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1. Introduction 

The HPKB initiative seeks to develop large, reusable libraries of ontologies and problem 
solving methods which will ease the construction and maintenance of large knowledge 
based systems. A critical facet of HPKB is to understand how these ontologies and 
problem solving methods can be brought together to produce applications and to develop 
tools and techniques that support that process. 
When the ontologies and problem solving methods are brought together, dependencies 
will be set up between them. If one problem solving method is chosen, certain parts of an 
ontology will be used, while others will not be needed. On the other hand, if a different 
method is chosen, different parts of the ontology will be required.   Capturing these 
interdependencies that arise when ontologies and problem solving methods are actually 
used in building a KBS is critical to providing intelligent support for maintenance, 
evolution and   knowledge acquisition. Our   work   focuses   on   capturing these 
interdependencies and developing tools that use them to  support system builders and 
domain experts as they bring together the knowledge in the libraries and make it 
operational in knowledge based applications. 

Consider how this knowledge of how knowledge is used could be employed: if the shared 
ontology a KBS is based on changes after the system is built, the system builder should 
be notified, but only of the changes that affect his system. This can only be done if one 
understands how the ontology is used in that particular system.  Similarly, in knowledge 
acquisition, when a user adds new knowledge to a KBS, he needs to be prompted for any 
additional knowledge that may be required to make use of that new information, but no 
extraneous knowledge should be requested.     Both of these capabilities depend on 
understanding the tie between problem solving methods and ontologies: understanding 
how the problem solving methods make use of the ontologies and domain knowledge, 
and what domain knowledge is required to support problem solving. 

These ideas are key to our research within the EXPECT architecture investigated in the 
work reported here.   EXPECT's architecture includes a knowledge representation and 
reasoning system,   knowledge analysis and interaction dialogue   capabilities, and 
knowledge acquisition tools and interfaces. 

1.1 Knowledge Acquisition 
Knowledge acquisition tools have expectations about the kind of knowledge that needs to 
be added to a system to support reasoning, and they use these expectations to guide 
acquisition. Most successful knowledge acquisition tools create these expectations using 
what is known as a role-limiting approach. Role -limiting approaches center knowledge 
base construction on filling the roles that domain    -dependent knowledge plays in a 
domain-independent problem -solving method.   For example, a knowledge acquisition 
tool for a heuristic classification problem -solving method expects that the user will 
provide knowledge about classes and features that are used in classification.   The same 
general-purpose problem-solving method can be used in many applications that use that 
problem-solving approach, and users interact with the tool to fill in the roles in that 
problem-solving method. In our example, for a medical diagnosis application the classes 



would be diseases and features would be the data about the patient, while for a computer 
diagnosis system the classes would be computer failures and the features would be the 
symptoms of the computer. Examples of such tools include MORE [Eshelman 1988], 
SALT [Marcus 1988], and ROGET [Bennett 1985]. Because these tools understood how 
knowledge would be used in problem solving, they could provide much more guidance in 
helping the user formulate the knowledge he was adding to a system correctly. However, 
the problem solving method is built into th e knowledge acquisition tool itself. Thus, 
when one selects a tool, one also determines the problem -solving method that is 
employed by the application. The diffi culty is that most realistically-sized knowledge- 
based systems require an assortment of prob lem-solving methods—a tool that uses a 
single method is of limited utility. In addition, many knowledge acquisition tools need to 
be built, one for each problem -solving method. For these reasons, these approaches to 
knowledge acquisition have limited applicability [Musen 1992]. 

Our work overcomes these problems with a com plementary approach to knowledge 
acquisition. In order to support flexible tools, EXPECT has an explicit representation of 
all the kinds of knowledge (both factual and procedural) in volved in a task. EXPECT's 
representation of domain facts and problem -solving methods will be tightly integrated 
with LOOM, an advanced knowledge -representation system.   As a result, the problem - 
solving  methods  are not  treated  as  black  boxes,  but  instead t heir definitions  are 
represented in a language that the system understands and about which the system can 
reason. EXPECT 's knowledge-acquisition tools will be able to support users in changing 
these problem -solving methods, defining new ones, and composin   g them together to 
configure an overall problem  -solving method for an  application.   Building a new 
application with EXPECT, however, would require developers to define by hand all the 
problem-solving methods that their applications might need. EXPECT itsel  f will not 
support the reuse of problem-solving methods from one application to another. 

1.2 EXPECT 

The main goal of the EXPECT project [Swartout and Gil 1995, Gil and Paris 191994, 
Neches et al. 1985, Swartout et al. 1991] is to make knowledge-based systems more 
accessible to end users. A decade of work on the Explainable Expert Systems (EES) 
project at ISI lead to the development of new approaches to natural language generation, 
dialogue-based explanations, and documentation [Swartout and Moore 1994, Swartout et 
al.   1991].  Recent work  has concentrated  on  tools  that  support  the acquisition of 
knowledge from users in terms they can relate to, highlighting domain knowledge instead 
of programming details [Gil and Melz 1996, Gil and Paris 1994, Gil 1994]. EXPECT's 
approach to modeling, representing,  and  using knowledge  was shaped to provide 
appropriate support for explanation and knowledge acquisition tools. EXPECT provides a 
highly declarative framework for building knowledge-based systems which is based upon 
Loom [MacGregor 1988, MacGregor 1990], a state-of-the-art knowledge representation 
system of the KL-ONE family. This framework captures the design underlying a KBS, 
including how domain information  is used in problem solving, and what factual 
knowledge is needed to support the KBS's problem solving methods. This design 
information is then used to guide knowledge acquisition. 



To build a knowledge based system in EXPECT, one begins by representing general 
knowledge about a domain as Loom entities (e.g., conce pts, relations, and instances). 
General problem -solving strategies are represented in a procedural -style language that 
allows  subgoal  posting, control programming constructs, and expressive parameter 
typing.  Using  a form  of partial evaluation,  an  automatic  method instantiator then 
compiles this general knowledge into a domain -specific knowledge based system. This 
process is recorded in a design history that captures the interdependences in the 
knowledge-based system, such as how factual knowledge is used i n problem solving. 
EXPECT's knowledge acquisition routines then use this information about dependencies 
to guide knowledge acquisition. 
Knowledge acquisition tools support users by having expectations about the kinds of 
knowledge that a user may want to provide to a system. EXPECT uses its design record 
to form expectations about what knowledge it needs to acquire based on the current 
contents of its knowledge bases. By using the design record, EXPECT understands how 
the factual knowledge is used in the problem-solving methods. Thus, EXPECT can guide 
users to provide enough information about instances and concepts to ensure that problem 
solving can be carried out. Because it understands how the problem -solving methods 
achieve the task goals, EXPECT can ensure that there are methods to achieve the goals 
that arise during problem solving. If the user changes a method definition or a factual 
description, the expectations are rederived. Understanding the interactions among the 
different pieces of knowledge is also useful to propagate the effects of a local change 
made by the user. This allows the system to detect inconsistencies as well as the need to 
request   additional   knowledge   from   the  user.   EXPECT   also includes an agenda 
mechanism to handle requests for user interventions, providing users with an abstract 
view of the knowledge acquisition tasks that they need to attend to. 

EXPECT provides a flexible approach to knowledge acquisition because    1) it allows 
users to define arbitrary problem-solving methods for a task, 2) the same tool can be 
reused for many different applications to accomplish diverse types of tasks, and  3) its 
expectations are derived according to the knowledge that is available about the task. In 
other approaches, knowledge acquisition tools are built for specific types of tasks, and the 
expectations are predesigned based on the task definition and hard -coded into the tool. 
This approach is not practical in real applications because it is hard to determine 
beforehand the type of problem-solving method that is needed for a new application and 
because applications often do not conform exactly to the type of task that a tool was 
designed for. 

1.3 Overview 

This report summarizes the extensions done to EXPECT under the High Performance 
Knowledge Bases Program.   The work   is described in this report organized in the 
following topics and chapters: 

■    The current EXPECT architecture and the features that it includes that are crucial to 
support problem solving and knowledge acquisition work. 



The ontologies fo r plan representation and reasoning that were developed, which 
were used in the HPKB Challenge Problems. 

A knowledge acquisition tool to acquire problem solving knowledge 

A reusable problem solving method for plan evaluation that was also used to support 
knowledge acquisition from users 

A methodology to conduct user evaluations of knowledge acquisition tools 

A  report on  user evaluations  of Army  officers  conducted at the Army Battle 
Command Battle Lab in Ft. Leavenworth, KS in August 1999 as part of the HPKB 
Knowledge Acquisition Critical Component Experiment. 

The next six chapters in this report address each of these topics in more depth. 

4 



2.   EXPECT:   A User-Centered Environment for Developing 
Knowledge-Based Systems 

Although knowledge based systems have been successfully deployed in many areas, a big 
impediment to more extensive use is the knowledge acquisition problem. Building a 
conventional knowledge based system is an expensive and time consuming process 
because both domain experts and AI experts mus t work together to capture the needed 
knowledge and represent it in a system. The EXPECT project has addressed this problem 
by creating a framework for building knowledge based systems that will empower 
domain experts to add knowledge to a knowledge based system themselves, while freeing 
them from the need to understand the details of the implementation or how the system is 
organized.  During the past year, we have developed and implemented this knowledge 
acquisition facility, and have demonstrated it in t   he context of a system to evaluate 
military transportation plans. 
Unlike conventional acquisition tools which use a fixed set of constraints built into the 
tool to guide knowledge acquisition, EXPECT analyzes the design and structure of a 
knowledge based system to guide acquisition.    EXPECT is thus more flexible than 
conventional tools and can be applied to a broader range of problems. The key to 
EXPECT's approach to knowledge acquisition is that the EXPECT framework captures 
critical aspects of the design of a knowledge based system. EXPECT knows how various 
kinds of knowledge in a system interact, such as how factual knowledge is used by 
problem solving methods, and what factual knowledge is needed to support reasoning. 
Because EXPECT understands these   interactions, it can guide a user in adding new 
knowledge to a system and prompt the user for additional information if it is needed. 
EXPECT currently supports the addition and modification of both factual knowledge and 
problem solving methods.   By understanding more of the design of a knowledge based 
system, EXPECT makes it possible for less computer -knowledgeable users to add 
knowledge to a system successfully. 

2.1. Introduction 
Our goal is to construct a framework for building knowledge -based systems 
(KBSs) that can help users make modifications. The premise underlying this goal 
is that the framework understands  a lot of the systems'  design and their 
structure—how they  solve problems, what knowledge  is needed to support 
problem solving, and what assumptions they make.    This knowledge can be 
exploited to make the system understandable and to guide users in making 
modifications. 

EXPECT is the framework for knowledge based systems that we are developing to 
support knowledge acquisition and explanation.   A central idea behind   EXPECT is the 
notion  that more powerful acquisition and explanation tools can be constructed if 
acquisition and explanation concerns are reflected in the structure of the knowledge based 
systems we create.   That is, rather than developing tools that operate on conventional 
knowledge based systems, it is first necessary to modify the architecture of the target 
knowledge based systems so that they will be structured in a way that provides better 



support for knowledge acquisition and explanation.  It is then possible to build to ols that 
exploit this additional information to provide enhanced capabilities. 
In prior work on the EES framework [Neches et al, 1985; Swartout et al., 1991] we 
explored the architectural modifications that are needed to support explanation.   EXPECT 
extends the EES framework to support knowledge acquisition.    In this chapter, we 
discuss the architectural features that support knowledge acquisition. 

There are several knowledge acquisition capabilities that we seek to support with the 
EXPECT architecture: 

1. Users should be able to modify both factual knowledge and problem solving 
knowledge.    Although many acquisition systems provide good support for modifying 
factual knowledge, support for modifying problem solving knowledge is more limited. In 
early acqui sition  systems (such  as MORE [Eshelman   1988],  SALT  [Marcus and 
McDermott 1989], and ROGET [Bennett 1985]), a single problem solving strategy (e.g. 
heuristic classification) was built into the tool. As a result, when one selected a tool, one 
also  determined  the problem -solving  strategy.     However,  many   realistically-sized 
knowledge-based systems use several problem solving strategies, so a tool that only 
supports a single strategy won't be much help. Additionally, if the user changes his mind 
about which problem-solving strategy is appropriate, he may also have to change tools, 
potentially losing a lot of work in re  -configuring the domain knowledge.    Recent 
knowledge acquisition work [Klinker et al.  1991; Musen and Tu 1993] has partially 
addressed these  prob lems   by  creating  tools  that can use multiple problem   -solving 
methods.     In  PROTEGE II  [Musen and Tu, 1993], problem solving methods are 
composed of pre -encoded building blocks.      PROTEGE II permits modific ations to 
problem solving by substituting one building block for another, however, users cannot 
modify the building blocks themselves.   By constraining the user's options to just those 
that have been pre-encoded, he may not be able to make the modification he wants. 

2. Internal models (based on the knowledg e based system being modified) should 
guide knowledge acquisition rather than external ones (based on the acquisition tool). 
Current acquisition   systems  cannot allow  much  modification to problem solving 
knowledge because they use external models of problem solving that are built into the 
acquisition tool. By understanding what factual knowledge is needed to support problem 
solving the acquisition tool can form expectations about what additional knowledge is 
required when the user adds or modifies the syste    m's know ledge base. In early 
acquisition tools, these expectations were built, by hand, into the tool itself. In more 
recent work, such as PROTEGE II, the interdependencies between factual knowledge and 
problem solving building blocks are represented, but they are still entered by hand. 

These limitations could be overcome and a wider range of modifications and problem 
solving methods could be supported if we could use an internal model for acquisition, 
that is, if the expectations for acquisition could be      derived from the system itself. 
Furthermore, because the interdependencies would be derived from the system rather 
than entered by hand, they would change as the system changed, and would be more 
likely to be correct and consistent. 

3. KA tools should su pport modifications at a semantic (or knowledge) level rather 
than just at a syntactic level.    KA tools should help ensure that the knowledge a user 
adds makes sense, that is, that it is coherent and consistent with the rest of the knowledge 
base—not just   that it is syntactically correct.    In addition, we want to facilitate the 
addition of new knowledge by reducing the distance between what the user understands 



and way the system represents it. The system must be able to represent and manipulate 
conceptual entities that are meaningful to users and that are used to describe the domain. 
To further facilitate acquisition, a KA tool should allow users to make modifications 
locally,   and guide them in resolving the global implications of the changes. Providing 
assistance  at  the conceptual   level and allowing gr      eater  flexibility in  the use of 
terminology will free users to focus on what matters: getting the knowledge right. 

This chapter describes several features of EXPECT'S architecture that directly support 
the acquisition goals we outlined above. Most of the e xamples in this chapter are based 
on a Course of Action evaluation tool, but some are from another domain we have used 
which is concerned with the diagnosis of faults in local area networks. 

2.2. EXPECT Architecture Overview 
A diagram of the overall EXPECT architecture appears in Figure 1. As we describe in 

the next section, EXPECT provides explicit and separate representations for different kinds 
of knowledge that go into a knowledge based system.      EXPECT distinguishes domain 
facts, domain terminology and problem solving knowledge. These different sources of 
knowledge are integrated together by a program instantiator to produce a domain-specific 
knowledge based system.    While the domain -specific system is being created, the 
program instantiator also cr eates a design history.    The design history records the 
interdependencies  among the different kinds  of knowledge,  such  as  what factual 
information is used by the problem solving methods. This i nformation is used by the 
knowledge acquisition routines to fo    rm the expectations that guide the knowledge 
acquisition process. 
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Figure 1. EXPECT Architecture 

2.3. Representing Knowledge in EXPECT 

EXPECT represents different types of knowledge separately and explicitly.    After 
describing the kinds of knowledge that are represented in EXPECT we present in detail our 
approach to representing goals.   This explicit representation of goals provides EXPECT 

with a better understanding of the problem solving process. 

2.3.1 Separation of Knowledge 
It is well established that a major source of difficulties in understanding, modifying 

and augmenting first generation knowledge based systems stemmed from the use of low - 
level knowledge representations that failed to distinguish different kinds of knowledge 
(see [Chandrasekaran and Mittal, 1982; Clancey, 1983b; Swartout, 1983]).   In a first 
generation system,   domain   facts,  problem   solving know   ledge,   and   terminological 
definitions were all expressed in rules.    A single rule might mix together clauses 
concerned with the user interface, the system's problem solving strategy and internal 
record-keeping. Because none of these different concerns were distinguished, it was often 
difficult to understand exactly what the rule was supposed to do, and when modifying a 
rule, it was difficult to see what the effect of the modification might be. Although early 
critiques of these representations focused on their failure to provide good explanations, 
these architectural flaws create problems for acquisition as well. 



A number of second generati on expert system frameworks have emerged in recent 
years (see [Chandrasekaran, 1986; Clancey, 1983a; Hasling et al., 1984;Neches et al, 
1985; Swartout, 1983; Swartout et al., 1991; Wielinga and Breuker, 1986]). A common 
theme among these frameworks is that they encourage a more abstract representation of 
domain knowledge and problem solving knowledge that makes distinctions between 
different kinds of knowledge explicit. 

By moving toward architectures that allow a system builder to distinguish different 
kinds of knowledge and represent them separately and more abstractly, second generation 
frameworks increased the modularity of an expert system. This modularity facilitates KA 
by making systems easier to understand and augment. 

In EXPECT, we distinguish three different kinds of knowledge: domain facts, domain 
terminology, and problem solving knowledge. Domain facts are the relevant facts about a 
system's domain. For example, the domain facts in a system for transportation planning 
might include the fact that the naval port of Los Angeles is Long Beach and that the 
maximum depth of Long Beach berths is 50 feet. 

The domain terminology (or   ontology) provides the co nceptual structures that are 
used to describe a domain. In a transportation planning domain, the domain terminology 
would include concepts for various kinds of ports, such as airports and seaports, and 
concepts for describing the var ious kinds of movements ' and materiel to be moved, 
among other things.    Concepts can be defined in terms of other cone   epts. Domain 
terminology provides a set of terms, or concepts, that can be used to describe some 
situation.  The existence of a concept does not imply that the object it describes actually 
exists—concepts are just descriptions that may or may not apply in   any given situation. 
Domain facts, on the other hand, use domain terminology to represent what exists. 

To represent both domain facts and terminology, EXPECT uses Loom [MacGregor 
1988]. Loom provides a descriptive logic representation language and a classifier for 
inference. Facts are represented as Loom instances, while terminology is represented 
using Loom concepts. Both instances and concepts are structured, frame -based 
representations with slots that indicate relations in which the object is involved. 

Loom's classifier benefits knowledge acquisition. Given a set of defined concepts, 
the classifier can automatically organize them into an is -a (or subsumption) hierarchy by 
analyzing their definitions. For example, suppose we define the following two concepts: 

an AIRLIFT-MOVEMENT is a kind of MOVEMENT whose destination is 
an AIRPORT 

an EXPRESS-MOVEMENT is a kind of MOVEMENT whose duration is 
less than one DAY and whose destination is an AIRPORT 

The classifier would figure out that an express-movement is also a kind of airlift- 
movement, since the definitions above state that any movement whose destination is an 
airport is an airlift-movement, and express-movement meets that criteria. This is shown 
in Figure 2. 

'in transportation planning, a "movement" specifies what is to be moved from an origin to a destination at a 
particular time using some set of vehicles. 
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Figure 2. Loom Classifier Organizes Concept Hierarchy 

Loom provides a declarative foundation for representing concepts, relations and facts. 
The classifier helps maintain the organization of the knowledge base, and as we will 
describe, we use it to match problem solving methods with goals. However, to be able to 
analyze the interdepende ncies between the conceptual structure of a system and its 
problem solving methods we need a highly declarative representation for problem solving 
knowledge as well. The next section describes our representation of problem sol ving 
knowledge. 

2.3.2 Capturing Intent in Problem Solving 
Problem solving knowledge in EXPECT is represented as strategies (called methods) 

for achieving particular goals. Each method has a capability description associated with 
it, which states what the method can do (e.g. "evaluate a COA"), and a method body that 
describes how to achieve the advertised capability of the method. The steps can post 
further subgoals for the system to achieve .   The language used in the method bodies 
allows sequences of steps and conditional expressions. 

One of EXPECT's architectural features that helps users make modifications to 
problem solving knowledge is a rich representation for goals and method capabilities that 
provides an explicit representation of intent. This represent ation makes it easier for 
people to understand what a method is supposed to be doing, and makes it easier for 
EXPECT to analyze a system's structure and hence provide guidance to a user in making 
modifications. 

In most programming languages, function names have no real semantics associated 
with them.    A good programmer may indicate what a function is supposed to do by 
giving it an appropriate name (e.g.     clear-screen) but as far as the system is 
concerned, the name is just a string of characters. Furthermore, the relationship between 
the function name (what is to be done) and the functional p arameters (the things that will 
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capability: 
(find 

(obj (?t is (specialization-of 
unloading-time))) 

(of (?m is (instance-of 
movement)))) 

result-type:    (instance-of time-value) 
method:    (calculate 

(obj ?t) 
(of (available-vehicles ?m) )) 

Figure 3. A method to calculate the unloading time of a movement 

be involved in doing it) is completely implicit. AI systems such as planners provide a 
more explicit representation of what is to be done. Usually the goal is represented as 
some sort of state expressed in some form of predicate logic. A problem with this 
representation that affects both acquisition and explanation is that it is removed from the 
way people think and talk about what they are doing, since protocols of people solving 
problems show that they use verb clauses to describe what they are doing rather than state 
descriptions (see for example, [Anzai and Simon 1979]). 

To address these difficulties and decrease the distance between EXPECT'S internal 
representation and how people talk about what they do, EXPECT'S representation is based 
on a vocabulary of verbs. In EXPECT, we represent both goals (what is to be done) a nd 
method capability descriptions (what a method can do) using a verb clause representation 
based on case grammar. Each verb clause consists of a verb and a set of slots (or "cases") 
that are the param eters. For example, the goal of evaluating a particular COA is 
represented as a verb clause where the main verb is "evaluate" and its (direct) object slot 
is filled by the COA instance (e.g., "coa-3") as follows: 

(evaluate   (obj    (instance   coa-3))) 

The capability descriptions associated with methods are represented similarly, except 
that they may contain variables. For example, the following capability description would 
be associated with a method that has the capability to evaluate a course of action for force 
deployment: 

(evaluate (obj (?c is (instance-of 
deployment-coa)))) 

where: 
deployment-coa   is  a  coa 

that  has   force-movements 

For matching, the goals and capability descriptions are translated into corresponding 
Loom concepts. The goal above would match this capability description if coa-3 had 
movements of forces, since coa-3   would then be a kind of deployment-coa. 

This approach gives us a rich representation for what is intended by a goal and what 
the capabilities of a method are. Unlike the state    -based representation, goals and 
capabilities can be easily paraphrased into natural language. 

Figure 2 shows a simple method from our system for evaluating transportation plans. 
It finds the unloading time of a movement by calculating the unloading time of the set of 
available vehicles of the COA movement. There are two things to notice about this 
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method. First, it is relatively straightforward to paraphrase the representations of the 
capability description and the method body into understandable natural language, because 
their structure mirrors natural language. Second, this method illustrates the use of two 
general kinds of parameters that can be passed in EXPECT. They distinguish between the 
kind of data that will be provided to the method and the kind of task to be accomplished 
by the method. They are indicated by instance-of or speciaiization-of in the capability 
description. These keywords indicate how the matcher should match these slots against 
the corresponding slots in goals. 

instance-of indicates that the slot is a data parameter and will match an instance of 
the indicated type. Thus, (instance-of movement) will match a movement instance or an 
instance that is more specialized, instance-of slots work much like function parameters 
in conventional programming languages: they supply the data that the function 
manipulates. However, in EXPECT, slots on goals do more than just provide data; they can 
also further specify the task to be done. Task par ameters are indicated by 
speciaiization-of slots and match against concepts that appear in corresponding slots in 
the goal. For example, (speciaiization-of unioading-time) will match unloading- 
time or any of its specializations. The capability description of the method in Figure 2 
will match a goal such as: 

(find (obj (specialization-of unloading-time)) 
(of (instance movement-23))) 

or it will match the goal: 

(find   (obj    (specialization-of 
emergency-unloading-time)) 

(of   (instance  movement-23)) ) 

Notice the "obj" slot in both cases does not supply data but instead it specifies the sort 
of information that is su pposed to be found by the method. Specialization-of 
slots add an additional dimension for method abstraction, allowing us to re-use the same 
method in several different contexts, and they are one of the ways we achieve "loose - 
coupling" in EXPECT, which we will discuss in detail in Section 2.4.2. In the example in 
Figure 2, ?t is bound to the concept in the goal that matches (speciaiization-of 
unioading-time). The variable ?t is then used in the method body to pass the goal 
context on to subgoals so that the method body will compute for example the emergency- 
unioading-time rather than the unioading-time if emergency time was specified in the 
original goal. 

The key features of our goal representation are:   1) it is structured, 2) a richer 
representation for intent is provided because the structure is based on a verb clause 
representation, and 3) in addition to data parameters, task      parameters are explicitly 
distinguished. 

2.4. Bringing Knowledge Back Together: Loose Coupling in Expect 
We have argued that by separating different kinds of knowledge and providing 

explicit representations for them knowledge based systems created withi n the EXPECT 

framework can be easier to understand, and because the separation provides increased 
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modularity, they are easier to augment and modify. In this section, we describe how the 
program instantiator works to match up and integrate di fferent knowledge sources. We 
refer to the matching process we use as semantic match because resources are matched up 
based on their meaning as opposed to their syntax. We argue that this loosens the 
coupling between knowledge sources, which can have distinct advantages for knowledge 
re-use and acquisition. 

2.4.1 Resolving Goals: Semantic Matching And Goal Reformulation 
In many systems, matching of goals and methods is done on a fairly syntactic basis. 

Lexemes in goals must match those in methods, and variables are m atched by position. 
In EXPECT, we have tried to move toward a matching process that is based on the 
semantics of the goals rather than their syntax, and one in which reformulation can be 
used to achieve a match when a more direct match is not possible. In EXPECT, the ability 
to provide looser coupling between goals and method capabilities depends on the way 
that they are represented.   As we described in Section 2.3.2, both goals and method 
capabilities are represented as verb clauses. A main verb states what is to be done, using 
a number of slots that act as "cases" (as in case grammar). For matching, both goals and 
method capabilities are translated into Loom concepts that mirror their structure. 

Semantic Match One of the mechanisms EXPECT provides to achieve looser coupling 
is based on Loom's classifier (one of the reasoners that Loom provides). Given an 
existing hierarchy of Loom concepts (and their definitions) organized according to the 
subsumption relations (A.K.O.) between them, the classifier is capable of figuring out 
where in the hierarchy a new concept belongs, based solely on the definitions of the 
concepts.   To find possible methods for accomplishing a goal, the Loom classifier is 
used to find those methods whose capability descriptions subsume the goal. The 
classifier provides a form of semantic match, because match is based on the meaning of 
concepts, not on their syntactic form. Section 2.3.2 described how goals are represented 
as Loom concepts and showed some simple examples of how the semantic matcher 
works. 

The semantic matcher finds methods whose capabilities subsume the posted goal not 
only when it is given the class name but also when it is given a description of the type of 
object that needs to be matched. An example of thi s kind of matching occurs in our 
network diagnosis domain. EXPECT's terminological knowledge contains the definition: 

lanbridge-23 is a COMPONENT 
that is CONNECTED-TO 2 networks 

CONNECTED-COMPONENT is a COMPONENT 
that is CONNECTED-TO a NETWORK 

When EXPECT is reasoning with its problem solving knowledge about how to achieve the 
goal: 

(diagnose (obj (instance lanbridge-23))) 
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It will be able to match that goal with a method with the capability description: 

(obj   (?c   is   (instance-of   CONNECTED- (diagnose 
COMPONENT)))) 

because the classifier can figure out that lanbridge-23 is a kind of component which 
is connected to a network, based on the definitions of lanbridge-23 and 
CONNECTED-COMPONENT above. This kind of subsumption matching allows EXPECT 

to reason about the semantics of a goal in terms of the meaning of its parameters. 

We described earlier how EXPECT relies on LOOM's classifier to automaticall 
organize concepts in an AKO lattice. EXPECT also relies on the LOOM classifier to 
reason about what goals and capabilities subsume others. This is achieved by turning 
goals and capabilities into LOOM descriptions. EXPECT has a core set of Loom 
definitions that are used for this, and include action name (its subclasses are essentiall 
verbs), action role (its subclasses are OBJ and any parameter name), goal, and 
capability. Action roles are relations whose domain is an action name, and whose range 
can be any existing concept in the domain (ex: ship, number) qualified by its parameter 
type (set or element, concept or instance, extensional or intensional). For example, the 
goal to compute the factorial of a number is expressed in EXPECT as: 

(compute 
(obj    (spec-of   factorial) 
(of   (inst-of  number))) 

method 
hierarchy 

OBJ 
/- -^«cargq) 
( move )     v 

^—^<^ITI 
^ (vehicle^ 

f~Method capability: 
(move 

(OBJ   (inst-of  cargo)) 
(WITH   (inst-of  aircraft))) 

^ Goal: 
(move 

(OBJ   (inst-of  cargo)) 
(WITH  C-140)) 

OBJ 
^ ^r fcargoj! 
( move )     v— 

method-3 

Figure 1: Translating Goals and Capabilities to Loom to organize and retrieve methods 

14 



The corresponding Loom definition that is created is: 

(defconcept CM20 
:is (:and compute 

(:the obj (:and concept-desc 
factorial)) 

(:the of (:and instance-desc 
number)))) 

LOOM's classifier is now able to reason with this definition. Every term used in the 
parameters have their own definitions, provided in the ontologies, and LOOM will use 
them in reasoning about goal subsumption. Notice that these terms and their definitions 
can be domain independent (e.g., vioiated-constraints, maximum) or domain dependent 
(e.g.,location,closure-date). 

Using the techniques just described, EXPECT creates Loom definitions for the 
capabilities of all the methods that are defined in the knowledge base. Loom's classifier 
reasons about these definitions and places them in a lattice, where more general 
definitions subsume more specific ones. Notice that this subsumption reasoning uses the 
definitions of the domain terms and ontologies that are part of EXPECT's knowledge 
bases. As a result, the capability of a method to "move cargo with a vehicle" will 
subsume one to "move cargo with an aircraft", because according to the domain 
ontologies vehicle subsumes aircraft. This is illustrated in the method hierarchy shown in 
Figure 3. As a result, EXPECT's methods are automatically organized according to their 
capabilities, and their capabilities can be compared based on their place in the lattice. 

EXPECT also exploits the representation of goals and capabilities for matching method 
capabilities with the goals that arise during problem solving. EXPECT's matcher first 
translates the posted goal into a Loom concept, and then invokes the Loom classifier in 
order to find methods whose capability descriptions subsume the posted goal. Figure 3 
illustrates this matching process for the goal of moving some cargo with a C-140 (which 
is a particular kind of aircraft). 

Once the match has been made using the Loom representation for the goal and 
capabilities, the original representation is used to bind parameters in the goal to 
corresponding variables in the capability description. This is necessary since Loom does 
not support variables in concepts. 

Reformulations The second mechanism that EXPECT provides for looser coupling of 
goals and methods is reformulation.   Usually if a method cannot be found to achieve a 
goal using semantic match, the system will attempt to reformulate the goal and then look 
for methods to achieve the resulting goal(s). Goal reformulation involves decomposing a 
goal and then assembling a new goal (or goals) by transforming pieces of the original 
goal based on their meaning.   To be able to perform goal reformulation, one needs an 
explicit, decomposable representation for the goal, definitions for the terms the goal is 
constructed from, and domain facts to drive the reformulation process. In   EXPECT, we 
provide two general types of reformulations, conjunctive and disjunctive.  A conjunctive 

15 



reformulation involves transforming some goal into a set   of goals, where each of the 
goals   in the set must be performed to achieve the intent of the initial goal. Thus, a 
conjunctive reformulation is a form of divide-and-conquer: it splits a problem up into 
subpieces that together achieve the original goal. As in divide -and-conquer, the system 
must find a way of recombining the results of each of the subproblems back into an 
appropriate result for the original goal for a conjunctive reformulation to be successful. 
A disjunctive reformulation may also reformulate an initial goal into several goals, but at 
runtime, only one. of the goals  needs to be executed to achieve the intent of the original 
goal. 

EXPECT provides three types of conjunctive reformulations: covering, individualization, 
and set reformulations. 

A covering reformulation occurs when a goal can be transformed into several new goals 
that together "cover" the intent of the initial goal. Suppose that the following goal is 
posted to estimate how many support personnel are required for a COA: 

(estimate (obj (specification-of support-personnel) 
(for (instance-of coa))) 

Using subsumption matching, the system would try to find methods for achieving this 
goal. Suppose none were found, because the system had no general method for 
estimating the support personnel needed for a COA. Suppose, however, that the system 
did have methods for estimating particular types of support personnel needed for a COA. 
How could these methods be found? When the system failed initially to find a method, it 
would then try to reformulate the goal into new goals. If the domain model contained the 
fact: 

support-personnel is covered by 
airport-support-personnel and seaport-support- 

personnel 

the system could reformulate the original goal into two new goals: 

(estimate (obj (specification-of airport-support- 
personnel ) 

(for (instance-of coa))) 
and 

(estimate (obj (specification-of seaport-support- 
personnel) 

(for (instance-of coa))) 

The system would then be able to find the two methods for estimating particular types of 
support personnel needed for a COA.   For conjunctive reformulations, part of the 
reformulation process involves finding a function for re-combining the results of each of 
the reformulations to form the result for the original goal. The appropriate function for 
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combining results is determined by the type of the goal. In this example, the system adds 
the estimates together. 

This sort of reformulation process reduces the need for different parts of the knowledge 
base to match up exactly, which enhances the possibilities for knowledge re-use across 
systems. Also, because the system explicitly reasons through the reformulation process, 
more of the design can be captured to support knowledge acquisition. In this case, if the 
user added a new type of support personnel to the knowledge base, for example law- 
enforcement-personnel, then the system would use its record of this 
reformulation to determine that it would be necessary to perform the reformulation over 
again to capture the new type of support personnel. EXPECT could detect that the user 
needs to provide a method for estimating the law enforcement personnel needed for a 
COA. 

Individualization reformulations are similar to covering reformulations, except that the 
decompose a goal over a set of objects into a set of goals over individual objects (i.e., 
instances). For example, given the goal of calculating the employment personnel of the 
force modules in a COA: 

(calculate (obj (specification-of employment- 
personnel) ) 

(of (force-modules coa-2))) 

and the domain fact that: 

force-modules of coa-2 are the instances: 
S3rd-ACR 57th-IMF CVN71-ACN 

the system could transform the original goal into three goals: 

(calculate (obj (specification-of employment- 
personnel) ) 

(of (instance 3rd-ACR))) 

(calculate (obj (specification-of employment- 
personnel) ) 

(of (instance 57th-IMF))) 

(calculate (obj (specification-of employment- 
personnel) ) 

(of (instance CVN71-ACN))) 

where each of these goals corresponds to one of the instances force modules of coa-2. 

A third kind of conjunctive reformulation is the set reformulation. When no method 
is found to achieve a goal that has a set of objects in its parameters, EXPECT tries to solve 

17 



the goal for each element of the set in turn. For example, suppose that the following go al 
is posted to calculate the closure date2 for several movements: 

(calculate (obj (specification-of closure-date)) 
(of (set-of (instance-of movement)))) 

and there are no methods that operate on a set of movements. EXPECT reformulates this 
goal over a set into a goal over an individual movement: 

(calculate (obj (specification-of closure-date)) 
(of (instance-of movement))) 

The matcher will return the method for calculating the closure date of a movement. At 
execution time, the system will loop over each of the movements in the set and calculate 
one by one the closure date of the movements that are included in the set. 

Finally, EXPECT provides the input reformulation, which is a form of disjunctive 
reformulation. It occurs when no method can be found to handle one of the inputs to a 
goal, but several methods can be found that together will cover the range of possible 
inputs that will occur at runtime. For example, given the goal: 

(calculate (obj (specification-of closure-date)) 
(of (instance-of movement))) 

suppose that the method library contained no method for calculating the closure date of a 
movement in general, but there were methods for calculating the closure date of 
particular types of movements and there was a domain fact that told the system that: 

movement is covered by airlift-movement and sealift- 
movement 

then the system could create the goals: 

(calculate (obj (specification-of closure-date)) 
(of (instance-of airlift-movement))) 

(calculate (obj (specification-of closure-date)) 
(of (instance-of sealift-movement))) 

the system would write methods for each of these goals, and then create dispatching code 
that would select which method to use at runtime, based on the type of the type of 
instance of movement that was actually passed in. Note that unlike a covering 
reformulation, only one of the branches of a disjunctive reformulation needs to be 
executed. 

In summary, the loose coupling that  EXPECT provides through semantic match and 
reformulations is crucial to our approach to knowledge acquisition.   First, by moving 

2The closure date is the date when all the material to be shipped has arrived at the destination. 



away from syntactic matching, users can add knowledge to a system without being as 
concerned with issues of form.  This opens up the possibility for greater knowledge re - 
use and eases collaborative wor k on knowledge bases.   The second benefit is that by 
having the program instantiator reason extensively about the process of matching up 
goals  and methods,  more of the  design  of the knowledge based system and the 
interdependencies between parts of the syst em can be captured (and hence, used to form 
expectations for knowledge acquisition).     In reformulating goals, the program writer 
develops a rationale for how a high -level goal can be achieved in terms of lower level 
goals.   This sort of processing is ofte n exactly the sort of reasoning that one wants to 
explain and use as a basis for knowledge acquisition. 

2.4.2 The Program Instantiator: Capturing Interdependencies 

The EXPECT program instantiator works in a refinement driven fashion. Initially, the 
program instantiator starts with a high level goal that specifies what the expert system is 
supposed to do. For example, to create an expert system for evaluating a particular COA, 
the system would be given the following goal: 

(evaluate (obj (instance-of deployment-coa))) 

This high level goal determines the scope of the knowledge based system that EXPECT 
will create. The goal above would create a knowledge based system that could evaluate a 
deploy men t-CO A—but nothing else. On the other hand, a goal such as: 

(evaluate   (obj    (instance-of  coa))) 

would create a knowledge based system that could evaluate any COA that was in 
EXPECT's knowledge base (assuming appropriate problem solving knowledge was also 
available). Thus, a single  EXPECT knowledge base can be used to create a variety of 
knowledge based systems, each scoped to cover a different (or possibly overlapping) set 
of problems. 

Instances that appear in goals during the program instantiation phase act as "place 
holders" for the actual data object that will appear when the program is executed. The 
use of a more general or abstract instance results in the creation of a system that can 
handle a wide range of inputs, i.e., all the instances of that type. 

When a goal is posted, the program instantiator sea   rches its library of problem 
solving knowledge to find a method whose capability description matches the goal. This 
matching of goals and methods is a critical step in the program instantiator's reasoning 
and was the main topic of the previous section. H ow it is done, and the representations 
that are used, have a direct effect on how maintainable and reusable the knowledge base 
will be and EXPECT's ability to acquire new knowledge. 

Once a method is selected to achieve the posted goal, the variables in the method's 
capability description are bound to corresponding instances and concepts in the goal. The 
body of the method is expanded by plugging in the bindings for the variables in the body 
and then posting its subgoals.  During this process, if any of the slots of an instance are 
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accessed by the method, those accesses are recorded in the design history.   This record of 
the interdependencies between factual knowledge (instances)  and problem solving 
knowledge is later used to form the expectations that guide knowledge acquisition.  For 
example, if the program instantiator notes that it uses a method that requires information 
about the possible -faults of a component, then when a new component is entered, the 
knowledge acquisition routines will know that information about the possible-faults of a 
component needs to be added. 

A key advantage for knowledge acquisition of EXPECT's approach is that the program 
instantiator explores   all    the possible execution paths through the knowledge based 
systems it creates. It thus captures all the interdependencies between factual and problem 
solving knowledge, something which is not possible to do by analyzing execution traces, 
for example, since each analysis will only cover one execution path through the system. 

Figure 4 shows a partial view of how the program instantiator expands goals.   The 
top-level goal given to the system is to evaluate an instance of a deployment course of 
action. This is the goal posted in node nl. The matcher finds a method whose capability 
can achieve this goal, and the method's capability, the bindings, and the method's body 
are recorded in the node.   After the bindings are substituted in the method body, the 
subgoal of evaluating the transportation factors of the COA would arise, and successive 
goal      expansions      would     produce the     goals      in      nodes     n2      and n6. 
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nl goal: (evaluate (obj (inst-of deployment-coa))) 
achieved-by: (evaluate (obj (?c is (inst-of coa))) 
bindings: ((?c (inst-of deployment-coa))) 
method: (evaluate (obj transportation-factors) 

(of ?c)) 

n2 goal: (estimate (obj (spec-of support-personnel) 
(for (inst-of deployment-coa))) 

achieved-by: covering-reformulation obj 

n3 goal: (estimate (obj (spec-of airport-support-personnel 
(for (inst-of deployment-coa))) 

achieved-by: (estimate (obj ?asp is (... 

n4 goal: (estimate (obj (spec-of seaport-support-personnel) 
(for (inst-of deployment-coa))) 

achieved-by: (estimate (obj ?ssp is (... 

ri5 goal:    (calcu late   (ob; (spec-of  empl oyment-personne D) 
(of (inst-of  deployment-coa))) 

achieved -by: (calculate   (obj    (?p  is (spec-of 
employment-p ersonnE D) 

(of (?c  is   (inst-o f   coa))) 
bindings :    (( 

( 
?p   (spec- 
?c   (inst- 

of   employment 
of  deployment- 

personnel)) 
coa) ) ) 

method: (add (obj    (personnel   (force -modules   ?c))) 

n6 

DOMAIN-SPECIFIC KBS 
+ 

DESIGN HISTORY 

goal: (calculate (obj (spec-of closure-date)) 
(of (inst-of deployment-coa))) 

achieved-by: (calculate (obj (?d is (spec-of closure-date))) 
(of (?c is (inst-of coa)))) 

bindings: ((?d is (spec-of closure-date)) 
(?c (inst-of deployment-coa))) 

method: (calculate (obj ?d) 
(of (movements ?c))) 

JP-i 

force-modules 

TERMINOLOGICAL KB 

/■ 

capabil ity: (calculate (obj    (?d   is (spec -of closure -date))) 
(of   (?c is (inst- of coa)))) 

result- type: (inst -of  time-value) 
method (cal culate (obj ?d) 

>■ 

(of (movements ?c>>) -> 
^                                                                                                                                                                                                                                                                                                 > 

'capab:    (calculate   (obj   (?d is   (spec-of  employment-personnel))) 
(of   (?c   is    (inst-of   coa)))) 

result-type:    (inst-of  person-count) 
method:    (add   (obj    (personnel   (force-modules   ?c))) , 

PROBLEM SOLVING KB ÖC 
Figure 4. During problem solving, the program instantiator integrates the different types of knowledge that the diffferent 
knowledge bases contain and keeps track of their interdependencies (shown in the thick grey lines). These 
interdependencies, dynamically generated by EXPECT based on the current available knowledge, are the basis for guiding 
knowledge acquisition. 
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Notice that even though the method used to achieve the goal in nl can be used for any 
kind of COA, the bindings specify that is used for deployment COAs and the system 
propagates this more specific type as it expands the subgoals. When no method is found 
to match a goal,   EXPECT tries to reformulate the goal and try matching again. For 
example, the goal in node n2 is achieved by a covering reformulation of the object 
parameter of the goal. 

During the process of expanding the goals, the program instantiator also keeps tracks 
of the interdependencies between the different components of the knowledge bases. Let 
us look more closely at node n6 in Figure 4. The goal of calculating the closure date of a 
deployment COA is achieved with a method. Its method body indicates that the system 
must calculate the closure date of all the movements of the COA. Since movements is 
a role of the concept COA, the system annotates that COA movements are used by the 
method in this node. The factual domain knowledge is effectively being linked to the 
problem-solving knowledge that uses it. This is shown with thick gray lines in the figure. 
Furthermore, the bindings indicate that the movements are used for deploy ment COAs, 
but not for other types of COA. 

2.5. Flexible Knowledge Acquisition 

By representing separately and explicitly knowledge of different types,    EXPECT 
allows users to make changes to the knowledge bases in terms that are meaningful in the 
domain.  By deriving the interdependencies between the different types of knowledge as 
they  are used for problem  solving,     EXPECT can provide guidance for knowledge 
acquisition that is dynamically generated from the current content of the knowledge 
bases.   By representing explicitly problem -solving methods, EXPECT can reason about 
their components and support users in modifying any component of the methods.   This 
section describes very briefly how EXPECT'S knowledge acquisition tool takes advantage 
of the architectural features described in this chapter, see [Gil, 1994; Gil and Paris, 1994] 
for a more detailed description of the knowledge acquisition tools. 

Using Problem-Solving Knowledge to Guide the Acquisition of Factual Domain 
Knowledge 

EXPECT'S knowledge   acquisition tool supports users in entering factual domain 
knowledge by automatically generating a dialogue that requires the information needed 
for problem -solving as indicated by the interdependencies captured by the program 
instantiator. Let us go back to the example in Figure 4. For example, when a user wants 
to define an instance of a new COA3, EXPECT will examine the interdependencies derived 
by the Program Instantiator.  EXPECT realizes that only deployment COAs are evaluated 
(according to the top-level goal in nodenl), and that other kinds of COAs (such as 
employment COAs) are not evaluated.   Based on that information,    EXPECT will first 
request the user to be more specific about the COA. To provide maximum support to the 

3In the full scale COA evaluator that we have implemented there is a wide range of factual knowledge that 
a user might add such as information about locations, ports, facilities, and the characteristics of various 
forces. 
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user in providing this information, EXPECT generates a menu of options that correspond 
to the different kinds of COAs that are known to the system.  The system continues to 
request the user to be more specific for as long as the subtypes of the currently specified 
type are used differently by the system. 

Next, EXPECT examines the interdependencies to request the data needed about a 
deployment for problem solving. It notices that the roles used in the methods are force - 
modules and movements. According to the knowledge that is currently available to the 
system, the JSCP information is not used for COA evaluation. Thus, EXPECT requests the 
user to enter the force modules and movements of the COA and makes the JSCP 
information optional. Again, to support the user as much as possible, EXPECT generates a 
menu with the force modules and the movements that are currently defined in the system 
as suggestions for possible fillers. 

If the user adds a step to a problem -solving method that uses the JSCP of a COA, 
EXPECT will automatically detect this new interdependency and ask the user to provide 
this information for any COAs. 

Using Factual Domain Knowledge to Guide the Acquisition of Problem-Solving 
Knowledge 

Suppose now that the domain knowledge changed and a new subclass of supp   ort 
personnel was added, e.g., law-enforcement-personnel.   EXPECT would then 
detect that to estimate the support personnel for a COA in node n2 it now generates three 
subgoals in the covering reformulation instead of two, and as a result it needs to have a 
problem-solving method for estimating the law-enforcement-personnel  needed 
for a COA. EXPECT guides the user in specifying the new method by reusing one of the 
other two as a rough initial version for the new method that the user can correct by 
changing any of its components. 

In addition to adding new problem-solving methods, EXPECT'S knowledge acquisition 
tool supports users in modifying existing methods.  For example, a user may add a new 
step in a method to use the priority of a COA to decide whether   or not to use more 
resources for transportation. Suppose that the priority of a COA is not defined, and that 
priorities are defined as relations that only apply to mission objectives.   Based on this 
domain knowledge, EXPECT notifies the user that the priority of a COA is not defined and 
thus cannot be used by a method. EXPECT also presents to the user with a menu of all the 
roles that are defined for COAs as options to be used in the method. 

As   always, the  knowledge  acquisition   dialogue  is  updated  if t he underlying 
interdependencies change.  In this case, if the definition of the role "priority" is changed 
so that it is defined for a then the system would allow the user to use the priority of a 
COA. 

Discussion 

EXPECT'S knowledge acquisition tools can: 

1) derive the interdependencies between domain and problem-solving knowledge 
2) use these interdependencies to guide knowledge acquisition 
3) provide suggestions to the user about how to resolve a conflict based on the 
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nature of the interdependencies 
4) justify, when asked to do so, the reasons for requesting the user's intervention 
based on the derivation of the interdependencies 
5) support users in adding new problem solving methods and in changing the 
internal steps of existing ones because they are explicitly represented and their 
relation with domain knowledge is also specified 

All these features are important for the flexibility of EXPECT'S knowledge acquisition 
tool, and are possible because of its architectural features as they ar e described in this 
chapter. 

2.6. Related Work 

The acquisition  of knowledge  about  a task can  be  viewed as  a process of 
incorporating new knowledge into some existing knowledge structure [Rosenbloom 
1988].   The existing knowledge can guide and constrain the search for new knowledge, 
and the process of integrating the new knowledge with the old may identify additional 
opportunities for learning. An acquisition system that takes this view needs to represent 
and understand the knowledge about the task as we 11 as the process of finding and 
integrating new knowledge. 

A general  trend  in  research  on  knowledge acquisition has been to make the 
knowledge structures that guide acquisition increasingly explicit. In early acquisition 
tools many of the requirements that needed to be satisfied when adding a new piece of 
knowledge were not stated.   The result was that they could not provide very precise 
guidance for acquisition.  Later, more of these requirements were made explicit, but they 
were embedded within the acqu isition tools themselves.    This allowed the tools to 
provide more specific guidance, but the requirements that were embedded in the tools 
could not be changed, which meant that some important aspects of the knowledge-based 
system being built could not be changed. More recent work has focused on making these 
requirements explicit and represented outside of the tool itself.   A result of this has been 
more flexible acquisition tools that allow users to make a greater variety of changes to the 
knowledge-based system being built. 

To make this more concrete, we will begin by briefly reviewing three well -known 
acquisition systems: TEIREISIAS [Davis 1976], SALT [Marcus 1988], PROTEGE-II 
[Musen and Tu 1993]. We will then describe EXPECT, the acquisition framework we 
have been developing [Swartout and Gil 1995, Gil 1994, Gil and Paris 1994]. Each of 
these four systems represents a point along the trend we outlined above. We conclude 
with a discussion about how these systems make the knowledge structures they use f or 
acquisition more or less explicit, and summarize the implications of these differences in 
terms of the kinds of knowledge acquisition they can support. 
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2.6.1 Symbol-Level Approaches 

TEIREISIAS [Davis 1976] was one of the earliest knowledge acquisition systems. It 
was designed to help a user correct and extend MYCIN's knowledge base [Buchanan and 
Shortliffe 1984] for diagnosing infections.  If MYCIN either incorrectly concluded that a 
disease was present, or missed a correct diagnosis, TEIREISIAS would walk the user 
through the trace of rule firings to determine where the error arose.    If an incorrect 
diagnosis was concluded, TEIREISIAS would display the rule that led to the conclusion, 
and ask if any of the conditions on the rule needed to be changed.   If so, the user was 
given the opportunity to make the change. If the rule was correct, but fired because some 
if its conditions were incorrectly asserted, the process would recurse and the user could 
look at the rules that made those assertions to dete rmine if they were correct.  Similarly, 
if a correct diagnosis was missed, TEIREISIAS would display the rule that could have 
caused that diagnosis to be reached, and would walk the user through the process of 
determining why those rules did not fire and co rrecting the problem, either by changing 
the conditions on the rules or by adding additional rules. When a new rule was added, 
TEIREISIAS provided guidance based on rule models derived from the existing rule base 
through statistical conceptual clustering.     If rules that concluded about a particular 
parameter x frequently mentioned some other parameter y   in their antecedents, then 
TEIREISIAS would point out a possible error if the user left the parameter y out in a rule 
concluding about x.  This is useful, but a long way from actually understanding the role 
that the rule plays in problem solving. 

TEIREISIAS understood MYCIN at the symbol level [Newell 1982]. It understood 
rule patterns and why a particular rule fired or did not fire, but it did not have a g lobal 
view of the overall algorithm that MYCIN was following. Indeed, work on TEIREISIAS 
pre-dated Clancey's analysis of MYCIN that showed that it was following the general 
problem solving strategy that he identified as heuristic classification [Clancey 1 985]. 
TEIREISIAS did not capture the distinctions between rules for data abstraction, heuristic 
match, and solution refinement that charaterize a heuristic classification system. Since 
TEIREISIAS did not understand the roles that the rules played in a sy stem, it could not 
provide much help in guiding the user concerning the content of those rules. 

2.6.2. Role Limiting Approaches 

The next generation of knowledge acquistion tools represents what is called a role- 
limiting approach.   It was based on the obs   ervation that the kind of problem solving 
method that a system uses determines the kind of domain information the system needs 
[McDermott 1988].   Put another way, the role that a particular kind of knowledge plays 
in problem solving strongly constrains how that knowledge should be expressed — what 
is required for the system to function.   A research goal during this stage was to try to 
understand   a number   of general   methods used   by   knowledge   based systems 
[Chandrasekaran, 1986], such as propose-and-revise and heuristic classification, and then 
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to construct a knowledge acquisition tool for a particular method. Such tools could then 
be used to build knowledge based systems that used that particular problem solving 
approach. Examples of such tools include MORE [ Eshelman 1988], SALT [Marcus 
1988], and ROGET [Bennett 1985].   Because these tools understood how knowledge 
would be used in problem solving, they could provide much more guidance in helping the 
user formulate the knowledge he was adding to a system correctly. 

SALT is a good example of a knowledge acquisition tool based on a role -limiting 
method.   SALT was used to develop systems that use the propose-and-revise method to 
construct a solution to a problem.   Examples included a configurer for elevators and a 
flow-shop scheduler.   In the propose-and-revise method, a system constructs an initial 
approximate solution to a problem which may have a number of aspects that still remain 
to be determined.   It then proposes a design extension to fill in missing parts of     the 
design, and looks for possible constraints that may be violated. If a constraint violation is 
detected, the system has knowledge of fixes that may be used to revise the solution and 
correct the problem.   SALT captures this general algorithm, and unde   rstands that the 
knowledge that needs to be acquired to support this method is knowledge of ways of 
extending a design, the constraints that the design must satisfy, and ways of correcting 
constraint violations. In other words, these are the roles that new knowledge plays within 
the propose-and-revise strategy.   Because SALT was specifically designed for building 
propose-and-revise systems, it includes tools that detect and correct problems that can 
arise in building these systems, such as cycles in the fixes and constraints. 

Role-limiting approaches center knowledge base construction on filling the roles that 
knowledge plays in the particular problem -solving method that they are designed for. 
However, the problem solving method is built into the knowledge acquisition tool itself. 
Thus, when one selects a tool, one also determines the problem -solving method that is 
employed by the application. One problem with this is that many large-scale systems are 
not homogeneous. That is, they do not use a single pro blem-solving method 
throughout—some of the application can use one technique but different techniques are 
needed for other parts. As a result, an acquisition tool that only supports a single method 
has limited applicability [Musen 1992]. 

2.6.3.Composable Role-Limiting Methods 

Rather   than   embodying   a   single problem   solving method, some   knowledge 
acquisition environments contain a library of problem solving methods of smaller size. 
New applications are built by composing the overall problem-solving strategy from the 
smaller components of the library. Examples of systems that take this approach are SBF 
[Klinkeret al. 1991], COMET [Steels 1990], and PROTEGE-II [Musen and Tu 1993]. 

PROTEGE-II guides acquisition based on fine -grained role-limiting methods. To 
build an application, a knowledge engineer configures the overall problem -solving 
method using the components in the method library. At the same time, he or she builds a 
method ontology that contains the terms that are used by the method being configu red. 
For example, "constraint" would be one of these terms and it would be identified as one 
of the kinds of knowledge needed by the component that represents the revision stage of 
propose-and-revise. A domain ontology that contains domain -specific knowledge is 
represented separately. The knowledge engineer then links the knowledge roles in the 
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method ontology to the domain ontology, identifying how terms like "constraint" map 
onto domain-specific terms. Once this mapping has been done, an automatic inter face 
builder uses the mapping to generate a knowledge acquisition tool that allows an end user 
to enter domain-specific knowledge about the domain. Through this mapping the system 
understands just how domain-specific knowledge will actually be used, and the interface 
that is constructed thus requests the knowledge that will actually be needed for problem 
solving. 

2.6.4. Flexibility through Derived Interdependencies 

A remaining problem is that while acquisition systems allow a user to make changes 
to a system's factual knowledge, they do not allow the user to make changes to the 
problem solving methods that the system employs. Tools like SALT don't allow these 
changes because the problem solving method is implicitly encoded in the tool itself. 
PROTEGE-II doesn't allow such changes because its methods are pre-configured and the 
mapping between method and domain ontologies is fixed at system design time.   Since 
PROTEGE-II's knowledge acquisition tool is derived from that mapping, it too is fixed at 
design time. The idea in EXPECT [Swartout and Gil 1995, Gil 1994, Gil and Paris 1994] 
is to derive the interdependencies between domain knowledge and problem solving 
methods automatically, and to be able to re   -derive the dependencies as needed when 
changes are made to the problem solving knowledge.   This approach allows a user to 
modify either the domain knowledge or the problem solving knowledge.  We have used 
EXPECT to create systems in several domains.    One of these domains is military 
transportation planning, w here EXPECT was used to construct a system to evaluate 
transportation plans. We will use that domain to illustrate points in this chapter. 

A diagram of the architecture is shown in Figure 1. Starting at the lower left in the 
figure, EXPECT's knowledge bases separate out factual knowledge and problem solving 
knowledge. Problem solving knowledge in EXPECT consists of a mix of general, domain 
independent strategies as well as some that are domain specific. EXPECT's factual 
knowledge includes facts about the domain and terminology that describes the domain, as 
well as domain-independent terms that are used by problem -solving methods. In 
EXPECT, each problem solving method has a capability description that describes what 
the method can do. Each method also has a body, which is a step or sequence of steps for 
achieving the method's capability. EXPECT's method language supports conditionals, 
sequences of steps and embedded steps in method bodies. 

The automatic method instantiator uses partial evaluation and   reformulation (see 
[Swartout and Gil 1995]) to derive the interdependencies between the problem solving 
methods and domain knowledge that are needed to guide knowledge acquisition. The 
method instantiator starts with a high level goal that specifies a class of problems for 
which one would like to create a system.   For example, one might specify that one 
wanted to create a system to evaluate a transportation plan from the perspective of 
logistics. This high -level problem description contains "generic insta nces" which are 
placeholders for actual data that will be used when solving specific problems.   Starting 
with this goal, the method instantiator searches the method library for a method whose 
capability matches the goal. Among those that match, the most specific one is chosen, its 
method body is instantiated, and the generic instances replace variables in the method. If 
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the method body contains any subgoals, these are recursively expanded and the process 
continues. 

During method instantiation, the system also records how domain relations and 
concepts are being used by the various problem solving methods.   Figure 2 shows this 
linkage between the domain knowledge and the expansion of the problem solving 
methods.    In the figure, the location of a seaport is    used in one of the steps in the 
expanded method tree and berths of a seaport is used in another.   Notice that there are 
some relations that are defined by the domain concepts but they are not used in any of the 
problem solving steps, such as piers. We expect that it will often be the case that domain 
ontologies will contain some relations that are useful for some problem solving methods 
but not for others.   In particular, this would occur if we wanted to re -use a domain 
ontology to support a different sort of problem solving. For example, one might want to 
use the same domain ontology in the related (but different) problem of scheduling 
transportation movements.   Much of the domain  information needed  by the two 
applications would be similar, but some woul d be different. EXPECT can support such 
re-use because its knowledge acquisition routines can focus acquisition on just the 
information that is actually needed to support the particular problem solving methods in 
use. 

EXPECT also allows a user to modify problem solving methods.   For example, in 
some transportation planning situations, one might want to take into account additional 
resources that might be available. For example, in figuring out the throughput of a 
particular location, one might want to tak   e into account not only the capacity of its 
seaports, but also of its marinas.   In EXPECT, that could be done by modifying the 
method that finds the seaports of a location so that it finds the marinas as well. When 
that modification is made, EXPECT would re-derive the dependency structure shown in 
Figure 2, and it would determine that information about the marinas of a location was no 
longer optional, but required. Accordingly, EXPECT would ask the user for information 
about the marinas for all the locati ons where information about marinas had not been 
specified, like Los Angeles. 

2.6.5. Summary 
Table 1 summarizes the major issues that we have pointed out in this section. As the 

knowledge structures we use for learning and acquisition become richer and m ore 
explicit, our acquisition tools can support a broader range of problem solving methods, 
provide more guidance to the user and help the user make a wider variety of changes to a 
system. 
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TEIREISIAS SALT PROTEGE-II EXPECT 

Composing the no problem-solving manually by KA manually by KBS automatically 
overall problem- strategy expressed, tool's designers builder by selecting assembled by 
solving strategy rule chaining 

determines strategy 
methods from 
library 

method instantiator 

Representation of no problem-solving hard-coded in KA explicit structure explicit structure 
problem-solving strategy expressed tool manually created automatically 
strategy by KBS builder derived 

Abstraction rule templates model of problem library components generic problem- 
statistically derived solving (i.e., correspond to solving methods, 
from existing rule propose-and- models of problem- manually designed, 
base revise), manually solving, manually and explicitly 

designed, hard- designed, hard- represented 
coded in KA tool coded in 

component's KA 
tool 

When are when rule statistics when KA tool is when application whenever the 
interdependencies are gathered created KBS is created application is 
factual knowledge modified 
and problem-solving 
methods determined? 

Derivation of through predicates domain-dependent correspondences one single ontology 
interdependencies and rule models knowledge between domain represents 
between domain- corresponds to pre- ontology and correspondences 
dependent knowledge determined method ontology 
and problem-solving knowledge roles of are manually 
knowledge the problem- 

solving method 
specified 

Range of problem problems solveable propose and revise methods that can be methods that can be 
solving methods by backward composed from the expressed in 
supported chaining rule-based 

system 
methods in library EXPECT's method 

language 

Modifications rule modification & add new data add/modify factual add/modify factual 
Supported addition (design extensions, information used information; 

constraints, fixes) by problem solving add/modify 
used by propose methods in library problem solving 
and revise methods 

Table 1: Comparing knowledge acquisition tools 
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2.7. Summary 

In real world situations, users need to be able to adapt their tools: no one has the 
foresight to envision all the knowledge a system might need. Our research on EXPECT 
addresses that problem. By separating the different kinds of knowledge that go into a 
knowledge based system and automatically deriving the interdependencies between them 
EXPECT guides a user in modifying a knowledge based system. 
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3. Plan Representation and Reasoning 

3.1. EXPECT: REASONING ABOUT OBJECTIVES AND GOALS 

An important issue in reasoning about plans, processes, and act ivities is the description 
of the desired goals (or objectives) as well as which actions (or tasks, or agents) have 
the capability to achieve them.  Typically, goals are described as a flat predicate with a 
predicate name and several arguments   and onl y limited reasoning is done about them. 
The EXPECT architecture, build on top of the LOOM description logic system, uses a 
structured representation   of capabilities that has been useful in several tasks and tools, 
including  a problem solver, a plan editor, a plan evaluation and critiquing tool, and an 
agent matchmaker. The main features of this approach are the declarative representation 
of qualification parameters(m addition to    data passing parameters) for goals and 
capabilities, and flexible matching techniques that go beyond exact goal match, such as 
goal subsumption and reformulation.   A theme of the work on  EXPECT has been that 
the representations be understandable to users, as many of the applications developed 
with EXPECT are plan eval uation and  critiquing systems that support human planners 
in several military domains. 
In our approach, capabilities are represented as verb clauses using a case-grammar style 
of formalism. Each capability consists of a verb, that specifies what is to be done, and a 
number of roles, or   slots, which specify the parameters to be used in the action. The 
parameters use terms that are defined in a domain ontology. For example,   the goal of 
estimating the closure date of a particular transportation  moveme nt would be specified 
roughly as: 
estimate  OBJ   closure-date  OF   transportation-movement-1 
Here, estimate is the verb, and the roles are indicated in upper  case.   The roles are 
filled by concepts and instances taken from the domain ontology. 
Roles can be filled in several different ways, which allows considerable   flexibility in 
specifying a task to be performed. A role can be filled by a specific instance: 
add  OBJ   3   TO   5 
which allows us to specify particular instances that are to be used in an action. A role can 
be filled by a concept: 
compute OBJ (spec-of factorial) of 7 
In this case, the concept factorial is used to specify the kind of task that is to be 
performed. The data required to perform the computation are specified as parameters (in 
this case the number 7), while these additional task parameters allow us to express what 
needs to be done with that data in an explicit way and are not strictly necessary to 
perform the computation itself. The fact that roles can be used both to specify the 
parameters or objects that will be involved in a tnskand to further describe or 
specify the task itself is one of the key capabilities that our representation supports, 
providing us with a rich language for specifying goals. 
Roles can be a type of an instance, as in: 
divide OBJ (inst-of number) BY 2 
This expresses a generic goal that can be instantiated with any elements of that type. 
Roles can also be filled by extensional sets as in: 
find  OBJ   (spec-of  maximum)   OF   (42   2   99) 
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or they can be filled by intensional sets, where the set is described by a concept: 
find OBJ (set-of (spec-of violated-constraint)) 
IN (inst-of configuration) 
Finally, it is possible to use descriptions (which are similar to the definitions of Loom 
concepts) in roles: 
estimate OBJ support-personnel 
IN (and location (exactly 0 seaports)) 
This is a goal to estimate the support personnel in a location with no seaports. 
This approach provides a rich language for specifying behaviors. The use of a case 
grammar formalism makes it relativel    straightforward to paraphrase the goals into 
natural language, helping to make them more understandable. 
Capabilities are translated into LOOM definitions, following an algorithm described in. 
For example, (compute   (obj    (spec-of   factorial))    (of   (5   7)))   is 
translated into: 

(defconcept compute-factorial-of-numbers 
:is (:and compute 

(:the obj (:and concept-description factorial)) 
(:the of (:and number extensional-instance-set 

(:filled-by instance-name 5) 
(:filled-by instance-name 7))))) 

LOOM's classifier is now able to reason with this definition. Every term used in the 
parameters have their own definitions, provided in the ontologies, and LOOM will use 
them in reasoning about capability subsumption. Notice that these terms and their 
definitions can be domain independent (e.g., violated-constraints, maximum) or domain 
dependent (e.g., location, closure-date). 
Given a set of capabilities expressed in this language, a set of LOOM definitions 
corresponding to them can be added to the knowledge base. Loom's classifier reasons 
about these definitions and places them in a lattice, where more general definitions 
subsume more specific ones. Notice that this subsumption reasoning uses the definitions 
of the domain terms and ontologies that are contained in the domain knowledge bases. 
As a result, the capability to "move cargo with a vehicle" will subsume one to "move 
cargo with an aircraft", because according to the domain ontologies vehicle subsumes 
aircraft. The capabilities are automatically organized according to their definitions, and 
they can be compared based on their place in the lattice. 
Subsumption matching can help find suitable capabilities when presented with a query, 
but in some cases no subsuming capability has been added to the knowledge base. In 
these cases it may be possible to fulfill the request by decomposing it expressing it in 
different terms. This allows a more flexible matching than is possible possible if one 
required an exact match for goals and methods. EXPECT supports several types of 
reformulations: 

•     A covering reformulation is a form of divide and conquer. It transforms a goal 
into a set of goals that partition the original goal. If all the goals in the set are 
achieved, the intent of the original goal is achieved. For example, suppose a goal 
of estimating support personnel has been posted, but no applicable methods have 
been found. Suppose further that the domain ontology indicates that the concept 
support personnel is partitioned into unloading personnel, seaport support 
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personnel and airport support personnel. The original goal can then be 
reformulated into three new goals to estimate each type of personnel in the 
partition. 

• A set reformulation is like a covering reformulation except that it involves a 
goal over a set of objects which is reformulated into a set of goals over 
individual objects. 

• An input reformulation is somewhat similar to the support that some languages 
provide for polymorphic operators. This kind of reformulation occurs when a 
goal is specified with a general parameter and no single method is available at a 
sufficiently general level to handle the parameter. In that case, the goal can be 
reformulated into cases based on the subtypes of the parameter given in the 
ontology. 

Goal reformulations allow us to state the description of method capabilities more 
independently from the statement the descriptions of the goals that are posted by other 
methods or by the user. The benefit is a more loosely coupling between methods and 
tasks, i.e., between what is to be accomplished and what are possible ways to accomplish 
it. 
These structured representations of objectives have been used in three different and 
related contexts that require reasoning about goals: problem-solving goals, planning 
objectives, and agent capabilities. 
EXPECT is a reasoning system that supports acquisition of problem-solving knowledge 
through a number of different techniques. These include maintaining a dependency 
model of any knowledge-based system (KBS) that is built with EXPECT, scripting tools 
that can guide a user through a multi-step modification to a KBS and the use of 
background knowledge about generic tasks. Here we focus on EXPECT's representation 
of tasks and subtasks within a KBS. More details about the overall reasoning and 
EXPECT's knowledge acquisition tools can be found in. 
The problem-solving knowledge of a KBS that is built in EXPECT consists of set of 
methods. Each method has a capability that declares what task can be achieved by the 
method, a body that describes how the capability is achieved and a return type that 
characterizes what the method produces. The method body is written in a programming 
language that includes basic constructs such as a conditional test and can also include 
other goals. These goals may be matched by the capabilities of other methods, in which 
case they will be used when the method is applied, resulting in a tree structure of 
methods. 
EXPECT method capability descriptions for methods are specified in a similar way to 
goals, except that variables may appear in the capability descriptions. These are bound 
when the capability descriptions are matched with goals. Figure 2 shows some examples 
of EXPECT problem-solving methods and their capabilities 
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(defmethod REVISE-CS-STATE 
"To revise a CS state, apply the fixes found for 
the constraints violated in the state." 
:goal (revise (obj (?s is (inst-of cs-state)))) 
result (inst-of cs-state) 
:body (apply 

(obj (find (obj (set-of (spec-of fix))) 
(for (find (obj (set-of (spec-of 

violated-constraint))) 
(in ?s) ) )) ) 

(to ?s))) 

(defmethod CHECK-CAPACITY-CONSTRAINT 
"To check the Capacity Constraint of a U-Haul 
configuration, check if the capacity of the rented 
equipment is smaller than the volume to move." 
:goal (check (obj CapacityConstraint) 

(in (?c is (inst-of uhaul-configuration)))) 
:result (inst-of boolean) 
:body (is-smaller 

(obj (r-capacity (r-rented-equipment ?c))) 
(than (r-volume-to-move ?c)))) 

(defmethod APPLY-UPGRADE-EQUIPMENT-FIX 
"To apply the Upgrade Equiment Fix in a U-Haul 
configuration, upgrade the rented equipment." 
:goal (apply (obj UpgradeEquipmentFix) 

(to (?c is (inst-of uhaul-configuration)))) 
:result (inst-of uhaul-configuration) 
:body (upgrade (obj (spec-of rented-equipment-var)) 

(in ?c))) 

Figure 2: Problem-solving knowledge in EXPECT. 

Because it uses structured representations of method capabilities is, EXPECT can reason 
about how different methods relate to each other. This is useful for organizing method 
libraries as well as to support the acquisition of new problem-solving methods. 
These representations support natural language paraphrasing, which is useful to develop 
adequate knowledge acquisition tools accesible to end users with no logic or 
programming background. 
These goal representations have been used for almost a decade within EXPECT to 
develop several applications of considerable size. Two large knowledge bases were 
developed for the Challenge Problems of the DARPA High Performance Knowledge 
Bases. A knowledge based system to generate and assess enemy workarounds to target 
damage was developed for the  1998 Challenge Problem evaluation. This system showed 
the best performance and was the only one to attempt full coverage of the task. A tool 
for critiquing Army Courses of Action was developed together with other HPKB 
participants for the 1999 Challenge Problem, where each component system used shared 
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ontologies to address disjoint subsets of the critiques. Figure 3 shows the sizes of some 
of these knowledge bases as well the average matcher performance. 

CC + Cyc'   TKB '99 

0.18 sec 

WG + uc 
A 

0.1671 sec 

VVG + Cyc'   1KB '98 
A 

0.5036 sec 

10O00 15000 20OOO 
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Figure 3: Performance of the Loom-based EXPECT Matcher. 

A second use of these structured representations is to represent plans in the application 
domain that EXPECT reasons about. Plan are described as concepts, and any properties 
are expressed as roles and constraints. Goals are represented as Loom concepts, with 
each parameter corresponding to a role as described above. EXPECT was used to 
develop several knowledge-based systems for military air campaign planning, including 
offensive, defensive, and logistics aspects of air operations . Air campaign plans are 
composed of objectives that are decomposed into subobjectives all the way down to 
specific missions. Air objectives are related to one another by temporal constraints 
(before, after), but they lack precondition and effects information. The Air Campaign 
Planning Tool (ACPT) was the first of a series of plan editors that allow a user to define 
objectives and decompose them into subobjectives, possibly invoking automated plan 
generation tools to flush out the plan at the lower levels. Users entered objectives as 
strings with ACPT, which lack the structure that automated tools need in order to reason 
about them. EXPECTs goal representations provided that structured formalization of 
air campaign objectives, which turned out to improve the editor and to be useful to other 
air campaign planning tools as well. Operational users found the structured 
representations very useful, because an editor would enable them to be more precise in 
representing objectives and because they resulted in standard statements of objectives 
that could be shared and understood by everyone. For example, ACPT allowed them to 
state an objective as "conduct operations", which is too vague, or "gain air superiority", 
which is imprecise because it does not specify the geographical area within the theater 
that is intended. Several editors that make use of our grammars were built, the most 
widely used one is the Mastermind objectives editor, shown in Figure 4. This editor is 
built using Adaptive Forms, a GUI allowing a user to enter a sentence from a context- 
free grammar. The grammar is generated from the Loom representations of objectives. 
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Figure 4: A plan editor is used to enter objectives for an air campaign plan 
objectives. 

The structured representation of air campaign objectives was used also for reasoning 
about the plan to support mixed-initiative plan creation. Because the plan creation 
process is mostly manual (at least at the higher levels), it is prone to error. This is 
aggravated by the size of the plans (several hundreds of interdependent objectives and 
tasks) and by the number of different people involved in its creation. In order to help 
users detect potential problems as early as possible in the planning process, we 
developed INSPECT, a knowledge-based system built with EXPECT that analyzes a 
manually created air campaign plan and checks for commonly occurring plan flaws, 
including incompleteness, problems with plan structure, and unfeasibility due to lack of 
resources. For example, INSPECT would point out that if one of the objectives in the 
plan is to gain air superiority over a certain area then there is a requirement for special 
facilities for storing JPTS fuel that is currently not taken into account. Without the tool, 
this problem might only be found when a logistics expert checks the plan, a day or more 
after the problem arises. INSPECT reasons about the kinds of objectives in the plan, 
notices that gaining air superiority requires providing reconnaissance missions, which 
are typically flown in aircraft that need specific kinds of fuel that need to be stored in 
special facilities. 
A more recent application area of EXPECT's structured representations of goals is agent 
matchmaking. Multi-agent architectures typically offer matchmaking services that an 
agent can query to find what other agents can perform a given task. For example, a route 
planning agent may invoke threat detection agents in order to make a safe choice among 
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all possible routes. Typically, simple string matching suffices since the agent 
communities are relatively small and the agents that need to issue a request can be told 
beforehand what other agents are available and how they have to be invoked. In 
addition, most current multi-agent systems assume that an agent can perform a few tasks 
(often just a single task), where the advertisements and invocations of agents are 
negotiated in advance by the agent designers and thus can be significantly simplified. In 
large and heterogeneous communities of agents, where the agent that formulates the 
request would have no idea of whether and how another agent has advertised relevant 
services, there is a need for more sophisticated matchmaking mechanisms. In this kind 
of environment, it is likely that most requests will will be imprecise or even ill- 
formulated, and advertisements of agent capabilities need to be able to 1) support the 
requesting agent in formulating the request properly, 2) support negotiation and 
brokering, and 3) adapt dynamically as the agents or their environment change over time. 
A language is required to support descriptions of agent capabilities that enable 
communication among agents that had no previous knowledge of each other and thus 
need to provide enough information about themselves to agree to joint activities. The 
kinds of structured representations discussed in this chapter provide a richer language for 
advertising the capabilities of agents and would support more flexible matching 
algorithms. The application domain for this work is the integration of agent 
organizations and human organizations. Typical tasks in this environment involve 
planning a schedule for a visitor, setting up and attending meetings, and organizing off- 
site demonstrations and visits. Researchers, students, technical support personnel, and 
project assistants play different roles in each of these tasks and each person has different 
capabilities to offer in the organization. For example, only certain project assistants can 
process receipt reimbursements, only researchers can take visitors out to lunch, and onl 
certain people within a project are involved with relevant aspects of the software and can 
give demos of it. Agent capabilities are advertised using EXPECT's structured 
representations: 

((capability (process (obj (spec-of reimbursement)) 
(for (?r is (set-of (inst-of receipt)))))) 

(agents (katya fanny tanya))) 

((capability (demo (obj Phosphorus))) 
(agents (surya))) 

((capability (take (obj (?v is (inst-of visitor))) 
(to (spec-of lunch)))) 

(agents (tambe knoblock minton chalupsky gil))) 

((capability (setup (obj (?v is (inst-of vcr))))) 
(agents (chris ken))) 

Using ontologies, we represent information about projects, (their members, funding 
agencies, software, etc.), equipment, etc. The agent capabilities are translated into 
Loom descriptions as we described earlier. The matchmaker uses subsumption, reverse 
subsumption, and several kinds of reformulations to find agents relevant to a request. 
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3.1.2 CLASP: CLASSIFICATION OF SCENARIOS AND PLANS 

CLASP is a knowledge representation system that builds on description logic to support 
plan subsumption and classification . It was implemented as an extension of CLASSIC 
and was integrated with the LASSIE software information system . A central 
contribution of CLASP is the subsumption and classification algorithms for plans 
described as action networks. Its main application was to described the behavior of a 
Private Branch Exchange (PBX) switching product. The examples in this section are 
taken from that application as described in . 
CLASP used a STRIPS-like representation   of actions in the plan, and assumes a 
propositional representation of planning problems with conjunctive expressions of 
preconditions and states. Figure 1 shows the core definitions of actions, states, and 
plans. Actions and states are defined as CLASSIC objects, Plans are defined in 
CLASP's language, and described as networks of actions that achieve a goal from a 
given initial state. The action networks are partially ordered plans that include iteration 
and branching, and are called PLAN-EXPRESSION. A PLAN-EXPRESSION can be 
described with the constructs SEQUENCE, LOOP, REPEAT, TEST (conditional 
branching), OR (disjunctive branching), and SUBPLAN. The SUBPLAN construct 
supports modular definitions of plans through definitions of meaningful sub-networks. 
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(DEFINE-CONCEPT Action 
(PRIMITIVE 

(AND Classic-Thing 
(AT-LEAST 1 Actor) 
(ALL ACTOR Agent) 
(EXACTLY 1 PRECONDITION) 
(ALL PRECONDITION State) 
(EXACTLY 1 ADD-LIST) 
(ALL ADD-LIST State) 
(EXACTLY 1 DELETE-LIST) 

(ALL DELETE-LIST State) 
(EXACTLY 1 GOAL) 
(ALL GOAL STATE)))) 

(DEFINE-CONCEPT State 
(PRIMITIVE Classic-Thing)) 

(DEFINE-PLAN 
Plan 
(PRIMITIVE 

(AND Clasp-Thing 
(EXACTLY 1 INITIAL) 
(ALL INITIAL State) 
(EXACTLY 1 GOAL) 
(ALL GOAL State) 
(EXACTLY 1 PLAN-EXPRESSION) 
(ALL PLAN-EXPRESSION 

(LOOP Action))))) 

Figure 5: CLASP definitions of actions, states, and plans. 

Domain-specific types of states, actions, and plans are described using these core 
definitions. Figure 5 shows some of the definitions in the telephony switching domain. 
A connect dialtone action is defined as an action performed by a system (not by a user) 
that provides a dialtone when the phone is off the hook and idle. Subtypes of the class 
plan can be defined to create a taxonomy of plan types. For example, a plan for POTS 
(Plain Old Telephone Service) can be defined as one where a caller picks up the phone 
and dials, if the callee's phone is off hook the caller gets a busy signal and hangs up 
otherwise the call proceeds. Notice that Originate-And-Dial-Plan is a subplan that is 
defined separately and its plan expression is inserted in the appropriate node of the 
POTS plan expression. 
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(DEFINE-CONCEPT System-Act 
(AND Action 

(ALL ACTOR System-Agent))) 

(DEFINE-CONCEPT Connect-Dialtone-Act 
(AND System-Act 

(ALL PRECONDITION 
(AND Off-Hook-State 

Idle-State)) 
(All Add-LIST Dialtone-State) 
(ALL DELETE-LIST Idle-State 
(ALL GOAL 

(AND Off-Hook-State 
Dialtone-State)))) 

(DEFINE-CONCEPT Callee-Off-Hook-State 
(PRIMITIVE State)) 

(DEFINE-CONCEPT Callee-On-Hook-State 
(PRIMITIVE State)) 

(DEFINE-CONCEPT Callee-Off-Caller-On-State 
(AND Callee-Off-Hook-State 

Caller-On-Hook-State)) 

(DEFINE-PLAN Pots-Plan 
(AND Plan 
(ALL PLAN-EXPRESSION 

(SEQUENCE 
(SUBPLAN 

Originate-And-Dial-Plan) 
(TEST 

(Callee-On-Hook-State 
(SUBPLAN Terminate-Plan)) 

(Callee-Off-Hook-State 
(SEQUENCE 

Non-Terminate-Act 
Caller-On-Hook-Act 
Disconnect  Act))))))) 

(DEFINE-PLAN 
Originate-And-Dial-Plan 
(AND 

Plan 
(ALL   PLAN-EXPRESSION 

(SEQUENCE 
Caller-Off-Hook-Act 
Connect-Dialtone-Act 
Dial-Digits-Act)))) 

Figure 6: CLASP actions, states, and plans in the telephony domain. 

Specific plans, states, and actions are created as instances of the classes defined in these 
taxonomies of states, actions, and plans. Specific plans are called scenarios, and they 
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reflect different linearized sequences of actions that can be executed in the world. Figure 
6 shows a scenario where the caller picks up the phone, gets a dial tone, dials and gets a 
busy signal, and hangs up causing the system to disconnect. The initial and goal states 
are defined as instances. Specific actions are defined as instances as well, for example 
connect-dialtone-on-ul is performed by a switching s stem and requires the user to be 
idle. 

(CREATE SCENARIO 
pots-busy-scenario 
(AND Plan 

(FILLS INITIAL state-ulon-u2off) 
(FILLS GOAL state-ulon) 
(FILLS PLAN-EXPRESSION 

(caller-off-hook-ul 
connect-dialtone-on-ul 
dial-digits-ul-to-u2 
non-terminate-on-u2 
caller-on-hook-ul 
disconnect-ul)))). 

(CREATE-IND state-ulon-u2off 
(AND state-Ulon State-U2off)) 

(CREATE-IND connect-dialtone-on-ul 
(AND Connect-Dialtone-Act 

(FILLS ACTOR switching-system) 
(FILLS PRECONDITION state-uloff-idle))) 

Figure 7: CLASP plan, state, and action instances in the telephony domain. 

CLASP supported subsumption and classification of plans and scenarios by extending 
these functions provided in CLASSIC for concepts and instances. A plan description A 
subsumes a plan description B if the initial state and goal state of A subsume the initial 
and goal states of B, and if the plan expression of A subsumes the plan expression of B. 
The subsumption of plan expressions was defined by considering action networks as an 
extension to deterministic finite automata (DFA) where the transitions are CLASSIC 
subsumption checks. The plan expression EA of a plan class A subsumes the plan 
expression EB of a plan class B if the languages accepted by their corresponding DFAs 
are subsumed, i.e., DEA's language is a subset of DEB's language. A scenario is an 
instance of a plan class if the action network of the plan expression of the scenario is 
accepted by the DFA defined by the plan expression of the plan class. 
The CLASP knowledge representation system supported several aspects of reasoning 
about plans, including organization of plan classes, retrieval of plan types and scenarios 
with description-based queries, and validation of scenarios based on type descriptions. 
In the telephony domain, it provided a useful to organize the representation of various 
features provided by telephony systems (such as the POTS feature), analyzing which 
features supported certain behavior patterns, and retrieving test scenarios for specific 
features and behaviors. 
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3.1.3. PLAN GENERATION 

SUDO-PLANNER is a planner developed to reason about tradeoffs in decision making 
under uncertainty, and was developed in the context of medical domains. SUDO- 
PLANNER represented actions and plans using NIKL. Actions were represented as 
concepts, with their parameters as roles with the corresponding constraints represented 
as role restrictions. A taxonomy of action types enabled SUDO-PLANNER to exploit 
inheritance and classification. 
TINO is a mobile robot that uses description logic to generate high-level plans. The 
representation of the domain includes static axioms, used to represent background 
knowledge that does not change as actions are executed, and dynamic axioms that 
represent the changes caused by the actions. Conditional plans are generated, and during 
execution different branches can be selected based on sensory feedback. 

3.1.4. SUMMARY AND FUTURE PROSPECTS 

Description logics have been applied to several areas of planning, including plan 
analysis, plan generation, plan recognition, and plan evaluation and critiquing. The 
applications range from military planning, to telephony systems, to mobile robot control. 
Subsumption reasoning and classification support sophisticated reasoning about general 
types of actions and plans than other planning research In comparison with other 
planning research, these systems support more sophisticated reasoning about general 
types of actions and plans thorugh subsumption reasoning and classification. Another 
advantage is that their plan representations are integrated with the description logic 
representations of the objects in the domain, in comparison with the more 
empoverished representations used in other planning research. The challenge of 
reasoning about plans in knowledge-intensive environments is already being raised in 
military planning, physical sciences research, enterprise and process modelling and 
management, and space operations. As the planning community continues to tackle 
more practical and ambitious tasks, description logics will be able to provide the kinds 
of knowledge representation and reasoning capabilities that these applications require. 
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3.2. PLANET: An Ontology for Representing Plans 

As we develop larger and more complex intelligent systems in knowledge-intensive 
domains, it becomes impractical and even infeasible to develop knowledge bases from 
scratch. Recent research investigates how to develop intelligent systems by drawing 
from libraries of reusable components that include both ontologies and problem-solving 
methods. This paper introduces PLANET 4,    a reusable ontology for representing 
plans.PLANET complements recent efforts on formalizing, organizing, and unifying A 
planning algorithms by focusing on the representation of plans, and adds a practical 
perspective in that it is designed to accomodate a diverse range of real-world plans 
(including manually created ones). As more complex planning systems are developed to 
operate in knowledge-intensive environments, ontologies present an approach to enable 
richer plan representations. 
We have drawn from our past experience in designing, developing and integrating 
planning tools, and expect PLANET to ease these tasks in the future in three ways. 
First, we have already found it useful for knowledge modelling. By providing a structure 
that formalizes useful distinctions for reasoning about states and actions, a knowledge 
engineer can find the semantics of informal expressions of plans (e.g., textual or 
domain-specific) through designing mappings to the ontology. Reports on efforts to 
model plans in various application domains indicate the difficulties of representing real- 
world domains, and point out the need for better methodologies for knowledge 
modelling for planning and for richer representations of planning knowledge. We 
believe that PLANET takes a step in that direction. Second, a plan ontology can be a 
central vehicle for knowledge reuse across planning applications.PLANET contains 
general, domain-independent definitions that are common and useful across planning 
domains. To create a plan representation in a new domain, these general definitions can 
be used directly and would not need to be redefined for every new domain. Onl 
domain-dependent extensions will need to be added. Third, PLANET should facilitate 
integration of planning tools through knowledge sharing. Currently, practical efforts to 
integrate planning tools are done by designing separate interchange formats for (almost) 
each pair of tools, since designing a more universal format is costly and often more 
difficult than designing the entire set of pairwise formats. These difficulties are in part 
because these systems include decision-support tools such as plan editors, plan 
evaluation tools, and plan critiquers, which represent plans in ways that are different 
from traditional AI plan generation systems. An ontology like PLANET can provide a 
shared plan representation for systems to communicate and exhange information about 
the plan, and can facilitate the creation of a common, overarching knowledge base for 
future integrations of planning tools. An example of a successful integration of planning 
tools through a knowledge base is shown in. 
PLANET makes the following representational commitments to provide broad coverage. 
First, planning contexts that refer to domain information and constraints that form the 
background of a planning problem are represented explicitly. Planning problems, which 
supplement the context with information about the initial state of the world and the 
goals, are represented explicitly and are accessible from the context. Alternative plans 

4PLANET: a PLANsemantic NET 
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themselves are then accessible from each planning problem for which they are relevant. 
Second, PLANET maintains an explicit distinction between external constraints, which 
are imposed on a context or planning problem externally to a planning agent (including 
user advice and preferences), and commitments which the planning agent elects to add as 
a partial specification of a plan (for example, a step ordering commitment). The current 
version of PLANET does not represent aspects related to the execution of plans and 
actions, adversarial planning, or agent beliefs and intentions. 
We present the main definitions in PLANET, including initial  planning context, goals, 
actions and tasks, and choice points.  Next, we describe three specializations of 
PLANET for three real-world domains where plans are of a very different nature.  We 
conclude with a discussion of related work and some anticipated directions for future 
work. 

This section describes how different aspects of a plan are represented in PLANET. As a 
convention, we use boldface to highlight terms that are defined in PLANET when they 
are first introduced and described in the text. Figure 1 shows a diagram of the major 
concepts and relations in the ontology. 

plan 
plan-commitmc nr_s capability 

plan-task-descriplion effec's ■ 
A        / ^ preconditions . 

W      /\ ub task     S   r* 

plan-task-lemplate 
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Figure 1: An overview of the PLANET ontology. Arrows pointing into space 
represent relations whose ranges are not fixed in the ontology. 

3.2.1. PLANNING PROBLEMS, SCENARIOS, AND CONTEXTS 

A planning problem context represents the initial, given assumptions about the 
planning problem. It describes the background scenario in which plans are designed and 
must operate on. This context includes the initial state, desired goals, and the external 
constraints. 
A world state is a model of the environment for which the plan is intended. When using 
a rich knowledge representation system, the state may be represented in a context or 
microtheory.  A certain world state description can be chosen as the initial state of a 
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given planning problem, and all plans that are solutions of this planning problem must 
assume this initial state. 
The desired goals express what is to be accomplished in the process of solving the 
planning problem. Sometimes the initial planning context may not directly specify the 
goals to be achieved, instead these are deduced from some initial information about the 
situation and some abstract guidance provided as constraints on the problem. 
We make a distinction between external constraints imposed on planning problems and 
the commitments made by the plan. External constraints may be specified as part of the 
planning context to express desirable or undesirable properties or effects of potential 
solutions to the problem, including user advice and preferences. Examples of external 
constraints are that the plan accomplishes a mission in a period of seven days, that the 
plan does not use a certain type of resource, or that transportation is preferably done in 
tracked vehicles. Commitments are discussed later. 
The initial requirements expressed in the planning problem context need not all be 
consistent and achievable (for example, initial external constraints and goals may be 
incompatible), rather its aim is to represent these requirements as given. A plan ma 
satisfy or not satisfy external constraints. PLANET represents these options with 
multiple planning problem  for each planning problem context, which may add new 
constraints and goals, or relax or drop given ones. A planning problem is created b 
forming specific goals, constraints and assumptions about the initial state. Several plans 
can be created as alternative solutions for a given planning problem. A planning 
problem also includes information used to compare alternative candidate plans. 
Planning problems can have descendant planning problems, which impose (or relax) 
different constraints on the original problem or may assume variations of the initial state. 
Typically, AI planning systems assume one given planning problem and do not address 
this process, which is essential when working with real-world environments. 
A planning problem may have a number of candidate plans which are potential 
solutions. A candidate plan can be untried (i.e., it is yet to be explored or tested), 
rejected (i.e., for some reason it has been rejected as the preferred plan) or feasible (i.e., 
tried and not rejected). One or more feasible plans ma  be marked as selected. All of 
these are sub-relations of candidate plan. 

3.2.2. GOALS, OBJECTIVES, CAPABILITIES, AND EFFECTS 

A goal specification represents anything that gets accomplished by a plan, subplan or 
task. Both capabilities and effects of actions and tasks are subtypes of goal specification, 
as well as posted goals and objectives. Goals may be variabilized or instantiated. State- 
based goal specifications are goal specifications that typically represent goals that refer 
to some predicate used to describe the state of the world, for example 'achieve (at Jim 
LAX)', 'deny (at Red-Brigade South-Pass)' or 'maintain (temperature Room5 30)'. 
Objective-based goal specifications are goal specifications that are typically stated as 
verb- or action-based expressions, such as 'transport brigade5 to Ryad'. 
Goal specifications also include a human readable description used to provide a 
description of a goal to an end user. This is useful because often times users want to 
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view information in a format that is different from the internal format used to store it. 
This could be a simple string or a more complex structure. 

3.2.3. ACTIONS, OPERATORS, AND TASKS 

Plan task descriptions are the actions that can be taken in the world state. They include 
templates and their instantiations, and can be abstract or specific. A plan task description 
models one or more actions in the external world. 
A plan task is a subclass of plan task description and represents an instantiation of a 
task as it appears in a plan. It can be a partial or full instantiation. A plan task template 
is also a subclass of plan task description that denotes an action or set of actions that 
can be performed in the world state. In some AI planners the two classes correspond to 
operator instances and operator Schemas respectively, and in others they are called tasks 
and task decomposition patterns. 

Plan task descriptions have a set of preconditions, a set of effects, a capability, and can 
be decomposed into a set of subtasks. Not all these properties need to be specified for a 
given task description, and typically planners represent tasks differently depending on 
their approach to reasoning about action. The capability of a task or task template 
describes a goal for which the task can be used. A precondition represents a necessar 
condition for the task. If the task is executed, its effects take place in the given world 
state. Tasks can be decomposed into subtasks that are themselves task descriptions. 
Hierarchical task network planners use task decomposition or operator templates 
(represented here as plan task templates) and instantiate them to generate a plan. Each 
template includes a statement of the kind of goal it can achieve (represented as a 
capability), a decomposition network into subtasks, each subtask is matched against 
the task templates down to primitive templates, represented asprimitive plan task 
descriptions. Other planners compose plans as an ordered set of primitive plan steps 
(often called operators, as in STRIPS and UCPOP). Plan steps are specializations of 
primitive plan task descriptions that have some set of effects, as they are typically used 
in means-ends analysis planners. 
Like goal specifications, plan task descriptions also include a human readable 
description. Some AI planners specify this information as a set of parameters of the 
task that are used to determine which subset of arguments will be printed when the plan 
is displayed. 
Planning levels can be associated to task descriptions as well as to goal specifications. 
Some AI planners assign levels to tasks (e.g.,SIPE ), others assign levels to particular 
predicates or goals (e.g., ABSTRIPS). Levels are also used in real-world domains, for 
example military plans are often described in different levels according to the command 
structure, echelons, or nature of the tasks. 
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3.2.4. PLANS 

A plan represents a set of commitments to actions taken by an agent in order to achieve 
some specified goals. We define the following subclasses of plans: A feasible plan P is 
one for which there exists some plan that has a consistent superset of the commitments in 
P and will successfully achieve the goals. A justified plan is a feasible plan with a 
minimal set of commitments. A consistent plan is one whose commitments are 
consistent with each other, with what is known about the state and with the model of 
action. A complete plan is one that includes the tasks necessary to achieve the goals to 
the required level of detail (this depends on the planning agent's concerns). These 
definitions are useful to describe properties of plans and to accommodate different 
approaches that planners use. For example, we can represent that a hierarchical planner 
generates a feasible plan at each planning level, and a complete plan only at the lowest 
level. A partial-order planner, such as UCPOP, successively refines feasible plans until 
finding a solution which is a complete plan. There is no requirement for a plan to be 
justified or consistent in order for it to be represented in PLANET. This allows us to 
represent not only machine-generated plans but also human-generated plans, which are 
likely to contain errors. 
It can be useful to state that a plan forms a sub-plan of another one. For example, 
military plans often include subplans that represent the movement of assets to the area of 
operations (i.e., logistics tasks), and subplans that group the operations themselves (i.e., 
force application tasks). 

3.2.5. CHOICE POINTS, ALTERNATIVES, DECISIONS, AND COMMITMENTS 

In searching or designing a plan, a number of choices typically need to be made. At a 
given choice point, several alternatives may be considered, and one (or more) chosen as 
selected. Such choices are represented in PLANET as a type of commitment. 
Commitments can be made in both plans and tasks. Plan commitments are 
commitments on the plan as a whole, and may be in the form of actions at variousl 
detailed levels of specification, orderings among actions and other requirements on a 
plan such as a cost profile. The tasks that will form part of the plan are represented as a 
subset of the commitments made by the plan. Task commitments are commitments that 
affect individual tasks or pairs of tasks. An ordering commitment is a relation between 
tasks such as (before A B). A temporal commitment is a commitment on a task with 
respect to time, such as (before ?task ?time-stamp). Another kind of commitment is the 
selection of a plan task description because it accomplishes a goal specification. This 
relation records the intent of the planning agent for the task, and is used in PLANET to 
represent causal links. 

3.2.6. DISCUSSION 
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PLANET does not include representations for some entities that are typically associated 
with planning domains, e.g. agents, resources, time, and location. Different systems that 
reason about plans use different approaches to represent and reason about these entities. 
Separate ontologies for them can be developed and integrated with PLANET. We use 
PLANET in combination with an ontology of Allen's time relations and the OZONE 
resource ontology, and in combination with an ontology of plan evaluations and 
critiques that we have developed. For systems and domains where there is no need for 
complex representations of agents, resources, time, and location, it is trivial to extend 
PLANET with simple representations of them and we have done so ourselves for some 
of the domains described below. 

3.2.7 Using PLANET for Real-World Domains 

This section describes how we used PLANET to represent plans in three different 
domains. Although all three are military domains, the plans are of a radically different 
nature in each case. In the first two domains, plans were built manually by users and 
needed to be represented as given, containing potential flaws and often serious errors. 
In the JFACC domain, plans are hierarchically decomposed and have verb-based 
objectives. Information about causal links and task decomposition templates is not 
provided. In the COA domain, plans have a hierarchical flavor that is not alway 
explicitly represented in the plan. In the Workarounds domain, plans were generated 
automatically by an AI planner. This section describes the domains in more detail. 

3.2.7.1 PLANET-JFACC 

This is a domain of air campaign planning where users follow the strategies-to-tasks 
methodology. In this approach, users start with high-level objectives and decompose 
them into subobjectives all the way down to the missions to be flown. Using a plan 
editing tool, a user defines objectives, decomposes them into subobjectives, and can 
specify temporal orderings among plan steps. Some subobjectives may be handed to an 
automated planner to be fleshed out to lower levels. The rest of this discussion will 
focus on the representation of these manually created plans. 
Figure 2 shows an excerpt of an air campaign plan as it would be specified by a domain 
expert, indicating the hierarchical decomposition through indentation. Options (marked 
with stars) indicate disjunctive branches of the plan that are explored as alternatives. 
The bottom of the figure shows how a user can specify an objective. 

beginminipage3.5inOI: Eliminate enemy SSM ihrcal to US allies by D+5 
* Option I: Destroy all known enemy SSM launchers and launch facilities by D+5 

Olli: Destroy fixed enemy SSM launch siics by D+5 
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01111: Destroy [ihem] on NW area using precision weapons 
♦Option 1: Destroy |lhem] using stealth aircraft 
0 111111: Deslroy [them) using Fl 17 with GBU-27 
*Option2: Destroy [them] using SEAD aircraft 

0112: Destroy storage facilities for SSM equipment by D+5 
*Option2: Disrupt and disable the enemy C2 infrastructure for SSM 

02: Airlift wounded and civilian non-combatants by D+2 
Objective ID: 0-152    Level: AO    Phase: II    Parents: 0-98, 0-61 

Statement: Maintain air superiority over NW sector 
Sequence restrictions: Before 0-138, Before 0-124 

endminipage 

Figure 2: An excerpt of an air campaign plan and the specification of an objective. 

We represent Air campaign plans as a subclass of the class plan. These manuall 
created plans do not capture well the rationale behind the objective decompositions. For 
example, users do not indicate causal links, i.e., which effects enable the conditions 
needed by other tasks. Nor do they indicate the intended plan tasks and instead capture 
only the goals that these tasks are supposed to accomplish. 
Air campaign objectives are verb-based statements, so we represent them as a subclass 
of objective-based goal specifications. Some of their clauses are turned into constraints 
on the goal, including temporal constraints (within 21 days), geographical constraints {in 
Western Region), and resource constraints (using B-52s from airbase XYZ). Each 
objective may have several children and several parents (unlike plans generated b 
hierarchical AI planners where there is only one parent).Options indicate alternative 
ways to decompose an objective, and are represented as a specialization of alternative 
plans. 
The decomposition hierarchy is divided into levels, including low-level air tasks and 
other higher-level air objectives. Objectives belong to one phase of the campaign (e.g., 
deployment phase, operations phase, redeployment phase, etc.), which we represent b 
grouping objectives into subplans. Each objective also belongs to an air campaign 
objective level in the decomposition hierarchy (e.g., air tasks are considered to be at a 
higher level than air activities), which we define as subclasses of planning level. 
In this domain, human planners create air campaign plans in the context of an overall 
military campaign and the specific guidance provided by the Joint Forces Air 
Component Commander (JFACC). We define JFACC-context as a subclass of planning 
problem context, and attach to it information such as the available resources specified in 
the Air Order of Battle, the capabilities of the airbases in the theater of operations, and 
the commander's guidance. This guidance includes the top level objectives of the plan as 
well as rules of engagement, e.g., not to fly over certain areas, which become constraints 
of the planning problem. 

3.2.7.2. PLANET-COA 

This is a Course of Action (COA) analysis problem in a military domain of relevance to 
the DARPA High Performance Knowledge Bases Program. We developed a critiquing 
tool that finds flaws in manually developed COAs for Army operations at the division 
level. A COA is specified by a user as a set of textual statements (who does what, when, 
where, and why), together with a sketch drawn over a map. The PLANET-COA ontology 
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allows us to represent the COA that results from joining both text and sketch, which is 
the input to our critiquing tool. An example of part of a COA textual statement follows: 
On H hour D day, a mechanized division attacks to seize  OBJ SLAM to protect the northern flank of the corps main effort. A 
mechanized brigade attacks in the north, as an economy of force,   to fix enemy forces in zone denying them the ability to interfere 
with the main effort's attack in the south. A lank heavy brigade, the main effort, passes through the southern mechanized brigade and 
attacks to seize the terrain vicinity of OBJ SLAM denying the enemy access to the terrain southwest of RIVER TOWN.  [...] 

A typical COA includes the overall mission and a set of tasks that need to be performed 
divided into five categories: close, reserve, security, deep and rear (not shown here). 
The close statements always contains a main effort for the COA and a set of supporting 
efforts. In our representation, the mission defines two important features of the plan: its 
top-level goal (e.g., protect the northern flank of the corps main effort), and an indication 
of the top-level task to be used to accomplish that goal (e.g., attack to seize OBJ SLAM). 
We define COA problem as a subclass of planning-problem, make its problem goal the 
top-level goal indicated in the mission statement, and add the rest of the mission 
statement as a constraint on how to select tasks in the plan. The five task categories are 
represented as sub-plans (they are not subtasks or subgoals but useful categories to group 
the unit's activities). Each sentence in the statement is turned into a plan task as follows. 
There is a specification of who is doing the task, e.g., a mechanized brigade, which is 
represented as the agent of the plan-task. There is an indication of what is to be done, 
e.g., attacks to fix enemy forces, which is interpreted as a fix plan-task (where fix is a 
kind of task that is a subclass of the class attack). The why (orpurpose) e.g., to deny 
enemy forces the ability to interfere with the COA's main effort can be a state-based 
("enable P", "prevent P") or action-based ("protect another unit from enemy"). 
Therefore, the ontology defines the purpose of a COA task as a goal specification that 
can be either an effect or a capability of the plan-task. The where, e.g., in the North is 
the location of the plan task. The when clause (e.g., H hour D day) is represented as a 
temporal commitment or as an ordering commitment if it is specified with respect to 
another task. Finally, the main effort and supporting efforts are defined as 
specializations of the subtask relation. 
The PLANET ontology also represents the context, assumptions, and situation in which 
the plan is supposed to work in this domain. A COA is supposed to accomplish the 
mission and other guidance provided by the commander, and to work in the context of 
the given situation as analyzed by the commander's staff, which includes terrain 
information and enemy characteristics. We define COA problem context as a subclass 
of planning-problem-context, and define its scenario to be composed of commander 
products and staff products. All COA problems are attached to this problem context. 

3.2.7.3. PLANET-WORKAROUNDS 

We developed a tool to aid in military target analysis by analyzing how an enemy force 
may react to damage to a geographic feature (e.g., a bridge or a tunnel) The possible 
workarounds include using alternative routes, repairing the damage, or breaching using 
engineering techniques such as installing a temporary bridge. Because the purpose of 
damaging the target is typically to delay the movement of some enemy unit or supply, it 
is important to estimate how long the implementation of the workaround will take. Note 
that this depends on what actions can be performed in parallel. The system was also 
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designed to show not one possible workaround plan but several options that the enem 
may take. An example workaround is shown in Figure 2 

be ginminipage3in OPTION B: Use Medium Girder Bridge (MGB) bridge 
Minimum delay to enemy: 10 hrs 

Transportalion lime: 4.5 hrs 
Engineering time: 3.5 hrs 

Required Assets: 
- MGB of Engineering Company 201 (double story, 11 bays) 

- Bulldozer of Engineering Company 201 
Substcp: Move MGB lo bridge site (Time: 4.5 hours) 

• Ordering: Before assemble MGB 
Subslep: Asse   blc MGB (Time: 1.8 hours) 

- Technique: Double story, 11 buys 
- Ordering: Before emplace MGB 

Substcp: Emplace MGB (Time: 0.5 hours) 
- Ordering: Before Move unit across MGB 

Subslep: Move unit across MGB (Time: 2 hours) 

endminipage 

Figure 8: An example portion of a workaround plan. 

We divided the problem in two. First, we used the AI planner Prodigy to generate a 
workarounds plan. We added information to the operators about the resources used for 
each step, and which resources are non-shareable. The planner then generated a partial 
order of workaround steps, in which unordered steps can be completed in parallel. 
Second we built a plan evaluation system to estimate the time that each step takes to 
complete and calculate the overall duration based on the partial order. This is a 
knowledg -based system that used several ontologies of engineering assets, units, and 
workaround steps and plans. 
PLANET did not exist when this workarounds plan ontology was first developed, so we 
describe a reimplementation using PLANET. Actions are represented as primitive plan 
steps. The ordering commitments and resources used are straightforward to represent in 
PLANET. In the planner we subdivided the step parameters into those whose values 
affected plan correctness and those that were only used to determine the length of the 
plan after it was created. This distinction had not been captured in the original system. 

3.2.8 Benefits of PLANET 

There is not yet an agreed methodolog  to evaluate the quality of ontologies and their 
actual use in systems (they can be present in a KB but that does not tell us how much 
they are actually used). They are often accepted to be useful purely on the basis of their 
existence. We claim that PLANET can be (and already has been) useful in knowledge 
reuse, modelling and sharing. This section presents some estimates that show the reuse 
of PLANET in the three domains discussed in this paper and describes the benefits of 
using it as a modelling tool in the COA domain 5. 

3.2.8.1 COVERAGE AND KNOWLEDGE REUSE 

We wanted to measure the amount of reuse of the general PLANET ontology in each 
specific domain. Here we present estimates of reuse in creating new terms, since we are 

5PLANET did not exist when we worked on the JFACC and workarounds domains. 

51 



interested in understanding the generality and coverage of PLANET. To do this, we 
estimated how many axioms of PLANET were actually used in each domain, and how 
many new axioms were needed. 
It is important to factor out domain definitions that are part of what is often described as 
populating the knowledge base, or knowledge basestuffing. For example, there may be 
fifty or five hundred possible tasks in a domain that share the same basic structure but 
this should not distort a measure of how reusable a general-purpose ontology is. For 
this evaluation we take these definitions out of the domain-specific ontologies and leave 
only those definitions that specified the basic structure of the plans. We estimated the 
size of each ontology by counting its axioms. We considered an axiom to be an 
statement about the world, including is a predicates, class constraints, and role 
constraints. We make strong use of inheritance among classes, so axioms are only stated 
and thus counted once. 
We counted the concepts in each domain that were subconcepts of a concept in the 
PLANET ontology, to measure of the coverage of the domain that the ontolog 
provided. We estimated how many axioms of thePLANET ontology were actually used 
in each domain by computing the "upward closure" of the definitions in the domain 
ontologies. The results are as shown in Table 1 Coverage is high: on average, 82% of 
the concepts defined in each domain are subconcepts of concepts in PLANET. However, 
the proportion of the ontology used by each domain is much lower, averaging 31 % of the 
axioms. This is not surprising. First, PLANET covers a range of planning styles, 
including actions with preconditions and effects and decomposition patterns, but none of 
the domains has all of these. Second, PLANETcan represent incremental decisions of 
planners, including commitments and untried alternatives, but the domains onl 
represented complete plans. In general we do not expect a single domain to use a high 
proportion of the ontology. 

Domain Axioms Concepts Reis       Covered concept Coverage 

Planet 305 26 37 

COA 
COAu.c. 

267 
106 

58 
7 

37 
12 

39 67% 
35% 

JFACC   102 
JFACC u.c. 86 

15 12 12 80% 
28% 

WA 
WA u.c. 91 

100 13 10 13 100% 
12 30% 

Table 1: Estimates of reuse of the PLANET ontology. 

There are various other ways to reuse knowledge. One can measure the reuse of 
ontologies by estimating how many terms are used during problem solving or reasoning. 
An informal analysis of the JFACC and Workarounds domains (the problem solvers for 
the COA domain were under development) showed that most (if not all) the new 
definitions would be used during problem solving, but this should be determined 
empirically. The ontology is also reused in modelling a new domain. Even if a term is 
not used in the new system, it may still have been used to understand how to model 
certain aspects of the domain as we discuss next. 
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3.2.8.2 KNOWLEDGE MODELLING 

We had developed an initial model of the COA domain without usingPLANET, and it 
changed significantly once we created the COAdefinitions using the PLANET 
definitions. Here are some examples.PLANET was useful in modelling the 
close/security/etc. categories. At first, they appeared to be subtasks of the COA, but we 
realized that the individual statements are the real subtasks in this domain, and these 
categories are meaningful groupings of the statements that are helpful to human 
planners. As a result we represented them as subplans.PLANET gave similar support for 
representing the main and supporting efforts which turn out to be subtasks instead of 
subplans. It also helped us understand how to interpret the mission statement, and its 
relationship with the COA main effort. The mission statement specifies top-level goals 
and constraints for the top-level task as we explain above. 

3.3 Related Work 

In creating PLANET, we have drawn from previous work on languages to represent 
plans and planning knowledge. These languages are often constrained by the reasoning 
capabilities that can be provided in practice by AI planning systems. Since PLANETis 
an ontology, it does not make specific commitments about the language in which various 
items are expressed. The planning knowledge represented in these languages can be 
mapped into PLANET. PLANET also accommodates plans that were not created by A 
planning systems, and provides a representation for the context of the planning 
problems that are given to these systems. 
SPAR is an ongoing effort to create a standard vocabulary to describe plans that is 
compatible with other standards, such as the Process Interchange Format (PIF). SPAR 
currently comprises a set of textual statements that will be used to develop the model. 
CPR was developed as an overarching plan representation across various militar 
domains. These efforts are aimed at plan representations of a more general nature, and 
cover aspects of plan execution. However, as a result of their generality they would 
require many more extensions than PLANET to represent the domains discussed in this 
paper. 

Related work on problem-solving methods for planning analyzes AI planning 
algorithms (or planning methods) and identifies the typical knowledge roles that 
characterize the main types of domain knowledge used by these planning methods. The 
main knowledge roles in this study map directly to classes in PLANET. PLANET adds 
many more relations between the roles and contains many more classes and axioms. 
PLANET was also designed from the perspective of planning environments where plans 
are manually created (instead of representing only plans of AI planning systems), and as 
a result can also represent the errors and flaws that these plans often contain. It would be 
useful to add to PLANET the static vs dynamic distinctions contributed by this study. 
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4.    Deriving Expectations to Guide Knowledge Base 
Creation 

Successful approaches to developing knowledge acquisition tools use expectations 
of what the user has to add or may want to add, based on how new knowledge fits within 
a knowledge base that already exists. When a  knowledge base is first created or 
undergoes significant extensions and changes, these tools cannot provide much support. 
This chapter presents an approach to creating expectations when a new knowledge base 
is built, and   describes a knowledge acquisition tool that we implemented using this 
approach that supports users in creating problem -solving knowledge. As the knowledge 
base grows, the knowledge acquisition tool derives more frequent and more   reliable 
expectations that result from enforcing constraints in the knowledge    representation 
system, looking for missing pieces of knowledge in the   knowledge base, and working 
out incrementally  the  inter -dependencies  among the     different components  of the 
knowled e base. Our preliminary evaluations show  a thirty percent time savings during 
knowledge acquisition.   Moreover, by   providing tools to support the initial phases of 
knowledge base development, many mistakes are detected early on and even avoided 
altogether.   We believe  that our approach contributes to improving the quality of the 
knowledge acquisition process and of the resulting knowledge-based systems as well. 

4.1. INTRODUCTION 

Knowledge acquisition  (KA) is recognized as  an important research are        a for 
making knowledge -based AI succeed in practice.    An approach that has been ver 
effective to develop tools   that acquire knowledge from users is to use   expectations of 
what users have to add or may want to add next. Most of these expectations are  derived 
from the inter-dependencies among the components in a knowledge-base system (KBS) 
and Protege-H    use dependencies between factual knowledge and    problem  -solving 
methods to find related pieces of knowledge in their KBS and create expectations fro m 
them. To give an example of these expectations, suppose that the user is building a KBS 
for a configuration task that finds  constraint violations and then applies fixes to them. 
When the user defines a  new constraint, the KA tool has the expectation   that the user 
should specify  possible fixes for cases where the constraint is violated, and helps the user 
do so. These tools can successfully build expectations because there is already a body of 
knowledge where the new knowledge added by the user must fit in. In the configuration 
example, there would be problem solving knowledge   about how to solve configuration 
tasks (how to describe a configuration, what is a constraint, what is the relation between 
a constraint and a fix, how to apply a fix, e tc.) However, when a new knowledge base 
(KB) is created (or   when an existing one is significantly extended) there is little or no 
pre-existing knowledge in the system to draw from. How can a KA tool support the user 
in creating a large body of new knowledge? Are there any sources of expectations that 
the KA tool can exploit 
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This chapter describes our approach to developing KA tools that derive   expectations 
from the KB in order to guide users during KB creation. Through an analysis of the KB 
creation task, we were able to detect several sources   for such expectations. The 
expectations result from enforcing constraints in   the knowledge representation system, 
looking for missing pieces of knowledge in the KB, and working out incrementally the 
inter-dependencies among the different components of the KB. As the user defines new 
KB elements(i.e., new concepts, new relations, new problem-solving knowledge), the KA 
tool   can form   increasingly   more  frequent   and   more reliable   expectations. We 
implemented a KA tool called EMeD that uses these sources of expectations to support 
users in adding problem -solving knowledge.    Our preliminary evaluation shows an 
average time savings of 30% to enter the new knowledge.   We   believe it will be even 
higher for users who are not experienced knowledge engineers. 
The chapter begins by describing why KB creation is hard.    Then we present our 
approach, and describe the KA tool that we implemented.  Finally, we  show the results 
from our experiments with several subjects, and discuss  our conclusions and directions 
for future work. 

4.2. Creating Knowledge Bases 

There are several reasons why creating a knowledge base is hard: 
•     Developers have to design and create a large number of KB   elements. KB 

developers have to turn models and abstractions about a task domain into 
individual KB elements. When they are creating an individual KB element, it is 
hard to remember the details of all the definitions that have already been created. 
It is also hard to anticipate all the details of the definitions that remain to be 
worked out and implemented. As a result, many of these KB elements are not 
completely flawless from the beginning, and they tend to generate lots of errors 
that have unforeseen side effects. Also, until a KB element is debugged and 
freed from these errors, the expectations created from it may not be ver 
reliable. 

There are many missing pieces of knowledge at a given time. Even if the 
developers understand the domain very well, it is hard to picture how all the 
knowledge should be expressed correctly. As some part of the knowledge is 
represented, there will be many missing pieces that should be completed. It is 
hard for KB developers to keep track of what pieces are still missing, and to take 
them into account as they are creating new elements. 

It is hard to predict what pieces of knowledge are related and how.   Since 
there is not a working system yet, many of the relationships    between the 
individual pieces are in the mind of the KB developer and have not   been 
captured or correctly expressed in the KB. 
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•     There can be many inconsistencies among related KB elements that  are 
newly defined. It is hard for KB developers to detect all the possible  conflicts 
among the definitions that they create. Often times they are detected through the 
painful process of trying to run the system and watching it not work at all.  The 
debugging is done through an iterative process of   running the system, failing, 
staring at various traces to see what is  happening, and finally finding the cause 
for the problem. 

As intelligent systems operate in real -world, large-scale knowledge intensive  domains, 
these problems are compounded. As new technology enables the creation  of knowledge 
bases  with thousands and millions  of axioms,  KB  developers will     be faced an 
increasingly more unmanageable and perhaps impossible  task. Consider an example 
from our experience with a Workarounds domain   selected by DARPA as one of the 
challenge   problems   of  the   High-Performance      Knowledge   Bases   program that 
investigates the developmen t of large-scale   knowledge based systems. The task is to 
estimate the delay caused to enemy   forces when an obstacle is targeted by reasoning 
about how they could bypass,    breach or improve the obstacle. After several large 
ontologies  of terms     relevant t o  battlespace  reasoning  were  built  (military  units, 
engineering   assets, transport vehicles, etc.), we faced the task of creating the problem 
solving knowledge base that used all those terms and facts to actually    estimate the 
workaround time. We built eighty-four problem-solving methods from scratch on top of 
several thousand defined concepts, and it took two intense months to put together all the 
pieces.   Figure 1 shows   some examples of our methods. Each method has a capability 
that  describes what goals it can achieve, a method body that specifies the procedure to 
achieve that capability (including invoking subgoals to be  resolved with other methods, 
retrieving values of roles, and combining results   through control constructs such as 
conditional expressions), and a result type that specifies the kind of result that the bod 
is expected to return (more details of their syntax are discussed below).  Creating each 
method so that it would use appropriate terms from ontologies was our first  challenge . 
Once created, it was hard to understand how the methods were   related to each other, 
especially when these interdependencies result from the  definitions in the ontologies. 
Despite the modular,  hierarchical  design  of our     system,  small errors and  local 
inconsistencies tend to blend together to produce inexplicable results making it very hard 
to find and to fix the source of the problems. Although some portions of the knowledge 
base could be    examined locally by testing subproblems, we often found oursel   ves 
working all   the way back to our own documentation and notes to understand what was 
happening in the system. 
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(define-method Ml 
(documentation "In order to estimate the time that it takes to narrow a gap with a bulldozer, 
combine the total dirt volume to be moved and the standard earthmoving rate.") 

(capability (estmate (obj)?t is (spec-of time)))) 
(for (?s is (inst-of narrow-gap))))) 

(result-type (inst-of number)) 
(body (divide (obj (find (obj (spec-of-dirt-volume)) 

(for ?s)))) 
(by (find (obj (spec-of standard-bulldozing-rate)) 

(for ?s)))))) 

(define-method M2 
(documentation "the amount of dirt that needs to be moved in any workaround step that involves 
moving dirt (such as narrowing a gap with a bulldozer) is the value of the role earth-volume for 
that step.") 

(capability (find (obj (?v is (spec-of dirt-volume)))) 
(for(?s is (inst-of bulldoze-region)))))) 

(result-type (inst-of number)) 
(body (earth-volume ?s))) 

(define-method M3 
(documentation "The standard bulldozing rate for a workaround step that involves earthmoving is 
the combined bulldozing rate of the dozers specified as dozer-of of the step.") 

(capability (find (obj (?r is (spec-of standard-bulldozing-rate))) 
(for (?s is (inst-of bulldoze-region)))))) 

(result-type (inst-of number)) 
(body (find (obj (spec-of standard-bulldozing-rate)) 

(of (dozer-of ?s)))) 

Figure 1: Methods in a simplified workaround generation domain. 

In summary, it is hard for KB developers to keep in mind all the definitions   that the 
create and to work out their interdependencies correctly. KB   developers generate and 
resolve many errors while they build a large body of knowledge. Our goal is to develop 
KA too Is that help users resolve these   errors and, more importantly, help them avoid 
making the errors in the first place. 

4.3. Approach 

We identified several sources of expectations that KA tools can exploit in order to guide 
users in creating a new knowledge base. We explain our  approach in terms of the 
problems and examples described in the previous section. 

•     Difficulty in designing and creating many KB elements RightarrowGuide the 
users to avoid errors and look up related KB elements. 
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First,  each  time  a  KB   element  is  created  by   a  user, we can  check the 
dependencies within the element and find any potential errors based on the given 
representation language. For example, when undefined variables are used   in 
method body, this will create an expectation that the user needs to define them in 
the method. 
In our example, Method Ml has two variables, ?t and ?s, defined in its 
capability, and if the method body uses a different variable, the system can send 
a warning message to the user. Likewise, if a concept definition says that a role 
can have at most one value but also at least two values, then this local 
inconsistency can be brought up. By isolating these local errors and filtering 
them out earlier in the KB development process, we can preven t them from 
propagating to other elements in the system. 
However small the current KB is, if there are KB elements that could bes'imilar 
to the one being built, then they can be looked up to develop expectations on the 
form of new KB element. For example, developers may want   to find existing 
KB elements that are related with particular terms or concepts based on the 
underlying ontology. If there is a concept hierarchy, it   will be possible to 
retrieve KB elements that refer to superconcepts, subconcepts, or given concepts 
and let the user develop expectations on the current KB element based on related 
KB elements. For example, if a developer  wants to find all the methods related 
to moving earth, the system can find   the above methods, because narrow   -gap 
and bulldoze-region are subtypes of   move-earth. When the user adds a new 
method about moving earth to fill a crater, then it may be useful to take them 
into account. Specifically, Ml can   generate expectations on how a method for 
estimating time to fill a crater should be built. 

Many pieces of knowledge are missing at a given time: RightarrowCompute 
surface relationships among KB elements to find incomplete pieces and create 
expectations from them 
The KA tool can predict relationships among the methods based on what the 
capability of a method can achieve and the subgoals in the bodies of other 
methods. For example, given the three methods in Figure 1, method Ml can use 
M2 and M3 for its two subgoals — find dirt volume and find   bulldozing rate. 
These relationships can create method-submethod trees that are useful to predict 
how methods will be used in problem solving. In the process of building this 
kind of structure, the system can expose missing  pieces in putting the methods 
together. For example, unmatched subgoalscan be listed by collecting all the 
subgoals in a method that  cannot be achieved by any of the already defined 
methods. The user will be  reminded to define the missing methods and shown 
the subgoals that they are   supposed to match. In Figure 1, if a method for the 
subgoal of method M3 to find the standard bulldozing rate of given dozer is not 
defined yet,  the user is asked to define one and may create one that only works 
for military dozer or any dozer in general. 
Similarly, if a concept is used in a KB e lement definition but not defined yet, 
then the system will detect the undefined concept. Instead of   simply rejecting 
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such definition, if the developer still wants to use the   term, the KA tool can 
collect undefined concepts and create an expectation th at the developer (or other 
KB developers) will define the term later. 

Difficulty  in predicting  what pieces  of knowledge  are related and how 
Rightarrow Use surface relationships to find unused KB elements and propose 
potential uses of the. elements 
The above surface relationships among KB elements, such as method-submethod 
relationship can also help detect unused KB elements. If a method is not used b 
any other methods, then it can be collected into an   unused method   list. In 
addition to finding such unused methods, the KA tool can propose potential uses 
of it. For example, if the capability of a method is similar to one of the 
unmatched subgoals (e.g., same goal name and similar parameter types), then a 
potential user of the method will be the method that has the unmatched goal. 
In the same way, concepts created but not referred to in any other definitions can 
be collected into an unused concept list. The KA tool can develop expectations 
of KB elements that will use the definitions or perhaps even deleting these 
concepts if they end up being unnecessary. 

Inconsistencies among newly defined KB elements Rightarrow Help   users find 
them early and propose fixes 
The KA tool can check if the user-defined result type of a method is inconsistent 
with what the method body returns based on the results of the subgoals. If there 
are inconsistent definitions, the system will develop an expectation that user has 
to modify either the current method or the methods that achieve the subgoals. 
Also, for concept definitions, there can be cases where a user wants to retrieve a 
role value of a concept, but the role is not defined for the concept. In addition to 
simply detecting such a problem, the system may propose to define the role for 
the concept or to change the method to refer to a different but related concept 
that does have that role. 
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Figure 2: EMeD Interface (Editor). 

Finally, once the KA tool indicates that there are no errors, inconsistencies, or missing 
knowledge, the user can run the inference engine, exposing  additional errors in solving a 
given problem or subproblems. The errors are   caused by particular interdependencies 
among KB elements that arise in  specific contexts. If most of the errors are detected b 
the above analyses, users should see significantly fewer errors at this stage. 

Notice that as the KB is more complete and more error-free it becomes a stronger basis 
for the KA tool in creating expectations to guide the user. 

4.4. EMeD: Expect Method Developer 

We have concentrated our initial effort in developing a KA tool that uses  these kinds of 
expectations to support users to develop problem solving   methods. We built a KA tool 
called EMeD (EXPECT Method Developer) for the EXPECT framework for knowledge- 
based systems. 
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Figure 3: Search Methods in EMeD. 

An EXPECT knowledge base is composed of factual knowledge and of problem-solving 
knowledge. The factual knowledge includes concepts, relations, and instances in Loom 
(Macgregor 1990), a knowledge representation system of the KL -one family. The 
problem-solving knowledge is represented as a set of problem-solving methods such as 
those shown in Figure 2. As described earlier, each method has a capability, a result 
type, and a method body. Within the capability and body sections, each goal is 
expressed as a goal name followed by a set of parameters. Also, each parameter consists 

of a parameter name and a type. 
Table 2 shows the method editor in the EMeD user interface. There   is a list of current 
methods and buttons for editing meth ods. Users can add, delete, or modify the methods 
using these buttons. (Other buttons and windows  will be explained later.) Users often 
create new methods that are similar to existing ones so the tool has a copy/edit facility. 
Every time a new method is defined, the method is checked for possible parsing errors 
based on the method representation language. If there are  interdependencies among the 
subparts of a method, they are also used in detecting errors. For example, if a variable is 
used but not defined for the   method, the same variable is defined more than once, or 
there are unused   variables, the system will produce warning messages. Also, if there 
were terms   (concepts, relations, or instances) used in a method but not defined in the 
KB yet, error messages will be sent to the developer. When the term    definition is 
obvious, as the verbs used in capabilities, a definition will be proposed by the tool. In 
Figure 2, the small panel in the bottom   left corner with the label "EXPECT message" 
displays these errors. Using   this method definition checker, users can detect the local 
errors earlier, separating them from other types of errors. 
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Users can find existing methods related with particular terms in concepts,   relations or 
instances through the     oom ontology. The KA tool can retrieve   methods that refer to 
subconcepts, superconcepts, or a given concept and let    the user create new methods 
based on related methods. Figure 3 shows the result from retrieving methods about 
moving earth. The system was   able to find all the methods in Figure 1, because narrow- 
gap and bulldoze-region are subconcepts of move-earth. 
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Figure 4: A Method Sub-method Relation Tree. 

Figure 4 shows relationships among methods based on how the subgoals of a method can 
be achieved by other methods. The trees built from this are called method sub-method 
relation trees. There can be multiple trees growing in the process of building a number 
of methods when they are not fully connected. These method-relation t rees are 
incomplete problem-solving trees to achieve some intermediate subgoal. The (sub)trees 
should be eventually put together to build a problem-solving tree for the whole problem. 
For example, given these three methods, the system can build a metho d-relation tree, as 
shown in Figure 4. 
Method sub-method relation trees can be used to detect undefined methodsbased on the 
subgoals in a method that are not achieved by any existing    methods. These can be 
collected and users can be informed of them. If th ere   are constraints imposed on the 
methods to be built, such as the expectations coming from the methods that invoke them, 
then these can be also incorporated.    For example, the method to find the standard 
bulldozing rate of a step calls a  subgoal to fi nd the standard bulldozing rate of a given 
dozer, which is undefined yet. Since the result type of the given method is a number, the 
system can expect (through an interdependency analysis) the same result type   for the 
undefined method. Figure 5 (bottom window) shows the capability that the tool proposes 
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— a method to find standard bulldozing rate of a for the currently undefined method 
given military dozer. 
In  the process of building this method -relation tree, there can be subgoals whose 
parameters are not fully specified because their arguments are subgoals    that are not 
achieved by any of existing methods. For example, given the method to estimate the time 
to narrow gap (the first method in   Figure 1) only (i.e., if M2 and M3 were missing), its 
subgoal   'divide' has two parameters with parameter names 'obj' and 'by'. Because the 
arguments to divide are the subgoals 'find dirt -volume of the step' and 'find standard - 
bulldozing-rate for the step' whose methods would be undefined, the  tool could not full 
state   the   goal.   This   would   be   represented   as   'divide   (obj      UNDEFINED) (b 
UNDEFINED)'. However, one of the built-in methods in EXPECT has   capability of 
'divide (obj Number) (by Number)', and the tool creates a link   between this and the 
subgoal as a potential inter dependency. Users can   use this hint to make the potential 
interdependency a real one or create other appropriate methods. 
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Figure 5: A Capability Tree and Undefined Methods. 

There are other relationships among problem-solving methods based on their capabilities 
that the KA tool can exploit. For example, a hierarchy of the    goals based on the 
subsumption relations of their goal names and their   arguments can be created. In the 
hierarchy, if a goal is to build a mil itary   bridge, and another goal is to build a kind of 
military bridge, such as an  AVLB, then the former subsumes the latter. This dependenc 
among the goal   descriptions of the methods (called capability tree) is useful in that it 
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allows the user to understand the kinds of sub-problems the current set  of methods can 
solve. To make their relationships more understandable, EMeD  also computes potential 
capabilities. For example if there are super -concepts   defined for the parameters of a 
capability, a capability with these concepts   is created as a parent of the capability. The 
capability tree for the given example methods is in Figure 5 (top window). 
Finally, there are user -expected dependencies among the problem -solving methods, 
which are usually represented in comments or by grouping of methods in the files where 
they are built. They do not directly affect the system, but   they often become the user's 
own instrument to understand the structure of what they are building. Also, it can be the 
user's own    interpretation  of     additional interdependencies  among methods. EMeD 
provides a way of organizing  methods into hierarchies and groups, and allows users to 
provide documentation  for the methods. In Figure 2, the "Move or Organize Methods" 
buttons support these functions. 
In addition, EMeD can use the expectations derived from running the problem  solver, 
detecting problems that arise while attempting to build a complete problem-solving tree. 

4.5. Preliminary Evaluations 

We performed a preliminary evalu ation of our approach by comparing the 
performance of four subjects in two different KA tasks from a Workarounds domain. 
Each subject did one of the tasks with EMeD and the other task using a version of EMeD 
that only allowed them to edit methods (the b uttons to add, delete, or modify methods), 
but did not have any additional support from EMeD. Before the experiment, each subject 
was given a tutorial of the tools with simpler scenarios. The scenarios and tools were 
used in different orders to reduce the influences from familiarity with tools or fatigue. 
Each experiment took several hours, including the tutorial, and we took detailed 
transcripts to record actions performed by the subjects. The subjects had some previous 
experience in building EXPECT knowledge bases, but not with EMeD. 

Results Total Time (min) Number of Methods 
Added 

Time/Method (min) 

Without EMeD 218 25 8.72 
With EMeD 24 6.38 

Average time savings: 30 % 

Table 1: Results from experiments with subjects. 

Functionaliy Number of Times 

Undefined Methods 23 

Editor Error Message 17 

Method Sub-method Relation Tree 7 

Capability Tree 10 

Search Method                                                             1 

Method Organizer 2 

Problem Solving Agenda 5 

Table 2: Number of times that the different components of EMeD were used. 
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In Table 1, the total time is computed by summing the times with each subject for each 
tool. The time for each subject is the time to complete the   given task (by creating a 
successful problem-solving tree and eliminating  errors). EMeD was able to reduce the 
development time to 70% of the   time that users needed without it. Subjects built a 
comparable number of methods with the different tools. Note that the subjects were not 
exposed to   the EMeD environment before, but were very familiar with the EXPECT 
framework. The time savings may be more if the subjects had more familiarity   with 
EMeD. We had multiple trial experiments with one of the subjects, with    slightl 
different tasks, and the subject had become more and more skillful, reducing the time per 
each action. For these reasons, we expect that the time  reduction with EMeD will be 
larger in practice. Also note that  there is a practical limit to the amount of time saved 
using any KA tool. There is a significant amount of time that use rs spend doing tasks 
such as thinking and typing, where a machine can provide little help. We would like to 
measure the improvement over the time actually doing knowledge input,   instead of the 
time to complete a KA task. 
We counted the number of times    each component of EMeD was used during the 
experiments, as shown in Table 2. The list of undefined methods was  most useful (used 
23 times to build 24 methods) during the experiment, and the subjects checked it almost 
every time they created a new method. The subjects  seemed to be comparing what the 
expected with the list created by the KA   tool, and built new methods using the 
suggestions proposed by the system. The   error messages showed after editing each 
individual method effectively   detected the e rrors within a method definition, and was 
used every time there were local errors in the definition. 
Users looked at the Method Sub-method Relation Tree but not as many times as what we 
expected. The subjects felt the tree was useful but there were too m any items shown for 
each node, making it hard to read. We are planning to display items selectively, showing 
the details only when they are needed. The  Capability Tree was often used to find some 
capability  description  of another    method needed while de  fining  a method body. 
However, the hierarchical    structure was not so meaningful to the subjects, since 
sometimes people choose   arbitrary concepts (compute, estimate, etc.) to describe their 
capabilities. We are planning to develop a better way of organizing the methods based on 
what tasks they can achieve. 
Search Methods and Method Organizer were used very little during the   experiment. 
Since the size of the KB was relatively small (about 3 methods   were given in the 
beginning and 6 methods were built f or each task), the  subjects were able to see them 
easily in the editor window. However, during real KB development, the size of the KB is 
usually much larger, and we expect that they will be more useful in real settings. 
With EMeD, the subjects run the problem solver mostly to check if they had finished 
their tasks. EMeD was able to find errors earlier and provide guidance on how they ma 
fix the problem, filtering out most of the errors. Without EMeD, the subjects run the 
problem solver to detect errors, and ended up spending more time to find the sources of 
errors and fix them. 
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4.6. Related Work 

There are other KA tools that take advantage of relationships among KB elements 
to derive expectations.   Teireisias  uses rule models to  capture relationships among the 
rules based on their general structure and    guide the user in following that general 
structure when a new rule is added that fits a model.  Some of the capabilities of EMeD 
are similar in spirit to the rule model (e.g., the method capability tree), and are also used 
in EMeD to help developers understand potential dependencies among the KB elements. 
Other KA tools also use dependencies  between factual knowledge and problem -solving 
methods to guide users during knowledge acquisition. These tools help users to populate 
and extend a system  that already has a significant body of knowledge, but they are not 
designed to help users in the initial stages of KB development. More importantly, these 
tools are built to acquire factual domain knowledge and assume that users cannot change 
or add problem-solving knowledge.   In this sense, EMeD is unique  because it guides 
users in adding new problem-solving methods. 
In the field of software engineering, it has been recognized that it is generally better to 
focus on improving the process of software development    rather than on the output 
program itself.  Our approach  embraces this view and tries to improve the initial phases 
of KB development. Some previous work  on  using forma]   languages  to sp        ecif 
knowledge bases is inspired by software engineering approaches.  This work  provides a 
framework for users to model and capture the initial requirements   of the system, and 
require that users are experienced with formal logic.  Our approach is complementary in 
that it addresses the stage of implementing the knowledge-based system, and we believe 
that our formalism is more accessible   to users that have no formal training. Other 
approaches, support  users   in  the   initial   stages   of  development     by  prov iding   a 
methodology that can be followed systematically to elicit knowledge from experts and to 
design the new system. These methodologies can   be used in combination with our 
approach. 
There is also related research in developing tools to help users bui Id ontologies. Unlike 
our work, these tools do not tackle the issue of using these ontologies within a problem- 
solving context. Many of the research contributions in these tools concern the reuse of 
ontologies for new problems, collaborative issues i n developing knowledge bases, and 
the visualization of large ontologies. We believe that integrating our approach with 
these capabilities will result in improved environments to support KB creation. 
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4.7. Summary 

We analyzed the process of KB developm ent to support KB creation and KB 
extension, and found a set of expectations to help KA tools guide users during  the 
development process. We have classified the sources of errors in the KB development 
process based on their characteristics, and found wa    s to prevent, detect, and fix errors 
earlier. These expectations were derived from the dependencies among KB elements. 
Although EMeD aims to provide support for KB creation, its functionality is also useful 
for modifying existing knowledge or populating a KB with instances. 
We are now extending the EMeD framework to be able to derive expectations in solving 
particular problems. Currently EMeD computes relationship among the KB components 
regardless of the context. Depending on what problem episode we    are   solving, the 
relationships may show different patterns, since the    problem-solving methods may 
become specialized. 
In our initial evaluations, EMeD was able to provide useful guidance to users reducing 
KB development time by 30%. We expect that EMeD will be even more beneficial for 
domain experts who don't have much KA experience. EMeD also opens the door to 
collaborative tools for knowledge acquisition, because it captures what KA tasks remain 
to be done and that may be done by other users. 
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5. Extending the Role-Limiting Approach: Supporting End 
Users to Acquire Proble   -Solving Knowledge 

Role-limiting approaches have been successful for acquiring knowledge from 
domain experts. However most systems using this approach ask the user a pre- 
determined sequence of questions and are therefore not flexible enough for a wide range 
of situations. They also typically do not support acquiring problem-solving knowledge, 
but only instance and type information. We extend the role-limiting approach with a 
knowledge acquisition tool that dynamically generates questions for the user based on a 
background theory of the domain and on the user's previous answers. The tool uses KA 
scripts to give an overall structure to a session. We show how to augment a background 
theory based on problem-solving methods to support this style of interaction. We 
present results from tool ablation experiments with domain experts in two different 
domains based on a problem solving method for plan evaluation. When the tool was 
used, tasks were completed in substantially less time than when the ablated version was 
used. In addition participants were able to complete substantially more tasks on average, 
twice as many in one of the studies. 

5.1. INTRODUCTION 

In order to be successful, deployed intelligent systems need to be robust to changes in 
their task specification. They should allow users to make modifications to the system to 
control how tasks are performed and even to specify new tasks within the general 
capabilities of the system. A common direction of work in knowledge acquisition (KA) 
aims to support this ability through explicit domain-independent theories of the 
problem-solving process, often called problem solving methods (PSMs). Such theories 
can encourage re-use across different applications and the structured development of 
intelligent systems as well as providing a guide for knowledge acquisition from experts. 
Our interest is in using background theories to guide automatic knowledge acquisition 
from domain experts who are not necessarily programmers. Background theories of the 
problem-solving process are appealing for this purpose because their model of the 
overall structure of the process can in turn be used to structure the knowledge 
acquisition session for the user and provide context for the knowledge that is acquired. 
However, most KA approaches that use problem solving methods typically focus on 
assisting knowledge engineers rather than domain experts. 
Other KA tools such as SALT follow a role-limiting approach that allows domain 
experts to provide domain-specific knowledge that fills certain roles within a PSM. 
However, most of these have been used to acquire instance-type information only. 
Musen argues that although role-limiting strategies provide strong guidance for KA, the 
lack the flexibility needed for KBS construction. The problem-solving structure of an 
application cannot always be defined in domain-independent terms, and one problem- 
solving strategy may not address all the particulars of an application because it was 
designed to be general. Musen and others advocate using finer-grained PSMs from 
which a KBS can be constructed . Gil and Melz address this issue by encoding the PSM 
in a language that allows any part of the problem-solving knowledge to be inspected and 
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changed by a user. In their approach, a partially completed KBS can be analysed to find 
missing problem-solving knowledge that forms the roles to be filled. This work extended 
the role-limiting approach to acquire problem-solving knowledge and to determine the 
roles dynamically. 
However, Gil and Melz's approach is still not adequate to allow an end user to directl 
add problem-solving knowledge. There are at least two reasons for this. First, there is no 
support for a structured interaction with the user provided by tools like SALT. The 
knowledge roles, once generated, form an unstructured list of items to be added, and it 
can be difficult for the user to see where each missing piece of knowledge should fit into 
the new KBS. Second, the user must work directly with the syntax of their language to 
add problem-solving knowledge, which is not appropriate for end users. 
In this chapter we present an approach that builds on Gil and Melz's work to allow an 
end user to add problem-solving knowledge to a KBS with a dynamic role-limitin 
approach. In our approach, the tool structures an overall KA session using KA scripts. 
While following the scripts, background knowledge is used to dynamically generate 
questions for the user in response to the user's answers to previous questions. As we 
describe in the next section, this background knowledge includes ontologies that 
describe the problem-solving knowledge to be added in terms that make sense for the 
user. Other roles are generated, as before, from an analysis of a partially completed KBS. 
The background knowledge is also augmented to support interaction with the user 
through constrained English sentences. We describe an implemented tool, called 
PSMTool, that uses this approach and show empirically that end users without 
programming experience are able to add problem solving knowledge to a KBS with this 
system. The main contributions of this chapter are (1) showing how to use background 
knowledge to generate a structured dialog with an end user to acquire problem-solving 
knowledge and (2) demonstrating an implemented KA tool that successfully uses the 
approach. 
We report on two sets of experiments that tested PSMTool. Experts in two different 
domains where asked to add new evaluation criteria to plan evaluation systems. The KA 
tasks required providing a combination of problem-solving and ontological knowledge 
that was integrated with the existing system. In both domains, experts were able to 
complete substantially more tasks using the KA tool and performed the tasks more 
quickly. 
In the next section we describe a background theory for plan evaluation that we have 
used in this work. Then we describe how the KA tool uses the theory to generate 
questions for the user, with examples from a system that acquires new knowledge to 
evaluate travel plans. We then present results from our experiments and survey related 
work. Finally we discuss how the results might extend to other background theories of 
problem solving and mention future work. 

5.2. A BACKGROUND THEORY OF PLAN EVALUATION 

In this section we briefly describe the background theory for plan evaluation that was 
used in our experiments and is used in this chapter to illustrate PSMTool. The tool itself 
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is designed to work independently of a particular theory, and we begin by describing 
necessary features of a background theory in order for this approach to be successful. 

5.2.1. How a background theory supports PSMTool 

We use a collection of fine-grained PSMs as the basis for the background knowledge in 
PSMTool, and add to it the knowledge required for the tool to take over some of the 
tasks of the knowledge engineer. When using a collection of PSMs to build a 
knowledg -based system, the knowledge engineer typically selects a component from 
the collection that is best suited to the task and adapts it to address the task at hand. We 
support this activity with two additions to the background theory of the task. First, we 
provide an ontology for the elements of the collection that distinguishes them based on 
features of the tasks they perform rather than their procedural structure. The ontolog 
has a hierarchical structure with a number of orthogonal partitions that can be used to 
generate a dialog with the user dynamically as we describe below. Second, we provide 
guidance for adapting each element in the collection. Each element is a generic PSM for 
a given task, and is implemented as a collection of EXPECTmethods. Within each 
element, we identify the methods that are designed to be changed when the element is 
specialised. This information is used by PSMTool to further guide the KA process once a 
PSM element has been chosen.We illustrate these points in the context of a background 
theory for plan evaluation implemented in the EXPECT system. 

EXPECT is an architecture for knowledge acquisition that makes use of an explicit 
representation for both factual and problem-solving knowledge. It analyses an intelligent 
system defined in its language to provide KA support to the user, for example b 
identifying missing problem-solving knowledge or highlighting the information that is 
needed about objects in the knowledge base. EXPECT's explicit representation makes it 
ideally suited for representing background theories of problem solving the provide direct 
support for knowledge acquisition. Previous work has shown that background theories 
such as propose-and-revise can be represented inEXPECT to take advantage of its 
analytical capabilities and provide the benefits of both role-limiting KA strategies and 
completeness analysis. 

5.2.2. Plan evaluation 

Plan evaluation problems belong to a domain-independent problem class in which an 
agent, typically a human expert, judges alternative plans according to a number of 
criteria. The aim is usually to see which of the alternative plans is most suited for some 
task. In terms of a standard problem solving method library such as common KADS, it 
is a special case of assessment. 
Each different criterion along which the plan is judged is represented explicitly as a 
critique in our framework. Through experience with several intelligent systems for plan 
evaluation, Blythe and Gil have identified several patterns in the ways that critiques are 
evaluated . These patterns of critiques indicate regularities that can be re-used across 
planning domains and provide guidance for knowledge acquisition. 
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In our background theory for plan evaluation this knowledge is represented through an 
ontology of critique types, partially shown in figure 1. Some groups of subtypes (shown 
with arcs connecting their links) partition their parents, while some just specialise the 
class. For example, the subtypes local-critique and global-critique form a partition, so an 
critique must belong to exactly one of these classes, local-critique defines critiques that 
are checked by performing some analysis on some or all of the steps in the plan on an 
individual basis, while global-critique defines critiques that have a global definition on 
the plan, for example the plan's total fuel consumption. 

global-critique     local-critique bounds-check 

upper-bound      lower-bound 

I 
resource-check 

completeness 
critique 

flight-cost-critique 

Figure 1: Different types of critiques in the background theory of plan evaluation. 
Each subclass is identified with a recurring pattern for evaluating a critique, 
implemented through EXPECT methods attached to the class. 

In addition to the ontology of critiques, the background theory uses an ontology of 
planning terms and a specialised ontology of resources based on Ozone. More details 
about these can be found in. 
The critiques are defined operationally through EXPECT methods. For example, the 
method in Figure 2 says that a step satisfies an upper bound (a kind of critique) if and 
only if the actual value of the property to be measured by the critique is less than or 
equal to some maximum value. The tasks of estimating the actual and maximum values 
for the property respectively form two subgoals that are addressed by other methods in 
the theory. 
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(define method evaluate-local-upper-bound 
"To determine whether a step satisfies an upper 

bound, check that the actual value of the property 
to measure for the upper-bound is less than or equal 
to the maximum allowed value of the property." 

:capability 
(determine-whether 

(obj (?task is (inst-of step))) 
(satisfies (?bc is (inst-of upper-bound)))) 

:result-type (inst-of boolean)) 
:method 

( is-less-or-equal 
(obj    (estimate   (obj   actual-value) 

(of   (property-to-measure   ?bc)) 
(for   ?task))) 

(than   (estimate   (obj   maximum-allowed-value) 
(of   (property-to-measure   ?bc)) 

(for   ?task))))) 

Figure 2: An EXPECT method. 

The background theory can be used to create a working plan evaluation system for a 
particular domain by defining domain-specific critique classes within the ontology and 
adding the necessar   EXPECT methods to complete each critique's definition. We 
illustrate this in a travel planning domain. In this domain, plans are itineraries for travel 
and the steps in plans represent reservations of flights, hotels and rental cars. The plan 
critiquer for the travel planning domain is implemented as an extension of the 
background theory for plan critiquing. For example, one possible critique in the domain 
checks that no flight costs more than a set amount, say $500. This is implemented b 
defining the class flight-cost-critique as a subclass of both local-critique and upper- 
bound. The value of the relation propert -to-check is required for any subclass ofupper- 
bound, and here it takes the value flight-cost. The EXPECT methods for those classes are 
then used to evaluate the new critique, resulting in a check that the actual amount of 
flight-cost for each step is less than or equal to the maximum amount. The developer 
completes the definition by defining methods to compute the actual amount (the cost of 
the flight) and the maximum amount ($500) 

5.3. INTERACTING WITH PSMTOOL 

We have implemented a tool, called PSMTool, that makes use of a background theor 
for problem-solving to guide a user in extending the capabilities of an intelligent system. 
PSMTool follows a script to organise its interaction with the user that is hand-written for 
the background theory. However, the questions that the tool asks the user while it 
executes the script are automatically derived from the theory, as we show below. Before 
describing this we show an example of the tool's interaction with a user. 
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The KA tool begins with a window split in two screens, showing a plan on the left and 
on the right a list of evaluations of the plan made with the critiques currently in the 
knowledge base. The user can choose to add a new critique, in which case a second 
window appears that will keep track of the interactions with the user made in defining 
the critique, shown in Figure 3. The interaction follows a script that has three steps: 
first, it adds a new critique class and classifies it in the ontology, then it generates a list 
of EXPECT methods for the user to edit that will be used in evaluating the critique. Once 
these steps are complete the new critique has been defined. The third step then applies 
the critique to the plan in the first window and the result is shown for the user to verify. 
We now show how the questions used in the first two steps of the script are dynamicall 
created. 

B™sa»a^fe-gta,-^aä Critique WilänTl 

Part 1. Answer some questions about the critique 

Done!      1) Critique name -fpiease give a name to this critique- 
flight-cost-critique 

Do,,,,!   2\ Number based     poes me critique reason abou! numbers? (eg amount of fuel or distance, rather than 
' . ^vhether some item exists) 

Oone ETchecks a resource 'P°es ^e clique check lor a sufficient amount ol something to be present? (e.g checking 
- - jthe amount of fuel is sufficient, rather than checking that a distance is too great) 

1) Quantity [Please give a name to the property to be checked. 
flight-cost 

Done I 5) Once or per task "jls lhe check ,0 be ™de once lof mc whole Plan or individually on certain steps? individually on certain steps 

Part 2. Define some methods for the critique 

I will evaluate the critique by evaluating each relevant task in turn  " ~ 
I will evaluate each task by estimating the actual amount of the property for the task and the maximum allowed amount lor the task, and by checking 
that the actual amount is not greater than the maximum amount 
Please edit the following methods to choose the relevant steps, estimate the actual amount and the maximum allowed amount 

Done j  6) edit a method to Und the steps in a trip for which to test a flight cost critique 

Done !7) edit a metnod to estimate the maximum allowed value ol a flight cost lor a step 

BJnoJj 8) edit a method to estimate the actual value of a (light cost lor a step 

Part 3.  Chech the critique 

To do' ?: K. r : 

Figure 3: The critique window asks the user questions in order to classify the new 
critique within the background ontology and then prompts the user to modify 
several new EXPECT methods to tailor the behaviour of the new critique. 
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5.4. SUPPORTING KNOWLEDGE ACQUISITION WITH BACKGROUND 
THEORIES 

We are interested in using a background theory to provide support for users who are not 
necessarily programmers to extend and tailor systems .for their domains. We added the 
following kinds of information to the background theory described above. 

The critique ontology, which records functional differences in types of critique based on 
their patterns of usage, can be used to generate questions to get information from the 
user about a new critique without requiring programming knowledge. To do this, each 
class in the ontology is augmented with a text description that characterises the class and, 
in the case of partitions, distinguishes the class from other elements in the partition. 
In many cases, once the user has provided information so the new critique is classified, 
much of the problem-solving knowledge needed to implement the critique is available 
through the critique's parents in the background theory. This problem-solving knowledge 
can handle overall organization of the critique and its integration with the system, which 
is sometimes the most complex part of the critique's procedural definition. 
The background theory also distinguishes some EXPECT methods as default methods 
that may be specialised when a new critique is defined. This serves two purposes. While 
all the methods in the background theory can in principle be specialised, the 
distinguished subset can give the KA tool a road-map for tailoring the theory for a new 
critique. In addition, the body of the general method can provide a starting-point for the 
specialised method and the general method can be included for this reason, even if it is 
not intended to be used without specialisation. 

5.4.1. CLASSIFYING THE CRITIQUE FROM THE ONTOLOGY 

The questions asked in the first part of the critique window are automatically derived 
from the ontology of critiques in the theory and classify the new critique according to the 
the ontology. Once the classification process is complete, a new critique class is defined 
for the new critique as a subclass of the identified classes. This class is able to inherit 
generic critiquing knowledge from its ancestors as described in the previous section. 
The algorithm for determining questions in the critique script adds each question for one 
of three reasons: 1) to determine which element of a partition the critique belongs to, 2) 
to determine whether the critique is a subclass of some class that is not part of a partition 
and 3) to find the value of a required field of a class. The algorithm traverses the 
critiques in depth-first order to help maintain a focus of attention for the user in 
answering the critiques. Figure 4 shows the algorithm that generates the questions in the 
critique window. 
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Initialise C to the partitions and subclasses of critique 
1 if C is empty, stop 
2 set c to the first element in C, and remove it from C 
3 if c is a partition of subclasses, 
4 ask which subclass in c the new critique belongs to. 
5 set n to the answer 
6 else if c is a subclass, 
7 ask whether the critique belongs to the subclass 
8 if YES, set n toe 
9 if NO, goto step 1. 
10 for each required field r of n: 
11 ask for the value of r. 
12 push the partitions and subclasses of n onto C 
13 goto step 2. 
Figure 4: The algorithm that dynamically generates classification questions in the 
critique window. 

Figure 3 shows the questions that are generated using this algorithm for the class flight- 
cost-critique, defined as shown in Figure 1. The text for each question is stored with 
each class or required field in the ontology. Although the algorithm requires the 
developer to store canned text with the classes and fields in the ontology, this is 
considerably easier than generating scripts of questions for the different possible 
classifications of a critique. The answers to the five questions in steps one through five 
have allowed the KA tool to classify the new critique class as a subclass of both upper- 
bound-check and local-constraint. 

5.4.2. CHOOSING AND CREATING NEW METHODS TO EDIT 

Once the new critique has been classified in the ontology, the system builds a problem- 
solving tree in EXPECT for the generic goal to determine whether a plan satisfies the 
critique. EXPECT is able to detect subgoals for which no method can be found and the 
information that is required of objects in the domain, such as plans and critiques. 
Requesting information that is missing in these categories is similar to the behaviour of 
role-limiting knowledge acquisition systems such as SALT, but more flexible since it is 
generated from an analysis of an explicit model of the background theory. This 
connection is discussed in more detail in. We augment this algorithm so that it also finds 
subgoals addressed by methods that are marked in the .background theory as 
specialisable. The KA tool then prompts the user to enter methods for these subgoals 
one by one. If a specialisable method exists, this forms the initial version of the new 
method. 

The user edits problem-solving methods via the English-based editor, which uses 
constrained English sentences to present and edit the methods rather than the formal 
language in which the methods are defined. The method capability and body are 
presented as structured English, and when the user selects a word or group of words in 
them, the lower window of the editor shows alternatives that could be substituted for the 
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selection and maintain the syntactic correctness of the method. The alternatives can 
include Loom or EXPECTexpressions. This editor is important to the success of 
PSMTool, since the intended users are not programmers and would not be comfortable 
with  formal languages for ontologies or problem-solving knowledge. 
In the case of the class flight-cost-critique, the problem solving tree makes use of the 
method in Figure 2, and the critique tool finds three specialisable methods, which are 
shown in the lower part of the critique window in Figure 5. Figure 3 shows the English 
editor being used to define one of the methods, to compute the cost of a flight. Once 
these three methods are defined, the new critique is ready to be applied. In this case, 
they can be defined using just Loom expressions and constants, without calling other 
EXPECT methods, although the editor allows this. 

fS&.other variables 
SVGithe actual value ACT 

BrS^ÄnU      ^arr^ec.t.e <W a,fport ofthe„gW 
m me bdore ,.* dihe «9«      ^^ÄÄ'    the «g« schert* Che kg» 

0%M&z gas®* 
[ilÄS Slip 

Figure 2: The English-based method editor in use to change the method to compute 

the actual cost of a flight. 

5.5. EXPERIMENTAL RESULTS 

Our aim is to design a knowledge acquisition tool that can be used by domain experts. 
To test the tool, we ran two sets of experiments that test the same hypotheses, but in 
different plan evaluation domains and with different sets of domain experts. The 
hypotheses we tested are n that with the knowledge acquisition scripting tool, domain 
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experts are able to add more complex critiques than without the tool and 2) that domain 
experts are able to add the same critique more quickly using the tool. In each domain, we 
ran a tool ablation experiment, in which participants used two versions of a knowledge 
acquisition environment that were identical except that only one gave access to the KA 
tool. Both versions allowed users to add a critique class through a class browser and to 
start the English method editor to add a method. 
Participants were asked to define new critiques for a plan evaluation system. In order to 
control the conditions of the experiment as far as possible, the critiques to be added 
using the tool were structurally isomorphic to the critiques to be added with the ablated 
version. In other words, corresponding critiques from the two groups critiques required 
the same pattern of EXPECT methods and loom retrievals in their definitions, although 
the names of the methods and loom relations could be different. In order to control for 
learning effects during the course of each experiment, half the participants worked first 
with the tool and then with the ablated version, and half worked the other way around. 
The participants in the first experiment were four Army officers from the Army Battle 
Command Battle Labs in Fort Leavenworth. The problem domain for this experiment 
evaluated Army battle plans. The participants in the second experiment were three 
project assistants from our division and one business school professor, and the problem 
domain was the travel plan evaluation system that we have used to illustrate the chapter. 
None of the participants from either experiment had written a computer program. It is 
unfortunate that the number of participants was too low to draw statistically valid 
conclusions from these experiments, but the experiments are costly to run since the 
require one experimenter per participant to make observations. 
The critiques in each set were graded in difficulty, so that we could also investigate the 
effect that this had on the impact of the KA tool. The simpler critiques can be 
implemented with one EXPECTmethod, while the more complex critiques require 
iterating over a set of steps in the plan, or require two or three EXPECT methods to be 
specialised if they are defined using the background ontology. 
As an example of a simple critique, participants in the second study were asked to define 
a check that the plan included a hotel reservation. As an example of a more complex 
critique, participants in the first study were asked to define a check that the force ratio, 
defined as the ratio of friendly fire-power to enemy fire-power, is adequate for each task 
in the plan. The level that is considered adequate must be computed based on the task. 
Figure 6 shows the number of KA tasks that were completed by the subjects with the KA 
tool and with the ablated version in each of the domains. In this figure, each critique has 
been split into a number of component tasks, corresponding to adding a new critique 
class or completing either the capability or body of a method. We have aggregated the 
tasks from the two different sets given to the participants. As the graph shows, use of the 
tool does not affect the number of tasks that are completed for the easiest critique, but 
there is a marked difference for more complex critiques. The same is true if we consider 
the number of whole critiques added rather than the component tasks. Participants in the 
battle planning experiment were able to complete more than twice the tasks with the tool 
than were completed with the ablated version. Participants in the travel planning 
experiment showed smaller increases but still significant ones. 
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Figure 6: Tasks completed with the full tool and with the ablated version. Results 
in the battle planning domain are shown on the left and results in the travel 
planning domain are shown on the right. 

Figure 7 shows the average times taken to define a critique in each domain. To ensure 
that the times are comparable between the standard and ablated versions of the system, 
only participants who completed both tasks were used to compute the averages. The 
point representing the most complex critique attempted without the KA tool is missing 
from both experiments because no participant successfully added the critique. 
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Table 7: Average times (in minutes) taken to define each critique. Results from the 
battle planning domain are shown on the left and results from the travel planning 
domain are shown on the right. 

The results from these experiments support our hypotheses. Participants complete 
significantly more KA tasks using the tool, and take considerably less time to do it. 
One interesting difference between the participants in the two experiments was the 
amount of training that they received for the task. The battle planning experiments were 
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part of a number of experiments made at Fort Leavenworth with different KA systems 
and the participants received eight hours of training before using the tool — four hours 
of training with EXPECT and four hours with a related KA tool. In the travel planning 
experiments, participants received only one hour of training with the tool and none with 
EXPECT. However the number of tasks completed and the average times are ver 
similar between the two groups. This indicates that domain experts might require ver 
little training to be able to use the tool. We have not yet studied this systematically, but 
can offer one more anecdotal piece of evidence: at Fort Leavenworth, a fifth participant 
was asked to add the same critiques using the KA tool after less than one hour's training. 
The participant succeeded, and took time comparable with the participants who had 
received eight hours of training. 

5.6. RELATED WORK 

Other knowledge acquisition tools help users add domain-specific information to a 
knowledge base. Some, such as ASTREE use explicit ontologies as we do to organise 
problem-solving methods. Like our tool, these tools are built for domain experts and not 
knowledge engineers, but they do not allow users to provide domain-specific problem- 
solving knowledge as PSMTool does. 
Other researchers have developed tools to support the acquisition of planning 
knowledge, but these systems are built for knowledge engineers. Both of them address 
some aspects of the acquisition of plan evaluation knowledge, but their central focus is 
plan generation. Valente and his colleagues have also studied problem-solving methods 
related to planning. Our model has similarities to theirs but is more aimed at plan 
evaluation, a separate activity from plan creation that has been less studied from a 
computational viewpoint. Another difference in our approach is the automatic support 
for KA via EXPECT and script generation. 

5.7.     SUMMARY 

We described an extension to the role-limiting approach for knowledge acquisition from 
end users that dynamically generates knowledge roles to be filled and can be used to 
acquire problem-solving knowledge. Our approach combines a collection of problem- 
solving methods with supporting ontologies that can be used to guide the activities of 
method selection and specialisation. As well as demonstrating the approach for a plan 
evaluation problem solving method, we have shown through controlled experiments that 
domain experts can provide more complex knowledge to an intelligent system using 
PSMTool and that they take less time to provide the same knowledge. 
Although we have discussed these techniques in the context of the plan evaluation theor 
they are of course not limited to this background theory. The ways in which we augment 
the theory to support knowledge acquisition would be useful for a range of theories, and 
our algorithms for generating questions to ask a user are domain-independent. The 
script that we demonstrated, however, was specific to the plan evaluation theory. Other 
background theories would certainly need their own scripts and will probably need a 
greater variety of ways to support knowledge acquisition. Future work includes 
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generalizing this result to other classes of task. We plan to investigate theories to help 
acquire process control knowledge and search control knowledge for AI planning 
systems, among others. 
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6. User Studies of Knowledge Acquisition Tools: Methodology 
and Lessons Learned 

The area of knowledge acquisition research concerned with the development of 
knowledge acquisition (KA) tools is in need of a methodological approach to evaluation. 
Efforts such as the Sisyphus experiments have been useful to illustrate particular 
approaches, but have not served in practice as testbeds for comparing and evaluating 
different alternative approaches. This chapter describes our experimental methodology 
to conduct studies and experiments of users modifying knowledge bases with KA tools. 
We also report the lessons learned from several experiments that we have performed. 
Our hope is that it will help others design or improve future user evaluations of KA 
tools. We found that performing these experiments is particularly hard because of 
difficulties in controlling factors that are unrelated to the particular claims being tested. 
We discuss our ideas for improving our current methodology and some open issues that 
remain. 

6.1. Introduction 

The field of AI has increasingly recognized throughout the years the need and the value 
of being an experimental science. Some subfields of AI have developed standard tasks 
and test sets that are used routinely by researchers to show new results. Researchers in 
machine learning, for example, use the Irvine data sets to show improvements in 
inductive learning and routinely use tasks like the n-puzzle or the n-queens for speed-up 
learning research. 
Developing standard tests is harder in other subfields that address more knowledge- 
intensive problems. For example, planning researchers often show experiments in similar 
task domains. The problem is that the implementation of the knowledge base and of the 
algorithms is so different across systems that the results of the experiments are often 
hard to analyze. One approach used by some researchers is to use artificially created, 
very structured knowledge bases to analyze particular behaviors. Another approach has 
been to define a universal language to describe planning domains, as is done in the 
Planning Competition of the Artificial Intelligence Planning Systems Conference. 
As developers of knowledge acquisition (KA) tools we wanted to evaluate our 
approaches, and began looking into user studies. With the exception of some isolated 
evaluations of KA tools we found that the field of knowledge acquisition had no 
methodology that we could draw from to design our evaluations. Even though AI is, as 
we mentioned earlier, a field where experimental studies have been increasingl 
emphasized in recent years, user studies are uncommon. User studies to evaluate 
software tools and interfaces can be found in the literature of tutoring systems, 
programming environments, and human computer interfaces. These communities are still 
working on developing evaluation methodologies that address their specific concerns. 
All seem to agree on the difficulty and cost of these studies, as well as on their 
important benefits. Often times, the evaluations that test specific claims about a tool or 
approach are perhaps not as thorough or conclusive as we would like to see as scientists, 
yet we are lucky that these evaluations are taking place at all and are shedding some light 
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on topics of interest. In developing a methodology for evaluation of KA tools, we can 
draw from the experiences that are ongoing in these areas. 
The lack of evaluation in knowledge acquisition research is unfortunate, but may be due 
to a variety of reasons. First, KA evaluations are very costly. In areas like machine 
learning and planning, experiments often amount to running programs repeatedly on 
already existing test sets. The evaluation of a KA tool requires that a number of subjects 
spend a fair amount of time doing the study, and for the experimenters to spend time and 
other resources preparing the experiment (often months) and analyzing the results. 
Second, most of the research in the field of KA concentrates on knowledge modeling 
(e.g., how a knowledge engineer models a task domain) and knowledge elicitation (e.g., 
techniques for interviewing experts). There are very few efforts on developing tools for 
users. Developers may conduct usability studies, but the results are not reported in the 
literature. 
In recognition of the need to evaluate KA research, the'community started to design a set 
of standard task domains that different groups would implement and use to compare their 
work. This effort is known as the Sisyphus experiments and the domains have included 
office assignment, elevator configuration, and rock classification. These experiences 
have been useful to illustrate particular approaches, but have not served in practice as 
testbeds for comparing and evaluating different approaches. The most recent Sisyphus 
is an example of the issue discussed above about the intimidating cost of KA 
evaluations: the limited number of participants can be tracked back to the significant 
amount of resources required to tackle the knowledge-intensive task that was selected. 
Over the last few years, we have performed a series of evaluations with our KA tools 
that have yielded not only specific findings about our tools but that have also allowed us 
to develop a methodology that we follow in conducting our evaluations. This chapter 
describes our experimental methodology to conduct studies of users modifying 
knowledge bases with KA tools. It also reports the lessons learned from our experiments 
so it will help others design or improve future user evaluations of KA tools. This chapter 
describes our experiments in enough detail to illustrate the different point of our 
methodology and the lessons learned. A more comprehensive description of our 
experiments and their results can be found in the literature. 
The chapter describes our experiences based on tests with two particular KA tools that 
we developed for EXPECT. EXPECT is a framework .for developing and modifying 
knowledg  based systems (KBSs) whose main purpose is to enable domain experts 
lacking computer science or artificial intelligence background to directly manipulate the 
elements of a KB without the mediation of a knowledge engineering. The two tools that 
were the subject of our evaluation were intended to enhance some aspect of the EXPECT 
support to end users. ETM (EXPECT Transaction manager) uses typical KB 
modification sequences (KA Scripts) to help users modify KBs. EMeD (EXPECT 
Method Developer) analyzes and exploits interdependencies among KB elements to 
guide users in making significant KB extensions or changes. Each tool was developed to 
investigate a different approach to guide users in knowledge acquisition tasks. The 
approaches are complementary, and we are now in the process of integrating the features 
of the tools that we found useful in the experiments in order to create a more 
comprehensive and powerful KA environment for EXPECT. A brief overview of both 
tools can be found in Appendix A. Please note that the focus of this chapter is not on the 
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details of these tools but on our experimental methodology and the lessons learned from 
our experiments. 
The chapter begins by describing the methodology that we follow to design experiments 
to evaluate KA tools, illustrated with examples from our evaluations with ETM and 
EMeD. The next section highlights the lessons that we learned in carrying out these 
experiments, and describe open issues in KA experiment design. Finally, we discuss 
related work in other research disciplines that conduct user studies and outline directions 
for future work. 

6.2. A Methodology to Conduct Experimental User Studies with Knowledge 
Acquisition Tools 

The nature of an experiment is determined by the claims an d hypotheses to be tested. 
Based on the hypotheses to be tested, we need to determine the KA task to be performed 
by the users, the underlying representations for the knowledge acquired by the tool, the 
type of users involved, the procedure to be fol lowed to perform the experiment, and the 
data that needs to be collected. This section discusses each of these issues in detail. 
Table 1 summarizes the steps in our methodology. It is by no means a strictly sequential 
process,   rather there is significant iteration and backtracking across  these steps due to 
the interactions among    all the constraints and decisions involved. For example, a 
hypothesis may be revisited if an experiment cannot be designed to test it as it is stated. 
It is extremely useful to run a pre-test using a smaller-scale  or a preliminary version of 
the experimental  setup (e.g., fewer users), so that the design of the overall experiment 
can be debugged, refined, and validated. 

6.2.1. Stating Claims and Hypotheses 

Claims and hypotheses play a pivotal role  in the evaluation process,  since the 
experiments revolve around them. Claims and hypotheses are related but not necessarily 
the same.   Claims are stated in broader terms, referring to gen   eral capabilities and 
benefits of our tools. It may or it may not be possible to test a certain claim, but it helps 
us understand what we think are the advantages of a certain approach.  Based on these 
broader claims, we formulate specific hypotheses that we would like to test. In contrast 
with claims, hypotheses are stated in specific terms, and we formulate them such that an 
experiment can be designed to test them and yield evidence that will  lead to proving or 
disproving specific hypotheses. In reality, some experiments are potentially possible but 
turn out to be infeasible in practice due to lack of time and other resources. 
The first step in the design of our evaluations was to state the main claims regarding our 
KA tools. It turns out that we made similar claims for both tools: 

1.    Users will be able to complete KA tasks in less time using the KA tools. 
Rationale: Our  KA  tools  would  support  some time consuming activities 

involved in KB modification tasks. For example, they support the analysis of the 
interactions among the elements of KB and the determination of the actions that 
should be taken to remove inconsistencies in the KB. 
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Users will make less mistakes during a KA task using the KA tools. 
Rationale: Our KA tools high light KB inconsistencies and provide support in 
fixing them. 

3.    The  reduction in completion time  and  number  of mistakes will be more 
noticeable for less experienced users. 
Rationale: Less experienced users will be the most benefited from   the tool's 
thorough guidance. In addition these users would be able to resolve the conflicts 
that arise during the modification of the KB using strategies that they might not 
be aware otherwise. 

The reduction in time will also be more noticeable for users lacking a detailed 
knowledge of the KBS implementation. 
Rationale: Our tools reveal the existence of KB elements that can be reused or 
adapted and that the users may not be aware of. This should be particularly 
noticeable when the KB is large. 

5.    The KA t ools will be useful for a broad range of domains and knowledge 
acquisition scenarios. 
Rationale: Our tools are based in general domain-independent     principles. 

Given these claims, we were able to state specific and measurabl hypotheses to be proved 
or disproved with experiments that were feasible give our resources and constraints. 

For example, a specific hypothesis for ETM corresponding to claim lis: Completion time 
for a complex KBS modification will be shorter for subject using ETM in combination 
with the EXPECT basic KA tool than for   subjects using the EXPECT basic KA tool 
alone. 

A claim can be stated in more general or more specific terms depending on the purpose 
of the claim. The claims that we showed above are specific to particular KA to ols and 
methodologies, but it would be make them part of more general claims that the whole 
KA field cares about and that other researchers may want to hear about the state-of-the- 
art in KA. For example, our experiments and those of others might help u s gather 
evidence towards general claims such as "It is possible for naive users to make additions 
and changes to a knowledge base using KA technology", with more specific claims 
stating what technologies help in what kinds of KA tasks to what kinds of users. 

6.2.2. Determining the set of experiments to be carried out 

It is useful to   test one or more hypotheses in few experiments, but   it is not always 
possible. This is the case when the h ypotheses are of a very different nature, or when a 
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given hypothesis   needs to be tested over a range of user types, tasks, or knowledge 
bases. For example, if we have two different hypotheses, such as (1) a KA tool helps to 
perform a task more   efficie ntly and (2) the KA tool scales up to large and realistic 
applications, then it might be necessary to conduct one experiment to   support the first 
hypothesis and a second experiment for the second hypothesis. 

A useful way to design an experiment that es       tablishes the benefits of a tool or a 
technology is to perform a comparison with some baseline tool. In this case, we have to 
carefully choose the tools to be compared. The only  difference between the two tools to 
be compared has to be the   presence o  r absence of the technology to be evaluated. 
Otherwise, we may not be able to determine if the differences in the performance of the 
tools were due to the technology itself or to some other factors (e.g., a different interface 
design or interaction st le).  For example, to test the benefits of expectation -based KA, 
we compared EMeD against a basic KA tool that consisted of the same EMeD interface 
where a number of features had been disabled. That is, both tools (EMeD and the Basic 
EMeD) provided a similar user interface environment. 

This kind of experiment is a tool  ablation experiment, where the object   of ablation is 
some capability of the tool. The group of subjects that is given the ablated KA tool 
serves as the control group. We have found these experiments to be the most useful and 
compelling kind to test for our claims. 

6.2.3. DESIGNING THE EXPERIMENTAL SETUP 

Once we have determined the hypotheses and the kind of experiment to be carried out, 
we are able to plan the details of the experiment. 

6.2.3.1. Users 

An important issue is the choice of subjects who are going to participate. Practical 
concerns often constrain the experimentation possibilities, for example the accessibilit 
and availability of certain types of subjects. 

We design our experiments as within subject experiments. This means that each subject 
uses both the ablated and the non-ablated version of the KA tool (but not to do the same 
task, as we describe below). Because of the many differences among subjects and the 
small amount of subjects that we could test, this helps to reduce the effect of individual 
differences across users. Different subjects use the two versions of the tool in different 
orders, so as to minimize the effects that result from increasing their familiarity with the 
environment that we provide. Another possibility is to use a larger number of subjects, 
and divide them into two separate groups: one that uses only the ablated tool and the 
other that uses the non-ablated tool. The problem with this design is that it is more 
costly. 
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We have identified several types of users according to their  background and skills, 
particularly   with  respect to  their familiarity      and  expertise with knowledge       base 
development and knowledge acquisition tools and techniques. 

6.2.3.2. Domains, KA Tasks and Scenarios 

One issue is the choice of the application domain. For our purposes, the knowledge 
bases needed to be simple enough to be learned in a short time but complex enough to 
challenge the subjects in the control group. For ETM, we chose a transportation 
planning evaluation system developed as a part of a Defense Advanced Research Project 
Agency (DARPA) funded project. An example of a KA task given to the subjects is to 
modify a fragment of an existing knowledge-based system capable of evaluating 
transportation movements carried only by ships in order to enable the system to evaluate 
movements involving both ships and aircraft. This modification required to add new 
problem-solving knowledge to handle aircraft and to integrate this new knowledge with 
the knowledge that already existed in the knowledge-based system. 

For EMeD, we chose a Workarounds domain selected by DARPA as one of the 
challenge problems of the High-Performance Knowledge Bases program that investigates 
the development of large-scale knowledge based systems. The domain task is to 
estimate the delay caused to enemy forces when an obstacle is targeted by reasoning 
about how they could bypass, breach or improve the obstacle. An example of a KA task 
given to subjects is to add problem-solving knowledge to "estimate the time to move 
military assets by enemy units", considering the source of the assets, current location, 
destination, and their moving speeds. For each task, the subjects added new problem- 
solving knowledge to the system. 

There is a range of difficulty of KA tasks in terms of the kinds of extensions and/or 
modifications to be done to a KB. A KA task that requires only adding knowledge is 
very different in nature and difficulty from a KA task that requires modifying existing 
knowledge. Also, modifying problem-solving knowledge is a very different task from 
adding instances, even if they are both KA tasks. It is important to design the scenario 
so that it covers the kind of KA tasks that the tool is designed for. Both our tools are 
targeted to the acquisition of problem solving knowledge. We tested ETM with a KB 
modification task, and EMeD with a KA task that required extending an existing KB b 
adding new knowledge. 

Another issue in within subject experiments is that if one gives a subject the same exact 
KA task to do with the two versions of the tool there will most probably be a transfer 
effect. This means that it is pretty certain that they will be unlikely to repeat errors the 
second time they do the task, and that they will remember how they did something and 
will not need to figure it out the second time around. To avoid this transfer effect, we 
design two different but comparable scenarios, each involving the same kind of KA task 
in the same domain but involving a different aspect of the knowledge base. One 
scenario is carried out with the ablated tool and the other one with the non-ablated 
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version of the tool. It is very important that both scenarios are as comparable in size and 
complexity as possible in order for the results of the experiments to be meaningful. This 
results in four subject groups, each with a specific combination of the two versions of 
the tools and the two KA scenarios to be carried out. 
To facilitate the subject's acquisition of the knowledge required to perform the scenarios 
and to ensure a uniform understanding of the domain across users, the application 
domain was explained to all the subjects during a presentation. The subjects and the 
domain were especially chosen to avoid markedly differences in the subjects previous 
exposure to the domain. Of course, these points are not relevant when testing subjects 
that are experts in a specific domain. 

A repository of knowledge bases and scenarios to test KA tools that could be shared b 
different researchers would enable better comparative evaluations among approaches, as 
well as reduce the amount of work required to evaluate a KA approach. The knowledge 
bases that we used are available to other researchers by contacting any of the authors. 

6.2.3.3. Experiment procedure 

After we had determined the kind of experiment to be carried out, our hypotheses, the 
type of users, and the nature of the KA task, we were in condition to plan other details of 
the experiment. These include, for example, what information will be given to the 
subjects and in what format, what kind of interaction can the subjects have with the 
experimenters during the tests (e.g., can they ask additional questions about the domain 
and/or the tool), how many iterations or problems will be given to each subject and in 
what order, and an indication of the success criteria for the subjects so they know when 
they have finished the scenario they were given (e.g., the final KB correctly solves some 
given problems, perhaps according to a gold standard). 
The experimental setup has to be carefully designed to control as much as possible the 
variables that can affect the outcome of the experiment and that are not related to the 
claims. For example, if the disparity of subjects may affect the results we can have each 
subject to perform two tasks, one with the tool to be evaluated and the other with the 
tool used for control. In this case, if the order in which the tasks are executed might also 
affect the results, we can switch the order in which the tasks are executed for different 
subjects. If we suspect that not all subjects have the sufficient skills to perform the 
requested task we can include a practice session previous to the evaluation. We can also 
ask the subjects to fill a background questionnaire previous to the execution of the 
experiment to form the groups as balanced as possible. 
Our controlled experiments compared the performance of subjects using EXPECT, our 
baseline KA tool, vs. subjects using enhanced versions of EXPECT that incorporate the 
tools being evaluated. The subjects that used EXPECT alone constituted the control 
group. Each subject performed two different scenarios, one with the basic EXPECT and 
the other with the enhanced EXPECT, so the results were independent of differences in 
subject's background and skills. Each scenario was performed with both versions of 
EXPECT so the results were independent of the complexity of the scenario. Some 
subjects used the plain EXPECT first and others used the enhanced version of EXPECT 
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first so the results were independent of the order in which the tools were used. All these 
factors were balanced such that they would even out the qualifications of the subjects for 
each one of the groups, the number of times that each tool was used for each scenario, 
and the number of times that each tool was used in the first place. 

All experiments followed the same general procedure distributed in two 

Stage 1: Domain and tools presentationendtrivlist 
The subjects attend a presentation that introduced EXPECT, ETM or EMeD, and the 
application domain. 

Stage 2: Practice and executionendtrivlist 
The subjects perform the following activities: 

1.   Execute a practice scenario comparable to the ones to be used during the actual 
test. This scenario was performed once with each version of EXPECT. The 
.purpose of this practice is to make subjects familiar with the tools, the domain, 
and the procedure of the experiment 

2.    Execute two test scenarios, one using each version of EXPECT,      alternating 
the order of the tool that is used first. 

3.    Answer a feedback questionnaire regarding their impressions and difficulties in 
using each version of EXPECT. Each question is given numerical range (1 to 5), 
so that the answers are comparable across subjects. 

For each test scenario, the subjects analyze the domain and the specifications. Then, the 
perform the given modification scenario until the KBS gave the correct results in the 
sample problem. During the execution of the scenarios, the experimenter only 
occasionally assists subjects that had problems interpreting the instructions, using the 
KA tools, or that get stuck or confused. 
We use several approaches to determine when a subject has completed a KA task 
appropriately. In most cases, we take advantage of the formal validation mechanisms in 
EXPECT. In these cases subjects are asked to complete a KA task and make sure that 
EXPECT does not report any inconsistency. In some other cases, the subjects are asked 
to test the KBS with a given set of problems, and make sure they obtain the expected 
results. In addition, after each experiment, we check the modifications made by the 
subjects by hand. 

6.2.4. DETERMINING WHAT DATA TO COLLECT 

The kind of data collected during the experiment may be determined and/or limited b 
what is possible in terms of instrumenting the KA tool and the KB environment. Also, 
intrusive ways of recording data should be avoided. For example, we should not ask the 
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users to fill a long form to describe what they just did if that is going to disrupt their train 
of thought and make the overall time to complete the task longer. 
The following data was collected during the execution of our scenarios: 

Time to complete the whole KA task. 

Automatic log of changes performed to the KB (e.g., a new parameter was added 
to a goal). 

Automatic log of errors in the KB after each change to the KBS (e.g., a problem 
solving goal cannot be achieved). These errors are detected automatically by the 
EXPECT framework and hence are available in both the basic and the enhanced 
KA tool. 

Automatic log of the features of the KA tool used during the experiment (e.g., 
the highlighting of unachievable goals). 

Detailed notes of the actions performed by the subjects (taken manually by the 
experimenters) including how they approached the problem and what materials 
they consulted. For this purpose we ask the subjects to voice what they are 
thinking and doing during the execution of the scenario. We do not use video 
cameras and tapes, since we find the notes to be sufficient and more cost- 
effective. 

Questionnaires that the subjects fill out at the end of the experiments, with 
questions regarding the usability of the tools 

The data collected should be sufficient to measure our hypothesis and confirm whether 
they stand or not. Collecting fine grained data is very useful because it not only 
proves/disproves the hypotheses, but it also helps to explain the outcome of the 
experiment, and to explore the potential causes of certain experiment outcomes. For 
example, the analysis of the sequence of changes performed to the KB revealed that 
some subjects spent considerable amount of time correcting their own mistakes. 
We find that conducting pre-tests is very useful not only to help refine the actual 
evaluation setup but also the data collection strategy. 

6.2.5. Analyzing the Data 

To illustrate this step, we show some data from the experiments with ETM and EMeD, 
and the conclusions that we extracted from them. 
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Figure 1 compares the subjects performance at each step of the modification for one of 
the scenarios of ETM. A detailed analysis of this figure reveals some anomalies that 
might have affected the results. For example, this figure shows that Subject 3 in the 
control group spent some extra amount of time analyzing incorrect results and fixing 
errors caused by his/her own mistakes (7 minutes in Change 4 and 1 minute in Change 
5). Recovering from mistakes takes a significant amount of time. Hence, it seems unfair 
to compare the performance of subjects when some of them made mistakes that were not 
related to the use of ETM. However, even without considering this extra time the time 
spent by Subject 3 does not come close to the time of the subjects that used ETM. 

Table 2 shows some of the data collected for EMeD. The first column shows the average 
time to complete tasks for each user group. We had (1) four knowledge engineers who 
had not used EMeD before but were familiar with EXPECT (2) two knowledge 
engineers not familiar with EXPECT, (3) four users not familiar with AI but had formal 
training in computer science, and (4) two users with no formal training in AI or CS. The 
second column shows the average number of problem-solving methods added. The last 
column shows the average time to build one problem solving method. The results for 
different user groups are shown separately to contrast the results. The last row in the 
table summarizes the results. 

6.2.6. ASSESSING THE EVIDENCE FOR OR AGAINST HYPOTHESES AND 

CLAIMS 

The following are our conclusions from the experiments with ETM: 

•     Subjects using ETM (that made no mistakes) took less time to complete the 
assigned KA tasks. These reductions on time depended on the complexity of the 
KA tasks and on the subject's previous experience with EXPECT. Subjects in 
both groups, ETM and the control group, made costly mistakes that severely 
affected their completion time yet handling those kinds of mistakes was outside 
of the scope of ETM. As a result, these data points are problematic. Section 
Error! Reference source not found, discusses this issue further. In (Tallis, 99) 
we present a detailed analysis of the cases that included mistakes and suggest 
that if the time incurred in handling the mistakes is subtracted then subjects in 
the control group take longer to complete the modification than subjects using 
ETM. 

•      The differences in time were greater for the less experienced subjects. 

•      The experiments did not show clear evidence that ETM would reduce the 
number of user mistakes. 
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ETM was able to guide subjects throughout all the required changes of the 
scenarios for most of the subjects that used ETM. In the few cases in which 
subjects had to perform changes without ETM, these cases were out of the scope 
of ETM. This virtue of ETM was not predicted beforehand. 

The following statements summarize our conclusions from the EMeD experiments: 

•     Subjects using EMeD took less time to complete the KA tasks. EMeD was 
able to reduce the development time to 2/3 of the time that users needed without 
it. 

• The differences in time were not so evident for the less experienced subjects. The 
ratio for less experienced subjects remain about the same as the ratio for 
EXPECT users. 

Additionally, the results show that subjects needed to add slightly less KB elements with 
EMeD. We may use this additional finding to explore some other hypotheses in the 
future, such as the effect of EMeD on the quality of the output KBS. Also, we may 
investigate why the ratios did not improve as predicted for the less experienced users. 
Sometimes the results provide only some evidence for our hypotheses because they may 
not be strong enough to confirm the hypotheses conclusively. This attests to the 
difficulty of designing this kind of experiments. 

We also find very useful to analyze the data in detail, looking for interesting and 
unexpected phenomena. For example, the ETM experiment showed that subjects 
followed KA Scripts as checklists for the steps that needed to be performed. 
Consequently, the subjects that used ETM did not omit as many changes as the subjects 
in the control group, which was an interesting observation about why KA Scripts are 
useful. 

6.3. Lessons Learned 

To help others avoid some of the pitfalls that we encountered in the design of our 
experiments, we list here some of the issues that we had to address: 

• The experiment design is constrained by the limited number of users. For 
many user studies of KA    tools, the time required from subjects and 
experimenters and the    specific qualifications that subjects have to meet (e.g., 
domain    experts, knowledge engineers) constitute a practical limit in the 
number of subjects included in a study. This significantly impacts    the design of 
an experiment. The experiment has to be carefully    designed to control as much 
as possible the variables that affect    the outcome of the experiment because the 
number of subjects    involved tends to be small and we cannot rely in the 
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statistics to    compensate for these variability ..Unfortunately, this variables    are 
often very difficult to control. 

User make mistakes that are outside the scope of the tool. During the 
ETM experiments, subjects in both groups made (and then fixed) mistakes not 
related to the features of the tools that we were evaluating. The nature of these 
mistakes and the time that subjects spent fixing them varied. This was one of the 
factors that most severely affected the results of the experiments, in which some 
subjects spend more than half of their time interpreting and repairing their own 
mistakes. The following are some types of mistakes made by the subjects during 
the experiment that were not intended to be prevented by our KA tools: 

Syntax errors: Subjects made syntax errors while entering new 
knowledge base elements using a text editor. Syntax errors were 
immediately detected by a parser included in both the basic and the 
enhanced versions of the KA tools and were reported back to the users. 
Although some errors   were more difficult to interpret than others, all of 
these were simple to repair. Neither the text editor or the parser were 
among the KA tool features being evaluated. 

Misuse of the domain structures: Subjects got confused while entering 
complex knowledge base elements that made reference to other 
elements of the KB. For example, a subject referred to the HEIGHT of a 
RIVER instead of to the HEIGHT of the BANK of a RIVER. Most of 
these errors were immediately detected by a KB verification facility 
included in both versions of  the tool. These errors were reasonable 
simple to repair. 

Misconceptions of the domain model: Subjects approached the KA task 
in a wrong way because they had misunderstood some aspects of the 
domain. For example, one subject wrongly believed that instance of 
SEAPORTS would point out to its LOCATION. However, this was not 
the relation that was represented in our model but its inverse (i.e., 
LOCATIONS pointed to its SEAPORTS instead of SEAPORTS to its 
LOCATIONS). Some of these errors were detected along the evolution 
of the KA task when the subjects encountered clear contradictions that 
made them revise their interpretation of the domain. Some other errors 
were not detected until the subjects, believing that they had finished the 
assigned task, checked the KB with the provided sample problems and 
obtained wrong results. Detecting and repairing these errors was very 
difficult and sometimes required to undo some modifications made 
erroneously by the user. 

92 



Misunderstanding of the assigned KA task and/or omission of requested 
changes. Subjects performed a sequence of wrong modifications 
because they had misunderstood the assigned task or oversaw some 
changes. Locating and repairing these errors was ver   difficult and 
sometimes required to undo some modifications made erroneously by 
the user. 

Differences in subject performance. In one of the experiments the individual 
differences in performance among subjects was so pronounced that it was very 
hard to compare results across subjects. To make things worse, there were no 
apparent indicators that could let us predict in advance the performance of 
subjects in order to assign them   better to the different groups. This situation 
forced us to compare only the difference in performance in using both tools 
for each subject (i.e., to compare the performance of each subject in each one of 
the scenarios) and distorted the analyses based on aggregated data. The following 
are some of the characteristics that made subjects to perform differently: being 
extra cautious (e.g., they checked carefully each modification that the 
performed), exploring the tool's features during the experiment, critiquing the 
tool during the experiment, making decisions faster, typing faster or managing 
the text editor more skillfull . 

Differences in understanding the domain, the assigned tasks, or the use of 
the KA tool. Some subjects did not understand correctly the domain or the 
assigned task. This caused them to make mistakes or to stop in the middle of the 
experiment to clarify the instructions or the domain specifications. Other subjects 
did not understand some features of the KA tool and could not take 
advantage of them, which presumably made them take longer time to complete 
the tasks. 

•     Different ways to solve the assigned tasks. In some experiments, subjects 
solved the assigned tasks in different ways, hence the differences in performance 
are affected by the differences in the amount of work required to implement the 
different solutions. For example, some subjects defined few   general KB 
elements that applied to several cases while others defined several specific KB 
elements that applied to few cases each; some subjects modified existing 
knowledge to handle new requirements while others added new knowledge to 
handle them;   some subjects relied more in the tool's intrinsic inference 
capabilities while others preferred to state facts and procedures explicitly. 

The design of experiments that control all of the above factors is not always feasible. 
Besides, there is always the possibility that other unforeseen factors also affect the 
outcome of the experiments. A practical alternative to enforcing stricter controls is to 
collect very fine grained measurements throughout the execution of the experiment and 
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based on these    measurements analyze the   results carefully. The collection of fine 
grained measurements has other    advantages as well. The execution of a KA task 
involves the execution   of several small activities.   Table 3 lists some of the observed 
activities that  subjects performed during the executions of the experiments. Usually, a 
KA tool supports only some of these activities. If we only take into account the subject 
overall performance we are also weighing some activities that are not related    to our 
claims. In the   future, we plan to isolate better the specific activities that our tools are 
intended to support. 

We have learned from our experience that a careful experiment design can enhance the 
quality and utility of the collected fine gr ained   measurements. For example, in one 
experiment we treated the edition of a KB elements (with a text editor) as a single KB 
modification action and we only recorded its initial and ending time. However, while 
editing a KB element and before closing the text editor, a subject might perform several 
activities which will not get individually  recorded in our logs. For example, the subject 
might modify several different parts ofthat element, make a mistake and then fix it, and 
even spend some time deciding how to proceed with that  modification. This deficiency 
in our instrumentation precluded us from    isolating the time incurred in modifying 
individual aspects of the  problem solving knowledge. This was unfortunate because we 
believed that the evaluated tool would be helpful only for some of these aspects and we 
could not corroborate our hypothesis. 

The following list summarizes some of the lessons that we have learned from 
conducting our experiments. 

•        Use within subject experiments. Each subject should perform two tasks, one 
with the tool being evaluated and the other with the ablated tool. This helps to 
compensate for differences in user performance. Both tasks should be of 
comparable complexity. 

Minimize the variables unrelated to the claims to be proven. For example, in one 
of our experiments the KA tool allowed users to perform the same modification 
through different mechanisms: using a text editor or a menu based interface. The 
multiplicity of  mechanisms to perform a modification did not add any value to 
the experiment, however it introduced unnecessary variability that complicated 
the analysis of the results. 

Minimize the chances that subjects make mistakes unrelated to the claims. Do 
not introduce unnecessary complications to the KA tasks. One of our 
experiments required that the subjects used a command that is hard to 
understand. Since the tool to be evaluated did not provide any support to handle 
this command it would have been better to avoid the need for that command in 
the experiment. 
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Isolate as much as possible the KA activities and the data that are relevant to the 
hypotheses. It was a good decision for the evaluation of ETM to split the KA 
task in two parts: before and after the first KB modification because ETM is 
concerned with the latter. Discriminating these two parts helped to perform a 
more focused evaluation of ETM. 

Ensure that subjects understood the domain and the assigned KA task. In the 
EMeD experiments the subjects discussed with the experimenters their 
understanding of the assigned task. These subjects had less problems in 
executing the assigned tasks than the subjects in the ETM experiments. 

•     Avoid the use of text editors. The use of a text editor in our experiments caused 
subjects to make syntax errors. The differences in the subject's skills with the text 
editor program also affected the results of the experiments. It also did not allow 
us to discriminate the fine grained activities performed by the subjects. 

6.4. A note on Statistical Analysis 

As we mentioned earlier, the cost and resources required by empirical controlled user 
studies of KA tools result in relatively small scale experiments. Given the small number 
of subjects and tasks involved, it does not seem appropriate to analyze the statistical 
significance of our results. Researchers in other areas concerned with evaluation do not 
seem to consider this a crucial issue in current evaluation work. In any case, it is 
interesting to note that our results stand up to standard tests of statistical significance. 
For example, a t-test on the results reported in shows that they are significant at the 0.05 
level with t(2) = 7.03, p <.02. Gathering data from more subjects within each group 
may be more reassuring than using these tests for validation. 

6.5. Related Work on User Studies in Knowledge Acquisition and Other Fields 

A few relevant evaluations of KA tools that have been conducted to date. We describe 
them in terms of the methodology that we have presented in this chapter. The studies 
are summarized highlighting the hypotheses/claims that were tested, the kinds of tasks 
and subjects used, the experimental setup, the results reported, and any findings that 
were surprising. 

The TAQL study was done by Greg Yost as part of his PhD work at CMU. TAQL is a 
KA tool for SOAR.   Yost evaluated the tool by itself and also evaluated its performance 
compared to some basic data that had been reported for two other KA tools (SALT and 
KNACK). 

1) Evaluation of Taql 
- Hypothesis: Taql has more breadth than other KA tools and 
still effective 
- KA task: implement a new KB given a domain description 
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- KB domains: 10 puzzles + 9 Expert systems 
- Underlying KR: production rules 
- Users: Soar programmers, three subjects (including. Yost) 
- Experimental setup: 

- each subject given a domain description (domain- 
oriented, not 

implementation specs) + (at most) 3 test cases 
- three rounds of evaluations, starting with simple 

domains 
- Data collected: 

- times for task understanding, design, coding, 
debugging 
- bug information: how found, what error, when and how 
fixed 

- Results reported: 
- encoding rate (minutes per Soar production) for each 
subject 

in each domain 
- average fix time for catchable and uncatchable 

errors pre and post tool 
- Conclusions: 

- subjects reduced their encoding rates over time 
(i.e., programmed faster) 

- encoding rate did not slow down as task size 
increased 

2) Comparing Taql, Knack, and Salt 
- Users: 

- one subject for each case 
- reimplementation of original system (Knack and Salt 

cases) 
- Results reported: 

- development time (hours) for Taql and for two tools 
(Knack and Salt) 

at their respective domains (time reported for 
reimplementation) 

- Conclusions: 
- Taql outperformed role-limiting KA tools (this was a 

surprise) 

The TURVY study was conducted by David Maulsby and Allen Cypher at the 
Advanced Technologies Group at Apple. This experiment was more on the area of HC 
rather than KA, but it is relevant here because it tests an approach to programming b 
demonstration that learns as a user performs simple tasks. 

- Hypotheses: 
- HI: all users would employ same set of commands even 
if told nothing  in advance about the instructions that 
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Turvy understands,table of predicted set of commands was 
compiled in advance 
- H2: users would end up communicating using Turvy's 
terms 
- H4: users would tech Turvy simple tasks easily and 
complex tasks withreasonable effort 

- KA tasks and KB domains: 
- modify bibliography format (main tests) 
- file selection 
- graphical editing 

- Underlying KR: none 
- Users: non-programmers 
- Experimental setup: 

- "Wizard of Oz" experiment (no real software, user 
interacts with facilitator) 
- several rounds, different types of subjects 

- on main task: 
- pre-pilot experiment 
- pilot experiment (4 users) 
- main experiment (8 subjects) 

- on other domains: 
- 3 subjects 
- 2 subjects 

- Data collected: 
- videotapes, notes, interviews 

- Results reported: 
- qualitative results mostly (their intention) 
- some quantitative results were obtained by post- 

analysis 
- Conclusions: 

- Evidence for Hi, H2, H4 
- Interesting findings: quiet vs talkative users 

There are other experiments in the field of KA that are not directly relevant but are worth 
mentioning. The Sisyphus experiments show how different groups would compare their 
approaches for the same given task, but most approaches lacked a KA tool and no user 
evaluations were conducted. A very  controversial experiment tested whether knowledge 
engineering models   (sue h as KADS models) were useful to users , but    it tested 
knowledge elicitation through models and did not test any    tools or systems.    Other 
evaluations have tested the use and reuse of problem-solving methods, but they measure 
code reuse rather than how users benefit from KA tools. 

Outside of KA, there are relevant studies in other disciplines. As we mentioned earlier, 
user evaluations are very uncommon in AI research.  Most evaluations involve run -time 
behavior of AI software with no human in the loop . User studies are more common in 
software engineering, HCI, and intelligent tutoring systems. 
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In software engineering, empirical evaluations have been used for years to evaluate tools 
to support programmers.    In this field, many aspects    and issues in    the software 
development process   have been   under   study      including   languages,   development 
environments, reuse, quality, and software   management.    User studies are only of 
concern for a  few of these topics. Interestingly, the kind of controlled methods th at we 
report   in this chapter generally seem to be in the minority when it comes to evaluate 
software. Many studies do not  involve users, others analyze some historical data that 
may be  available, and many collect observations and data as a software project unfolds 
without any particular control settings. 
User studies in the field of HCI share many of the issues that arise in the evaluation of 
KA tools. An additional complication in evaluating interfaces is that they do not work in 
isolation, i.e., often times an interface can only be as good as the target system that the 
user ultimately operates on through the interface. On the other hand, many of the studies 
in this area can involve more users and settings, since the tasks tend to be simpler and 
the target users seem to be more numerous (e.g., users are not required to have domain 
expertise). 
In intelligent tutoring systems, there are recognized tradeoffs regarding   the merits and 
needs of different approaches to evaluation. Although formal eva luations are generall 
preferred, their cost makes them often impractical.   Informal studies tend   to be more 
common and seem to be sufficiently informative  in practice to many researchers to 
guide their work. 
Our studies to date do not address thoroughly the evaluation of the product itself, i.e., the 
knowledge base that results from the knowledge acquisition process.  Currently, we test 
that the final knowledge base has  sufficient knowledge to solve the right problems and 
generating the right   answe rs. Other metrics, such as measures of the quality of the 
knowledge  base, are also important. There is relevant work along these lines in the 
expert systems area as well as in software engineering. Our studies to date do not assess 
either how our particular tools would improve the end -to-end process   of developing a 
knowledge base, which includes interviewing experts,  building prototypes, maintaining 
the knowledge base, and improving system   performance.   There is relevant work in 
software   engineering   on   evaluating      the   improvement   to   the   overall   software 
development process, including studies specific to expert systems as software. 
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6.6. Summary 

We have presented a methodology for designing user evaluations of KA tools. We have 
been using it successfully in our own work to evaluate various approaches within the 
EXPECT framework. We have also discussed the lessons learned from our studies of two 
KA tools, and outlined some open issues. Our hope is that sharing our methodology and 
our experiences with the KA community we will contribute to making our field a more 
experimental and perhaps a more scientific one. 
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7. Evaluations with End Users 

Developing tools that allow non-programmers to enter knowledge has been an   ongoing 
challenge for AI.  In r ecent years researchers have investigated a   variety of promising 
approaches to knowledge acquisition (KA), but they have often been driven by the needs 
of knowledge engineers rather than by end   users.   This chapter reports on a series of 
experiments that we conducted in order to understand how far a particular KA tool that 
we are developing is   from meeting the needs of end users, and to collect valuable 
feedback to    motivate our future research.    This KA tool, called EMeD, exploits 
Interdependency Models that relate individual components of the knowledge base   in 
order to guide users in specifying problem -solving knowledge. We describe how   our 
experiments   helped  us   address several   questions   and   hypotheses   regarding   the 
acquisition   of problem-solving  knowledge  from   end   users   and  the benefits     of 
Interdependency Models, and discuss what we learned in terms of improving   not only 
our KA tools but also about KA research and experimental methodology. 

7.1. Introduction 

Acquiring knowledge from end users   (i.e., ordinary users without formal   training in 
computer science) remains a challenging area for AI   researchinsertfootins  Copyright ä 
2000,    American Association for Artificial  Intelligence (www.aaai.org). All rights 
reserved..    Many knowledge acquisition approaches target knowledge engineers and 
those that have been developed for end users only allow them to specify certain kinds of 
knowledge, i.e., domain -specific knowledge regarding instances and classes but    not 
problem-solving knowledge about h ow to solve tasks.   Alternative   approaches apply 
learning and induction techniques to examples provided by users in a natural way as the 
are performing a task.    Although these tools may be more accessible to end users, the 
are only useful in circumst ances where users can provide a variety of examples. When 
examples are not readily available, we may need knowledge acquisition (KA) tools for 
direct authoring. 
In recent years, researchers have investigated a variety of new approaches to develop KA 
tools, in many cases targeted to end users though in practice   motivated by knowledge 
engineers.    Few user studies have been conducted and the participants are typically 
knowledge engineers. Without studies of the effectiveness of KA approaches and tools 
for end users, it is hard to assess the actual requirement of end users and   our progress 
towards satisfying them.  One of the challenges of this work is to devise a methodology 
and experimental procedure for conducting user studies of KA tools. 
As KA researchers, we wanted to test our approach and KA tools with end users. A 
central theme of our KA research has been how KA tools can exploit   Interdependency 
Models'! that relate individual components   of the knowledge base in order to develop 
expectations of what users need to add next. To give an example of interdependencies, 
suppose that the user is   building a KBS for a configuration task that finds constraint 
violations and then applies fixes to them.  When the user defines a new constraint, the 
KA tool has the expectation that the user should specify   possible fixes, because there is 
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an interdependency between the    problem-solving knowledge for finding fixes for 
violated constraints and the definitions of constraints and their possible fixes. 

EMeD (EXPECT Method Developer) , a knowledge acquisition tool to acquire problem- 
solving knowledge, exploits   Interdependency Models to guide users by helping them 
understand the relationships among the individual elements in the knowledge base. The 
expectations result from enforcing constraints in the knowledge representation  system, 
working out incrementally the interdependencies among the different components of the 
KB.     Our hypothesis is that Interdependency Models allow    users to enter more 
knowledge faster, particularly for end users. 

In addition to the goal of evaluating the role of Interdependency Models, we had more 
general questions.  Users with different degrees of exposure to computing environments 
would probably perform differently. But in what ways? How much training and of what 
kind is needed before they can make reasonably  complex additions to a knowledge base 
with a KAtool?    What aspects of a    knowledge base modification task are more 
challenging to end users? What kinds of interfaces and interaction modalities would be 
appropriate and in what ways should they be different from those that knowledge 
engineers find useful 

This chapter reports on a study to evaluate our KA tools with domain experts (end users) 
who extended a knowledge base in their area of expertise. This study was conducted as 
part of an evaluation of the DARPA High Performance Knowledge Bases program. We 
also present our experimental design and the preliminary study with users with varying 
degrees of background in AI and computer science, which was performed before the 
evaluation. We analyze the results in terms of our initial questions and hypotheses, and 
extract some general conclusions that motivate future directions of KA research. 
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7.2. EMeD: Exploiting Interdependency Models to Acquire 
Problem-Solving Knowledge 

((name method I ) 
(capability (cheek (obj (?( is (spec-of force-ratio))) 

(of (?1 is (spec-of main-task))) 
(in (?c is (insl-orCOA))))) 

(result-type (inst-of )es-lio)) 
(method (check (obj (spec-of force-ratio)) 

(of (main (ask-of (dosc-sLafement-of ''c))))) 

((name method!) ^ 
(capability (check  (obj (spc-c-of (force ratio))) 

(of (?t is (in5t-ofmiliUrj-U.sk))))) 
(result-type (inst of yes-no)) 
(method (is less-or-equal 

(obj (estimate (obj (spec-of rec|tiired-force-ratio)) 
(for ?t))) : 

(than (estimate (obj (spec-of availablcfprce-ratio)) 
(for ?!)))))) ; / 

((name method.)) y ; 
(capability (estimate (ohj (?f is (spec-of required-fo-tce-ratio))) 

(for (?s is (iast-of military fails))))) 
(result-type (tnst-of number)) 
(method...)) / 

((name methods) ^ 
(capability (estimate (obj Cf is (spec of available force-ratio))) 

(for (?t is (insl-o( military task))))) 
(result-type (inst of number)) 
(methcM)       )) 

Table 3: Examples of EXPECT Problem-Solving Methods. 

EMeD (EXPECT Method Developer) is a knowledge acquisition tool that allows users to 
specify problem-solving knowledge. This section summarizes the functionality of the 
tool, further details and comparison with other tools are provided in. 

EMeD is built within the EXPECT framework. EXPECT's knowledge base contains 
ontologies that describe the objects in a domain, and problem-solving methods that 
describe how tasks are achieved. Tasks are specified as goal hierarchies, where a goal is 
broken into smaller subgoals all the way down to primitive or basic tasks. The problem- 
solving methods specify  how the decomposition lakes place. EXPECT provides a rich 
language that was developed with understandability and intelligibility in mind, since it 
was used to generate adequate explanations for knowledge-based systems. Figure 1 
shows some examples of EXPECT methods. Each problem-solving method has a 
capability that describes what the method can achieve, a result type that specifies the 
kind of result that the method will return upon invocation, and a method body that 
specifies the procedure to achieve the capability. The method body  includes constructs 
for invoking subgoals to be resolved with other methods, retrieving values of concept 
roles, and control constructs such as conditional expressions and iteration. The arrows in 
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the figure indicate some interdependencies, where a head of an arrow points to a sub- 
method which can solve a given subgoal. For example, the second method shown in the 
Figure 1 checks the force ratio of a given military task by  comparing its required force 
ratio and the available force ratio. The result should be yes or no depending on whether 
the required ratio is less than the available ratio. 

EXPECT derives an Interdependent Model (IM) by analyzing how individual 
components of a knowledge base are related and interact when they are used to solve a 
task   An example of interdependency between two methods is that one may be used b 
the other one to achieve a subgoal in its method body. Two methods can also be related 
because they have similar capabilities. EMeD exploits IM in three ways: (1) po.nt.ng 
out missing pieces at a given time; (2) predicting what pieces are related and how; (3) 
detecting inconsistencies among the definitions of the various elements in the knowledge 

base. 
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"   fs-öf hcW.rrncfeo'd:y-f'- m« mo« win t^ivtoh Trf"> 
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Table 4: The Method Proposer of the EMeD Acquisition Interface. 

When users define a new problem-solving method, EMeD first finds the 
interdependencies and inconsistencies within that element, such as if any undefined 
variable is used in the body of the method. If there are any errors within a method 
definition, the Local-Error Detector displays the errors and it also highlights the 
incorrect definitions so that the user can be alerted promptly. The Global-Error Detector 
analyzes the knowledge base further and detects more subtle errors that occur in the 

context of problem solving. 

By keeping the interdependencies among the problem-solving methods and factual 
knowledge, and analyzing interdependencies between each method and its sub-methods, 
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the Method Sub-method Analyzer in EMeD can detect missing links and can find 
undefined problem-solving methods that need to be added. EMeD highlights those 
missing parts and proposes an initial version of the new methods, as shown in Figure 2 
In this example, a method for checking the force ratio for an assigned task needs to 
compare the available force ratio (i.e, ratio between blue units and red units) with the 
force ratio required for that task. When the system is missing the knowledge for the 
available ratio (i.e., missing method4), the Method Proposer in EMeD notifies the user 
with a red diamond (a diamond shown in Figure 2 on the top) and displays the ones 
needed to be defined. It can also construct an initial sketch of the capability and the 
result type of the new method to be defined. What the new method has to do (capability 
of the method) is to estimate the available force ratio for a given military task. Since we 
are computing a ratio, the result type suggested is a number (method sketch in Figure 2). 
Users can search for existing methods that can achieve a given kind of capability using 
the Method-Capability Hierarchy, a hierarchy of method capabilities based on 
subsumption relations of their goal names and their parameters. 

Finally, EMeD can propose how the methods can be put together. By using the Method 
Sub-method Analyzer for analyzing the interdependencies among the KB elements, it 
can detect still unused problem-solving methods and propose how they may be 
potentially used in the system. 

7.3. Experimental Design 

As described in the introduction, current KA research lacks evaluation methodology. In 
recognition of the need for evaluation, the community started to design a set of standard 
task domains that different groups would implement and use to compare their work. 
These Sisyphus experiments show how different groups would compare their approaches 
for the same given task, but most approaches lacked a KA tool and no user evaluations 
were conducted. Other evaluations have tested the use and reuse of problem-solving 
methods, but they measure code reuse rather than how users benefit from KA tools. 
Other KA work evaluated the tool itself. TAQL's performance was evaluated b 
comparing it with some basic data that had been reported for other KA tools. There were 
some user studies on ontology editors. In contrast with our work, these evaluations were 
done with knowledge engineers. Also since the experiments were not controlled studies, 
the results could not be causally linked to the features in the tools. Our research group 
has conducted some of the few user studies to date, and as a result we have proposed a 
methodology that we use in our own work. It turns our that the lack of user studies is not 
uncommon in the software sciences. In developing a methodology for evaluation of KA 
tools, we continue to draw from the experiences in other areas. 
Our goal was to test two main hypotheses, both concerned with Interdependency Models 
(IMs): 

Hypothesis I: A KA tool that exploits lMsenables users to make a wider range of 
changes to a knowledge base because without the guidance provided with IMs users 
will be unable to understand how the new knowledge fits with the existing 
knowledg  and complete the modification. 
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Hypothesis II: A KA tool that exploits IMs enables users to enter knowledge faster 
because it can use the IMs to point out to the user at any given time what additional 
knowledge still needs to be provided. 

There are three important features of our experiment design: 
In order to collect data comparable across users and tasks, we used a controlled 
experiment. Thus, we designed modification tasks to be given to the 
participants based on typical tasks that we encountered ourselves as we 
developed the initial knowledge base. 

Given the hypotheses, we needed to collect and compare data about how users 
would perform these tasks under two conditions: with a tool that exploits IMs 
and with a tool that does not (this would be the control group). It is very 
important that the use of IMs be the only difference between both conditions. 
We designed an ablated version of EMeD that presented the same EMeD 
interface but did not provide any of the assistance based on IMs. 

Typically, there are severe resource constraints in terms of how many users are 
available to do the experiments (it typically takes several sessions over a period 
of days). In order to minimize the effect of individual differences given the 
small number of subjects, we performed within-subject experiments. Each 
subject performed two different but comparable sets of tasks (each involving the 
same kind of KA tasks but using a different part of the knowledge base), one 
with each version of the tool. 

In order to determine when a KA task was completed, the subjects were asked to solve 
some problems and examine the output to make sure they obtained the expected results. 
In addition, after each experiment, we checked by hand the knowledge added by the 
subjects. 

Participants were given different combinations of tools and tasks and in different order, 
so as to minimize transfer effects (i.e., where they would remember how they did 
something the second time around). 

EMeD was instrumented to collect data about the user's performance, including actions 
in the interface (e.g., commands invoked and buttons selected), the knowledge base 
contents at each point in time, and the time at which each user action takes place. These 
provide objective measurements about task completion time and the use of specific 
features. Since this data was insufficient to understand what things users found hard and 
difficult to do with the tool or why a certain action was not taken, we collected additional 
information during the experiment. We asked users to voice what they were thinking 
and what they were doing and recorded them in transcripts and in videotapes (during the 
experiments with domain experts). We also prepared a questionnaire to get their 
feedback, where instead of questions with free form answers we designed questions that 
could be answered with a grade from 1 (worst) to 5 (best). 
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7.4. Preliminary Study 

Since it is expensive to nin user studies and hard to get domain experts in the field, we 
wanted to filter out distractions which are unrelated with our claim, such as problems 
with the tool that are not related to Interdependency Models. We also wanted to 
understand whether our interface and KA tool are appropriate for end users and how 
different types of users interact with it, so that we can improve our tools and our 
experimental methodology.  For these reasons, we performed a preliminary study before 
the actual evaluation with domain experts. 

The study used a spectrum of users that had gradually less background in AI and CS. 
We had (1) four knowledge engineers who had not used EMeD before but were familiar 
with EXPECT, (2) two knowledge engineers not familiar with EXPECT but that had 
experience with knowledge-based systems, (3) four users not familiar with AI but had 
formal training in computer science, and (4) two users with no formal training in AI or 
CS. 
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Table 5: Average number of hints given to each group of subjects during the 
preliminary user study. 

Since a major goal of this preliminary study was to understand our KA tool, we allowed 
the subjects to ask for hints when they were not able to make progress in the task (this 
was not allowed in the final evaluation). These hints allow us to categorize the basic 
types of difficulties experienced by users and adjust the tool based on them. 
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Table 6: Structured Editor. 

Figure 3 shows the number of hints given to the subjects in this stud  . More hints were 
always needed with the ablated version. The number of hints increases dramatically 
when subjects lack CS background. We analyzed all the hints, and separated them into 
two major categories. Class A hints consist of simple help on language and syntax, or 
clarification of the tasks given. Since syntax errors are unrelated to our claims about 
Ms, we developed a Structured Editor for the new version of EMeD (version 2) that 
guides users to follow the correct syntax. Figure 4 shows the new editor which guides 
the users to follow the correct syntax. Users can build a method just using point and click 
operations without typing. 

Class B hints were of a more serious nature. For example, users asked for help to 
compose goal descriptions, or to invoke a method with the appropriate parameters. 
Although the number of times these hints were given is smaller and the number is even 
smaller with EMeD, they suggest new functionality that future versions of EMeD should 
eventually provide to users. The subjects indicated that sometimes the tool was showing 
too many items, making it hard to read although they expected this would not be a 
problem after they had used the tool for a while and had become used to it. Since these 
presentation issues were affecting the results of the experiment and are not directl 
evaluating the IMs, the new version of EMeD (version 2) has more succinct views of 
some of the information, showing details only when the user asks for them. Other hints 
pointed out new ways to exploit IMs in order to guide users and would require more 
substantial extensions to EMeD that we did not add to the new version. One area of 
difficulty for subjects was expressing composite relations (e.g., given a military task, 
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retrieve its assigned units and then retrieve the echelons of those assigned units). 
Although EMeD helped users in various ways to match goals and methods, in some 
cases the users still asked the experimenters for hints and could have benefited from 
additional help. The fundamental difficulties of goal composition and using relations 
still remained as questions for the real experiment. 

In addition to improving the tool, we debugged and examined our experimental 
procedure, including tutorial, instrumentation, questionnaire, etc., especially based on the 
the results from the fourth group. 

We found out how much time end users would need to learn to use our tools. The tutorial 
given to the users was done with simpler sample tasks from the same knowledge base. 
The training time was significantly longer and harder for the subjects with no technical 
background (2 hours for knowledge engineers and 7.5 hours for the project assistants). 
More details of this study are discussed in, showing that even the end users were able to 
finish complex tasks, and that the KA tool saves more time as users have less technical 
background. 

As described above, we extended our tool based on the pre-test results, creating a new 
version of EMeD (version 2). The next section describes the evaluation with domain 
experts with this new version of EMeD. 

7.5 Experiment with Domain Experts 

The participants in this experiment were Army officers facilitated by the Army Battle 
Command Battle Lab (BCBL) at Ft Leavenworth, KS. They were asked to use our KA 
tools to extend a knowledge based system for critiquing military courses of action. Each 
subject participated in four half-day sessions over a period of two days. The first session 
was a tutorial of EXPECT and an overview of the COA critiquer. The second session 
was a tutorial of EMeD and a hands-on practice with EMeD and with the ablated 
version. In the third and fourth sessions we performed the experiment, where the 
subjects were asked to perform the modification tasks, in one session using EMeD and in 
the other using the ablated version. Only four subjects agreed to participate in our 
experiment, due to the time commitment required. 

An important difference with the previous study is that during this experiment subjects 
were not allowed to ask for hints, only clarifications on the instructions provided. As 
soon as a participant would indicate that they could not figure out how to proceed, we 
would terminate that part of the experiment. In order to collect finer-grained data about 
how many tasks they could complete, we gave each subject four knowledge base 
modification tasks to do with each version of the KA tool. The reason is that if we gave 
them one single task and they completed almost but not all of it then we would not have 
any objective data concerning our two initial hypotheses. The four tasks were related, 
two of them were simpler and two more complex. The easier tasks required simple 
modifications to an existing method (e.g., generalize the existing methods that compute 
the required force ratio for "destroy" tasks into methods that can compute the ratio for 
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any military tasks in general). The more complex tasks required adding new methods, 
such as the second method shown in Figure 1. 

7.6. Results and Discussion 

The main results are shown in Figure 5. Figure 5-(a) shows the average time to complete 
tasks (for the completed tasks only). None of the subjects was able to do the more 
complex tasks with the ablated version of EMeD. Where data is available (the easier 
tasks), subjects were able to finish the tasks faster with EMeD. Figure 5-(b) shows the 
number of tasks that the subjects completed with EMeD and with the ablated version, 
both by task category and overall. The solid part of the bars show the number of tasks 
completed. We show with patterned bars the portion of the uncompleted tasks that was 
done when the subjects stopped and gave up (we estimated this based on the portion of 
the new knowledge that was added). Figure 5-(c) shows the same data but broken down 
by subject6. The results show that on average subjects were able to accomplish with 
EMeD almost twice as many tasks as they accomplished with the ablated version. The 
results support our claims that Interdependency Models can provide significant help to 
end users in extending knowledge bases. 

6We had noticed early on that Subject 4 had a different background from the other three, 
but unfortunately we were not able to get an alternative subject. 
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Tasks completed (tor each subject) 

Figure 7: Results of the evaluation with domain experts. 

It would be preferable to test additional subjects, but it is often hard for people 
(especially domain experts) to commit the time required to participate in this kind of 
study. Given the small number of subjects and tasks involved it does not seem 
appropriate to analyze the statistical significance of our results, although we have done 
so for some of the initial experiments with EMeD with a t-test showing that they were 
significant at the 0.05 level with t(2)=7.03, p < .02. Gathering data from more subjects 
may be more reassuring than using these tests for validation. 
Our experience with these experiments motivates us to share a few of the lessons that we 
have learned about knowledge acquisition research: 
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D    Can end users use current KA tools to modify the problem-solving 
knowledge of a knowledge-based system? How much training do they need 
to start using such KA tools? Would they be able to understand and use a 
formal language? 
As we described earlier, we spent 8 hours (two half-day sessions) for training. 
They spent roughly half of that time learning EXPECT's language and how to 
put the problem-solving methods together to solve problems. The rest of the 
time was spent learning about the KA tool and its ablated version. We believe 
that this time can be reduced by improving the tool's interface and adding on- 
line help. We also recognize that more training may be needed if users are 
expected to make much more complex changes to the knowledge base. At the 
same time, if they did not need to be trained on how to use an ablated version of 
the tool they would not need to learn as many details as our subjects did. 
Our subjects got used to the language and could quickly formulate new problem- 
solving methods correctly. They did not seem to have a problem using some of 
the complex aspects of our language, such as the control structures (e.g., if-then- 
else statement) and variables. It took several examples to learn to express 
procedural knowledge into methods and sub-methods and to solve problems. 
EMeD helps this process by automatically constructing sub-method sketches and 
showing the interdependencies among the methods. Retrieving role values 
through composite relations was also hard. Providing a better way to visualize 
and to find this kind of information would be very useful. 
As a result of this experiment, we believe that with current technology it is 
possible to develop KA tools that enable end users to add relatively small 
amounts of new problem solving knowledge, and that they can be trained to do 
so in less than a day. 

D    How much do Interdependency Models help? What additional features 
should be added to our KA tools? 

Functionalit Avg No. invocations Usefulness rating No Users who 
used it 

Method Proposer 10.5(1.25 4.7 4 
Method Sub- 
method Analyzer 

8.5 4.3 4 

Method- 
Capabilit 
Hierarchy 

2.75 4.5 2 

Global-error 
Detector 

3 3.3 4 

Table 1: Average Use of EMeD's Functionality. 

Overall, the Interdependency Models exploited via different features in EMeD 
were useful for performing KA tasks. Table 1 shows the average use of each of 
the Components of EMeD, in terms of the number of times the user invoked 
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them 7. The subjects were very enthusiastic about the tool's capabilities, and on 
occasion would point out how some of the features would have helped when 
they were using only the ablated version. 

According to the answers to the questionnaire, using EMeD it was easier to see 
what pieces are interrelated. That is, visualizing super/sub method relations 
using Method Sub-method Analyzer was rated as useful (4.3/5). Also detecting 
missing knowledge and adding it was easier with EMeD's hints. Highlighting 
missing problem-solving methods and creating initial sketch based on 
interdependencies (by Method Proposer) were found to be the most useful 
(4.7/5). 

The Structured Editor used in this version of EMeD provided very useful 
guidance, and there were less errors for individual method definitions. The 
Local-Error Detector was not used for the given tasks. 

D    What aspects of a modification task are more challenging to end users? 
Almost everyone could do simple modifications, which required that the 
subjects browse and understand the given methods to find one method to be 
modified and then changing it. 
Some subjects had difficulties starting the KA tasks, when EMeD does not point 
to a particular element of the KB to start with. Although they could use the 
search capability in EMeD or look up related methods in the Method-Capability 
Hierarchy, this was more difficult for them than when the tool highlighted 
relevant information. 
Typically, a KA task involves more than one step, and sometimes subjects are 

not sure if they are on the right track even if they have been making progress. A 
KA tool that keeps track of what they are doing in the context of the overall task 
and lets them know about their progress would be very helpful. Some of the 
research in using Knowledge Acquisition Scripts to keep track of how individual 
modifications contribute to complex changes could be integrated with EMeD. 

D    How do KA tools need to be different for different kinds of users 
We did not know whether end users would need a completely different interface 
altogether. It seems that a few improvements to the presentation in order to 
make the tool easier to use was all they needed. We did not expect that syntax 
errors would be so problematic, and developing a structured editor solved this 
problem easily. On the other hand, we were surprised that end users found some 
of the features useful when we had expected that they would cause confusion. 
For example, a feature in the original EMeD that we thought would be 

7We show the number of times the users selected them, except for the Method Proposer 
where we show the number of times the system showed it automatically as well as the 
number of times selected (in parenthesis) when applicable. 

112 



distractive and disabled is organizing problem-solving methods into a hierarchy. 
However, the feedback from the end users indicates that they would have found 
it useful. 

Although EMeD is pro-active in providing guidance, we believe that some users would 
perform better if we used better visual cues or pop-up windows to show the guidance. 
As the users are more removed from the details, the KA tool needs to do a better job at 
emphasizing and making them aware of what is important 

7.7. Summary 

In this chapter, we presented an evaluation of a KA tool for acquiring problem-solving 
knowledge from end users who do not have programming skills. We described the 
experimental procedure we have designed to evaluate KA tools, and how we refined the 
design with a preliminary user study with users with gradually less background in AI and 
computer science. The KA tool that we tested exploits Interdependency Models, and the 
results show that it helped end users to enter more knowledge faster. We also discussed 
additional lessons that we have learned that should be useful to other knowledge 
acquisition researchers. 
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