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ABSTRACT 

A technique for fusing Kaiman filter information has been developed by Jeffrey Uhlmann, Simon 
Julier, et. al. that addresses the problems that arise from fusing correlated measurements. The researchers 
have named this technique "covariance intersection" and have presented papers on it at several robotics 
and control theory conferences. The technique is applicable to these areas because robotic systems often 
have data flowing between multiple interconnected algorithms with no guarantee that the data flowing 
into any algorithm are independent. 

It can be shown that the covariance intersection technique is a log-linear combination of two 
Gaussian functions and is thus related to Chemoff information. Given this relationship, covariance 
intersection can be generalized to the fusion of any two probability density functions. One of the selection 
criteria suggested by the developers for the optimal combination of two Gaussian functions is the 
minimization of the determinant of the fused covariance, which is equivalent to the minimization of the 
Shannon information of the fused state. This equivalence justifies the selection of the determinant 
criterion for may applications of covariance intersection. Given the recognition of a more general rule for 
the covariance intersection technique, other probabilistic measures, such as the Chernoff information, 
may be appropriate for other fusion applications. 
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1. INTRODUCTION 

In the 1990s, Jeffrey Uhlmann, Simon Julier and their associates began promoting a data fusion 
technique that they have termed "covariance intersection" [1,2,3,4]. Their principal application of 
covariance intersection has been as an adjunct to Kaiman filters when input data into Kaiman filters are 
potentially highly correlated, as is often the case in complex control systems. Primary uses have focused 
on robotics applications, although some tests have been conducted for fusing target tracks [5]. 

The data fusion technique is claimed to be applicable to the fusion of sensor measurements, data 
estimates, or similar quantities that can be described in terms of a Gaussian probability density function. It 
will be shown that the covariance intersection technique is related to a more general data fusion technique 
that can fuse any pair of related probability density functions. This association suggests that a strict 
interpretation of the covariance intersection technique is that it only fuses probability density functions 
and not measurements, and only fuses state estimates in the sense that these estimates are represented by 
probability density functions. This paper presents an overview of the covariance intersection technique, 
the generalization of the technique, the information theoretic associations, and an example of the 
application of the generalized fusion technique to a simple probabilistic system. 



2. COVARIANCE INTERSECTION 

The covariance intersection technique is based upon the assumption that measurements or states can 
be described with Gaussian probability density functions. The general problem with the fusion of two 
probability density functions is that the two functions may have been estimated from shared 
measurements and therefore are coupled. The fusion of independent density functions is straightforward 
and widely recognized as 

C_1 = A"1 + B~l 

c = c(A'xa + B~lb) 

where a, b, and c are the statistical means and A, B, and C are the covariances. The 
appropriate application of this fusion rule is for the estimation of a probability density function that 
describes two independent sets of measurements assumed to be identically distributed according to a 
single probability density function. 

Uhlmann, et al. suggest that when coupling between probability density functions is likely and the 
degree of coupling is unknown that a linear combination of the sigma contour 

fA (x) -(x- a)T A~l (x - a) 

be used, where 

fc (x)< max(fA (
x\ fa (*)) > and 

fc{x)<OJfA(x)+(l-(o)fB{x). (1) 

Expansion of Equation 1 gives, 

(x-cf C-l(x-c)<co(x-af A~l (x-a)+(l-coXx-b)T B'^x-b) 

and can be satisfied by 

C_I =mA-1 +(l-tu)B-1 

c = c(<M-1a + (l-cr)ß-1fc)' 



The remaining task is to select an appropriate value for the mixing parameter m through the 
optimization of chosen criteria. Two criteria that have been suggested include the minimization of the 
determinant of the fused covariance, and the minimization of the trace of the fused covariance. It will be 
shown that minimization of the determinant results in a minimization of the entropy of the fused density 
function and is the criterion suggested by information theory. 



3. GENERALIZED FUSION 

Further justification for covariance intersection technique can be obtained by examining the 
equation used to calculate Chemoff information, 

)PA\
X

)PB   W 
x 

This function constructs a fused probability density function from a log-linear combination of two 
probability density functions, followed with a renormalization of the combination. Equation 2 becomes 

-n(x-af A-'(x-a)/2   -(1-aXx-bf B-'{x-b)/2 

Pc(x) = - ■ (3) 
C-a(x-af A-'(x~a)/2e-(l-w)(x-bf B-1(x-b)/2dx 

for Gaussian  functions,  where the normalization terms that appear in the numerator and 
denominator cancel. The exponential term, 

-tl2 = -^j(x-af A-l{x-a)+{).-Xiy\x-b)T B-l{x-b"j)l2 

can be rewritten as 

t = xr (pA-1 + {1-üT)B-
1
 )X - (arA-lm + b1B'1 (l-m))x-xT ^jA~la + (l -w)ß-lb) 

+ aTü7Ä-1a + bT(l-m)B-1b. 

The terms in x can be gathered into a quadratic form with the substitution 

C_1 =mA-1+(l-&)B-1 

c = cifoA-la + {i-Tn)B-lb\ 

exactly the same fusion formula as suggested by Uhlmann. The substitution of the defined variables 
results in 

/ = xTC~lx - cTC-'x - xTC~lc + arrnA-xa + bT (l-tv^b 

= (x- c)T C"1 (x - c)-cTC-'c + aTwPCxa + bT (l-^B^b. 



The terms independent of x in the above equation could be expanded, but these terms cancel in the 
numerator and denominator of Equation 3 and need not be considered further. The integration of the 
exponential terms containing x in the denominator is widely know and results in 

PcW = 
1 

(27t)nn 
\r\-U2

p-(x-cYc-'(x~c)n 

a Gaussian density function. 

Thus, the covariance intersection technique selects a fused probability density function that is a log- 
linear combination of two initial probability density functions. The advantage obtained with Gaussian 
functions is that the fusion of two Gaussian functions results in a Gaussian function. This is not true in 
general for the fusion of density functions with the described technique. However, there are other families 
of density functions that possess this property, such as functions that are members of the statistical 
exponential families [6] of which Gaussian functions are members. Further research might show that 
other functions from the exponential families may be of interest for applications of the generalized 
covariance intersection technique. 

3.1    THE MINIMIZATION CRITERION 

Given the fusion rule, the next item to consider is the selection of the mixing parameter CO. One 
possible criterion is to minimize the Shannon information of the fused Gaussian function because 
Shannon information is a measure of the amount of information remaining to be extracted from a system 
under observation. The Shannon information of a probability density function is 

Is=-jPc(x)HPc(x)}k 

and for a Gaussian function is 

1 
h=- 

{2n)nl1 

which expands to 

-1/2 r~ (x-cfC"Vc)/2 In 
[far 

\c\-^e-(x-cfc-'(x-c)n dx, 

I, = 1 Id"1'2 le-^-c)Tc"(x-c)n 
(   ( 

In 
1   W2 

far -{x-c)TC-l{x-c)l2 dx. 



The integration involving the logarithmic term is the integral of the Gaussian probability density 
function which, including the normalization constant, integrates to 1, giving 

7s=-ln 
1 ,C|-U2 +(^r |c|~1/2 P'cJ c'1{x~c)/ 2y{x'cfc"(x'c),2dx    (4) 

(fry 
Gradshteyn and Ryzhik [7] provide the integral solution 

W^&=%^J*    [p>0] J
0 2(2Py v^ 

which gives the solution to the integral of the second term in Equation 3. The integration limits in 
Equation 4 allow for the substitution x = x — c without change to the form of the integral. Ignoring the 
prime symbol in the substitution, the solution to the integral of a principal axis of the covariance matrix 
can be written as 

jqy2txp(-qy2/2)dy = (5) 

Decomposition of the covariance matrix into principal components allows the integral in Equation 4 
to be written as 

j((*-c)rC-I(x-c)/2>^^^2Ä = Ijf£,;yjW2fty4
2/2)dy. 

The solution to the integral is thus 

r \ 

2 
kfaw)  exp(-2>^/2>*v = ^(2nr2\cf'2 

■\ J ) 

and the full-space integration leads to the Shannon information being 

n     1 Js=^+ita((2*)r|4 

where n is the number of dimensions. 



The Shannon information of a Gaussian function is therefore related to the determinant of the 
covariance. Minimization of the Shannon information of the fused Gaussian function is equivalent to the 
minimization of the determinant of the covariance C, which is accomplished through the appropriate 
choice of the mixing parameter (O. 

A point to note is that Shannon information is a convex function for the family of Gaussian 
functions and therefore the maxima are at the ends of the chord for the covariance intersection technique 
in combination with the Shannon information criterion.[8] No local maxima are possible on the chord 
between a pair of Gaussian functions other than at the end points. 

Weak associations between the Shannon information criterion and other suggested minimization 
criteria may be found. The inequality [9] 

\C\< 
(\        V 
-tr(c) 
n ) 

provides an indication as to why the trace operation would appear to work as a minimization 
criterion for covariance intersection. Hadamard's inequality also provides a second minimization criterion 
that would appear to work, 

i 

The minima for these functions may not be identical to the minimum of the determinant. 
Justification for the use of these alternative minimization functions is not as strong as in the case of the 
Shannon information minimization and it could be argued that the apparent performance of these 
minimization criteria are due to their inequalities in relationship to the determinant minimization. 



4. OTHER MINIMIZATION CRITERIA 

Given the relationship between the Chemoff information equation and the covariance intersection 
technique, Chemoff information may be suitable for use as another minimization criterion for some 
applications. The applications most suitable for this purpose is the fusion of probability density functions 
where the estimates converge toward a fixed density function as the number of estimates increase. 
Chemoff s theorem as reformulated by Cover and Thomas9 is "the best achievable exponent in the 
Bayesian probability of error is D*, where 

D* =D(P..||P1)=D(P..|1/»2), 

with 

p„w= jpr(x)pr(x) 

and xu   the value of tu such that 

D(F7.||P1)=Z)(F.||P2). 

where the relative entropy or Kullback-Leibler distance is 

D(p\\q) = \p(x)log (iM) 

Chemoff information can be used to select a probability density function that minimizes the 
Bayesian error. Minimization of the Shannon information will not in general provide the same solution as 
the minimum Bayesian error solution. 

An overlooked assumption of covariance intersection is that the number of measurements that were 
used to estimate the two density functions are unknown and assumed to be equal. If the number of 
measurements that were used to derive the probability density functions are known, the Chemoff 
information can be modified to account for the difference in error probabilities between the two functions. 
Sanov's Theorem provides this connection: 

"Let Xl,X2,...,Xn be i.i.d. ~ Q\x). Let E c P be a set of probability distributions. Then 

Q"(E)=Qn{EnPn)<(n + \p2-nD^Q\ 



where 

P*=argminZ)(P||ß), 

is the distribution in E that is closest to Q in relative entropy." 9 

By Sanov's theorem, the associated probabilities of error are 

P1
n(A)=2-nD{pM\ 

and 

Pm(Ac)=2~mD^"/>2' 

and the total probability of error is 

Pe (A
C
 ) = nx 2~nD{p",|Pl ] + 7t2 2~mD{Pv'l|P2) = 2~näa{nD^ ^ )'mD(-p" ^ » 

The exponential rate is determined by the worst exponent, and the maximum value of the minimum 
is obtained when the two terms are equal. For this application, we choose w so that 

»D(P. || J») = mDfo || Pa). 

Knowledge of the number of measurements that were used to estimate the probability density 
function modifies the selection of the fused probability density function toward the distribution with more 
measurements. 

10 



5. THREE-DIMENSIONAL EXAMPLE 

The generalization of covariance intersection not only works for Gaussian functions, but for the 
simple case of a three-dimensional probability space. The two-dimensional probability space is simpler 
but less interesting; the Shannon information minimization criterion selects the member of the pair with 
the least information instead of an intermediate point between the two. Figure 1 shows contours of equal 
information on the probability simplex in probability space. Figure 2 shows the information contours, the 
log-linear chord between two points on the probability surface, and the location of the information 
minimum for the pair of points. 

Figure 3 shows a plane in a log-probability space. The log-probability space is of interest because 
the intermediate probabilities between two probability vectors lie along a line. The conversion from 
probability space to log-probability space is 

and the inverse operation is 

exp(-g,) 
Pi = 

Eexp(-4.) 

where normalization is required for the reverse mapping to probability space. The mapping from 
log space to probability space is an infinite-to-one mapping with the identity 

p(q)=p(a+<**)> 

where a is any real number and the vector 1 = (1 1 1) for the three-dimensional space. Figure 3 
shows the Shannon information for a plane in the three-dimensional log-probability space with the normal 
vector, 1. Examination of the Shannon information, shown as a projection out of the plane, reveals that 
the chord between two points in log-probability space can have both minima and maxima. It is possible to 
have up to two local maxima and up to three local minima (two at the ends) along the chord between two 
points for the three-dimensional space. The minima lie in three troughs located below the three gray 
arrows in Figure 3. The simple rule of selecting the Shannon information minimum from covariance 
intersection might be replaced with more complex rules in certain applications. The existence of a local 
maximum on the chord indicates that the two points represent probability density functions that are in 
conflict. In this case, one possible rule set might be to select the information maximum between the two 
points as the fused log probability point when the two points are local minima. For pairs with two maxima 
and three minima, the rule might be to select the central minimum if it is less than either of the end points, 
otherwise select the point with the global maximum on the line segment. Other rule sets are possible, and 
further research might show which sets are reasonable for different applications. 

11 
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Figure 3. Information surface for a plane in log-probability space. 
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6. SUMMARY 

It has been shown that the covariance intersection technique is related to a more general fusion 
technique based upon Chemoff information. The generalization shows that the covariance intersection 
technique finds a density function that is the log-linear combination of two initial density functions. 
Optimization criteria specify an optimal point on the chord between two probability density functions in a 
log-probability space and provide an "improved" density function. Shannon information is a natural 
measure for the selection criterion when knowledge of the number of measurements is unavailable and 
the two density functions were possibly generated from a substantial subset of common measurements. 

In light of this new technique, many of the more traditional fusion techniques can be seen to be 
associated with estimating probability density functions appropriate for a set of measurements. With the 
assumption that the measurements are identical and independently distributed, additional measurements 
significantly restrict the set of probability density functions that describe the data. This generalized fusion 
of probability density functions appears to be a new technique that should be examined further to 
determine its range of applicability and its relationship to other known probability fusion techniques. 
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