
AFRL-IF-RS-TR-2001-131
Final Technical Report
June 2001

KNOWLEDGE ACQUISITION FOR LARGE
KNOWLEDGE BASES: INTEGRATING PROBLEM-
SOLVING METHODS AND ONTOLOGIES INTO
APPLICATIONS

USC Information Sciences Institute

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. F104

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-2001-131 has been reviewed and is approved for publication.

APPROVED: RAYMOND A. LIUZZI
Project Engineer

FOR THE DIRECTOR: MICHAEL TALBERT, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Rd, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

KNOWLEDGE ACQUISITION FOR LARGE KNOWLEDGE BASES:
INTEGRATING PROBLEM-SOLVING METHODS & ONTOLOGIES INTO

APPLICATIONS

Yolanda Gil

Contractor: USC Information Sciences Institute
Grant Number: F30602-97-1-0195
Effective Date of Contract: 17 April 1997
Contract Expiration Date: 16 September 2000

Short Title of Work: Knowledge Acquisition for Large Knowledge
Bases: Integrating Problem-Solving Methods &
Ontologies into Applications

Period of Work Covered: Apr 97 - Sep 00
Principal Investigator: Yolanda Gil

Phone: (310)822-1511
AFRL Project Engineer: Raymond A. Liuzzi

Phone: (315)330-3577

Approved for public release; distribution unlimited.

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Raymond A. Liuzzi, AFRL/IFTD, 525 Brooks Rd, Rome, NY.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estonate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503.

1. AGENCY USE ONLY {Leave blank) 2. REPORT DATE

JunOl
3. REPORT TYPE AND DATES COVERED

 Final Apr 97 - Sep 00
4. TITLE AND SUBTITLE

KNOWLEDGE ACQUISITION FOR LARGE KNOWLEDGE BASES:
INTEGRATING PROBLEM-SOLVING METHODS AND ONTOLOGIES INTO
APPLICATIONS
6. AUTHOR(S)

Yolanda Gil

5. FUNDING NUMBERS

G - F30602-97-1-0195
PE -62301E
PR -IIST
TA -00
WU -04

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

USC Information Sciences Institute
4676 Admiralty Way
Marina Del Rey, CA 90292-6695

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

AFRL/IFTD
525 Brooks Rd
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2001-131

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Raymond A. Liuzzi, IFTD, 315-330-3577

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words)

The HPKB initiative seeks to develop large, reusable libraries of ontologies and problem- solving methods which will ease
the construction and maintenance of large knowledge based systems. A critical fact of HPKB is to understand how these
ontologies and problem-solving methods can be brought together to produce applications and to develop tools and techniques
that support that process.

14. SUBJECT TERMS

Expect, Plan Representation and Reasoning, Deriving Expectations to Guide Knowledge Base
Creation, Extending the Role Limiting Approach, User Studies of Knowledge Acquisition
Tools, Evaluations and End Users

15. NUMBER OF PAGES

128
IB. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTFtACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Sld.23B.18
Designed using Perform Pro, WHSIDIOR, Oct 94

Outline

Introduction 1
1.1 Knowledge Acknowledgement 1
1.2 Expect 1
1.3 Overview 3
Expect
2.1 Introduction 5
2.2 EXPECT Architecture Overview 7
2.3 Representing Knowledge in Expect 8
2.4 Bringing Knowledge Back Together: Loose Coupling in EXPECT 12
2.5 Flexible Knowledge Acquisition 22
2.6 Related Work 24
2.7 Summary 30
Plan Representation and Reasoning
3.1 EXPECT: Reasoning about Objective and Goals 31
3.2 PLANET: An Ontology for Representing Plans 43
3.3 Related Work 53
Deriving Expectations to Guide Knowledge Base Creation 54
4.1 Introduction 54
4.2 Creating Knowledge Bases 55
4.3 Approach 57
4.4EMeD: Expect Method Developer 60
4.5 Preliminary Evaluations 64
4.6 Related Work 66
4.7 Summary 67
Extending the Role Limiting Approach: Supporting End Users to
Acquire Problem Solving Knowledge 68
5.1 Introduction 68
5.2 A Background theory of Plan Evolution 69
5.3 Interacting with PSMTOO 72
5.4 Supporting Knowledge Acquisition with Background Theories 74
5.5 Experimental Results 76
5.6 Related Work 79
5.7 Summary 79
User Studies of Knowledge Acquisition Tools: Methodology and
Lessons Learned 81
6.1 Introduction 81
6.2 A Methodology to Conduct Experimental User Studies with

Knowledge Acquisition 83
6.3 Lessons Learned 91
6.4 A Note on Statistical Analysis 95
6.5 Related Work on User Studies 95"
6.6 Summary 99
Evaluations with End Users
7.1 Introduction 100

7.2 EMeD: Exploiting Interdependency Models to Acquire Problem
Solving Knowledge 102

7.3 Experimental Design 104
7.4Preliminary study 106
7.5 Experiment with Domain Experts 108
7.6 Results and Discussion 109
7.7 Summary 113
Biography 114

Outline of Figures

Expect Architecture 1
Loom Classifier Organizes Concept Hierarchy 10
A method to calculate the unloading time of movement 11
Translating Goals and Capabilities to LOOM to Organize and Retrieve Methods 14
Domain-specific KBs, Terminological KB, Problem Solving KB 21

29 Comparing Knowledge Acquisition Tools •• ■ y

Problem Solving Knowledge in EXPECT ^4
Performance of the LOOM-based EXPECT Matcher 35
Plan Editor 36

Clasp definitions of actions, states and plans 39
CLASP actions, states, and plans in the telephony domain —. .40
CLASP plan state, and action instances in the telephony domain 41
An Overview of the PLANET Ontonlogy 44
An excerpt of an air campaign plan and the specification of an objective 49
An example portion of a work around plan 51
Estimates of reuse of the PLANET ontology.... 52
Methods in a simplified workaround generation domain 57
EMeD Interface (Editor) 60
Search Methods of EMeD . 61
A Method Sub-Method Relation Tree 62
A Capability Tree and undefined Methods 63
Results from Experiment »64
Number of times that the different components of EMeD were used. 64
Different types of critiques in background theory plan 71
An EXPECT Method 72
Critique Window 73

Algorithm that dynamically generates classification questions in the critique window...75
The English based method editor in use to change the method 76
Tasks Completed w/full tool 78
Average time to define critique 78

Examples of EXPECT Problem-Solving Methods 102
The Method Proposer of the EMed Acquisition Interface 103
Average Number of hints 106

Structured Editor - 107

Results of the evaluation with domain experts 110
Average Use of EMeD's Functionality '. • HI

in

1. Introduction

The HPKB initiative seeks to develop large, reusable libraries of ontologies and problem
solving methods which will ease the construction and maintenance of large knowledge
based systems. A critical facet of HPKB is to understand how these ontologies and
problem solving methods can be brought together to produce applications and to develop
tools and techniques that support that process.
When the ontologies and problem solving methods are brought together, dependencies
will be set up between them. If one problem solving method is chosen, certain parts of an
ontology will be used, while others will not be needed. On the other hand, if a different
method is chosen, different parts of the ontology will be required. Capturing these
interdependencies that arise when ontologies and problem solving methods are actually
used in building a KBS is critical to providing intelligent support for maintenance,
evolution and knowledge acquisition. Our work focuses on capturing these
interdependencies and developing tools that use them to support system builders and
domain experts as they bring together the knowledge in the libraries and make it
operational in knowledge based applications.

Consider how this knowledge of how knowledge is used could be employed: if the shared
ontology a KBS is based on changes after the system is built, the system builder should
be notified, but only of the changes that affect his system. This can only be done if one
understands how the ontology is used in that particular system. Similarly, in knowledge
acquisition, when a user adds new knowledge to a KBS, he needs to be prompted for any
additional knowledge that may be required to make use of that new information, but no
extraneous knowledge should be requested. Both of these capabilities depend on
understanding the tie between problem solving methods and ontologies: understanding
how the problem solving methods make use of the ontologies and domain knowledge,
and what domain knowledge is required to support problem solving.

These ideas are key to our research within the EXPECT architecture investigated in the
work reported here. EXPECT's architecture includes a knowledge representation and
reasoning system, knowledge analysis and interaction dialogue capabilities, and
knowledge acquisition tools and interfaces.

1.1 Knowledge Acquisition
Knowledge acquisition tools have expectations about the kind of knowledge that needs to
be added to a system to support reasoning, and they use these expectations to guide
acquisition. Most successful knowledge acquisition tools create these expectations using
what is known as a role-limiting approach. Role -limiting approaches center knowledge
base construction on filling the roles that domain -dependent knowledge plays in a
domain-independent problem -solving method. For example, a knowledge acquisition
tool for a heuristic classification problem -solving method expects that the user will
provide knowledge about classes and features that are used in classification. The same
general-purpose problem-solving method can be used in many applications that use that
problem-solving approach, and users interact with the tool to fill in the roles in that
problem-solving method. In our example, for a medical diagnosis application the classes

would be diseases and features would be the data about the patient, while for a computer
diagnosis system the classes would be computer failures and the features would be the
symptoms of the computer. Examples of such tools include MORE [Eshelman 1988],
SALT [Marcus 1988], and ROGET [Bennett 1985]. Because these tools understood how
knowledge would be used in problem solving, they could provide much more guidance in
helping the user formulate the knowledge he was adding to a system correctly. However,
the problem solving method is built into th e knowledge acquisition tool itself. Thus,
when one selects a tool, one also determines the problem -solving method that is
employed by the application. The diffi culty is that most realistically-sized knowledge-
based systems require an assortment of prob lem-solving methods—a tool that uses a
single method is of limited utility. In addition, many knowledge acquisition tools need to
be built, one for each problem -solving method. For these reasons, these approaches to
knowledge acquisition have limited applicability [Musen 1992].

Our work overcomes these problems with a com plementary approach to knowledge
acquisition. In order to support flexible tools, EXPECT has an explicit representation of
all the kinds of knowledge (both factual and procedural) in volved in a task. EXPECT's
representation of domain facts and problem -solving methods will be tightly integrated
with LOOM, an advanced knowledge -representation system. As a result, the problem -
solving methods are not treated as black boxes, but instead t heir definitions are
represented in a language that the system understands and about which the system can
reason. EXPECT 's knowledge-acquisition tools will be able to support users in changing
these problem -solving methods, defining new ones, and composin g them together to
configure an overall problem -solving method for an application. Building a new
application with EXPECT, however, would require developers to define by hand all the
problem-solving methods that their applications might need. EXPECT itsel f will not
support the reuse of problem-solving methods from one application to another.

1.2 EXPECT

The main goal of the EXPECT project [Swartout and Gil 1995, Gil and Paris 191994,
Neches et al. 1985, Swartout et al. 1991] is to make knowledge-based systems more
accessible to end users. A decade of work on the Explainable Expert Systems (EES)
project at ISI lead to the development of new approaches to natural language generation,
dialogue-based explanations, and documentation [Swartout and Moore 1994, Swartout et
al. 1991]. Recent work has concentrated on tools that support the acquisition of
knowledge from users in terms they can relate to, highlighting domain knowledge instead
of programming details [Gil and Melz 1996, Gil and Paris 1994, Gil 1994]. EXPECT's
approach to modeling, representing, and using knowledge was shaped to provide
appropriate support for explanation and knowledge acquisition tools. EXPECT provides a
highly declarative framework for building knowledge-based systems which is based upon
Loom [MacGregor 1988, MacGregor 1990], a state-of-the-art knowledge representation
system of the KL-ONE family. This framework captures the design underlying a KBS,
including how domain information is used in problem solving, and what factual
knowledge is needed to support the KBS's problem solving methods. This design
information is then used to guide knowledge acquisition.

To build a knowledge based system in EXPECT, one begins by representing general
knowledge about a domain as Loom entities (e.g., conce pts, relations, and instances).
General problem -solving strategies are represented in a procedural -style language that
allows subgoal posting, control programming constructs, and expressive parameter
typing. Using a form of partial evaluation, an automatic method instantiator then
compiles this general knowledge into a domain -specific knowledge based system. This
process is recorded in a design history that captures the interdependences in the
knowledge-based system, such as how factual knowledge is used i n problem solving.
EXPECT's knowledge acquisition routines then use this information about dependencies
to guide knowledge acquisition.
Knowledge acquisition tools support users by having expectations about the kinds of
knowledge that a user may want to provide to a system. EXPECT uses its design record
to form expectations about what knowledge it needs to acquire based on the current
contents of its knowledge bases. By using the design record, EXPECT understands how
the factual knowledge is used in the problem-solving methods. Thus, EXPECT can guide
users to provide enough information about instances and concepts to ensure that problem
solving can be carried out. Because it understands how the problem -solving methods
achieve the task goals, EXPECT can ensure that there are methods to achieve the goals
that arise during problem solving. If the user changes a method definition or a factual
description, the expectations are rederived. Understanding the interactions among the
different pieces of knowledge is also useful to propagate the effects of a local change
made by the user. This allows the system to detect inconsistencies as well as the need to
request additional knowledge from the user. EXPECT also includes an agenda
mechanism to handle requests for user interventions, providing users with an abstract
view of the knowledge acquisition tasks that they need to attend to.

EXPECT provides a flexible approach to knowledge acquisition because 1) it allows
users to define arbitrary problem-solving methods for a task, 2) the same tool can be
reused for many different applications to accomplish diverse types of tasks, and 3) its
expectations are derived according to the knowledge that is available about the task. In
other approaches, knowledge acquisition tools are built for specific types of tasks, and the
expectations are predesigned based on the task definition and hard -coded into the tool.
This approach is not practical in real applications because it is hard to determine
beforehand the type of problem-solving method that is needed for a new application and
because applications often do not conform exactly to the type of task that a tool was
designed for.

1.3 Overview

This report summarizes the extensions done to EXPECT under the High Performance
Knowledge Bases Program. The work is described in this report organized in the
following topics and chapters:

■ The current EXPECT architecture and the features that it includes that are crucial to
support problem solving and knowledge acquisition work.

The ontologies fo r plan representation and reasoning that were developed, which
were used in the HPKB Challenge Problems.

A knowledge acquisition tool to acquire problem solving knowledge

A reusable problem solving method for plan evaluation that was also used to support
knowledge acquisition from users

A methodology to conduct user evaluations of knowledge acquisition tools

A report on user evaluations of Army officers conducted at the Army Battle
Command Battle Lab in Ft. Leavenworth, KS in August 1999 as part of the HPKB
Knowledge Acquisition Critical Component Experiment.

The next six chapters in this report address each of these topics in more depth.

4

2. EXPECT: A User-Centered Environment for Developing
Knowledge-Based Systems

Although knowledge based systems have been successfully deployed in many areas, a big
impediment to more extensive use is the knowledge acquisition problem. Building a
conventional knowledge based system is an expensive and time consuming process
because both domain experts and AI experts mus t work together to capture the needed
knowledge and represent it in a system. The EXPECT project has addressed this problem
by creating a framework for building knowledge based systems that will empower
domain experts to add knowledge to a knowledge based system themselves, while freeing
them from the need to understand the details of the implementation or how the system is
organized. During the past year, we have developed and implemented this knowledge
acquisition facility, and have demonstrated it in t he context of a system to evaluate
military transportation plans.
Unlike conventional acquisition tools which use a fixed set of constraints built into the
tool to guide knowledge acquisition, EXPECT analyzes the design and structure of a
knowledge based system to guide acquisition. EXPECT is thus more flexible than
conventional tools and can be applied to a broader range of problems. The key to
EXPECT's approach to knowledge acquisition is that the EXPECT framework captures
critical aspects of the design of a knowledge based system. EXPECT knows how various
kinds of knowledge in a system interact, such as how factual knowledge is used by
problem solving methods, and what factual knowledge is needed to support reasoning.
Because EXPECT understands these interactions, it can guide a user in adding new
knowledge to a system and prompt the user for additional information if it is needed.
EXPECT currently supports the addition and modification of both factual knowledge and
problem solving methods. By understanding more of the design of a knowledge based
system, EXPECT makes it possible for less computer -knowledgeable users to add
knowledge to a system successfully.

2.1. Introduction
Our goal is to construct a framework for building knowledge -based systems
(KBSs) that can help users make modifications. The premise underlying this goal
is that the framework understands a lot of the systems' design and their
structure—how they solve problems, what knowledge is needed to support
problem solving, and what assumptions they make. This knowledge can be
exploited to make the system understandable and to guide users in making
modifications.

EXPECT is the framework for knowledge based systems that we are developing to
support knowledge acquisition and explanation. A central idea behind EXPECT is the
notion that more powerful acquisition and explanation tools can be constructed if
acquisition and explanation concerns are reflected in the structure of the knowledge based
systems we create. That is, rather than developing tools that operate on conventional
knowledge based systems, it is first necessary to modify the architecture of the target
knowledge based systems so that they will be structured in a way that provides better

support for knowledge acquisition and explanation. It is then possible to build to ols that
exploit this additional information to provide enhanced capabilities.
In prior work on the EES framework [Neches et al, 1985; Swartout et al., 1991] we
explored the architectural modifications that are needed to support explanation. EXPECT
extends the EES framework to support knowledge acquisition. In this chapter, we
discuss the architectural features that support knowledge acquisition.

There are several knowledge acquisition capabilities that we seek to support with the
EXPECT architecture:

1. Users should be able to modify both factual knowledge and problem solving
knowledge. Although many acquisition systems provide good support for modifying
factual knowledge, support for modifying problem solving knowledge is more limited. In
early acqui sition systems (such as MORE [Eshelman 1988], SALT [Marcus and
McDermott 1989], and ROGET [Bennett 1985]), a single problem solving strategy (e.g.
heuristic classification) was built into the tool. As a result, when one selected a tool, one
also determined the problem -solving strategy. However, many realistically-sized
knowledge-based systems use several problem solving strategies, so a tool that only
supports a single strategy won't be much help. Additionally, if the user changes his mind
about which problem-solving strategy is appropriate, he may also have to change tools,
potentially losing a lot of work in re -configuring the domain knowledge. Recent
knowledge acquisition work [Klinker et al. 1991; Musen and Tu 1993] has partially
addressed these prob lems by creating tools that can use multiple problem -solving
methods. In PROTEGE II [Musen and Tu, 1993], problem solving methods are
composed of pre -encoded building blocks. PROTEGE II permits modific ations to
problem solving by substituting one building block for another, however, users cannot
modify the building blocks themselves. By constraining the user's options to just those
that have been pre-encoded, he may not be able to make the modification he wants.

2. Internal models (based on the knowledg e based system being modified) should
guide knowledge acquisition rather than external ones (based on the acquisition tool).
Current acquisition systems cannot allow much modification to problem solving
knowledge because they use external models of problem solving that are built into the
acquisition tool. By understanding what factual knowledge is needed to support problem
solving the acquisition tool can form expectations about what additional knowledge is
required when the user adds or modifies the syste m's know ledge base. In early
acquisition tools, these expectations were built, by hand, into the tool itself. In more
recent work, such as PROTEGE II, the interdependencies between factual knowledge and
problem solving building blocks are represented, but they are still entered by hand.

These limitations could be overcome and a wider range of modifications and problem
solving methods could be supported if we could use an internal model for acquisition,
that is, if the expectations for acquisition could be derived from the system itself.
Furthermore, because the interdependencies would be derived from the system rather
than entered by hand, they would change as the system changed, and would be more
likely to be correct and consistent.

3. KA tools should su pport modifications at a semantic (or knowledge) level rather
than just at a syntactic level. KA tools should help ensure that the knowledge a user
adds makes sense, that is, that it is coherent and consistent with the rest of the knowledge
base—not just that it is syntactically correct. In addition, we want to facilitate the
addition of new knowledge by reducing the distance between what the user understands

and way the system represents it. The system must be able to represent and manipulate
conceptual entities that are meaningful to users and that are used to describe the domain.
To further facilitate acquisition, a KA tool should allow users to make modifications
locally, and guide them in resolving the global implications of the changes. Providing
assistance at the conceptual level and allowing gr eater flexibility in the use of
terminology will free users to focus on what matters: getting the knowledge right.

This chapter describes several features of EXPECT'S architecture that directly support
the acquisition goals we outlined above. Most of the e xamples in this chapter are based
on a Course of Action evaluation tool, but some are from another domain we have used
which is concerned with the diagnosis of faults in local area networks.

2.2. EXPECT Architecture Overview
A diagram of the overall EXPECT architecture appears in Figure 1. As we describe in

the next section, EXPECT provides explicit and separate representations for different kinds
of knowledge that go into a knowledge based system. EXPECT distinguishes domain
facts, domain terminology and problem solving knowledge. These different sources of
knowledge are integrated together by a program instantiator to produce a domain-specific
knowledge based system. While the domain -specific system is being created, the
program instantiator also cr eates a design history. The design history records the
interdependencies among the different kinds of knowledge, such as what factual
information is used by the problem solving methods. This i nformation is used by the
knowledge acquisition routines to fo rm the expectations that guide the knowledge
acquisition process.

Expectation-based Tools for Knowledge Acquisition

KB
modifiers

Knowledge Bases

Terminology

Domain
Facts

Problem
Solving

Knowledge
(strategies)

expectation
builder

agenda
manager

-T7
i i

Domain-
Specific

KBS

Design
History

I
Execution

Trace

I
T

Interpreter

Program
Instantiator

-►

User
Interaction
Manager/
Explainer

_/v

User/
Domain Expert

Figure 1. EXPECT Architecture

2.3. Representing Knowledge in EXPECT

EXPECT represents different types of knowledge separately and explicitly. After
describing the kinds of knowledge that are represented in EXPECT we present in detail our
approach to representing goals. This explicit representation of goals provides EXPECT

with a better understanding of the problem solving process.

2.3.1 Separation of Knowledge
It is well established that a major source of difficulties in understanding, modifying

and augmenting first generation knowledge based systems stemmed from the use of low -
level knowledge representations that failed to distinguish different kinds of knowledge
(see [Chandrasekaran and Mittal, 1982; Clancey, 1983b; Swartout, 1983]). In a first
generation system, domain facts, problem solving know ledge, and terminological
definitions were all expressed in rules. A single rule might mix together clauses
concerned with the user interface, the system's problem solving strategy and internal
record-keeping. Because none of these different concerns were distinguished, it was often
difficult to understand exactly what the rule was supposed to do, and when modifying a
rule, it was difficult to see what the effect of the modification might be. Although early
critiques of these representations focused on their failure to provide good explanations,
these architectural flaws create problems for acquisition as well.

A number of second generati on expert system frameworks have emerged in recent
years (see [Chandrasekaran, 1986; Clancey, 1983a; Hasling et al., 1984;Neches et al,
1985; Swartout, 1983; Swartout et al., 1991; Wielinga and Breuker, 1986]). A common
theme among these frameworks is that they encourage a more abstract representation of
domain knowledge and problem solving knowledge that makes distinctions between
different kinds of knowledge explicit.

By moving toward architectures that allow a system builder to distinguish different
kinds of knowledge and represent them separately and more abstractly, second generation
frameworks increased the modularity of an expert system. This modularity facilitates KA
by making systems easier to understand and augment.

In EXPECT, we distinguish three different kinds of knowledge: domain facts, domain
terminology, and problem solving knowledge. Domain facts are the relevant facts about a
system's domain. For example, the domain facts in a system for transportation planning
might include the fact that the naval port of Los Angeles is Long Beach and that the
maximum depth of Long Beach berths is 50 feet.

The domain terminology (or ontology) provides the co nceptual structures that are
used to describe a domain. In a transportation planning domain, the domain terminology
would include concepts for various kinds of ports, such as airports and seaports, and
concepts for describing the var ious kinds of movements ' and materiel to be moved,
among other things. Concepts can be defined in terms of other cone epts. Domain
terminology provides a set of terms, or concepts, that can be used to describe some
situation. The existence of a concept does not imply that the object it describes actually
exists—concepts are just descriptions that may or may not apply in any given situation.
Domain facts, on the other hand, use domain terminology to represent what exists.

To represent both domain facts and terminology, EXPECT uses Loom [MacGregor
1988]. Loom provides a descriptive logic representation language and a classifier for
inference. Facts are represented as Loom instances, while terminology is represented
using Loom concepts. Both instances and concepts are structured, frame -based
representations with slots that indicate relations in which the object is involved.

Loom's classifier benefits knowledge acquisition. Given a set of defined concepts,
the classifier can automatically organize them into an is -a (or subsumption) hierarchy by
analyzing their definitions. For example, suppose we define the following two concepts:

an AIRLIFT-MOVEMENT is a kind of MOVEMENT whose destination is
an AIRPORT

an EXPRESS-MOVEMENT is a kind of MOVEMENT whose duration is
less than one DAY and whose destination is an AIRPORT

The classifier would figure out that an express-movement is also a kind of airlift-
movement, since the definitions above state that any movement whose destination is an
airport is an airlift-movement, and express-movement meets that criteria. This is shown
in Figure 2.

'in transportation planning, a "movement" specifies what is to be moved from an origin to a destination at a
particular time using some set of vehicles.

Airlift Movement

^destination

Movement

...J'Sfti....... .. ä^säjtÄ«**

i-:,*.V^,

JSp

fcwife
tf:o^;Ä'; m*

Before Classification After Classification

Figure 2. Loom Classifier Organizes Concept Hierarchy

Loom provides a declarative foundation for representing concepts, relations and facts.
The classifier helps maintain the organization of the knowledge base, and as we will
describe, we use it to match problem solving methods with goals. However, to be able to
analyze the interdepende ncies between the conceptual structure of a system and its
problem solving methods we need a highly declarative representation for problem solving
knowledge as well. The next section describes our representation of problem sol ving
knowledge.

2.3.2 Capturing Intent in Problem Solving
Problem solving knowledge in EXPECT is represented as strategies (called methods)

for achieving particular goals. Each method has a capability description associated with
it, which states what the method can do (e.g. "evaluate a COA"), and a method body that
describes how to achieve the advertised capability of the method. The steps can post
further subgoals for the system to achieve . The language used in the method bodies
allows sequences of steps and conditional expressions.

One of EXPECT's architectural features that helps users make modifications to
problem solving knowledge is a rich representation for goals and method capabilities that
provides an explicit representation of intent. This represent ation makes it easier for
people to understand what a method is supposed to be doing, and makes it easier for
EXPECT to analyze a system's structure and hence provide guidance to a user in making
modifications.

In most programming languages, function names have no real semantics associated
with them. A good programmer may indicate what a function is supposed to do by
giving it an appropriate name (e.g. clear-screen) but as far as the system is
concerned, the name is just a string of characters. Furthermore, the relationship between
the function name (what is to be done) and the functional p arameters (the things that will

10

capability:
(find

(obj (?t is (specialization-of
unloading-time)))

(of (?m is (instance-of
movement))))

result-type: (instance-of time-value)
method: (calculate

(obj ?t)
(of (available-vehicles ?m)))

Figure 3. A method to calculate the unloading time of a movement

be involved in doing it) is completely implicit. AI systems such as planners provide a
more explicit representation of what is to be done. Usually the goal is represented as
some sort of state expressed in some form of predicate logic. A problem with this
representation that affects both acquisition and explanation is that it is removed from the
way people think and talk about what they are doing, since protocols of people solving
problems show that they use verb clauses to describe what they are doing rather than state
descriptions (see for example, [Anzai and Simon 1979]).

To address these difficulties and decrease the distance between EXPECT'S internal
representation and how people talk about what they do, EXPECT'S representation is based
on a vocabulary of verbs. In EXPECT, we represent both goals (what is to be done) a nd
method capability descriptions (what a method can do) using a verb clause representation
based on case grammar. Each verb clause consists of a verb and a set of slots (or "cases")
that are the param eters. For example, the goal of evaluating a particular COA is
represented as a verb clause where the main verb is "evaluate" and its (direct) object slot
is filled by the COA instance (e.g., "coa-3") as follows:

(evaluate (obj (instance coa-3)))

The capability descriptions associated with methods are represented similarly, except
that they may contain variables. For example, the following capability description would
be associated with a method that has the capability to evaluate a course of action for force
deployment:

(evaluate (obj (?c is (instance-of
deployment-coa))))

where:
deployment-coa is a coa

that has force-movements

For matching, the goals and capability descriptions are translated into corresponding
Loom concepts. The goal above would match this capability description if coa-3 had
movements of forces, since coa-3 would then be a kind of deployment-coa.

This approach gives us a rich representation for what is intended by a goal and what
the capabilities of a method are. Unlike the state -based representation, goals and
capabilities can be easily paraphrased into natural language.

Figure 2 shows a simple method from our system for evaluating transportation plans.
It finds the unloading time of a movement by calculating the unloading time of the set of
available vehicles of the COA movement. There are two things to notice about this

11

method. First, it is relatively straightforward to paraphrase the representations of the
capability description and the method body into understandable natural language, because
their structure mirrors natural language. Second, this method illustrates the use of two
general kinds of parameters that can be passed in EXPECT. They distinguish between the
kind of data that will be provided to the method and the kind of task to be accomplished
by the method. They are indicated by instance-of or speciaiization-of in the capability
description. These keywords indicate how the matcher should match these slots against
the corresponding slots in goals.

instance-of indicates that the slot is a data parameter and will match an instance of
the indicated type. Thus, (instance-of movement) will match a movement instance or an
instance that is more specialized, instance-of slots work much like function parameters
in conventional programming languages: they supply the data that the function
manipulates. However, in EXPECT, slots on goals do more than just provide data; they can
also further specify the task to be done. Task par ameters are indicated by
speciaiization-of slots and match against concepts that appear in corresponding slots in
the goal. For example, (speciaiization-of unioading-time) will match unloading-
time or any of its specializations. The capability description of the method in Figure 2
will match a goal such as:

(find (obj (specialization-of unloading-time))
(of (instance movement-23)))

or it will match the goal:

(find (obj (specialization-of
emergency-unloading-time))

(of (instance movement-23)))

Notice the "obj" slot in both cases does not supply data but instead it specifies the sort
of information that is su pposed to be found by the method. Specialization-of
slots add an additional dimension for method abstraction, allowing us to re-use the same
method in several different contexts, and they are one of the ways we achieve "loose -
coupling" in EXPECT, which we will discuss in detail in Section 2.4.2. In the example in
Figure 2, ?t is bound to the concept in the goal that matches (speciaiization-of
unioading-time). The variable ?t is then used in the method body to pass the goal
context on to subgoals so that the method body will compute for example the emergency-
unioading-time rather than the unioading-time if emergency time was specified in the
original goal.

The key features of our goal representation are: 1) it is structured, 2) a richer
representation for intent is provided because the structure is based on a verb clause
representation, and 3) in addition to data parameters, task parameters are explicitly
distinguished.

2.4. Bringing Knowledge Back Together: Loose Coupling in Expect
We have argued that by separating different kinds of knowledge and providing

explicit representations for them knowledge based systems created withi n the EXPECT

framework can be easier to understand, and because the separation provides increased

12

modularity, they are easier to augment and modify. In this section, we describe how the
program instantiator works to match up and integrate di fferent knowledge sources. We
refer to the matching process we use as semantic match because resources are matched up
based on their meaning as opposed to their syntax. We argue that this loosens the
coupling between knowledge sources, which can have distinct advantages for knowledge
re-use and acquisition.

2.4.1 Resolving Goals: Semantic Matching And Goal Reformulation
In many systems, matching of goals and methods is done on a fairly syntactic basis.

Lexemes in goals must match those in methods, and variables are m atched by position.
In EXPECT, we have tried to move toward a matching process that is based on the
semantics of the goals rather than their syntax, and one in which reformulation can be
used to achieve a match when a more direct match is not possible. In EXPECT, the ability
to provide looser coupling between goals and method capabilities depends on the way
that they are represented. As we described in Section 2.3.2, both goals and method
capabilities are represented as verb clauses. A main verb states what is to be done, using
a number of slots that act as "cases" (as in case grammar). For matching, both goals and
method capabilities are translated into Loom concepts that mirror their structure.

Semantic Match One of the mechanisms EXPECT provides to achieve looser coupling
is based on Loom's classifier (one of the reasoners that Loom provides). Given an
existing hierarchy of Loom concepts (and their definitions) organized according to the
subsumption relations (A.K.O.) between them, the classifier is capable of figuring out
where in the hierarchy a new concept belongs, based solely on the definitions of the
concepts. To find possible methods for accomplishing a goal, the Loom classifier is
used to find those methods whose capability descriptions subsume the goal. The
classifier provides a form of semantic match, because match is based on the meaning of
concepts, not on their syntactic form. Section 2.3.2 described how goals are represented
as Loom concepts and showed some simple examples of how the semantic matcher
works.

The semantic matcher finds methods whose capabilities subsume the posted goal not
only when it is given the class name but also when it is given a description of the type of
object that needs to be matched. An example of thi s kind of matching occurs in our
network diagnosis domain. EXPECT's terminological knowledge contains the definition:

lanbridge-23 is a COMPONENT
that is CONNECTED-TO 2 networks

CONNECTED-COMPONENT is a COMPONENT
that is CONNECTED-TO a NETWORK

When EXPECT is reasoning with its problem solving knowledge about how to achieve the
goal:

(diagnose (obj (instance lanbridge-23)))

13

It will be able to match that goal with a method with the capability description:

(obj (?c is (instance-of CONNECTED- (diagnose
COMPONENT))))

because the classifier can figure out that lanbridge-23 is a kind of component which
is connected to a network, based on the definitions of lanbridge-23 and
CONNECTED-COMPONENT above. This kind of subsumption matching allows EXPECT

to reason about the semantics of a goal in terms of the meaning of its parameters.

We described earlier how EXPECT relies on LOOM's classifier to automaticall
organize concepts in an AKO lattice. EXPECT also relies on the LOOM classifier to
reason about what goals and capabilities subsume others. This is achieved by turning
goals and capabilities into LOOM descriptions. EXPECT has a core set of Loom
definitions that are used for this, and include action name (its subclasses are essentiall
verbs), action role (its subclasses are OBJ and any parameter name), goal, and
capability. Action roles are relations whose domain is an action name, and whose range
can be any existing concept in the domain (ex: ship, number) qualified by its parameter
type (set or element, concept or instance, extensional or intensional). For example, the
goal to compute the factorial of a number is expressed in EXPECT as:

(compute
(obj (spec-of factorial)
(of (inst-of number)))

method
hierarchy

OBJ
/- -^«cargq)
(move) v

^—^<^ITI
^ (vehicle^

f~Method capability:
(move

(OBJ (inst-of cargo))
(WITH (inst-of aircraft)))

^ Goal:
(move

(OBJ (inst-of cargo))
(WITH C-140))

OBJ
^ ^r fcargoj!
(move) v—

method-3

Figure 1: Translating Goals and Capabilities to Loom to organize and retrieve methods

14

The corresponding Loom definition that is created is:

(defconcept CM20
:is (:and compute

(:the obj (:and concept-desc
factorial))

(:the of (:and instance-desc
number))))

LOOM's classifier is now able to reason with this definition. Every term used in the
parameters have their own definitions, provided in the ontologies, and LOOM will use
them in reasoning about goal subsumption. Notice that these terms and their definitions
can be domain independent (e.g., vioiated-constraints, maximum) or domain dependent
(e.g.,location,closure-date).

Using the techniques just described, EXPECT creates Loom definitions for the
capabilities of all the methods that are defined in the knowledge base. Loom's classifier
reasons about these definitions and places them in a lattice, where more general
definitions subsume more specific ones. Notice that this subsumption reasoning uses the
definitions of the domain terms and ontologies that are part of EXPECT's knowledge
bases. As a result, the capability of a method to "move cargo with a vehicle" will
subsume one to "move cargo with an aircraft", because according to the domain
ontologies vehicle subsumes aircraft. This is illustrated in the method hierarchy shown in
Figure 3. As a result, EXPECT's methods are automatically organized according to their
capabilities, and their capabilities can be compared based on their place in the lattice.

EXPECT also exploits the representation of goals and capabilities for matching method
capabilities with the goals that arise during problem solving. EXPECT's matcher first
translates the posted goal into a Loom concept, and then invokes the Loom classifier in
order to find methods whose capability descriptions subsume the posted goal. Figure 3
illustrates this matching process for the goal of moving some cargo with a C-140 (which
is a particular kind of aircraft).

Once the match has been made using the Loom representation for the goal and
capabilities, the original representation is used to bind parameters in the goal to
corresponding variables in the capability description. This is necessary since Loom does
not support variables in concepts.

Reformulations The second mechanism that EXPECT provides for looser coupling of
goals and methods is reformulation. Usually if a method cannot be found to achieve a
goal using semantic match, the system will attempt to reformulate the goal and then look
for methods to achieve the resulting goal(s). Goal reformulation involves decomposing a
goal and then assembling a new goal (or goals) by transforming pieces of the original
goal based on their meaning. To be able to perform goal reformulation, one needs an
explicit, decomposable representation for the goal, definitions for the terms the goal is
constructed from, and domain facts to drive the reformulation process. In EXPECT, we
provide two general types of reformulations, conjunctive and disjunctive. A conjunctive

15

reformulation involves transforming some goal into a set of goals, where each of the
goals in the set must be performed to achieve the intent of the initial goal. Thus, a
conjunctive reformulation is a form of divide-and-conquer: it splits a problem up into
subpieces that together achieve the original goal. As in divide -and-conquer, the system
must find a way of recombining the results of each of the subproblems back into an
appropriate result for the original goal for a conjunctive reformulation to be successful.
A disjunctive reformulation may also reformulate an initial goal into several goals, but at
runtime, only one. of the goals needs to be executed to achieve the intent of the original
goal.

EXPECT provides three types of conjunctive reformulations: covering, individualization,
and set reformulations.

A covering reformulation occurs when a goal can be transformed into several new goals
that together "cover" the intent of the initial goal. Suppose that the following goal is
posted to estimate how many support personnel are required for a COA:

(estimate (obj (specification-of support-personnel)
(for (instance-of coa)))

Using subsumption matching, the system would try to find methods for achieving this
goal. Suppose none were found, because the system had no general method for
estimating the support personnel needed for a COA. Suppose, however, that the system
did have methods for estimating particular types of support personnel needed for a COA.
How could these methods be found? When the system failed initially to find a method, it
would then try to reformulate the goal into new goals. If the domain model contained the
fact:

support-personnel is covered by
airport-support-personnel and seaport-support-

personnel

the system could reformulate the original goal into two new goals:

(estimate (obj (specification-of airport-support-
personnel)

(for (instance-of coa)))
and

(estimate (obj (specification-of seaport-support-
personnel)

(for (instance-of coa)))

The system would then be able to find the two methods for estimating particular types of
support personnel needed for a COA. For conjunctive reformulations, part of the
reformulation process involves finding a function for re-combining the results of each of
the reformulations to form the result for the original goal. The appropriate function for

16

combining results is determined by the type of the goal. In this example, the system adds
the estimates together.

This sort of reformulation process reduces the need for different parts of the knowledge
base to match up exactly, which enhances the possibilities for knowledge re-use across
systems. Also, because the system explicitly reasons through the reformulation process,
more of the design can be captured to support knowledge acquisition. In this case, if the
user added a new type of support personnel to the knowledge base, for example law-
enforcement-personnel, then the system would use its record of this
reformulation to determine that it would be necessary to perform the reformulation over
again to capture the new type of support personnel. EXPECT could detect that the user
needs to provide a method for estimating the law enforcement personnel needed for a
COA.

Individualization reformulations are similar to covering reformulations, except that the
decompose a goal over a set of objects into a set of goals over individual objects (i.e.,
instances). For example, given the goal of calculating the employment personnel of the
force modules in a COA:

(calculate (obj (specification-of employment-
personnel))

(of (force-modules coa-2)))

and the domain fact that:

force-modules of coa-2 are the instances:
S3rd-ACR 57th-IMF CVN71-ACN

the system could transform the original goal into three goals:

(calculate (obj (specification-of employment-
personnel))

(of (instance 3rd-ACR)))

(calculate (obj (specification-of employment-
personnel))

(of (instance 57th-IMF)))

(calculate (obj (specification-of employment-
personnel))

(of (instance CVN71-ACN)))

where each of these goals corresponds to one of the instances force modules of coa-2.

A third kind of conjunctive reformulation is the set reformulation. When no method
is found to achieve a goal that has a set of objects in its parameters, EXPECT tries to solve

17

the goal for each element of the set in turn. For example, suppose that the following go al
is posted to calculate the closure date2 for several movements:

(calculate (obj (specification-of closure-date))
(of (set-of (instance-of movement))))

and there are no methods that operate on a set of movements. EXPECT reformulates this
goal over a set into a goal over an individual movement:

(calculate (obj (specification-of closure-date))
(of (instance-of movement)))

The matcher will return the method for calculating the closure date of a movement. At
execution time, the system will loop over each of the movements in the set and calculate
one by one the closure date of the movements that are included in the set.

Finally, EXPECT provides the input reformulation, which is a form of disjunctive
reformulation. It occurs when no method can be found to handle one of the inputs to a
goal, but several methods can be found that together will cover the range of possible
inputs that will occur at runtime. For example, given the goal:

(calculate (obj (specification-of closure-date))
(of (instance-of movement)))

suppose that the method library contained no method for calculating the closure date of a
movement in general, but there were methods for calculating the closure date of
particular types of movements and there was a domain fact that told the system that:

movement is covered by airlift-movement and sealift-
movement

then the system could create the goals:

(calculate (obj (specification-of closure-date))
(of (instance-of airlift-movement)))

(calculate (obj (specification-of closure-date))
(of (instance-of sealift-movement)))

the system would write methods for each of these goals, and then create dispatching code
that would select which method to use at runtime, based on the type of the type of
instance of movement that was actually passed in. Note that unlike a covering
reformulation, only one of the branches of a disjunctive reformulation needs to be
executed.

In summary, the loose coupling that EXPECT provides through semantic match and
reformulations is crucial to our approach to knowledge acquisition. First, by moving

2The closure date is the date when all the material to be shipped has arrived at the destination.

away from syntactic matching, users can add knowledge to a system without being as
concerned with issues of form. This opens up the possibility for greater knowledge re -
use and eases collaborative wor k on knowledge bases. The second benefit is that by
having the program instantiator reason extensively about the process of matching up
goals and methods, more of the design of the knowledge based system and the
interdependencies between parts of the syst em can be captured (and hence, used to form
expectations for knowledge acquisition). In reformulating goals, the program writer
develops a rationale for how a high -level goal can be achieved in terms of lower level
goals. This sort of processing is ofte n exactly the sort of reasoning that one wants to
explain and use as a basis for knowledge acquisition.

2.4.2 The Program Instantiator: Capturing Interdependencies

The EXPECT program instantiator works in a refinement driven fashion. Initially, the
program instantiator starts with a high level goal that specifies what the expert system is
supposed to do. For example, to create an expert system for evaluating a particular COA,
the system would be given the following goal:

(evaluate (obj (instance-of deployment-coa)))

This high level goal determines the scope of the knowledge based system that EXPECT
will create. The goal above would create a knowledge based system that could evaluate a
deploy men t-CO A—but nothing else. On the other hand, a goal such as:

(evaluate (obj (instance-of coa)))

would create a knowledge based system that could evaluate any COA that was in
EXPECT's knowledge base (assuming appropriate problem solving knowledge was also
available). Thus, a single EXPECT knowledge base can be used to create a variety of
knowledge based systems, each scoped to cover a different (or possibly overlapping) set
of problems.

Instances that appear in goals during the program instantiation phase act as "place
holders" for the actual data object that will appear when the program is executed. The
use of a more general or abstract instance results in the creation of a system that can
handle a wide range of inputs, i.e., all the instances of that type.

When a goal is posted, the program instantiator sea rches its library of problem
solving knowledge to find a method whose capability description matches the goal. This
matching of goals and methods is a critical step in the program instantiator's reasoning
and was the main topic of the previous section. H ow it is done, and the representations
that are used, have a direct effect on how maintainable and reusable the knowledge base
will be and EXPECT's ability to acquire new knowledge.

Once a method is selected to achieve the posted goal, the variables in the method's
capability description are bound to corresponding instances and concepts in the goal. The
body of the method is expanded by plugging in the bindings for the variables in the body
and then posting its subgoals. During this process, if any of the slots of an instance are

19

accessed by the method, those accesses are recorded in the design history. This record of
the interdependencies between factual knowledge (instances) and problem solving
knowledge is later used to form the expectations that guide knowledge acquisition. For
example, if the program instantiator notes that it uses a method that requires information
about the possible -faults of a component, then when a new component is entered, the
knowledge acquisition routines will know that information about the possible-faults of a
component needs to be added.

A key advantage for knowledge acquisition of EXPECT's approach is that the program
instantiator explores all the possible execution paths through the knowledge based
systems it creates. It thus captures all the interdependencies between factual and problem
solving knowledge, something which is not possible to do by analyzing execution traces,
for example, since each analysis will only cover one execution path through the system.

Figure 4 shows a partial view of how the program instantiator expands goals. The
top-level goal given to the system is to evaluate an instance of a deployment course of
action. This is the goal posted in node nl. The matcher finds a method whose capability
can achieve this goal, and the method's capability, the bindings, and the method's body
are recorded in the node. After the bindings are substituted in the method body, the
subgoal of evaluating the transportation factors of the COA would arise, and successive
goal expansions would produce the goals in nodes n2 and n6.

20

nl goal: (evaluate (obj (inst-of deployment-coa)))
achieved-by: (evaluate (obj (?c is (inst-of coa)))
bindings: ((?c (inst-of deployment-coa)))
method: (evaluate (obj transportation-factors)

(of ?c))

n2 goal: (estimate (obj (spec-of support-personnel)
(for (inst-of deployment-coa)))

achieved-by: covering-reformulation obj

n3 goal: (estimate (obj (spec-of airport-support-personnel
(for (inst-of deployment-coa)))

achieved-by: (estimate (obj ?asp is (...

n4 goal: (estimate (obj (spec-of seaport-support-personnel)
(for (inst-of deployment-coa)))

achieved-by: (estimate (obj ?ssp is (...

ri5 goal: (calcu late (ob; (spec-of empl oyment-personne D)
(of (inst-of deployment-coa)))

achieved -by: (calculate (obj (?p is (spec-of
employment-p ersonnE D)

(of (?c is (inst-o f coa)))
bindings : ((

(
?p (spec-
?c (inst-

of employment
of deployment-

personnel))
coa)))

method: (add (obj (personnel (force -modules ?c)))

n6

DOMAIN-SPECIFIC KBS
+

DESIGN HISTORY

goal: (calculate (obj (spec-of closure-date))
(of (inst-of deployment-coa)))

achieved-by: (calculate (obj (?d is (spec-of closure-date)))
(of (?c is (inst-of coa))))

bindings: ((?d is (spec-of closure-date))
(?c (inst-of deployment-coa)))

method: (calculate (obj ?d)
(of (movements ?c)))

JP-i

force-modules

TERMINOLOGICAL KB

/■

capabil ity: (calculate (obj (?d is (spec -of closure -date)))
(of (?c is (inst- of coa))))

result- type: (inst -of time-value)
method (cal culate (obj ?d)

>■

(of (movements ?c>>) ->
^ >

'capab: (calculate (obj (?d is (spec-of employment-personnel)))
(of (?c is (inst-of coa))))

result-type: (inst-of person-count)
method: (add (obj (personnel (force-modules ?c))) ,

PROBLEM SOLVING KB ÖC
Figure 4. During problem solving, the program instantiator integrates the different types of knowledge that the diffferent
knowledge bases contain and keeps track of their interdependencies (shown in the thick grey lines). These
interdependencies, dynamically generated by EXPECT based on the current available knowledge, are the basis for guiding
knowledge acquisition.

21

Notice that even though the method used to achieve the goal in nl can be used for any
kind of COA, the bindings specify that is used for deployment COAs and the system
propagates this more specific type as it expands the subgoals. When no method is found
to match a goal, EXPECT tries to reformulate the goal and try matching again. For
example, the goal in node n2 is achieved by a covering reformulation of the object
parameter of the goal.

During the process of expanding the goals, the program instantiator also keeps tracks
of the interdependencies between the different components of the knowledge bases. Let
us look more closely at node n6 in Figure 4. The goal of calculating the closure date of a
deployment COA is achieved with a method. Its method body indicates that the system
must calculate the closure date of all the movements of the COA. Since movements is
a role of the concept COA, the system annotates that COA movements are used by the
method in this node. The factual domain knowledge is effectively being linked to the
problem-solving knowledge that uses it. This is shown with thick gray lines in the figure.
Furthermore, the bindings indicate that the movements are used for deploy ment COAs,
but not for other types of COA.

2.5. Flexible Knowledge Acquisition

By representing separately and explicitly knowledge of different types, EXPECT
allows users to make changes to the knowledge bases in terms that are meaningful in the
domain. By deriving the interdependencies between the different types of knowledge as
they are used for problem solving, EXPECT can provide guidance for knowledge
acquisition that is dynamically generated from the current content of the knowledge
bases. By representing explicitly problem -solving methods, EXPECT can reason about
their components and support users in modifying any component of the methods. This
section describes very briefly how EXPECT'S knowledge acquisition tool takes advantage
of the architectural features described in this chapter, see [Gil, 1994; Gil and Paris, 1994]
for a more detailed description of the knowledge acquisition tools.

Using Problem-Solving Knowledge to Guide the Acquisition of Factual Domain
Knowledge

EXPECT'S knowledge acquisition tool supports users in entering factual domain
knowledge by automatically generating a dialogue that requires the information needed
for problem -solving as indicated by the interdependencies captured by the program
instantiator. Let us go back to the example in Figure 4. For example, when a user wants
to define an instance of a new COA3, EXPECT will examine the interdependencies derived
by the Program Instantiator. EXPECT realizes that only deployment COAs are evaluated
(according to the top-level goal in nodenl), and that other kinds of COAs (such as
employment COAs) are not evaluated. Based on that information, EXPECT will first
request the user to be more specific about the COA. To provide maximum support to the

3In the full scale COA evaluator that we have implemented there is a wide range of factual knowledge that
a user might add such as information about locations, ports, facilities, and the characteristics of various
forces.

22

user in providing this information, EXPECT generates a menu of options that correspond
to the different kinds of COAs that are known to the system. The system continues to
request the user to be more specific for as long as the subtypes of the currently specified
type are used differently by the system.

Next, EXPECT examines the interdependencies to request the data needed about a
deployment for problem solving. It notices that the roles used in the methods are force -
modules and movements. According to the knowledge that is currently available to the
system, the JSCP information is not used for COA evaluation. Thus, EXPECT requests the
user to enter the force modules and movements of the COA and makes the JSCP
information optional. Again, to support the user as much as possible, EXPECT generates a
menu with the force modules and the movements that are currently defined in the system
as suggestions for possible fillers.

If the user adds a step to a problem -solving method that uses the JSCP of a COA,
EXPECT will automatically detect this new interdependency and ask the user to provide
this information for any COAs.

Using Factual Domain Knowledge to Guide the Acquisition of Problem-Solving
Knowledge

Suppose now that the domain knowledge changed and a new subclass of supp ort
personnel was added, e.g., law-enforcement-personnel. EXPECT would then
detect that to estimate the support personnel for a COA in node n2 it now generates three
subgoals in the covering reformulation instead of two, and as a result it needs to have a
problem-solving method for estimating the law-enforcement-personnel needed
for a COA. EXPECT guides the user in specifying the new method by reusing one of the
other two as a rough initial version for the new method that the user can correct by
changing any of its components.

In addition to adding new problem-solving methods, EXPECT'S knowledge acquisition
tool supports users in modifying existing methods. For example, a user may add a new
step in a method to use the priority of a COA to decide whether or not to use more
resources for transportation. Suppose that the priority of a COA is not defined, and that
priorities are defined as relations that only apply to mission objectives. Based on this
domain knowledge, EXPECT notifies the user that the priority of a COA is not defined and
thus cannot be used by a method. EXPECT also presents to the user with a menu of all the
roles that are defined for COAs as options to be used in the method.

As always, the knowledge acquisition dialogue is updated if t he underlying
interdependencies change. In this case, if the definition of the role "priority" is changed
so that it is defined for a then the system would allow the user to use the priority of a
COA.

Discussion

EXPECT'S knowledge acquisition tools can:

1) derive the interdependencies between domain and problem-solving knowledge
2) use these interdependencies to guide knowledge acquisition
3) provide suggestions to the user about how to resolve a conflict based on the

23

nature of the interdependencies
4) justify, when asked to do so, the reasons for requesting the user's intervention
based on the derivation of the interdependencies
5) support users in adding new problem solving methods and in changing the
internal steps of existing ones because they are explicitly represented and their
relation with domain knowledge is also specified

All these features are important for the flexibility of EXPECT'S knowledge acquisition
tool, and are possible because of its architectural features as they ar e described in this
chapter.

2.6. Related Work

The acquisition of knowledge about a task can be viewed as a process of
incorporating new knowledge into some existing knowledge structure [Rosenbloom
1988]. The existing knowledge can guide and constrain the search for new knowledge,
and the process of integrating the new knowledge with the old may identify additional
opportunities for learning. An acquisition system that takes this view needs to represent
and understand the knowledge about the task as we 11 as the process of finding and
integrating new knowledge.

A general trend in research on knowledge acquisition has been to make the
knowledge structures that guide acquisition increasingly explicit. In early acquisition
tools many of the requirements that needed to be satisfied when adding a new piece of
knowledge were not stated. The result was that they could not provide very precise
guidance for acquisition. Later, more of these requirements were made explicit, but they
were embedded within the acqu isition tools themselves. This allowed the tools to
provide more specific guidance, but the requirements that were embedded in the tools
could not be changed, which meant that some important aspects of the knowledge-based
system being built could not be changed. More recent work has focused on making these
requirements explicit and represented outside of the tool itself. A result of this has been
more flexible acquisition tools that allow users to make a greater variety of changes to the
knowledge-based system being built.

To make this more concrete, we will begin by briefly reviewing three well -known
acquisition systems: TEIREISIAS [Davis 1976], SALT [Marcus 1988], PROTEGE-II
[Musen and Tu 1993]. We will then describe EXPECT, the acquisition framework we
have been developing [Swartout and Gil 1995, Gil 1994, Gil and Paris 1994]. Each of
these four systems represents a point along the trend we outlined above. We conclude
with a discussion about how these systems make the knowledge structures they use f or
acquisition more or less explicit, and summarize the implications of these differences in
terms of the kinds of knowledge acquisition they can support.

24

2.6.1 Symbol-Level Approaches

TEIREISIAS [Davis 1976] was one of the earliest knowledge acquisition systems. It
was designed to help a user correct and extend MYCIN's knowledge base [Buchanan and
Shortliffe 1984] for diagnosing infections. If MYCIN either incorrectly concluded that a
disease was present, or missed a correct diagnosis, TEIREISIAS would walk the user
through the trace of rule firings to determine where the error arose. If an incorrect
diagnosis was concluded, TEIREISIAS would display the rule that led to the conclusion,
and ask if any of the conditions on the rule needed to be changed. If so, the user was
given the opportunity to make the change. If the rule was correct, but fired because some
if its conditions were incorrectly asserted, the process would recurse and the user could
look at the rules that made those assertions to dete rmine if they were correct. Similarly,
if a correct diagnosis was missed, TEIREISIAS would display the rule that could have
caused that diagnosis to be reached, and would walk the user through the process of
determining why those rules did not fire and co rrecting the problem, either by changing
the conditions on the rules or by adding additional rules. When a new rule was added,
TEIREISIAS provided guidance based on rule models derived from the existing rule base
through statistical conceptual clustering. If rules that concluded about a particular
parameter x frequently mentioned some other parameter y in their antecedents, then
TEIREISIAS would point out a possible error if the user left the parameter y out in a rule
concluding about x. This is useful, but a long way from actually understanding the role
that the rule plays in problem solving.

TEIREISIAS understood MYCIN at the symbol level [Newell 1982]. It understood
rule patterns and why a particular rule fired or did not fire, but it did not have a g lobal
view of the overall algorithm that MYCIN was following. Indeed, work on TEIREISIAS
pre-dated Clancey's analysis of MYCIN that showed that it was following the general
problem solving strategy that he identified as heuristic classification [Clancey 1 985].
TEIREISIAS did not capture the distinctions between rules for data abstraction, heuristic
match, and solution refinement that charaterize a heuristic classification system. Since
TEIREISIAS did not understand the roles that the rules played in a sy stem, it could not
provide much help in guiding the user concerning the content of those rules.

2.6.2. Role Limiting Approaches

The next generation of knowledge acquistion tools represents what is called a role-
limiting approach. It was based on the obs ervation that the kind of problem solving
method that a system uses determines the kind of domain information the system needs
[McDermott 1988]. Put another way, the role that a particular kind of knowledge plays
in problem solving strongly constrains how that knowledge should be expressed — what
is required for the system to function. A research goal during this stage was to try to
understand a number of general methods used by knowledge based systems
[Chandrasekaran, 1986], such as propose-and-revise and heuristic classification, and then

25

to construct a knowledge acquisition tool for a particular method. Such tools could then
be used to build knowledge based systems that used that particular problem solving
approach. Examples of such tools include MORE [Eshelman 1988], SALT [Marcus
1988], and ROGET [Bennett 1985]. Because these tools understood how knowledge
would be used in problem solving, they could provide much more guidance in helping the
user formulate the knowledge he was adding to a system correctly.

SALT is a good example of a knowledge acquisition tool based on a role -limiting
method. SALT was used to develop systems that use the propose-and-revise method to
construct a solution to a problem. Examples included a configurer for elevators and a
flow-shop scheduler. In the propose-and-revise method, a system constructs an initial
approximate solution to a problem which may have a number of aspects that still remain
to be determined. It then proposes a design extension to fill in missing parts of the
design, and looks for possible constraints that may be violated. If a constraint violation is
detected, the system has knowledge of fixes that may be used to revise the solution and
correct the problem. SALT captures this general algorithm, and unde rstands that the
knowledge that needs to be acquired to support this method is knowledge of ways of
extending a design, the constraints that the design must satisfy, and ways of correcting
constraint violations. In other words, these are the roles that new knowledge plays within
the propose-and-revise strategy. Because SALT was specifically designed for building
propose-and-revise systems, it includes tools that detect and correct problems that can
arise in building these systems, such as cycles in the fixes and constraints.

Role-limiting approaches center knowledge base construction on filling the roles that
knowledge plays in the particular problem -solving method that they are designed for.
However, the problem solving method is built into the knowledge acquisition tool itself.
Thus, when one selects a tool, one also determines the problem -solving method that is
employed by the application. One problem with this is that many large-scale systems are
not homogeneous. That is, they do not use a single pro blem-solving method
throughout—some of the application can use one technique but different techniques are
needed for other parts. As a result, an acquisition tool that only supports a single method
has limited applicability [Musen 1992].

2.6.3.Composable Role-Limiting Methods

Rather than embodying a single problem solving method, some knowledge
acquisition environments contain a library of problem solving methods of smaller size.
New applications are built by composing the overall problem-solving strategy from the
smaller components of the library. Examples of systems that take this approach are SBF
[Klinkeret al. 1991], COMET [Steels 1990], and PROTEGE-II [Musen and Tu 1993].

PROTEGE-II guides acquisition based on fine -grained role-limiting methods. To
build an application, a knowledge engineer configures the overall problem -solving
method using the components in the method library. At the same time, he or she builds a
method ontology that contains the terms that are used by the method being configu red.
For example, "constraint" would be one of these terms and it would be identified as one
of the kinds of knowledge needed by the component that represents the revision stage of
propose-and-revise. A domain ontology that contains domain -specific knowledge is
represented separately. The knowledge engineer then links the knowledge roles in the

26

method ontology to the domain ontology, identifying how terms like "constraint" map
onto domain-specific terms. Once this mapping has been done, an automatic inter face
builder uses the mapping to generate a knowledge acquisition tool that allows an end user
to enter domain-specific knowledge about the domain. Through this mapping the system
understands just how domain-specific knowledge will actually be used, and the interface
that is constructed thus requests the knowledge that will actually be needed for problem
solving.

2.6.4. Flexibility through Derived Interdependencies

A remaining problem is that while acquisition systems allow a user to make changes
to a system's factual knowledge, they do not allow the user to make changes to the
problem solving methods that the system employs. Tools like SALT don't allow these
changes because the problem solving method is implicitly encoded in the tool itself.
PROTEGE-II doesn't allow such changes because its methods are pre-configured and the
mapping between method and domain ontologies is fixed at system design time. Since
PROTEGE-II's knowledge acquisition tool is derived from that mapping, it too is fixed at
design time. The idea in EXPECT [Swartout and Gil 1995, Gil 1994, Gil and Paris 1994]
is to derive the interdependencies between domain knowledge and problem solving
methods automatically, and to be able to re -derive the dependencies as needed when
changes are made to the problem solving knowledge. This approach allows a user to
modify either the domain knowledge or the problem solving knowledge. We have used
EXPECT to create systems in several domains. One of these domains is military
transportation planning, w here EXPECT was used to construct a system to evaluate
transportation plans. We will use that domain to illustrate points in this chapter.

A diagram of the architecture is shown in Figure 1. Starting at the lower left in the
figure, EXPECT's knowledge bases separate out factual knowledge and problem solving
knowledge. Problem solving knowledge in EXPECT consists of a mix of general, domain
independent strategies as well as some that are domain specific. EXPECT's factual
knowledge includes facts about the domain and terminology that describes the domain, as
well as domain-independent terms that are used by problem -solving methods. In
EXPECT, each problem solving method has a capability description that describes what
the method can do. Each method also has a body, which is a step or sequence of steps for
achieving the method's capability. EXPECT's method language supports conditionals,
sequences of steps and embedded steps in method bodies.

The automatic method instantiator uses partial evaluation and reformulation (see
[Swartout and Gil 1995]) to derive the interdependencies between the problem solving
methods and domain knowledge that are needed to guide knowledge acquisition. The
method instantiator starts with a high level goal that specifies a class of problems for
which one would like to create a system. For example, one might specify that one
wanted to create a system to evaluate a transportation plan from the perspective of
logistics. This high -level problem description contains "generic insta nces" which are
placeholders for actual data that will be used when solving specific problems. Starting
with this goal, the method instantiator searches the method library for a method whose
capability matches the goal. Among those that match, the most specific one is chosen, its
method body is instantiated, and the generic instances replace variables in the method. If

27

the method body contains any subgoals, these are recursively expanded and the process
continues.

During method instantiation, the system also records how domain relations and
concepts are being used by the various problem solving methods. Figure 2 shows this
linkage between the domain knowledge and the expansion of the problem solving
methods. In the figure, the location of a seaport is used in one of the steps in the
expanded method tree and berths of a seaport is used in another. Notice that there are
some relations that are defined by the domain concepts but they are not used in any of the
problem solving steps, such as piers. We expect that it will often be the case that domain
ontologies will contain some relations that are useful for some problem solving methods
but not for others. In particular, this would occur if we wanted to re -use a domain
ontology to support a different sort of problem solving. For example, one might want to
use the same domain ontology in the related (but different) problem of scheduling
transportation movements. Much of the domain information needed by the two
applications would be similar, but some woul d be different. EXPECT can support such
re-use because its knowledge acquisition routines can focus acquisition on just the
information that is actually needed to support the particular problem solving methods in
use.

EXPECT also allows a user to modify problem solving methods. For example, in
some transportation planning situations, one might want to take into account additional
resources that might be available. For example, in figuring out the throughput of a
particular location, one might want to tak e into account not only the capacity of its
seaports, but also of its marinas. In EXPECT, that could be done by modifying the
method that finds the seaports of a location so that it finds the marinas as well. When
that modification is made, EXPECT would re-derive the dependency structure shown in
Figure 2, and it would determine that information about the marinas of a location was no
longer optional, but required. Accordingly, EXPECT would ask the user for information
about the marinas for all the locati ons where information about marinas had not been
specified, like Los Angeles.

2.6.5. Summary
Table 1 summarizes the major issues that we have pointed out in this section. As the

knowledge structures we use for learning and acquisition become richer and m ore
explicit, our acquisition tools can support a broader range of problem solving methods,
provide more guidance to the user and help the user make a wider variety of changes to a
system.

28

TEIREISIAS SALT PROTEGE-II EXPECT

Composing the no problem-solving manually by KA manually by KBS automatically
overall problem- strategy expressed, tool's designers builder by selecting assembled by
solving strategy rule chaining

determines strategy
methods from
library

method instantiator

Representation of no problem-solving hard-coded in KA explicit structure explicit structure
problem-solving strategy expressed tool manually created automatically
strategy by KBS builder derived

Abstraction rule templates model of problem library components generic problem-
statistically derived solving (i.e., correspond to solving methods,
from existing rule propose-and- models of problem- manually designed,
base revise), manually solving, manually and explicitly

designed, hard- designed, hard- represented
coded in KA tool coded in

component's KA
tool

When are when rule statistics when KA tool is when application whenever the
interdependencies are gathered created KBS is created application is
factual knowledge modified
and problem-solving
methods determined?

Derivation of through predicates domain-dependent correspondences one single ontology
interdependencies and rule models knowledge between domain represents
between domain- corresponds to pre- ontology and correspondences
dependent knowledge determined method ontology
and problem-solving knowledge roles of are manually
knowledge the problem-

solving method
specified

Range of problem problems solveable propose and revise methods that can be methods that can be
solving methods by backward composed from the expressed in
supported chaining rule-based

system
methods in library EXPECT's method

language

Modifications rule modification & add new data add/modify factual add/modify factual
Supported addition (design extensions, information used information;

constraints, fixes) by problem solving add/modify
used by propose methods in library problem solving
and revise methods

Table 1: Comparing knowledge acquisition tools

29

2.7. Summary

In real world situations, users need to be able to adapt their tools: no one has the
foresight to envision all the knowledge a system might need. Our research on EXPECT
addresses that problem. By separating the different kinds of knowledge that go into a
knowledge based system and automatically deriving the interdependencies between them
EXPECT guides a user in modifying a knowledge based system.

30

3. Plan Representation and Reasoning

3.1. EXPECT: REASONING ABOUT OBJECTIVES AND GOALS

An important issue in reasoning about plans, processes, and act ivities is the description
of the desired goals (or objectives) as well as which actions (or tasks, or agents) have
the capability to achieve them. Typically, goals are described as a flat predicate with a
predicate name and several arguments and onl y limited reasoning is done about them.
The EXPECT architecture, build on top of the LOOM description logic system, uses a
structured representation of capabilities that has been useful in several tasks and tools,
including a problem solver, a plan editor, a plan evaluation and critiquing tool, and an
agent matchmaker. The main features of this approach are the declarative representation
of qualification parameters(m addition to data passing parameters) for goals and
capabilities, and flexible matching techniques that go beyond exact goal match, such as
goal subsumption and reformulation. A theme of the work on EXPECT has been that
the representations be understandable to users, as many of the applications developed
with EXPECT are plan eval uation and critiquing systems that support human planners
in several military domains.
In our approach, capabilities are represented as verb clauses using a case-grammar style
of formalism. Each capability consists of a verb, that specifies what is to be done, and a
number of roles, or slots, which specify the parameters to be used in the action. The
parameters use terms that are defined in a domain ontology. For example, the goal of
estimating the closure date of a particular transportation moveme nt would be specified
roughly as:
estimate OBJ closure-date OF transportation-movement-1
Here, estimate is the verb, and the roles are indicated in upper case. The roles are
filled by concepts and instances taken from the domain ontology.
Roles can be filled in several different ways, which allows considerable flexibility in
specifying a task to be performed. A role can be filled by a specific instance:
add OBJ 3 TO 5
which allows us to specify particular instances that are to be used in an action. A role can
be filled by a concept:
compute OBJ (spec-of factorial) of 7
In this case, the concept factorial is used to specify the kind of task that is to be
performed. The data required to perform the computation are specified as parameters (in
this case the number 7), while these additional task parameters allow us to express what
needs to be done with that data in an explicit way and are not strictly necessary to
perform the computation itself. The fact that roles can be used both to specify the
parameters or objects that will be involved in a tnskand to further describe or
specify the task itself is one of the key capabilities that our representation supports,
providing us with a rich language for specifying goals.
Roles can be a type of an instance, as in:
divide OBJ (inst-of number) BY 2
This expresses a generic goal that can be instantiated with any elements of that type.
Roles can also be filled by extensional sets as in:
find OBJ (spec-of maximum) OF (42 2 99)

31

or they can be filled by intensional sets, where the set is described by a concept:
find OBJ (set-of (spec-of violated-constraint))
IN (inst-of configuration)
Finally, it is possible to use descriptions (which are similar to the definitions of Loom
concepts) in roles:
estimate OBJ support-personnel
IN (and location (exactly 0 seaports))
This is a goal to estimate the support personnel in a location with no seaports.
This approach provides a rich language for specifying behaviors. The use of a case
grammar formalism makes it relativel straightforward to paraphrase the goals into
natural language, helping to make them more understandable.
Capabilities are translated into LOOM definitions, following an algorithm described in.
For example, (compute (obj (spec-of factorial)) (of (5 7))) is
translated into:

(defconcept compute-factorial-of-numbers
:is (:and compute

(:the obj (:and concept-description factorial))
(:the of (:and number extensional-instance-set

(:filled-by instance-name 5)
(:filled-by instance-name 7)))))

LOOM's classifier is now able to reason with this definition. Every term used in the
parameters have their own definitions, provided in the ontologies, and LOOM will use
them in reasoning about capability subsumption. Notice that these terms and their
definitions can be domain independent (e.g., violated-constraints, maximum) or domain
dependent (e.g., location, closure-date).
Given a set of capabilities expressed in this language, a set of LOOM definitions
corresponding to them can be added to the knowledge base. Loom's classifier reasons
about these definitions and places them in a lattice, where more general definitions
subsume more specific ones. Notice that this subsumption reasoning uses the definitions
of the domain terms and ontologies that are contained in the domain knowledge bases.
As a result, the capability to "move cargo with a vehicle" will subsume one to "move
cargo with an aircraft", because according to the domain ontologies vehicle subsumes
aircraft. The capabilities are automatically organized according to their definitions, and
they can be compared based on their place in the lattice.
Subsumption matching can help find suitable capabilities when presented with a query,
but in some cases no subsuming capability has been added to the knowledge base. In
these cases it may be possible to fulfill the request by decomposing it expressing it in
different terms. This allows a more flexible matching than is possible possible if one
required an exact match for goals and methods. EXPECT supports several types of
reformulations:

• A covering reformulation is a form of divide and conquer. It transforms a goal
into a set of goals that partition the original goal. If all the goals in the set are
achieved, the intent of the original goal is achieved. For example, suppose a goal
of estimating support personnel has been posted, but no applicable methods have
been found. Suppose further that the domain ontology indicates that the concept
support personnel is partitioned into unloading personnel, seaport support

32

personnel and airport support personnel. The original goal can then be
reformulated into three new goals to estimate each type of personnel in the
partition.

• A set reformulation is like a covering reformulation except that it involves a
goal over a set of objects which is reformulated into a set of goals over
individual objects.

• An input reformulation is somewhat similar to the support that some languages
provide for polymorphic operators. This kind of reformulation occurs when a
goal is specified with a general parameter and no single method is available at a
sufficiently general level to handle the parameter. In that case, the goal can be
reformulated into cases based on the subtypes of the parameter given in the
ontology.

Goal reformulations allow us to state the description of method capabilities more
independently from the statement the descriptions of the goals that are posted by other
methods or by the user. The benefit is a more loosely coupling between methods and
tasks, i.e., between what is to be accomplished and what are possible ways to accomplish
it.
These structured representations of objectives have been used in three different and
related contexts that require reasoning about goals: problem-solving goals, planning
objectives, and agent capabilities.
EXPECT is a reasoning system that supports acquisition of problem-solving knowledge
through a number of different techniques. These include maintaining a dependency
model of any knowledge-based system (KBS) that is built with EXPECT, scripting tools
that can guide a user through a multi-step modification to a KBS and the use of
background knowledge about generic tasks. Here we focus on EXPECT's representation
of tasks and subtasks within a KBS. More details about the overall reasoning and
EXPECT's knowledge acquisition tools can be found in.
The problem-solving knowledge of a KBS that is built in EXPECT consists of set of
methods. Each method has a capability that declares what task can be achieved by the
method, a body that describes how the capability is achieved and a return type that
characterizes what the method produces. The method body is written in a programming
language that includes basic constructs such as a conditional test and can also include
other goals. These goals may be matched by the capabilities of other methods, in which
case they will be used when the method is applied, resulting in a tree structure of
methods.
EXPECT method capability descriptions for methods are specified in a similar way to
goals, except that variables may appear in the capability descriptions. These are bound
when the capability descriptions are matched with goals. Figure 2 shows some examples
of EXPECT problem-solving methods and their capabilities

33

(defmethod REVISE-CS-STATE
"To revise a CS state, apply the fixes found for
the constraints violated in the state."
:goal (revise (obj (?s is (inst-of cs-state))))
result (inst-of cs-state)
:body (apply

(obj (find (obj (set-of (spec-of fix)))
(for (find (obj (set-of (spec-of

violated-constraint)))
(in ?s)))))

(to ?s)))

(defmethod CHECK-CAPACITY-CONSTRAINT
"To check the Capacity Constraint of a U-Haul
configuration, check if the capacity of the rented
equipment is smaller than the volume to move."
:goal (check (obj CapacityConstraint)

(in (?c is (inst-of uhaul-configuration))))
:result (inst-of boolean)
:body (is-smaller

(obj (r-capacity (r-rented-equipment ?c)))
(than (r-volume-to-move ?c))))

(defmethod APPLY-UPGRADE-EQUIPMENT-FIX
"To apply the Upgrade Equiment Fix in a U-Haul
configuration, upgrade the rented equipment."
:goal (apply (obj UpgradeEquipmentFix)

(to (?c is (inst-of uhaul-configuration))))
:result (inst-of uhaul-configuration)
:body (upgrade (obj (spec-of rented-equipment-var))

(in ?c)))

Figure 2: Problem-solving knowledge in EXPECT.

Because it uses structured representations of method capabilities is, EXPECT can reason
about how different methods relate to each other. This is useful for organizing method
libraries as well as to support the acquisition of new problem-solving methods.
These representations support natural language paraphrasing, which is useful to develop
adequate knowledge acquisition tools accesible to end users with no logic or
programming background.
These goal representations have been used for almost a decade within EXPECT to
develop several applications of considerable size. Two large knowledge bases were
developed for the Challenge Problems of the DARPA High Performance Knowledge
Bases. A knowledge based system to generate and assess enemy workarounds to target
damage was developed for the 1998 Challenge Problem evaluation. This system showed
the best performance and was the only one to attempt full coverage of the task. A tool
for critiquing Army Courses of Action was developed together with other HPKB
participants for the 1999 Challenge Problem, where each component system used shared

34

ontologies to address disjoint subsets of the critiques. Figure 3 shows the sizes of some
of these knowledge bases as well the average matcher performance.

CC + Cyc' TKB '99

0.18 sec

WG + uc
A

0.1671 sec

VVG + Cyc' 1KB '98
A

0.5036 sec

10O00 15000 20OOO

Size of Ihe ontology (# axioms)

Figure 3: Performance of the Loom-based EXPECT Matcher.

A second use of these structured representations is to represent plans in the application
domain that EXPECT reasons about. Plan are described as concepts, and any properties
are expressed as roles and constraints. Goals are represented as Loom concepts, with
each parameter corresponding to a role as described above. EXPECT was used to
develop several knowledge-based systems for military air campaign planning, including
offensive, defensive, and logistics aspects of air operations . Air campaign plans are
composed of objectives that are decomposed into subobjectives all the way down to
specific missions. Air objectives are related to one another by temporal constraints
(before, after), but they lack precondition and effects information. The Air Campaign
Planning Tool (ACPT) was the first of a series of plan editors that allow a user to define
objectives and decompose them into subobjectives, possibly invoking automated plan
generation tools to flush out the plan at the lower levels. Users entered objectives as
strings with ACPT, which lack the structure that automated tools need in order to reason
about them. EXPECTs goal representations provided that structured formalization of
air campaign objectives, which turned out to improve the editor and to be useful to other
air campaign planning tools as well. Operational users found the structured
representations very useful, because an editor would enable them to be more precise in
representing objectives and because they resulted in standard statements of objectives
that could be shared and understood by everyone. For example, ACPT allowed them to
state an objective as "conduct operations", which is too vague, or "gain air superiority",
which is imprecise because it does not specify the geographical area within the theater
that is intended. Several editors that make use of our grammars were built, the most
widely used one is the Mastermind objectives editor, shown in Figure 4. This editor is
built using Adaptive Forms, a GUI allowing a user to enter a sentence from a context-
free grammar. The grammar is generated from the Loom representations of objectives.

35

^^^^^^^^^m^^mm^w^^^^^^^

VrThms'.To/Dejiend

: a :8fo F.acihiV'' ■

n Bfo Feature ■

'a flfo Location;;.:

W

■ a 1Kb Or^ani/atjpn

.o 6fo Tcansport-atign

'':,".' " -"^^-'liiSsivj cle'ä~f|qüftj,

• >;NeW.Bern, NC .,;■■

► /"ocys forwara'_(->)

► backward (Shift-Tab)

► mvoxe editor (Ciri-Q.

*;.Port of Jacksonville -.

► Cherry Point Airbase'.

*• New River Airbase

*■ JFC HQ *

Search inpst.

Figure 4: A plan editor is used to enter objectives for an air campaign plan
objectives.

The structured representation of air campaign objectives was used also for reasoning
about the plan to support mixed-initiative plan creation. Because the plan creation
process is mostly manual (at least at the higher levels), it is prone to error. This is
aggravated by the size of the plans (several hundreds of interdependent objectives and
tasks) and by the number of different people involved in its creation. In order to help
users detect potential problems as early as possible in the planning process, we
developed INSPECT, a knowledge-based system built with EXPECT that analyzes a
manually created air campaign plan and checks for commonly occurring plan flaws,
including incompleteness, problems with plan structure, and unfeasibility due to lack of
resources. For example, INSPECT would point out that if one of the objectives in the
plan is to gain air superiority over a certain area then there is a requirement for special
facilities for storing JPTS fuel that is currently not taken into account. Without the tool,
this problem might only be found when a logistics expert checks the plan, a day or more
after the problem arises. INSPECT reasons about the kinds of objectives in the plan,
notices that gaining air superiority requires providing reconnaissance missions, which
are typically flown in aircraft that need specific kinds of fuel that need to be stored in
special facilities.
A more recent application area of EXPECT's structured representations of goals is agent
matchmaking. Multi-agent architectures typically offer matchmaking services that an
agent can query to find what other agents can perform a given task. For example, a route
planning agent may invoke threat detection agents in order to make a safe choice among

36

all possible routes. Typically, simple string matching suffices since the agent
communities are relatively small and the agents that need to issue a request can be told
beforehand what other agents are available and how they have to be invoked. In
addition, most current multi-agent systems assume that an agent can perform a few tasks
(often just a single task), where the advertisements and invocations of agents are
negotiated in advance by the agent designers and thus can be significantly simplified. In
large and heterogeneous communities of agents, where the agent that formulates the
request would have no idea of whether and how another agent has advertised relevant
services, there is a need for more sophisticated matchmaking mechanisms. In this kind
of environment, it is likely that most requests will will be imprecise or even ill-
formulated, and advertisements of agent capabilities need to be able to 1) support the
requesting agent in formulating the request properly, 2) support negotiation and
brokering, and 3) adapt dynamically as the agents or their environment change over time.
A language is required to support descriptions of agent capabilities that enable
communication among agents that had no previous knowledge of each other and thus
need to provide enough information about themselves to agree to joint activities. The
kinds of structured representations discussed in this chapter provide a richer language for
advertising the capabilities of agents and would support more flexible matching
algorithms. The application domain for this work is the integration of agent
organizations and human organizations. Typical tasks in this environment involve
planning a schedule for a visitor, setting up and attending meetings, and organizing off-
site demonstrations and visits. Researchers, students, technical support personnel, and
project assistants play different roles in each of these tasks and each person has different
capabilities to offer in the organization. For example, only certain project assistants can
process receipt reimbursements, only researchers can take visitors out to lunch, and onl
certain people within a project are involved with relevant aspects of the software and can
give demos of it. Agent capabilities are advertised using EXPECT's structured
representations:

((capability (process (obj (spec-of reimbursement))
(for (?r is (set-of (inst-of receipt))))))

(agents (katya fanny tanya)))

((capability (demo (obj Phosphorus)))
(agents (surya)))

((capability (take (obj (?v is (inst-of visitor)))
(to (spec-of lunch))))

(agents (tambe knoblock minton chalupsky gil)))

((capability (setup (obj (?v is (inst-of vcr)))))
(agents (chris ken)))

Using ontologies, we represent information about projects, (their members, funding
agencies, software, etc.), equipment, etc. The agent capabilities are translated into
Loom descriptions as we described earlier. The matchmaker uses subsumption, reverse
subsumption, and several kinds of reformulations to find agents relevant to a request.

37

3.1.2 CLASP: CLASSIFICATION OF SCENARIOS AND PLANS

CLASP is a knowledge representation system that builds on description logic to support
plan subsumption and classification . It was implemented as an extension of CLASSIC
and was integrated with the LASSIE software information system . A central
contribution of CLASP is the subsumption and classification algorithms for plans
described as action networks. Its main application was to described the behavior of a
Private Branch Exchange (PBX) switching product. The examples in this section are
taken from that application as described in .
CLASP used a STRIPS-like representation of actions in the plan, and assumes a
propositional representation of planning problems with conjunctive expressions of
preconditions and states. Figure 1 shows the core definitions of actions, states, and
plans. Actions and states are defined as CLASSIC objects, Plans are defined in
CLASP's language, and described as networks of actions that achieve a goal from a
given initial state. The action networks are partially ordered plans that include iteration
and branching, and are called PLAN-EXPRESSION. A PLAN-EXPRESSION can be
described with the constructs SEQUENCE, LOOP, REPEAT, TEST (conditional
branching), OR (disjunctive branching), and SUBPLAN. The SUBPLAN construct
supports modular definitions of plans through definitions of meaningful sub-networks.

38

(DEFINE-CONCEPT Action
(PRIMITIVE

(AND Classic-Thing
(AT-LEAST 1 Actor)
(ALL ACTOR Agent)
(EXACTLY 1 PRECONDITION)
(ALL PRECONDITION State)
(EXACTLY 1 ADD-LIST)
(ALL ADD-LIST State)
(EXACTLY 1 DELETE-LIST)

(ALL DELETE-LIST State)
(EXACTLY 1 GOAL)
(ALL GOAL STATE))))

(DEFINE-CONCEPT State
(PRIMITIVE Classic-Thing))

(DEFINE-PLAN
Plan
(PRIMITIVE

(AND Clasp-Thing
(EXACTLY 1 INITIAL)
(ALL INITIAL State)
(EXACTLY 1 GOAL)
(ALL GOAL State)
(EXACTLY 1 PLAN-EXPRESSION)
(ALL PLAN-EXPRESSION

(LOOP Action)))))

Figure 5: CLASP definitions of actions, states, and plans.

Domain-specific types of states, actions, and plans are described using these core
definitions. Figure 5 shows some of the definitions in the telephony switching domain.
A connect dialtone action is defined as an action performed by a system (not by a user)
that provides a dialtone when the phone is off the hook and idle. Subtypes of the class
plan can be defined to create a taxonomy of plan types. For example, a plan for POTS
(Plain Old Telephone Service) can be defined as one where a caller picks up the phone
and dials, if the callee's phone is off hook the caller gets a busy signal and hangs up
otherwise the call proceeds. Notice that Originate-And-Dial-Plan is a subplan that is
defined separately and its plan expression is inserted in the appropriate node of the
POTS plan expression.

39

(DEFINE-CONCEPT System-Act
(AND Action

(ALL ACTOR System-Agent)))

(DEFINE-CONCEPT Connect-Dialtone-Act
(AND System-Act

(ALL PRECONDITION
(AND Off-Hook-State

Idle-State))
(All Add-LIST Dialtone-State)
(ALL DELETE-LIST Idle-State
(ALL GOAL

(AND Off-Hook-State
Dialtone-State))))

(DEFINE-CONCEPT Callee-Off-Hook-State
(PRIMITIVE State))

(DEFINE-CONCEPT Callee-On-Hook-State
(PRIMITIVE State))

(DEFINE-CONCEPT Callee-Off-Caller-On-State
(AND Callee-Off-Hook-State

Caller-On-Hook-State))

(DEFINE-PLAN Pots-Plan
(AND Plan
(ALL PLAN-EXPRESSION

(SEQUENCE
(SUBPLAN

Originate-And-Dial-Plan)
(TEST

(Callee-On-Hook-State
(SUBPLAN Terminate-Plan))

(Callee-Off-Hook-State
(SEQUENCE

Non-Terminate-Act
Caller-On-Hook-Act
Disconnect Act)))))))

(DEFINE-PLAN
Originate-And-Dial-Plan
(AND

Plan
(ALL PLAN-EXPRESSION

(SEQUENCE
Caller-Off-Hook-Act
Connect-Dialtone-Act
Dial-Digits-Act))))

Figure 6: CLASP actions, states, and plans in the telephony domain.

Specific plans, states, and actions are created as instances of the classes defined in these
taxonomies of states, actions, and plans. Specific plans are called scenarios, and they

40

reflect different linearized sequences of actions that can be executed in the world. Figure
6 shows a scenario where the caller picks up the phone, gets a dial tone, dials and gets a
busy signal, and hangs up causing the system to disconnect. The initial and goal states
are defined as instances. Specific actions are defined as instances as well, for example
connect-dialtone-on-ul is performed by a switching s stem and requires the user to be
idle.

(CREATE SCENARIO
pots-busy-scenario
(AND Plan

(FILLS INITIAL state-ulon-u2off)
(FILLS GOAL state-ulon)
(FILLS PLAN-EXPRESSION

(caller-off-hook-ul
connect-dialtone-on-ul
dial-digits-ul-to-u2
non-terminate-on-u2
caller-on-hook-ul
disconnect-ul)))).

(CREATE-IND state-ulon-u2off
(AND state-Ulon State-U2off))

(CREATE-IND connect-dialtone-on-ul
(AND Connect-Dialtone-Act

(FILLS ACTOR switching-system)
(FILLS PRECONDITION state-uloff-idle)))

Figure 7: CLASP plan, state, and action instances in the telephony domain.

CLASP supported subsumption and classification of plans and scenarios by extending
these functions provided in CLASSIC for concepts and instances. A plan description A
subsumes a plan description B if the initial state and goal state of A subsume the initial
and goal states of B, and if the plan expression of A subsumes the plan expression of B.
The subsumption of plan expressions was defined by considering action networks as an
extension to deterministic finite automata (DFA) where the transitions are CLASSIC
subsumption checks. The plan expression EA of a plan class A subsumes the plan
expression EB of a plan class B if the languages accepted by their corresponding DFAs
are subsumed, i.e., DEA's language is a subset of DEB's language. A scenario is an
instance of a plan class if the action network of the plan expression of the scenario is
accepted by the DFA defined by the plan expression of the plan class.
The CLASP knowledge representation system supported several aspects of reasoning
about plans, including organization of plan classes, retrieval of plan types and scenarios
with description-based queries, and validation of scenarios based on type descriptions.
In the telephony domain, it provided a useful to organize the representation of various
features provided by telephony systems (such as the POTS feature), analyzing which
features supported certain behavior patterns, and retrieving test scenarios for specific
features and behaviors.

41

3.1.3. PLAN GENERATION

SUDO-PLANNER is a planner developed to reason about tradeoffs in decision making
under uncertainty, and was developed in the context of medical domains. SUDO-
PLANNER represented actions and plans using NIKL. Actions were represented as
concepts, with their parameters as roles with the corresponding constraints represented
as role restrictions. A taxonomy of action types enabled SUDO-PLANNER to exploit
inheritance and classification.
TINO is a mobile robot that uses description logic to generate high-level plans. The
representation of the domain includes static axioms, used to represent background
knowledge that does not change as actions are executed, and dynamic axioms that
represent the changes caused by the actions. Conditional plans are generated, and during
execution different branches can be selected based on sensory feedback.

3.1.4. SUMMARY AND FUTURE PROSPECTS

Description logics have been applied to several areas of planning, including plan
analysis, plan generation, plan recognition, and plan evaluation and critiquing. The
applications range from military planning, to telephony systems, to mobile robot control.
Subsumption reasoning and classification support sophisticated reasoning about general
types of actions and plans than other planning research In comparison with other
planning research, these systems support more sophisticated reasoning about general
types of actions and plans thorugh subsumption reasoning and classification. Another
advantage is that their plan representations are integrated with the description logic
representations of the objects in the domain, in comparison with the more
empoverished representations used in other planning research. The challenge of
reasoning about plans in knowledge-intensive environments is already being raised in
military planning, physical sciences research, enterprise and process modelling and
management, and space operations. As the planning community continues to tackle
more practical and ambitious tasks, description logics will be able to provide the kinds
of knowledge representation and reasoning capabilities that these applications require.

42

3.2. PLANET: An Ontology for Representing Plans

As we develop larger and more complex intelligent systems in knowledge-intensive
domains, it becomes impractical and even infeasible to develop knowledge bases from
scratch. Recent research investigates how to develop intelligent systems by drawing
from libraries of reusable components that include both ontologies and problem-solving
methods. This paper introduces PLANET 4, a reusable ontology for representing
plans.PLANET complements recent efforts on formalizing, organizing, and unifying A
planning algorithms by focusing on the representation of plans, and adds a practical
perspective in that it is designed to accomodate a diverse range of real-world plans
(including manually created ones). As more complex planning systems are developed to
operate in knowledge-intensive environments, ontologies present an approach to enable
richer plan representations.
We have drawn from our past experience in designing, developing and integrating
planning tools, and expect PLANET to ease these tasks in the future in three ways.
First, we have already found it useful for knowledge modelling. By providing a structure
that formalizes useful distinctions for reasoning about states and actions, a knowledge
engineer can find the semantics of informal expressions of plans (e.g., textual or
domain-specific) through designing mappings to the ontology. Reports on efforts to
model plans in various application domains indicate the difficulties of representing real-
world domains, and point out the need for better methodologies for knowledge
modelling for planning and for richer representations of planning knowledge. We
believe that PLANET takes a step in that direction. Second, a plan ontology can be a
central vehicle for knowledge reuse across planning applications.PLANET contains
general, domain-independent definitions that are common and useful across planning
domains. To create a plan representation in a new domain, these general definitions can
be used directly and would not need to be redefined for every new domain. Onl
domain-dependent extensions will need to be added. Third, PLANET should facilitate
integration of planning tools through knowledge sharing. Currently, practical efforts to
integrate planning tools are done by designing separate interchange formats for (almost)
each pair of tools, since designing a more universal format is costly and often more
difficult than designing the entire set of pairwise formats. These difficulties are in part
because these systems include decision-support tools such as plan editors, plan
evaluation tools, and plan critiquers, which represent plans in ways that are different
from traditional AI plan generation systems. An ontology like PLANET can provide a
shared plan representation for systems to communicate and exhange information about
the plan, and can facilitate the creation of a common, overarching knowledge base for
future integrations of planning tools. An example of a successful integration of planning
tools through a knowledge base is shown in.
PLANET makes the following representational commitments to provide broad coverage.
First, planning contexts that refer to domain information and constraints that form the
background of a planning problem are represented explicitly. Planning problems, which
supplement the context with information about the initial state of the world and the
goals, are represented explicitly and are accessible from the context. Alternative plans

4PLANET: a PLANsemantic NET
43

themselves are then accessible from each planning problem for which they are relevant.
Second, PLANET maintains an explicit distinction between external constraints, which
are imposed on a context or planning problem externally to a planning agent (including
user advice and preferences), and commitments which the planning agent elects to add as
a partial specification of a plan (for example, a step ordering commitment). The current
version of PLANET does not represent aspects related to the execution of plans and
actions, adversarial planning, or agent beliefs and intentions.
We present the main definitions in PLANET, including initial planning context, goals,
actions and tasks, and choice points. Next, we describe three specializations of
PLANET for three real-world domains where plans are of a very different nature. We
conclude with a discussion of related work and some anticipated directions for future
work.

This section describes how different aspects of a plan are represented in PLANET. As a
convention, we use boldface to highlight terms that are defined in PLANET when they
are first introduced and described in the text. Figure 1 shows a diagram of the major
concepts and relations in the ontology.

plan
plan-commitmc nr_s capability

plan-task-descriplion effec's ■
A / ^ preconditions .

W /\ ub task S r*

plan-task-lemplate

planning-level

human-readable
description

goal-Specification *■ planning- level

U state-l -based-goal-spec

desired-goals objective-based-goal-spec

planning-problem-context iniiiai-siate
\) , „, " „,ema,con™,,WOr,d-S,ate «source-requirern.nl amount

resource-needed

ng-problcms when-needed

Figure 1: An overview of the PLANET ontology. Arrows pointing into space
represent relations whose ranges are not fixed in the ontology.

3.2.1. PLANNING PROBLEMS, SCENARIOS, AND CONTEXTS

A planning problem context represents the initial, given assumptions about the
planning problem. It describes the background scenario in which plans are designed and
must operate on. This context includes the initial state, desired goals, and the external
constraints.
A world state is a model of the environment for which the plan is intended. When using
a rich knowledge representation system, the state may be represented in a context or
microtheory. A certain world state description can be chosen as the initial state of a

44

given planning problem, and all plans that are solutions of this planning problem must
assume this initial state.
The desired goals express what is to be accomplished in the process of solving the
planning problem. Sometimes the initial planning context may not directly specify the
goals to be achieved, instead these are deduced from some initial information about the
situation and some abstract guidance provided as constraints on the problem.
We make a distinction between external constraints imposed on planning problems and
the commitments made by the plan. External constraints may be specified as part of the
planning context to express desirable or undesirable properties or effects of potential
solutions to the problem, including user advice and preferences. Examples of external
constraints are that the plan accomplishes a mission in a period of seven days, that the
plan does not use a certain type of resource, or that transportation is preferably done in
tracked vehicles. Commitments are discussed later.
The initial requirements expressed in the planning problem context need not all be
consistent and achievable (for example, initial external constraints and goals may be
incompatible), rather its aim is to represent these requirements as given. A plan ma
satisfy or not satisfy external constraints. PLANET represents these options with
multiple planning problem for each planning problem context, which may add new
constraints and goals, or relax or drop given ones. A planning problem is created b
forming specific goals, constraints and assumptions about the initial state. Several plans
can be created as alternative solutions for a given planning problem. A planning
problem also includes information used to compare alternative candidate plans.
Planning problems can have descendant planning problems, which impose (or relax)
different constraints on the original problem or may assume variations of the initial state.
Typically, AI planning systems assume one given planning problem and do not address
this process, which is essential when working with real-world environments.
A planning problem may have a number of candidate plans which are potential
solutions. A candidate plan can be untried (i.e., it is yet to be explored or tested),
rejected (i.e., for some reason it has been rejected as the preferred plan) or feasible (i.e.,
tried and not rejected). One or more feasible plans ma be marked as selected. All of
these are sub-relations of candidate plan.

3.2.2. GOALS, OBJECTIVES, CAPABILITIES, AND EFFECTS

A goal specification represents anything that gets accomplished by a plan, subplan or
task. Both capabilities and effects of actions and tasks are subtypes of goal specification,
as well as posted goals and objectives. Goals may be variabilized or instantiated. State-
based goal specifications are goal specifications that typically represent goals that refer
to some predicate used to describe the state of the world, for example 'achieve (at Jim
LAX)', 'deny (at Red-Brigade South-Pass)' or 'maintain (temperature Room5 30)'.
Objective-based goal specifications are goal specifications that are typically stated as
verb- or action-based expressions, such as 'transport brigade5 to Ryad'.
Goal specifications also include a human readable description used to provide a
description of a goal to an end user. This is useful because often times users want to

45

view information in a format that is different from the internal format used to store it.
This could be a simple string or a more complex structure.

3.2.3. ACTIONS, OPERATORS, AND TASKS

Plan task descriptions are the actions that can be taken in the world state. They include
templates and their instantiations, and can be abstract or specific. A plan task description
models one or more actions in the external world.
A plan task is a subclass of plan task description and represents an instantiation of a
task as it appears in a plan. It can be a partial or full instantiation. A plan task template
is also a subclass of plan task description that denotes an action or set of actions that
can be performed in the world state. In some AI planners the two classes correspond to
operator instances and operator Schemas respectively, and in others they are called tasks
and task decomposition patterns.

Plan task descriptions have a set of preconditions, a set of effects, a capability, and can
be decomposed into a set of subtasks. Not all these properties need to be specified for a
given task description, and typically planners represent tasks differently depending on
their approach to reasoning about action. The capability of a task or task template
describes a goal for which the task can be used. A precondition represents a necessar
condition for the task. If the task is executed, its effects take place in the given world
state. Tasks can be decomposed into subtasks that are themselves task descriptions.
Hierarchical task network planners use task decomposition or operator templates
(represented here as plan task templates) and instantiate them to generate a plan. Each
template includes a statement of the kind of goal it can achieve (represented as a
capability), a decomposition network into subtasks, each subtask is matched against
the task templates down to primitive templates, represented asprimitive plan task
descriptions. Other planners compose plans as an ordered set of primitive plan steps
(often called operators, as in STRIPS and UCPOP). Plan steps are specializations of
primitive plan task descriptions that have some set of effects, as they are typically used
in means-ends analysis planners.
Like goal specifications, plan task descriptions also include a human readable
description. Some AI planners specify this information as a set of parameters of the
task that are used to determine which subset of arguments will be printed when the plan
is displayed.
Planning levels can be associated to task descriptions as well as to goal specifications.
Some AI planners assign levels to tasks (e.g.,SIPE), others assign levels to particular
predicates or goals (e.g., ABSTRIPS). Levels are also used in real-world domains, for
example military plans are often described in different levels according to the command
structure, echelons, or nature of the tasks.

46

3.2.4. PLANS

A plan represents a set of commitments to actions taken by an agent in order to achieve
some specified goals. We define the following subclasses of plans: A feasible plan P is
one for which there exists some plan that has a consistent superset of the commitments in
P and will successfully achieve the goals. A justified plan is a feasible plan with a
minimal set of commitments. A consistent plan is one whose commitments are
consistent with each other, with what is known about the state and with the model of
action. A complete plan is one that includes the tasks necessary to achieve the goals to
the required level of detail (this depends on the planning agent's concerns). These
definitions are useful to describe properties of plans and to accommodate different
approaches that planners use. For example, we can represent that a hierarchical planner
generates a feasible plan at each planning level, and a complete plan only at the lowest
level. A partial-order planner, such as UCPOP, successively refines feasible plans until
finding a solution which is a complete plan. There is no requirement for a plan to be
justified or consistent in order for it to be represented in PLANET. This allows us to
represent not only machine-generated plans but also human-generated plans, which are
likely to contain errors.
It can be useful to state that a plan forms a sub-plan of another one. For example,
military plans often include subplans that represent the movement of assets to the area of
operations (i.e., logistics tasks), and subplans that group the operations themselves (i.e.,
force application tasks).

3.2.5. CHOICE POINTS, ALTERNATIVES, DECISIONS, AND COMMITMENTS

In searching or designing a plan, a number of choices typically need to be made. At a
given choice point, several alternatives may be considered, and one (or more) chosen as
selected. Such choices are represented in PLANET as a type of commitment.
Commitments can be made in both plans and tasks. Plan commitments are
commitments on the plan as a whole, and may be in the form of actions at variousl
detailed levels of specification, orderings among actions and other requirements on a
plan such as a cost profile. The tasks that will form part of the plan are represented as a
subset of the commitments made by the plan. Task commitments are commitments that
affect individual tasks or pairs of tasks. An ordering commitment is a relation between
tasks such as (before A B). A temporal commitment is a commitment on a task with
respect to time, such as (before ?task ?time-stamp). Another kind of commitment is the
selection of a plan task description because it accomplishes a goal specification. This
relation records the intent of the planning agent for the task, and is used in PLANET to
represent causal links.

3.2.6. DISCUSSION

47

PLANET does not include representations for some entities that are typically associated
with planning domains, e.g. agents, resources, time, and location. Different systems that
reason about plans use different approaches to represent and reason about these entities.
Separate ontologies for them can be developed and integrated with PLANET. We use
PLANET in combination with an ontology of Allen's time relations and the OZONE
resource ontology, and in combination with an ontology of plan evaluations and
critiques that we have developed. For systems and domains where there is no need for
complex representations of agents, resources, time, and location, it is trivial to extend
PLANET with simple representations of them and we have done so ourselves for some
of the domains described below.

3.2.7 Using PLANET for Real-World Domains

This section describes how we used PLANET to represent plans in three different
domains. Although all three are military domains, the plans are of a radically different
nature in each case. In the first two domains, plans were built manually by users and
needed to be represented as given, containing potential flaws and often serious errors.
In the JFACC domain, plans are hierarchically decomposed and have verb-based
objectives. Information about causal links and task decomposition templates is not
provided. In the COA domain, plans have a hierarchical flavor that is not alway
explicitly represented in the plan. In the Workarounds domain, plans were generated
automatically by an AI planner. This section describes the domains in more detail.

3.2.7.1 PLANET-JFACC

This is a domain of air campaign planning where users follow the strategies-to-tasks
methodology. In this approach, users start with high-level objectives and decompose
them into subobjectives all the way down to the missions to be flown. Using a plan
editing tool, a user defines objectives, decomposes them into subobjectives, and can
specify temporal orderings among plan steps. Some subobjectives may be handed to an
automated planner to be fleshed out to lower levels. The rest of this discussion will
focus on the representation of these manually created plans.
Figure 2 shows an excerpt of an air campaign plan as it would be specified by a domain
expert, indicating the hierarchical decomposition through indentation. Options (marked
with stars) indicate disjunctive branches of the plan that are explored as alternatives.
The bottom of the figure shows how a user can specify an objective.

beginminipage3.5inOI: Eliminate enemy SSM ihrcal to US allies by D+5
* Option I: Destroy all known enemy SSM launchers and launch facilities by D+5

Olli: Destroy fixed enemy SSM launch siics by D+5

48

01111: Destroy [ihem] on NW area using precision weapons
♦Option 1: Destroy |lhem] using stealth aircraft
0 111111: Deslroy [them) using Fl 17 with GBU-27
*Option2: Destroy [them] using SEAD aircraft

0112: Destroy storage facilities for SSM equipment by D+5
*Option2: Disrupt and disable the enemy C2 infrastructure for SSM

02: Airlift wounded and civilian non-combatants by D+2
Objective ID: 0-152 Level: AO Phase: II Parents: 0-98, 0-61

Statement: Maintain air superiority over NW sector
Sequence restrictions: Before 0-138, Before 0-124

endminipage

Figure 2: An excerpt of an air campaign plan and the specification of an objective.

We represent Air campaign plans as a subclass of the class plan. These manuall
created plans do not capture well the rationale behind the objective decompositions. For
example, users do not indicate causal links, i.e., which effects enable the conditions
needed by other tasks. Nor do they indicate the intended plan tasks and instead capture
only the goals that these tasks are supposed to accomplish.
Air campaign objectives are verb-based statements, so we represent them as a subclass
of objective-based goal specifications. Some of their clauses are turned into constraints
on the goal, including temporal constraints (within 21 days), geographical constraints {in
Western Region), and resource constraints (using B-52s from airbase XYZ). Each
objective may have several children and several parents (unlike plans generated b
hierarchical AI planners where there is only one parent).Options indicate alternative
ways to decompose an objective, and are represented as a specialization of alternative
plans.
The decomposition hierarchy is divided into levels, including low-level air tasks and
other higher-level air objectives. Objectives belong to one phase of the campaign (e.g.,
deployment phase, operations phase, redeployment phase, etc.), which we represent b
grouping objectives into subplans. Each objective also belongs to an air campaign
objective level in the decomposition hierarchy (e.g., air tasks are considered to be at a
higher level than air activities), which we define as subclasses of planning level.
In this domain, human planners create air campaign plans in the context of an overall
military campaign and the specific guidance provided by the Joint Forces Air
Component Commander (JFACC). We define JFACC-context as a subclass of planning
problem context, and attach to it information such as the available resources specified in
the Air Order of Battle, the capabilities of the airbases in the theater of operations, and
the commander's guidance. This guidance includes the top level objectives of the plan as
well as rules of engagement, e.g., not to fly over certain areas, which become constraints
of the planning problem.

3.2.7.2. PLANET-COA

This is a Course of Action (COA) analysis problem in a military domain of relevance to
the DARPA High Performance Knowledge Bases Program. We developed a critiquing
tool that finds flaws in manually developed COAs for Army operations at the division
level. A COA is specified by a user as a set of textual statements (who does what, when,
where, and why), together with a sketch drawn over a map. The PLANET-COA ontology

49

allows us to represent the COA that results from joining both text and sketch, which is
the input to our critiquing tool. An example of part of a COA textual statement follows:
On H hour D day, a mechanized division attacks to seize OBJ SLAM to protect the northern flank of the corps main effort. A
mechanized brigade attacks in the north, as an economy of force, to fix enemy forces in zone denying them the ability to interfere
with the main effort's attack in the south. A lank heavy brigade, the main effort, passes through the southern mechanized brigade and
attacks to seize the terrain vicinity of OBJ SLAM denying the enemy access to the terrain southwest of RIVER TOWN. [...]

A typical COA includes the overall mission and a set of tasks that need to be performed
divided into five categories: close, reserve, security, deep and rear (not shown here).
The close statements always contains a main effort for the COA and a set of supporting
efforts. In our representation, the mission defines two important features of the plan: its
top-level goal (e.g., protect the northern flank of the corps main effort), and an indication
of the top-level task to be used to accomplish that goal (e.g., attack to seize OBJ SLAM).
We define COA problem as a subclass of planning-problem, make its problem goal the
top-level goal indicated in the mission statement, and add the rest of the mission
statement as a constraint on how to select tasks in the plan. The five task categories are
represented as sub-plans (they are not subtasks or subgoals but useful categories to group
the unit's activities). Each sentence in the statement is turned into a plan task as follows.
There is a specification of who is doing the task, e.g., a mechanized brigade, which is
represented as the agent of the plan-task. There is an indication of what is to be done,
e.g., attacks to fix enemy forces, which is interpreted as a fix plan-task (where fix is a
kind of task that is a subclass of the class attack). The why (orpurpose) e.g., to deny
enemy forces the ability to interfere with the COA's main effort can be a state-based
("enable P", "prevent P") or action-based ("protect another unit from enemy").
Therefore, the ontology defines the purpose of a COA task as a goal specification that
can be either an effect or a capability of the plan-task. The where, e.g., in the North is
the location of the plan task. The when clause (e.g., H hour D day) is represented as a
temporal commitment or as an ordering commitment if it is specified with respect to
another task. Finally, the main effort and supporting efforts are defined as
specializations of the subtask relation.
The PLANET ontology also represents the context, assumptions, and situation in which
the plan is supposed to work in this domain. A COA is supposed to accomplish the
mission and other guidance provided by the commander, and to work in the context of
the given situation as analyzed by the commander's staff, which includes terrain
information and enemy characteristics. We define COA problem context as a subclass
of planning-problem-context, and define its scenario to be composed of commander
products and staff products. All COA problems are attached to this problem context.

3.2.7.3. PLANET-WORKAROUNDS

We developed a tool to aid in military target analysis by analyzing how an enemy force
may react to damage to a geographic feature (e.g., a bridge or a tunnel) The possible
workarounds include using alternative routes, repairing the damage, or breaching using
engineering techniques such as installing a temporary bridge. Because the purpose of
damaging the target is typically to delay the movement of some enemy unit or supply, it
is important to estimate how long the implementation of the workaround will take. Note
that this depends on what actions can be performed in parallel. The system was also

50

designed to show not one possible workaround plan but several options that the enem
may take. An example workaround is shown in Figure 2

be ginminipage3in OPTION B: Use Medium Girder Bridge (MGB) bridge
Minimum delay to enemy: 10 hrs

Transportalion lime: 4.5 hrs
Engineering time: 3.5 hrs

Required Assets:
- MGB of Engineering Company 201 (double story, 11 bays)

- Bulldozer of Engineering Company 201
Substcp: Move MGB lo bridge site (Time: 4.5 hours)

• Ordering: Before assemble MGB
Subslep: Asse blc MGB (Time: 1.8 hours)

- Technique: Double story, 11 buys
- Ordering: Before emplace MGB

Substcp: Emplace MGB (Time: 0.5 hours)
- Ordering: Before Move unit across MGB

Subslep: Move unit across MGB (Time: 2 hours)

endminipage

Figure 8: An example portion of a workaround plan.

We divided the problem in two. First, we used the AI planner Prodigy to generate a
workarounds plan. We added information to the operators about the resources used for
each step, and which resources are non-shareable. The planner then generated a partial
order of workaround steps, in which unordered steps can be completed in parallel.
Second we built a plan evaluation system to estimate the time that each step takes to
complete and calculate the overall duration based on the partial order. This is a
knowledg -based system that used several ontologies of engineering assets, units, and
workaround steps and plans.
PLANET did not exist when this workarounds plan ontology was first developed, so we
describe a reimplementation using PLANET. Actions are represented as primitive plan
steps. The ordering commitments and resources used are straightforward to represent in
PLANET. In the planner we subdivided the step parameters into those whose values
affected plan correctness and those that were only used to determine the length of the
plan after it was created. This distinction had not been captured in the original system.

3.2.8 Benefits of PLANET

There is not yet an agreed methodolog to evaluate the quality of ontologies and their
actual use in systems (they can be present in a KB but that does not tell us how much
they are actually used). They are often accepted to be useful purely on the basis of their
existence. We claim that PLANET can be (and already has been) useful in knowledge
reuse, modelling and sharing. This section presents some estimates that show the reuse
of PLANET in the three domains discussed in this paper and describes the benefits of
using it as a modelling tool in the COA domain 5.

3.2.8.1 COVERAGE AND KNOWLEDGE REUSE

We wanted to measure the amount of reuse of the general PLANET ontology in each
specific domain. Here we present estimates of reuse in creating new terms, since we are

5PLANET did not exist when we worked on the JFACC and workarounds domains.

51

interested in understanding the generality and coverage of PLANET. To do this, we
estimated how many axioms of PLANET were actually used in each domain, and how
many new axioms were needed.
It is important to factor out domain definitions that are part of what is often described as
populating the knowledge base, or knowledge basestuffing. For example, there may be
fifty or five hundred possible tasks in a domain that share the same basic structure but
this should not distort a measure of how reusable a general-purpose ontology is. For
this evaluation we take these definitions out of the domain-specific ontologies and leave
only those definitions that specified the basic structure of the plans. We estimated the
size of each ontology by counting its axioms. We considered an axiom to be an
statement about the world, including is a predicates, class constraints, and role
constraints. We make strong use of inheritance among classes, so axioms are only stated
and thus counted once.
We counted the concepts in each domain that were subconcepts of a concept in the
PLANET ontology, to measure of the coverage of the domain that the ontolog
provided. We estimated how many axioms of thePLANET ontology were actually used
in each domain by computing the "upward closure" of the definitions in the domain
ontologies. The results are as shown in Table 1 Coverage is high: on average, 82% of
the concepts defined in each domain are subconcepts of concepts in PLANET. However,
the proportion of the ontology used by each domain is much lower, averaging 31 % of the
axioms. This is not surprising. First, PLANET covers a range of planning styles,
including actions with preconditions and effects and decomposition patterns, but none of
the domains has all of these. Second, PLANETcan represent incremental decisions of
planners, including commitments and untried alternatives, but the domains onl
represented complete plans. In general we do not expect a single domain to use a high
proportion of the ontology.

Domain Axioms Concepts Reis Covered concept Coverage

Planet 305 26 37

COA
COAu.c.

267
106

58
7

37
12

39 67%
35%

JFACC 102
JFACC u.c. 86

15 12 12 80%
28%

WA
WA u.c. 91

100 13 10 13 100%
12 30%

Table 1: Estimates of reuse of the PLANET ontology.

There are various other ways to reuse knowledge. One can measure the reuse of
ontologies by estimating how many terms are used during problem solving or reasoning.
An informal analysis of the JFACC and Workarounds domains (the problem solvers for
the COA domain were under development) showed that most (if not all) the new
definitions would be used during problem solving, but this should be determined
empirically. The ontology is also reused in modelling a new domain. Even if a term is
not used in the new system, it may still have been used to understand how to model
certain aspects of the domain as we discuss next.

52

3.2.8.2 KNOWLEDGE MODELLING

We had developed an initial model of the COA domain without usingPLANET, and it
changed significantly once we created the COAdefinitions using the PLANET
definitions. Here are some examples.PLANET was useful in modelling the
close/security/etc. categories. At first, they appeared to be subtasks of the COA, but we
realized that the individual statements are the real subtasks in this domain, and these
categories are meaningful groupings of the statements that are helpful to human
planners. As a result we represented them as subplans.PLANET gave similar support for
representing the main and supporting efforts which turn out to be subtasks instead of
subplans. It also helped us understand how to interpret the mission statement, and its
relationship with the COA main effort. The mission statement specifies top-level goals
and constraints for the top-level task as we explain above.

3.3 Related Work

In creating PLANET, we have drawn from previous work on languages to represent
plans and planning knowledge. These languages are often constrained by the reasoning
capabilities that can be provided in practice by AI planning systems. Since PLANETis
an ontology, it does not make specific commitments about the language in which various
items are expressed. The planning knowledge represented in these languages can be
mapped into PLANET. PLANET also accommodates plans that were not created by A
planning systems, and provides a representation for the context of the planning
problems that are given to these systems.
SPAR is an ongoing effort to create a standard vocabulary to describe plans that is
compatible with other standards, such as the Process Interchange Format (PIF). SPAR
currently comprises a set of textual statements that will be used to develop the model.
CPR was developed as an overarching plan representation across various militar
domains. These efforts are aimed at plan representations of a more general nature, and
cover aspects of plan execution. However, as a result of their generality they would
require many more extensions than PLANET to represent the domains discussed in this
paper.

Related work on problem-solving methods for planning analyzes AI planning
algorithms (or planning methods) and identifies the typical knowledge roles that
characterize the main types of domain knowledge used by these planning methods. The
main knowledge roles in this study map directly to classes in PLANET. PLANET adds
many more relations between the roles and contains many more classes and axioms.
PLANET was also designed from the perspective of planning environments where plans
are manually created (instead of representing only plans of AI planning systems), and as
a result can also represent the errors and flaws that these plans often contain. It would be
useful to add to PLANET the static vs dynamic distinctions contributed by this study.

53

4. Deriving Expectations to Guide Knowledge Base
Creation

Successful approaches to developing knowledge acquisition tools use expectations
of what the user has to add or may want to add, based on how new knowledge fits within
a knowledge base that already exists. When a knowledge base is first created or
undergoes significant extensions and changes, these tools cannot provide much support.
This chapter presents an approach to creating expectations when a new knowledge base
is built, and describes a knowledge acquisition tool that we implemented using this
approach that supports users in creating problem -solving knowledge. As the knowledge
base grows, the knowledge acquisition tool derives more frequent and more reliable
expectations that result from enforcing constraints in the knowledge representation
system, looking for missing pieces of knowledge in the knowledge base, and working
out incrementally the inter -dependencies among the different components of the
knowled e base. Our preliminary evaluations show a thirty percent time savings during
knowledge acquisition. Moreover, by providing tools to support the initial phases of
knowledge base development, many mistakes are detected early on and even avoided
altogether. We believe that our approach contributes to improving the quality of the
knowledge acquisition process and of the resulting knowledge-based systems as well.

4.1. INTRODUCTION

Knowledge acquisition (KA) is recognized as an important research are a for
making knowledge -based AI succeed in practice. An approach that has been ver
effective to develop tools that acquire knowledge from users is to use expectations of
what users have to add or may want to add next. Most of these expectations are derived
from the inter-dependencies among the components in a knowledge-base system (KBS)
and Protege-H use dependencies between factual knowledge and problem -solving
methods to find related pieces of knowledge in their KBS and create expectations fro m
them. To give an example of these expectations, suppose that the user is building a KBS
for a configuration task that finds constraint violations and then applies fixes to them.
When the user defines a new constraint, the KA tool has the expectation that the user
should specify possible fixes for cases where the constraint is violated, and helps the user
do so. These tools can successfully build expectations because there is already a body of
knowledge where the new knowledge added by the user must fit in. In the configuration
example, there would be problem solving knowledge about how to solve configuration
tasks (how to describe a configuration, what is a constraint, what is the relation between
a constraint and a fix, how to apply a fix, e tc.) However, when a new knowledge base
(KB) is created (or when an existing one is significantly extended) there is little or no
pre-existing knowledge in the system to draw from. How can a KA tool support the user
in creating a large body of new knowledge? Are there any sources of expectations that
the KA tool can exploit

54

This chapter describes our approach to developing KA tools that derive expectations
from the KB in order to guide users during KB creation. Through an analysis of the KB
creation task, we were able to detect several sources for such expectations. The
expectations result from enforcing constraints in the knowledge representation system,
looking for missing pieces of knowledge in the KB, and working out incrementally the
inter-dependencies among the different components of the KB. As the user defines new
KB elements(i.e., new concepts, new relations, new problem-solving knowledge), the KA
tool can form increasingly more frequent and more reliable expectations. We
implemented a KA tool called EMeD that uses these sources of expectations to support
users in adding problem -solving knowledge. Our preliminary evaluation shows an
average time savings of 30% to enter the new knowledge. We believe it will be even
higher for users who are not experienced knowledge engineers.
The chapter begins by describing why KB creation is hard. Then we present our
approach, and describe the KA tool that we implemented. Finally, we show the results
from our experiments with several subjects, and discuss our conclusions and directions
for future work.

4.2. Creating Knowledge Bases

There are several reasons why creating a knowledge base is hard:
• Developers have to design and create a large number of KB elements. KB

developers have to turn models and abstractions about a task domain into
individual KB elements. When they are creating an individual KB element, it is
hard to remember the details of all the definitions that have already been created.
It is also hard to anticipate all the details of the definitions that remain to be
worked out and implemented. As a result, many of these KB elements are not
completely flawless from the beginning, and they tend to generate lots of errors
that have unforeseen side effects. Also, until a KB element is debugged and
freed from these errors, the expectations created from it may not be ver
reliable.

There are many missing pieces of knowledge at a given time. Even if the
developers understand the domain very well, it is hard to picture how all the
knowledge should be expressed correctly. As some part of the knowledge is
represented, there will be many missing pieces that should be completed. It is
hard for KB developers to keep track of what pieces are still missing, and to take
them into account as they are creating new elements.

It is hard to predict what pieces of knowledge are related and how. Since
there is not a working system yet, many of the relationships between the
individual pieces are in the mind of the KB developer and have not been
captured or correctly expressed in the KB.

55

• There can be many inconsistencies among related KB elements that are
newly defined. It is hard for KB developers to detect all the possible conflicts
among the definitions that they create. Often times they are detected through the
painful process of trying to run the system and watching it not work at all. The
debugging is done through an iterative process of running the system, failing,
staring at various traces to see what is happening, and finally finding the cause
for the problem.

As intelligent systems operate in real -world, large-scale knowledge intensive domains,
these problems are compounded. As new technology enables the creation of knowledge
bases with thousands and millions of axioms, KB developers will be faced an
increasingly more unmanageable and perhaps impossible task. Consider an example
from our experience with a Workarounds domain selected by DARPA as one of the
challenge problems of the High-Performance Knowledge Bases program that
investigates the developmen t of large-scale knowledge based systems. The task is to
estimate the delay caused to enemy forces when an obstacle is targeted by reasoning
about how they could bypass, breach or improve the obstacle. After several large
ontologies of terms relevant t o battlespace reasoning were built (military units,
engineering assets, transport vehicles, etc.), we faced the task of creating the problem
solving knowledge base that used all those terms and facts to actually estimate the
workaround time. We built eighty-four problem-solving methods from scratch on top of
several thousand defined concepts, and it took two intense months to put together all the
pieces. Figure 1 shows some examples of our methods. Each method has a capability
that describes what goals it can achieve, a method body that specifies the procedure to
achieve that capability (including invoking subgoals to be resolved with other methods,
retrieving values of roles, and combining results through control constructs such as
conditional expressions), and a result type that specifies the kind of result that the bod
is expected to return (more details of their syntax are discussed below). Creating each
method so that it would use appropriate terms from ontologies was our first challenge .
Once created, it was hard to understand how the methods were related to each other,
especially when these interdependencies result from the definitions in the ontologies.
Despite the modular, hierarchical design of our system, small errors and local
inconsistencies tend to blend together to produce inexplicable results making it very hard
to find and to fix the source of the problems. Although some portions of the knowledge
base could be examined locally by testing subproblems, we often found oursel ves
working all the way back to our own documentation and notes to understand what was
happening in the system.

56

(define-method Ml
(documentation "In order to estimate the time that it takes to narrow a gap with a bulldozer,
combine the total dirt volume to be moved and the standard earthmoving rate.")

(capability (estmate (obj)?t is (spec-of time))))
(for (?s is (inst-of narrow-gap)))))

(result-type (inst-of number))
(body (divide (obj (find (obj (spec-of-dirt-volume))

(for ?s))))
(by (find (obj (spec-of standard-bulldozing-rate))

(for ?s))))))

(define-method M2
(documentation "the amount of dirt that needs to be moved in any workaround step that involves
moving dirt (such as narrowing a gap with a bulldozer) is the value of the role earth-volume for
that step.")

(capability (find (obj (?v is (spec-of dirt-volume))))
(for(?s is (inst-of bulldoze-region))))))

(result-type (inst-of number))
(body (earth-volume ?s)))

(define-method M3
(documentation "The standard bulldozing rate for a workaround step that involves earthmoving is
the combined bulldozing rate of the dozers specified as dozer-of of the step.")

(capability (find (obj (?r is (spec-of standard-bulldozing-rate)))
(for (?s is (inst-of bulldoze-region))))))

(result-type (inst-of number))
(body (find (obj (spec-of standard-bulldozing-rate))

(of (dozer-of ?s))))

Figure 1: Methods in a simplified workaround generation domain.

In summary, it is hard for KB developers to keep in mind all the definitions that the
create and to work out their interdependencies correctly. KB developers generate and
resolve many errors while they build a large body of knowledge. Our goal is to develop
KA too Is that help users resolve these errors and, more importantly, help them avoid
making the errors in the first place.

4.3. Approach

We identified several sources of expectations that KA tools can exploit in order to guide
users in creating a new knowledge base. We explain our approach in terms of the
problems and examples described in the previous section.

• Difficulty in designing and creating many KB elements RightarrowGuide the
users to avoid errors and look up related KB elements.

57

First, each time a KB element is created by a user, we can check the
dependencies within the element and find any potential errors based on the given
representation language. For example, when undefined variables are used in
method body, this will create an expectation that the user needs to define them in
the method.
In our example, Method Ml has two variables, ?t and ?s, defined in its
capability, and if the method body uses a different variable, the system can send
a warning message to the user. Likewise, if a concept definition says that a role
can have at most one value but also at least two values, then this local
inconsistency can be brought up. By isolating these local errors and filtering
them out earlier in the KB development process, we can preven t them from
propagating to other elements in the system.
However small the current KB is, if there are KB elements that could bes'imilar
to the one being built, then they can be looked up to develop expectations on the
form of new KB element. For example, developers may want to find existing
KB elements that are related with particular terms or concepts based on the
underlying ontology. If there is a concept hierarchy, it will be possible to
retrieve KB elements that refer to superconcepts, subconcepts, or given concepts
and let the user develop expectations on the current KB element based on related
KB elements. For example, if a developer wants to find all the methods related
to moving earth, the system can find the above methods, because narrow -gap
and bulldoze-region are subtypes of move-earth. When the user adds a new
method about moving earth to fill a crater, then it may be useful to take them
into account. Specifically, Ml can generate expectations on how a method for
estimating time to fill a crater should be built.

Many pieces of knowledge are missing at a given time: RightarrowCompute
surface relationships among KB elements to find incomplete pieces and create
expectations from them
The KA tool can predict relationships among the methods based on what the
capability of a method can achieve and the subgoals in the bodies of other
methods. For example, given the three methods in Figure 1, method Ml can use
M2 and M3 for its two subgoals — find dirt volume and find bulldozing rate.
These relationships can create method-submethod trees that are useful to predict
how methods will be used in problem solving. In the process of building this
kind of structure, the system can expose missing pieces in putting the methods
together. For example, unmatched subgoalscan be listed by collecting all the
subgoals in a method that cannot be achieved by any of the already defined
methods. The user will be reminded to define the missing methods and shown
the subgoals that they are supposed to match. In Figure 1, if a method for the
subgoal of method M3 to find the standard bulldozing rate of given dozer is not
defined yet, the user is asked to define one and may create one that only works
for military dozer or any dozer in general.
Similarly, if a concept is used in a KB e lement definition but not defined yet,
then the system will detect the undefined concept. Instead of simply rejecting

58

such definition, if the developer still wants to use the term, the KA tool can
collect undefined concepts and create an expectation th at the developer (or other
KB developers) will define the term later.

Difficulty in predicting what pieces of knowledge are related and how
Rightarrow Use surface relationships to find unused KB elements and propose
potential uses of the. elements
The above surface relationships among KB elements, such as method-submethod
relationship can also help detect unused KB elements. If a method is not used b
any other methods, then it can be collected into an unused method list. In
addition to finding such unused methods, the KA tool can propose potential uses
of it. For example, if the capability of a method is similar to one of the
unmatched subgoals (e.g., same goal name and similar parameter types), then a
potential user of the method will be the method that has the unmatched goal.
In the same way, concepts created but not referred to in any other definitions can
be collected into an unused concept list. The KA tool can develop expectations
of KB elements that will use the definitions or perhaps even deleting these
concepts if they end up being unnecessary.

Inconsistencies among newly defined KB elements Rightarrow Help users find
them early and propose fixes
The KA tool can check if the user-defined result type of a method is inconsistent
with what the method body returns based on the results of the subgoals. If there
are inconsistent definitions, the system will develop an expectation that user has
to modify either the current method or the methods that achieve the subgoals.
Also, for concept definitions, there can be cases where a user wants to retrieve a
role value of a concept, but the role is not defined for the concept. In addition to
simply detecting such a problem, the system may propose to define the role for
the concept or to change the method to refer to a different but related concept
that does have that role.

59

Q Method List * . l/>Vr I.IrM«:*
Choc*lr.I

defioe mithörte i
ssble

a v U5«rr Oiiincd HdlioJ

(capability (est.mate ,,.„,,,
(obj(t " (tp€C-of 1"">»'" (,„iiHt~:J
(for (>, H <in,t-o. n«T,w-^ip-v-.th-bulld^?

» . .,
(result-type (ir»<-o<"umbe,,>
(method (divide

(obj((i»d
(obi ho«-ol dirt-volume))
((w M

" ,:■-• —

' <öbi(spoc-ol s(an()ard-bull<I07in9-TJtc);c-;;i3v-, ,rt»l'9»i'i<« "

«of >i) ;A], •;•.--■-•----.—-••::
» ^'-1 ' : create label

" &M'-~-J—■- -■——-
«„ameget •Star,dard-tu.ldo,in,-rale> #| ■ ' C^«"««

("Pab""Ät i, (specif standard-bulldog-^
((or (»> is (inst-ol bulldoze-region») ijjj

yrnefalaspo

.1.1 bod

'■:!... i

)>
(xesijtt-type (inst-of number»

<r"'h0?oMs<,p<.c-<»(!(and,rd-bUlldo,infJ-ra<«))

(o((do?er-of ?s»
»

)
«nam« 5«t-dirt-Tfe>lu«T<«)
Capability ((Ind ■

(obi <?» h (spe<-«' dlrl-volume)»
(for (?s Is (inst-of move-earth-stutl)»

(result-type (Inst-of number))
(method («arth-vdume ?a))

Taste After-.

r*;H . , , Paste Into .

;r4 - 'Add fiewrrietligd

:Copy«'nd. Create.'

:: Modify wrihbd

Delrte method

; .'.Sbowr trrori ,,

K«l»md method

ID

rEXelCI -ma3=ag£—-.'. .. . J ; :": ___ _. ■ '_ ■__ _ _

I" LOCAL ERROfl" In the mh»l «> «^ «^ d"" ",'ur™ b' * «""•'•
• Ediljog Proo?«ed"

Figure 2: EMeD Interface (Editor).

Finally, once the KA tool indicates that there are no errors, inconsistencies, or missing
knowledge, the user can run the inference engine, exposing additional errors in solving a
given problem or subproblems. The errors are caused by particular interdependencies
among KB elements that arise in specific contexts. If most of the errors are detected b
the above analyses, users should see significantly fewer errors at this stage.

Notice that as the KB is more complete and more error-free it becomes a stronger basis
for the KA tool in creating expectations to guide the user.

4.4. EMeD: Expect Method Developer

We have concentrated our initial effort in developing a KA tool that uses these kinds of
expectations to support users to develop problem solving methods. We built a KA tool
called EMeD (EXPECT Method Developer) for the EXPECT framework for knowledge-
based systems.

60

1 ~^71uM»^S«b-Me<h<«l K«lalroQj'-^>;S M^^ft^i'^ti;"^»'' ^

i^ Method list
((name ge<-standard-bulldo7ing-r*«e)
(capability (find , . „. . . ,„

(obj pr K (spec-of standard-bulldrwino-rate)))
(for Ps H Onsl-of bulldoje-feoion)))
))

lrelult-rype(inst-of number))
(method (find

(obj (spec-of standard-buUdonng-rate))
(of (do? er-of ?s»
))

)
((name gel-dirt-volume)
(capability (find

(obj (?v K (spe<-of dirl-volume)))
(for (*s is (inst-of move-eartri-stuff)))
))

(result-type (inst-of number))
(method (earth^olume ?s)>

)
((name eitlroate-Ilme-to-namiw-gap)
(capability (estimate

(objpl rsdpec-of time»)
(lor (»5 is (inst-of narrow -gap-wilh-bulldozer)»
))

(result-type (inst-of number))
(method (divide

(obi (find
(obj (spec-of dirt-volume))
(for ?s)
»

(by (find
(obi (sppc-of standard-bülldo!in<9-rate))
(lor >i>

_..))
■ v • - -';"•:'■ V j"!~^SearcJi on itrtog Match'.- j -

:„r;„|; [r^P^S^ZZZZTj:^
_ } methods with Subsatnets; .']

1@

I-.

Figure 3: Search Methods in EMeD.

An EXPECT knowledge base is composed of factual knowledge and of problem-solving
knowledge. The factual knowledge includes concepts, relations, and instances in Loom
(Macgregor 1990), a knowledge representation system of the KL -one family. The
problem-solving knowledge is represented as a set of problem-solving methods such as
those shown in Figure 2. As described earlier, each method has a capability, a result
type, and a method body. Within the capability and body sections, each goal is
expressed as a goal name followed by a set of parameters. Also, each parameter consists

of a parameter name and a type.
Table 2 shows the method editor in the EMeD user interface. There is a list of current
methods and buttons for editing meth ods. Users can add, delete, or modify the methods
using these buttons. (Other buttons and windows will be explained later.) Users often
create new methods that are similar to existing ones so the tool has a copy/edit facility.
Every time a new method is defined, the method is checked for possible parsing errors
based on the method representation language. If there are interdependencies among the
subparts of a method, they are also used in detecting errors. For example, if a variable is
used but not defined for the method, the same variable is defined more than once, or
there are unused variables, the system will produce warning messages. Also, if there
were terms (concepts, relations, or instances) used in a method but not defined in the
KB yet, error messages will be sent to the developer. When the term definition is
obvious, as the verbs used in capabilities, a definition will be proposed by the tool. In
Figure 2, the small panel in the bottom left corner with the label "EXPECT message"
displays these errors. Using this method definition checker, users can detect the local
errors earlier, separating them from other types of errors.

61

Users can find existing methods related with particular terms in concepts, relations or
instances through the oom ontology. The KA tool can retrieve methods that refer to
subconcepts, superconcepts, or a given concept and let the user create new methods
based on related methods. Figure 3 shows the result from retrieving methods about
moving earth. The system was able to find all the methods in Figure 1, because narrow-
gap and bulldoze-region are subconcepts of move-earth.

rS^wfs^MtfA^ ^*!'**li*"^

ClotbiUtr (**!•«»■* <°bi(n n <»p«.(-ollinw»> ((•*(?* U (mrt-.f njrr<»--gip-«itl.-butWo/f-r))))
tety. (di.id. (obi (find (oti<>i»<^l d.l-^olui~» (I« ?>>» (b, (find (obi <5»«-°(«andi.d-bulldoj.n.,-
(■p«U?d-«rtult ftnil-of numM
«.riufc-obntnrd finvt-wf numbcO

lolxiolt ((DlVlCX (CXI (l«I-0< N0MKF»(By(l>l5r-O(NUM«f«)l)(P«T-0[HUH« 10)
,ubq«il K""D «Ml 6KC-OI iT»NO»«0-«UllOOZIMC-»AII» «OR (IMiT-OI MA«ROU~CAP-vtTK-eUlU>
lut4oil KflNO<0«IB>f C-OI OI«I-VOlUMt»(fO«(IKST-OI »(««ROU-CAP-VlTH-JlJlUXlZt «)) (IMS1-OI

)
INB *i«V

Capability W hrfd« <ob(('"' *
Body: (primilivf-divid«-!,
t»p*ctFd-Br^u(t Oiot-of numbtil
K. tob Ob' »in«Tj (in%t -ol Htmhri

)
I

. (imt-»f •«m»^r»»(Vv(?«2 'S Cio5t-o(»umbtrl»)

«lu •«t-dlrt-
(.ptbllhr (Hod (ob/(r* Is (spec-of dlrt-»olu
go^y (BarlS-^olom* ?l>
l.po<lsd-R*tult (iml^l numb«)
F,*.Dh-Oht;>inr-l fin*l-o(o>imt«')

*lll (tor (TS hdnll^l n vv-eartb-xtBini»

I
■ e<-«l3<»dlrt-buMdoHno-^««
(Mod (obi (fr If ftp««-of rtandvd-bMlMotlno.-rate)» (fo* (Is bt (last-ol builder*-.

 - ' -ilHo* (do7e'-of ?aW opjblihr ...
Body (find (ob| (5D*C-^l ltind»d-bUHd<»l.io
t.p»<1ad-"aitilt (Imt^J* «umbri

'ri«"''"*!»«!«««! <,TAND.»D-HUUDOZI»C-«»m) (Of «1« niin-KV-OOZC Mil U«OC F

Figure 4: A Method Sub-method Relation Tree.

Figure 4 shows relationships among methods based on how the subgoals of a method can
be achieved by other methods. The trees built from this are called method sub-method
relation trees. There can be multiple trees growing in the process of building a number
of methods when they are not fully connected. These method-relation t rees are
incomplete problem-solving trees to achieve some intermediate subgoal. The (sub)trees
should be eventually put together to build a problem-solving tree for the whole problem.
For example, given these three methods, the system can build a metho d-relation tree, as
shown in Figure 4.
Method sub-method relation trees can be used to detect undefined methodsbased on the
subgoals in a method that are not achieved by any existing methods. These can be
collected and users can be informed of them. If th ere are constraints imposed on the
methods to be built, such as the expectations coming from the methods that invoke them,
then these can be also incorporated. For example, the method to find the standard
bulldozing rate of a step calls a subgoal to fi nd the standard bulldozing rate of a given
dozer, which is undefined yet. Since the result type of the given method is a number, the
system can expect (through an interdependency analysis) the same result type for the
undefined method. Figure 5 (bottom window) shows the capability that the tool proposes

62

— a method to find standard bulldozing rate of a for the currently undefined method
given military dozer.
In the process of building this method -relation tree, there can be subgoals whose
parameters are not fully specified because their arguments are subgoals that are not
achieved by any of existing methods. For example, given the method to estimate the time
to narrow gap (the first method in Figure 1) only (i.e., if M2 and M3 were missing), its
subgoal 'divide' has two parameters with parameter names 'obj' and 'by'. Because the
arguments to divide are the subgoals 'find dirt -volume of the step' and 'find standard -
bulldozing-rate for the step' whose methods would be undefined, the tool could not full
state the goal. This would be represented as 'divide (obj UNDEFINED) (b
UNDEFINED)'. However, one of the built-in methods in EXPECT has capability of
'divide (obj Number) (by Number)', and the tool creates a link between this and the
subgoal as a potential inter dependency. Users can use this hint to make the potential
interdependency a real one or create other appropriate methods.

'Tl^dellnrd Metbods 'Search MrlhorflT-AII Agfod.}-_j_^ ;_^^_^i__ ._■;...

r a !° «TC« : (estimate (obj «pec-of li~e» (for <any-ol thins»)
! »,S«TCM : (estimate (obj<spe.c^l tiro.» «or (instil .hir.,»

e SYSTEM :<es.im,te<°bi<spec^Uime>>(.or(.r.st-cr.™rkaro,.nd^tepm
I ' CArAEUtTY: (estimate (obj (spec-ol lim,)) «er <ir,st-of „arrow-,.?—.tl.
J CAPAE,..-rv.(Jiv.dc(obi<in5t-.fn»n,bcr»(by<in5t-.f..mk,r)))

U - SYVtCM : (li„d(obM««c-.« «.ins» W.r<i.rt-«—»«-«»«"-*<«"»>
! i SYSTfM ■ (lind <obj<»p«c-.l thin»)) «Of <i«»t—fb»IMo«-r««.onW

* CAP«., .TV CI.Jl.bi lsr-«t «,-.--b..»«i-.—«» «" «'««-« *»
1 CAPAeiMTV.Uind lobi (SDr.-o! di^-volome» «or lin5t-of move^arth^tofl»)

jfa^fHö^a jftjth.»^SfarthWtbodsJ*I.A9end»}
Method Sub-Method «elation Method Capability Hierarchy;/. .';

["N ""«ilMo^Pe^. 5,a„dard-b.Udo,.n,-~.e» «o, (,«„(miirtary-dote,,»
tvo-cl-d fcesulUinit-;)! number)
Coal Callers.<9e<-«andard-bulldo;i..9-rate)

—1

Figure 5: A Capability Tree and Undefined Methods.

There are other relationships among problem-solving methods based on their capabilities
that the KA tool can exploit. For example, a hierarchy of the goals based on the
subsumption relations of their goal names and their arguments can be created. In the
hierarchy, if a goal is to build a mil itary bridge, and another goal is to build a kind of
military bridge, such as an AVLB, then the former subsumes the latter. This dependenc
among the goal descriptions of the methods (called capability tree) is useful in that it

63

allows the user to understand the kinds of sub-problems the current set of methods can
solve. To make their relationships more understandable, EMeD also computes potential
capabilities. For example if there are super -concepts defined for the parameters of a
capability, a capability with these concepts is created as a parent of the capability. The
capability tree for the given example methods is in Figure 5 (top window).
Finally, there are user -expected dependencies among the problem -solving methods,
which are usually represented in comments or by grouping of methods in the files where
they are built. They do not directly affect the system, but they often become the user's
own instrument to understand the structure of what they are building. Also, it can be the
user's own interpretation of additional interdependencies among methods. EMeD
provides a way of organizing methods into hierarchies and groups, and allows users to
provide documentation for the methods. In Figure 2, the "Move or Organize Methods"
buttons support these functions.
In addition, EMeD can use the expectations derived from running the problem solver,
detecting problems that arise while attempting to build a complete problem-solving tree.

4.5. Preliminary Evaluations

We performed a preliminary evalu ation of our approach by comparing the
performance of four subjects in two different KA tasks from a Workarounds domain.
Each subject did one of the tasks with EMeD and the other task using a version of EMeD
that only allowed them to edit methods (the b uttons to add, delete, or modify methods),
but did not have any additional support from EMeD. Before the experiment, each subject
was given a tutorial of the tools with simpler scenarios. The scenarios and tools were
used in different orders to reduce the influences from familiarity with tools or fatigue.
Each experiment took several hours, including the tutorial, and we took detailed
transcripts to record actions performed by the subjects. The subjects had some previous
experience in building EXPECT knowledge bases, but not with EMeD.

Results Total Time (min) Number of Methods
Added

Time/Method (min)

Without EMeD 218 25 8.72
With EMeD 24 6.38

Average time savings: 30 %

Table 1: Results from experiments with subjects.

Functionaliy Number of Times

Undefined Methods 23

Editor Error Message 17

Method Sub-method Relation Tree 7

Capability Tree 10

Search Method 1

Method Organizer 2

Problem Solving Agenda 5

Table 2: Number of times that the different components of EMeD were used.

64

In Table 1, the total time is computed by summing the times with each subject for each
tool. The time for each subject is the time to complete the given task (by creating a
successful problem-solving tree and eliminating errors). EMeD was able to reduce the
development time to 70% of the time that users needed without it. Subjects built a
comparable number of methods with the different tools. Note that the subjects were not
exposed to the EMeD environment before, but were very familiar with the EXPECT
framework. The time savings may be more if the subjects had more familiarity with
EMeD. We had multiple trial experiments with one of the subjects, with slightl
different tasks, and the subject had become more and more skillful, reducing the time per
each action. For these reasons, we expect that the time reduction with EMeD will be
larger in practice. Also note that there is a practical limit to the amount of time saved
using any KA tool. There is a significant amount of time that use rs spend doing tasks
such as thinking and typing, where a machine can provide little help. We would like to
measure the improvement over the time actually doing knowledge input, instead of the
time to complete a KA task.
We counted the number of times each component of EMeD was used during the
experiments, as shown in Table 2. The list of undefined methods was most useful (used
23 times to build 24 methods) during the experiment, and the subjects checked it almost
every time they created a new method. The subjects seemed to be comparing what the
expected with the list created by the KA tool, and built new methods using the
suggestions proposed by the system. The error messages showed after editing each
individual method effectively detected the e rrors within a method definition, and was
used every time there were local errors in the definition.
Users looked at the Method Sub-method Relation Tree but not as many times as what we
expected. The subjects felt the tree was useful but there were too m any items shown for
each node, making it hard to read. We are planning to display items selectively, showing
the details only when they are needed. The Capability Tree was often used to find some
capability description of another method needed while de fining a method body.
However, the hierarchical structure was not so meaningful to the subjects, since
sometimes people choose arbitrary concepts (compute, estimate, etc.) to describe their
capabilities. We are planning to develop a better way of organizing the methods based on
what tasks they can achieve.
Search Methods and Method Organizer were used very little during the experiment.
Since the size of the KB was relatively small (about 3 methods were given in the
beginning and 6 methods were built f or each task), the subjects were able to see them
easily in the editor window. However, during real KB development, the size of the KB is
usually much larger, and we expect that they will be more useful in real settings.
With EMeD, the subjects run the problem solver mostly to check if they had finished
their tasks. EMeD was able to find errors earlier and provide guidance on how they ma
fix the problem, filtering out most of the errors. Without EMeD, the subjects run the
problem solver to detect errors, and ended up spending more time to find the sources of
errors and fix them.

65

4.6. Related Work

There are other KA tools that take advantage of relationships among KB elements
to derive expectations. Teireisias uses rule models to capture relationships among the
rules based on their general structure and guide the user in following that general
structure when a new rule is added that fits a model. Some of the capabilities of EMeD
are similar in spirit to the rule model (e.g., the method capability tree), and are also used
in EMeD to help developers understand potential dependencies among the KB elements.
Other KA tools also use dependencies between factual knowledge and problem -solving
methods to guide users during knowledge acquisition. These tools help users to populate
and extend a system that already has a significant body of knowledge, but they are not
designed to help users in the initial stages of KB development. More importantly, these
tools are built to acquire factual domain knowledge and assume that users cannot change
or add problem-solving knowledge. In this sense, EMeD is unique because it guides
users in adding new problem-solving methods.
In the field of software engineering, it has been recognized that it is generally better to
focus on improving the process of software development rather than on the output
program itself. Our approach embraces this view and tries to improve the initial phases
of KB development. Some previous work on using forma] languages to sp ecif
knowledge bases is inspired by software engineering approaches. This work provides a
framework for users to model and capture the initial requirements of the system, and
require that users are experienced with formal logic. Our approach is complementary in
that it addresses the stage of implementing the knowledge-based system, and we believe
that our formalism is more accessible to users that have no formal training. Other
approaches, support users in the initial stages of development by prov iding a
methodology that can be followed systematically to elicit knowledge from experts and to
design the new system. These methodologies can be used in combination with our
approach.
There is also related research in developing tools to help users bui Id ontologies. Unlike
our work, these tools do not tackle the issue of using these ontologies within a problem-
solving context. Many of the research contributions in these tools concern the reuse of
ontologies for new problems, collaborative issues i n developing knowledge bases, and
the visualization of large ontologies. We believe that integrating our approach with
these capabilities will result in improved environments to support KB creation.

66

4.7. Summary

We analyzed the process of KB developm ent to support KB creation and KB
extension, and found a set of expectations to help KA tools guide users during the
development process. We have classified the sources of errors in the KB development
process based on their characteristics, and found wa s to prevent, detect, and fix errors
earlier. These expectations were derived from the dependencies among KB elements.
Although EMeD aims to provide support for KB creation, its functionality is also useful
for modifying existing knowledge or populating a KB with instances.
We are now extending the EMeD framework to be able to derive expectations in solving
particular problems. Currently EMeD computes relationship among the KB components
regardless of the context. Depending on what problem episode we are solving, the
relationships may show different patterns, since the problem-solving methods may
become specialized.
In our initial evaluations, EMeD was able to provide useful guidance to users reducing
KB development time by 30%. We expect that EMeD will be even more beneficial for
domain experts who don't have much KA experience. EMeD also opens the door to
collaborative tools for knowledge acquisition, because it captures what KA tasks remain
to be done and that may be done by other users.

67

5. Extending the Role-Limiting Approach: Supporting End
Users to Acquire Proble -Solving Knowledge

Role-limiting approaches have been successful for acquiring knowledge from
domain experts. However most systems using this approach ask the user a pre-
determined sequence of questions and are therefore not flexible enough for a wide range
of situations. They also typically do not support acquiring problem-solving knowledge,
but only instance and type information. We extend the role-limiting approach with a
knowledge acquisition tool that dynamically generates questions for the user based on a
background theory of the domain and on the user's previous answers. The tool uses KA
scripts to give an overall structure to a session. We show how to augment a background
theory based on problem-solving methods to support this style of interaction. We
present results from tool ablation experiments with domain experts in two different
domains based on a problem solving method for plan evaluation. When the tool was
used, tasks were completed in substantially less time than when the ablated version was
used. In addition participants were able to complete substantially more tasks on average,
twice as many in one of the studies.

5.1. INTRODUCTION

In order to be successful, deployed intelligent systems need to be robust to changes in
their task specification. They should allow users to make modifications to the system to
control how tasks are performed and even to specify new tasks within the general
capabilities of the system. A common direction of work in knowledge acquisition (KA)
aims to support this ability through explicit domain-independent theories of the
problem-solving process, often called problem solving methods (PSMs). Such theories
can encourage re-use across different applications and the structured development of
intelligent systems as well as providing a guide for knowledge acquisition from experts.
Our interest is in using background theories to guide automatic knowledge acquisition
from domain experts who are not necessarily programmers. Background theories of the
problem-solving process are appealing for this purpose because their model of the
overall structure of the process can in turn be used to structure the knowledge
acquisition session for the user and provide context for the knowledge that is acquired.
However, most KA approaches that use problem solving methods typically focus on
assisting knowledge engineers rather than domain experts.
Other KA tools such as SALT follow a role-limiting approach that allows domain
experts to provide domain-specific knowledge that fills certain roles within a PSM.
However, most of these have been used to acquire instance-type information only.
Musen argues that although role-limiting strategies provide strong guidance for KA, the
lack the flexibility needed for KBS construction. The problem-solving structure of an
application cannot always be defined in domain-independent terms, and one problem-
solving strategy may not address all the particulars of an application because it was
designed to be general. Musen and others advocate using finer-grained PSMs from
which a KBS can be constructed . Gil and Melz address this issue by encoding the PSM
in a language that allows any part of the problem-solving knowledge to be inspected and

68

changed by a user. In their approach, a partially completed KBS can be analysed to find
missing problem-solving knowledge that forms the roles to be filled. This work extended
the role-limiting approach to acquire problem-solving knowledge and to determine the
roles dynamically.
However, Gil and Melz's approach is still not adequate to allow an end user to directl
add problem-solving knowledge. There are at least two reasons for this. First, there is no
support for a structured interaction with the user provided by tools like SALT. The
knowledge roles, once generated, form an unstructured list of items to be added, and it
can be difficult for the user to see where each missing piece of knowledge should fit into
the new KBS. Second, the user must work directly with the syntax of their language to
add problem-solving knowledge, which is not appropriate for end users.
In this chapter we present an approach that builds on Gil and Melz's work to allow an
end user to add problem-solving knowledge to a KBS with a dynamic role-limitin
approach. In our approach, the tool structures an overall KA session using KA scripts.
While following the scripts, background knowledge is used to dynamically generate
questions for the user in response to the user's answers to previous questions. As we
describe in the next section, this background knowledge includes ontologies that
describe the problem-solving knowledge to be added in terms that make sense for the
user. Other roles are generated, as before, from an analysis of a partially completed KBS.
The background knowledge is also augmented to support interaction with the user
through constrained English sentences. We describe an implemented tool, called
PSMTool, that uses this approach and show empirically that end users without
programming experience are able to add problem solving knowledge to a KBS with this
system. The main contributions of this chapter are (1) showing how to use background
knowledge to generate a structured dialog with an end user to acquire problem-solving
knowledge and (2) demonstrating an implemented KA tool that successfully uses the
approach.
We report on two sets of experiments that tested PSMTool. Experts in two different
domains where asked to add new evaluation criteria to plan evaluation systems. The KA
tasks required providing a combination of problem-solving and ontological knowledge
that was integrated with the existing system. In both domains, experts were able to
complete substantially more tasks using the KA tool and performed the tasks more
quickly.
In the next section we describe a background theory for plan evaluation that we have
used in this work. Then we describe how the KA tool uses the theory to generate
questions for the user, with examples from a system that acquires new knowledge to
evaluate travel plans. We then present results from our experiments and survey related
work. Finally we discuss how the results might extend to other background theories of
problem solving and mention future work.

5.2. A BACKGROUND THEORY OF PLAN EVALUATION

In this section we briefly describe the background theory for plan evaluation that was
used in our experiments and is used in this chapter to illustrate PSMTool. The tool itself

69

is designed to work independently of a particular theory, and we begin by describing
necessary features of a background theory in order for this approach to be successful.

5.2.1. How a background theory supports PSMTool

We use a collection of fine-grained PSMs as the basis for the background knowledge in
PSMTool, and add to it the knowledge required for the tool to take over some of the
tasks of the knowledge engineer. When using a collection of PSMs to build a
knowledg -based system, the knowledge engineer typically selects a component from
the collection that is best suited to the task and adapts it to address the task at hand. We
support this activity with two additions to the background theory of the task. First, we
provide an ontology for the elements of the collection that distinguishes them based on
features of the tasks they perform rather than their procedural structure. The ontolog
has a hierarchical structure with a number of orthogonal partitions that can be used to
generate a dialog with the user dynamically as we describe below. Second, we provide
guidance for adapting each element in the collection. Each element is a generic PSM for
a given task, and is implemented as a collection of EXPECTmethods. Within each
element, we identify the methods that are designed to be changed when the element is
specialised. This information is used by PSMTool to further guide the KA process once a
PSM element has been chosen.We illustrate these points in the context of a background
theory for plan evaluation implemented in the EXPECT system.

EXPECT is an architecture for knowledge acquisition that makes use of an explicit
representation for both factual and problem-solving knowledge. It analyses an intelligent
system defined in its language to provide KA support to the user, for example b
identifying missing problem-solving knowledge or highlighting the information that is
needed about objects in the knowledge base. EXPECT's explicit representation makes it
ideally suited for representing background theories of problem solving the provide direct
support for knowledge acquisition. Previous work has shown that background theories
such as propose-and-revise can be represented inEXPECT to take advantage of its
analytical capabilities and provide the benefits of both role-limiting KA strategies and
completeness analysis.

5.2.2. Plan evaluation

Plan evaluation problems belong to a domain-independent problem class in which an
agent, typically a human expert, judges alternative plans according to a number of
criteria. The aim is usually to see which of the alternative plans is most suited for some
task. In terms of a standard problem solving method library such as common KADS, it
is a special case of assessment.
Each different criterion along which the plan is judged is represented explicitly as a
critique in our framework. Through experience with several intelligent systems for plan
evaluation, Blythe and Gil have identified several patterns in the ways that critiques are
evaluated . These patterns of critiques indicate regularities that can be re-used across
planning domains and provide guidance for knowledge acquisition.

70

In our background theory for plan evaluation this knowledge is represented through an
ontology of critique types, partially shown in figure 1. Some groups of subtypes (shown
with arcs connecting their links) partition their parents, while some just specialise the
class. For example, the subtypes local-critique and global-critique form a partition, so an
critique must belong to exactly one of these classes, local-critique defines critiques that
are checked by performing some analysis on some or all of the steps in the plan on an
individual basis, while global-critique defines critiques that have a global definition on
the plan, for example the plan's total fuel consumption.

global-critique local-critique bounds-check

upper-bound lower-bound

I
resource-check

completeness
critique

flight-cost-critique

Figure 1: Different types of critiques in the background theory of plan evaluation.
Each subclass is identified with a recurring pattern for evaluating a critique,
implemented through EXPECT methods attached to the class.

In addition to the ontology of critiques, the background theory uses an ontology of
planning terms and a specialised ontology of resources based on Ozone. More details
about these can be found in.
The critiques are defined operationally through EXPECT methods. For example, the
method in Figure 2 says that a step satisfies an upper bound (a kind of critique) if and
only if the actual value of the property to be measured by the critique is less than or
equal to some maximum value. The tasks of estimating the actual and maximum values
for the property respectively form two subgoals that are addressed by other methods in
the theory.

71

(define method evaluate-local-upper-bound
"To determine whether a step satisfies an upper

bound, check that the actual value of the property
to measure for the upper-bound is less than or equal
to the maximum allowed value of the property."

:capability
(determine-whether

(obj (?task is (inst-of step)))
(satisfies (?bc is (inst-of upper-bound))))

:result-type (inst-of boolean))
:method

(is-less-or-equal
(obj (estimate (obj actual-value)

(of (property-to-measure ?bc))
(for ?task)))

(than (estimate (obj maximum-allowed-value)
(of (property-to-measure ?bc))

(for ?task)))))

Figure 2: An EXPECT method.

The background theory can be used to create a working plan evaluation system for a
particular domain by defining domain-specific critique classes within the ontology and
adding the necessar EXPECT methods to complete each critique's definition. We
illustrate this in a travel planning domain. In this domain, plans are itineraries for travel
and the steps in plans represent reservations of flights, hotels and rental cars. The plan
critiquer for the travel planning domain is implemented as an extension of the
background theory for plan critiquing. For example, one possible critique in the domain
checks that no flight costs more than a set amount, say $500. This is implemented b
defining the class flight-cost-critique as a subclass of both local-critique and upper-
bound. The value of the relation propert -to-check is required for any subclass ofupper-
bound, and here it takes the value flight-cost. The EXPECT methods for those classes are
then used to evaluate the new critique, resulting in a check that the actual amount of
flight-cost for each step is less than or equal to the maximum amount. The developer
completes the definition by defining methods to compute the actual amount (the cost of
the flight) and the maximum amount ($500)

5.3. INTERACTING WITH PSMTOOL

We have implemented a tool, called PSMTool, that makes use of a background theor
for problem-solving to guide a user in extending the capabilities of an intelligent system.
PSMTool follows a script to organise its interaction with the user that is hand-written for
the background theory. However, the questions that the tool asks the user while it
executes the script are automatically derived from the theory, as we show below. Before
describing this we show an example of the tool's interaction with a user.

72

The KA tool begins with a window split in two screens, showing a plan on the left and
on the right a list of evaluations of the plan made with the critiques currently in the
knowledge base. The user can choose to add a new critique, in which case a second
window appears that will keep track of the interactions with the user made in defining
the critique, shown in Figure 3. The interaction follows a script that has three steps:
first, it adds a new critique class and classifies it in the ontology, then it generates a list
of EXPECT methods for the user to edit that will be used in evaluating the critique. Once
these steps are complete the new critique has been defined. The third step then applies
the critique to the plan in the first window and the result is shown for the user to verify.
We now show how the questions used in the first two steps of the script are dynamicall
created.

B™sa»a^fe-gta,-^aä Critique WilänTl

Part 1. Answer some questions about the critique

Done! 1) Critique name -fpiease give a name to this critique-
flight-cost-critique

Do,,,,! 2\ Number based poes me critique reason abou! numbers? (eg amount of fuel or distance, rather than
' . ^vhether some item exists)

Oone ETchecks a resource 'P°es ^e clique check lor a sufficient amount ol something to be present? (e.g checking
- - jthe amount of fuel is sufficient, rather than checking that a distance is too great)

1) Quantity [Please give a name to the property to be checked.
flight-cost

Done I 5) Once or per task "jls lhe check ,0 be ™de once lof mc whole Plan or individually on certain steps? individually on certain steps

Part 2. Define some methods for the critique

I will evaluate the critique by evaluating each relevant task in turn " ~
I will evaluate each task by estimating the actual amount of the property for the task and the maximum allowed amount lor the task, and by checking
that the actual amount is not greater than the maximum amount
Please edit the following methods to choose the relevant steps, estimate the actual amount and the maximum allowed amount

Done j 6) edit a method to Und the steps in a trip for which to test a flight cost critique

Done !7) edit a metnod to estimate the maximum allowed value ol a flight cost lor a step

BJnoJj 8) edit a method to estimate the actual value of a (light cost lor a step

Part 3. Chech the critique

To do' ?: K. r :

Figure 3: The critique window asks the user questions in order to classify the new
critique within the background ontology and then prompts the user to modify
several new EXPECT methods to tailor the behaviour of the new critique.

73

5.4. SUPPORTING KNOWLEDGE ACQUISITION WITH BACKGROUND
THEORIES

We are interested in using a background theory to provide support for users who are not
necessarily programmers to extend and tailor systems .for their domains. We added the
following kinds of information to the background theory described above.

The critique ontology, which records functional differences in types of critique based on
their patterns of usage, can be used to generate questions to get information from the
user about a new critique without requiring programming knowledge. To do this, each
class in the ontology is augmented with a text description that characterises the class and,
in the case of partitions, distinguishes the class from other elements in the partition.
In many cases, once the user has provided information so the new critique is classified,
much of the problem-solving knowledge needed to implement the critique is available
through the critique's parents in the background theory. This problem-solving knowledge
can handle overall organization of the critique and its integration with the system, which
is sometimes the most complex part of the critique's procedural definition.
The background theory also distinguishes some EXPECT methods as default methods
that may be specialised when a new critique is defined. This serves two purposes. While
all the methods in the background theory can in principle be specialised, the
distinguished subset can give the KA tool a road-map for tailoring the theory for a new
critique. In addition, the body of the general method can provide a starting-point for the
specialised method and the general method can be included for this reason, even if it is
not intended to be used without specialisation.

5.4.1. CLASSIFYING THE CRITIQUE FROM THE ONTOLOGY

The questions asked in the first part of the critique window are automatically derived
from the ontology of critiques in the theory and classify the new critique according to the
the ontology. Once the classification process is complete, a new critique class is defined
for the new critique as a subclass of the identified classes. This class is able to inherit
generic critiquing knowledge from its ancestors as described in the previous section.
The algorithm for determining questions in the critique script adds each question for one
of three reasons: 1) to determine which element of a partition the critique belongs to, 2)
to determine whether the critique is a subclass of some class that is not part of a partition
and 3) to find the value of a required field of a class. The algorithm traverses the
critiques in depth-first order to help maintain a focus of attention for the user in
answering the critiques. Figure 4 shows the algorithm that generates the questions in the
critique window.

74

Initialise C to the partitions and subclasses of critique
1 if C is empty, stop
2 set c to the first element in C, and remove it from C
3 if c is a partition of subclasses,
4 ask which subclass in c the new critique belongs to.
5 set n to the answer
6 else if c is a subclass,
7 ask whether the critique belongs to the subclass
8 if YES, set n toe
9 if NO, goto step 1.
10 for each required field r of n:
11 ask for the value of r.
12 push the partitions and subclasses of n onto C
13 goto step 2.
Figure 4: The algorithm that dynamically generates classification questions in the
critique window.

Figure 3 shows the questions that are generated using this algorithm for the class flight-
cost-critique, defined as shown in Figure 1. The text for each question is stored with
each class or required field in the ontology. Although the algorithm requires the
developer to store canned text with the classes and fields in the ontology, this is
considerably easier than generating scripts of questions for the different possible
classifications of a critique. The answers to the five questions in steps one through five
have allowed the KA tool to classify the new critique class as a subclass of both upper-
bound-check and local-constraint.

5.4.2. CHOOSING AND CREATING NEW METHODS TO EDIT

Once the new critique has been classified in the ontology, the system builds a problem-
solving tree in EXPECT for the generic goal to determine whether a plan satisfies the
critique. EXPECT is able to detect subgoals for which no method can be found and the
information that is required of objects in the domain, such as plans and critiques.
Requesting information that is missing in these categories is similar to the behaviour of
role-limiting knowledge acquisition systems such as SALT, but more flexible since it is
generated from an analysis of an explicit model of the background theory. This
connection is discussed in more detail in. We augment this algorithm so that it also finds
subgoals addressed by methods that are marked in the .background theory as
specialisable. The KA tool then prompts the user to enter methods for these subgoals
one by one. If a specialisable method exists, this forms the initial version of the new
method.

The user edits problem-solving methods via the English-based editor, which uses
constrained English sentences to present and edit the methods rather than the formal
language in which the methods are defined. The method capability and body are
presented as structured English, and when the user selects a word or group of words in
them, the lower window of the editor shows alternatives that could be substituted for the

75

selection and maintain the syntactic correctness of the method. The alternatives can
include Loom or EXPECTexpressions. This editor is important to the success of
PSMTool, since the intended users are not programmers and would not be comfortable
with formal languages for ontologies or problem-solving knowledge.
In the case of the class flight-cost-critique, the problem solving tree makes use of the
method in Figure 2, and the critique tool finds three specialisable methods, which are
shown in the lower part of the critique window in Figure 5. Figure 3 shows the English
editor being used to define one of the methods, to compute the cost of a flight. Once
these three methods are defined, the new critique is ready to be applied. In this case,
they can be defined using just Loom expressions and constants, without calling other
EXPECT methods, although the editor allows this.

fS&.other variables
SVGithe actual value ACT

BrS^ÄnU ^arr^ec.t.e <W a,fport ofthe„gW
m me bdore ,.* dihe «9« ^^ÄÄ' the «g« schert* Che kg»

0%M&z gas®*
[ilÄS Slip

Figure 2: The English-based method editor in use to change the method to compute

the actual cost of a flight.

5.5. EXPERIMENTAL RESULTS

Our aim is to design a knowledge acquisition tool that can be used by domain experts.
To test the tool, we ran two sets of experiments that test the same hypotheses, but in
different plan evaluation domains and with different sets of domain experts. The
hypotheses we tested are n that with the knowledge acquisition scripting tool, domain

76

experts are able to add more complex critiques than without the tool and 2) that domain
experts are able to add the same critique more quickly using the tool. In each domain, we
ran a tool ablation experiment, in which participants used two versions of a knowledge
acquisition environment that were identical except that only one gave access to the KA
tool. Both versions allowed users to add a critique class through a class browser and to
start the English method editor to add a method.
Participants were asked to define new critiques for a plan evaluation system. In order to
control the conditions of the experiment as far as possible, the critiques to be added
using the tool were structurally isomorphic to the critiques to be added with the ablated
version. In other words, corresponding critiques from the two groups critiques required
the same pattern of EXPECT methods and loom retrievals in their definitions, although
the names of the methods and loom relations could be different. In order to control for
learning effects during the course of each experiment, half the participants worked first
with the tool and then with the ablated version, and half worked the other way around.
The participants in the first experiment were four Army officers from the Army Battle
Command Battle Labs in Fort Leavenworth. The problem domain for this experiment
evaluated Army battle plans. The participants in the second experiment were three
project assistants from our division and one business school professor, and the problem
domain was the travel plan evaluation system that we have used to illustrate the chapter.
None of the participants from either experiment had written a computer program. It is
unfortunate that the number of participants was too low to draw statistically valid
conclusions from these experiments, but the experiments are costly to run since the
require one experimenter per participant to make observations.
The critiques in each set were graded in difficulty, so that we could also investigate the
effect that this had on the impact of the KA tool. The simpler critiques can be
implemented with one EXPECTmethod, while the more complex critiques require
iterating over a set of steps in the plan, or require two or three EXPECT methods to be
specialised if they are defined using the background ontology.
As an example of a simple critique, participants in the second study were asked to define
a check that the plan included a hotel reservation. As an example of a more complex
critique, participants in the first study were asked to define a check that the force ratio,
defined as the ratio of friendly fire-power to enemy fire-power, is adequate for each task
in the plan. The level that is considered adequate must be computed based on the task.
Figure 6 shows the number of KA tasks that were completed by the subjects with the KA
tool and with the ablated version in each of the domains. In this figure, each critique has
been split into a number of component tasks, corresponding to adding a new critique
class or completing either the capability or body of a method. We have aggregated the
tasks from the two different sets given to the participants. As the graph shows, use of the
tool does not affect the number of tasks that are completed for the easiest critique, but
there is a marked difference for more complex critiques. The same is true if we consider
the number of whole critiques added rather than the component tasks. Participants in the
battle planning experiment were able to complete more than twice the tasks with the tool
than were completed with the ablated version. Participants in the travel planning
experiment showed smaller increases but still significant ones.

77

'^■•^y.: —;--*:-

Figure 6: Tasks completed with the full tool and with the ablated version. Results
in the battle planning domain are shown on the left and results in the travel
planning domain are shown on the right.

Figure 7 shows the average times taken to define a critique in each domain. To ensure
that the times are comparable between the standard and ablated versions of the system,
only participants who completed both tasks were used to compute the averages. The
point representing the most complex critique attempted without the KA tool is missing
from both experiments because no participant successfully added the critique.

20 -,
S

20 -\
18
16
14
12
10

8
6
4
2 -
0

—- ■ — ablatec
18 ZZZZZZZ^ZZZZI T~ versiot
16 - / / -o— with th
14 - / /
12 / /
io / / —-°

8 / / „^-~^^
t> t/ / ^^^
4 ft-"-""
2 .
o J

Simpler more complex
critique critique

Simpler
critique

more
complex
critique

most
complex
critique

Table 7: Average times (in minutes) taken to define each critique. Results from the
battle planning domain are shown on the left and results from the travel planning
domain are shown on the right.

The results from these experiments support our hypotheses. Participants complete
significantly more KA tasks using the tool, and take considerably less time to do it.
One interesting difference between the participants in the two experiments was the
amount of training that they received for the task. The battle planning experiments were

78

part of a number of experiments made at Fort Leavenworth with different KA systems
and the participants received eight hours of training before using the tool — four hours
of training with EXPECT and four hours with a related KA tool. In the travel planning
experiments, participants received only one hour of training with the tool and none with
EXPECT. However the number of tasks completed and the average times are ver
similar between the two groups. This indicates that domain experts might require ver
little training to be able to use the tool. We have not yet studied this systematically, but
can offer one more anecdotal piece of evidence: at Fort Leavenworth, a fifth participant
was asked to add the same critiques using the KA tool after less than one hour's training.
The participant succeeded, and took time comparable with the participants who had
received eight hours of training.

5.6. RELATED WORK

Other knowledge acquisition tools help users add domain-specific information to a
knowledge base. Some, such as ASTREE use explicit ontologies as we do to organise
problem-solving methods. Like our tool, these tools are built for domain experts and not
knowledge engineers, but they do not allow users to provide domain-specific problem-
solving knowledge as PSMTool does.
Other researchers have developed tools to support the acquisition of planning
knowledge, but these systems are built for knowledge engineers. Both of them address
some aspects of the acquisition of plan evaluation knowledge, but their central focus is
plan generation. Valente and his colleagues have also studied problem-solving methods
related to planning. Our model has similarities to theirs but is more aimed at plan
evaluation, a separate activity from plan creation that has been less studied from a
computational viewpoint. Another difference in our approach is the automatic support
for KA via EXPECT and script generation.

5.7. SUMMARY

We described an extension to the role-limiting approach for knowledge acquisition from
end users that dynamically generates knowledge roles to be filled and can be used to
acquire problem-solving knowledge. Our approach combines a collection of problem-
solving methods with supporting ontologies that can be used to guide the activities of
method selection and specialisation. As well as demonstrating the approach for a plan
evaluation problem solving method, we have shown through controlled experiments that
domain experts can provide more complex knowledge to an intelligent system using
PSMTool and that they take less time to provide the same knowledge.
Although we have discussed these techniques in the context of the plan evaluation theor
they are of course not limited to this background theory. The ways in which we augment
the theory to support knowledge acquisition would be useful for a range of theories, and
our algorithms for generating questions to ask a user are domain-independent. The
script that we demonstrated, however, was specific to the plan evaluation theory. Other
background theories would certainly need their own scripts and will probably need a
greater variety of ways to support knowledge acquisition. Future work includes

79

generalizing this result to other classes of task. We plan to investigate theories to help
acquire process control knowledge and search control knowledge for AI planning
systems, among others.

80

6. User Studies of Knowledge Acquisition Tools: Methodology
and Lessons Learned

The area of knowledge acquisition research concerned with the development of
knowledge acquisition (KA) tools is in need of a methodological approach to evaluation.
Efforts such as the Sisyphus experiments have been useful to illustrate particular
approaches, but have not served in practice as testbeds for comparing and evaluating
different alternative approaches. This chapter describes our experimental methodology
to conduct studies and experiments of users modifying knowledge bases with KA tools.
We also report the lessons learned from several experiments that we have performed.
Our hope is that it will help others design or improve future user evaluations of KA
tools. We found that performing these experiments is particularly hard because of
difficulties in controlling factors that are unrelated to the particular claims being tested.
We discuss our ideas for improving our current methodology and some open issues that
remain.

6.1. Introduction

The field of AI has increasingly recognized throughout the years the need and the value
of being an experimental science. Some subfields of AI have developed standard tasks
and test sets that are used routinely by researchers to show new results. Researchers in
machine learning, for example, use the Irvine data sets to show improvements in
inductive learning and routinely use tasks like the n-puzzle or the n-queens for speed-up
learning research.
Developing standard tests is harder in other subfields that address more knowledge-
intensive problems. For example, planning researchers often show experiments in similar
task domains. The problem is that the implementation of the knowledge base and of the
algorithms is so different across systems that the results of the experiments are often
hard to analyze. One approach used by some researchers is to use artificially created,
very structured knowledge bases to analyze particular behaviors. Another approach has
been to define a universal language to describe planning domains, as is done in the
Planning Competition of the Artificial Intelligence Planning Systems Conference.
As developers of knowledge acquisition (KA) tools we wanted to evaluate our
approaches, and began looking into user studies. With the exception of some isolated
evaluations of KA tools we found that the field of knowledge acquisition had no
methodology that we could draw from to design our evaluations. Even though AI is, as
we mentioned earlier, a field where experimental studies have been increasingl
emphasized in recent years, user studies are uncommon. User studies to evaluate
software tools and interfaces can be found in the literature of tutoring systems,
programming environments, and human computer interfaces. These communities are still
working on developing evaluation methodologies that address their specific concerns.
All seem to agree on the difficulty and cost of these studies, as well as on their
important benefits. Often times, the evaluations that test specific claims about a tool or
approach are perhaps not as thorough or conclusive as we would like to see as scientists,
yet we are lucky that these evaluations are taking place at all and are shedding some light

81

on topics of interest. In developing a methodology for evaluation of KA tools, we can
draw from the experiences that are ongoing in these areas.
The lack of evaluation in knowledge acquisition research is unfortunate, but may be due
to a variety of reasons. First, KA evaluations are very costly. In areas like machine
learning and planning, experiments often amount to running programs repeatedly on
already existing test sets. The evaluation of a KA tool requires that a number of subjects
spend a fair amount of time doing the study, and for the experimenters to spend time and
other resources preparing the experiment (often months) and analyzing the results.
Second, most of the research in the field of KA concentrates on knowledge modeling
(e.g., how a knowledge engineer models a task domain) and knowledge elicitation (e.g.,
techniques for interviewing experts). There are very few efforts on developing tools for
users. Developers may conduct usability studies, but the results are not reported in the
literature.
In recognition of the need to evaluate KA research, the'community started to design a set
of standard task domains that different groups would implement and use to compare their
work. This effort is known as the Sisyphus experiments and the domains have included
office assignment, elevator configuration, and rock classification. These experiences
have been useful to illustrate particular approaches, but have not served in practice as
testbeds for comparing and evaluating different approaches. The most recent Sisyphus
is an example of the issue discussed above about the intimidating cost of KA
evaluations: the limited number of participants can be tracked back to the significant
amount of resources required to tackle the knowledge-intensive task that was selected.
Over the last few years, we have performed a series of evaluations with our KA tools
that have yielded not only specific findings about our tools but that have also allowed us
to develop a methodology that we follow in conducting our evaluations. This chapter
describes our experimental methodology to conduct studies of users modifying
knowledge bases with KA tools. It also reports the lessons learned from our experiments
so it will help others design or improve future user evaluations of KA tools. This chapter
describes our experiments in enough detail to illustrate the different point of our
methodology and the lessons learned. A more comprehensive description of our
experiments and their results can be found in the literature.
The chapter describes our experiences based on tests with two particular KA tools that
we developed for EXPECT. EXPECT is a framework .for developing and modifying
knowledg based systems (KBSs) whose main purpose is to enable domain experts
lacking computer science or artificial intelligence background to directly manipulate the
elements of a KB without the mediation of a knowledge engineering. The two tools that
were the subject of our evaluation were intended to enhance some aspect of the EXPECT
support to end users. ETM (EXPECT Transaction manager) uses typical KB
modification sequences (KA Scripts) to help users modify KBs. EMeD (EXPECT
Method Developer) analyzes and exploits interdependencies among KB elements to
guide users in making significant KB extensions or changes. Each tool was developed to
investigate a different approach to guide users in knowledge acquisition tasks. The
approaches are complementary, and we are now in the process of integrating the features
of the tools that we found useful in the experiments in order to create a more
comprehensive and powerful KA environment for EXPECT. A brief overview of both
tools can be found in Appendix A. Please note that the focus of this chapter is not on the

82

details of these tools but on our experimental methodology and the lessons learned from
our experiments.
The chapter begins by describing the methodology that we follow to design experiments
to evaluate KA tools, illustrated with examples from our evaluations with ETM and
EMeD. The next section highlights the lessons that we learned in carrying out these
experiments, and describe open issues in KA experiment design. Finally, we discuss
related work in other research disciplines that conduct user studies and outline directions
for future work.

6.2. A Methodology to Conduct Experimental User Studies with Knowledge
Acquisition Tools

The nature of an experiment is determined by the claims an d hypotheses to be tested.
Based on the hypotheses to be tested, we need to determine the KA task to be performed
by the users, the underlying representations for the knowledge acquired by the tool, the
type of users involved, the procedure to be fol lowed to perform the experiment, and the
data that needs to be collected. This section discusses each of these issues in detail.
Table 1 summarizes the steps in our methodology. It is by no means a strictly sequential
process, rather there is significant iteration and backtracking across these steps due to
the interactions among all the constraints and decisions involved. For example, a
hypothesis may be revisited if an experiment cannot be designed to test it as it is stated.
It is extremely useful to run a pre-test using a smaller-scale or a preliminary version of
the experimental setup (e.g., fewer users), so that the design of the overall experiment
can be debugged, refined, and validated.

6.2.1. Stating Claims and Hypotheses

Claims and hypotheses play a pivotal role in the evaluation process, since the
experiments revolve around them. Claims and hypotheses are related but not necessarily
the same. Claims are stated in broader terms, referring to gen eral capabilities and
benefits of our tools. It may or it may not be possible to test a certain claim, but it helps
us understand what we think are the advantages of a certain approach. Based on these
broader claims, we formulate specific hypotheses that we would like to test. In contrast
with claims, hypotheses are stated in specific terms, and we formulate them such that an
experiment can be designed to test them and yield evidence that will lead to proving or
disproving specific hypotheses. In reality, some experiments are potentially possible but
turn out to be infeasible in practice due to lack of time and other resources.
The first step in the design of our evaluations was to state the main claims regarding our
KA tools. It turns out that we made similar claims for both tools:

1. Users will be able to complete KA tasks in less time using the KA tools.
Rationale: Our KA tools would support some time consuming activities

involved in KB modification tasks. For example, they support the analysis of the
interactions among the elements of KB and the determination of the actions that
should be taken to remove inconsistencies in the KB.

83

Users will make less mistakes during a KA task using the KA tools.
Rationale: Our KA tools high light KB inconsistencies and provide support in
fixing them.

3. The reduction in completion time and number of mistakes will be more
noticeable for less experienced users.
Rationale: Less experienced users will be the most benefited from the tool's
thorough guidance. In addition these users would be able to resolve the conflicts
that arise during the modification of the KB using strategies that they might not
be aware otherwise.

The reduction in time will also be more noticeable for users lacking a detailed
knowledge of the KBS implementation.
Rationale: Our tools reveal the existence of KB elements that can be reused or
adapted and that the users may not be aware of. This should be particularly
noticeable when the KB is large.

5. The KA t ools will be useful for a broad range of domains and knowledge
acquisition scenarios.
Rationale: Our tools are based in general domain-independent principles.

Given these claims, we were able to state specific and measurabl hypotheses to be proved
or disproved with experiments that were feasible give our resources and constraints.

For example, a specific hypothesis for ETM corresponding to claim lis: Completion time
for a complex KBS modification will be shorter for subject using ETM in combination
with the EXPECT basic KA tool than for subjects using the EXPECT basic KA tool
alone.

A claim can be stated in more general or more specific terms depending on the purpose
of the claim. The claims that we showed above are specific to particular KA to ols and
methodologies, but it would be make them part of more general claims that the whole
KA field cares about and that other researchers may want to hear about the state-of-the-
art in KA. For example, our experiments and those of others might help u s gather
evidence towards general claims such as "It is possible for naive users to make additions
and changes to a knowledge base using KA technology", with more specific claims
stating what technologies help in what kinds of KA tasks to what kinds of users.

6.2.2. Determining the set of experiments to be carried out

It is useful to test one or more hypotheses in few experiments, but it is not always
possible. This is the case when the h ypotheses are of a very different nature, or when a

84

given hypothesis needs to be tested over a range of user types, tasks, or knowledge
bases. For example, if we have two different hypotheses, such as (1) a KA tool helps to
perform a task more efficie ntly and (2) the KA tool scales up to large and realistic
applications, then it might be necessary to conduct one experiment to support the first
hypothesis and a second experiment for the second hypothesis.

A useful way to design an experiment that es tablishes the benefits of a tool or a
technology is to perform a comparison with some baseline tool. In this case, we have to
carefully choose the tools to be compared. The only difference between the two tools to
be compared has to be the presence o r absence of the technology to be evaluated.
Otherwise, we may not be able to determine if the differences in the performance of the
tools were due to the technology itself or to some other factors (e.g., a different interface
design or interaction st le). For example, to test the benefits of expectation -based KA,
we compared EMeD against a basic KA tool that consisted of the same EMeD interface
where a number of features had been disabled. That is, both tools (EMeD and the Basic
EMeD) provided a similar user interface environment.

This kind of experiment is a tool ablation experiment, where the object of ablation is
some capability of the tool. The group of subjects that is given the ablated KA tool
serves as the control group. We have found these experiments to be the most useful and
compelling kind to test for our claims.

6.2.3. DESIGNING THE EXPERIMENTAL SETUP

Once we have determined the hypotheses and the kind of experiment to be carried out,
we are able to plan the details of the experiment.

6.2.3.1. Users

An important issue is the choice of subjects who are going to participate. Practical
concerns often constrain the experimentation possibilities, for example the accessibilit
and availability of certain types of subjects.

We design our experiments as within subject experiments. This means that each subject
uses both the ablated and the non-ablated version of the KA tool (but not to do the same
task, as we describe below). Because of the many differences among subjects and the
small amount of subjects that we could test, this helps to reduce the effect of individual
differences across users. Different subjects use the two versions of the tool in different
orders, so as to minimize the effects that result from increasing their familiarity with the
environment that we provide. Another possibility is to use a larger number of subjects,
and divide them into two separate groups: one that uses only the ablated tool and the
other that uses the non-ablated tool. The problem with this design is that it is more
costly.

85

We have identified several types of users according to their background and skills,
particularly with respect to their familiarity and expertise with knowledge base
development and knowledge acquisition tools and techniques.

6.2.3.2. Domains, KA Tasks and Scenarios

One issue is the choice of the application domain. For our purposes, the knowledge
bases needed to be simple enough to be learned in a short time but complex enough to
challenge the subjects in the control group. For ETM, we chose a transportation
planning evaluation system developed as a part of a Defense Advanced Research Project
Agency (DARPA) funded project. An example of a KA task given to the subjects is to
modify a fragment of an existing knowledge-based system capable of evaluating
transportation movements carried only by ships in order to enable the system to evaluate
movements involving both ships and aircraft. This modification required to add new
problem-solving knowledge to handle aircraft and to integrate this new knowledge with
the knowledge that already existed in the knowledge-based system.

For EMeD, we chose a Workarounds domain selected by DARPA as one of the
challenge problems of the High-Performance Knowledge Bases program that investigates
the development of large-scale knowledge based systems. The domain task is to
estimate the delay caused to enemy forces when an obstacle is targeted by reasoning
about how they could bypass, breach or improve the obstacle. An example of a KA task
given to subjects is to add problem-solving knowledge to "estimate the time to move
military assets by enemy units", considering the source of the assets, current location,
destination, and their moving speeds. For each task, the subjects added new problem-
solving knowledge to the system.

There is a range of difficulty of KA tasks in terms of the kinds of extensions and/or
modifications to be done to a KB. A KA task that requires only adding knowledge is
very different in nature and difficulty from a KA task that requires modifying existing
knowledge. Also, modifying problem-solving knowledge is a very different task from
adding instances, even if they are both KA tasks. It is important to design the scenario
so that it covers the kind of KA tasks that the tool is designed for. Both our tools are
targeted to the acquisition of problem solving knowledge. We tested ETM with a KB
modification task, and EMeD with a KA task that required extending an existing KB b
adding new knowledge.

Another issue in within subject experiments is that if one gives a subject the same exact
KA task to do with the two versions of the tool there will most probably be a transfer
effect. This means that it is pretty certain that they will be unlikely to repeat errors the
second time they do the task, and that they will remember how they did something and
will not need to figure it out the second time around. To avoid this transfer effect, we
design two different but comparable scenarios, each involving the same kind of KA task
in the same domain but involving a different aspect of the knowledge base. One
scenario is carried out with the ablated tool and the other one with the non-ablated

86

version of the tool. It is very important that both scenarios are as comparable in size and
complexity as possible in order for the results of the experiments to be meaningful. This
results in four subject groups, each with a specific combination of the two versions of
the tools and the two KA scenarios to be carried out.
To facilitate the subject's acquisition of the knowledge required to perform the scenarios
and to ensure a uniform understanding of the domain across users, the application
domain was explained to all the subjects during a presentation. The subjects and the
domain were especially chosen to avoid markedly differences in the subjects previous
exposure to the domain. Of course, these points are not relevant when testing subjects
that are experts in a specific domain.

A repository of knowledge bases and scenarios to test KA tools that could be shared b
different researchers would enable better comparative evaluations among approaches, as
well as reduce the amount of work required to evaluate a KA approach. The knowledge
bases that we used are available to other researchers by contacting any of the authors.

6.2.3.3. Experiment procedure

After we had determined the kind of experiment to be carried out, our hypotheses, the
type of users, and the nature of the KA task, we were in condition to plan other details of
the experiment. These include, for example, what information will be given to the
subjects and in what format, what kind of interaction can the subjects have with the
experimenters during the tests (e.g., can they ask additional questions about the domain
and/or the tool), how many iterations or problems will be given to each subject and in
what order, and an indication of the success criteria for the subjects so they know when
they have finished the scenario they were given (e.g., the final KB correctly solves some
given problems, perhaps according to a gold standard).
The experimental setup has to be carefully designed to control as much as possible the
variables that can affect the outcome of the experiment and that are not related to the
claims. For example, if the disparity of subjects may affect the results we can have each
subject to perform two tasks, one with the tool to be evaluated and the other with the
tool used for control. In this case, if the order in which the tasks are executed might also
affect the results, we can switch the order in which the tasks are executed for different
subjects. If we suspect that not all subjects have the sufficient skills to perform the
requested task we can include a practice session previous to the evaluation. We can also
ask the subjects to fill a background questionnaire previous to the execution of the
experiment to form the groups as balanced as possible.
Our controlled experiments compared the performance of subjects using EXPECT, our
baseline KA tool, vs. subjects using enhanced versions of EXPECT that incorporate the
tools being evaluated. The subjects that used EXPECT alone constituted the control
group. Each subject performed two different scenarios, one with the basic EXPECT and
the other with the enhanced EXPECT, so the results were independent of differences in
subject's background and skills. Each scenario was performed with both versions of
EXPECT so the results were independent of the complexity of the scenario. Some
subjects used the plain EXPECT first and others used the enhanced version of EXPECT

87

first so the results were independent of the order in which the tools were used. All these
factors were balanced such that they would even out the qualifications of the subjects for
each one of the groups, the number of times that each tool was used for each scenario,
and the number of times that each tool was used in the first place.

All experiments followed the same general procedure distributed in two

Stage 1: Domain and tools presentationendtrivlist
The subjects attend a presentation that introduced EXPECT, ETM or EMeD, and the
application domain.

Stage 2: Practice and executionendtrivlist
The subjects perform the following activities:

1. Execute a practice scenario comparable to the ones to be used during the actual
test. This scenario was performed once with each version of EXPECT. The
.purpose of this practice is to make subjects familiar with the tools, the domain,
and the procedure of the experiment

2. Execute two test scenarios, one using each version of EXPECT, alternating
the order of the tool that is used first.

3. Answer a feedback questionnaire regarding their impressions and difficulties in
using each version of EXPECT. Each question is given numerical range (1 to 5),
so that the answers are comparable across subjects.

For each test scenario, the subjects analyze the domain and the specifications. Then, the
perform the given modification scenario until the KBS gave the correct results in the
sample problem. During the execution of the scenarios, the experimenter only
occasionally assists subjects that had problems interpreting the instructions, using the
KA tools, or that get stuck or confused.
We use several approaches to determine when a subject has completed a KA task
appropriately. In most cases, we take advantage of the formal validation mechanisms in
EXPECT. In these cases subjects are asked to complete a KA task and make sure that
EXPECT does not report any inconsistency. In some other cases, the subjects are asked
to test the KBS with a given set of problems, and make sure they obtain the expected
results. In addition, after each experiment, we check the modifications made by the
subjects by hand.

6.2.4. DETERMINING WHAT DATA TO COLLECT

The kind of data collected during the experiment may be determined and/or limited b
what is possible in terms of instrumenting the KA tool and the KB environment. Also,
intrusive ways of recording data should be avoided. For example, we should not ask the

88

users to fill a long form to describe what they just did if that is going to disrupt their train
of thought and make the overall time to complete the task longer.
The following data was collected during the execution of our scenarios:

Time to complete the whole KA task.

Automatic log of changes performed to the KB (e.g., a new parameter was added
to a goal).

Automatic log of errors in the KB after each change to the KBS (e.g., a problem
solving goal cannot be achieved). These errors are detected automatically by the
EXPECT framework and hence are available in both the basic and the enhanced
KA tool.

Automatic log of the features of the KA tool used during the experiment (e.g.,
the highlighting of unachievable goals).

Detailed notes of the actions performed by the subjects (taken manually by the
experimenters) including how they approached the problem and what materials
they consulted. For this purpose we ask the subjects to voice what they are
thinking and doing during the execution of the scenario. We do not use video
cameras and tapes, since we find the notes to be sufficient and more cost-
effective.

Questionnaires that the subjects fill out at the end of the experiments, with
questions regarding the usability of the tools

The data collected should be sufficient to measure our hypothesis and confirm whether
they stand or not. Collecting fine grained data is very useful because it not only
proves/disproves the hypotheses, but it also helps to explain the outcome of the
experiment, and to explore the potential causes of certain experiment outcomes. For
example, the analysis of the sequence of changes performed to the KB revealed that
some subjects spent considerable amount of time correcting their own mistakes.
We find that conducting pre-tests is very useful not only to help refine the actual
evaluation setup but also the data collection strategy.

6.2.5. Analyzing the Data

To illustrate this step, we show some data from the experiments with ETM and EMeD,
and the conclusions that we extracted from them.

89

Figure 1 compares the subjects performance at each step of the modification for one of
the scenarios of ETM. A detailed analysis of this figure reveals some anomalies that
might have affected the results. For example, this figure shows that Subject 3 in the
control group spent some extra amount of time analyzing incorrect results and fixing
errors caused by his/her own mistakes (7 minutes in Change 4 and 1 minute in Change
5). Recovering from mistakes takes a significant amount of time. Hence, it seems unfair
to compare the performance of subjects when some of them made mistakes that were not
related to the use of ETM. However, even without considering this extra time the time
spent by Subject 3 does not come close to the time of the subjects that used ETM.

Table 2 shows some of the data collected for EMeD. The first column shows the average
time to complete tasks for each user group. We had (1) four knowledge engineers who
had not used EMeD before but were familiar with EXPECT (2) two knowledge
engineers not familiar with EXPECT, (3) four users not familiar with AI but had formal
training in computer science, and (4) two users with no formal training in AI or CS. The
second column shows the average number of problem-solving methods added. The last
column shows the average time to build one problem solving method. The results for
different user groups are shown separately to contrast the results. The last row in the
table summarizes the results.

6.2.6. ASSESSING THE EVIDENCE FOR OR AGAINST HYPOTHESES AND

CLAIMS

The following are our conclusions from the experiments with ETM:

• Subjects using ETM (that made no mistakes) took less time to complete the
assigned KA tasks. These reductions on time depended on the complexity of the
KA tasks and on the subject's previous experience with EXPECT. Subjects in
both groups, ETM and the control group, made costly mistakes that severely
affected their completion time yet handling those kinds of mistakes was outside
of the scope of ETM. As a result, these data points are problematic. Section
Error! Reference source not found, discusses this issue further. In (Tallis, 99)
we present a detailed analysis of the cases that included mistakes and suggest
that if the time incurred in handling the mistakes is subtracted then subjects in
the control group take longer to complete the modification than subjects using
ETM.

• The differences in time were greater for the less experienced subjects.

• The experiments did not show clear evidence that ETM would reduce the
number of user mistakes.

90

ETM was able to guide subjects throughout all the required changes of the
scenarios for most of the subjects that used ETM. In the few cases in which
subjects had to perform changes without ETM, these cases were out of the scope
of ETM. This virtue of ETM was not predicted beforehand.

The following statements summarize our conclusions from the EMeD experiments:

• Subjects using EMeD took less time to complete the KA tasks. EMeD was
able to reduce the development time to 2/3 of the time that users needed without
it.

• The differences in time were not so evident for the less experienced subjects. The
ratio for less experienced subjects remain about the same as the ratio for
EXPECT users.

Additionally, the results show that subjects needed to add slightly less KB elements with
EMeD. We may use this additional finding to explore some other hypotheses in the
future, such as the effect of EMeD on the quality of the output KBS. Also, we may
investigate why the ratios did not improve as predicted for the less experienced users.
Sometimes the results provide only some evidence for our hypotheses because they may
not be strong enough to confirm the hypotheses conclusively. This attests to the
difficulty of designing this kind of experiments.

We also find very useful to analyze the data in detail, looking for interesting and
unexpected phenomena. For example, the ETM experiment showed that subjects
followed KA Scripts as checklists for the steps that needed to be performed.
Consequently, the subjects that used ETM did not omit as many changes as the subjects
in the control group, which was an interesting observation about why KA Scripts are
useful.

6.3. Lessons Learned

To help others avoid some of the pitfalls that we encountered in the design of our
experiments, we list here some of the issues that we had to address:

• The experiment design is constrained by the limited number of users. For
many user studies of KA tools, the time required from subjects and
experimenters and the specific qualifications that subjects have to meet (e.g.,
domain experts, knowledge engineers) constitute a practical limit in the
number of subjects included in a study. This significantly impacts the design of
an experiment. The experiment has to be carefully designed to control as much
as possible the variables that affect the outcome of the experiment because the
number of subjects involved tends to be small and we cannot rely in the

91

statistics to compensate for these variability ..Unfortunately, this variables are
often very difficult to control.

User make mistakes that are outside the scope of the tool. During the
ETM experiments, subjects in both groups made (and then fixed) mistakes not
related to the features of the tools that we were evaluating. The nature of these
mistakes and the time that subjects spent fixing them varied. This was one of the
factors that most severely affected the results of the experiments, in which some
subjects spend more than half of their time interpreting and repairing their own
mistakes. The following are some types of mistakes made by the subjects during
the experiment that were not intended to be prevented by our KA tools:

Syntax errors: Subjects made syntax errors while entering new
knowledge base elements using a text editor. Syntax errors were
immediately detected by a parser included in both the basic and the
enhanced versions of the KA tools and were reported back to the users.
Although some errors were more difficult to interpret than others, all of
these were simple to repair. Neither the text editor or the parser were
among the KA tool features being evaluated.

Misuse of the domain structures: Subjects got confused while entering
complex knowledge base elements that made reference to other
elements of the KB. For example, a subject referred to the HEIGHT of a
RIVER instead of to the HEIGHT of the BANK of a RIVER. Most of
these errors were immediately detected by a KB verification facility
included in both versions of the tool. These errors were reasonable
simple to repair.

Misconceptions of the domain model: Subjects approached the KA task
in a wrong way because they had misunderstood some aspects of the
domain. For example, one subject wrongly believed that instance of
SEAPORTS would point out to its LOCATION. However, this was not
the relation that was represented in our model but its inverse (i.e.,
LOCATIONS pointed to its SEAPORTS instead of SEAPORTS to its
LOCATIONS). Some of these errors were detected along the evolution
of the KA task when the subjects encountered clear contradictions that
made them revise their interpretation of the domain. Some other errors
were not detected until the subjects, believing that they had finished the
assigned task, checked the KB with the provided sample problems and
obtained wrong results. Detecting and repairing these errors was very
difficult and sometimes required to undo some modifications made
erroneously by the user.

92

Misunderstanding of the assigned KA task and/or omission of requested
changes. Subjects performed a sequence of wrong modifications
because they had misunderstood the assigned task or oversaw some
changes. Locating and repairing these errors was ver difficult and
sometimes required to undo some modifications made erroneously by
the user.

Differences in subject performance. In one of the experiments the individual
differences in performance among subjects was so pronounced that it was very
hard to compare results across subjects. To make things worse, there were no
apparent indicators that could let us predict in advance the performance of
subjects in order to assign them better to the different groups. This situation
forced us to compare only the difference in performance in using both tools
for each subject (i.e., to compare the performance of each subject in each one of
the scenarios) and distorted the analyses based on aggregated data. The following
are some of the characteristics that made subjects to perform differently: being
extra cautious (e.g., they checked carefully each modification that the
performed), exploring the tool's features during the experiment, critiquing the
tool during the experiment, making decisions faster, typing faster or managing
the text editor more skillfull .

Differences in understanding the domain, the assigned tasks, or the use of
the KA tool. Some subjects did not understand correctly the domain or the
assigned task. This caused them to make mistakes or to stop in the middle of the
experiment to clarify the instructions or the domain specifications. Other subjects
did not understand some features of the KA tool and could not take
advantage of them, which presumably made them take longer time to complete
the tasks.

• Different ways to solve the assigned tasks. In some experiments, subjects
solved the assigned tasks in different ways, hence the differences in performance
are affected by the differences in the amount of work required to implement the
different solutions. For example, some subjects defined few general KB
elements that applied to several cases while others defined several specific KB
elements that applied to few cases each; some subjects modified existing
knowledge to handle new requirements while others added new knowledge to
handle them; some subjects relied more in the tool's intrinsic inference
capabilities while others preferred to state facts and procedures explicitly.

The design of experiments that control all of the above factors is not always feasible.
Besides, there is always the possibility that other unforeseen factors also affect the
outcome of the experiments. A practical alternative to enforcing stricter controls is to
collect very fine grained measurements throughout the execution of the experiment and

93

based on these measurements analyze the results carefully. The collection of fine
grained measurements has other advantages as well. The execution of a KA task
involves the execution of several small activities. Table 3 lists some of the observed
activities that subjects performed during the executions of the experiments. Usually, a
KA tool supports only some of these activities. If we only take into account the subject
overall performance we are also weighing some activities that are not related to our
claims. In the future, we plan to isolate better the specific activities that our tools are
intended to support.

We have learned from our experience that a careful experiment design can enhance the
quality and utility of the collected fine gr ained measurements. For example, in one
experiment we treated the edition of a KB elements (with a text editor) as a single KB
modification action and we only recorded its initial and ending time. However, while
editing a KB element and before closing the text editor, a subject might perform several
activities which will not get individually recorded in our logs. For example, the subject
might modify several different parts ofthat element, make a mistake and then fix it, and
even spend some time deciding how to proceed with that modification. This deficiency
in our instrumentation precluded us from isolating the time incurred in modifying
individual aspects of the problem solving knowledge. This was unfortunate because we
believed that the evaluated tool would be helpful only for some of these aspects and we
could not corroborate our hypothesis.

The following list summarizes some of the lessons that we have learned from
conducting our experiments.

• Use within subject experiments. Each subject should perform two tasks, one
with the tool being evaluated and the other with the ablated tool. This helps to
compensate for differences in user performance. Both tasks should be of
comparable complexity.

Minimize the variables unrelated to the claims to be proven. For example, in one
of our experiments the KA tool allowed users to perform the same modification
through different mechanisms: using a text editor or a menu based interface. The
multiplicity of mechanisms to perform a modification did not add any value to
the experiment, however it introduced unnecessary variability that complicated
the analysis of the results.

Minimize the chances that subjects make mistakes unrelated to the claims. Do
not introduce unnecessary complications to the KA tasks. One of our
experiments required that the subjects used a command that is hard to
understand. Since the tool to be evaluated did not provide any support to handle
this command it would have been better to avoid the need for that command in
the experiment.

94

Isolate as much as possible the KA activities and the data that are relevant to the
hypotheses. It was a good decision for the evaluation of ETM to split the KA
task in two parts: before and after the first KB modification because ETM is
concerned with the latter. Discriminating these two parts helped to perform a
more focused evaluation of ETM.

Ensure that subjects understood the domain and the assigned KA task. In the
EMeD experiments the subjects discussed with the experimenters their
understanding of the assigned task. These subjects had less problems in
executing the assigned tasks than the subjects in the ETM experiments.

• Avoid the use of text editors. The use of a text editor in our experiments caused
subjects to make syntax errors. The differences in the subject's skills with the text
editor program also affected the results of the experiments. It also did not allow
us to discriminate the fine grained activities performed by the subjects.

6.4. A note on Statistical Analysis

As we mentioned earlier, the cost and resources required by empirical controlled user
studies of KA tools result in relatively small scale experiments. Given the small number
of subjects and tasks involved, it does not seem appropriate to analyze the statistical
significance of our results. Researchers in other areas concerned with evaluation do not
seem to consider this a crucial issue in current evaluation work. In any case, it is
interesting to note that our results stand up to standard tests of statistical significance.
For example, a t-test on the results reported in shows that they are significant at the 0.05
level with t(2) = 7.03, p <.02. Gathering data from more subjects within each group
may be more reassuring than using these tests for validation.

6.5. Related Work on User Studies in Knowledge Acquisition and Other Fields

A few relevant evaluations of KA tools that have been conducted to date. We describe
them in terms of the methodology that we have presented in this chapter. The studies
are summarized highlighting the hypotheses/claims that were tested, the kinds of tasks
and subjects used, the experimental setup, the results reported, and any findings that
were surprising.

The TAQL study was done by Greg Yost as part of his PhD work at CMU. TAQL is a
KA tool for SOAR. Yost evaluated the tool by itself and also evaluated its performance
compared to some basic data that had been reported for two other KA tools (SALT and
KNACK).

1) Evaluation of Taql
- Hypothesis: Taql has more breadth than other KA tools and
still effective
- KA task: implement a new KB given a domain description

95

- KB domains: 10 puzzles + 9 Expert systems
- Underlying KR: production rules
- Users: Soar programmers, three subjects (including. Yost)
- Experimental setup:

- each subject given a domain description (domain-
oriented, not

implementation specs) + (at most) 3 test cases
- three rounds of evaluations, starting with simple

domains
- Data collected:

- times for task understanding, design, coding,
debugging
- bug information: how found, what error, when and how
fixed

- Results reported:
- encoding rate (minutes per Soar production) for each
subject

in each domain
- average fix time for catchable and uncatchable

errors pre and post tool
- Conclusions:

- subjects reduced their encoding rates over time
(i.e., programmed faster)

- encoding rate did not slow down as task size
increased

2) Comparing Taql, Knack, and Salt
- Users:

- one subject for each case
- reimplementation of original system (Knack and Salt

cases)
- Results reported:

- development time (hours) for Taql and for two tools
(Knack and Salt)

at their respective domains (time reported for
reimplementation)

- Conclusions:
- Taql outperformed role-limiting KA tools (this was a

surprise)

The TURVY study was conducted by David Maulsby and Allen Cypher at the
Advanced Technologies Group at Apple. This experiment was more on the area of HC
rather than KA, but it is relevant here because it tests an approach to programming b
demonstration that learns as a user performs simple tasks.

- Hypotheses:
- HI: all users would employ same set of commands even
if told nothing in advance about the instructions that

96

Turvy understands,table of predicted set of commands was
compiled in advance
- H2: users would end up communicating using Turvy's
terms
- H4: users would tech Turvy simple tasks easily and
complex tasks withreasonable effort

- KA tasks and KB domains:
- modify bibliography format (main tests)
- file selection
- graphical editing

- Underlying KR: none
- Users: non-programmers
- Experimental setup:

- "Wizard of Oz" experiment (no real software, user
interacts with facilitator)
- several rounds, different types of subjects

- on main task:
- pre-pilot experiment
- pilot experiment (4 users)
- main experiment (8 subjects)

- on other domains:
- 3 subjects
- 2 subjects

- Data collected:
- videotapes, notes, interviews

- Results reported:
- qualitative results mostly (their intention)
- some quantitative results were obtained by post-

analysis
- Conclusions:

- Evidence for Hi, H2, H4
- Interesting findings: quiet vs talkative users

There are other experiments in the field of KA that are not directly relevant but are worth
mentioning. The Sisyphus experiments show how different groups would compare their
approaches for the same given task, but most approaches lacked a KA tool and no user
evaluations were conducted. A very controversial experiment tested whether knowledge
engineering models (sue h as KADS models) were useful to users , but it tested
knowledge elicitation through models and did not test any tools or systems. Other
evaluations have tested the use and reuse of problem-solving methods, but they measure
code reuse rather than how users benefit from KA tools.

Outside of KA, there are relevant studies in other disciplines. As we mentioned earlier,
user evaluations are very uncommon in AI research. Most evaluations involve run -time
behavior of AI software with no human in the loop . User studies are more common in
software engineering, HCI, and intelligent tutoring systems.

97

In software engineering, empirical evaluations have been used for years to evaluate tools
to support programmers. In this field, many aspects and issues in the software
development process have been under study including languages, development
environments, reuse, quality, and software management. User studies are only of
concern for a few of these topics. Interestingly, the kind of controlled methods th at we
report in this chapter generally seem to be in the minority when it comes to evaluate
software. Many studies do not involve users, others analyze some historical data that
may be available, and many collect observations and data as a software project unfolds
without any particular control settings.
User studies in the field of HCI share many of the issues that arise in the evaluation of
KA tools. An additional complication in evaluating interfaces is that they do not work in
isolation, i.e., often times an interface can only be as good as the target system that the
user ultimately operates on through the interface. On the other hand, many of the studies
in this area can involve more users and settings, since the tasks tend to be simpler and
the target users seem to be more numerous (e.g., users are not required to have domain
expertise).
In intelligent tutoring systems, there are recognized tradeoffs regarding the merits and
needs of different approaches to evaluation. Although formal eva luations are generall
preferred, their cost makes them often impractical. Informal studies tend to be more
common and seem to be sufficiently informative in practice to many researchers to
guide their work.
Our studies to date do not address thoroughly the evaluation of the product itself, i.e., the
knowledge base that results from the knowledge acquisition process. Currently, we test
that the final knowledge base has sufficient knowledge to solve the right problems and
generating the right answe rs. Other metrics, such as measures of the quality of the
knowledge base, are also important. There is relevant work along these lines in the
expert systems area as well as in software engineering. Our studies to date do not assess
either how our particular tools would improve the end -to-end process of developing a
knowledge base, which includes interviewing experts, building prototypes, maintaining
the knowledge base, and improving system performance. There is relevant work in
software engineering on evaluating the improvement to the overall software
development process, including studies specific to expert systems as software.

98

6.6. Summary

We have presented a methodology for designing user evaluations of KA tools. We have
been using it successfully in our own work to evaluate various approaches within the
EXPECT framework. We have also discussed the lessons learned from our studies of two
KA tools, and outlined some open issues. Our hope is that sharing our methodology and
our experiences with the KA community we will contribute to making our field a more
experimental and perhaps a more scientific one.

99

7. Evaluations with End Users

Developing tools that allow non-programmers to enter knowledge has been an ongoing
challenge for AI. In r ecent years researchers have investigated a variety of promising
approaches to knowledge acquisition (KA), but they have often been driven by the needs
of knowledge engineers rather than by end users. This chapter reports on a series of
experiments that we conducted in order to understand how far a particular KA tool that
we are developing is from meeting the needs of end users, and to collect valuable
feedback to motivate our future research. This KA tool, called EMeD, exploits
Interdependency Models that relate individual components of the knowledge base in
order to guide users in specifying problem -solving knowledge. We describe how our
experiments helped us address several questions and hypotheses regarding the
acquisition of problem-solving knowledge from end users and the benefits of
Interdependency Models, and discuss what we learned in terms of improving not only
our KA tools but also about KA research and experimental methodology.

7.1. Introduction

Acquiring knowledge from end users (i.e., ordinary users without formal training in
computer science) remains a challenging area for AI researchinsertfootins Copyright ä
2000, American Association for Artificial Intelligence (www.aaai.org). All rights
reserved.. Many knowledge acquisition approaches target knowledge engineers and
those that have been developed for end users only allow them to specify certain kinds of
knowledge, i.e., domain -specific knowledge regarding instances and classes but not
problem-solving knowledge about h ow to solve tasks. Alternative approaches apply
learning and induction techniques to examples provided by users in a natural way as the
are performing a task. Although these tools may be more accessible to end users, the
are only useful in circumst ances where users can provide a variety of examples. When
examples are not readily available, we may need knowledge acquisition (KA) tools for
direct authoring.
In recent years, researchers have investigated a variety of new approaches to develop KA
tools, in many cases targeted to end users though in practice motivated by knowledge
engineers. Few user studies have been conducted and the participants are typically
knowledge engineers. Without studies of the effectiveness of KA approaches and tools
for end users, it is hard to assess the actual requirement of end users and our progress
towards satisfying them. One of the challenges of this work is to devise a methodology
and experimental procedure for conducting user studies of KA tools.
As KA researchers, we wanted to test our approach and KA tools with end users. A
central theme of our KA research has been how KA tools can exploit Interdependency
Models'! that relate individual components of the knowledge base in order to develop
expectations of what users need to add next. To give an example of interdependencies,
suppose that the user is building a KBS for a configuration task that finds constraint
violations and then applies fixes to them. When the user defines a new constraint, the
KA tool has the expectation that the user should specify possible fixes, because there is

100

an interdependency between the problem-solving knowledge for finding fixes for
violated constraints and the definitions of constraints and their possible fixes.

EMeD (EXPECT Method Developer) , a knowledge acquisition tool to acquire problem-
solving knowledge, exploits Interdependency Models to guide users by helping them
understand the relationships among the individual elements in the knowledge base. The
expectations result from enforcing constraints in the knowledge representation system,
working out incrementally the interdependencies among the different components of the
KB. Our hypothesis is that Interdependency Models allow users to enter more
knowledge faster, particularly for end users.

In addition to the goal of evaluating the role of Interdependency Models, we had more
general questions. Users with different degrees of exposure to computing environments
would probably perform differently. But in what ways? How much training and of what
kind is needed before they can make reasonably complex additions to a knowledge base
with a KAtool? What aspects of a knowledge base modification task are more
challenging to end users? What kinds of interfaces and interaction modalities would be
appropriate and in what ways should they be different from those that knowledge
engineers find useful

This chapter reports on a study to evaluate our KA tools with domain experts (end users)
who extended a knowledge base in their area of expertise. This study was conducted as
part of an evaluation of the DARPA High Performance Knowledge Bases program. We
also present our experimental design and the preliminary study with users with varying
degrees of background in AI and computer science, which was performed before the
evaluation. We analyze the results in terms of our initial questions and hypotheses, and
extract some general conclusions that motivate future directions of KA research.

101

7.2. EMeD: Exploiting Interdependency Models to Acquire
Problem-Solving Knowledge

((name method I)
(capability (cheek (obj (?(is (spec-of force-ratio)))

(of (?1 is (spec-of main-task)))
(in (?c is (insl-orCOA)))))

(result-type (inst-of)es-lio))
(method (check (obj (spec-of force-ratio))

(of (main (ask-of (dosc-sLafement-of ''c)))))

((name method!) ^
(capability (check (obj (spc-c-of (force ratio)))

(of (?t is (in5t-ofmiliUrj-U.sk)))))
(result-type (inst of yes-no))
(method (is less-or-equal

(obj (estimate (obj (spec-of rec|tiired-force-ratio))
(for ?t))) :

(than (estimate (obj (spec-of availablcfprce-ratio))
(for ?!)))))) ; /

((name method.)) y ;
(capability (estimate (ohj (?f is (spec-of required-fo-tce-ratio)))

(for (?s is (iast-of military fails)))))
(result-type (tnst-of number))
(method...)) /

((name methods) ^
(capability (estimate (obj Cf is (spec of available force-ratio)))

(for (?t is (insl-o(military task)))))
(result-type (inst of number))
(methcM)))

Table 3: Examples of EXPECT Problem-Solving Methods.

EMeD (EXPECT Method Developer) is a knowledge acquisition tool that allows users to
specify problem-solving knowledge. This section summarizes the functionality of the
tool, further details and comparison with other tools are provided in.

EMeD is built within the EXPECT framework. EXPECT's knowledge base contains
ontologies that describe the objects in a domain, and problem-solving methods that
describe how tasks are achieved. Tasks are specified as goal hierarchies, where a goal is
broken into smaller subgoals all the way down to primitive or basic tasks. The problem-
solving methods specify how the decomposition lakes place. EXPECT provides a rich
language that was developed with understandability and intelligibility in mind, since it
was used to generate adequate explanations for knowledge-based systems. Figure 1
shows some examples of EXPECT methods. Each problem-solving method has a
capability that describes what the method can achieve, a result type that specifies the
kind of result that the method will return upon invocation, and a method body that
specifies the procedure to achieve the capability. The method body includes constructs
for invoking subgoals to be resolved with other methods, retrieving values of concept
roles, and control constructs such as conditional expressions and iteration. The arrows in

102

the figure indicate some interdependencies, where a head of an arrow points to a sub-
method which can solve a given subgoal. For example, the second method shown in the
Figure 1 checks the force ratio of a given military task by comparing its required force
ratio and the available force ratio. The result should be yes or no depending on whether
the required ratio is less than the available ratio.

EXPECT derives an Interdependent Model (IM) by analyzing how individual
components of a knowledge base are related and interact when they are used to solve a
task An example of interdependency between two methods is that one may be used b
the other one to achieve a subgoal in its method body. Two methods can also be related
because they have similar capabilities. EMeD exploits IM in three ways: (1) po.nt.ng
out missing pieces at a given time; (2) predicting what pieces are related and how; (3)
detecting inconsistencies among the definitions of the various elements in the knowledge

base.

uw„w ■;*,,*.-..< "-• "^"J^ V, ,„ ,,„„.„ „n^v:-.«Mi.|

,:„ „;, --~^";;;i^,";~mV:rlII ,„,.„ „« * <..«t^> —►

<.ul-.,. I.H m I. 1..«-« «.M-1-»-] l\..nl out':
 , i^ssln^icnowleaigtg'

" fs-öf hcW.rrncfeo'd:y-f'- m« mo« win t^ivtoh Trf">

((rum. r*w-*i**<*»3) j.„„^J «.iUb>- -fwc» "«' Wl)

Table 4: The Method Proposer of the EMeD Acquisition Interface.

When users define a new problem-solving method, EMeD first finds the
interdependencies and inconsistencies within that element, such as if any undefined
variable is used in the body of the method. If there are any errors within a method
definition, the Local-Error Detector displays the errors and it also highlights the
incorrect definitions so that the user can be alerted promptly. The Global-Error Detector
analyzes the knowledge base further and detects more subtle errors that occur in the

context of problem solving.

By keeping the interdependencies among the problem-solving methods and factual
knowledge, and analyzing interdependencies between each method and its sub-methods,

103

the Method Sub-method Analyzer in EMeD can detect missing links and can find
undefined problem-solving methods that need to be added. EMeD highlights those
missing parts and proposes an initial version of the new methods, as shown in Figure 2
In this example, a method for checking the force ratio for an assigned task needs to
compare the available force ratio (i.e, ratio between blue units and red units) with the
force ratio required for that task. When the system is missing the knowledge for the
available ratio (i.e., missing method4), the Method Proposer in EMeD notifies the user
with a red diamond (a diamond shown in Figure 2 on the top) and displays the ones
needed to be defined. It can also construct an initial sketch of the capability and the
result type of the new method to be defined. What the new method has to do (capability
of the method) is to estimate the available force ratio for a given military task. Since we
are computing a ratio, the result type suggested is a number (method sketch in Figure 2).
Users can search for existing methods that can achieve a given kind of capability using
the Method-Capability Hierarchy, a hierarchy of method capabilities based on
subsumption relations of their goal names and their parameters.

Finally, EMeD can propose how the methods can be put together. By using the Method
Sub-method Analyzer for analyzing the interdependencies among the KB elements, it
can detect still unused problem-solving methods and propose how they may be
potentially used in the system.

7.3. Experimental Design

As described in the introduction, current KA research lacks evaluation methodology. In
recognition of the need for evaluation, the community started to design a set of standard
task domains that different groups would implement and use to compare their work.
These Sisyphus experiments show how different groups would compare their approaches
for the same given task, but most approaches lacked a KA tool and no user evaluations
were conducted. Other evaluations have tested the use and reuse of problem-solving
methods, but they measure code reuse rather than how users benefit from KA tools.
Other KA work evaluated the tool itself. TAQL's performance was evaluated b
comparing it with some basic data that had been reported for other KA tools. There were
some user studies on ontology editors. In contrast with our work, these evaluations were
done with knowledge engineers. Also since the experiments were not controlled studies,
the results could not be causally linked to the features in the tools. Our research group
has conducted some of the few user studies to date, and as a result we have proposed a
methodology that we use in our own work. It turns our that the lack of user studies is not
uncommon in the software sciences. In developing a methodology for evaluation of KA
tools, we continue to draw from the experiences in other areas.
Our goal was to test two main hypotheses, both concerned with Interdependency Models
(IMs):

Hypothesis I: A KA tool that exploits lMsenables users to make a wider range of
changes to a knowledge base because without the guidance provided with IMs users
will be unable to understand how the new knowledge fits with the existing
knowledg and complete the modification.

104

Hypothesis II: A KA tool that exploits IMs enables users to enter knowledge faster
because it can use the IMs to point out to the user at any given time what additional
knowledge still needs to be provided.

There are three important features of our experiment design:
In order to collect data comparable across users and tasks, we used a controlled
experiment. Thus, we designed modification tasks to be given to the
participants based on typical tasks that we encountered ourselves as we
developed the initial knowledge base.

Given the hypotheses, we needed to collect and compare data about how users
would perform these tasks under two conditions: with a tool that exploits IMs
and with a tool that does not (this would be the control group). It is very
important that the use of IMs be the only difference between both conditions.
We designed an ablated version of EMeD that presented the same EMeD
interface but did not provide any of the assistance based on IMs.

Typically, there are severe resource constraints in terms of how many users are
available to do the experiments (it typically takes several sessions over a period
of days). In order to minimize the effect of individual differences given the
small number of subjects, we performed within-subject experiments. Each
subject performed two different but comparable sets of tasks (each involving the
same kind of KA tasks but using a different part of the knowledge base), one
with each version of the tool.

In order to determine when a KA task was completed, the subjects were asked to solve
some problems and examine the output to make sure they obtained the expected results.
In addition, after each experiment, we checked by hand the knowledge added by the
subjects.

Participants were given different combinations of tools and tasks and in different order,
so as to minimize transfer effects (i.e., where they would remember how they did
something the second time around).

EMeD was instrumented to collect data about the user's performance, including actions
in the interface (e.g., commands invoked and buttons selected), the knowledge base
contents at each point in time, and the time at which each user action takes place. These
provide objective measurements about task completion time and the use of specific
features. Since this data was insufficient to understand what things users found hard and
difficult to do with the tool or why a certain action was not taken, we collected additional
information during the experiment. We asked users to voice what they were thinking
and what they were doing and recorded them in transcripts and in videotapes (during the
experiments with domain experts). We also prepared a questionnaire to get their
feedback, where instead of questions with free form answers we designed questions that
could be answered with a grade from 1 (worst) to 5 (best).

105

7.4. Preliminary Study

Since it is expensive to nin user studies and hard to get domain experts in the field, we
wanted to filter out distractions which are unrelated with our claim, such as problems
with the tool that are not related to Interdependency Models. We also wanted to
understand whether our interface and KA tool are appropriate for end users and how
different types of users interact with it, so that we can improve our tools and our
experimental methodology. For these reasons, we performed a preliminary study before
the actual evaluation with domain experts.

The study used a spectrum of users that had gradually less background in AI and CS.
We had (1) four knowledge engineers who had not used EMeD before but were familiar
with EXPECT, (2) two knowledge engineers not familiar with EXPECT but that had
experience with knowledge-based systems, (3) four users not familiar with AI but had
formal training in computer science, and (4) two users with no formal training in AI or
CS.

1*

1«

Z t

&

1
' :■: l'l--. ":_^ _ -'."- - —-•_ •__''_LS'" _ '

"™!

,|,KB Fimfe.-if.^'^ I.«n*<l«>CS Ho torn.. CS

Table 5: Average number of hints given to each group of subjects during the
preliminary user study.

Since a major goal of this preliminary study was to understand our KA tool, we allowed
the subjects to ask for hints when they were not able to make progress in the task (this
was not allowed in the final evaluation). These hints allow us to categorize the basic
types of difficulties experienced by users and adjust the tool based on them.

106

3ithÖd/SUtc?t .in. ^^JJ:... —

Th* /flu« wMI i«t«Mult TTD«^ » numbw

Ir^^-^-'Ä'

'^ T-9 « 21 «1 r'ftt i^: "i-'i 5 p e c;-«*i-,J*v ä I f ab 11'3*»««.^

I < |duUr-(. I ;obj; fgE&iStti * -. v .VT ;.---- ■■;-----1.
J •::;

„kp<sn-oMiNST-orTMiNC)l>> r-
<th..

i^i/msr-jicin

Table 6: Structured Editor.

Figure 3 shows the number of hints given to the subjects in this stud . More hints were
always needed with the ablated version. The number of hints increases dramatically
when subjects lack CS background. We analyzed all the hints, and separated them into
two major categories. Class A hints consist of simple help on language and syntax, or
clarification of the tasks given. Since syntax errors are unrelated to our claims about
Ms, we developed a Structured Editor for the new version of EMeD (version 2) that
guides users to follow the correct syntax. Figure 4 shows the new editor which guides
the users to follow the correct syntax. Users can build a method just using point and click
operations without typing.

Class B hints were of a more serious nature. For example, users asked for help to
compose goal descriptions, or to invoke a method with the appropriate parameters.
Although the number of times these hints were given is smaller and the number is even
smaller with EMeD, they suggest new functionality that future versions of EMeD should
eventually provide to users. The subjects indicated that sometimes the tool was showing
too many items, making it hard to read although they expected this would not be a
problem after they had used the tool for a while and had become used to it. Since these
presentation issues were affecting the results of the experiment and are not directl
evaluating the IMs, the new version of EMeD (version 2) has more succinct views of
some of the information, showing details only when the user asks for them. Other hints
pointed out new ways to exploit IMs in order to guide users and would require more
substantial extensions to EMeD that we did not add to the new version. One area of
difficulty for subjects was expressing composite relations (e.g., given a military task,

107

retrieve its assigned units and then retrieve the echelons of those assigned units).
Although EMeD helped users in various ways to match goals and methods, in some
cases the users still asked the experimenters for hints and could have benefited from
additional help. The fundamental difficulties of goal composition and using relations
still remained as questions for the real experiment.

In addition to improving the tool, we debugged and examined our experimental
procedure, including tutorial, instrumentation, questionnaire, etc., especially based on the
the results from the fourth group.

We found out how much time end users would need to learn to use our tools. The tutorial
given to the users was done with simpler sample tasks from the same knowledge base.
The training time was significantly longer and harder for the subjects with no technical
background (2 hours for knowledge engineers and 7.5 hours for the project assistants).
More details of this study are discussed in, showing that even the end users were able to
finish complex tasks, and that the KA tool saves more time as users have less technical
background.

As described above, we extended our tool based on the pre-test results, creating a new
version of EMeD (version 2). The next section describes the evaluation with domain
experts with this new version of EMeD.

7.5 Experiment with Domain Experts

The participants in this experiment were Army officers facilitated by the Army Battle
Command Battle Lab (BCBL) at Ft Leavenworth, KS. They were asked to use our KA
tools to extend a knowledge based system for critiquing military courses of action. Each
subject participated in four half-day sessions over a period of two days. The first session
was a tutorial of EXPECT and an overview of the COA critiquer. The second session
was a tutorial of EMeD and a hands-on practice with EMeD and with the ablated
version. In the third and fourth sessions we performed the experiment, where the
subjects were asked to perform the modification tasks, in one session using EMeD and in
the other using the ablated version. Only four subjects agreed to participate in our
experiment, due to the time commitment required.

An important difference with the previous study is that during this experiment subjects
were not allowed to ask for hints, only clarifications on the instructions provided. As
soon as a participant would indicate that they could not figure out how to proceed, we
would terminate that part of the experiment. In order to collect finer-grained data about
how many tasks they could complete, we gave each subject four knowledge base
modification tasks to do with each version of the KA tool. The reason is that if we gave
them one single task and they completed almost but not all of it then we would not have
any objective data concerning our two initial hypotheses. The four tasks were related,
two of them were simpler and two more complex. The easier tasks required simple
modifications to an existing method (e.g., generalize the existing methods that compute
the required force ratio for "destroy" tasks into methods that can compute the ratio for

108

any military tasks in general). The more complex tasks required adding new methods,
such as the second method shown in Figure 1.

7.6. Results and Discussion

The main results are shown in Figure 5. Figure 5-(a) shows the average time to complete
tasks (for the completed tasks only). None of the subjects was able to do the more
complex tasks with the ablated version of EMeD. Where data is available (the easier
tasks), subjects were able to finish the tasks faster with EMeD. Figure 5-(b) shows the
number of tasks that the subjects completed with EMeD and with the ablated version,
both by task category and overall. The solid part of the bars show the number of tasks
completed. We show with patterned bars the portion of the uncompleted tasks that was
done when the subjects stopped and gave up (we estimated this based on the portion of
the new knowledge that was added). Figure 5-(c) shows the same data but broken down
by subject6. The results show that on average subjects were able to accomplish with
EMeD almost twice as many tasks as they accomplished with the ablated version. The
results support our claims that Interdependency Models can provide significant help to
end users in extending knowledge bases.

6We had noticed early on that Subject 4 had a different background from the other three,
but unfortunately we were not able to get an alternative subject.

109

Tasks completed (tor each subject)

Figure 7: Results of the evaluation with domain experts.

It would be preferable to test additional subjects, but it is often hard for people
(especially domain experts) to commit the time required to participate in this kind of
study. Given the small number of subjects and tasks involved it does not seem
appropriate to analyze the statistical significance of our results, although we have done
so for some of the initial experiments with EMeD with a t-test showing that they were
significant at the 0.05 level with t(2)=7.03, p < .02. Gathering data from more subjects
may be more reassuring than using these tests for validation.
Our experience with these experiments motivates us to share a few of the lessons that we
have learned about knowledge acquisition research:

110

D Can end users use current KA tools to modify the problem-solving
knowledge of a knowledge-based system? How much training do they need
to start using such KA tools? Would they be able to understand and use a
formal language?
As we described earlier, we spent 8 hours (two half-day sessions) for training.
They spent roughly half of that time learning EXPECT's language and how to
put the problem-solving methods together to solve problems. The rest of the
time was spent learning about the KA tool and its ablated version. We believe
that this time can be reduced by improving the tool's interface and adding on-
line help. We also recognize that more training may be needed if users are
expected to make much more complex changes to the knowledge base. At the
same time, if they did not need to be trained on how to use an ablated version of
the tool they would not need to learn as many details as our subjects did.
Our subjects got used to the language and could quickly formulate new problem-
solving methods correctly. They did not seem to have a problem using some of
the complex aspects of our language, such as the control structures (e.g., if-then-
else statement) and variables. It took several examples to learn to express
procedural knowledge into methods and sub-methods and to solve problems.
EMeD helps this process by automatically constructing sub-method sketches and
showing the interdependencies among the methods. Retrieving role values
through composite relations was also hard. Providing a better way to visualize
and to find this kind of information would be very useful.
As a result of this experiment, we believe that with current technology it is
possible to develop KA tools that enable end users to add relatively small
amounts of new problem solving knowledge, and that they can be trained to do
so in less than a day.

D How much do Interdependency Models help? What additional features
should be added to our KA tools?

Functionalit Avg No. invocations Usefulness rating No Users who
used it

Method Proposer 10.5(1.25 4.7 4
Method Sub-
method Analyzer

8.5 4.3 4

Method-
Capabilit
Hierarchy

2.75 4.5 2

Global-error
Detector

3 3.3 4

Table 1: Average Use of EMeD's Functionality.

Overall, the Interdependency Models exploited via different features in EMeD
were useful for performing KA tasks. Table 1 shows the average use of each of
the Components of EMeD, in terms of the number of times the user invoked

111

them 7. The subjects were very enthusiastic about the tool's capabilities, and on
occasion would point out how some of the features would have helped when
they were using only the ablated version.

According to the answers to the questionnaire, using EMeD it was easier to see
what pieces are interrelated. That is, visualizing super/sub method relations
using Method Sub-method Analyzer was rated as useful (4.3/5). Also detecting
missing knowledge and adding it was easier with EMeD's hints. Highlighting
missing problem-solving methods and creating initial sketch based on
interdependencies (by Method Proposer) were found to be the most useful
(4.7/5).

The Structured Editor used in this version of EMeD provided very useful
guidance, and there were less errors for individual method definitions. The
Local-Error Detector was not used for the given tasks.

D What aspects of a modification task are more challenging to end users?
Almost everyone could do simple modifications, which required that the
subjects browse and understand the given methods to find one method to be
modified and then changing it.
Some subjects had difficulties starting the KA tasks, when EMeD does not point
to a particular element of the KB to start with. Although they could use the
search capability in EMeD or look up related methods in the Method-Capability
Hierarchy, this was more difficult for them than when the tool highlighted
relevant information.
Typically, a KA task involves more than one step, and sometimes subjects are

not sure if they are on the right track even if they have been making progress. A
KA tool that keeps track of what they are doing in the context of the overall task
and lets them know about their progress would be very helpful. Some of the
research in using Knowledge Acquisition Scripts to keep track of how individual
modifications contribute to complex changes could be integrated with EMeD.

D How do KA tools need to be different for different kinds of users
We did not know whether end users would need a completely different interface
altogether. It seems that a few improvements to the presentation in order to
make the tool easier to use was all they needed. We did not expect that syntax
errors would be so problematic, and developing a structured editor solved this
problem easily. On the other hand, we were surprised that end users found some
of the features useful when we had expected that they would cause confusion.
For example, a feature in the original EMeD that we thought would be

7We show the number of times the users selected them, except for the Method Proposer
where we show the number of times the system showed it automatically as well as the
number of times selected (in parenthesis) when applicable.

112

distractive and disabled is organizing problem-solving methods into a hierarchy.
However, the feedback from the end users indicates that they would have found
it useful.

Although EMeD is pro-active in providing guidance, we believe that some users would
perform better if we used better visual cues or pop-up windows to show the guidance.
As the users are more removed from the details, the KA tool needs to do a better job at
emphasizing and making them aware of what is important

7.7. Summary

In this chapter, we presented an evaluation of a KA tool for acquiring problem-solving
knowledge from end users who do not have programming skills. We described the
experimental procedure we have designed to evaluate KA tools, and how we refined the
design with a preliminary user study with users with gradually less background in AI and
computer science. The KA tool that we tested exploits Interdependency Models, and the
results show that it helped end users to enter more knowledge faster. We also discussed
additional lessons that we have learned that should be useful to other knowledge
acquisition researchers.

113

Bibliography
[Aamodt et. al., 1993] Aamodt, A. et. al. Task features and their use in CommonKADS.
Technical report KADS-II7T1.5VUB/TR/014/1.0, Free University of Brussels, 1993.

[Arens et al. 1996] Arens, Y., Knoblock, C, and Shen, w. Query Reformulation for
Dynamic Information Integration. In Journal of Intelligent Information Systems, 1996.

[Bennett 1985] Bennett, J. S. ROGET: A knowledge-based system for acquiring the
conceptual structure of a diagnostic expert system. In Journal of Automated Reasoning,
1, pp. 49-74, 1985.

[Breuker and van de Velde 1994] Breuker, J. and van de Velde, W. CommonKADS
Library for Expertise Modelling. IOS Press, Amsterdam, 1994.

[Chandrasekaran, 1986] B. Chandrasekaran. Generic tasks in knowledge -based
reasoning. IEEE Expert, l(3):23-30, 1986.

[Clancey 1985] Clancey, W.J., Heuristic classification. Artificial Intelligence, 27(3):289-
350, 1985.

[Eshelman 1988] Eshelman, L. MOLE: A knowledge-acquisition system for cover-and-
differentiate systems. In S. Marcus (Ed.), Automating Knowledge Acquisition for Expert
Systems, Kluwer Academic Publishers, Boston, 1988.

[Gil et al. 1994] Gil, Y., Hoffman, M., and Täte, A. Domain -specific criteria to direct
and evaluate planning systems. In ARPA/Rome Laboratory Knowledge -based Planning
and Scheduling Initiative Workshop Proceedings, pp. 433-444, Tucson, Arizona,
February 1994.

[Gil and Paris 1994] Gil, Y., and Paris, C.L. Towards Method-Independent Knowledge
Acquisition. In Knowledge Acquisition, 6 (2), pp. 163-178, 1994.

[Gil and Swartout 1994] Gil, Y. and Swartout, W. EXPECT: a Reflective Architecture
for Knowledge Acquisition. In ARP A/Rome Laboratory Knowledge-based Planning and
Scheduling Initiative Workshop Proceedings, pp. 433 -444, Tucson, Arizona, February
1994.

[Gil 1994] Gil, Y. Knowledge Refinement in a Reflective Architecture. In Proceedings of
the National Conference on Artificial Intelligence (AAAI-94), 1994.

[Gil and Melz 1996] Gil, Y. and Melz, E. Explicit Representations of Problem-Solving
Methods for Knowledge Acquisition. In Proceedings of the Na tional Conference on
Artificial Intelligence (AAAI-96), 1996.

[Klinker et al. 1991] Klinker, G., Bhola, C, Dallemagne, G., Marques, D., and
McDermott, J. Usable and reusable programming constructs, In Knowledge Acquisition,
3 (2), pp. 117-135,1991.

[Langley and Simon 1995]. Langley, P. and Simon, H. A. Applications of Machine
Learning and Rule Induction. Communications of the ACM, 38(11) 1995.

114

[MacGregor 1988] MacGregor, R. A Deductive Pattern Matcher. In Proceedings of
the Seventh National Conference on Artificial Intelligence (AAAI-88). St. Paul, MN,
August 1988.

[MacGregor 1990] MacGregor, R. The Evolving Technology of Classification-Based
Knowledge Representation Systems. In John Sowa (ed.), Principles of Semantic
Networks: Explorations in the Representation of Knowledge. Morgan Kaufmann, 1990.

[MacGregor 1994] MacGregor, R. A Description Classifier for the Predicate Calculus. In
Proceedings of the Twelfth National Conference on Artificial Intelligence, (AAAI -94),
pp. 213-220, 1994.

[Marcus and McDermott 1989] Marcus, S., and McDermott, J. SALT: A knowledge
acquisition language for propose-and-revise systems. In Artificial Intelligence 39 (1), pp.
1-37, 1989.

[McDermott 1988] McDermott, J, Preliminary steps toward a taxonomy of problem
solving methods. In Automating Knowledge-acquisition for expert systems S.Marcus
(ed), Kluwer Academic Publishing, 1988.

[Mitchell et al. 1983]. Mitchell, T., Utgoff, P., and Banerji, R. Learning by
Experimentation: Acquiring and Refining Problem -Solving Heuristics. In "Machine
Learning: An Artificial Intelligence Approach, Volume I, R. Michalski, J. Carbonell, and
T. Mitchell (Eds), Tioga, 1983.

[Moore and Paris 1993] Moore, J. D., and Paris, C. L. Planning text for advisory
dialogues: Capturing intentional and rhetorical information. In Computational
Linguistics, 19 (4), 1993.

[Moore and Swartout 1989] Moore, J. D., and W. R. Swartout. A reactive approach to
explanations. In Proceedings of the Eleventh International Conference on Artificial
Intelligence, pp. 1505-1510, Detroit, Michigan, August 1989.

[Moore and Swartout 1990] Moore, J. D., and Swartout, W. R. Pointing: A way towards
explanation dialogue. In Proceedings of the Eighth National Conference on Artificial
Intelligence, pp. 457-464, Boston, Massachusetts, August 1990.

[Musen 1992] Musen, M. A. Overcoming the limitations of role -limiting methods. In
Knowledge Acquisition 4 (2), pp. 165-170, 1992.

[Musen and Tu 1993] Musen, M. A., and Tu, S. W. Problem -solving models for
generation of task-specific knowledge acquisition tools. In J. Cuena (Ed.), Knowledge -
Oriented Software Design, Elsevier, Amsterdam, 1993.

[Porter et al. 1990]. Porter, B., Bareiss, R., and Holte, R. Concept Learning and
Heuristic Classification in Weak-Theory Domains. Artificial Intelligence 45, pp229-263,
1990.

[Schreiber et al. 1993] Schreiber, A., Wielinga, B. and Breuker, J. KADS: A Principled
Approach to Knowledge-Based Development. Academic Press, London, 1993.

[Swartout and Gil 1995] Swartout, W.R. and Gil , Y. EXPECT: Explicit Representations
for Flexible Acquisition in Proceedings of the Ninth Knowledge Acquisition for

115

Knowledge-Based Systems Workshop (KAW'95) Banff, Canada, February 26-March 3,
1995

[Swartout and Moore 1993] Swartout, W. R., and Moore, J. D. Explanation in second-
generation expert systems. In J.-M. David, J.-P. Krivine, and R. Simmons (Eds.), Second
Generation Expert Systems, Springer-Verlag, 1993.

[Swartout et al. 1991] Swartout, W.R., Paris, C.L., and Moore, J.D. Design for
Explainable Expert Systems, In IEEE Expert 6 (3), pp. 58-64, June 1991.

[Valente et al. 1994] Valente, A., van de Velde, W. and Breuker, J. CommonKADS
Library for Expertise Modelling. In CommonKADS Expertise Modeling Library, Chapter
3, pages 31-56, J. Breuker and W. van de Velde, editors. IOS Press, Amsterdam, 1994.

[Valente et al. 1996] Valente, A., Gil, Y. and Swartout, W. R. INSPECT: an Intelligent
System for Air Campaign Plan Evaluation based on EXPECT. ISI Technical memo, June
1996. Available on the Web at : the URL:
http://www.isi.edu/~valente/inspect/inspect.html.

[Wilkins 1988] Wilkins, D. E. Practical Planning: Extending the Classical AI Planning
Paradigm, Morgan Kaufmann, 1988.

»U.S. GOVERNMENT PRINTING OFFICE:

16

2001-610-055-10134

MISSION
OF

AFRL/INFORMATIONDIRECTORATE (IF)

The advancement and application of Information Systems Science

and Technology to meet Air Force unique requirements for

Information Dominance and its transition to aerospace systems to

meet Air Force needs.

