Fig. 9 Velocity vs. time for the semi-circle slingatron 

This high frequency small-scale slingatron, i.e. f = 50cps and R; = 100cm, is subjected 

to the conditions 0(o), 0(o) = 2n f, M = 0, and // = 0.005. Figure 10 tells us again that 

the lock-in angle 0 diverges, from nearly a constant value, after the time, t, where the 

sled reaches its maximum velocity. 
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Fig. 10 Lock-in angle for the semi-circle slingatron 

An important simplification, when constructing a semi-circle slingatron, occurs 

when we consider a large-scale version, i.e. f = llcps and R;=400cm, of this 

slingatron. For these cases we can generate large maximum velocities without the need 

for an initial sled injection velocity. An example of this is depicted in Fig. 11 such that 

0(6) = 0, ^(o) = 0 and the sled mass as well as the friction coefficient are still held 

constant. 

Semi-Circle Slingatron 
Ri=4m r=2m f=11cps ¥„=71/4 n=0.005 

■Large Scale 
Semi-Circular 
Slingatron 

0.1 0.2 

Radius (Km) 

0.3 

Fig. 11 Velocity vs. radius for the large-scale semi-circle slingatron 

This plot has the time axis replaced by radial distance to indicate the size of this large- 

scale example.   In contrast we note that the small-scale version, of this slingatron, still 

15 



requires a non-zero initial" sled velocity, 0(o) * 0, in order to obtain a significantly larger 

maximum sled velocity. 

To address a more realistic slingatron one should consider the interaction between 

the sled and the slingatron track. Therefore, we will assume that the sled is covered with 

material that abrades, M < 0, as it moves along the track, in such away that the removed 

mass acts as a lubricant. As the velocity increases the abraded particles may become a 

liquid bearing and at still greater velocities the liquid will eventually evolve into a gas or 

even a plasma. To date only a preliminary experimental investigation of the friction 

coefficient,//(vj, dependence on the sleds relative speed V, has been carried out by 

Tidman . The preliminary data for a lexan sled indicate that 

Ly\        0.152 

l1 + 3-16V) (17) 
V = ^/R'2+R2 

where V is measured in Km/s, ranging up to a maximum velocity of 2.0 Km/s.   The 

corresponding value of M  is still very suspect but the preliminary data gives the 

following estimation 

M = ^. (18) 
50;zR(^)' 

Tidman2 has suggested that if the velocity, and therefore the bearing pressure between the 

track and the sled, is large enough to cause the abrading mass to gasify one might then 

assume 
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M = 
JLMV 

Kr-i)RW 
forlexan^ «1.25 

(19) 

The two estimates found in Eqs. (18-19) are plotted in Fig. 12 while assuming the friction 

coefficient given by Eq. (17) remains true for all velocities. 
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Fig. 12 Sled mass vs. time for the semi-circle slingatron 

Figure 13 shows the velocity results for a constant mass sled plus the two cases where 

M * 0 given by Eqs. (18-19). Since there is no discernable difference between the three 

cases we will select M = 0 for the remainder of this paper. 
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Fig. 13 Velocity comparision vs. time as functions of M and M 
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This selection should not be taken as a general conclusion since the present results stem 

from two simple M models. All that we can claim here is that the dynamics represented 

by Eq. (4) are weekly dependent on our two M models. A more in-depth study of the 

bearing physics may reveal that M cannot be ignored in a more elaborate friction model 

and therefore M must be included in the momentum equations. 

To demonstrate the importance of the friction model we next compare our 

empirical model, Eq. (17), to the constant friction model ß = 0.005.  Figure 14 has an 

example comparison of the sled velocity using initial conditions ^(o) = 0 and ^(o)=0 

for these two models. 
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Fig. 14 Velocity comparison vs. time as a function of n 

We see that Eq. (17) and the initial phase y/0 =x/6 can lead to classically unlimited 

velocities imparted to the sled. This is an example force due to friction never becomes 

large enough to overcome the parallel component of the Coriolis acceleration. 

To gain insight into the magnitudes of the bearing pressure exerted by the sled on 

a semi-circle slingatron one can examine a typical right cylinder shaped lexan-coated sled 

18 



having length L and diameter D. Assuming that the ablating material exerts a uniform 

pressure along the half lateral surface of the sled facing the slingatron track, one will find 

the pressure P is easily calculated to be P = FX/DL.  An example of bearing pressure, 

for a sled with initial mass M = 1.0 x 103Kg, plotted as a function of time is presented in 

Fig. 15. 

Semi-Circle Slingatron 
Ri=4m r=2m f=11cps *F0=7i/4 u=u(v) 

D=76cm L=434cm 

1.0 2.0 

Time (s) 

Fig. 15 Sled bearing pressure vs. time for semi-circle slingatron 

Calculating the sleds acceleration along the unit vectors m and - n while the 

traversing the slingatron track may also prove useful to the designer. Remembering that 

the normal component of the acceleration is always pointing toward the concave side of 

the track we can find its magnitude from Ax = V2//l. An example, for the large-scale 

slingatron, is shown in Fig. 16. 
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Semi-Circle Slingatron 
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Fig. 16 Normal component of acceleration vs. time for the semi-circle slingatron 

In a similar fashion the parallel component of acceleration, A„ = -s, is plotted in 

Fig. 17 where for comparison we also plot [F^ |/M. 
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Fig. 17 Comparison of parallel component of acceleration and friction 
force/weight vs. time 

Comparing Fig. 16 with Fig. 17 verifies that the time t where the maximum velocity is 

found is also the time where friction force per unit mass equals A„, thus substantiating 

the conclusion mentioned above. 

Examining the curvature of the semi-circle slingatron shows that R" is not 

continuous at the points, <p = rvrc, n = 0,1,2-••, where the upper half plane semi-circles 
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meet the lower half plane semi-circles, see Eqn. (15-16). However, these discontinuities 

of the sleds acceleration are not severe enough to cause numerical integration problems 

of Eq. (4). 

Further Illustrations 

Before leaving the topic of spiral shaped slingatrons we will give results for two 

other familiar spiral shaped tracks. Both of these configurations have the non-zero initial 

velocity, ^(o) = 0 and ^(o) = 2/r f. The first is the parabolic spiral given by 

R(^) = Ri+rsin(^0)^
2. (20) 

A velocity plot for this is given in Fig. 18 
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Fig. 18 Velocity vs. time for the parabolic spiral slingatron 

for which the friction coefficient ju is modeled using Eq. (17). The last case considered 

is the logarithmic spiral given by 

R(^) = Ri+rsin(^0)ln(^). (21) 

The velocity for this spiral is presented in Fig. 19 where again the coefficient // is 

calculated using Eq. (17). 
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Fig. 19 Velocity vs. time for the parabolic spiral slingatron 

One can see from the last two plots that a wide variety of choices for, R(^),r,^ andf, 

are possible to obtain large maximum sled velocities. These choices offer considerable 

flexibility when faced with design constraints for a spiral shaped slingatron. 

Conclusion 

The closed loop circular slingatrons require the gyration arm, r, to accelerate, 

y/ > 0, in order for the mass sled to reach substantial maximum velocities. As time 

progresses the sled is optimally accelerated as indicated by the lock-in angles 6 

approaching nearly a constant value. Experience from generating computer simulations, 

for the closed circular slingatron, reveal that initial sled velocities close to ^(o) = 2^f 

are necessary in order to gain substantial sled acceleration. 

The spiral slingatrons are able to produce sufficiently large maximum sled 

velocities using only constant angular gyration speeds, \j/ = 0.   All of the small-scale 

spiral slingatrons require initial injection velocities in the neighborhood of   <j>(6) = In f 

in order to gain large maximum speeds.  However, the large-scale version of the semi- 

circle slingatron has an additional favorable feature in that it can generate large maximum 
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velocities with zero initial injection sled velocities. This will make such slingatrons 

mechanically easier to build. Examination of the bearing pressure and the corresponding 

magnitude of the sled acceleration give insight into the stress levels that the sled and 

spiral track must endure. 

The empirical friction model shows that the maximum velocity is very sensitive to 

M\y)-    Furthermore, we found unlimited sled velocities for a proper choice of the 

parameter y/0. There are a variety of choices regarding the spiral shape, R(^), as well as 

the parameters r^^andf that one can make in order to produce a large range of 

maximum sled velocities. Even though the results given here strongly suggest that spiral 

shaped tracks are the most desirable, the optimal spiral configuration is still an 

unanswered question.   Experiments and further modeling to address the high velocity 

dependence of //(v) are slated to take place in the near future. 
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