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Probability plots of experimentally observed, detrended EMPTAC cable powers all show 
good fits to the chi square distribution model with two degrees of freedom.  

Bottom curves: unfiltered, simulated cable current |/f inside the EMPTAC middle bay and 
|/p trend. Top curve: \I\2 with trend factored out: |/12/|/,™J2. This figure is based on/^« 
and ffrtq both set to 1, and the assumption that ulim has a chi square distribution.  

Bottom curves: unfiltered, simulated cable current \I\2 inside the EMPTAC middle bay and 
|/|2 trend. Top curve: \I\2 with trend factored out: \P[2Pif^J2- This figure is based on/^, 
andj^«, both set to 10, and the assumption that ulim has a chi square distribution.  

Bottom curves: unfiltered, simulated cable current |/]2 inside the EMPTAC middle bay and 
|jf trend. Top curve: \I\2 with trend factored out: \P\2 1/^J2. This figure is based on/^, 
and ffnq both set to 100, and the assumption that ulim has a chi square distribution.  

Bottom curves: observed, unfiltered cable current |/]2 inside the EMPTAC middle bay and 
|/]2 trend. Top curve: \I\2 with trend factored out: \I\2/ |4J2. This figure is based on a 
high-frequency experimental data sweep. Note the monopolar downward nature of the 
spikes on the detrended (upper) data set.   

Probability plot of simulated cable currents squared against a chi square (two degrees of 
freedom) distribution assumption.   When driven by field components having a chi square 
distribution, the simulated EMPTAC cable currents, even upon filtering for trend removal, 
do not fit a chi square distribution.   

Normalized autocorrelation of the observed magnetic field along x (fuselage axis) with 
(dashed line) and without (solid line) the data filtered. This figure is based on the low- 
frequency EMPTAC middle-bay scan. Note that the autocorrelation of the filtered data is 
characterized by a central peak and broad plateau about .5 of the central peak.  

Normalized autocorrelation of the observed magnetic field along x (fuselage axis) with 
(dashed line) and without (solid line) the data filtered. This figure is based on the high- 
frequency EMPTAC middle-bay scan. 

Normalized autocorrelation of the observed cable current with (dashed line) and without 
(solid line) the data filtered. This figure is based on the high-frequency EMPTAC middle- 
bay scan. 

Normalized autocorrelation of the simulated cable current with (dashed line) and without 
(solid line) the data filtered. This figure is based on/^, mdf/req both set to 1 (artificially 
high autocorrelation), and tiae assumption that ulim has a chi square distribution.  

Normalized autocorrelation of the simulated cable current with (dashed line) and without 
(solid line) the data filtered. This figure is based oaf^, and^.„? both set to 100 (almost 
no correlation), and the assumption that w^, has a chi square distribution.   

Normalized autocorrelation of the simulated cable current with (dashed line) and without 
(solid line) the data filtered. This figure is based onf^, and^ both set to 100 (almost 
no correlation), and the assumption that ulim has a chi square distribution.  
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Plot of z = u2 + v2 for each component (w and v) of the phase-quadrature drive generated 
according to (2-10), (2-14) and (2-15) (normal case) with^e andj^ both set to 1000 
(almost no autocorrelation).   

Normalized autocorrelation of the drive variables u (real) and v (imaginary) normally 
generated, but before rescaling.   Both phase-quadrature components essentially have no 
autocorrelation except for the central spike.   

Normalized autocorrelation of the squared and summed drive based on a variable- 
frequency cut of the z ensemble as defined in (2-18). Note that the data bear a nice 
resemblance to the observed EMPTAC experimental results (Figures 2.7- 2.9), except 
that the central peak is too narrow, as one would expect for parameters inducing 
unrealisticaUy low autocorrelation (f^, and^^ both 1000).   

Probability plot for the assumption that the u and v ensembles are normally distributed 
before rescaling. This figure is based onf^, and./^ both set to 1000, and ag = 0.01, \ig = 
0.00. The agreement with a 45 ° line is excellent.   

Probability plot for the assumption that the z ensemble has a chi square distribution, both 
before and after u and v are rescaled. This figure is based onf^, and^, both set to 
1000, on u and v being normally generated, and on ag = 0.01, pg = 0.00.  

Both « and v, even before rescaling, fall within the Kolmogorov-Smirnov 90% confidence 
limits for a normal distribution when they are normally generated with^., and^, both 
1000, and with ag = 0.01, ng = 0.00.  ^  

Both u and v, even before rescaling, fall within the Kolmogorov-Smirnov 90% confidence 
limits for a normal distribution when they are normally generated with/^,,., andffreq both 
1000, and with ag = 0.01, p.g = 0.00.  ^  

The unsealed and the rescaled z arrays (generated under the same parameters as in Figure 
3.1) fall within the Kolmogorov-Smirnov 90% confidence limits for having a chi square 
distribution if the defining the confidence limits are determined from the data (as opposed 
to being pinned at ]ic = 0.0002).  ___  

Plot of z = K
2
 + v2 for each component (u and v) of the phase-quadrature drive generated 

according to (2-10), (2-14), and (2-15) (normal case) with/^ and^ both set to 10 
(physically realistic autocorrelation).  _____  

Normalized autocorrelation of the drive variables u (real) and v (imaginary) before 
rescaling. Both phase-quadrature components essentially have no autocorrelation except 
for the central spike, which is broadened in comparison to Figure 3.2. These data are 
based on the same normal drive generation as Figure 3.9 (Z^.,. and^ both 10, ag = 0.01 
and ug = 0.00). 

Normalized autocorrelation of the squared and summed drive based on a variable- 
frequency cut of the z ensemble as defined in (2-18). Note Hurt the data bear a nice 
resemblance to the observed EMPTAC experimental results (Figures 2.7-2.9), including a 
realistic breadth of the central peak  
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Probability plot for the assumption lhat the normally generated u and v ensembles are 
normally distributed before after introduction of autocorrelation, but before rescaling. 
This figure is based on/^g and;^ POM »t to 10, with ae = 0.01, u8 = 0.00-  

Probability plot for the assumption that the z ensemble has a chi square distribution, both 
before and after u and v are normally rescaled. This figure is based on./^,« and^ both 
set to 10, with og = 0.01, ug = 0.00.   

Neither u nor v, after forcing autocorrelation, but before rescaling, fall within the 
Kolmogorov-Smirnov 90% confidence limits for a normal distribution when Ihey are 
generated with^ andj^, both 10, and with og = 0.01, \ig = 000.      

The summed and squared variable z, before normal rescaling of u and v, is far out of range 
to the left of the Kolmogorov-Smirnov 90% confidence limits for being chi square with 
the mean and standard deviation pinned at \LC = 20? = .0002, when/^ mdf/nq are set to 
10, with og = 0.01, ug = 0.00.  

The unsealed z array, based on normal u and v with^„ aadffrtq set to 10, and og = 0.01, 
ug = 0.00, deviates in a major way from the 90% K-S test for being chi square, even when 
u,. is unpinned, and allowed to float to fit the data (left curves).  

The phase-quadrature cable currents, resulting from autocorrelated and rescaled drive, do 
not fit a normal probability plot. This figure is based on normal u and v with./^ aadf/rtl} 

set to 10, and a = 0.01, u= 0.00.   

The cable power distribution produced by rescaled cable drive does not fit a Kolmogorov- 
Smirnov test for being chi square, even after filtering. This figure is based on normal a 
and v with^ andj^ set to 10, and ag = 0.01, ug = 0.00-   

The unfiltered cable power distribution, based on rescaled cable drive, has an excellent 
match to a log normal probability plot. This figure is based on normal u and v with/^ 
and ffnq set to 10, and ag = 0.01, \ig = 0.00-   

Addition of radiation resistance makes the phase-quadrature cable current components 
more nearly normally distributed. This figure is based on normal u and v with/^ and 
ffnq set to 10, and o8 = 0.01, p.g = 0.00.   

Introduction of radiation resistance brings the filtered cable power distribution closer to a 
chi square distribution. This figure is based on 
normal u and v with/^, andj^ set to 10, and ag = 0.01, ug = 0-00-  

Introduction of radiation resistance leaves the unfiltered cable power distribution very 
nearly log normal. This figure is based on normal u and v with/^, and^ set to 10, and 
o =0.01, \i= 0.00.   

Constant A/drive-field generation brings the phase-quadrature cable 
current distribution still more into agreement with a normal distribution. 
This figure is based on normal u and v vnthfspace andff 

= 0.01, u^ = 0.00. 
,ßeq set to 10, and ag 

PAGE 

46 

47 

47 

49 

49 

55 

55 

55 

56 

56 

56 

59 

VUl 



FIGURE PAGE 

3.24 Constant A/drive-field generation brings cable power distribution still 
closer to a chi square fit. This figure is based on normal u and v vnihf 
andffreq set to 10, and ag = 0.01, \ig = 0.00. 59 

3.25 Constant A/drive-field generation finally causes the cable power distribution to deviate 
from a log normal distribution. This figure is based on normal u and v vnihfipace and/^ 
set to 10, and ag = 0.01, uf = 0.00. 59 

3.26 The amplitudes of the u ensemble members still have a growing trend as frequency 
increases, even with constant Af.   This figure is based on normal u and v with/^, and 
ffrtq set to 10, and og = 0.01, ug = 0.00. 61 

3.27 Pivoting ensemble envelopes about average values finally eliminates the cable drivers' 
growth trend.   This figure is based on normal u with/^ and ffrtq set to 10, and og = 0.01, 
ug = 0.00. 61 

3.28 The pivoted cable current drivers yield a phase-quadrature cable current distribution 
which is still closer to normal, as this probability plot shows. This figure is based on 
normal u and v with/^., andj^ set to 10, and og = 0.01, \ig = 0.00. 62 

3.29 The pivoted cable current drivers yield cable powers which come still closer to being chi 
square in distribution, as this Kobiiogorov-Smirnov 90% confidence test shows. This 
figure is based on normal u with/^ and;^ set to 10, and og = 0.01, ug = 0.00. 62 

3.30 The pivoted cable current drivers yield a phase-quadrature cable current distribution 
which is still closer to normal, as this probability plot shows. This figure is based on 
normal u and v with/^., and/^ set to 10, and ag = 0.01, ug = 0.00. 63 

3.31 Adding frequency dpendence to the model of the radiation resistance on the cable is our 
final step in matching the cable power distribution to a to a chi square model. This figure 
is based on normal u and v with/^ and/^ set to 10, and ag = 0.01, ug = 0.00. 63 

3.32 Summed squares of driving field phase-quadrature components computed by all four 
options pass the 90% K-S confidence test for being chi square with two degrees of 
freedom, but the recommended/^ options (bottom pair) stay closer to the limit midpoint. 65 

3.33 Summed squares of driving field phase-quadrature components computed by all four 
options have a realistic autocorrelation, but the recommended/i options (bottom pair) 
have smoother shoulders. It is possible the broader central spike of the ^/"options (top 
pair) is more representative of the actual physics. 66 

3.34 The recommended «/"summed squares of driving field phase-quadrature components have 
a more level baseline (bottom pair) than the/s runs (top pair). 67 

3.35 The frequency-dependent radiation-resistance model (right pair) gives more chi square 
like summed-squares of phase-quadrature cable currents than the frequency-independent 
model, although only ihsfsd model actually produces a cable-current distribution which is 
90% confident of being chi square. 69 

3.36 Only ihsfsd cable-driver model results in a flat baseline for the output summed squares of 
the phase-quadrature cable currents. 70 

IX 



FIGURE PAGE 

3.37 The fsd cable-driver model results in much flatter cable power autocorrelation shoulder 
than any of the other cable-drive options. 71 

4.1 The log normal distribution function with o/g = 1 and \iIg = 0. 75 

4.2 Fourier transform of the log normal distribution density function and the square root of 
this transform. Note how much more slowly the square-root transform goes to zero. 75 

4.3 
Fourier transform of the log normal distribution density function and the square root of 
this transform. Note how much more slowly the square-root transform goes to zero. 77 

4.4 Small curve: Log normal distribution function perfectly overlaid by inverse transform of 
transform of this function. Larger curves: Sine and cosine inverse transforms of the 
square root of the transform of the log normal distribution. 77 

4.5 The log normal distribution function is almost perfectly overlaid by the autoconvolution of 
the inverse transform of the square root of the transform of the log normal distribution 
function when aIg = 1. 78 

4.6 Smaller curves to lower right: triple overlay of original log normal distribution h(z) as 
calculated from (4-3), and from taking the inverse sin and cos transforms of the transform. 
This overlay is excellent. Larger curves to left: triple overlay of inverse sin and cos 
transforms of sqrt of transform,/i(x), with an analytic fit based on (4-10) and (4-1 l),f2(x), 
with/^zr andxmaxempirically taken from the inverse sine transform. 81 

4.7 Curves at center: triple overlay of original log normal distribution as calculated from (4- 
3), A(z), and from taking the inverse sin and cos transforms of the result. Logarithmic 
display indicates overlay breaks up about 40 dB below peak. Larger curves to left and 
top: triple overlay of inverse sin and cos transforms of sqrt of transform, fj(x), plus an 
analytic fit based on (4-10) and (4-1 l),/2(x), with/^ and x^ empirically taken from the 
inverse sine transform. 82 

4.8 Transform and sqrt of transform of log normal distribution. This figure is based on h(z) 
having u/g = 0.0 and alg = 1.4. 83 

4.9 Phase of sqrt of transform of log normal distribution. This figure is based on h(z) having 
u,g = 0.0 and o,g = 1.4. 83 

4.10 Overlay of h(z) obtained from (4-3) with that obtained from autoconvolution of the inverse 
transform of the sqrt of the transform,/,(x), from the autoconvolution obtained from (4- 
10) and (4-1 l),f2(x), and from the autoconvolution obtained from (4-18) and (4-19),^(x). 85 

4.11 Overlay of log normal distribution for h(z) with (o/g, u/g) = (1.0,0.0) and autoconvolution 
approximation based on guess of log nonaalßx) with (o/g', ufe') = (1.87, -1.0). 88 

4.12 Overlay of log normal distribution for A(z) with (olg, u/g) = (1.4,0.0) and autoconvolution 
approximation based on guess of log normal^*) with (o/g', u/g') = (3.65, -1.2). 88 

4.13 Overlay of log normal distribution for h(z) with (o/g, u/g) = (1.8,0.0) and autoconvolution 
approximation based on guess of log normal^) with (alg', n,g') = (6.0, -1.42). 89 



FIGURE PAGE 

4.14 Overlay of log normal distribution for h(z) with (o,r u/g) = (1.9, -17.5) and 
autoconvolution approximation based on guess of log normal/(x) witb (a,', u.,g') = (6.6, - 
1.89). 89 

4.15 Model-based cumulative distribution of the squared currents on the EMPTAC cables 
[with 90% Kolmogorov-Smirnov confidence limits for being log normal]. 93 

4.16 Measured cumulative distribution of the squared currents on the EMPTAC cables (with 
90% Kohnogorov-Smirnov confidence limits for being log normal). 93 

4.17 The EMPTAC model squared cable current distribution (solid line) does not stray outside 
the bounds provided by an overlay of three squared cable current distributions (various 
dashed lines) which were obtained under slightly varied measurement conditions. 94 

4.18 In the real world, fields squared and currents squared usually do not fit a chi square 
distribution very well. 95 

4.19 Generally, sums of two squared phase-quadrature components look log normal, not chi 
square in the real world. 95 

4.20 Hybrid log-normal/chi-square distribution (solid line), with measured \HZ\2 from Sweep 
B050MBHZ overlaid (line in long dashes). Crossover occurs at P = 0.9. 97 

4.21 The cumulative probability distribution obtained by joining the log normal, F(x) of (4-41), 
and the chi square, F2(x) of (4-43), at P = 0.9. 99 

4.22 The cumulative probability distribution obtained by joining the log normal, E(u) of (4-48), 
and the chi square, E2(u) of (4-51), at F = 0.95. 101 

4.23 Hybrid log-normal/chi-square distribution (solid line), with measured \Hf from Celestron 
8 8 GHz to 18 GHz sweep overlaid (line in long dashes). Crossover occurs at P = 0.875. 101 

5.1 Lehman distribution compared with EMPTAC magnetic-field data (100 MHz - 1 GHz 
sweep). 106 

5.2 Lehman distribution compared with Celestron 8 magnetic-field data (8 GHz -18 GHz 
sweep). 106 

5.3 Comparison of the Lehman, hx2(2j) and the hx2(6j) cumulative distributions [based on 

(A,Y2,YS) = (U,1)]. 110 

5.4 Square of magnetic field in the EMPTAC (100 MHz -1 GHz high-frequency sweep of Hv 

B050MBHZ) 112 

5.5 Lehman distribution (based on A = 3.814e+7 = 3/^^ and EMPTAC data from 100 MHz 
to 1 GHz. 112 

5.6 EMPTAC data from 100 MHz to 1 GHz compared with various fits. 113 

5.7 Square of magnetic field in the EMPTAC (500 MHz -1 GHz partial low-frequency 
sweep of #„ A050MBHZ). 113 

5.8 Lehman distribution (based on A = 2.591e+7 = 3/UaJ and EMPTAC data from 500 MHz 
to 1 GHz. 114 

XI 



FIGURE PAGE 

5.9 Square of magnetic field in the EMPTAC (300 kHz -100 MHz low-frequency sweep of 
H„ A050MBHZ). 114 

5.10 Lehman distribution (based on A = 1.63e+10 = 3/udato) and EMPTAC data from 300 kHz 
to 100 MHz. 115 

5.11 Square of magnetic field in the EMPTAC (9 MHz -100 MHz low-frequency partial 
sweep oiHp A050MBHZ). 115 

5.12 Lehman distribution (based on A = 1.478e+10 = 3/^^) and EMPTAC data from 9 MHz 
to 100 MHz. 116 

5.13 Power flux density distribution at focal plane in Celestron 8 satellite telescope for 1.5 GHz 
- 3.5 GHz sweep. 116 

5.14 Lehman distribution (based on A = 1.596e+3 = 3/udsta) and Celestron 8 data from 1.5 to 
3.5 GHz sweep. 117 

5.15 Power flux density distribution at focal plane in Celestron 8 satellite telescope for 3.5 GHz 
- 8 GHz sweep. 117 

5.16 Lehman distribution (based on A = 4.053 = 3/0^ and Celestron 8 data from 3.5 to 8 
GHz sweep. 118 

5.17 Power flux density distribution at focal plane in Celestron 8 satellite telescope for 8 GHz - 
18 GHz sweep. 118 

5.18 Lehman distribution (based on A = 1.929 = 3/0^ and Celestron 8 data from 8 to 18 GHz 
sweep. 119 

5.19 Overlay of 1) random field values, plotted as summed & squared components after 
Lehman rescaling according to (3-3) and (5-27) and based on A = 10,2) values computed 
directly from the Lehman cumulative distribution function (5-22) with A = 10, 3) values 
computed directly from the Lehman cumulative distribution function with A = 3/u, where 
u = 0.34 was obtained from the random-rescaled ensemble. 121 

5.20 Two EMPTAC cable-current amplitude (unsquared) distributions based on cable model of 
(3-6) - (3-16) with the same parameters as those used to generate Figure 4.17, except that 
the Lehman electric-field distribution (5-27) was used instead of a chi square distribution. 
The Lehman parameter for the fields was determined from experimental data to be A = 
17600. 122 

5.21 Comparison of K2(z) and the approximate fit of (5-32). 124 

5.22 Lehman distribution density and cumulative distribution for A = 10 (solid) and 1 (dashed). 124 

5.23 Error in approximations Afa(z,A) and Aa(z,A) [(5-32) and (5-33)] to the Lehman pdf. 124 

5.24 Integral (5-34) and high-low asymptotic (5-35) approximations to K5(z). 127 

5.25 Deviation from Lehman pdf of low-z limit (5-39) of hK(z), based on low-z approximation 
Mz.A) of (5-38), for A = 1. 127 

5.26 Deviation of hn(zjL,a,$,y) of (5-41) from Lehman pdf based on A = 1. 127 

Xll 



FIGURE PAGE 

5.27 Contour plot of the misfit function M,(z,A) (5-47) for the hn{zj±) (5-46) approximation to 
the Lehman distribution. 129 

5.28 The pdf and cdf approximations, en(uji) and En(uji), to the Lehman-associated field 
amplitude distribution (5-49), based on A = 10. 130 

5.29 Comparison of the exact Lehman distribution density (5-17) and the approximate 
distribution density hn(z,\) obtained from autoconvolution of (5-52). 131 

5.30 Comparison of the exact Lehman distribution density (5-17) and the approximate 
distribution density An(z,l,a,ß,Y)obtained from (5-54). 132 

5.31 Comparison of the exact Lehman distribution density (5-17) and the approximate 
distribution density Ac(z,l,a,ß,Y)obtained from (5-55). 132 

5.32 Contour plot of the second misfit function M2(zjs) for the ha(zji.) (5-56) approximation to 
the Lehman distribution. 133 

5.33 The cdf for the phase-quadrature components squared, based on Fc(x,A) 
for A =10, from (5-57). 134 

5.34 The pdf and cdf approximations, en(uj±) and En(uji), to the Lehman-associated field 
amplitude distribution (5-26) and (5-27) or (5-59) and (5-60), based on A = 10. 135 

5.35 Contributions of the Gaussian-like and x2-hTce parts of the phase-quadrature cdf. 136 

5.36 Inverses of Eg(u,ag) and//x2(6,4Ai4|M|)-(«/|M|) [see (5-61)] for A= 10. These inverses 
are directly accessible from Mathcad*. The inverse of Fn(xJ±) has been found always to 
he between these two inverses. 136 

5.37 Evaluation of the fidelity of our algorithm for finding Fn(xji) and its inverse. 137 

5.38 Two 500-point ensembles of Lehman-distribution-related phase-quadrature random 
variables, based on (5-60), with A = 10. 137 

6.1 Top (front) of the J-shaped microwave chamber used for field- and current-distribution 
testing. 145 

6.2 GPS bus (less antennas and solar panels) illuminated by a log-periodic antenna (right). 
Note dust mop in front of bus to give size perception. 145 

6.3 Cumulative distributions of averaged, normalized waveguide-chamber electric fields 
(measured), compared with those predicted from Lehman (5-22) and %l (2-89) models 146 

6.4 Overlay of four cable current measurements (cluster of four left traces), and four cable- 
model predictions (cluster of three middle traces and right outlier). 147 

6.5 CDF of E? at Loc. 1 inside the waveguide chamber. Based on measured A = 2.986. 148 

6.6 CDF of E2 at Loc. 2 inside the waveguide chamber. Based on measured A = 2.954. 148 

6.7 CDF of ABS(7) at Loc. 1 inside the waveguide chamber. Based on Lehman is-field 
distribution of Figure 6.5. 148 

Xlll 



FIGURE PAGE 

6.8 

6.9 

6.10 

CDF of ABS(7) at Loc. 2 inside the waveguide chamber. Based on Lehman £-field 
distribution of Figure 6.6. 

CDF off2 in lower Bay 1 of GPS. Based on measured A = 3.486. 

CDF of JS2 in lower Bay 2 of GPS. Based on measured A = 3.344. 

6.11                CDF of ABS(7) on cable bundle in lower Bay 1 inside the GPS. Based on Lehman £-field 
distribution of Figure 6.9.   

6.12 CDF of ABS(7) on cable bundle in lower Bay 2 inside the GPS. Based on Lehman £-field 
distribution of Figure 6.10. 

6.13 Observed F? at a fixed point in the 5BH bay on the lower dark-side of the GPS as 
frequency is stepped from 600 MHz to 2 GHz. Mean p., standard deviation o, and 
coefficient of skewness K were found to be (0.0170,0.0213,1.98). 

6.14               Autocorrelation of data appearing in Figure 6.17. Displacement is in units of frequency 
steps.  ^^ 

6.15 The Figure 6.13 data fails a 90% K-S confidence test for fitting a chi square (two degrees 
of freedom) distribution, especially at midrange. This plot is based on uc = 0.0170. 

6.16                The Figure 6.13 data narrowly misses a 90% K-S confidence test for fitting a Lehman 
distribution. This plot is based on A = 176.4.   

6.17                 The upper 65% of the Figure 6.13 data passes 90% K-S confidence test for fitting a beta 
distribution. This plot is based on (U,O,K) = (0.0170,0.0213, 1.98), implying (a,bj) = 
(0.497,5.30,0.198).   

6.18                The Figure 6.13 data does not fit a 90% K-S confidence test for being log normal; the 
deviation is bipolar. This plot is based on (p^o^) = (-4.546,0.972     

6.19 The Figure 6.13 data lies within a ±50% acceptance interval for fitting a chi square (two 
degrees of freedom) distribution, over the upper half of its domain. This means the chi 
square model is probably an acceptable, even if not ideal, representation of the data. 

6.20                The Figure 6.13 data lies well within a ±50% acceptance interval for fitting a Lehman 
distribution over its entire domain. This means the Lehman model is an excellent 
replication of reality  _^____ 

6.21 The Figure 6.13 data lies within a ±50% acceptance interval for fitting a beta distribution, 
over the upper 75% of its domain. This means the beta model is an acceptable 
representation of the data. 

6.22                The Figure 6.13 data lies within a ±50% acceptance interval for fitting a chi square (two 
degrees of freedom) distribution, over the upper half of its domain. This means the log 
normal model is conditionally acceptable.   

6.23 The Figure 6.13 field data, when modeled as chi square (with two degrees of freedom), 
leads to a modeled cable current which, given a ±50% acceptance interval, everywhere 
brackets the measured cable current. 

148 

149 

149 

149 

149 

153 

154 

155 

156 

157 

158 

160 

161 

162 

163 

164 

XIV 



Chapter 1. THE NEED FOR STATISTICAL ELECTROMAGNETICS (SEM) 

This document reports efforts, by us and others, to understand and model statistically the 
electromagnetic (EM) field and cable response of an enclosed asset and its wiring during high- 
power microwave (HPM) attack or in the presence of other threatening radio frequency (RF) 
leakage and penetration. More generic and exploratory work on the statistics of such response 
was previously performed by us, and has been informally described elsewhere. [1] 

The problem of predicting cable or pin currents in an enclosed system under high-power 
microwave (HPM) illumination or RF interference (RFI) at a frequency where the asset is many 
(> 6) wavelengths on a side (i.e., well overmoded) is all but impossible to treat deterministically. 
Moreover, even assuming a supercomputer and state-of-the-art finite-volume time-domain 
(FVTD) code were available, one could logically claim a deterministic solution would be of no 
value. This claim could be made because, in such a scenario, a 1 ° rotation of the asset or a 1 
percent shift in frequency would commonly alter the excitation on any given pin or circuit device 
by 20 dB. 

Additionally, the interior of a satellite, aircraft, or missile has wiring of almost 
inconceivable complexity as viewed by an FVTD practitioner who is used to zero or one (two if 
he is really heroic) conductors passing through each FVTD cell. [2,3] 

To solve this sort of problem rigorously and deterministically, one not only needs to track 
the fields in 106 to 109 FVTD cells, but also to model the drive these fields impose on each 
conductor (or even each IC) passing through or located in each cell. The final nightmare is that 
each of these conductor and IC currents must then be fed back through the FVTD version of the 
curl H equation (Ampere's law) to drive the algorithm which advances the FVTD field solution. 
Despite 20 years' experience with FVTD and finite-different time-domain (FDTD) codes, it is our 
conviction that this problem is at least two computer generations from tractability, even assuming 
a deterministic solution could be of any use. 

Given this dark and bleak outlook on deterministic HPM and RFI analysis, the HPM/RFI 
community was thoroughly awakened by a statistical approach worked out by Price and Davis, 
which appeared in 1988. [4,5] (A statistical treatment, unlike a deterministic treatment, actually 
thrives on complexity. In many situations, the statistical confidence interval depends on the 
inverse square root of the amount of data provided.) This statistical approach develops a 
probability density distribution model for the fields inside an asset, which are not be a hair-trigger 
function of frequency, attack angle, wiring configuration, or any other parameter. An elegant, but 
very complex derivation accompanied this work. The conclusion was that the distribution of the 
electric or magnetic field (squared) projected along any axis would be chi square with two 
degrees of freedom; i.e., exponential. This distribution function is characterized by a single 
parameter, u the mean value (or equivalently by u1 the median value). Because of the 
fundamental significance of this effort, but also because it is hard to follow and not free of errors, 
we reproduce it here in Section 9. 



Let us assume a reasonable topography (for example, no observation points located where 
they are line-of-sight illuminated by the driving source through a large aperture and no small 
shield rooms inside a big shield room). Then there is a strong implication that this same chi 
square distribution (with the identical u) would categorize the field as a function of internal 
position, frequency, attack angle, sensor orientation, or almost any other independent variable one 
would want to consider. It also appears this chi square distribution characterizes mode-stirred 
reverberation chambers where the paddle angle is the independent variable. [6-8] In fact, mode- 
stirred chambers inherently depend on statistical, not deterministic, analysis and assumptions as 
the basis for their application and use. 

Our initial desire was to obtain access to the data Price and Davis had used to test their 
theory in a large steel box (2.5m on a side), a C130 transport plane, a Maverick missile, a Cessna 
Citation jet, and a large ground vehicle. These data were not available, and so we initially turned 
to data taken from the Air Force Phillips Laboratory's testing of the EMP Test AirCraft 
(EMPTAC) aircraft frame (basically a gutted Boeing 720 shell) when illuminated by their 
Ellipticus antenna.   These data included internal magnetic fields, surface current density on the 
inner skin of the EMPTAC, and currents flowing on the EMPTAC cable bundles. It also included 
measurements of the externally incident fields radiated by the Ellipticus, so the internal response 
could be normalized by the external stimulus if desired. The EMPTAC data were given in the 
form of response versus frequency, where the frequency was first swept from 300 kHz to 100 
MHz (the "low-frequency" sweep), and then from 100 MHz to 1 GHz (the "high-frequency" 
sweep). In some cases, the first sweep may have yielded data below the noise floor, but data from 
the second sweep were generally believed to be totally reliable. [1] 

Later, we obtained a Global Positioning Satellite (G.P.S.) bus on indefinite loan from the 
Phillips Laboratory, and took extensive data of our own, various measurement accuracies and 
tolerances directly accessible to our own care and observation. In the Price and Davis work, 
cavity excitation was produced by an internal source. [4,5] We illuminated both our test objects 
externally, with EM energy leaking in through deliberate and inadvertent apertures, and by 
antenna feed cables. (This distinction, which we initially considered inconsequential, is now 
believed to be more significant than casual review would suggest. [9-11]) 

The Phillips Laboratory also made data available to us concerning electromagnetic fields 
inside the Celestron 8 space telescope when microwave illumination was directed into the main 
aperture, although not directly down the boresight. This excitation scenario is not a perfect match 
with our assumptions about the statics of resonant cavities. In particular, much of the telescope 
interior is in direct line-of-sight with the source. Also the aperture is so large that the high-ß 
requirement is questionably met. Lastly, excitation of the telescope chamber is dominated by the 
single large aperture, not many small apertures, thus leading to the probable existence of "hot 
spots". In spite of these violations of our assumptions, Celestron 8 fields interior to the telescope 
prove to be not badly characterized by our field statistics. 



It quickly became apparent that the Price and Davis chi square distribution match between 
experiment and theory was less pristine than believed. In particular, their raw data had been 
passed through a logarithmic filter to remove a certain amount of "trend" before being compared 
with the experiment. The unfiltered data from the EMPTAC had a distribution much more 
resembling log normal than chi square. [1] The same phenomenon had been observed by Price and 
Davis, who were kind enough to give us an idea of the filtering process which was necessary. 

The Price-Davis papers contained references to some statistical characterization 
procedures such as the probability plot (see following section) and the Kolmogorov-Smirnov test 
[12] which may be new to the EM engineer or physicist who is more used to deterministic 
treatment and terminology. We hope that Section 9 and Ref. [12] will be of use to a reader of this 
status. 
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Chapter 2. DISTRIBUTION AND AUTOCORRELATION OF INTERNAL FD2LDS 

This section is organized as follows: Initially, we introduce the probability plot, a tool 
often used to evaluate how well a cumulative distribution model matches observed data. Next, 
we consider that a statistical model of the EM fields inside an overmoded enclosure, which drives 
the cable currents in a realistic way, must not only obey the same probability density function 
(pdf) as the measured fields. It must also obey the same local autocorrelation with respect to 
small spatial translation or frequency shift. 

We then describe how the probability density function of simulated cable-driving power 
flux distribution densities may be matched to an arbitrarily selected pdf through filtering random 
numbers. (It is of use first to consider modeling of power-flux density pdf instead of 
electromagnetic field pdf as the Price-Davis measurements were made with square-law detectors 
(i.e., power flux detectors). Also, the EMPTAC measurements were of B (corrected to output B) 
absolute values, which, since phase information is lost, behave statistically more like powers than 
complex-valued fields. Additionally, the G.P. S. measurements were made by Z)-field or / 
absolute-value sensors, which also do not take phase information, and thus also resemble power 
detectors more than complex phasor sensors.) 

Lastly, we examine the transformation of the power-flux density pdf to the associated 
cable-driving electromagnetic phase-quadrature field-distribution pdf 

PROBABILITY PLOTS 

We shall begin by introducing this useful concept for distribution testing by means of an 
example: the Gaussian or normal distribution. To make a probability plot to test a data set for a 
Gaussian fit, one first orders all the measurements so they are monotonically increasing, xu x2,... 
%. Next, these measured values are normalized to match a normalized Gaussian distribution: 

>. - ^ P-i) 
8 

where u^ and ag are the mean and standard deviation.   These z„ values are then marked off along 
the horizontal axis. 

If there are a total of n values in the data set, then the experimentally obtained fraction of 
data points of value less than or equal to z, is 

pn = (i - V2)/N (2-2) 

If the data obey a Gaussian distribution exactly, it would be true, as n goes to infinity, that 

P(zn) = (n - V2)/N (2-3) 



where P is the cumulative normal distribution function. Thus, if the z„ were exactly normal in 
distribution, P\(n - V2)/N) would be coincident with z„ ,where PA(p) is the inverse of the 
cumulative normal distribution function.   (A fitted curve approximation to P A(p) appears in Eq. 
26.2.23 of Zelen and Severo.fl].) 

For each n obtained, now compute 

p-\{n - V2)/N) =yn (2-4) 

where this computed^ is different from the observed zn unless the data fit to the normal model is 
perfect. Then mark these j>„ along the vertical axis. Connecting the points (z„, y„) then yields the 
probability plot for the assumption that the data set in question obeys a normal distribution. If the 
normal distribution assumption is exactly correct, the resulting plot will approach a straight line at 

45 ° as N goes to infinity. 

The Price and Davis documents [2,3] also provide 90 percent confidence curves for the 
probability plots. These confidence limits were obtained from the Kolmogorov-Smirnov test (see 
Section 9) [4] and differ from the ordinary confidence limits in that the entire cumulative 
distribution curve must lie within for 90 percent certainty that the assumed probability distribution 
is correct. (More conventional tests are only valid on a point-by-point basis, and provide less 
readily usable information about the overall confidence of the probability plot.) 

If x, in (2-1) is replaced by ln(x„), with ufe and alg the mean and variance respectively of the 
{ln(x„)}, array a test is obtained for the hypothesis that the data obey a log normal distribution. 

Each of the log normal probability plots appearing in this section has an indicated variance 
alg

2. This is provided because an array with a x2 distribution with two degrees of freedom should 
have an associated logarithmic array (ln(x„)} with a variance of 7t2/6 (see [5], Appendix B). 

Chi-square probability plots, unlike Gaussian probability plots, are usually made with the 
data not normalized [(2-1) not applied]. For example, in the case of a f distribution with two 
degrees of freedom, one can show [see (2-11)] that 

p-2\(n - V2)IN) = -uc ln(l - (n - V2)/N) (2-5) y"        xl 

Both x„ mdy„ are then converted to decibel (dB) format before plotting, 

zn = 10 1og10(x„) (2-6) 



THE FIELD-AUTOCORRELATION ISSUE 

It has been demonstrated by us and others that the field picked up inside an overmoded 
enclosure by a 2J-sensor, presuming the sensor responds in a square-law manner, should yield a 
chi-square output distribution with two degrees of freedom. This statement is true under cw 
conditions, and applies whether the observations are made at a fixed location while frequency is 
swept or whether the observations are made at a fixed frequency while the antenna is translated or 
rotated.[2,3,5] It does, however, depend on the cavity not having a frequency-dependent Q and 
on all parts of the cavity being equally shielded (i.e., no subenclosures within the enclosure). If 
these postulates are not obeyed, the sensor output distribution tends to appear log normal 
instead. [5] 

The above statements presume the sensor detects only a single Ä-field component on a 
basis which is very local compared to the EM wavelength. They also apply, however, to 
detectors which pick up a single component of D on a very local basis, or to detectors which 
respond to a single component of B or B, provided the independent variable is not frequency 
swept over more than about a 5% bandwidth. (We should not expect B = u>B to produce a chi 
square distribution through a square-law detector if w is not almost constant.) 

In practice, the sensor output usually has to be passed through a trend-removing, high- 
pass filter to pull its chi-square distributional nature out of a log-normal appearance caused by the 
trend or slowly varying component. (We refer to this high-pass filtering as "detrending"; see the 
final subsection of this section. Whether the simulating conductor drive in modeling applications 
should be based on a chi square, a log-normal, or some altogether different power distribution 
thus becomes an issue which may be subject to personal choice.) 

Price, et a/.,[2,3] have published a thorough derivation of the physics and statistics leading 
to the anticipation of a chi square attribute in the squared fields or power fluxes (refer to Section 
9 of this publication). However, there is a simple approach which relies somewhat on intuition for 
reaching the same conclusion. Essentially, at any point in the enclosure, the field projected on any 
dipole consists of two components in phase quadrature, each of which should possess a nearly 
normal distribution when the enclosure is sufficiently overmoded to begin to have blackbody-like 
characteristics. (This distribution is a consequence of Bose-Einstein statistics, which describe 
blackbody radiation.) The power picked up by a dipole antenna is proportional to the summed 
squares of these quadrature components. (Alternatively, it could be viewed that the power picked 
up is the summed squares of the waves going backwards and forwards.) However, this sum is 
exactly the definition of a function which has a chi square distribution with two degrees of 
freedom. 

An empirical result we have observed about data pertaining to the power (current 
squared) carried by a cable inside an enclosure is that it also obeys a chi square distribution with 
two degrees of freedom after the power measurement sweep has its trend removed (Figure 2.1). 
(Test data referenced here were obtained at the Air Force Phillips Laboratory's EM effects 
EMPTAC facility. Before detrending, EMPTAC cable powers also tend to appear log normal in 



o 10.0 - 
h- - 
o " 
2 - 
Z) » 
LL. - 

0.0 - 
>- 
1— - 
_l _ 
CD _ 
< - 
CO -10.0 - o 
rr - 
Q_ - 

ÜJ 
- 

GO 
or -20.0 z_ 
ÜJ 
> - 

-30.0 

freq   =   .033 
N0  =   91 

B4CURPLT 
i i i i i i i i i i i i i i 11 i i i i i i i i i i i i i [ i i i i i i i i i i Ml ' 

30.0        -20.0        -10.0 0.0 10.0 
FILTERED OBSERVATION (B032211Y.B024215Y.B0302142.B0292I34) 

Figure 2.1. Probability plots of experimentally observed, detrended EMPTAC cable powers all 
show good fits to the chi square distribution model with two degrees of freedom. 



distribution.) This cable power distribution result is not predicted or anticipated by the Price 
work.[2,3] However, if the power is viewed as the summed squares of two phase-quadrature 
cable current components, there is no surprise in this observation. (There is an experimentally 
prompted assumption here that the unsquared phase-quadrature current components also have a 
normal distribution; however, we do not claim our simplistic appeal to Bose-Einstein 
electromagnetic field statistics should necessarily apply to cable currents for any obvious reason.) 

In practice, we first modeled the cable drivers in our EMPTAC cable-current simulation 
code with electromagnetic fields of the form 

Ex = [A(n,f) COS(G>„0 + B(n,i) sin(on0] (2-7) 

where the two terms represent the phase-quadrature components of the fields at cable segment / 
and frequency co„. These fields are projected parallel to the cables to effect drive. The amplitudes 
of the sine and cosine phase-quadrature amplitude terms are random numbers which can be 
selected to fit an arbitrary probability density function. Software for generating log normal and 
chi square distributions, as well as for normal distributions, is currently available to implement the 
statistical nature of A(n,i) and B(n,i) (see the next subsection). For instance, if we wish to employ 
a log normal model, the phase-quadrature electromagnetic fields A(n,i) and B(n,i) are selected 
according to the mapping function 

C(n,i) = e**+ a*uM (2"8> 

In the more physically realistic normal case, C(n,i) is obtained from (2-8) simply by omitting the 
exponentiation 

C(n,i) = \ig + agu{n,i) (2-9) 

The factor u(n,i) is a random variable describing the cable-driving field at frequency w„ and spatial 
location /'. It has a probability density function tailored to the normal distribution function and 
must also contain frequency- and location-associated coherence. In the high-frequency limit, the 
spatial and frequency coherence between adjacent u(n,i) may vanish, and each u(n,i) may be 
determined solely by the chosen random distribution. Additionally, C(n,i) is a shorthand notation 
to represent either A(n,i) or B(n,i), \ig is the average, and ag is the standard deviation of the 
logarithms of the phase-quadrature field amplitudes we are trying to replicate statistically. 

For a normal or log normal distribution let R(n,i) be randomly selected number between 0 
and 1. Then let us begin constructing u(nj) by defining uIim(n,i) through the inverse normal 
function 



R(n,i) = ——     f  e" n du' (2-10) 

Numerical evaluation of ulim(ji,i) given R(n,i) is described in the next subsection and [5]. 

(For a chi square distribution with two degrees of freedom, 

R(n,i) =      J    e"' du' or uUm(n,i) = uc ln(l - R(n,i))      (2-11) 

would be the corresponding equation.) 

Unlike actual experimental data, this drive did not result in a cable power distribution 
which was chi square, even after filtering for trend removal. The problem was the A(n,i) or B(n,i) 
generated in this manner had no local autocorrelation, either between adjacent frequencies or 
between adjacent cable segments. Thus, the resulting simulated cable powers, unlike the 
experimentally observed EMPTAC cable powers (see Figure 2.9), also had no autocorrelation 
between adjacent frequencies. (It turns out that we don't know how to generate easily an 
ensemble of drivers which simultaneously and automatically has a prescribed probability density 
function and autocorrelation. Nature does this for us with the experimentally generated real- 
world drivers, but in our virtual reality, we here have a very difficult time replicating nature.) 

It is known that the spatial autocorrelation of any component of the fields (with frequency 
fixed) should depend on the separation of the two observational points, Ar = |rx -r2|, as [6-8] 

sm(k\(ri-r2\) 

"<'»'>> "   »!,,-,,!) <M2> 

and the frequency autocorrelation (with observer position fixed) should depend on the spectral 
separation of the two frequencies, AGO = co1 - w2, as [6] 

where ß is a constant which depends in a complex way on the chamber dimensions. However, we 
re-emphasize that knowing what the autocorrelation and distribution of the electromagnetic fields 
should be does not trivialize their computerized simulation. 
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The first attempt to rectify this problem and to introduce autocorrelation consisted of 
massaging the u(n,i) given by (2-10). With R(n,i) still a random number uniformly distributed 
between 0 and 1, we associated a ulim(n,i) with eachi?(/y) through (2-10), setting u(n,i) = 

We then defined an intermediate new u(n,i) = uspaJn,i) through a formula empirically 
selected from a half dozen possible choices to force spatial autocorrelation between nearest- 
neighbor segments 

Ä-u(n,i-l) + fspaceu^Jn,i) 

*W(«>0 = —+  (2-14) 

Ä7 +^space 

where u(n,i - 1) is the u(n,i) for the previous cable segment /' -1, A/ is the cable segment length, 
mdfspace is a number around 10. (At the left end of the cable, w(n,1) was seeded as 0. Making 
fs ace zero results in total correlation between adjacent segments; making it >1000 results in no 
noticeable correlation between adjacent segments; i.e., no change between uhJn,i) and uspace(n,i) 
closely approaching the EMPTAC experimental noise floor.) We then obtained a new u(n,f) = 
ufreq(n,f), locally autocorrelated over both space and frequency, through a formula to force 
autocorrelation between adjacent frequencies 

JL-u(n-l,i) + ffrequspace(n,i) 
u^inj) = J*±  (2-15) ■W 

LAX 
+ /* freq 

Here u(n - \,i) is the u(n,f) for the previous frequency n -1, L is the linear dimension of the cable 
extent, AX is' the change in wavelength between adjacent frequencies, and^.e? is another number 
around 10. [At the lowest frequency, u(l,i) was again seeded as 0. Making^, zero results in 
total correlation between adjacent frequencies; making it >1000 results in no noticeable 
correlation between adjacent frequencies. The actual u(n,i) used for cable drive in (2-7) - (2-9) is, 
in the first approximation, ufreq(n,i) of (2-15).] 

This procedure succeeds in introducing an approximate simulation of the physically 
occurring autocorrelation in cable power over position and frequency (compare Figure 2.8 with 
Figure 2.7). Unfortunately, it also succeeds in distorting the normal distribution that we desire the 
array of u(n,f)'s to possess, especially at the tails (see Figure 3.12). Additionally, the standard 
deviations o   i.e., average amplitudes of the driver ensemble matrices u(n,i) and v(n,i), are 
reduced from .01 to about .003. 
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At first we made some simulation runs using the chi square distribution for the driving 
field on the EMPTAC cables. (These runs are simplistic, as it is actually the driving field squared 
which should look chi square.) Figure 2.2 shows the resulting cable power (current squared) 
distribution versus frequency at a point near the cable midpoint toxfspace and^? both set to 1 
(excessive autocorrelation). Figure 2.3 shows the result forfspace andf^ both set to 10 (realistic 
autocorrelation), and Figure 2.4 illustrates the cable power for both/s set to 100 (autocorrelation 
artificially weak). These three figures show the raw data, the trend, and the data with the trend 
removed. Figure 2.5 shows a typical experimental EMPTAC cable power observation versus 
frequency. It is easy at once to see a somewhat subjective difference between the observed and 
simulated results: On Figure 2.5, the detrended data only have sharp spikes downward, while the 
simulated data (Figures 2.2-2.4) demonstrate bipolar spikes. 

The simulated cable power data shown in Figures 2.2-2.4 actually have several 
inappropriate properties. This is true even for Figure 2.3, which is based on realistic &fspace and 
ffreq. For instance, besides having bipolar spikes, these simulated cable power data do not reveal 
an underlying chi square distribution upon passing them through the same trend-removing filter 
used to detrend experimental data, (see Figure 2.6, and compare with Figure 2.1). We believe 
that the presence of the upward-pointing spikes on the simulated cable powers has a proximate 
relation to the absence of an underlying chi square distribution in the simulated cable powers. In 
particular, these points of overexcitation cause the data autocorrelation to exhibit ragged 
behavior, even for large shifts, in a way the experimental data do not. (These isolated peaks are 
the opposite of trends, and detrending the data has no impact at all on their specious effect on the 
autocorrelation and distribution functions.) 

Let us now consider some actual autocorrelation functions of the observed and simulated 
data. If (J>(/) is the raw (or filtered) data as a function of frequency, the formula for the 
autocorrelation of <&(/), assuming the data extend continuously from -°° to °°, is 

®(g) = fmW+g) df (2-16) 

Our data, however, are taken only at discrete points over a finite interval. Let AT be the number of 
points at which we have a measurement for (j)(/). We can then define a local autocorrelation over 
AT-/points as 

N- in 

$(/) =  £ <K04>(»+/)       J*° 
'= m (2-17) 
N-m-j 

$(/') =     £    4>(0<P('+-7)       7*0 
i = m-j 
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Freq   (Hz) 

Figure 2.2. Bottom curves: unfiltered, simulated cable current \I\2 inside the EMPTAC middle bay 
and \I\2 trend. Top curve: \I\2 with trend factored out: \I\2/ |4e J2. This figure is based onfspace and 
f^ both set to 1, and the assumption that ulim has a chi square distribution. Cable ends are 
terminated in 30 Q, and this observer is near the cable midpoint. Note the bipolar nature of the 
spikes on the detrended (upper) data set. 
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Freq   (Hz) 

Figure 2.3. Bottom curves: 
unaltered, simulated cable current 
|/|2 inside the EMPTAC middle bay 
and |/|2 trend. Top curve: \I\2 with 
trend factored out: (/)2/|4e J2. 
This figure is based onfspace and 
ffreq both set to 10, and the 
assumption that ulim has a chi 
square distribution. Cable ends are 
terminated in 30 Q, and this 
observer is near the cable 
midpoint. Note the bipolar nature 
of the spikes on the detrended 
(upper) data set. 

Freq   (Hz) 

Figure 2.4. Bottom curves: 
unaltered, simulated cable current 
|/|2 inside the EMPTAC middle bay 
and |/|2 trend. Top curve: |/]2 with 
trend factored out: |/|2 |4eJ

2. 
This figure is based onfspace and 
ffreq both set to 100, and the 
assumption that ulim has a chi 
square distribution. Cable ends are 
terminated in 30 Q, and this 
observer is near the cable 
midpoint. Note the bipolar nature 
of the spikes on the detrended 
(upper) data set. 
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Figure 2.5. Bottom curves: 
observed, unfiltered cable current 
|/|2 inside the EMPTAC middle bay 
and |/|2 trend. Top curve: \I\2 with 
trend factored out: \I\2/ |/freJ

2. 
This figure is based on a high- 
frequency experimental data 
sweep. Note the monopolar 
downward nature of the spikes on 
the detrended (upper) data set. 
This feature is characteristic of 
data having a chi square 
distribution. 
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Figure 2.6. Probability plot of 
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assumption.   When driven by field 
components having a chi square 
distribution, the simulated 
EMPTAC cable currents, even 
upon filtering for trend removal, 
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Figure 2.7 shows the discrete local autocorrelation for a low-frequency (300 kHz to 
100 MHz) magnetic field (squared) EMPTAC data sweep (based on III = 80), and Figure 2.8 
shows the discrete local autocorrelation for a high-frequency (100 MHz to 1 GHz) magnetic field 
(squared) data sweep. The result for both the filtered and the unfiltered data sets are presented. 
It is readily seen that the filtered data have an autocorrelation function characterized by a central 
peak about 4 points wide and a relatively smooth, flat plateau of value about half the value of the 
central peak, extending at least from a data point offset ranging from -80 to +80. Figure 2.9 
shows the corresponding autocorrelation result for a high-frequency EMPTAC cable power 
sweep; the filtered data plot in this figure is similar to the magnetic field results in possessing a 
central peak plus a broad outlying plateau. 
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Figure 2.7. Normalized autocorrelation of the observed magnetic field along x (fuselage axis) with 
(dashed line) and without (solid line) the data filtered. This figure is based on the low-frequency 
EMPTAC middle-bay scan. Note that the autocorrelation of the filtered data is characterized by a 
central peak and broad plateau about .5 of the central peak. 
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Figure 2.8. Normalized 
autocorrelation of the observed 
magnetic field along x (fuselage 
axis) with (dashed line) and 
without (solid line) the data 
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high-frequency EMPTAC middle- 
bay scan. Note that the 
autocorrelation of the filtered data 
is characterized by a central peak 
and broad plateau about .6 of the 
central peak. 
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Figure 2.9. Normalized 
autocorrelation of the observed 
cable current with (dashed line) 
and without (solid line) the data 
filtered. This figure is based on the 
high-frequency EMPTAC middle- 
bay scan. Note that the 
autocorrelation of the filtered data 
is characterized by a central peak 
and broad plateau about .6 of the 
central peak. 
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While a true autocorrelation function can must reach its maximal value at zero offset 
(g = 0), this is not the case for a local autocorrelation. Figures 2.10-2.12 show the local 
autocorrelation functions corresponding to the simulated data appearing in Figures 2.2-2.4. 
These autocorrelations are totally different in appearance from the autocorrelations of the 
measured EMPTAC data. Here, there are no clearly defined side plateaus, and the central peak 
indeed is not necessarily the maximum value. (It is true that the offset autocorrelation values 
decrease as one flips from Figures 2-10 to 2-12, corresponding to an increase in the/ 
autocorrelation parameters upon which these figures are based.) As mentioned above, we suspect 
the failure of the autocorrelations in Figures 2.10-2.12 to settle down to smooth side values is 
related to the randomly located up-going spikes seen in Figures 2.2-2.4. Where these spikes 
intersect, pass, and overlap each other in computing 0(/') from (2-17), the autocorrelation 
function will speciously jump around as a function ofy in the violent manner evident on simulated 
data Figures 2.10-2.12, but not on observed data Figures 2.7-2.9. 

As mentioned before, there is a basic oversimplification made in driving the cables with 
field quadrature components obeying chi square distribution described by (2-11) (see Figures 2.2- 
2.4 and 2.10-2.12): Chi square distributions characterize the field components squared, not the 
phase-quadrature amplitudes of the fields themselves. This oversimplification is the cause of 
some, but not all of the difficulty evident on these plots. 

It can be shown (see next subsection) that if the phase-quadrature component 
amplitudes squared and summed, 

= u2 + v2 (2-18) 

obey a chi square distribution with two degrees of freedom 

h%l(z) =e ~z/,17uc (2-19) 

then u and v, the unsquared phase-quadrature amplitudes themselves, must obey a Gaussian 
distribution 

1 -U\2<J\) 1      a - v\2o\) 
eg(u)= eg(y) = -^e « = — e « (2-20) 

where the Gaussian variance of (2-20) and the chi square mean of (2-19) are related simply by 

uc = lot (2-21) -c —'g 

Thus, for the chi square representation, C(«,/) of (2-8) should actually be obtained from (2-9) 

C(n,i) = ug +  ogu(n,i) (2-22) 
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Figure 2.10. Normalized autocorrelation of the simulated cable current with (dashed line) and 
without (solid line) the data filtered. This figure is based onfspace and^c? both set to 1 (artificially 
high autocorrelation), and the assumption that ulim has a chi square distribution. Cable ends are 30 
Q, and this observer is near the cable midpoint. Note that the autocorrelation of the filtered data is 
characterized by a central peak and very ragged sides which do not resemble a plateau at all. 
Cable ends are modeled as open circuit, and this observer is near the cable midpoint. 
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Figure 2.11. Normalized 
autocorrelation of the simulated 
cable current with (dashed line) 
and without (solid line) the data 
filtered. This figure is based on 
fspace mdffieq both set to 10 
(realistic autocorrelation), and the 
assumption that ulim has a chi 
square distribution. Cable ends are 
30 Q, and this observer is near the 
cable midpoint. Note that the 
autocorrelation of the filtered data 
is characterized by a central peak 
and very ragged sides which do 
not resemble a plateau at all. 
Cable ends are modeled as open 
circuit, and this observer is near 
the cable midpoint. 
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Figure 2.12. Normalized 
autocorrelation of the simulated 
cable current with (dashed line) 
and without (solid line) the data 
filtered. This figure is based on 
/^and^ both set to 100 
(almost no correlation), and the 
assumption that ulim has a chi 
square distribution. Cable ends 
are 30 Q, and this observer is near 
the cable midpoint. Note that the 
autocorrelation of the filtered data 
is characterized by a central peak 
and very ragged sides which do 
not resemble a plateau at all. The 
correlation model used here does, 
at least, succeed in reducing the 
autocorrelation function at offsets 
away from the central peak, 
however (compare with the two 
previous figures). Cable ends are 
modeled as open circuit, and 
observer is near cable midpoint. 
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where now \ig is the observed average and ag is the observed standard deviation of the quadrature 
components of the EMPTAC field amplitudes. As these quadrature components are unbiased, \ig 

must be 0. 

The actual run (for measuring the high-frequency scan of \Hf in the EMPTAC Middle 
Bay is characterized by a mean of 4.46e-8 (A/m)2 and a standard deviation of 6.13e-8 (A/m)2 

(before trend removal). Thus, if the requirements for a Guassian distribution are met, ag for the 
phase-quadrature components should be approximately [(4.46e-8 + 6.13e-8)/4]!4 = 1.62e-4 A/m. 

If the field component amplitude squared (2-18) actually obeys a log normal 
distribution 

hdz) = -±-e-  (2-23) 

the distribution of the individual unsquared quadrature components, u and v of (2-20), needs to be 
determined numerically. It is likely that there does not exist any canonical distribution for u and v 
which leads to a log normal distribution when two variables obeying this hypothetical distribution 
are squared and added, although we shall see in Section 4 that a good, simple empirical fit is 
possible. 

MAPPING OF RANDOM NUMBERS TO GIVEN DISTRIBUTIONS 

Assume p is a random number uniformly distributed between 0 and 1, which 
corresponds to R of (2-10) or (2-11). One may think of/? as a probability, although it is not vital 
to make this association. Now ask the question, how does one map/? onto (-«, «>) in such a way 
that x, the output variable of the map, obeys, for example, a Gaussian distribution? 

u 

P(u) =   / eg(u)du' (2-24) 

where 

eg(M) = -^e"2/2 (2-25) 

This mapping, in operator notation, may be expressed as 

u = Pl(p) (2-26) 

where P~lQ is the inverse Gaussian operator. 
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Zelen and Severo [1] provide formulas for P~l(p): Let q be 1 -p. Then, if q < 0.5, 
they define 

w = (ln(l/<72))1/2 (2-27) 

and P 0 becomes 

c   + c.w + c2w
2 

P» = « - —-^ ! .    a       .    3 (2-28) 

where (c„, c1( Cz) is (2.515517, 0.802853, 0.010328) and (dv d2, dj is (1.432788, 0.189269, 
0.001308). If q > 0 .5, w of {2-21) is replaced by 

w = (ln(l/p2))m (2-29) 

and (2-26) then gives -P'l(p). 

For a non-centered distribution, 

1     r-(u-^)2/2 
e

g(u^g) = ~^ze (2-30) 

first operate on u with the operator (-u?)() and second with P(). The operator Pi\(p) which maps 
(0, 1) onto (-°°, °°) is now 

if =P:^) = ug+P » (2-31) 

In full operator notation, this becomes 

* = (-^)_1(^») (2-32) 

where (-^)'1() is the inverse of the (-\ig)Q operator. In other words, the operator equation 

^0 = (-^"I(^"10) (2-33) 

can be used. The (-u^O operator, of course, just adds \ig to its operand. The operator sequence 
described by (2-31) is the reverse inverse of the operator sequence applied to u in (2-30). 

If there is a non-unity variance, 

eg(u,og) = -L^  (2-34) 
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first operate on u with (-o)0 and then with P_1(). Thus, the operator P~*0(p) which maps (0,1) 
onto (-00, oo) is now 

u = Pj(p) = ogP-'<p) (2-35) 

In full operator notation, write 

» = C^/V>)) (2-36) 

where (+0g)~lO multiplies its operand by ag. Thus, one obtains the operator equation 

p;!0 = (^o^iP'O) (2-37) 

Again note that the operator sequence onp in (2-37) is the reverse inverse of the operator 
sequence on u in (2-34). (The ag in the denominator of (2-34) for the distribution function does 
not appear in (2-35) through (2-37) because the form of (2-35) through (2-37) is actually 
determined by the cumulative probability distribution, 

PJL") - / -pz * = [ -h e     dt' <2"38> 

where 

t = ulOg (2-39) 

and where the differential, 

dt = du/og (2-40) 

does not enter in the operator equation.) 

For e(u, u^) given by 

<«,^o ) = -L_£  (2-41) 8   8       J^ °g 

one obtains 
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"«• g      g (2-42) 

= (-^-1(C*V1(P-1CP))) 

or in operator notation 

p'-l ,a0 = (-ngy\(^gr\p -»o» (2-43) 

A somewhat less trivial application of this formalism is the log normal mapping of 
(0,1) onto (0, »). In this case, elg(u) is given by 

l_ exp(-(ln«-M/g)2/(2o?g)) 

V2i (°fe
M) 

•rf«) = -4= FV v : :r   s <w 

Define Z, to be the ln() operator. Then, the inverse operator L'Q is 

L lQ = exp() (2-45) 

Consequently, 

^-'[(-^r^p »}] 

= exp^ + o^P1^)) 

is the formula for mapping/? onto u. (The (agl u) in the denominator of (2-44) for the distribution 
function does not appear in (2-46) because the form of (2-46) is actually determined by the 
cumulative probability distribution, 

w 
P („) = C J_ expC-dn»'-,.,,)'^))^, =    " J_e-„°ndw,     (M7) 

where 
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w> = (\nu/-Vilg)/alg (2-48) 

and where the differential, 

, ,        du' 
dw' =  (2-49) 

(olgu) 

again does not enter the operator equation.) 

There is empirical evidence that some HPM energy distributions look almost log log 
normal: 

-(ln(-ln«)-(.  2Wj) 
e g 

eig2(u) = «        (2-50) 
j2ii(-olg2U In u) 

(If w = ln(-ln u), (2-50) reduces to (2-41).) This function describes a fairly sophisticated 
distribution transformation. It does, however, have a problem: In u can be positive if u can be 
greater than 1, and then ln(-ln «) becomes complex. An ad hoc fix to this difficulty is to replace 
ln(-ln u) with In (abs(ln u)) in (2-50). The transformation from/; to u is then 

if = L -l [(abs)"1 {L -1 [(-\ierH^algly\P »)}]}] (2-51) 

There is now a problem with (2-51). In particular, the (abs)0 operator destroys information and 
increases entropy. Thus, it may be expected to have no inverse, and the operator of (2-51) 
seemingly is undefinable if its domain includes/? values which require (abs)() to operate on 
negative quantities. 

Note that the inverse operators in (2-51) are reverse chained with respect to the 
operators on u which appear in (2-50). While working out the permitted domain of this inverse 
operator as a function of ufe2 

m& °Vis complicated, it would be almost impossible conceptually 
had the authors not gradually built up to the reverse-chaining technique developed in this 
subsection. Actual expansion of the operator in (2-51), assuming the domain of the (abs)'^ 
operator is never positive, 

(abs)-^ = (*(-l))0 (2-52) 

leads to 

u = exp [ -exp(u/g 2 + atgip- l(p))] (2-53) 
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as the formula for mapping/? = (0, 1) onto x = (0, °°) for the log log normal distribution function 
described by (2-50). 

Somewhat to our surprise, it was unexpectedly realized that the (abs)_10 operator may 
be physically inferred to have an inverse in some cases, even if the range is permitted to be 
bipolar. This issue arose when the power distribution was assumed to be log normal: 

J_ exp(-(toP-u/g)2/(2o?g)) 
hig(P) -_ _^ ""   ^;_   »if"    lg" (2-54) 

In this case, the probability/? is mapped onto power P by the operator 

p;10--L'l{(^lgy
1{(-olgy\p-l(p))}} 

= H^>_1KP~1(P)}] 
= L-% + %p~l(p)} <2-55) 

= exp(ufe +o/») 

where the two Fs (power and the Gaussian operator) are distinguished by context. The authors 
next attempted to find the distribution function for the magnetic field projection on the receiving 
sensor dipole antenna which is associated with P. 

P = H2 (2-56) 

Thus, in the notation of Appendix B of [5], one could write 

H = g(P)     and    P = g'\H) (2-57) 

where 

g = 0'/2     and    g-1 = 02 (2-58) 

and 

fcm = h(v'l(m\ 1^ 
dH 

Equation (2-59) gives 
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1     exp(-(ln/f2 - ^ W(2o;j)      ,    . 
f(H) = — —  lg g    ' r\H\ (2-60) 

V21F (Pis
Rl) 

where r = 1 if the domain of <p(H) is from H = -~ to H = +°°, and r = 2 if the domain of ^(/Z) is 
from o to °°. Equation (2-60) can also be expressed as 

m -_ _L exp(-(2ln|i/l-^//(2a?s)) ^ 

V2i aig \H\ 

assuming H ranges from -°° to +°°. One now can express the mapping from/? to H as 

H = (abs)-1^-1^)^-^)-1^^)-1^-1^)))}] 

= (äbsr^-^Cx^^öi^+o^p-1^))}] (2-62) 

= {^sr\^V{i_VolgP
l(p))l2}] 

However, in this case, it is physically apparent that H should be negative as frequently as it is 
positive, and thus the inverse of the (abs)0 operator is, at least in this case, (random sign)() 

(abs)-10 = (random sign)0 (2-63) 

or 

H = (random sign)[exp{(u/g + alg P x (p))/2\] (2-64) 

The cumulative probability distribution corresponding to (2-61) is 

H 
F(H) =  jfQijdh (2-65) 

—00 

This formula leads to the probability that H is negative being given by 

_   °   ^ exp(-(2ln(^)-^/(2o?g))^ 
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Substituting 

2 li(-Ä) = u (2-67) 

in (2-66) will correctly yield PH(0) = Vi. 

If only the distribution of the magnitude of H from 0 to °°, is needed, (2-61) becomes 

2     exp(- (2 In//- u, W(2o*)) 
f(H) = — —  lg lg (2-68) 

ffi (°"fe#) 

Now the formula for mapping/? (0 to 1) onto H (0 to °°) is simply 

H 'L"{{x2y\-^{^olgr\p-'ip)))}] 

= [Ll{(x2y\V%P-l(p))}\ (2-69) 
= [exp{bilg+olgP-'(p))/2}} 

If a chi square distribution with two degrees of freedom is the basic distribution 
function, P(x) of (2-24) is replaced by 

z 

where 

Px2(z) = jh^z')dz' = 1- e'z'^ (2-70) 

0 

A^z) = e-z'^c (2-71) 

Then Pj(p), the inverse chi square probability operator, is just, as (2-11) has implied, 

z = P\l(p) = - uc ln(l -p) = uc ln(l -p)'1 (2-72) 
%2 

which is far simpler than its Gaussian counterpart. 

GENERATION AND INVERSION OF COMPOUND DISTRIBUTIONS 

So far, the authors have only dealt with situations which are based on changing the 
variables in a Gaussian distribution. However, any function T(x) with the properties 
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variables in a Gaussian distribution. However, any function T(x) with the properties 

T (lower limit) = 0 

3s (upper limit) = 1 

äZM , o (2'73) 

dz 

can be a cumulative probability distribution. For instance, 

<P(z) = (P(z))2 (2-74) 

where P(x) is given by (2-24), can also be a cumulative probability distribution for mapping (-°°, 
°°) onto (0,1). Now what operator maps;? from 0 to 1 back onto (-°°,°°); i.e., what is O3"1^)? 

The answer to this question is again obtained by the reverse chaining of inverse 
operators: 

x = ?l(p) =Pl((p)Vi) (2-75) 

or 

v-l0= P-'lO2)'1} <2"76) 

The essential differences between this operator and all that preceded is that PAQ is no longer the 
innermost operator of the inverse chain. In fact, one can define 

T(z) = 0(P(z)) (2-77) 

where 00 is some fully generalized operator (such as a power series where all the coefficients add 
up to unity). As long as "P(x) obeys (2-70), the mapping operator for/? back to z is 

yO1 =Pl(O10) (2-78) 

FIELD DISTRIBUTIONS AND POWER FLUX DISTRIBUTIONS 

Experimental evaluation of a cavity response under HPM excitation usually yields the 
probabilistic power-flux density pdf as picked up by a magnetic or electric dipole feeding a 
square-law detector. (In some cases, experimental evaluation yields the field amplitude with loss 
of phase data, which conveys essentially the same information as a power measurement.) This 
power is usually interpreted as the sum of the squares of the two phase-quadrature components 
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z = u2 + v2 (2-79) 

where the power pdf of z is the observed quantity, denoted h(z). In order to use this information 
to drive a probabilistic circuit code for the cavities electronics, it is necessary to extract the 
probabilistic field quadrature probability density functions e(u) = e(v) from h(z) given (2-79). 

As a first step in this endeavor, let us find the distribution densities of the squared 

quadrature components 

(2-80) 
y = v 

denoted/xj =fiy), so that 

z = x + y (2-81) 

For the moment, we shall assume that x, y, and z can all range from -»to +~ although we shall 
subsequently need to employ the constraint that x, y, and z must all be positive. 

The probability that x is between x and x + dx, and that y is between y and y + dy is 

fix) f(y)dxdy (2_82> 

However x,y and z are not all independent variables. If (2-81) holds, the probability that x is 
between x and x + dx while z is between z and z + dz is obtained by the variable transformation 

x=f (2-83) 
y -  -x    + Z 

and the two-dimensional probability differential of (2-82) becomes 

f{x)f{z'- xO -^4 dx'dz' (2-84) 

where 

d(x',z) 

1 -1 
0    1 

= 1 (2-85) 

is the Jacobian of the variable transformation of (2-83). (Fortunately this Jacobian is simply 

unity.) 
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We now wish to determine the probability that z' is between z' and z' + dz', regardless 
of x'. This ID probability differential on z' is obtained by summing all the 2D probability 
differentials of (2-84) of x' and z' over dx', i.e., by integration (2-84) over all possible x'\ 

oo 

h(z)dz' =   / f(x)f(z'- x')dx'dz' (2-86) 

This equation leads to the surprising conclusion that h(z) is just/x) convolved upon itself In 
other words, if //(«) is the Fourier transform of h(z), then the desired distribution/*) is simply 
the inverse Fourier transform of [H(d>)]Vl: 

oo 

#(G>) =   f   h(z)e-jwdz (2-87) 

f{x) = —  f [H^fe^dco (2-88) 
2TC 

J 

— OO 

Canonical Treatment of Phase-Quadrature Field Extraction for the Chi-Square Special Case 

Two commonly encountered cases are that h(z) be log normal or chi square with two 
degrees of freedom. The extraction of/(x) for h(z) a log normal distribution must be implemented 
approximately (see Section 4). In fact, this is the case for most possible power pdf s h(z). 
However, if h(z) is chi square with two degrees of freedom, canonical extraction of e(u) and fix) 
from h(z) is possible, as we shall now show. The chi square probability density function is 

hxl(z) = e-z¥'/vc     z>0 

= 0 z<0 
(2-89) 

Thus, H{co) is 

H(P> = ~ T-—X-rr\ (2"9°) 

and the probability density function^*) is 

1    r eiwc 

2^ J    Tu (/w + 1 _M  K(/«-l/Mc)],/2 
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If the branch cut appearing in the integral of (2-89) is laid out in a sensible manner 
(Figure 2.13) the integration contour can be closed in the totally analytic lower half of the o> plane 

giving 

fix) = 0        x<0 (2-92) 

For x > 0, the contour of Figure 2.13 could be closed in the upper half of the w plane. 

t 
j W 

Branch cut 

j/u 

w 

Integration path 
for x < 0 

Figure 2.13. Contour of integration for evaluating the probability density function/*) when x 

0. 

< 

Alternatively, to evaluate (2-91), we introduce the change of variables 

ycou+ 1 = y2 (2-93) 
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This transforms/x) of (2-91) to 

/(*) = 
1 e 

x/pc 

* JV-c 
/ 
a 

e^'dy (2-94) 

where 

a = e-/*/4oo = b* 

b = e/*/4oo = $» 
(2-95) 

Note that we take >/(-/) to be eJn/\ not eP^, so that the branch cut implied by the inverse of (2- 
93) is not swept across the already existing branch cut. Rearrangement of (2-94) yields 

/(*) = 
1 e 

-x/nc 

*       Hc 

21m fe^'dy (2-96) 

A second transformation 

t = e-i*/4y (2-97) 

leads to 

/(*) 
1 e 

-x/\ic 

*       Vc 

2 Im ej-i^eixt%'dt 

0 

(2-98) 

The bracketed factor may be integrated in closed form to give 

r i - efi*       ft      ■ UM (2-99) 

Equations (2-98) and (2-99) provide us with an expression for the probability density function/*) 
when h(z) is chi square with two degrees of freedom: 

/(*) = 
y™^ 

(2-100) 
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Let us now extract the expression for the associated phase-quadrature field pdf e(u). 
In general, if» and x are related by the transformation function 

u = g(x) (2-101) 

where, 

then the distributions of u and x are related by 

eiu) =ftg-\u))&3& (2-103) 
du 

This last relationship is true if the underlying distribution of z is chi square, log normal, or 
anything else. 

We now evaluate the desired probability density function e(u) from the probability 
density function for^ as given by (2-100), and the relationship between x and u of (2-80): 

«(«) = -^ £-— • 2 (2-104) 

where the assumption is made that u, like x, only ranges from 0 to °°. In actuality, however, u 
ranges from -°° to °°, thus eliminating the 2 from the numerator of (2-104). 

It is known that h(z) for the chi square distribution with two degrees of freedom is 
based on e{u) having a normal distribution where ag ofeg(u) and uc of /*x2(2,z) are related by 

uc = 2o^ (2-105) 

although this relation is usually established by deriving \2(2j) from eg(u), not the other way 
around as we have just done here. Making this substitution in (2-104) confirms the validity of (2- 
87) and (2-88), at least for the special case of h(z) being chi square with two degrees of freedom. 

THE DETRENDING OPERATION 

In order to obtain a chi square (with two degrees of freedom) power flux distribution, 
several conditions must be met, which generally are not. For instance, if the variable on which 
power flux changes is frequency, the cavity must have a frequency-independent Q (which 
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Appendix A of Section 8 demonstrates to be an impossibility). Also, if chamber illumination is 
through apertures, the aperture cross-sections must also be frequency independent (another 
impossibility). Finally, if one is using a B sensor, there will be a forbidden co-dependence 
unavoidably attached to the measurement. It is in order to remove the effects of slowly varying 
factor such as these that the detrending operation was developed and is applied. 

The trend on a data set in a spatial sense corresponds approximately to the slowly 
varying function g(r') introduced by Price, et al, [2,3] at his Equation (5). It also corresponds to 
the field nonuniformities observed by Hill [9] in a stirred-mode reverberation chamber, and shown 
in his Figures 8 and 9. It is present whether the observed EM response is measured as a function 
of position or frequency. We have not personally worked with data where the driver or observer 
position changes, although this was done in [9]. 

For power data taken as a function of frequency, detrending is performed as follows 

[5]: 
Start with the data array z„ (n = l,...N). Let L„ be the In of z„. Then convolve the L„ array with a 
truncation filter of the form C„ = (sman)f(2Tian), where the truncation of the C„ filter is 
symmetrically set to include the central lobe and two side lobes (the first positive-going and the 
first negative-going) on each side. Let us imagine that the data is actually a function of time (not 
frequency), with each point separated by 1 s. Let N0 be the number of points inside or at the 
truncation limits of C„. Then the convolution corresponds to passing Ln through an ideal low-pass 
filter of cutoff frequency/OT = 3/(JV0 -1). The low-pass convolution output is the trend of L„ M„. 
Thus, (L„ - M„) is the detrended data in the ln domain, and z„* = exp (L„ - M„) is the actual 
detrended data. For EMPTAC, Celestron 8, and G.P.S. data sets, we empirically found 91 to be 
the best value for N0; this corresponds to/^ = .033. The variable a is then adjusted so a (N0 -1) 
= 3TT; i.e., a = 0.1047. One would expect the optimum value of N0 to vary from experiment to 
experiment, and to depend strongly on how every data set is obtained. Thus, the concurrence of 
N0 = 91 for three different experiments is probably serendipitous. On the other hand, a highly 
skilled experimentalist may (pardon us) have an intuitive feel for how densely to sample data so 
that nothing is lost, but also nothing extraneous is recorded, and may subconsciously set his 
recording equipment so N0 = 91 consistently corresponds to taking data at just the right spacing. 
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Chapter 3. FIELD REDISTRIBUTION AND CABLE RESPONSE 

Introduction of autocorrelation on the cable-driving fields, as described in the previous 
section, creates a problem of its own: If the fields start off with a normal distribution, as uUm(n,i) 
of (2-10), for example, our autocorrelation introduction algorithm (2-14) and (2-15) does not 
leave the fields, ufreq («,/') of (2-15), normally distributed. This problem is fixed by a rescaling 
operation which restores the driving fields to their original distribution while leaving the 
introduced autocorrelation intact. Description of this rescaling procedure is the first topic of this 
section. 

After the distribution density and autocorrelation of the phase-quadrature field 
components have been worked out, there remains the details of applying these fields to drive cable 
currents, for example, in the EMPTAC. To do this, we picked a particular cable, divided it into 
200 segments, each of 10 cm length, and probabilistically drove each segment. Actual 
computations were performed in the frequency domain, although input drivers and output results 
could be presented in the time domain. A discussion of this operation constitutes the second topic 
of this section. 

Finally, we observed that, after all the above precautions had been taken, we still did not 
achieve computed cable powers simulating the observed chi square distribution. It became 
apparent that the radiation resistance effect (about 120 Q/m for frequencies around 300 MHz) 
could not be ignored as a loss term on the cables. Note that, while inclusion of this effect 
modifies cable powers, it does not feed back in our model and alter the phase-quadrature field 
distribution densities. Also, it is vital to guarantee that the cable drivers do not, themselves, yet 
carry some small trend into the cable response calculation. Fine-tuning these models (trendless 
cable drivers and radiation resistance) is the third and last subject of this section. 

DATA RESTORATION AFTER FORCED AUTOCORRELATION 

At this point, we set about fixing two problems with the model used in the previous 
section.   First, we recognized that the actual phase-quadrature driving fields should be normally 
distributed, as dictated by (2-9) and (2-10). Second, we recognized that the use of (2-14) and (2- 
15) leaves the resulting fields with the desired autocorrelation, but does not preserve the desired 
normal distribution. 

The first problem is easy to correct: Simply make the phase-quadrature field distribution 
normal. The second problem is much more subtle to remedy. Let us begin by generating the two- 
dimensional ensemble of numbers along the spatial and frequency axes according to (2-9), (2-10), 
(2-14), and (2-15). (Actually, we need two ensembles, one of which will eventually become 
A(n,i) of (2-7), and the other of which eventually will become B{n,i).) Then pick a particular 
spatial point or cable segment / and examine the one-dimensional array which characterizes the 
drive versus frequency at this point. To the element of this array having the lowest value, assign 
the index n = 1; to the next, assign n = 2; etc.; up to n = nmax = N. 
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In general, the elements of this array (and even the elements of the array of indices n listed 
versus frequency) will be in a sequence containing autocorrelation information, but the actual 
values of the elements of this array will have been speciously altered away from a normal 
distribution in the process of introducing the autocorrelation. We shall now reverse this alteration 
without destroying the autocorrelation by utilizing the concept that even the array of indices has 
some autocorrelation. (Very negative field values will tend to be next to negative field values, 
etc.) 

Let us associate a fraction with each point in the one-dimensional array, as in (2-2): 

fm = (m - V2)/mmax = {m - V2)/N (3-1) 

If this array actually had a normal distribution with zero mean and og standard deviation, it would 
be true that, if u(m,i) were the value of element m, 

P(u(m,i)/og) =fm (3-2) 

where P(u(m,i)log) is the cumulative normal probability distribution function with og standard 
deviation. Since this should be true, we shall force it to be true: Rescale each u(m,i) to obey 

u(m,i) = of-tyj (3-3) 

where P'*(/„) is the inverse of the normal cumulative probability distribution function. 

As noted above, this rescaling does not undo the autocorrelation because the TW'S 

themselves contain some autocorrelation along the frequency axis. It is interesting to point out 
that this procedure can be used to transform the w(w,/)'s into an array with any desired 
distribution, irrespective of what the underlying initial distribution used to find uUm(m,i) in (2-10) 
was. For instance, if P'\) of (3-3) were replaced by the inverse chi square or log normal 
cumulative distribution function, the u(m,i)'s emerging from (3-3) would become chi square or log 
normal in distribution. 

The following observations now seem in order: 
1. This rescaling procedure must, or course, be repeated for the ID array at each of the spatial 

cable drive or * points. 
2. Autocorrelation also existed along the spatial axis before rescaling by virtue of (2-14) and (2- 

15). Since we merely rescale, not resequence, this rescaling will also preserve this 
autocorrelation along the spatial axis. 

3. If we impose a rescaled normal distribution on the u(n,i)'s along the frequency axis, and if this 
rescaled distribution is obtained in the same manner for each spatial point, the distribution of a 
ID array of u(n,i) taken in the other direction along /' (frequency constant, spatial position 
variable) will also approach restoration to a normal distribution as the number of spatial and 
frequency observation points both become large. 
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4. In this entire operation of rescaling the 2D ensemble, there is no reason we cannot reverse the 
roles of the frequency and the spatial axes across the ensemble. 

5. Even in the problem is extended to three spatial (and one frequency) dimensions, rescaling 
needs only to be done in one direction. 

Now let us back up some of the ideas we have just presented with actual results. Figure 
3.1 shows a ID cut of the 2D z(n,i) = u{n,i? + v(n,if matrix ensemble generated from «(«,/) and 
v(n,i) with/, ace mdffieq both set to 1000 (almost no autocorrelation). A normal random-number 
generating function with 0 mean and 0.01 standard deviation was used to initialize these 
underlying u(n,i) and v(n,i) matrix ensembles (and all others discussed hereafter in this section). 
This figure overlays the unsealed and rescaled values (with the unsealed plot reduced by 103 to 
separate the two plots). Note that the unsealed and rescaled fluctuations do track each other 
quite nicely. The drive matrices are 200 space points by 1000 frequency points. Cuts we shall 
examine are along the frequency direction are located near the spatial midpoint. 

Figure 3.2 illustrates the autocorrelation functions obtained for variable-frequency cuts of 
each of the ensembles («(«,/) and v(n,i)) generated for (2-7). Note that both of the ensembles are 
uncorrelated except for a very narrow central spike (as should be the case for/values of 1000). 
These curves are based on u(n,i) and v(n,z) not yet rescaled. 

Figure 3.3 illustrates the autocorrelation results from squaring and adding the normally 
distributed variables, both with and without rescaling. This plot bears a nice resemblance to the 
experimentally obtained cable current and magnetic field EMPTAC autocorrelation plots 
illustrated in Figures 2.7-2.9, except that the central spike is excessively narrow. 

Figure 3.4 presents a probability plot for the two unsquared variables against a normal 
distribution assumption. Both plots are nearly perfect 45° lines, so our random number generator 
clearly yields a good normal distribution when/^ m&ffreq are set to 1000. These curves are 
based on u(n,i) and v(n,i) not yet rescaled. 

Figure 3.5 is a probability plot for the unsealed and rescaled summed and squared variable 
[z(n,i) of (2-18)] against a chi square distribution assumption. Again, both plots are good 
approximations to a 45° line. This plot confirms what we already know should be: if«(«,/) and 
v(«,/) have normal distributions and the autocorrelation implementation does not modify these 
distributions, z(n,i) will have a chi square distribution. 

Figure 3.6 shows that both normally generated, unsealed ensembles remain inside the 90% 
Kolmogorov-Smirnov confidence limits (see Section 9), even after autocorrelation 
implementation. There are actually two ways to test the distribution ensembles. One can 
determine the mean and variance the ensembles actually exhibit, and see if the results fit a 
Kolmogorov-Smirnov confidence test based on these floating means and variances. Alternatively, 
one can pin the mean and variance to the values input to the ensemble generator (here 0 and 
2-(.01)2, respectively), and see if the results fit a Kolmogorov-Smirnov test based on the pinned 
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that the rescaled data and the raw 
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Figure 3.2. Normalized 
autocorrelation of the drive 
variables «(«,/) (real) and v(n,i) 
(imaginary) normally generated, 
but before rescaling. Both phase- 
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have no autocorrelation except for 
the central spike. These data are 
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Figure 3.3. Normalized 
autocorrelation of the squared and 
summed drive based on a variable- 
frequency cut of the z(n,i) 
ensemble matrix as defined in (2- 
18). Note that the data bear a nice 
resemblance to the observed 
EMPTAC experimental results 
(Figures 2.7- 2.9), except that the 
central peak is too narrow, as one 
would expect for parameters 
inducing unrealistically low 
autocorrelation (fspace and^e? both 
1000).    These data are based on 
the same normal drive generation 
as Figure 3.1 (ag = 0.01, \Lg = 
0.00). Here, we see results for 
z(n,i) based on unsealed u(n,i) and 
v(n,i) both before and after 
filtering, and for z(n,i) based on u 
and rescaled but unfiltered. 
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parameters. Heretofore, we have not pinned the parameters for Kolmogorov-Smirnov testing. 
Figure 3.7 is an attempt to fit the squared and summed variable z(n,i) to a pinned-parameter K-S 
test based on a chi square distribution. Even/^ and^e? of 1000 distort the distribution enough 
to take the autocorrelated, unsealed array a little out of this confidence test, although the rescaled 
array is brought back inside the test limits. Figure 3.8 shows that the z(n,i) ensemble cut with 
frequency n varying fits an unpinned chi square distribution test even if the results are unsealed. 

Next, we shall reconsider the data and results assemblage presented in Figures 3.1-3.8, but 
with f     and L  both set to 10 (which gives a fair approximation to the autocorrelation actually 
observed in the real world during EMPTAC testing). Figure 3.9 shows a ID frequency-axis cut 
of the 2D z(n,i) = u(n,if + v(w,/')2 ensemble generated in this manner. The normal random number 
generator for creating the u and v ensembles still uses a mean of 0 and a standard deviation of 
0.01. Figure 3.9 shows both the unsealed and the rescaled results for z(n,i) (with the unsealed 
plot reduced by 103 to separate the two plots). Note that the unsealed and the rescaled plots still 
track each other quite nicely. Perhaps more importantly, the subjective appearance of both curves 
is now reminiscent of the experimental results, Figure 3.5, with the spikes being primarily 
downward instead of being bipolar. This subjective impression is characteristic of functions with a 
chi square density distribution. 

Figure 3.10 illustrates the autocorrelation functions obtained for variable-frequency cuts of 
the ensembles [u(n,i) and v(n,i)] generated for (2-7) and (2-9). Note that these ensembles now 
have, as desired, a much broader central spike of autocorrelation than did Figure 3.2. These two 
curves are based on u(n,i) and V(W,J) not rescaled. 

Figure 3.11 illustrates the autocorrelation result of squaring and adding the normally 
distributed variables, both with and without rescaling. This plot bears a very nice resemblance to 
the experimentally obtained cable current and magnetic field EMPTAC autocorrelation plots 
illustrated in Figures 2.7-2.9. Even the width of the central spike is reasonable. 

Figure 3.12 presents a probability plot for the two unsquared variables u(n,i) and v(n,i) 
against a normal distribution function. These plots are no longer 45° lines; our correlated random 
number generator does not yield good normal distributions in the absence of rescaling whmfspace 

and ffreq both set to 10. 

Figure 3.13 is a probability plot for the unsealed and rescaled summed and squared 
variable [z(n,i) of (2-18)] against a chi square distribution function. The unsealed distribution 
does not yield a 45° line, but the rescaled distribution satisfactorily brings the ensemble back to 
where it should be (without destroying the autocorrelation, as seen in Figure 3.11). 

Figure 3.14 shows that the unsealed u(n,i) and v(w,/), based on/^flce and^e? set to 10, both 
have excursions outside the 90% Kolmogorov-Smirnov confidence limits. As we already know, 
these/values leave u(n,i) and v(n,i), before rescaling, with an unacceptable discrepancy from a 
normal distribution. 
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Figure 3.7. The summed and 
squared variable z(n,i), before 
rescaling of normally generated 
u(n,i) and v{n,i) (with ag = 0.01, 
\ig = 0.00), does not quite fit the 
Kolmogorov-Smirnov 90% 
confidence limits for being chi 
square with a mean and standard 
deviation pinned at uc = 2ag = 
0.0002, even forfspace and^ both 
1000. Rescaling the distribution of 
z(n,i) (u(n,i) and v(n,i) according 
to (3-3) does bring the z(n,i) 
ensemble inside the confidence 
limits. 
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K-S   fit  unpinned 
rescoled=solid 
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Figure 3.8. The unsealed and the 
rescaled z(n,i) arrays (generated 
under the same parameters as in 
Figure 3.1) fall within the 
Kolmogorov-Smirnov 90% 
confidence limits for having a chi 
square distribution if the defining 
the confidence limits are 
determined from the data (as 
opposed to being pinned at uc = 
0.0002). 
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Figure 3.9. Plot of z(n,i) = u(n,if 
+ v(/y')2 for each component (u 
and v) of the phase-quadrature 
drive generated according to (2- 
10), (2-14), and (2-15) (normal 
case) vnthfspace and j^e? both set to 
10 (physically realistic 
autocorrelation). The lower plot is 
the raw ensemble (xlO'3), and the 
upper plot is the ensemble 
obtained with u(n,i) and v(n,i) 
rescaled according to (3-3). The 
normal distribution parameters are 
o„ 0.01 and \ig = 0. Note that 
the rescaled data and the raw data 
track each other fairly closely, and 
that both plots bear a subjective 
resemblance to the experimental 
data shown in Figure 3.5, with the 
spikes being monopolar 
downward. 
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Figure 3.10. Normalized 
autocorrelation of the drive 
variables «(«,/") (real) and v(n,i) 
(imaginary) before rescaling. Both 
phase-quadrature components 
essentially have no autocorrelation 
except for the central spike, which 
is broadened in comparison to 
Figure 3.2. These data are based 
on the same normal drive 
generation as Figure 3.9 (fspace and 
ffreq both 10, ag = 0.01 and \ig = 0). 
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Figure 3.11. Normalized 
autocorrelation of the squared and 
summed drive based on a variable- 
frequency cut of the z(n,i) 
ensemble as defined in (2-18). 
Note that the data bear a nice 
resemblance to the observed 
EMPTAC experimental results 
(Figures 2.7-2.9), including a 
realistic breadth of the central 
peak. This is what one would 
expect for parameters inducing a 
realistic autocorrelation (fspace and 
ffreq both 10). Here, we see results 
for z{n,i) based on normally 
generated, unsealed u(n,i) and 
v(n,i) both before and after 
filtering, and for z(n,i) based on 
u(n,i) and v(n,i) rescaled but 
unfiltered. 
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Figure 3.12. Probability plot for 
the assumption that the normally 
generated u(n,i) and v(n,i) 
ensembles are normally distributed 
before after introduction of 
autocorrelation, but before 
rescaling. This figure is based on 
fspace andffreq both set to 10, with og 

= 0.01, \ig = 0. The agreement 
with a 45° line is not good; the 
algorithm for introducing 
autocorrelation [(2-14) and (2-15)] 
distorts the normal distribution of 
the random number generator. 
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Figure 3.13. Probability plot for 
the assumption that the z(n,i) 
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Figure 3.14. Neither «(«,/) nor 
v(n,/'), after forcing 
autocorrelation, but before 
rescahng, fall within the 
Kolmogorov-Smirnov 90% 
confidence limits for a normal 
distribution when they are 
generated with^ace and^g both 
10, and with o =0.01, ug = 0. 
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Figure 3.15 illustrates that the generation of u(n,i) and v(n,i), without rescaling and with 
f     andffreq set to 10, yields a radically unacceptable match of z(n,i) = u(n,i)2 + v(n,i)2 to the 
KoTmogorov-Smirnov 90% confidence limits for a chi square distribution based on the mean of 
u(n,i) and v(n,i) pinned to 0 and the standard deviation pinned to 0.01 (i.e., uc pinned to 0.0002). 
Rescaling the ensemble according to (3-3) does not quite bring it into the 90% K-S confidence 
limit, although the improvement is so dramatic that we are inclined to ignore a minor excursion. 
Figure 3.16 indicates that the z ensemble with frequency varying, an&fspace and^? set to 10 does 
not even fit an unpinned chi square 90% K-S confidence test. For the distribution not rescaled, 
the excursion is major; after rescaling, the excursion is very minor. 

THE CABLE DRIVE ALGORITHM 

An attempt was made to match the output of a model consisting of a network of 
segmented cables with the response experimentally observed on cables at the EMPTAC. The 
model allows the network to be driven by arbitrary fields at each segment. It yields current or 
voltage at any place on the cable which may be directly compared to the measurements made by a 
network analyzer. The network model is composed of up to 200 10 cm transmission-line 
segments. Actual computations are performed in the frequency domain. Defining equations 
employ continuity of the current and voltage at each junction and end conditions relating the 
current and voltage through a terminating impedance. 

The line response and drivers are coherent over space and frequency at low frequencies. 
To mimic the random behavior seen in the EMPTAC data, the excitation over the segments and 
from one frequency to the next becomes less coherent at intermediate and higher frequencies. At 
the highest frequencies, the segment drives are nearly random with respect to each other. To 
achieve this effect, each segment is driven with a field of the form given in (2-7). 

The amplitudes of the sine and cosine terms can be determined from an arbitrary 
distribution; however, as discussed previously, normal distributions with zero mean \ig represent 
A(n,i) and B(n,i) of (2-7) in the most physically realistic manner. The distribution of u(n,i) as 
applied in (2-9) is the inverse of the normal distribution and contains parameters to force a 
frequency- and location-dependent coherence at lower frequencies as described by (2-14) and (2- 
15). In the high-frequency limit, there is little spatial or frequency relation between the 
amplitudes, and each is determined solely by the chosen random distribution. 

The/, „ and Al parameters in (2-14) are used to give a frequency-dependent correlation 
between the u(n,i) values at different drive points. Whenever the wavelength is large compared to 
the cable segments, the u(n,i) parameter is close to that used at the previous drive point. 
Similarly, varying^, between 0 and infinity allows the u(n,i) to vary from exactly that used at 
the previous segment to a totally random value. 

Theffreq and \2I(LM) parameters appearing in (2-15) are used to give a frequency- 
dependent correlation between the u{n,i) values at different frequencies. Whenever the 
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Figure 3.16. The unsealed z(n,i) 
array, based on normal u(n,i) and 
v(n,i) vnthfspace and^? set to 10, 
and ag = 0.01, \ig = 0.00, deviates 
in a major way from the 90% K-S 
test for being chi square, even 
when uc is unpinned, and allowed 
to float to fit the data (left curves). 
The rescaled z(n,i) array also 
deviates from the Kolmogorov- 
Smirnov 90% confidence limits for 
having a chi square distribution, 
although by a much smaller 
amount (right curves). 
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wavelength is large compared to the linear dimension of the network or when the wavelength is 
large compared to the change in the wavelength, the u(n,i) parameter is close to that used at the 
previous frequency. Similarly, varying^ between 0 and °° allows the u(n,i) to vary from exactly 
that used at the previous frequency to a totally random value resulting from frequency- 
incoherence. 

The solution of the telegrapher's equations 

^- = -ZI + Eea 

dx 

* = -YV 
dx 

(3-4) 

where 
a=jk-r (3-5) 

can be found on each segment to give 

/ = aeyx + be yx -   — -e 
a2 - Y 

V= -Zcifieyx - beyx) + 
aE        a(x+x„) 

a - Y2 (3-6) 

Y = v/Z? Zc = s 
Z 
Y 

where E is the component of the random field parallel to the line, x is the position along the 
segment and x„ is the location of the center of the Segment n. (This result, and its implied 
assumptions are discussed in more detail in the Section 8.) 

The form of the cable drive in (2-7) allows the transform of the response into the time 
domain to be done analytically. This is done using a driver for each segment which is made of a 
random part multiplying a sine or cosine term. Since only the random part is unique to each 
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segment, the sine and cosine terms may be divided out of the overall driving term. After the 
inversion is made to find the a and b homogeneous-solution coefficients (3-6) of the transmission- 
line response, the effects of the common sine and cosine terms may be restored in the analytical 
transform. 

Employing equations for the continuity of the current and voltage at the intersections of 
the segments and a relationship between the voltage, current, and termination impedance at each 
end, the unknown a and b coefficients in (3-6) can be found as a solution of a set of simultaneous 
equations (one set for each frequency «), 

M&*\ = M, (3-7) 

where [M]„ is a matrix, [x]„ is a vector containing the unknown terms, and [d\n, with the sine and 
cosine terms, is a vector of the form 

I*], = KJ„ ^[cos((o„0] + [dcJ„ ^[cos((o„0] (3-8) 

where the «^""operator indicates a Fourier transform. The sine and cosine terms each have a pair 
of poles in the frequency domain, 

^[sin((D„0] =  —         ^[COS(G>,/)] = —£ —- (3-9) 

which allow the analytic transformation into the time domain to be made. The solution of (3-8) to 
determine the unknown a and b coefficients of (3-6) required the development of a routine to 
invert a matrix with alternating, quaddiagonal entries. Using a procedure similar to the inversion 
of a tridiagonal matrix, the routine first solves forward in the matrix to find the last unknown and 
then solves backwards to find the others. 

The code output to be compared to the network analyzer data from the EMPTAC test 
requires an analytic conversion of the results into the time domain. The test equipment measures 
magnitude and phase of a frequency component only; it does not find a quantity/Hz form which 
results from a frequency-domain analysis. The conversion to the time domain assumes that the 
only poles not at the origin of the complex plane were introduced by the driver at s = ±/<D„. This 
form is assured by including loss terms in the transmission-line parameters. The magnitude and 
phase of the frequency component are now found from 

m   .  *1   "fm f      C-^"-       ♦        C-^      ) e'ds     ^O) W"      271/     J (s + iuVs-m)      (s+i<*>)(s-iu_) v      ' 
a-/< 

(s +7con)(5 -jun)      (s +jcon)(s ->>„) 

where Csin and Ccos are the coefficients (different for each ri) of the sine and cosine terms resulting 
from the inversion of the matrix and T(s) is the impulse response of the transmission line. This 
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form gives a time-domain solution as a function of the symmetric and antisymmetric parts of 

C(t)n = S [Csjn(jv>n)T(j<An)} sin(co/) + S [Ccos(jun)T(j«>n)] COS(CD/) + 

-JA [CJjojmjl cos((o„0 + JA {Ccos{j<*n)T(j«>ny\ sin(co„0 
(3-11) 

Since the time-domain solution must be real, the real part is symmetric and the imaginary part is 
antisymmetric giving 

C(t\ = Re [CjL-jnjn-jwjl sin(oy) + Re [Cco/-y(o„)r(->„)] cos((o„0 
(3-12) 

-Im [Csin(-j^n)T(-ju>n)] cos(oy) + Im [Cc^-yco„)r(-./G>„)] sin(°V) 

The pole at the origin introduced by the transmission line is ignored since it has only a dc 
component and will not be detected by the network analyzer. 

A test of the code using EMPTAC data was made by forming a driver from the measured 
magnetic field and comparing the current it induced with a measured cable current. The 
comparison was made with the 20 m axial cable running near the skin of the EMPTAC and 
supported through holes in the aircraft ribs. The statistically modeled magnetic field was 
described by its fitted log normal average and standard deviation and evaluated as discussed in the 
Probability Plots part of the preceding section. Magnitude of the associated driving electric field 
was given by 

E = 2^nHh (3-13) 

where H is the magnetic field, s„ is the Laplace transform variable, u0 is the permeability of free 
space, and the value of E has been doubled for the reflection of the magnetic field. As the height 
above the ground plane becomes large compared to a wavelength, the field is of the form 

(3-14) E - Z0H 

where Z0 is the characteristic impedance of free space. The field modified by the presence of the 
ground plane can be represented as a linear combination of the two limiting cases, 

E = 
L + l 

H (3-15) 

where 

L = 4izh 

n ) 

(3-16) 
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The ffreq VR&f,pace variables were set to vary from 1 (high correlation in space and frequency) to 
1000 (almost no'correlation). The current calculated by the code was described by its average 
and standard deviation and compared with the EMPTAC data. For a cable loss of 1 mQ/m, a 
cable height of 5 cm, and 30 Q termination impedances, the results for the current at the cable 
center (bottom entry) and at the end (top entry) of the line for various./^ and>^? 
autocorrelation parameters are shown in Table 1. Cable loss and height over ground in this 
simulation were selected to represent actual EMPTAC cable parameters. The termination 
impedance was selected to match what we estimated the actual characteristic impedance of the 
EMPTAC cable to be. For the simplest representation of the telegrapher's equations (which were 
used for all computations reported in this section), the inductance per unit length L was entered as 
10 nH/m, and a corresponding capacitance per unit length C was selected to yield a propagation 
velocity c0. It can be seen that the best comparison in the experimental data occurs when the 
spatial and frequency correlations are both somewhat greater than 10. 

Table 1. Comparison of code and EMPTAC cable current results. 

f& UOf|/12 aof\I\2 u of In |/j2 a of In 1/f      1 

Data 9xl0'5 lxl 0-4 -9.7 i.i     1 

1 
4.3x10-* 5.3x10-* -13.0 1.2 

5.7x10^ 5.4x10-* -12.5 1.1 

10 
4.9xl0"5 8.4xl0"5 -10.8 1.3 

5.8xl0"5 8.1xl0"5 -10.5 1.3 

100 
1.3X10-4 2.4x10-4 -9.8 1.3 

1.4X10"4 1.9X10-4 -9.5 1.3 

1000 
1.6X10-4 2.5X10-4 -9.5 1.3 

1.8X10"4 2.4x10-4 -9.2 1.2 

FINE TUNING THE CABLE RESPONSES 

The above results give the impression that rescaling pretty well fixes the magnetic field 
u(n,i) and v(/y) magnetic-field cable-driver matrix ensembles. Consequently, we next examined 
the real and imaginary distributions of the phase-quadrature components of the simulated 
EMPTAC cable currents. Figure 3.17 shows that the simulated cable current quadrature 
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components do not fit a normal probability plot. Figure 3.18 is a Kolmogorov-Smirnov 90% 
confidence test of the cable power distribution (after filtering to remove the trend). As 
anticipated from Figure 3.17, the cable power distribution does not pass the Kolmogorov- 
Smirnov test for being chi square, even after being passed through a trend-removing filter. Figure 
3.19 shows, however, that the unfiltered cable power simulation is excellently matched by a log 

normal distribution. 

At this point, we considered the fact that we had not introduced any mechanism to put the 
cable current into th'ermodynamic equilibrium with the electromagnetic environment. To 
accomplish this, we computed the radiation resistance per unit length of a cable with centerhne h 
(of 5 cm) over a ground plane and diameter small compared to a wavelength: the magnetic vector 
potential in the far field for a wire carrying a current / this configuration is 

A = 
V-oe 

-jK/4 

\ nkr 
I sin {ka cos <j>) i (3-17) 

The associated Poynting vector is 

S 
2nr 

1 -cos(2Aacos<i>)N 

2 
(3-18) 

which, upon integration over <j> from 0 to rc, yields the desired radiation resistance per unit length 

formula 

R = u0w i1 - J^2kh)\ „ Ü2?W = (khy = n0 wir1 (3-19) 

The EMPTAC tests we are trying to match were performed with frequency swept from 100 MHz 
to 1 GHz. At 317 (= [KXMOOO]*) MHz, the above formula leads to a radiation resistance of 120 
Q/m. Consequently, this resistance was next inserted in our cable model. [Part of the justification 
for doing this was the knowledge that an actual cable at some fixed observation point only 
responds (correlates) to the driving field over a range of a wavelength or two.] Figure 3.20 
shows a considerable improvement for the resulting cable current quadrature components 
matching a normal distribution (compare with Figure 3.17). Also, the cable power distribution 
with trend removed is now closer to being chi square (compare Figure 3.21 with Figure 3.18), 
although it still leaves much to be desired. The unfiltered cable power distribution does still look 
much more log normal than chi square, however (see Figure 3.22). 
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Figure 3.17. The phase-^quadrature cable 
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Figure 3.19. The unfiltered cable power 
distribution, based on rescaled cable drive, has 
an excellent match to a log normal probability 
plot. This figure is based on normal u(n,i) and 
v(«,z) w'tihfspace andj^ set to 10, and ag = 
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Figure 3.21. Introduction of radiation 
resistance brings the filtered cable power 
distribution closer to a chi square distribution. 
This figure is based on normal«(«,/) and v(n,i) 
Withfspace andffreq set to 10, and ag = 0.01, u, = 
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After all the above procedures had been carried out, a tendency (trend) for the cable drive 
amplitude, and resulting cable current amplitude to grow with frequency was still present. This 
trend was eventually traced back to the cable drive-field generation (2-9), (2-10), (2-14), and (2- 
15). We observed that if the drive-field advance equations were made over constant frequency 
increments [A/, X2/(LAX) constant], (2-15) could not contribute to this drive amplitude shifting: 
Previously, we had always used an exponentially expanding A/ Making A/constant implies that 
the relative proportions of old and new values, i.e., the effective^, cannot change during the 
generation of the drive-field ensembles, although at the end of this section, we shall demonstrate 
that this modification is not materially significant. 

A similar procedure cannot reasonably be applied to the equation which advances the 
drive-field along the position axis, as keeping (A/A/) constant requires using a different cable 
segmenting scheme (different A/) at every frequency. 

Use of the (2-14)-(2-15) scheme where cable drive field is first advanced in the space 
direction results in the contamination of the subsequent frequency-directed drive advancement as 
well. Consequently, we reversed the order of the frequency and space cable-drive advancement 
so the frequency advancement, at least, could be kept pure of changing./^, effects. Also, we 
changed these equations to make drive-field advancement occur in R(n,i) space [varying from 1 to 
/ in (2-10)], not u(n,i) and v(n,i) space. In other words, (2-10) is now used to find the u(n,i) and 
v(«,j) ensembles after the R(n,i) ensembles have been generated. Thus, the equations for creating 
R(n,i) ensembles now become 

JWfc° = W7f  
<3"20) 

and 

K 
_AJ 

'spaced'">'' j 

£R(n,i-l) + fspaceRfreq(p,i) 
Kace^i) =  ;  (3-21) 

- +/ A»       •> space 

with (2-10) subsequently applied to Rspace(n,i) to find the «(«,/') and v(n,i). [Wherever one needs 
access to an R(n,\), it is seeded at Vi Reversing the order of application of (2-10) and (2-14)-(2- 
15) is purely cosmetic, and does not change any actual values in the final rescaled drive.] 
Additionally, we now are very careful to create an entire 2D Rß.eq(n,i) intermediate arrays, so there 
can be no possible ambiguity about where to find the definition of the look-back values R(n,i-l) 
and R(n-\,i). 
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These additional precautions lead to an even more improved (but still not perfect) 
approach of the u(n,i) and v(n,i) magnetic field ensembles to a normal distribution (compare the 
probability plots of Figure 3.23 with those of Figures 3.17 and 3.20). Also, the filtered cable 
power distribution now approaches chi square much more closely (compare Figure 3.24 with 
Figures 3.18 and 3.21). Also, the unfiltered cable power distribution finally begins to pull away 
from the ubiquitous log normal form (compare Figure 3.25 with Figures 3.19 and 3.22). 

There is still some growth trend remaining on the u(n,i) and v(n,i) magnetic field 
ensembles as a function of frequency, even after all this correcting, however (see Figure 3.26). 
The last of this growth trend was removed by fitting the absolute magnitudes of the all the local 
extrema (all points with magnitudes of u(n,i), UJin,i), which are both preceded and followed by 
points of lesser magnitude) to a least-squares linear fit: if 'UJlnj) is made to match 

UJnJ) = «/„ + ß, (3-22) 

in a least-squares sense, one minimizes 

St =    E   tfU«,0 " «/„ - ß,)2 P-23) 
n at ext 

and finds 

E (^>>o-£/,, ('))(/„-/)] 
a. 

n at ext 

E (/»     /) (3-24) 

ft = U^nj) - aj 

In (3-22)-(3-24), note is made that U^JnJ) does not exist at all n, only at n values of locally 
maximal Uj[n,f). Also, quantities with an overhead bar represent quantities averaged over n 
(frequency). One then pivots all the points in the ensemble about the center frequency/c 

(u(n,i)' - II(I)) = (u(n,i) - u(i))-{uc(i))lu(n,i)) 

and obtains a new driver ensemble matrix w(n,/)' 

(«(»,/) - «(i)X«,/c 
+ ft) 

u(n,i)> = u{i) + ±±^ ^^ '- (3-26) 
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Figure 3.24. Constant A/drive-field 
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This forces the extremal points envelope to lie in a flat line with other points placed between them 
in appropriate ratios. In this way, we finally compelled u(n,i) and v(n,i) to come out trendless 
(see Figure 3.27). Upon applying the pivoted cable drivers to the cable model, we obtained cable 
quadrature currents with even better fits to the normal probability plots (see Figure 3.28). Also, 
the cable power distribution induced by the pivoted drivers comes still closer to passing a 90% 
Kolmogorov-Smirnov confidence test for being chi square (see Figure 3.29). 

As a last exercise, we put a frequency dependence into the radiation resistance of the 
cable: (3-19) was modeled as 

Rn = 120-[fn(MHz)/317]3 (3-27) 

not just as R = 100 or 120. The resulting cable current quadrature components now fit a normal 
probability plot still better (see Figure 3.30). The cable power distribution (see Figure 3.31) is 
now so close to passing the Kolmogorov-Smirnov 90% confidence test for being chi square that 
detecting the excursion almost strains the eyes. 
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Figure 3.27. Pivoting ensemble 
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finally eliminates the cable drivers' 
growth trend.    This figure is 
based on normal u vnthfspace and 
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Figure 3.30. Adding frequency 
dependence to the radiation 
resistance of the cable is the last 
step in making the phase- 
quadrature cable current 
components match a normal 
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withXpace andjk, set to 10, and ag 
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Figure 3.31. Adding frequency 
dependence to the model of the 
radiation resistance on the cable is 
our final step in matching the cable 
power distribution to a to a chi 
square model. This figure is based 
on normal u and v wühfspace and 
£e? set to 10, and 0^ = 0.01,^ = 
0.00. 
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MORE OPTIMIZING OF CABLE DRIVER GENERATION 

At this point, we still found ourselves somewhat unsure we had determined the best 
possible procedure for generating cable drivers which simultaneously possessed the optimum fit to 
realistic distribution and autocorrelation. We believed that generation in accordance with (3-20) 
and (3-21), where R{n,i) and «(«,/') or v(/y) are related by (2-10), followed by rescaling according 
to (3-3) and pivoting to remove trend according to (3-26) was optimum, but an element of doubt 
remained. 

We shall refer to (3-20) and (3-21) as the/5 option, and its reverse, 

^■RinJ-D +fspaceR(nJ) 

RspaceM =  1  (3-28) 

— +/ 
A/      space 

c(Af) KJ)n-R(n-l,i)+ffreqRspace{n,i) 
L  Rfre<fn,i) =  Z7TR  P-29) 

L 
+ ft freq 

as the sf option. Additionally, we shall refer to use of a uniform A/as the n option, and to a 
geometrically (exponentially) expanding A/as the g option. We believed the uniform or n option 
was preferable to the growing or g option, but weren't absolutely positive. Thus, this left us with 
four choices to pick from, sfg, sfn,fsg, and/5«. Plots of z(n,i) = u(n,i)2 + v(n,i)2 were checked 
for a chi square fit. Results appear in Figure 3.32. All four curves pass a 90% K-S confidence 
test, but the fs runs (as expected) consistently stay closer to the middle of the limits. Also, as 
Figure 3.33 shows, the fs runs seem to have a smoother autocorrelation shoulder. Finally, Figure 
3.34 demonstrate that the/5 runs have a smoother baseline (no dips at the left side of the plot) 

The preference between the uniform A/and the geometrically expanding A/is less clearly 
exhibited by these tests. In the absence of a clear superiority for linear A/spacing, we are inclined 
to reverse our previous choice, and to use the geometrical A/option, as it is usually aesthetic to 
have an equal number of sample frequencies in each octave or decade. 

All results reported in this and the next subsection are based on u(n,i) and v(n,i) having a 
Gaussian distribution (2-10) with no bias and .01 standard deviation. 
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Figure 3.32. Summed squares of driving field phase-quadrature components computed by all four 
options pass the 90% K-S confidence test for being chi square with two degrees of freedom, but 
the recommended./s options (bottom pair) stay closer to the limit midpoint. 
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Figure 3.33. Summed squares of driving field phase-quadrature components computed by all four 
options have a realistic autocorrelation, but the recommended/5 options (bottom pair) have 
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Figure 3.34. The recommended sf summed squares of driving field phase-quadrature components 
have a more level baseline (bottom pair) than the fs runs (top pair). 
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MORE THOUGHTS ON RADIATION RESISTANCE 

Although we now know the homogeneous solution of an infinite wire in free space does 
not radiate (see Section 8), this fact was not originally clear to us. Even now, for a cable running 
along a ribbed wall of an aircraft, it is not clear that each rib cannot scatter some energy off the 
homogeneous solution. We, thus, see considerable justification for introducing (and continuing to 
use) a radiation resistance into real-world cables which do not run from nowhere to nowhere, 
passing nothing. Empirically [and with considerable physical justification as described earlier in 
(3-19)], we have found a good value for radiation resistance on EMPTAC cables to be 

R = 120Q (3-30) 

for frequencies between 100 MHz and 1 GHz. This estimate, derived above, is based on 
attributes of the driven, or inhomogeneous portion of the cable currents (see Section 8). These 
driven currents, unlike the homogeneous portions, have been indeed shown to have a radiation 
resistance. Representation of this radiation resistance by (3-30) is designated to be the frequency- 
independent option (option i). 

[The "discoveries" we have made about radiation resistance may, in the light of 
reciprocity, almost be tautologies (see Section 8). In particular, currents which can be field driven 
(the particular solutions) must produce radiating fields. Also, currents which cannot be field 
driven (the homogeneous solutions) cannot radiate.] 

A frequency-dependent radiation-resistance option (option d) has also been offered, (3- 
27). Figure 2.1 illustrated that the cable currents squared should, like the fields, have a chi square 
distribution. Actual model currents were obtained from the field drivers in accordance with (3-6)- 
(3-16) Figure 3.35 shows that, of the sfi, sfd,fsi, and fsd options, only the/stf-based cable 
current drive actually leads to a cable current distribution squared which passes a 90% K-S 
confidence test for being chi square (although the sfd option is not very far outside the 90% K-S 
limits). Figure 3.36 shows that the fsd option also has the flattest baseline, and Figure 3.37 shows 
this option has the smoothest autocorrelation shoulder. All results appearing in Figures 3.35-3.37 
are based on the frequency-independent L and C model for the wavenumber y and characteristic 
impedance Zc in (3-6)~see discussion following (3-16) 

In summary, the best results for a simple transmission-line fixed-parameter model are 
obtained with the driving-field-matrix/s filling option, [(3-20) and (3-21)], and a radiation 
resistance empirically fit (3-27) (option d). More aesthetic results are obtained with a 
geometrically expanding A/(option g), although actual accuracy does not seem compromised by a 
uniform, constant A/ 
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SUMMARY OF ALGORITHM TO GENERATE THE CABLE-DRIVE MATRIX 

Let us now summarize now algorithm for generating the cable-drive fields in an 
overmoded enclosure. First of all, we need two field-drive matrix ensembles A(n,i) or B(n,i) to 
represent the two phase-quadrature components of the field at each frequency n and at each cable 
segment /. These two ensembles are to be completely uncorrelated with each other. The 
generation procedures for the two ensembles are identical, so we shall only discuss A(n,i). The 
initial step is to generate a random number matrix having elements R(n,i) uniformly distributed 
between 0 and 1. The matrix R(n,i) is to be Nx I, so all frequencies and cable segments are 
represented. 

The next step is to force local coherence on R(n,i) as functions of n (frequency) and /' 
(position). This coherence should approximately replicate (2-12) and (2-13) (see Figures 2.8 and 
2.9), although we have found the results with respect to simulated cable current response to be 
quite forgiving if these two correlation formulas are not precisely matched. It is only important 
that the central lobe of the autocorrelation function be approximately the same width as that 
experimentally observed or suggested by (2-12) and (2-13). Equations (3-28) and (3-29) describe 
one transformation which can be used on R(n,i) to enforce this autocorrelation. Values around 10 
usually work forfspace and^e?. 

This enforced transformation will distort the original distribution placed on the original 
R(n,i) matrix. It is thus necessary to restore this distribution, or even better, to convert it to a 
normal distribution. Use of (3-1) - (3-3) will accomplish this. If one decides that a distribution 
other than normal is desired, at this point, one needs only substitute the alternative inverse 
cumulative distribution for P"1 (fj in (3-3). 

One next maps R(n,i) onto A(n,i) in the manner described by (2-9) and (2-10) with u(n,i) 
= ulim(n,i). These particular equations result in anA(n,i) ensemble with a normal distribution 
having zero mean and ag variance. If some other distribution is desired, that distribution should 
be substituted for the normal in (3-2) and (3-3). 

Especially iffspace andffreq are chosen smaller than 10, application of (3-3) may destroy 
some of the autocorrelation. In this case, one iterates the generation of A(n,i) by reapplying (3- 
28) and (3-29), this time on the A(n,tys instead of on the i?(«,*)'s. Then one reapplies (3-1) - (3- 
3). This iteration process may be cycled until further iteration no longer alters the A(n,i) matrix 
ensemble. Up to 50 iterations are required for very small fspace and^.e?. 

It may occur that, even after all this work, a small growth trend as a function of« 
(frequency) will remain on the matrix. If this occurs, the pivoting technique for eliminating this 
trend is described in (3-22)-(3-26). 

72 



SUMMARY AND CONCLUSIONS OF THIS SECTION 

An electromagnetic enclosure driven well into the overmoded regime will have a power- 
flux distribution which (as seen by a dipole antenna) is chi square with two degrees of freedom if 
the observer is fixed and frequency is swept, or if the frequency is fixed and the sensor is 
translated or rotated. The same power distribution will also be seen on cables and conductors 
within the enclosure. To obtain this distribution, the enclosure must not have a frequency- 
dependent Q or shielding which varies throughout the enclosure volume. If either of these (or 
similar) situations occur, the power and power-flux distribution densities generally distort towards 
being log normal. 

This entire set of statistical phenomena may be numerically simulated provided one is very 
careful. For instance, one cannot merely apply normally distributed random electric fields (which 
correspond to chi square power fluxes) to drive the cables and conductors. The cable-drive fields 
must be generated so they are additionally endowed with local autocorrelation along spatial and 
frequency axes as seen in actual experimental data. Also, it is necessary to put a radiation 
resistance per unit length on the cable to simulate factors which put the cable and the enclosure 
into electromagnetic thermodynamic equilibrium. Additionally, one must be cautious that the 
cable-drive fields are free of all trends, including those which may arise from the process of 
enforcing a local autocorrelation onto the cable-drive field ensemble. 
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Chapter 4. THE LOG NORMAL DISTRIBUTION 

The log normal distribution is extremely important and very frequently encountered in our 
universe. There is a simple explanation why almost any data set which depends on a bunch of ill- 
determined factors will be approximately log normal. This approximate relationship may be 
inferred from the Central Limit Theorem, and if each of the ill-determined factors has an identical 
distribution, the approximate relationship becomes exact. To be more specific, any sum of M 
components x„ ; = \,..M where E{x} and var{x} exist will itself converge to a normal distribution 
asMgoes to infinity.[l] (Cauchy's distribution [2] is an example where E{x) and var{x} do not 
exist, and where a sum of components does not converge to a normal distribution. The no-house- 
limit on doubling a wager each time a coin toss results in a head produces another such 
distribution for winnings. Both these examples set up a situation where a few of the variates can 
be so large as to dominate the sum. Then the sum is effectively only over a few variates, not over 
a large number, and it is not surprising that there is a problem.) Consequently, the log ensemble 
of a data set with a bunch of ill-determined factors, where each factor has the same distribution, 
will approach a normal distribution, as the log operator converts the product of factors to a sum 
of components. This means the original data set itself will have a distribution which is 
(approximately) log normal. 

In this section, we shall describe some properties of a log normal distribution, including 
the development of the fields associated with an environment which has a log normal power-flux 
distribution. Previously (Section 2), we demonstrated that these fields should have a distribution 
density derivable (at least numerically) from the log normal power flux. In particular, we Fourier 
transform the log normal power-flux distribution density, take the square root of the Fourier 
transform, and then inverse transform the square root function. This should, at least in principle, 
yield the desired field distribution density associated with a log normal power-flux distribution. 

In practice, it is not numerically possible to perform the inverse transform if the standard 
deviation of the {lnz,} array is larger than about 1.2 (which, unfortunately, typifies most of out 
data). This occurs because log normal distributions can possess unreasonably long distribution 
tails: there is a not-small-enough chance that a few points may he very far out. Unlike the two 
examples mentioned above, the tail is not so long that E{ln z) and var{ln z} do not exist. It is 
merely long enough to cause extreme numerical complications. It also implies a concomitant 
physical problem: an unconstrained, log normally generated random distribution will occasionally 
give absurdly large values, implying possibilities of the sort that RFI from someone's microwave 
oven on Long Island brought down TWA Flight 800. 

INTRODUCTION TO THE LOG NORMAL DISTRIBUTION 

Let us begin by illustrating some behavior of this distribution with scale factors stripped 
away. In this context, Figure 4.1 shows the log normal distribution density function 
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,        e-Qnz?/2 

m = -i=z  (4-i) 

Note that the standard deviation of {In z} of this distribution is 1, which is smaller than 1.2. Thus, 
attempting to transform it will not crash your computer. Figure 4.2 shows the Fourier transform 
of this distribution and also the square root of this transform. (We use w instead of co to denote 
the transform variable because it here has no relation to periodicity, either spatial or temporal.) 
Part of the numerical difficulty with deconvolving power-distribution densities to obtain field- 
distribution densities is apparent here. By taking the square root of the transform, we greatly 
extend the range on the horizontal axis in Figure 4.2 over which one must integrate when finding 
the inverse. For instance, if the transform itself has dropped off to an acceptable 10"4, the square 
root will only have dropped off to an unacceptable 10-2. Also, the range one will have to go out 
bring the square root transform down to 10"4 may increase exponentially, not linearly-that is, 
merely integrating out 100 times farther out the abscissa may not do the trick. Lastly, because the 
square root tail drops off so slowly, the energy of the square-root tail below 10"4 may be much 
greater than that of the corresponding simple transform tail below 10"4. Thus, just because 
ordinate reduction to 10"4 works for the simple transform doesn't mean it will suffice for the 
square-root transform. 

Figure 4.3 is a plot in the complex plane of the locus of the Fourier transform and its 
square root. Figure 4.4 is a multiple overlay showing 1) the untransformed distribution, 2) the 
inverse transform of the log normal distribution (which perfectly overlies the original distribution, 
thus proving our transform routine is working), and 3) the sine and cosine inverse transforms of 
the square root of the transformed distribution. These final inverse transforms do not overlie 
perfectly because the square root transform is more difficult to inverse transform. We believe the 
inverse transform of the square root transform is zero at x = 0, although it is a little hard to prove 
this for the cosine transform because the long-tail problem applies to the lower tail, as well as the 
upper tail, especially when plotted with the abscissa logarithmic. Be glad the deconvolution of the 
field distribution doesn't involve a fourth root! 

If we take the average of the sine and cosine inverse transforms of the square root 
function, and autocorrelate the result back upon itself, we get back the log normal distribution 
density function as we should (see Figure 4.5). 

In Section 2, we demonstrated that, given some major assumptions, many quantities inside 
an overmoded enclosure will theoretically obey a chi square distribution with two degrees of 
freedom. These quantities include the square of the current on a cable, the squares of both 
surface current components on a perfect conductor, and the square of the projection of the 
electric or magnetic field on any dipole antenna. The basis of this conclusion was that quantities 
such as those enumerated above are formed as the sum of two squares of phase-quadrature 
components 

76 



0.60 

0.40 

O" 
W    0.20 

<3 
0.00 

>- 
Cd 
< 

O 
< 

-0.20 

-0.40 

-0.60 

TRANSFORM  (solid) 
SQRT(TRANSFORM)  (dashed) 

CONTOUR 

-0.40 
-T—i—i—f—!—l—r~!—(—i—r- 

-0.00 0.40 
~l—[—I—I—I—I—I—I—T~-\ 

0.80 

REAL  H(w)   &   sqrt(H(w)) 
1.20 

Figure 4.3. Fourier transform of 
the log normal distribution density 
function and the square root of this 
transform. Note how much more 
slowly the square-root transform 
goes to zero. In both cases, 
increasing w corresponds to 
counterclockwise motion. Note 
that both transforms assume the 
probabilistically required value of 
(1,0) at zero w. 

2.5E+000 - 

N                 ; 

x-  or  z-DOMAIN  PLOTS OF 
IFF AND  IFF(S0RT) 
SIN IFF(SORT) (solid) 
COS irf(SORT) (short-dashed) 

(_ 2.QE+O0O - 

O                  \ /    \ 
X /           \ 

^4— 

1.5E+00O - 

D
E

N
S

IT
Y

 
b

 + l'                                                          \ 

O            : :                    \ 
i—            : 
2 5.0E-0O1  -^ 

E            : 
i—            : 
ui            : 
Q            : 

TIMEPLOT 

l imi| 1—»- i-i i ni|     TII mii|     i   iiiiiii|     i 
10 "3         10 "2         10"'           1 

DISTRIBUTION  VARIABLE, 
10             10 2 

x  or  z 

Figure 4.4. Small curve: Log 
normal distribution function 
perfectly overlaid by inverse 
transform of transform of this 
function. Larger curves: Sine and 
cosine inverse transforms of the 
square root of the transform of the 
log normal distribution. We 
believe this inverse transform 
should actually go to zero at x = 0. 
On a linear scale, the actual area 
between the sine and cosine 
inverse transforms is minimal. 

77 



N 
SZ 

>- 
]— 

00 
z: 
LJ 
o 
z: 
o 
i— 

eg 
ct: 
h- 
CO 

10 "'- 

10 

10 T—r 

CONVOL 
i i 1111| 

10 
I  i | ||| 1 1—I   I  I I I l| 1 1    rrri iTj- 

10-1 1 10 
DISTRIBUTION  VARIABLE,   z 

Figure 4.5. The log normal distribution function is almost perfectly overlaid by the 
autoconvolution of the inverse transform of the square root of the transform of the log normal 
distribution function when olg=\. 

78 



z = u2 + v2 (4-2) 

where u and v themselves obey a normal distribution. This basis seems reasonable in overmoded 
scenarios by appeal to Maxwell-Boltzmann statistics for thermodynamic equilibrium between the 
fields and the cavity contents. Appeal to Bose-Einstein statistics gives essentially the same 
answer. The above-mentioned distributions may be taken with frequency, position, or dipole 
orientation as the independent variable. It does assume the two-phase quadrature quantities (or 
right- and left-going waves) are uncorrelated, which is normally a valid caveat. 

A pure chi square distribution, however, is actually observed infrequently. This is true 
because of inherent assumptions and requirements such as a frequency-independent Q, a relatively 
uniform distribution of shielding and dissipation within the enclosure, and points of entry which 
leak omnidirectional and frequency independently. In the real world, such demands likely won't 
be met. Thus, it turns out that actual squared quantities of the form of z more often have a log 
normal distribution. Early on in the work discussed in this document, we largely focussed on 
deducing the distribution of u given that z was chi square (see Section 2). Fields deduced in this 
manner were then used to drive, for example, EMPTAC cable models. 

A problem with this approach is that a chi square distribution has only one variable 
parameter uz2, which is both the mean and the standard deviation. A typical cable current squared 
(or driving field) usually needs two variables to characterize it adequately in statistical terms: the 
average or mean (of the log) and the wiggle or variance (of the log) which is superimposed on the 
mean. Hence, in this section, we focus on determining the distribution of u assuming z is log 
normal: 

I    exp(-(lnz - ute)
2/(2o2.,)) 

h(z) = — ^-—  lg g (4-3) 
V/2TC zVig 

Let us designate z as 

z=x+y-u2+v2 (4-4) 

The first (and biggest) step then is that of determining the distribution of x mdy. It Section 2, it 
was shown that the distribution of z, h(z), is the autoconvolution of the distribution of x,ßx): 

h(z) =  fßx)ßz - x)dx (4-5) 
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or thatyiX) is given as the inverse Fourier transform of the square root of the Fourier transform of 
h(z): 

fix) = -L f [H(w)]*e**dw (4-6) 

IfaIg is very close to unity (.98 < alg < 1.02),X*) can easily be evaluated numerically from 
(4-6), as we demonstrated in Figure 4.5. This statement is true for any reasonable \ilg (ufe 

between -16 and +16). However, for realistic a,gs observed in EMPTAC data (say, alg ~ 1.8), 
numerical evaluation of (4-6) has thoroughly thwarted all computational attempts. Even at alg = 
1.4, use of 15,000 exponentially expanding points on each side of the Fourier evaluation fails; 
Figure 4.6 shows the result of such a attempt when these parameters are tried. Figure 4.7 shows 
similar data plotted logarithmically on the vertical axis. Figure 4.8 shows the real and imaginary 
parts of H(w) and [H(w)]Vl, and Figure 4.9 shows the phase associated with [H(y/)]y\ The 
problem with these runs is that both h{z) and H(w) have such long tails for a,g > 1.2 that it is 
almost impossible to run the inverse Fourier transform integrals far enough or finely enough, at 
least using 64-bit FORTRAN. At olg ~ 1.8, the consequences of these effects seem absolutely 
beyond hope of working with or around. 
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of transform,/x(x), with an analytic fit based on (4-10) and (4-1 l),/2(x), with/mat and xmax 

empirically taken from the inverse sine transform. This overlay is not satisfactory. Middle broken 
line: analytic fit to inverse transform of sqrt of transform based on (4-18) and (4-19), f3(x), 
[which, for some reason, doesn't work]. This figure is based on z having a log normal distribution 
with ufe = 0.0, and ufe = 1.4. 
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Figure 4.7. Curves at center: triple overlay of original log normal distribution as calculated from 
(4-3), h(z), and from taking the inverse sin and cos transforms of the result. Logarithmic display 
indicates overlay breaks up about 40 dB below peak. Larger curves to left and top: triple overlay 
of inverse sin and cos transforms of sqrt of transform,/^*), plus an analytic fit based on (4-10) 
and (4-1 l),f2(x), with/miro and xmax empirically taken from the inverse sine transform. These 
results are not satisfactory. Middle broken line: analytic fit to inverse transform of sqrt of 
transform based on (4-18) and (4-19),/3(JC), [which, for some reason, doesn't work]. This figure 
is based on z having a log normal distribution with alg = 0.0, and u/g = 1.4. 
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Figure 4.8. Transform and sqrt of 
transform of log normal 
distribution. This figure is based 
on h(z) having ufe = 0.0 and a{g = 
1.4. 

Figure 4.9. Phase of sqrt of 
transform of log normal 
distribution. This figure is based 
on h(z) having \ilg = 0.0 and alg = 
1.4.   Note that the phase 
calculation begins to break up 
around w = 60, before the sqrt of 
the transform, as shown above in 
Figure 4.8, has reached zero. 
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ANALYTIC FITS FOR DECONVOLVED LOG NORMAL DISTRIBUTIONS 

Fits Based on Distribution Density Maxima 

We have noticed that, if h(z) is log normal,/*) is very nearly log normal also. While we 
cannot mathematically prove this statement, we can test it by attempting to find alg and \i,J to 
characterize/*) and then autoconvolving/t) back upon itself to recover h{z). (Primes denote 
parameters of the deconvolvedfix) distribution; unprimed parameters refer to the convolved h(z) 
distribution.) For alg ~ 1, where/*) can be numerically determined, this effort works very nicely 
(see Figure 4.10). In general, it is true that a log normal distribution is uniquely defined by (alg, 
ufe'), or alternatively by the value xmax where fix) takes its maximum value and/m(n. where 

Lax  = A*nJ (4-7) 

In particular, fmax occurs at 

Y 
max 

a* (4-8) 

and has value 
'2n I 

Lax = ~p=        , (4-9) 
V27t      alg 

Alternatively, if we know xmm and/ma:c, alg may be determined by solving 

o'k
2 + lna;/ = -2(ln/mar + ln^ + ln*_) (4-10) 

with u;' being 

H = to*« + % (4-H) 

Around alg = 1.0, the above relationships have been used to find u^' and alg for fix), assuming/*) 
is log normal, and given that h(z) is log normal (with alg =1.0). In particular, we first extracted 
fix) directly from (4-6) giving/^). We then determined xlmax where/^*) had a maximal value 
flmax. From this, we obtained f2(x) by assuming/2(x) was log normal with alg and \ilg given by (4- 
10) and (4-11). Both/x(jc) and/2(x) were then autoconvolved with the result compared to the 
original h(z). As long as alg was very close to 1.0, both comparisons were excellent regardless of 
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Figure 4.10. Overlay of Hz) obtained from (4-3) with that obtained from autoconvolution of the 
inverse transform of the sqrt of the transform,,/^*), from the autoconvolution obtained from (4- 
10) and (4-1 l),/2(x), and from the autoconvolution obtained from (4-18) and (4-19),/3(x). All 
curves but the last agree very nicely. This figure is based on (ofe, ufe) = (1.0, 0.0), which leads to 
an inverse sine transform (see Figure 4.6) of the sqrt of the transform having (a,/, ufe') = (1.86, - 
.992). 

85 



the value of the original ufe (see Figure 4.10). In fact, we observed that, for alg = 1.0, the mean 
[ilg of the deconvolved distribution was always closely approximated by 

U;; = Hfe - 1.0        ( " 16.0 < ufe < 16.0) (4-12) 

irrespective of the initial value of \ilg. 

These approaches, however, just don't work for alg > 1.2 due to the failure of the inverse 
Fourier transforms to converge given any computationally practical range of integration over w 
(see Figures 4.6 and 4.7). 

Fits Based on Statistical Relationships 

There is another approach which we thought should work, but doesn't. If h(z) is given by 
(4-3), the expectancy of z is [3] 

E[z] =e»* + v< (4-13) 

and the variance of z by 

var[z] = e2il'* + a'*(e°'s - 1) = E[zf R[z] C4"14) 

where (4-14) serves to define the statistic R[z]. If x and v have the same distribution and are 
independent (uncorrelated), then the expectations and variances of x and z are related by 

E[x] = V2E[z] (4-15) 

var[x] = ^var[z] (4-16) 

R[x] = 27? [z] (4-17) 

Assuming^) is log normal, u,g' and olg' can then be obtained by inverting (4-13) and (4-14) 

a'lg = (ln(2i?M) + If (4-18) 

li'lg = ln(2£[x]) - 1/2ln(2JR[x] + l) (4-19) 

86 



Equations (4-18) and (4-19) enable us to construct a thkdßx),f3(x), which can be compared with 
f^x) and/2(x) or autoconvolved for comparison with h(z). As Figures 4.6 and 4.7 show, 
however, this doesn't work. In fact, Figure 4.10 shows this approach doesn't even work for alg = 
1.0. 

EMPIRICAL FITS FOR DECONVOLVED LOG NORMAL DISTRIBUTIONS 

After dishing out the preceding ration of bad news, we are glad to report that we do have 
a successful fall-back position. It turns out to be easy to estimate values for \i!g and alg which, 
when inserted in a log normal distribution and autoconvolved, will give back h(z) with any desired 
\ilg and a,g. Figure 4.11 shows an approximate log normal deconvolution for alg = 1.0, u;? = 0.0. 
Figure 4.12 shows an approximate log normal deconvolution for a,g = 1.4, ufe = 0., and Figure 
4.13 shows an approximate log normal deconvolution for aIg = 1.8, \ilg = 0.0. Figure 4.14 shows 
an approximate log normal deconvolution for typical EMPTAC field data, alg = 1.9, ufe = -17.5. 
It turns out that alg depends almost entirely on alg and \ilg on \ilg. The following empirical 
formulas give an excellent starting point for evaluation of (alg, ufe') given (olg, \i,g): 

\x[g = u,  - 1. -.5(0.-1.) (4-20) 

o'lg
2= -.l + .2ofc + 1.84 (4-21) 

The correction to alg associated with \ilg is not yet know, but is expected also to be negligible. 
Even without the benefit of (4-20) and (4-21), we were always able to find (alg, ufe') to Wz 
significant figures in six or fewer convergent tries. [It is extremely unlikely one will ever have 
experimental data for (olg, ufe) reliable to IV2 significant figures.] 
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Figure 4.12. Overlay of log 
normal distribution for h(z) with 
K,ufe) = (1.4,0.0) and 
autoconvolution approximation 
based on guess of log normal^*) 
with K',ufe') = (3.65, -1.2). 
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GENERATION OF LOG NORMAL FIELD DRIVERS 

Given the distribution of x, finding the distribution of u (or its generation by random 
numbers) should be easily accomplished by the use relationships in Section 2. The rescaling 
operation to restore this distribution after the introduction of correlation may be a little more 
complicated because u is bipolar, while x is not (refer to Section 3). In particular, if/? is a random 
number between 0 and 1, the operator for generating the driving field is 

u = (random sign) [exp{(\i'lg + a'^P^ip))/!}] (4-22) 

Here P_1() is the inverse Gaussian operator. Equation (4-22) corresponds to the distribution 
density function [see (2-60)] 

-(2ta|«|  - f4)2/(2<2) 
e(u) = _i_£      -oo<M<co (4_23) 

l/5ir o'lg\u\ 

The associated log normal rescaling operator is as follows: Let/ be 

/, = (/ - V2)/n (4-24) 

where n are the number of random numbers to be rescaled. If/ is less than lA, we have «, < 0 and 
w>      -2(b(-w')-^)2/(2a;g

2) 
P(W.) = _J_ f £ dw' (w < 0) (4-25) 

. /O-rr   J - rt1 U) / ft* U. ~°lgW' 

where 

21n(-«t) - \i'lg 
w. =  (4-26) 

or 
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( 21n|«.| -v'k 
ft = V2P 

-a fe      I 

(4-27) 

so that 

«,= -exp{y2(^-o^-1(2y;.))} (4-28) 

It can readily be seen that/ = 0 yields w, = - °° and/ = V2 yields w, = 0. 

If/ is greater than V2, we have w, > 0 and 

P(w) = y2 + I 

where now 

"e — dw' 
olgw' 

w. 
2 In*/,. - |4 

'te 

(4-29) 

(4-30) 

or 

so that 

/ = V2 + V*i> 
21nw,- u7 

\        ufe       ) 

«, = exp{v4(|i; + a;gp-1(2/-l))} 

(4-31) 

(4-32) 

We see that/ = V£ again yields w, = 0, while/ = 1 yields w, = +°°. 

COMPARISON OF THEORY AND EMPTAC-BASED DATA 

As we have observed, the current response of cables in a complicated, highly overmoded 
chamber is not a problem which is tractable by deterministic solution of Maxwell's equations. 
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Our approach, which is probably the only feasible one, has been first to characterize the statistical 
distribution of electromagnetic fields or power flux in the chamber. [4-10] This distribution, in 
general, may have frequency or position as the independent variable. Depending on the nature of 
the enclosure (frequency-dependent Q, degree of homogeneity, etc.) the electromagnetic fields 
have a zero-bias normal distribution, a bipolar log-normal distribution, some mix of the two, or 
(as we shall demonstrate in Section 5) some, as yet unevaluated, distribution with the property 
that the associated power-flux distribution h(z) looks like a modified Bessel function of the 
second kind [6,9,10] 

h(z) = tfzK2(2y[Kz) A = 3/mean[z] = 3/u (4-33) 

A normal field distribution leads to a chi square (with two degrees of freedom) power-flux 
distribution. A bipolar log-normal field distribution leads, at least approximately, to a monopolar 
log-normal power-flux distribution. Formulas relating the field-distribution parameters to the 
power-flux distribution parameters prove to be quite simple for the normal, log-normal, and 
mixed distributions (see following subsection). This also proves to be true for the modified Bessel 
distribution, although the requisite modified Bessel function algebra is a little more complicated. 

Our goal, then, is one of modeling the cavity field or power flux distribution from 
measured samples. These fields are then applied as drivers to a model of the chamber cables. 
Lastly, the resulting cable currents on the model are compared in statistical distribution to 
measured cable currents. When the driven cable model yields currents with a distribution in good 
agreement with the measured cable current distribution, we consider the simulation to be 
performing well. 

A typical case to which we have applied this technique is the Air Force Phillips Laboratory 
EMPTAC 720 shell externally illuminated by the Ellipticus antenna and swept from 100 MHz to 1 
GHz (the high-frequency sweep). The magnetic field squared observed axially in this 
configuration (Sweep B050MBHZ, Figures 4.18 - 4.20) essentially has a monopolar log-normal 
distribution with a mean ufe of 7.86e-8 (A/m)2 and a standard deviation al? of 1.28e-7 (A/m)2. 
These values correspond to a field whose amplitude has a standard deviation alg' of 1.7e-4 (A/m). 
This last value was used to generate a chi-square-model driving field ensemble [see discussion 
following (2-15)] which, after appropriate manipulations to restore bipolarity, has a square with a 
mean u of 5.02e-8 (A/m)2 and a standard deviation o of 1.08e-7 (A/m)2. Applying fields thusly 
characterized to the model of the EMPTAC cable network resulted (Run B0oc2002.3, Figure 
4.15) in cable currents squared with a mean of 3.27e-8 A2 and standard deviation of 10.62e-8 A2. 
On the other hand, measured EMPTAC cable currents (Sweep B032211Y, Figure 4.16), when 
squared, had a mean of 2.65e-8 A2, and a standard deviation of 5.91e-8 A2. This result is typical 
of 20 or so tests we have made, and indicates model fidelity well within a factor of 2. (This 
factor, in turn, is probably a fair guess at the repeatability or uncertainty in the measurements- 
both of cavity fields and of cavity cable currents; see Figure 4.17.) 
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Figure 4.15. Model-based 
cumulative distribution of the 
squared currents on the EMPTAC 
cables [with 90% Kolmogorov- 
Smirnov confidence limits (see 
Section 9) for being log normal]. 
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Figure 4.16. Measured cumulative 
distribution of the squared currents 
on the EMPTAC cables (with 90% 
Kolmogorov-Smirnov confidence 
limits for being log normal). 
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Figure 4.17. The EMPTAC model 
squared cable current distribution 
(solid line) does not stray outside 
the bounds provided by an overlay 
of three squared cable current 
distributions (various dashed lines) 
which were obtained under slightly 
varied measurement conditions. 

HYBRID NORMAL x LOG-NORMAL FIELD DISTRIBUTIONS 

We shall discuss primarily the mixed normal/log-normal field quadrature distribution here, 
as this case encompasses the pure normal and pure log-normal cases by implication. Essentially 
there are three types of quantities for which we require distribution definitions. The first are 
bipolar phase quadrature field components such as Hz sin <j) or Hz cos <J>, which we shall 
generically denote as u or v. The second are phase quadrature field components squared, which 
we shall generically denote as x or y. Thirdly, we have power fluxes which we shall denote as z, 
and which are the sum of two squares [see (4-4)]. 

Conventional wisdom has been that, under ideal conditions, z should have a chi square 
distribution with two degrees of freedom. In reality, we find it usually is more nearly log-normal 
in distribution (4-3) (see Figures 4.18 and 4.19), and the cumulative probability distribution 
resembles H(z) 

In z ffc 

H(z)=      f     -t-txp(-z/2/2)dz' = /> 
(Jnz-lO 

'is     ) 

(4-34) 

where P{ ) is the cumulative normal distribution function. Thus, if z is selected to be greater than 
fraction H(z) =p of the values, we would have 
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zip) = Hlip) =e"* + V,-I<» (4-35) 

where P'\ ) is the inverse of the cumulative normal distribution function. However, as mentioned 
earlier in this section, this formula tends to generate a distribution with an upper tail having 
unrealistically large values of z. 

This problem is resolved by mandating that, above some cross-over probability P, the 
distribution density of z shall be chi-square with two degrees of freedom, 

--z/v 

h2{z) =   (4-36) 
v 

giving a cumulative probability distribution of 

H2(z) = 1 -e'^ (4-37) 

For H2iz) =p above P, we thus have 

zip) = - v ln(l - p) (4-38) 

In general, \klg and alg will be known and P can be guessed at; usually, P is around 0.9. Also, (4- 
35) and (4-38) must match at P. This gives us an equation uniquely determining v 

v =  (4-39) 
-ln(l -P) 

Figure 4.20 shows H(z) and H2(z) joined at P = .9, with the cumulative distribution of EMPTAC 
data set B050MBHZ overlaid. For this data set, with P = 0.9 we found (4-39) to give v = 7.62E- 
8. 
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Distribution of the Squares 

In general, the distribution of x = u1 is not very interesting, although we cannot go from 
the distribution of z to the distribution of u (which is needed) without, in the process, finding/*), 
the distribution of x. We have already shown that, if z has a distribution density h(z), xandy 
have a distribution densityßx\ which, upon being autoconvolved, gives back h(z). 

We have already presented numerical evidence that the distribution of x must be log 
normal if z is log normal. Thus, for/? < P we have the distribution density function 

A*) = 
exp(-(lnx-^g)

2/(2o;g
2)) 

y/Tii xo 's 
(4-40) 

and the cumulative probability distribution, 

F(x) 
In x - ufe 

o fe     ) 

(4-41) 
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where, to a fairly good approximation, we have empirically found that (alg', \ilg') are related to 
(<Vnfc) by (4-20) and (4-21). 

For the region (p > P) where z has a chi square distribution, the transform of/2(z) and the 
inverse transform of the square root can be taken canonically. This manipulation yields a 
distribution density for x [see (2-100)] 

-x/v 

/a(*) = -= (4-42) 
^TtJCV 

and a cumulative distribution function F2(x) of 

F2(x) = 2P(fix/v) - 1 (4-43) 

at least for/? and F2(x) > Vi. [In (4-43), P is still the cumulative Gaussian distribution, not the 
cumulative chi square distribution.] If x is selected to be greater than F(x) =p of the values, we 
have, for/? ^ P 

xfp) = e*°+ °'f~l(p) (4-44> 

and for/? £ P 

xip) = ^"'((p + 0/2))2 (4-45) 

If (4-20) and (4-21) were exact, (4-44) and (4-45) would meet at/7 = P. In actuality, they will 
differ slightly 

re&+ <^> = lp\p + l)/2) (4-46) 

where r » 1 and In r « 0. This slight mismatch may be incorporated into the model by replacing 
ufe' with u/g' + In r, which is alright as (4-20) for ufe' is only an approximate fit anyway. Figure 
4.21 shows F(x) and F2(x) joined at P = 0.9. 

98 



1.00 -t 

XJOIN 

HYBRID MODEL (solid) 
CHI  SQUARE  (short  dashes)  & 
LOG  NORMAL  (short clashes) 
Based  on  Crossover at  P  =   .9 
EMPTAC  -  data  utilized 

T 1    I   I I 1111 1 1    I   I Mll| 1 1    I  I llll| T 1    I   I I I H| ■      T-1 

. „ . _   "       10 _* 
Hzcos**2  (A/m)**2       x   =   u**2     (B050MBHZ) 

Figure 4.21. The cumulative 
probability distribution obtained by 
joining the log normal, F(x) of (4- 
41), and the chi square, F2(x) of 
(4-43), at P = 0.9. 

Distribution of the Bipolar Phase Quadrature Components 

If x = w2 has a monopolar log-normal distribution density^) given by (4-40), u will have 
a bipolar log-normal distribution density e(u) given by [see (2-61)] 

!     exp(-(21n|^|-M;g)
2/(2o;g

2)) 

T/ZK a'lg\u\ 
e(u) (4-47) 

and a cumulative probability distribution 

E(u) = Vi + VzP 
21nw - ufe 

'is 

(4-48) 

at least for u > 0 or E(u) > Vi Thus, if u is selected to be greater than the fraction E(u) =p of the 
values, we have, for p<P', 

u(p) = e<* + a'^i{2p - m (4-49) 

99 



at least for/? = E(u) > V2 or u > 0. We must here note that P', the u crossover probability, 
introduced just above differs from P, the crossover probability of x and z. If we want x and z to 
crossover at P = 0.90, w must crossover at P' = 0.05 and 0.95, as u is bipolar, while x and z were 
monopolar. 

For the region/? > 0.95 = P', where z has a chi square distribution density, u has a normal 
distribution, 

eJu) = -J- -  (4-50) 
V^i       °, g 

or 

E2(u) = P(u/og) (4-51) 

where ag is related to v by [see (2-105)] 

v = lo\ (4-52) 

If u is selected to be greater than S2(u) =p of the values, we have for/? £ P' 

"O) = ogP~l(p) (4-53) 

At/? = P', (4-49) and (4-53) for u(P') might not match perfectly: 

peö4 - aip-(2P'-l))/2  = a p-l(p/) (4-54) 

where p ~ 1. This situation permits two varieties of correction: ag is related to v, which [through 
(4-39)] is not a very precisely defined quantity, and may be replaced by ajp. Alternatively, ufe', 
which also is not very precise, may be replaced by u/g' + 2 In p. We do not know if 2 In p = In r, 
nor does this seem a very important issue, as both are ad hoc corrections to heuristic factors. 
Figure 4.22 shows E(u) and E2(u) joined at P = 0.95. 

HYBRID POWER-FLUX MODEL FOR THE CELESTRON 8 TELESCOPE 

A hybrid normal/log-normal fit to the cumulative distribution of the magnetic field squared 
was also attempted for the Celestron 8 satellite telescope data for frequency swept from 8 GHz to 
18 GHz. In this case, it turns out that a hybrid fit is better made with crossover at/? = 0.875. 
Figure 4.23 shows F(z) and F2(z) joined at P = 0.875, with the cumulative distribution of the 
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Figure 4.22.    The cumulative 
probability distribution obtained by 
joining the log normal, E(u) of (4- 
48), and the chi square, E2(u) of 
(4-51), at P = 0.95. 
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fit appearing in Figure 4.20. 
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Celestron 8 data set overlaid. For this data set, with P = 0.875 we found (4-39) to give v - 
2.104. 

CONCLUSIONS FOR THIS SECTION 

EM power flux inside an overmoded cavity can be statistically represented by a 
normal/log-normal distribution or by a modified Bessel function of the second kind. Deducing the 
distribution of electromagnetic fields within the cavity, given the distribution of power flux is a 
fairly simple procedure. It is necessary to have the statistical field distribution to model the fields 
which actually couple to and drive the enclosure cabling. Chi square modeling of the power-flux 
distribution leads to a field distribution model which is normal. This procedure for deducing the 
cable-drive field distribution yields predicted cable currents with distributions which lie well within 
experimental uncertainty and repeatability (i.e., well within a factor of two). 
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Chapter 5. CHI SQUARE VARIANTS: THE LEHMAN DISTRIBUTION 

PRELIMINARY OVERVIEW 

Recently, obscurely disseminated work by Lehman has come to our attention which 
deduces a somewhat different overmoded enclosure power-flux distribution that the simple chi 
square result. [1-4] This new formulation shows excellent agreement between theory and 
observation on the upper tail of distributions, which is where harmful effects will occur if they 
occur at all. While we are not sure just why this novel procedure should yield power-flux 
distributions which agree with the upper tail (as opposed to the midpoint, where most models 
seem to work best, or, for that matter, as opposed to the lower tail), we are most impressed with 
the result. 

This new work also presumes that the internal cavity response should incorporate the 
physics which leads to a power-flux distribution for zx which is chi square with two degrees of 
freedom. However, a hypothesis is additionally put forward that the field external to the cavity 
can illuminate the apertures from any of three directions, or two phase quadratures, and thus 
should result in inward power leakage z2 which is chi square with six degrees of freedom. These 
assumptions imply the overall internal cavity response should have a power-flux probability 
density function which is the product of these two variates 

z = zxz2 (5-1) 

In two dimensions, the power flux probability density function thus becomes representable as 

h^h^{z^dzxdz2 (5-2) 

where this expression gives the probability that zx is between zx and zx + dzx, while z2 is between z2 

and z2 + dz2. However, z, zx, and z2are not all independent variables. If (5-1) holds, the 
probability that zx is between zx and zx + dzx, while z is between z and z + dz is obtained from the 
variate transformation 

z2 = z'/zx 

The two-dimensional probability density function then becomes 

*x,(2;)^(zfe/) i^U>' (s-4) 
d(zx,z ) 

where 
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dzxldzx   dz2/dzx 

dzjdz1   dz2/dz' 

1 -1/z/2 

0     \lz[ 
= \lz[ (5-5) 

is the Jacobian of the variate transformation. We now wish to find the probability that z is 
between z and z + dz regardless of zx. This ID probability differential is obtained by summing all 
the 2D probability differentials of zt' and z' over z/; i.e., by integrating (5-4) over all possible z/ 

00 / / oo / / 

*i 0 

= A2z'KJ2jÄ?)(k' 

(5-6) 

In the future, we shall refer to hfe') as the Lehman distribution. In (5-6), y2\ Ye, and A are 
constants related by 

A = Y2Y6 (5-7) 

with A related to the mean or the standard deviation of the power-flux probability density function 
by (4-33). 

Figure 5.1 illustrates the cumulative probability distribution agreement between the 
Lehman distribution and EMPTAC data (100 MHz to 1 GHz sweep), while Figure 5.2 illustrates 
the agreement for the Celestron 8 satellite telescope (8 GHz to 18 GHz sweep). We do not 
know, at this time, if the Lehman distribution would apply to the situation where the microwave 
source is actually internal to the cavity, as in the Price-Davis study,[5,6] although we believe this 
configuration would have power flux simply chi square with two degrees of freedom.   Also, we 
believe the power fluxes external to an open geometry (such as a helicopter) could be 
characterized simply as a chi square distribution with six degrees of freedom. It seems that this 
model somehow manages to ignore the "trend" on power-flux data (see Section 2), and to give a 
correct upper-tail representation irrespective of the gross overall shape of the response 
distribution. This accomplishment is a major keystone in the successful representation of cable- 
driving fields; previously, we had no clear idea how to restore "trend" effects into the model 
(other than using a log normal representation). The Lehman model, as represented in Figures 5.1 
and 5.2, provides something that Figures 4.20 and 4.23 do not: a smooth, data-derived 
representation for the upper end of the distribution which does not require case-by-case tweaking. 
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Approximate deconvolution of the phase-quadrature field-component distribution out of 
the Lehman distribution for the power flux is a bit complicated, and will be described in a later 
subsection. Taking the inverse transform of the square root of the Fourier transform of hfa) in (4- 
33) or (5-6), either numerically or canonically, seems formidable. It also occurs that we are 
unable to deduce a precise function which, when autoconvolved, gives back hfe) of (4-33) or (5- 
6). 

DETAILS OF THE LEHMAN DERIVATION 

Lehman has suggested that the power in a cavity with apertures is best described by a 
combination of two different distributions: hx2(2j) and Ax2(6,z). The physical rationale behind this 
thinking is the power in a perfect cavity is described by a hx2(2j) distribution whereas the drivers 
resulting from the apertures are described by Ax2(6,z) (two polarizations over three directions); the 
two multiplied variates together then give the desired description. 

The multiplication of the two distributions is equivalent to multiplying (point-by-point) a 
set of numbers with one distribution by points in the other. Relative to the pdf (probability 
distribution function) densities of the Ax2(2,z) and hx2(6j) distributions, this is accomplished by 
[see (5-6)] 

hfz) = f-Lhxl(z/z;)hxl(z()dz; (5-8) 
Fn 

where the ht2 distribution with v degrees of freedom and a scaling factor of yv is 

v-2     -  z 

z 2 e 2Yv 

»2 (2Yv)2 T(v/2) 

[In (5-9), the yv are related to the yv' of (5-7) by yv' = l/(2yv).] This yields a Lehman distribution 
of 

/        z 
-a.Z.  

hlz) =  l- f z[e 2YzZl <k[ (5-10) 
4Y2(2Y6)  o 

where a = l/(2y6). The integral has been written in this form to employ the trick, 
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zel de™ 
da 

(5-11) 

The probability density function can now be written as 

hfz) = - 1 f ±-e 
4y2(2Y6)3j

0 da 

oo                             I    z 
-, -ax -   
a  .     UY2*/^ (5-12) 

Using Gradshteyn and Ryzhik,[7] Eq. (3.324.1), this reduces to 

hfz) = 

/ \] 
i       a 22 r. 2za 

4Y2(2Y6)
3 da N Y2« IN MJ 

(5-13) 

Where A\ is the first order, modified Bessel function of the second kind. 

Taking the partial derivative with respect to a yields, 

hfz) = - 
4Y2(2Y6)

3 N 

/ \ / \ 
22      1 

Y2   2a \Ja A 
2za 

Y2 , 

1 2za vi 

Y2 ^ 

2za 

Y2 ) 
(5-14) 

Then, using the Bessel-fünction relationship 

zK[{z) =Kx{z)-zK2(z) (5-15) 

shows that the Lehman power-flux probability density function is 

hfz) 
24(Y2Y6)

2 
A', 

K\ Y2Y6, 
(5-16) 

or, equivalent^/, as in [1-4] 
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hfz) = zK2K2(2{K~z) (5-17) 

where A is the single scaling factor of (5-7), and K2 is the second order, modified Bessel function 
of the second kind. 

The primary attributes of interest for this pdf are the cumulative distribution function 
(cdf), the mean u/3 and the standard deviation a,. The cdf is the integral of the pdf, and is given as 

Hfz) = fz/A2 K$JKz~§dzl (5-18) 

By using the Bessel-function relation, 

d_ 
dz 

the Lehman cdf becomes 

MznKn{z)) = -z"Kn^) (5-19) 

1      /_<\3   tr/.A 
2-JKz 

Hfz) = - ± iz[fK,{z[)    | (5-20) 
Ö 0 

Amazingly enough, we can find that 

Hm z'K^z) = 8 (5_21) 

and the cdf is then shown to be 

Hfz) = 1 - (Azf K^lsßTz) (5-22) 

The cumulative Lehman distribution is shown with the /*x2(2,z) and the hx2(6j) distribution 
functions in Figure 5.3. The Lehman distribution is the solid line meeting the h%2{6^) distribution 
at the upper end and the hx2(2j) distribution at the lower end. This figure is based on A, y2, and 
y6 all set to 1. 
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Lehman versus Chi-Squared Distributions 
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Lehman Distribution 
Chi-Squared with 6 Degrees of Freedom 
Chi-Squared with 2 Degrees of Freedom 

Figure 5.3. Comparison of the Lehman, h%2(2,z) and the hx2(6,z) cumulative 
distributions [based on (A, y2, y6) = (1,1,1)]. 

The mean and standard deviation are computed through definite integrals, 

U; =  \ zht{z)dz 

0 

ot  -  I z hfz)dz - \il 
0 

(5-23) 

Use of Gradshteyn and Ryzhik, [7] Eq.(6.561.16), yields 

fziiK^az)dz = 2» la^lT 

0 

/ 1          > 1+u+v 

{      2     J 
r 

{      2     j 
(5-24) 

Thus, the Lehman mean and standard deviation are found to be 

V-, A 
o, 

_   A5 
A 

(5-25) 
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The fit of the Lehman distribution to two sources of experimental data was undertaken to 
examine its applicability to reality. The first fit was made to the square of the magnetic field 
found in the EMPTAC illuminated by the Ellipticus antenna; these data are shown in Figure 5.4 
for the high-frequency sweep (100 MHz to 1 GHz). It can be seen that there is a trend in the data 
where the magnitude increases with frequency. Using the average of this data to define the A 
parameter, the fit is given in Figure 5.5. (In Figure 5.6, additional comparisons include log normal 
and chi square matches.) The solid line is the EMPTAC data and the dashed line is the Lehman 
distribution. It can be seen that the best fit is for the largest values of the magnetic field. This is 
probably due to dominance of the field variations over the trend only at the largest values. To 
verify this assumption, the fit of the EMPTAC data from 500 MHz to 1 GHz was found. These 
limits were chosen to use data for which there was no obvious trend (see Figures 5.3 and 5.7.) 
The improved fit in Figure 5.8 indicates that, in this restricted range, the Lehman distribution 
describes the data well, even at and below midrange. 

In Figure 5.9, we see EMPTAC data for the low-frequency sweep (300 kHz to 100 MHz). 
The lower values in this plot are believed to be beneath the noise floor. Even so, the Lehman fit 
(Figure 5.10) matches the data distribution nicely, especially (again) at the upper tail. Figure 5.11 
shows a partial low-frequency sweep (9-100 MHz). This data is actually less well matched 
(Figure 5.11), although the upper tail (cdf > .7) is still not badly anticipated. 

The second set of experimental data to be examined was that taken by Pohle of the Air 
Force Phillips Laboratory on the Celestron 8 telescope. Data were taken from 1.5 GHz to 18 
GHz in three sweeps. Figure 5.13 shows the 1.5 - 3.5 GHz data, and Figure 5.14 shows that the 
Lehman distribution matches even this strange measurement result. Figure 5.15 shows the 3.5 - 
8.0 GHz data. This is a case where the Lehman procedure has been pushed too far (see Figure 
5.16). It is not clear at this time what is the critical difference between the Figure 5.14 data and 
the Figure 5.16 data. Finally, data from the 8 to 18 GHz sweep was compared with the Lehman 
distribution. These data are shown in Figure 5.17. Even at the highest frequencies, there is here a 
residual trend, but the match with the Lehman distribution is still quite good (see Figure 5.18). 

Based on these comparisons, the Lehman distribution fits as well as or better than the 
hybrid chi-squared distribution. In addition, there is a physical basis in the approach of two- 
degrees-of-freedom power in the cavity driven by six-degrees-of-freedom apertures. The 
capability of the Lehman distribution to fit the data well at the highest values obviously advocates 
its use in its present or enhanced form. 
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Figure 5.4. Square of magnetic field in the EMPTAC (100 MHz - 1 GHz high- 
frequency sweep of H„ B050MBHZ) 
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Figure 5.5. Lehman distribution (based on A = 3.814e+7 = 3/ji^ and EMPTAC 
data from 100 MHz to 1 GHz. 
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Figure 5.6 EMPTAC data from 100 MHz to 1 GHz compared with various fits. 
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Figure 5.7. Square of magnetic field in the EMPTAC (500 MHz - 1 GHz partial 
low-frequency sweep of Hz, A050MBHZ). 
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Figure 5.8. Lehman distribution (based on A = 2.591e+7 = 3/u,^) and EMPTAC 
data from 500 MHz to 1 GHz. 
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Figure 5.9. Square of magnetic field in the EMPTAC (300 kHz - 100 MHz low- 
frequency sweep of Hz, A050MBHZ). 
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Figure 5.10. Lehman distribution (based on A = 1.63e+10 = 3/^) and EMPTAC 
data from 300 kHz to 100 MHz. 
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Figure 5.11. Square of magnetic field in the EMPTAC (9 MHz - 100 MHz low- 
frequency partial sweep of E„ A050MBHZ). 

115 



Subset of EMPTAC Data 

c o 
■■§ 
•5 

"3 

o 

1-10 
-13 

1*10 
-12 1M0 1M0    " 1*10 

Magnitude of Sorted Array 

— Cumulative EMPTAC Data over Subset 
" "    Lehman Distribution of Subset of Data 

Figure 5.12. Lehman distribution (based on A = 1.478e+10 = 3/u^J and 
EMPTAC data from 9 MHz to 100 MHz. 
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Figure 5.13. Power flux density at focal plane in Celestron 8 satellite telescope for 
1.5 GHz - 3.5 GHz sweep. 
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Figure 5.14. Lehman distribution (based on A = 1.596e+3 = 3/u,^) and Celestron 
8 data from 1.5 to 3.5 GHz sweep. 
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Figure 5.15. Power flux density at focal plane in Celestron 8 satellite telescope for 
3.5 GHz-8 GHz sweep. 
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Figure 5.16. Lehman distribution (based on A = 4.053 = 3/jij^J and Celestron 8 
data from 3.5 to 8 GHz sweep. 
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Figure 5.17. Power flux density distribution at focal plane in Celestron 8 satellite 
telescope for 8 GHz - 18 GHz sweep. 
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Figure 5.18. Lehman distribution (based on A = 1.929 = 3/u.kJ and Celestron 8 
data from 8 to 18 GHz sweep. 

LEHMAN FIELD DECONVOLUTION: BRIEF OVERVIEW 

The next objective is to find a probability density function efcu) = efy) which answers 
following question: if the probability density function of z is the Lehman probability density 
function (5-17), where z is related to u and v by (2-18), what is the probability density function 
efu)l The solution of this problem is tedious, and will be given after this overview. 

The answer proves to be 

efu) — e "2A"2 + \Itfu2e -2^|H|       -°° < u < +<*> 
\ 271 

(5-26) 

and the corresponding cumulative distribution function Efu) is 

Efu) = 

zJiR 

2     fr    J0 

1        1   u 
— + 

2 |«| 
1 - e -2VÄHV  Cv^M)' 

k = 0 k\ 

(5-27) 
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To demonstrate the use of this result, we generated two ensembles (one for each phase- 
quadrature field component) of 500 random numbers between 0 and 1. These random numbers 
correspond to probability, i.e., to Rspace of (3-21). By means of (3-20) and (3-21), we introduced 
autocorrelation while generating the arrays. These probability arrays were next transformed to 
Lehman-distributed variate values for phase-quadrature field drivers by the use of the inverse 
Lehman-field operator, Efl(J)) implied by (3-1) and (5-27). This operation is analogous to (3-1) - 
(3-3) for obtaining normally distributed drivers, except we are no longer dealing with the inverse 
normal operator P~x(f). One of the so-generated cumulative distributions, based upon A = 10, 
appears in Figure 5.19. A plot of Efu) from (5-27) is overlaid on this figure. From this ensemble, 
we numerically found u, and a, as 0.34 and 0.46. Two more overlays were then placed on Figure 
5.19, with A determined from the data through the relations of (5-25).   All four plots may be 
seen to lie in excellent agreement. 

(Before deriving his result, Lehman had observed that power flux data inside leaky 
chambers frequently had a o/u ratio of about 1.3 « \/(15)/3. Mention has been made that the 
Lehman distribution may have evolved from a mixture of physical insight and search for a 
distribution function with this property.) 

We have measured EMPT AC cable current results available at four cable points for the 
high-frequency sweep (100 MHz to 1 GHz, see figure 4.17). Consequently, we next drove the 
EMPT AC cable model with Lehman-distributed fields. The Lehman parameter A was numerically 
deduced from the data appearing in Figure 5.4 by means of (5-25), and the fields so created were 
converted to cable currents according to the procedure outlined in (3-6) - (3-16). The three 
closely bunched measured current distributions are superimposed with two cable current 
computations in Figure 5.20. It may be seen that the modeled currents lie within or very close to 
the experimental spread. One of the computed currents was evaluated near the cable midpoint, 
and the other was evaluated near an end. The reason cable currents are not sensitive to separation 
from cable endpoints or to termination parameters, so long as the observation point is at least two 
wavelengths from the end, is discussed in great detail in Section 8. 
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Lehman Distrib's: Canonical vs. Random 
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Figure 5.19. Overlay of 1) random field values, plotted as summed & squared 
components after Lehman rescaling according to (3-3) and (5-27) and based on A 
= 10, 2) values computed directly from the Lehman cumulative distribution 
function (5-22) with A = 10, 3) values computed directly from the Lehman 
cumulative distribution function with A = 3/u, where u = 0.34 was obtained from 
the random-rescaled ensemble, and 4) values computed directly from the Lehman 
cumulative distribution function with A = \/15/a, where a = 0.46 was obtained 
from the random-rescaled ensemble. 
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Calculated and Measured Currents 
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Figure 5.20. Two EMPTAC cable-current amplitude (unsquared) distributions based on 
cable model of (3-6) - (3-16) with the same parameters as those used to generate Figure 
4.17, except that the Lehman electric-field distribution (5-27) was used instead of a chi 
square distribution. The Lehman parameter for the fields was determined from 
experimental data to be A = 17600. Also overlaid on this plot are the same three 
experimentally obtained EMPTAC current distributions used in Figure 4.17. The model 
cable current distributions lie close to or within the experimental spread, perhaps even 
more so than that in Figure 4.17, and also are relatively insensitive to distance from the 
cables ends. 
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LEHMAN FIELD DECONVOLUTION: IN-DEPTH DERIVATION 

The explication which follows is due to the tenacity of the second author. It is not light 
reading, and, while significant to a full understanding of the field phase-quadrature Lehman 
distribution, is not vital to its use. 

The Lehman Probability Density Function 

The approximate form of the modified Bessel function of the second kind, of order v, is, 
for large arguments, 

U*)   « flanei^)   « large^ 
■K 

\ 2z 
1   ,   u(v)-l  + (u(v) - l)(u(v) - 9) 

8z 2(8z)2 
(5-28) 

u(v) = 4v2 

and for small arguments, 

*v<*)   » fSmal^)   *   ^f- 
'!)' 

(5-29) 

If v is 2, the above reduces to 

*v(*>   * ftarget)   *   ^  ~ e 
z 1 + 

8z       2(8z)2 
(5-30) 

Figure 5.21 illustrates the fit of the approximation 

*■(*)   * flarJz) t1   -  ^ "^)  + fsmalt?) ß (5-31) 

to the desired function K2(z). Figure 5.22 illustrates the Lehman probability density function (5- 
17) for A = 1 and 10, and also the cumulative distribution. 
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Figure 5.21. Comparison of 
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Using the fiarge mdfsmall expressions above give two approximate Lehman probability 
distributions: 

AfcfeA) = A2zt 
71        . e -2Vte 

\ 4jKz 
1 + 

1 

{        sfä) 
(l -e'Az) + A, 

--Az 
(5-32) 

and 

hJz,A) = A2z 
TC -2^/Kz 

\  4y[X~Z 
1   + 

^J v 2 
(5-33) 

These forms differ from each other in the auxiliary functions multiplying/^ and/w/ terms 
required to minimize the effects of the /^ function in the/w/ domain, and vice-versa. Figure 
5.23 shows how these two approximations fit the actual Lehman probability density function. 

Now we introduce integral and summation expressions for K2(z) which can be numericaly 
evaluated. These v-dependent forms can be used to evaluate noninteger, modified Bessel 
functions. The integral form is 

Kfyj) =       f     e'z^z' cosh(yz)dz (5-34) 

and the summation form is 

KM = KJvJ + K,e{^) 
Tv (5-35) 

where 

Kn»JyA = 
JXv)f2^    "z 

2
    V ZV 

v + 1.5 

v + 1 (5-36) 

and 

Ku»Jy>?) large 
TC 

\ 2z 

v +2 

I + E —— n(^(v)-(2/»-i)2) 
if = i  w!(8z)" M = I 

■(l-«-*"")        (5-37) 
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where, if v is not an integer, it is rounded up to the next higher integer. Figure 5.24 illustrates the 
fit of these approximations to K5(z). The integral fit may be seen to be superior, but it takes much 

longer to evaluate. 

The Lehman-Associated Field-Component-Squared Probability Density Function 

The next step is determining the form of the function/Xx) which, when convolved upon 
itself as in (2-86) or (4-5), gives back the Lehman pdf (5-17). In the low-z limit, the 
autoconvolution must be the same as the Lehman pdf, which may be evaluated from (5-17) as 
A/2. The square root of the Laplace transform of the low-z limit is (A/2sf, which has in inverse 

of [A/(2nx)]v\ Thus, the small-x form for/Xx) is 

/,o(*>A) = AS   27tX 
(5-38) 

which corresponds to a small-z approximation for hjz) of 

hlQ(zA) = ///o(* " xA)fl0(xA)dx (5-39) 

Figure 5.25 illustrates the error of (5-38) and (5-39) as a function of z for A = 1. 

A general form which yields the same low-x limit is 

/..(x,A,a,ß,Y) 
'\ 2% \2^)lT{v{aM) 

v(«,ß) 
2aß 

(5-40) 

This corresponds to a Lehman distribution approximation of 

z 

/*n(z,A,a,ß,Y) = ffn(z - x,A,a,ß,y)/n(x,A,a,ß,Y)dx (5-41) 

Figure 5.26 compares the (5-41) approximation to the actual Lehman pdf for A =1.   This fit is 
based on minimizing the mean square error of the approximate fit, which leads (for A = 1) to 
(a,ß,y) = (1 02, 0.578, 1.056). The optimized parameters look like they might be pointing to 
(1,VM), but these numbers don't actually yield a very good match. The fit is sufficiently bizarre 
that it probably has no real implication of Bessel functions being in the solution for/Xx) beyond 
the fact that they happen to give a reasonable overlay. 
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Figure 5.24. Integral (5-34) and high-low asymptotic (5-35) approximations to K5(z). 
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approximation fm(z,A) of (5-38), for A = 1. 
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Figure 5.26. Deviation of hn(z,A,a$,y) of (5-41) from Lehman pdf based on A = 1. 
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The actual dependence offn(x,A) on A can be determined from (5-40) in such a way that 
(a,ß,y) does not have to be recomputed every time A is changed. In particular, (5-39) can be 
manipulated to show 

Az 

hn{Az,\) = |/M(Az - x,l,a£,y)fn(x,l,a$,y)dx 

= Affn(A(z - x),l,a,p,Y)/n(Ax,l,o,p,Y)dt 

For simplicity, let us call 

fn(Ax) =/1(AX,1,O,P,Y) (5-43) 

and 

/n(x,A) =/n(xA«,P,Y) (5-44) 

where, in this notation, it is implied that (a,p,Y) = (102, 0.578, 1.056). 

The above definitions, along with (5-42), then lead to the result 

/n(x,A) = A%(Ar) (5-45) 

or 

/ii(*A) = 
f riafi)Ky(aJy[Axf) 

V^rt ( 2V^P)-Xr(v(a,p)) 
(5-46) 

Let us define a misfit function for hn(z,A) asM^A) as 

Mj(z,A) = log 
hn(z,A) ~ PW(^A) 

pld(z,A) 
(5-47) 

with hn(z,A) defined by (5-41) and (5-46). Figure 5.27 shows contour plots of M^zji) as 
functions of z and A. This misfit is roughly dependent on the product zA. (Log z plus log A = a 
straight line with a negative 45° slope.) The misfit does not exceed 20% for zA < (15)2, and 
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generally is well below 5%. Review of Figures 5.1 - 5.20 indicates that this is an acceptable 
dynamic range. 

Misfit Function 

Figure 5.27. Contour plot of 
the misfit function Mx(z,A) 
(5-47) for the hn(z,A) (5-46) 
approximation to the Lehman 
distribution. 

The Lehman-Associated Field-Component Probability Density Function 

At this point, we have obtained a reasonable approximation for//r,A), the distribution of 
the square of the phase-quadrature field components [see (2-80) and (2-81)]. What we actually 
need is the distribution of the phase-quadrature of the field components themselves, e{u,K) = 
e{v,N). Given the distribution of x, finding the distribution of« (or its generation by random 
numbers) should be easily accomplished from the relationships in Section 2 [(2-54) to (2-61)], of 
which (2-59) is the linchpin. 

Here, we have, x = u2, and g'1 of (2-58) is ()2. Thus, the distribution of e{u,K) = e/v,A) is 

en(u,A) = fn(g-l(u)A) 
dg-\u) 

du 
(5-48) 

This relationship transforms (5-46) into the desired formula, 

en(u,A) = 
2Au ( rmK^MAu*f)) 

{   2^P)"1r(v(a,ß))  ) 
(5-49) 
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where this distribution is on amplitude from 0 to °°. If the distribution is on value, from -°° to +°°, 
the probability density function must be divided by 2, and u replaced by \u\. Figure 5.28 
illustrates the pdf, en(u), and the cdf, En(u), both based on A = 10. 
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Figure 5.28. The pdf and cdf approximations, en(u,A) and En(u,A), to the Lehman- 
associated field amplitude distribution (5-49), based on A = 10. 

FASTER LEHMAN FIELD DECONVOLUTION: IN-DEPTH DERIVATION 

There are other ways to approximate the phase-quadrature Lehman-based field drive 
which are easier and faster to compute, although not so accurate as the preceding. An alternative 
way, which we shall now present, is faster, primarily because it does not involve the use of Bessel 
functions. 

Alternative Lehman-Associated Field-Component-Squared Probability Density Function 

We again begin by assuming (5-38) and (5-39) hold for small z. Similarly, at large z, 

hn(z,A) = ffl2(z - x,K)fn(x,K)dx * f[2(z,A)ffl2(x,A)dx « /i2(z,A)      (5-50) 

where the last integral to the right must be unity because it is the integral of pdf over its entire 
domain. At large x, we thus obtain, in analogy with (5-32) or (5-33), 

fnfoV = x, 
TC -2^ 

\4fi 
(5-51) 

If we multiply the small-x approximation (5-38) by e 'x to make it vanish at large x, and add it to 
the large-x form, we obtain 
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/«&!) = + x 
\J1TIX \ 4^/x 

J^-e-2^ (5-52) 

Autoconvolution of (5-52) upon itself then should give an approximation to hn(z,l). Figure 5.29 
illustrates the replication of the exact hfz,\) from (5-17) with that obtained from autoconvolution 
of (5-52). 
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Figure 5.29. Comparison of the exact Lehman probability density function (5-17) and the 
approximate probability density function hn{z,\) obtained from autoconvolution of (5-52). 

We now do some fine-tuning of/ß(z,l) from (5-52). In particular, assume/ß(2,l) can be 
expressed in the form 

/B(*,l,a,ß,Y) = -^=: + yxae-^x (5,53) 
y2Tix 

and that, in analogy with (5-42), we can define 

z 

/z/2(z,A,cc,ß,Y) = |/Z2(z - x,A,a,ß,Y)//2(x,A,a,ß,Y)^ (5-54) 

where, for the time being, we shall assume A = 1. Performing a least-squares fit like that utilized 
in (5-40) and (5-41) results in (a,ß,Y) = (0.553,1.396, 0.771). These values produce a fit which 
is, at worst, 10% off (see Figure 5.30). 
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Figure 5.30. Comparison of the exact Lehman probability density function (5-17) and the 
approximate probability density function Äß(z,l,a,ß,Y)obtained from (5-54). This figure is 
based upon optimized selection of (a,ß,y) as (0.553,1.369, 0.771). 
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Figure 5.31. Comparison of the exact Lehman probability density function (5-17) and the 
approximate probability density function //c(z,l,cc,ß,Y)obtained from (5-55). This figure is 
based upon integerized selection of (a,ß,y) as 04,2,1). 

Fitting (a,ß,y) with integers or inverses of integers leads to, for A - 1, 

/i2(x,l,a,ß,Y) = 
-2x 

\/2%x 
+ r1/2e~V* (5-55) 

with/ß(x,A,a,ß,Y) still related to Äß(z,A,a,ß,Y) by (5-54). Figure 5.31 illustrates the agreement 
between autoconvolved (5-55) and the canonical pdf from (5-17). 

The dependence of /ß(x,A) on A can be introduced into (5-55) exactly as was introduced 
into (5-46), with the result 
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/«(*A) = A 
-2A* 

^ <J2% AX 
+ (Ax),/2e ^v^1 

(5-56) 

where/ß(x,A) is fß(x,A,a,ß,y) with (a,ß,Y)set to 042,1)- A misfit function for ha(z,A), M2(z,A), 
can then be given the same definition asM^A) in (5-48), except that^(x,A) and ha(x,A) now 
come from (5-56) instead of from (5-46). Figure 5.32, corresponding to Figure 5.27, shows 
contour plots of M2(z,A) as functions of z and A. The misfit also is roughly dependent on the 
product zA. It is mostly less than 10%, but does reach 50% for zA = (15)2. 

Misfit Function 

Figure 5.32. Contour plot of 
the second misfit function 
M2{z,A) for the AQ(z,A) (5- 
56) approximation to the 
Lehman distribution. 

It is possible to integrate (5-56) from 0 to x using known forms [8]: 

Fl2(x,A) = [P(t) - V4] + V2 
A   *k 

1 -e' 
k = o k\ i 

with   t = y]4Ax (5-57) 

where P{t) is still the cumulative normal distribution (2-24). Figure 5.33 illustrates Fß(x,A) for A 
= 10. 
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Figure 5.33. The cdf for the 
phase-quadrature components 
squared, based onFn(x,A) for 
A = 10, from (5-57). 
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Alternative Lehman-Associated Field-Component Probability Density Function 

At this point, we have obtained a another reasonable approximation for/ß(x,A), the 
distribution of the square of the phase-quadrature field components [see (2-80) and (2-81)]. 
Again, what we actually need is the distribution of the phase-quadrature of the field components 
themselves, eß(«,A) = eB(y,A). Given the distribution of x, finding the distribution of u (or its 
generation by random numbers) should be easily accomplished from the above-cited relationships 
in Section 2. 

In particular, (5-49) still applies, with g'1 of (2-57) remaining ()2- These relationships 
transform (5-56) into the desired formula, 

e  („M =     2A e-2A«2 + 2s/Ä1u2e-2^Ku      0 ^ u < 
12 \    -K 

(5-58) 

where this distribution is on amplitude. If the distribution is on value, from -°° to +«, the 
probability density function must be divided by 2, and u replaced by | u \ 

el2(«A) = . Ae-2A«2 +Jtfu2e-2JKu 

2TT 
-oo   <   U  <  oo (5-59) 

This probability density function can also be expressed as 

2jX 
(5-60) 
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where eg(u,ag) is the normal probability density function (2-34), and hx2(6,u) is the chi square 
probability density function with six degrees of freedom (5-6) - (5-9), which leads to a cdf of the 
form 

EI2(u,A) = iEg(u,og) + I 1 + Hx2(4jX\u\> 
u 

(5-61) 

Equation (5-59), finally yields the probability density function (5-26) given in the Brief 
Overview Subsection. Moreover, (5-59) can, alternatively to (5-61), be integrated over u to give 
the associated cdf, En(u,A) of (5-27).   Figure 5.34 illustrates this en(u,A) and the associated cdf, 
EB(u,A), both based on A = 10. This cdf converges to unity because its integral is just represents 
a change of variables from (5-57). The standard deviation of eß(w,A) over u may be shown to be 
[13/(8A)]K. Figure 5.35 illustrates how the normal and chi square parts of the cdf contribute as 
functions of u, and Figure 5.36 illustrates the inverses of Eg(u,ag) and Hx2(6,4AVlu), based on A = 
10. 

Uj.A)   0.5  - 

1*10 0.01 0.1 0 ^T 
1-10 0.01 0.1 

Figure 5.34. The pdf and cdf approximations, en(u,A) and En(u,A), to the Lehman- 
associated field amplitude distribution (5-26) and (5-27) or (5-59) and (5-60), based on A 
= 10. 

Numerical testing shows that, for A fixed, the inverse ofEn(u,A) lies between the inverse 
of EJu,ag) and the inverse of Hx2(6,4AVlu). Thus, the first step in inverting En(u,A) is to invert 
the other two distributions (both of which are automated in Mathcad®) and take the average. A 
process along these lines is implemented in our software, and leads to the respectable result 
shown in Figure 5.37 for the difference between u and Ea[Et{\u)].   Of course, the final check on 
this work is the generation of two unsquared phase-quadrature components, which may then be 
squared, summed, and compared to the Lehman distribution. Figure 5.38 shows two such 
ensembles, each consisting of 500 values and based on A = 10. Autocorrelation has not been 
added to these ensembles. They return squared-and-summed values of 3/u7 = 8.959, T/15/O, = 
9.359, and o/u; = 1.236, which are respectably in agreement with the proper values [see (5-25)] 
of A, A, and 1.29. These are the ensembles upon which Figure 5.19 was based. 
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Figure 5.35. Contributions of the Gaussian-like and x2-hke parts of the phase- 
quadrature cdf 
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Figure 5.36. Inverses of Eg{u,ag) and Hxl{6,AKA\u\)-{u/\ii\) [see (5-61)] for A = 10. These 
inverses are directly accessible from Mathcad®. The inverse of F/2(x,A) has been found always to 
lie between these two inverses. Thus, the average of these two inverses is a fair and easy first 
guess for a binary fit to Fß"'(/?7A). 
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Figure 5.37. Evaluation of 
the fidelity of our algorithm 
for finding Fa(x,A) and its 
inverse. This figure is based 
on A = 10, and indicates 
accuracy to a part in 10"4. 

Random Lehman-Distributed Fields 

Figure 5.38. Two 500-point ensembles of Lehman-distribution-related 
phase-quadrature random variables, based on (5-60), with A = 10. 

To test our process further, a total of seven such 500-point ensemble pairs were generated 
using A = 10. Table 5.1 presents the resulting squared-and-summed 3/u,, Jl5/oh and o/u,. 

Table 5.1. Results of Lehman-Distributed Random Variable Ensemble Parameters 

Test Number 3/U; Vl-5/Oy o/u, 

1 8.959 9.359 1.236 

.'■'      "■■■■'.2      ■■:'"■ 8.180 8.726 1.210 

'       ;:.       ■     3 9.434 9.884 1.232 

4 9.234 8.973 1.329 

5 8.519 8.262 1.331 

6 10.196 9.072 1.451 
■ 

7 9.073 10.249 1.143 
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FIELD AND CABLE CURRENT DISTRIBUTION IN SUBENCLOSURES 

For a topologically simple enclosure driven by an internal source, the power flux 
probability density function h(z) has been well documented, both theoretically and observationally, 
to be chi square with two degrees of freedom, (2-89) [3,5,6,10-15] 

h(z) = h%2(z) (5-62) 

If the enclosure is driven by an external plane wave with EM energy leaking in through apertures 
or other p.o.e.'s, the power flux in the enclosure becomes, as we have just finished describing, the 
product of two variates, (5-1). One variate has a chi square distribution with two degrees of 
freedom, and the other is chi square with six degrees of freedom. This conclusion was originally 
deduced by Lehman. [1,2] To review, the reasoning for the distribution of the second variate was 
that the apertures could be driven by fields having three possible axes of propagation, each 
accompanied by two possible independent polarizations.1 

The power flux probability density function for an externally illuminated leaky chamber, in 
terms of the two variates, thus becomes representable as (5-2), which leads to the Lehman 
distribution, (5-6). 

Using the above reasoning, for nested leaky chambers with drive from outside the outer 
chamber, the fields at the apertures of the inner chamber should have a Lehman-distributed power 
flux driving their h%2(6j) physical attribute, and the inner chamber itself should have its own 
hx2(2j) property. These statements imply that, after working our way down through the two 
topologies, we find the power-flux probability density function in the inner chamber to be the 
product of four variates, 

z = zxz2zyzA (5-63) 

The energy density inside a chamber is the sum of the two phase-quadrature components 
squared and resummed over the three physical axes; i.e., it is the sum of six squares, and thus 
will have distributional attributes reminiscent of chi square with six degrees of freedom. It 
may seem that this energy probability density function is the origin of the hx2{6^) attribute of 
(5-2) (as opposed to its origin being a consequence of aperture physics). This viewpoint is 
demonstrably incorrect, however, as the power-flux probability density function for internal 
illumination (5-1) also stems from an energy probability density function which is the sum of 
the same six squares. Yet (5-1) has no hx2(6,z) constituent. 
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where zx and z3 are x2 with two degrees of freedom, while z2 and z4 are x2 with six degrees of 
freedom.2 This expression may be reorganized by recognizing that the product of the zx and z2 

variates, z12, is a variate with a Lehman distribution, as is the product of the z3 and z4 variates, z34. 

Z = Z12Z34 (5-64) 

The overall probability density function of the power flux in the inner chamber may thus 
be obtained, in analogy with (5-6) or (5-8), as the logarithmic convolution of the inner and outer 
Lehman probability density functions: 

oo 

hwnJ?) &   =  j\(4> \2) \{zlz'\l> ^34) ^ln 4) & 

° , (5-65) 
t —'—'"  ...I..       dz    dz 

= f[A2
l2z[2 K2(2p^z[2)] [A

2
4 (zlz[2) K2(2jAnz/zl2)] —^— 

O Z12 

If it proves that z1 is properly omitted from (5-63), (5-64) will be replaced by 

Z = *2Z34 (5-66) 

and the first bracket in (5-65), containing the outer Lehman probability density function, will be 
replaced by the chi square distribution with six degrees of freedom, 

hxl(z2') = yl(z2)
2e-^ (5-67) 

FIELDS IN ENCLOSURES WITHIN MODE-STIRRED CHAMBERS 

The power-flux probability density function inside a mode-stirred chamber at a fixed point 
and frequency is chi square with two degrees of freedom. Thus, the power flux probability 
density density function in a leaky enclosure illuminated by the fields of a mode-stirred chamber 
differs from that present when illumination is plane wave by the addition of a third variate to (5- 
1), 

z = zQzxz2 (5_68) 

There is another line of reasoning which eliminates one of the variates with two degrees of 
freedom from (12). While more thought (and probably testing against experiment) will be 
required to sort out this choice, the procedure used to reach an ultimate mathematical 
expression for the inner-chamber power-flux distribution is independent of this choice. 
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where z0 is x
2 with two degrees of freedom. For simplification and conformity with previous 

notation, let us redefine the variate factors of (5-68) as follows 

z = zlz3z4 (5-69) 

Then, the power-flux probability density function inside the inner chamber becomes of the form of 
(5-65), with 

h{z[) = h%2(z() (5-70) 

replacing the outer Lehman distribution in (5-65); i.e., with hx2(2j) replacing Äx2(6,z) in (5-67), 

An item of additional concern with all these issues is that of how many independent 
variables are needed to define the probability density function. In the original Lehman distribution 
(5-17), only the mean power flux (u or A) inside the enclosure must be found. For nested 
enclosures, the mean power fluxes (A,2 and A34) in both the inner and outer regions appear, 
although we speculate that there will be some way to eliminate the outer Lehman parameter A12 

when attempting to determine the inner enclosure power-flux probability density function. 

The same is probably true for enclosures nested in mode-stirred chambers: (5-67) implies 
that Y6 and AJ4, 

are botn required, but we are sure there is a way to eliminate X6 when computing 
the power-flux and electric-field distribution densities inside the cavity. 

EXTRAPOLATION OF PLANE-WAVE RESPONSE FROM MODE-STIRRED 
MEASUREMENTS 

As indicated by (5-68), the power-flux probability density function of an enclosure in a 
mode-stirred chamber is obtained as the product of three variates, where z is the actual final 
result. However, (5-68) can be reversed to demonstrate that the associated plane-wave power- 
flux probability density function inside the enclosure can be expressed as the quotient of two 
variates, 

Z3Z4 =  V = zJzx (5-71) 

where z0 represents the mode-stirred power-flux probability density function variate within the 
enclosure, and z1 is a generic chi-square variate with two degrees of freedom. The probability 
density function of z0 is what would be measured in a mode-stirred chamber. What we actually 
want is the probability density function of the power-flux within the chamber when plane-wave 
illuminated, z^. 

The power-flux probability density function inside the chamber for hypothetical plane- 
wave illumination on the outside thus becomes 
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^meas^o)^^)^^! (5-72) 

where this expression gives the probability that z0 is between z0 and z0 + dz0, while z1 is between zx 

and zx + dzx. However, z0, zx, and zpware not all independent variates. If (5-72) holds, the 
probability that zx is between zx and zx + dzx, while z^ is between zpw and zpw + dz^ is obtained 
from the variate transformation 

Zx   =   Z! 

*0   = ZlZpw 

(5-73) 

The two-dimensional probability density function then becomes 

pw (5-74) 

where 

d(*i,*o) dz1/dz1   dz0/dzx 

dzi/dzv* dzn Idz 0 pw 

1 pw 

0 / 
zl 

(5-75) 

is the Jacobian of the (5-73) variate transformation. We now wish to find the probability that zpw 

is between zpw and zpw + dz^ regardless of zx. This ID probabihty differential is obtained as in 
previous situations [(2-86) and (5-6)], by summing all the 2D probability differentials of zx' and z^ 
over zx ; i.e., by integrating (5-75) over all possible zx 

MV^pw / 
h     (z!z   )h 2(z,) z, dz, dz 

measv 1    pw'    X2     l      1       l pw (5-76) 

Equation (5-76) is the desired formula for extracting a predicted plane-wave power-flux 
probability density function h{z^ from a measured mode-stirred data set Ameas(z0). This equation 
can be used, for example, to relate the experimental results from the PLEXIS electronic mode- 
stirred chamber (being developed at the Air Force Phillips Laboratory) to the radiated 
susceptibility limits of standards such as MIL-STD-461D, SAE J 1113 and 1338, and the 
European IEC 801-3 - based EN 50082-1 and IEC 1000-4-3 (now under development). All these 
standards specify transmission-line excitation, and IEC 801-3 notes that, "The use of shielded 
enclosures has always caused a high degree of controversy..." 
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There is a variable y2 in hx2(2^) which needs to be eliminated from (5-76). Again, 
although we have not yet worked through the relevant derivation, we assume all powers of y2 in 
(5-76) will cancel upon actual implementation. 
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Chapter 6. FIELD-TESTS OF LEHMAN-MODELED CABLE CURRENTS, 
THE BETA DISTRIBUTION, AND ACCEPTANCE LIMITS 

In addition to having data available from the EMPTAC facility and the Celestron 8 
satellite telescope, we had the opportunity to make our own measurements with a waveguide- 
cavity approximately lm * lm * 8m, and a Global Positioning Satellite (GPS) bus, the latter 
provided by the Air Force Phillips Laboratory. In this section, we shall describe testing done on 
these systems. Additionally, we shall here work through the (3-7) - (3-12) field-to-current 
algorithm to evaluate cable current distributions ensuing from Lehman-modeled field distributions. 
(In the previous section, we only developed and tested EM-field models.) 

MEASUREMENTS IN THE WAVEGUIDE CHAMBER 

We first measured electric fields at 401 frequencies from 300 MHz to 3 GHz using an 
EG&G ACD-4 ^sensor connected to an HP8753 network analyzer. The waveguide cavity (see 
Figure 6.1) was illuminated by a log-periodic antenna (see Figure 6.2) driven by the network 
analyzer in tandem with an amplifier, which boosted the total antenna input to 1 W. The cavity 
configuration was approximately J-shaped, with the T lying in a plane parallel to the ground, and 
leakage mostly at the crown of the "J", which was also the surface facing the antenna. Current 
was observed on the shield of a coaxial cable, which was placed in a variety of orientations inthe 
chamber. The currents were measured by the network analyzer through a Fischer PNF-65 §B ■ ds 
probe. Placement of the current probe was at the cable midpoint. 

The Asensor was moved around within the chamber volume to obtain the four sets of 
data we will cite. A distance of 1 - 2 m was maintained between the probe and the cable. 
Orientation of the illuminating antenna was also a variable. 

We made two comparisons between model values and experimental results: 1) Lehman 
statistics were checked against the measured field distributions, and 2) modeled currents were 
compared to observation. Figure 6.3 presents the average cumulative distributions of four 401- 
frequency-point electric-field sweeps. The comparison is between the normalized and averaged 
squares of the magnitude of the electric field data and the Lehman cumulative distribution 
function (cdf) (5-22). Normalization was performed by dividing each of the four data sets 
(squared), by the four individual averages of the squared data: 

zt = lA[zal\yx + z,.2/u2 + r,3/u3 + z/4/u4] (6-1) 

This normalization permitted combined use of data from different observation points (where the 
fields might have different average values), without superimposing possibly different spatial 
distribution functions of the frequency distribution functions of immediate concern. (The spatial 
distribution functions should also be Lehman, but we did not want to test two hypotheses at 
once.) Also shown if Figure 6.3 is the chi square (with two degrees of freedom) cdf, #x2(2, z), 
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Figure 6.1. Top (front) of the J-shaped microwave chamber 
used for field- and current-distribution testing. 

Figure 6.2.  GPS bus (less antenna and solar panels) illuminated by 
log-periodic antenna (right).  Note dust mop (in front of bus) to give 
size perspective. 
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Data, Lehman, and Chi-Square Dists 
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Figure 6.3. Cumulative distributions of averaged, normalized waveguide- 
chamber electric fields (measured), compared with those predicted from 
Lehman (5-22) and xl (2-89) models. All curves are normalized so u = 1 

100 

(2-89). The Lehman distribution may be seen consistently to hug the experimental data more 
closely than the chi square distribution. 

The second comparison was made between modeled and measured currents. Using the A 
parameters from the four sets of measured electric fields before normalization, four sets of 
Lehman-distributed phase-quadrature fields were generated from random numbers between 0 and 
1 using the inverse Lehman operator associated with (5-27) or (5-61). These fields were then 
input to the (3-7) - (3-12) field-to-current algorithm to obtain model currents on the cable. The 
magnitudes of the four sets of measured and modeled currents were then normalized by the means 
of the associated measured-current sets. (The modeled-current sets were not normalized by their 
own means, thus preserving possible systematic discrepancies between the measured and modeled 
results.) Cumulative distributions of the eight resulting normalized current magnitudes appear in 
Figure 6.4. The four normalized, measured currents all cluster very tightly to the left (smaller) 
side. Three of the predicted data sets also overlay very tightly; there is a single high-value outlier. 
The modeled currents are consistently larger than the observed, although never by more than a 
factor of two. There are two possible sources of this disagreement: the driving-field model and 
the field-to-current algorithm. Because of the excellent agreement between measured and 
modeled fields in Figure 6.3, it is probable that most of the error occurs in the second of the 
above. 
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At this point, electric fields were monitored at two additional sites inside the waveguide 
chamber. Figures 6.5 and 6.6 illustrate the observed cumulative B? distribution, along with the 
Lehman cdf. The Lehman parameter was determined from the measured E? mean, A = 3/u. The 
associated Lehman phase-quadrature field distributions (autocorrelated) from (5-27) were then 
input to the field-to-current algorithm of (3-7) to (3-12), leading to the midpoint cable current 
distributions shown in Figures 6.7 and 6.8. So far, all Lehman-based cable current calculations 
exceed what was measured. While this seems to occur regularly for the waveguide chamber, it 
does not always hold for GPS cable current models. 

In this series of tests, we also first looked at fields and cable currents inside the GPS bus. 
Figures 6.9 and 6.10 show two typical cumulative B? distributions and the associated Lehman fits. 
These Lehman fits then gave current drivers (autocorrelated) from (5-27) to model GPS cable 
response according to the (3-7) to (3-12) formulation. Resulting modeled and measured currents 
appear in Figures 6.11 and 6.12. One may see here that the currents are no longer consistently 
over predicted, although deviation between model and measurement remains within a factor of 2. 
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Figure 6.4. Overlay of four cable current measurements (cluster of four left 
traces), and four cable-model predictions (cluster of three middle traces and 
right outlier). Each modeled cable current distribution is normalized by the 
mean of the associated measured distribution. 
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Measured and Lehman Distributions Measured and Lehman Distributions 
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Figure 6.5. CDF of E2 at Loc. 1 inside the 
waveguide chamber. Based on measured A = 
2.986. (©) 
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Figure 6.6. CDF of £? at Loc. 2 inside the 
waveguide chamber. Based on measured A = 
2.954. (flO) 
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Figure 6.7. CDF of ABS(7) at Loc. 1 inside the 
waveguide chamber. Based on Lehman it-field 
distribution of Figure 6.5. (fl and f2) 

Figure 6.8. CDF of ABS(7) at Loc. 2 inside the 
waveguide chamber. Based on Lehman Zi-field 
distribution of Figure 6.6. (f3 and f4) 
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Measured and Lehman Distributions 
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Figure 6.9.   CDF of E? in lower Bay 1 of GPS. 
Based on measured A = 3.486. (f5) 
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Figure 6.10.  CDF of £* in lower Bay 2 of GPS. 
Based on measured A = 3.344. (f6) 
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Figure 6.11. CDF of ABS(7) on cable bundle in 
lower Bay 1 inside the GPS. Based on Lehman E- 
field distribution of Figure 6.9. (f7 and f8) 
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Figure 6.12. CDF of ABS(7) on cable bundle in 
lower Bay 2 inside the GPS. Based on Lehman E- 
field distribution of Figure 6.10. (fl 1 and fl2) 
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THE BETA DISTRIBUTION 

For compatibility with some other statistical EM survivabiUty/vulnerabihty (SAO software, 
requests have been made that we look into the beta distribution as a possible designator of field or 
power-flux distributions. The beta distribution cdf is defined as 

(6-2) 

where B(a,b) is the beta function with a and b both positive 

B{a,b) = jv^O-zy-1*' (6-3) 
o 

The beta function is best evaluated by expressing it in a gamma function expansion: 

*»> ■ m 
It can be seen that the variate values of the beta distribution range from 0 to 1. Thus, in 

addition to the a and b parameters, the values of the data to be compared to the beta distribution 
must be scaled and shifted so they He in the unit interval. Hence, the beta distribution has four 
parameters: scale, shift, a, and b, as opposed to the single parameter A of the Lehman 
distribution. 

Three of the four parameters are found using the mean up, the standard deviation op, and 
the coefficient of skewness Kp. We will assume the fourth parameter, offset, is zero as it would be 
a fairly bizarre random power flux distribution that did not permit values below some threshold. 
(In point of fact one of the reasons for even considering a beta distribution is that it does not 
permit random numbers between 0 and 1, after passing through it's inverse operator, ever to 
exceed some finite value. For zero offset, this value is just the scale factor. Here is a basic 
difference from all the other distributions we have considered; they all have some small, but 
nonzero probability that any value, no matter how ridiculously large, can be exceeded by the 
inverse operator's output.) 

The coefficient of skewness is a third-order statistic. It is based on the third moment of 
the data about its average, normalized by the standard deviation 

Kp  =  -~ t  <* " Up)' (6"5> 
Nop i = i 
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It is related to the beta distribution a and b by 

2{b-a) 
^      (a + b+2) \ 

(a + b + 1) 
ab 

(6-6) 

The coefficient of skewness can be used to find a scaling factor s which translates the data 

to values between 0 and 1, 

s 
*P 

Up o„ 

^ 
Kp "p _ 

o„ 

(6-7) 

The remaining parameters of the beta distribution are then given by 

a I-"* 
5 

b = a -1-1 
UP 

(6-8) 

The coefficient of skewness is, of course, subject to a variation on a finite sample. That is, 
if one generates an infinite data set with a given Kp, the evaluation of the skewness from a finite 
sample of the data will not give back exactly the value used to generate the data set. 

To maintain values of a and b which are both positive, the coefficient of skewness is 
constrained to certain values, 

2o„ 
Kp < —* (6-9) ^-^<K„< 

up     °p        r       H 

In other words, certain data sets cannot be fit to a beta distribution. 

The probability density function (pdf) associated with the beta cdf (6-2) is 

za-l(\-z)b-1 0 £ z < 1 (6-10) W-b)" mm 

We, however, now have an interesting choice. The general assumption was that the beta function 
of (6-2) would describe the squared fields or power flux distribution. Extraction of the phase- 
quadrature field components would then involve very tedious manipulations like those applied to 
the Lehman power density pdf in Section 5. There was a strong physical argument in Section 5 
for associating the Lehman distribution with power flux. There is no such compelling physical 
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argument in the case of the beta distribution. Its primary attraction is that of absolutely forbidding 
cable-drive model fields to exceed some selected ceiling. 

However, this objective is equally satisfied by making the intermediate quantity, the phase- 
quadrature fields'squared, but unsummed, be the quantity which is beta distributed. If we make 
this choice, (6-10) actually becomes replaced by 

*fc**>= im x
ol0 -x)b _1 0 < x < 1 (6-11) 

in keeping with the convention of (2-86), (4-6), and (5-41). Now, instead of having to 
deconvolve hfajajb) to find/p(x,a,6), we have the far easier task of autoconvolving/p,(z,a,6) to 
find hp(x,a,b): 

h^(z,a,b) = fßx'siMfyiz -x'ab)dx' 

fx/a-1(l-x')b-\z-x/y-1(l-(z-x'))b-ldx 
(6-12) 

B{a,bf J0 

0 < z < 1 

Generation of the actual phase-quadrature field components now follows simply from (2- 
103), 

e^u,a,b) - |«|/p/(«2A*) = Jj?Lu«-»(l -«2)6"1       "I ^ ^ 1 (6-13) 

A DETAILED LOOK AT A GPS RESPONSE 

In this subsection, we shall take a close look at the fields and cable currents predicted by 
our models and verified or rejected experimentally by the Figure 6.2 setup of a log periodic 
antenna illuminating the GPS. First, the electric field (actually D), was measured at a fixed 
location in the 5BH bay on the lower dark-side of the GPS as frequency was swept in 401 steps 
from 600 MHz to 2 GHz. The result of squaring this field is plotted in Figure 6.13. Figure 6.14 
illustrates the autocorrelation of this data. It bears a not unreasonable resemblance to 
autocorrelation of other experimental data taken on the EMPTAC (see Figures 2.7-2.9). 

The data was first compared to a chi square distribution. Figure 6.15 shows the result 
plotted against a Kolmogorov-Smirnov test for 90% confidence of fit. The test is obviously 
failed   The confidence limits here are obtained by plotting (2-89), and then shifting the curves up 
and down by D, which for 401 points and 90 % confidence is 0.02385 (see Section 9). We then 
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tested the data against a Lehman distribution, with Figure 6.16 resulting. This test fit, while not 
actually passing, comes quite close. Next, the data was tested against a beta distribution, with 
(H,O,K) = (0.0170, 0.0213,1.98) implying (a,b,s) = (0.497, 5.30, 0.198). Figure 6.17 indicates 
this test is rather spectacularly failed at the low ranges, where a statistics breakdown doesn't have 
implications on a system S/V analysis. For the upper 65% of variate values, the fit is fine, 
especially so at the top of the plot where legitimate S/V concerns would be focussed. It is our 
conclusion that the beta distribution test is passed in the way that matters. Finally, Figure 6.18 
illustrates the results of a log normal test fit. This fit is perhaps best characterized as everywhere 
mediocre. 
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Figure 6.13. Observed £* at a fixed point in the 5BH bay on the lower dark-side of the 
GPS as frequency is stepped from 600 MHz to 2 GHz. Mean u, standard deviation a, and 
coefficient of skewness K were found to be (0.0170, 0.0213,1.98). 
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Correlation of Data 
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Figure 6.14. Autocorrelation of data appearing in Figure 6.17. Displacement is in units of 
frequency steps. This plot resembles Figures 2.7-2.9 taken on the EMPTAC facility, 
except the scale has been linearly stretched to go from -1 to 1 instead of 0 to 1. 
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Figure 6.17. The upper 65% of the Figure 6.13 data passes 90% K-S confidence test for 
fitting a beta distribution. This plot is based on (u,a,K) = (0.0170, 0.0213, 1.98), implying 
(a,bß) = (0.497, 5.30, 0.198). Despite the severe excursion an the lower tail, this fit is 
considered acceptable for practical (as opposed to purist) concerns. 
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ACCEPTANCE LIMITS 

While the Kolmogorov-Smirnov test is a nice, rigorous way for checking distribution 
models, it does not give the information which is really wanted for a S/V analysis. In particular, it 
applies confidence limits or intervals along the probability axis. What we really need to know is, 
are our conclusions reliable within some fixed magnitude error (say, ±50%)? If we, for example, 
examine the K-S plot in Figure 6.15, we see that the K-S test provides absolutely no information 
of the model's reliability for the fraction of results (or predictions) which are in the top 100x£>%, 
where, m this case, D =0.02385 (see Section 9). In other works, the K-S test is no help in 
determining if our model works at the extreme upper tail, where killer responses occur. The 
failure of the K-S test to give this information is even more graphically displayed in the original 
SEM work by Price and Davis, where the K-S limits are superimposed on probability plots. [1,2] 

To address this problem more appropriately, we introduce the concept of the acceptance 
limit or interval.[3] This interval is usually defined as the spread between the confidence curves 
along the axis perpendicular to probability or cdf, and thus is narrow at midrange, but broad at the 
distribution tails, and infinite above/? = 1 - D. As such, it, thus, gives no more help where help is 
needed. We chose to define the acceptance limits as the result of taking the model result and 
shifting it (say ±50%) along the axis perpendicular to the cdf. Figure 6.19 is the result of applying 
this procedure to the chi square model of the Figure 6.12 data. Our acceptance interval definition 
may be seen to be especially tidy if the axis along which model displacement occurs is logarithmic. 

Figure 6.20 is a similar acceptance interval plot tor the Lehman distribution model, and 
Figure 6.21 treats the beta distribution acceptance interval. Finally, Figure 6.22 treats the log 
normal representation. While all four models pass the acceptance interval test over the top 50% 
of the probability domain, only the Lehman model works everywhere. The beta model is 
considered an interesting alternative due to its remarkable fidelity at the very top of the domain. 
The chi square and log normal models give poorer accountings for themselves. 

Of course, the real test of a field model is whether its inverse operator yields random- 
number field drivers which produce cable current distributions in agreement with measured cable 
currents. We first used the inverse Gaussian operator, (2-28), (2-36) and (2-104), to generate 
phase-quadrature cable drivers corresponding to a chi square power flux distribution. 
Autocorrelation was included in the cable-drive ensemble according to (3-28) and (3-29), and 
converted to cable currents as outlined in (3-7) to (3-12). Results appear in Figure 6.23, plotted 
in comparison with a ±50% acceptance interval. (Only data for response from 600 MHz to 1 
GHz is included, as we do not have a current probe which performs above 1 GHz.) 

At present, we do not have a phase-quadrature model cable driver operational which is 
based of a beta distribution for the squared field components (summed or unsummed). 
Consequently, the next test was performed using the inverse Lehman phase-quadrature field 
generator (5-27) or (5-61) (see Figure 6.24). Lastly, the cable model was tested using the inverse 
log normal phase-quadrature field generator of (4-22), with the result displayed in Figure 6.25. 
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The log normal field model yields cable current predictions which are incompatible with observed 
cable currents at the ±50% acceptance level. The chi square and Lehman models predict cable 
currents with ±50% acceptance intervals which contain the measured cable currents, although the 
Lehman model yields cable current predictions which are much closer to the acceptance interval 
midline. 
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Figure 6.19. The Figure 6.13 data lies within a ±50% acceptance interval for fitting a chi 
square (two degrees of freedom) distribution, over the upper half of its domain. This 
means the chi square model is probably an acceptable, even if not ideal, representation of 
the data. This plot is based on uc = 0.0170. 
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replication of reality. This plot is based on A - 176.4. 

161 



Interval  Como 

.- - j T--'" ' 
_y y 

aoooE-01 — 

■'  / "' 

8.000E-01 — ..j7..rl  
'--(-[--1  

7.OO0E-01  ' f       l 
? J     -V 

1 7    >' 

\f::i:::::::: 
S.OOOE-01 1 

. ,i 
J ]     i 

J 
.    L _ -       

5.000E-01  J  J (' 
I   I i 

}  y 
  . _,'../_ 2 

4.000E 01  

'  I/ ' 

3.000E-01  
z     f.' 

'      -f or 
2.000E-01  

,-' 
_,---'     . ■          , .- ,.- *-" 

.  „ ^„ .„ r-c--^-". ;T  ^^^rrCZi — 
0.O0OE.O0    i ! nrnii '" i  i i inii I   I I Mill I   I  I Mill I    I   I Hill I    I  I I I I II 1    1 I Mill i i i inn 

1.000E-08 1.0OOE-O7 1000E-06 I.000E-05 1.000E-0+ I.O00E-O3 t.OOOE-02 1.000E-01 1.000E»00 

Figure 6.21. The Figure 6.13 data lies within a ±50% acceptance interval for fitting a beta 
distribution, over the upper 75% of its domain. This means the beta model is an 
acceptable representation of the data. The tendency of the beta distribution model to split, 
almost perfectly, the acceptance interval over the top 15% of its domain is especially 
valuable. 
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Figure 6.22. The Figure 6.13 data lies within a ±50% acceptance interval for fitting a chi 
square (two degrees of freedom) distribution, over the upper half of its domain. This 
means the log normal model is conditionally acceptable, although the close brushes with 
both sides of the acceptance interval near the top of its domain make it the least desirable 
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Figure 6.23. The Figure 6.13 field data, when modeled as chi square (with two degrees of 
freedom), leads to a modeled cable current which, given a ±50% acceptance interval, 
everywhere brackets the measured cable current. The field model is based on uc = 0.0170. 
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part of the domain better than the chi-square-based model in Figure 6.23. This field model 
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domain. This figure is based on (\iig,olg) = (-4.546, 0.972). 
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Chapter 7. CAVITY EIGENMODES: THEIR EVALUATION, PROPERTIES, AND 
PERTURBATION BY DISSIPATION AND BY APERTURES 

Statistical electromagnetics (SEM) in an enclosure is largely based on consideration of 
simultaneous excitation of a large number of enclosure eigenmodes. To this end, we shall begin 
with a review of eigenmode definitions and techniques for lossy, leaky cavities. In this section, we 
shall deal with cavities containing inhomogeneous fill which may be lossy, but not so lossy that Q 
is less than 6 or so. Apertures may also be present, further reducing the Q. It is our intent to 
begin with lossless, completely closed cavities, and then to introduce dissipation and apertures as 
perturbations. We shall, however, specifically include the case where the only cavity drive is 
through apertures. 

Our discussion of the lossless case is fairly readily generalized to include anisotropy, 
provided e and n remain hermetian (lossless). Nevertheless, we shall not explicitly discuss 
anisotropy. At present, we have not considered anisotropic dissipation. What we discuss can, 
almost certainly be so-generalized, but this effort, which is based on a need to understand EM 
satellite damage or compromise, came with no cause to consider anisotropic dissipation. 

EIGENMODE DEFINITION AND EXPANSION 

Maxwell's equations in the presence of both electric and magnetic currents are 

V x E = - jwu# - Jm (7-1) 

V x H = jweE + J (7-2) 

where sinusoidal steady state is assumed. These equations can be manipulated to yield the vector 
wave equations for the fields 

V x (e_1V x H) - o2u# = ~ JuJm + V x (elJ) (7-3) 

V x (,i-i V x E) - u>2eE = - j to/ - V x (u-i/J (7-4) 

The e and n in (7-1) - (7-4), as in most of the formulas in this paper, can be viewed as tensors 
(matrices) if one wishes to interpret this formulation as anisotropic. 

The eigenmodes of a cavity can be expressed either in terms of the £"-fields or the H- 
fields. They can be defined with loss present (in which case the eigen frequencies come out 
complex) or with loss absent. As mentioned above, our experience is that less confusion results if 
the eigenmodes are initially defined without loss, and loss is subsequently implemented as a 
perturbation. 
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Let us express the real and imaginary parts of e and u as 

e=e'-je" (7-5) 

\x = \i'-j\i" (7-6) 

where any conductive loss, o or am, is incorporated into e" or u". Then the JE-field eigenmodes 
obey the homogeneous, lossless version of (7-4): 

V x (u"1 V x En) - u
2

ne'En = 0 (7-7) 

/" A bit of vector analysis manipulation (dot Ep into (7-7) for En, dot E„ into (7-7) for Ep 

and subtract the second result from the first), shows that two eigenmodes with different eigen 
frequencies must be orthogonal with respect to e'. In this article, we shall assume no modes are 
degenerate. The normalization convention we shall use is 

fffEp ■ e'E„dV = 6pn (7-8) 

The boundary condition at the cavity walls is invoked in deriving (7-8) 

n x En = 0 (7-9) 

where n points outward (into the cavity wall from the interior). More vector manipulation can 
show that V x Ep and V x E„ are also orthogonal with respect to u'"1 

-L [f[V*Ep-^VxEndV=6pn (7.10) 

p 

If a cavity is driven by / and /„, E can be expanded in terms of the eigenmodes: 

E =  E BnEn (7-11) 
n 

Substitution of (7-11) into (7-4) yields 

,»///£» • JdV - ///V x E, ■ a'"'/, dV m (7-12) 
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where (7-9) is again used. 

The jtf-field eigenmodes obey the homogeneous, lossless version of (7-3), which is dual to (7-7). 

V x (e'-iy x Hn) - CD*u'#„ = ° <7-13) 

As we have eliminated all imaginary terms from (7-7) and (7-13), all unperturbed eigenfunctions, E„ and 
H„, will be pure real. The H„ modes are orthogonal with respect to u', and are normalized as follows 

fffHp ■ n'HndV = bpn (7-14) 

The boundary condition on H at the cavity walls is a necessary part of the derivation of (7-14) 

n x V x Hn = 0 (7-15) 

We can also demonstrate that V*HpandVxH„ are orthogonal with respect to e"1 

A///V X HP ' 6"1V X ^ = 6*>" (7-16> 
0) 

p 

The driven H field inside a cavity can be expressed in terms of the H-field eigenmodes: 

H = E 4Ä (7-17) 
n 

Substitution of (7-17) into (7-3) yields 

A_ = 
" 2 2 o„ - or L 

1       [   j(öfffH» ' JmdV + W"///£" ' JdV\ (7-18> 

where a boundary condition similar to (7-15) is again required. 

There are apparently several ways to relate E„ and H„ (which do have the same eigen frequency 
and are merely different representations of the same mode). One verified convention is 

e1 V x Hn = u„En (7-19) 

pi V x En = u„Hn (7-20) 
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There are also options with judiciously placed factors of/ and -1. In this article, we shall work with (7- 
19) and (7-20). In view of (7-20), it is possible to rewrite (7-12) for B„ as 

B   = 
" 2 2 w„ - or L -j»m ■'"-».[{!". (7-21) 

ENERGY AND POWER DISSIPATION PARTITIONING BETWEEN MODES 

The total magnetic time-average energy in the cavity is 

Em = fffKH • »'H*dV = y4£ \A/ (7-22) 

where (7-14) for normalizing the Hp is applied. The total electric time-average energy in the cavity is 

E= fff%E • e'E'dV = %J^ (oj/co) M/ (7-23) 

where (7-8), (7-16), and (7-19) are utilized. Dual formulas for partitioning the energy in terms of the B„ 
electric-eigenmode amplitudes flow easily from (7-22) and (7-23)  Note that at w = a>p mode/? 
contains equal electric and magnetic average energy. 

Partitioning of the power dissipation between modes is not so clear. The power flux or 
Poynting vector in the frequency domain is 

S = V2Re(E x H*) (7-24) 

The net power loss by the cavity is the negative divergence of S integrated over the cavity. At steady 
state, this must be zero: 

Pto=-%ReJ//V-(£*ir)^=0 (7-25) 

A fair amount of vector analysis and use of Maxwell's equations permits re-expression of (7-25) as 

,'4Re/// 
H* J   --Le^VxiT 

7<o 
dV 

^Re fff juH • \iH* + — Vx# • e-'V^ff* 

(7-26) 

& = K   + P«ss   =  0 

where, since we are now considering dissipation, Maxwell's equations are now used in their source- 
present, lossy form, (7-1) and (7-2). It is easy to identify the first part of (7-26) as power in and the 
second part as power dissipated. 
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The power-dissipated term can be manipulated to yield, from the expansion of (7-17), 

/ „ \ 

P- = 1/2/// 
<o(i" \H\2 + 

we 
iVxJSfl dV 

(7-27) 

*/// n p W|e|Z   n P 

dV 

(Complex conjugate operators are not expressed on the unperturbed eigenfunctions as they are pure 
real) We now have a problem: the power dissipation does not readily partition between eigenmodes, 
as the eigenmodes are orthogonal with respect to u' and eM, not u" and e'7|e|2. This is manifested in 
(7-27) by the presence of modal cross-terms. 

There is, however, a presumption we can make which is probably valid in most cases. Especially 
for a rather accidentally penetrated satellite, the different modal coefficients are uncorrelated. In this 

the expectancy of each of the coefficients will be zero (unless they are squared), and the case. 
expectancy of Pass will drop the cross-terms: 

2   .   Wn     „T?1 ^"H:+—e"E: 
(0 

dV (7-28) 

where we have again used (7-10). In the future, we shall replace the expectancy of \A„ \2 and Päss just 
with |^„|2andP^. 

The part of (7-26) associated with input power, or drive, can be manipulated to the form 

Pdr - P,= KR*///(/r -Jm+E*-J)dV (7-29) 

The ET ■ /term in (7-29) is the complex conjugate of what we usually see at this point, and may indicate 
an algebraic error. We are disinclined to check this out, however, as taking the real part of (7-29) 
makes the issue moot, and we can think of no way to test a discarded, nonphysical part of a formula for 

a mistake. 

CONSIDERATION OF Q 

The Q associated with magnetic aspects of the cavity is defined at mode n as 

Qn 
w _£ 

mi    mn (7-30) 
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where u^ is the real part of (o„, Em„ is the magnetic energy stored in mode n, and Pmn is the magnetic 
energy dissipated by mode n. (Since we are now dealing with loss, «„ unsubscripted by R, is no longer 
unambiguous.) If u" is just u' times a scale factor, (7-27) and (7-28) indicate 

0 ow*Kl2     _   H' 

is just V4 the reciprocal ofthat scale factor. This result is known to be correct. 

An exactly dual argument establishes the same fact about the electrical Q of the cavity 

£L = — (7-32) 

It is also true that the overall Q„ (not including apertures) is related to Qmn and Qen by 

1   _     1     +     1     .  |i\ e' 
ß„      2ßm„      20^       u'       e' 

(7-33) 

and that ß„ is related to o^ and orf by 

W*K 

ß- = äf ^ "n/ 

START-UP TRANSIENTS 

When a cw source is initiated, start-up transients in the cavity will have to ring out. The 
evaluation of these transients and their behavior is simple, but quite tedious. 

Impulse Response 

The frequency-domain cw behavior of the cavity is 

H(r,io) = £ -^7 (-J *Fn + Gn) (7-35) 
"     G>„" CO2 

n 

where F„ and G„ are easily picked off by association with (7-18): 

Fn = tffHn-JmdV (7-36) 
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Gn-»nff[En-JäV (7-37) 

The associated time-domain impulse response is 

k(r,x) = -t-fH(r,u>y"xdu> 
1 fT 

(/coF„ - Gn)Hn(r)e^du> 

r   / -z Fn 
n .    \ 

2K [y (co - (0^ -jaj (co + co^ -juj 

cosco^t + 
2ß„ 

smco^x 
CO 

-sinco T 
"p 

«R 

Hn(r)e 

(7-38) 

CW Start-Up Transient 

If, instead of being a delta function or impulse, the drive is a cw signal turned on at T = 0 

fix) '= e^u.^x) (7-39) 

we find thatßx) has a frequency domain representation 

F(co) 
co - CO 

The overall response in the frequency domain is then 

Ä(r,co) = ^E^r(/^„-Gn) 
(co-co') „   o)2-co: 

H„{r)(uFn +jGn) 

V (co - co')(co - co^ -ju>J(t* + co^ -ju>J 

(7-40) 

(7-41) 

The associated time-domain response is 

r(r,x) = 2. j 27r(t0_w')(w _ ^ -yto^Xco + co„ -juj 
(coF„ +jGn)e^du 

(7-42) 

This expression can be factored as 
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r(r,x) = £ f 
a 

o) - co'       co - co^ -ywrf      co + co^ -yco •nl) 

fiftO (7-43) 

where 

a 
(co'F„ +jGn)Hn(r)e ja x 

"      27t((o' - co^ -yco^Xco' + co^ -ycoj 
(7-44) 

J(V>nR +M,/)T 

*.= 27t(-(Df|R+y(0|rf-(D')(2(D||R) 
(7-45) 

27i(-confl+7CO/i/-co')(2coJ 

X"WnR +M,/)'C 

(7-46) 

Following a formidable amount of symbol manipulation, r(r, T) is evaluated as a sum of 8 terms, 
including all combinations of (start-up transients vs cw response), (electric drive response vs magnetic 
drive response) and (sine drive vs cosine drive, as/t) = e^'x uA (T) has a real cosine part and an 
imaginary sine part). The transient part of the response is 
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"■transit)   =   E 
fnHnir)e 

.'\2 A ,2 
-   [(«,*-<flT + <] 

f   K« -«') . eg' 

4ß„ 
Sin(°nRT + -Z^-COSt°n«T 

/ ,>' 

2fa)_ 

CO 
COS CO „X + —— SU1CO „X nR 4Qn nR 

"nR 

"   [KK - co')2 + co2,] 

(      (Wnfi-W') 1       CO' 

IA 

J 

JnR 

2co„ 
COSCO^X 

4ßB », 
sinco^x 

«R 

f     (co'/coJ^-co') 
wv«,*    w^sinco„RT + -LCOSCO^T 

2co nR *Qn I \ 

electric drive 

cosine drive 

sine drive 

magnetic drive        (7-47) 

cosine drive 

sine drive 

The cw part of the response is 

rcw(r,x) = £ 
FnHn(r) 

■\1 ^. 2 ■   [(co^-coT+co^] 

' (co„„ - co')(co7coJ . co 
V   „R _!«lsina)'T-_^_CosCO'T 

V 

7 

2 

>nR 

*Qn 

'       <*'(VnR ~ <°')              ,            CO'     •        , "" — COSCO X - SU1C0 X 
2<«>nK 4ß„ 7 

-    [(to^ - CO')2 + co^] 

(co „ -co') 1     .     , 
—— cosco x + ——sinco x 

2^nR 4Ö„ / 

1 sin co x cosco x 
4Ö„ 

electric drive 

cosine drive 

sine drive 

magnetic drive        (7-48) 

cosine drive 

sine drive 
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Note that 

r(r>*)   = 'tränst   + ^(^ (7-49) 

starts off everywhere zero at T = 0. 

Very-Low Frequency Response 

We shall next consider some limiting cases of the cw start-up transient response. If we 
assume co' is very small, we drop all terms that are linear in co' or contain sin co'x. In this case, 
the cosine-drive part of (7-48) and (7-49) becomes 

rcos(r>z) = £ 
n 

. GAW f l 

W)« 
a«/x / 

co nR 

--srnco^T 

"n/1 

CO, 'nR 

— COS CO T 
2 

-COSCO^T 

(7-50) 

This quantity also may be seen to vanish at x = 0. 

The sine-drive part of (7-48) and (7-49) is 

rsinir,x) = £ W)«' 
CO 'nR 

1 sinco^x 

GnHn(r)(   1     -^      1 

CO 'nR 

e    nI -^-coscox 
{ *Qn 4ßn 

(7-51) 

This response is also zero initially, and never departs from zero in the lossless (Q„ = °°) case. 

Drive At Resonance 

If the cavity is driven at one of its resonant frequencies (co' = co^), the response of mode n 
is, including start-up transients, 
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r»(r>x) = 
sin« „x 

-F„/f„(r)cos(o^x + Gßn{r)—f- cosine drive 

COSü) „T 
sine drive 

ß. 
to 

(1-e    "') 
nR 

(7-52) 

It is most interesting to note that the time-average energy in cavity mode n builds up as (1 - e' 

Ql ((fWHir) ■ H(rydV = %£ ^-\Fn + G>>,J2(1 -2c -
u-rT   + e"2u«/x) (7-53) 

This expression not only starts off at zero, but with a zero derivative. In other words, energy 
cannot be pumped into an eigenmode until there is already energy present, providing fields for the 
drive to push against and perform work. 

APERTURE DRIVE 

Drive by aperture leakage turns out to be more complex than one might expect. What we 
would have liked to do is apply the equivalence principle: foil over the apertures, see what 
surface current density K flows over the foil exteriors, remove the foils, and drive the cavity 
behind the apertures by forcing the foil surface currents across the open apertures [1-4]. The 
problem with this approach is readily apparent from (7-9) and (7-18) or (7-21): the unperturbed 
electric eigenmodes have no tangential component at the cavity surface (which includes the foil 
for evaluation of the unperturbed modes). Thus, E„ • K will everywhere be zero, and this model 
will never give a cavity response. 

(Were we to deal with the perturbed eigenmodes E'm evaluated with the apertures open, 
E'„ • K would not vanish everywhere, and the desired approach would work. However, the 
perturbed eigenmodes are generally hard to evaluate, and do not even have real eigenvalues, as 
they must allow energy to escape the cavity. Also, it is not obvious that the radiating parts of the 
perturbed eigenmodes do not destroy their orthogonality; at the very least, the radiating fields 
greatly complicate the eigenmode normalization procedure.) 
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An alternative approach, which will work but is more difficult involves use of Babinet's 
principle [5]. Replace the aperture by a conducting patch, remove everything else, illuminate the 
patch, and see what surface current inflows on its illuminated surface (using FDTD if necessary). 
Then close the aperture, and place an internal magnetic surface current Km equal to K over the 
patch where the aperture had been. As (7-18) and (7-21), together with the boundary condition 
(7-15), on the Hw show, this magnetic surface current will couple to and drive the magnetic 
representation of the eigenmodes. Specifically (7-18) for instance, now is replaced by 

A   =  -  
" 2 2 (0   -co2 

n 

-jaffjH. ■ JmdV -jco ff Hn • KJS + co„///*„ ■ JdV 
aperture 

(7-54) 

Equation (7-21) for B„ is identically modified. 

It may occur that one is able to determine the electric field across the aperture Ea in the 
presence of the satellite. If this is the case, one can approximate the magnetic surface current Km 

to apply across the aperture without explicitly appealing to Babinet's principle: 

Km=nxEa (7-55) 

(In some formulations, Km is divided by 2, as half of Km radiates into the cavity and half radiates 
back to the outside world [6].) 

In either case, one fact remains true: a magnetic surface current inside the cavity looks 
like a zero-impedance source, and thus matches the unperturbed eigenmode boundary conditions. 
The equivalence principle, with its electric current across an open aperture, does not do this. 
Thus, the approach of using magnetic instead of electric equivalent current is much more 
compatible with our philosophy of avoiding aperture-perturbed eigenmodes. 

The use of equivalent magnetic currents to describe aperture penetration is a 
generalization of Bethe hole theory [7], which itself is applicable only to apertures small compared 
to a wavelength. Magnetic currents have long been used to describe leakage through long slots or 
cracks [8, 9]. 

LAGRANGIAN REPRESENTATION AND TECHNIQUES 

The use of a Lagrangian is a handy technique for manipulating Maxwell's equations, 
especially when energy densities are involved and one has not yet reached the stage of introducing 
loss. If one wishes to work with E'-fields, there are three common variants of the Lagrangian. If 
one is trying to find eigenmodes (no drive present), and one is using trial functions which satisfy 
the .E-field boundary condition (7-9), the appropriate Lagrangian is [10] 
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Lx = fffV x E • u"1 V x EdV - <*2f[(E • zEdV (7_56) 

If there is no drive, but the trial functions do not satisfy (7-9), the appropriate Lagrangian is 

Lx = fffV ^•(i-'Vx EdV - 2jjn ■ (E x (u1 V x E))dS - w2///^' ^EdV      (7_57) 

If electric and magnetic current drives are present and the trial functions do not satisfy (7-9), the 
appropriate Lagrangian is 

Lx = [[NxE-n^xEdV-lUn-iExbi-^xEWdS 
JJJ J (7-58) 

- tffffE-eEdV + lfffE-Vx^jJdV + lfffE-JdV 

A bit of vector calculus shows that this last expression is stationary only when (7-4) and (7-9) 
hold. 

Similar (but not identical) Lagrangians apply if one is working with the //-field based 
Lagrangian. Specifically, if one is looking for //-field eigenmodes (no drive present), the 
appropriate Lagrangian is [10] 

L2 = fffVxH-e^xHdV-iJfffH-iiHdV (7-59) 

whether or not the trial functions obey (7-15), the /f-field boundary condition. 

If electric and magnetic drives are present, the appropriate //-field Lagrangian is 

L2 = fffVxH-e^xHdV- f[(<o2H-nHdV 

-2[fjH-Vx(e-iJ)dV + 2fffH-JmdV 

The variation of L2 in (7-60) is 
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bL2 = 2rrrv-(8Ärx(e-1VxJö))^ + 2frföH-Vx(e-1Vxfl)^ 

-2u>2[ffbH'nHdV-2ff(bH-Vx(e-1J)dV + 2fffbH-JmdV 

= -2UelbH'[nxVxH]dS (7-61) 

+ 2fffbH- [v x (e1 V x #) - «2 u# ~ V(elJ) + Jm dV 

For an arbitrary bH, this Lagrangian is stationary only if (7-15), the first bracketed term of (7-61), 
is everywhere obeyed at the cavity boundary, and if the wave equation (7-3), which is the second 
bracketed term of (7-61), is obeyed everywhere within the cavity. The Lagrangians of (7-56) - 
(7-59) are verified in the same way as we just validated (7-60). 

EXPANSION OF RESPONSE OF APERTURE DRIVE 

The electric-mode expansion (7-11) and (7-12), may be expressed as 

E_ 

ä = E^A = EVLTK-+I/J 
»     (On - W 

?Al///vx*--'",/-"+///*---ta' »     (0-0) 

(7-62) 

where this formula serves to define the magnetic and electric parts, dmn and den, of the electric 
eigenmode drive. 

Similarly, the magnetic mode expansion (7-17) and (7-18) are 

" = £^A = £ 
H_ 

"     (x>l - CO2 
P    -D   1 [   e,n m,n\ 

■x^\jnB--'-*r-fiFxH--e"1"". »   or - ID, 

(7-63) 
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where this formula serves to define the magnetic and electric parts, Dm„ and De„ of the magnetic 
eigenmode drive. 

If the cavity is driven entirely by apertures, the £"-field across the aperture becomes the 
drive. (This approach works with Bethe hole theory [7], Babinet's principle [5], and the Karzas 
(high-frequency) approximation [11], but not in conjunction with the equivalence principle [1-4].) 
In this case, we have 

j£ = E-^   ff V*En-^KmdS 

(7-64) 

= E-^7 ffV*Em'Vi'-\E0x*)dS 
"     W   " <*>n aperture 

where E0 is the field in the aperture. Alternatively, we can use the magnetic-mode expansion 

H - E -^  // Bm-KmdS - X-!^ffHd-**E.dS (7.65) 

Use of (7-19) and (7-20), relating En and H„, will restore (7-63) and (7-64) to their previous 
form, (7-18) and (7-21). 

GREEN'S FUNCTIONS 

Equation (7-62) for E can also be written 

Eir) - E -^-r ((f K(')V x EJrt ^ ■ '-<''> + Enir)En(r') ■ j]dV   (?_66) 

Consequently, the Green's function relating magnetic sources to electric fields is 

GJrS) = E -^—En(r)^VxEn(r') = £ -^En(r)Hn(r')      (7.67) 
n     O2-(0„ «     (02-W„ 

and the Green's function relating electric sources to electric fields is 
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GJrS) = £ -^—;En(r)En(r') (?.68) 
2 2 

Equation (7-68) is the familiar form of the Green's function for the wave equation where the 
result is a summation of the eigenmode products expressed at the source and the observer, and 
divided by a factor to describe the resonances [12, 13]. Equation (7-67) is a variation on this 
form necessitated by the other kind of drive (magnetic) which the cavity can see. 

Similarly, (7-63) for H can be expanded 

Hif) - E -±—f{f[Hn(r)Hn(r') • Jm - Ur.GK1 V * HJf) • j]dV     (?„69) 
»   (O2 - co„ 

Consequently, the Green's function relating electric sources to magnetic fields is 

n     O)2 - (On "     CO2 - CO„ 

and the Green's function relating magnetic sources to magnetic fields is 

(7-70) 

G*M = E -r-^nm(r)nBW 
2 2 "    W)  - con 

(7-71) 

Equations (7-70) and (7-71) consist of eigenmode products summed over the modes and modified 
by resonance factors just as (7-67) and (7-68) did. 

EIGENMODE EXPANSION OF POWER INPUT THROUGH AN APERTURE 

In general, the power flowing through an aperture into a cavity can be viewed as the 
equivalent aperture magnetic surface current Km pushing against the magnetic field existent in the 
cavity (see (7-65)) 

P;„ = >/2Re ff H*-KmdS (7_?2) 

aperture 
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Use of (7-63) or (7-65) permits expansion of (7-72) as 

Pin = V^Y,KjfHn-KmdS (7-73) 

where now, in the absence of internal sources, (7-18) for A„ becomes 

A   = 
n 

(0   - CO 

L-J//».•*-* 
n aperture 

(7-74) 

Consequently, the overall power input becomes 

Pin = V4Re^ -J<o 

o2-<*l 
f(Hn.Kn dS 

= vsE l^l2Re 

aperture 

-ja 

(<° -J^nl)2 ~ °4 

(7-75) 

where (7-75) serves to define L„ as the eigenmode expansion component of Km over the aperture. 
The L„ are like the Dm „ of (7-63), except ayco term has been factored out, and the volume integral 
of (7-63) reduces to an aperture integral. Additional manipulations permit re-expression of the 
input power as 

*E IAJ2», nl 

n     ^-Uj'-iVjQr)2 
(7-76) 

where use is made of (7-34), terms in Q„~2 are dropped, and it is assumed that co and CO^ are fairly 
similar for terms that make a significant contribution to the summation. Note that the modal 
partition of aperture power input is free of cross-modal terms, like (7-22) and (7-23) for the 
energy partition, but unlike (7-27) for dissipation partition. 

EIGENMODE EXPANSION OF POWER LOSS THROUGH AN APERTURE 

While power in and power loss via an aperture may seem like similar phenomena, actually 
there is a great amount of difference. Partly this occurs because power out never bounces back to 
behave reactively. Perhaps another way of saying the same thing is to state that power out 
eventually reaches a far-field characterization, which power in does not. 
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Unlike power input, power output is amenable to description using the equivalence 
principle [1,2]: foil over the aperture, and let JTbe the surface current flowing on the foil. Then 
remove the foil. The far-field magnetic vector potential produced by K becomes, assuming the 
aperture lies in the xy plane, 

A(x,y,z) = ^-   ff K(x',y')e-^'^yrdx'dy' {1.nl) 

aperture 

If G(G>) is the Fourier transform ofg(x\ one can demonstrate that energy is similarly 
expressed in either the time or the frequency domain: 

[G(Cö)G*(G>)<äD = 2nfg2(r)ck (7-78) 

A similar 2D theorem applies to (7-77): The electric far field associated with A(x, y, z) is 

jkZ e'jkr    rn -/(-)(**' *yy') 
E(x,y,z) = -juAt(x,y,z) = -—^  ff K(x',/)e    r dx'dy'   (7-79) 

aperture 

where At is the magnetic vector potential less its radial component. 

The total power reaching the far field and being lost through the aperture is 

eo     oo oo     oo 

PT = Vzf fir'Re[E(x,y,z)xH*(x,y,z)]dxdy = (yJ2) f f \E(x,y,z)\2dxdy        (7.80) 

where all terms in (7-80) are evaluated in the far field. In view of (7-79), PT can also be expressed 
as 
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P
T = -^7 // K{x',y')dx'dy'-  ff K\x'vy'^dx^cfyx' 

(4TT/-)2 
aperture aperture 

" °°   j&W-iV+yW-yTl 
.//.- dxdy 

(7-81) 

The last double integral of (7-81) yields a double delta function, 

/ = (iTlfb 
r r 

(7-82) 

Substitution of (7-82) in (7-81) and integration over (*/, y/ ) leaves 

PT = V2Zoff[V2K(x',y')} ■ [V2K*(x',y')]dx'dy' (7-83) 

where the factors of Vi occur because the equivalence-principle surface current sends half its 
magnetic field discontinuity back into the cavity. Equations (7-80) - (7-83) are the two- 
dimensional generalization of the Fourier transform energy-conservation relationship (7-78) as 
applied to aperture radiation [14]. (Electron microscopes work on the principle that the diffracted 
far field is the Fourier transform of the field at the aperture or object under scrutiny.) 

If the surface currents of (7-83) are referred back to the magnetic fields they represent in 
the cavity, PT becomes 

PT = ZJ2  ff [ - Y2n x H(x',y')] ■ [ - Vm x H*(x',y')]dx'dy' 
aperture 

= ZJ2   ff V^AHn(x',y')-V2^A;Hp(x',y)dx'dy' 
aperture (7-84) 

■ *£ W // 
aperture 

o \Hn(x',y')\2dx'dy 
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where the radiation aperture power loss has the same pesky cross-modal terms as the internal 
dissipation formula (7-27). These terms are again dropped in (7-84) by appeal to the same 
expectancy argument used in deducing (7-28) from (7-27). 

In conclusion, we point out that the first expression of PT in (7-84) is merely the integral 
of the Poynting vector over the aperture, and thus represents the aperture power leakage. This 
argument alone would serve to equate PT of (7-80) and (7-84) on the basis of physics. In a sense, 
(7-80) - (7-84) do nothing more than demonstrate that Maxwell's equations conserve energy flux 
in free space between the near and far fields. 

EFFECT ON Q OF APERTURES 

If a cavity has apertures, but no internal loss, the Q for a given mode is obtained by 
dividing the energy stored in that mode (7-22) and (7-23) by (7-84) 

Qn    = 
Z0 ff \H(x',y')\*dx'dy' (7-85) 

aperture 

For electrically small apertures, (7-85) can give greatly differing values of Q„ for adjacent n. A 
somewhat less sensitive (and probably more useful) value of Q can be obtained by taking the sums 
of (7-22), (7-23) and (7-84) over the bandwidth of interest and performing division on the 
summations. 

If both internal losses and apertures contribute to a reduced Q„, Q„A of (7-33) is 
augmented by Q„'A of (7-85) to obtain a reciprocal Q which includes combined effects. 
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Chapter 8. EM PICKUP AND SCATTERING BY A WIRE 

Since a major goal in the study of EM pickup (deterministic or statistical) by cables in an 
enclosure consists of understanding cable coupling, we now present a review of pickup and 
scattering by a single wire in free space or over a ground plane. The wire may be uniform and 
infinite or finite and nonuniform. Solutions based on Maxwell's equation directly are compared 
with solutions based on the telegrapher's equations; for 1 mm Cu wire at 1 GHz, equilibrium cw 
currents as computed from the two models differ by 6 dB. In general, the wire-current solutions 
are separated into a homogeneous part and a particular or driven part. The driven part couples 
and scatters fields, while, at least for an infinite wire in the far field, the homogeneous part does 
not. We also discuss the quality factor Q and indicate a manner in which its meaning is 
occasionally misinterpreted. 

In this work we describe the development of statistical tools for evaluating field-induced 
currents on satellite wiring harnesses and similar cavity-enclosed systems which are too complex 
for deterministic techniques, such as FDTD, MoM, or finite elements to have any real prospect of 
success.[l,2] The statistical philosophy we employ is to divide up as much of the wiring as 
possible into small segments, then apply driving fields to each of the segments, and finally match 
current and potential at segment junctions. The cable model we use permits segments to be about 
A</4 long. We do not explicitly include coupling between non-adjacent segments, but rather 
assume it is implicitly folded into the field statistics. This approach becomes more reasonable the 
more complex the wiring is; in fact, for most statistical problems, it is true that this sort of 
procedure introduces an error which, on the average, decreases as the square root of the number 
of segments. Thus, a statistical approach actually thrives on complexity. It also eliminates the 
need to manipulate any huge matrices, or even to track collaterally a myriad of variables in which 
we have no real interest (which could not be avoided using FDTD or FVTD). 

The cable-driving fields are randomly generated, but filtered and weighted so they have 
some physically justifiable probability density function such as normal, log normal, or chi square 
with two degrees of freedom. In fact, a watchword of this work has been the inclusion into the 
statistics of as much EM physics as possible. 

In this context, we have confronted the problem of an EM field coupling to a wire 
segment, and found that even some seemingly simple, canonical problems are apparently not well 
understood. With this background in mind, we here undertake a presentation of some ostensibly 
fundamental problems and their solutions which we have had to work out. 

We also find it necessary to assume the behavior of an infinite wire (which we can usually 
determine) has characteristics which carry over to finite wire segments (which may be harder to 
describe). Basically, in our statistical modeling of wire segments, we think it better to use the EM 
physics of an infinite wire than to use no physics at all. We prefer not just to treat the statistics as 
a disembodied mathematical exercise. 

189 



In this section, we shall consider first the problem of determining the current on a wire 
driven by a plane-wave incident field. Initially we shall assume the wire is infinitely long, straight, 
uniform, and not backed by a ground plane. Later in the section, we will relax some of these 
assumptions. We shall, moreover, only consider the case where the wire and illumination 
parameters are such that non-axially symmetric portions of the solution of the fields and currents 
around the wire are negligible. (This assumption is clearly reasonable for our problem, given that 
we are going to use all quantities only statistically, and the spatial average of any asymmetric field 
component having a cos «<}> distribution, n * 0, will always be zero. We presume there are other 
real problems, such as asymptotic antenna theory for round wires[3] or the current on a conductor 
segment in a simple MoM model, for which our assumptions are also adequate.) At no point shall 
we relax azimuthal independence. Thus, phenomena such as creeping waves at a bend with bend 
radius not great compared to wavelength will be ignored. Also, when a ground plane is 
introduced, we shall assume that the wire radius a is so small compared to height h over the 
ground plane that current concentration on the side of the wire facing the ground plane is 
negligible. The wire will be required to have a small amount of resistivity (p^ = 1.7 E-8 Q/m will 
do nicely), as certain homogeneous solutions of Maxwell's equations are otherwise forbidden. 

Our initial approach will be the direct solution of Maxwell's equations for an infinite, 
solitary wire. Such a problem is essentially an ordinary, hyperbolic, second-order differential 
equation, and as such has a homogeneous and an inhomogeneous wave solution for the current on 
the wire. The homogeneous solution is not driven by the incident field (nor does it radiate, at 
least not where the wire is uniform). This solution appears only where something nonuniform 
(such as a bend, shadow, or wire termination) occurs. At such points, its presence is required to 
match boundary conditions, and it can propagate away from such points, mixed and matched with 
the driven or inhomogeneous solution. We had long been perplexed by the seeming experimental 
paradox that cables in a region of well-randomized driving fields carry currents that are invariant 
to cable termination conditions, provided the observer is 3X0 or more removed from the 
termination. On the other hand, currents coming into a shielded enclosure from an external 
connection can propagate, obviously, the entire length of an airplane and more. We now see that 
the first case is dominated by inhomogeneous currents, while the second is dominated by 
homogeneous currents; that the two kinds of current solutions have quite different properties; and 
that the paradox evaporates. Whatever we put into our statistical segment model, this ability to 
include both types of solutions is fundamentally obligatory. 

Next, we shall compare the exact (in the azimuthally symmetric limit) solution of 
Maxwell's equations with a simpler, but approximate, model, specifically that based on the 
telegrapher's equations. Not surprisingly, the telegrapher's equation solution is fine in the low- 
frequency limit, but pulls away from the exact solution very gradually as wavelength decreases. 
Even for a single wire in free space, one can symbolically write the telegrapher's equations. In 
this case, however, the quantity identified with series resistance has some very peculiar properties. 
This, in turn, implies we probably should not use telegrapher's-equation-based transmission line 
models with fixed, frequency-independent (r, /, g, c) in our statistical formulation for cable 
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segments which are far from other conductors. In this case, it is preferable to use a model based 
more fundamentally on the exact solution of Maxwell's equations. 

Our next step is to evaluate the effects of adding a ground plane. In a sense, this simplifies 
the problem, as the telegrapher's equations parameters (r, /, g, c) are now less exotically defined. 
The exact solution, however, becomes considerably more complicated, especially in the 
homogeneous case. Thus, for wires near a ground plane, statistical wire modeling by the 
telegrapher's equation makes more sense, and is the preferable approach. As most wires are near 
a ground plane or conducting wall, this is a conclusion of major significance. 

Lastly, as an appendix, we discuss some aspects and interpretations of the quality factor Q 
in a resonant system. This is important to our statistical wire model because it dictates how and 

when we need to include terms such as radiation resistance. (While our statistical EM philosophy 
embraces the concept that we do not need to cross-couple cable segments, it does not embrace 
the concept that a segment cannot lose energy by radiation.) We also find it useful to examine 
different ways of inserting loss into our model enclosure, which is actually an interactive part of 
the wiring harness system. Finally, we point out that, while it is true that energy decays as a 
simple ^-dependent exponential when the drive is turned off, it does not follow that energy builds 
up as a simple exponential when a system is turned on. (The latter belief is a fairly commonly 
encountered mistake. [4]) 

HOMOGENEOUS SOLUTION FOR A WIRE 

Let us begin with a solution having eyz dependence along the wire, where y must 
necessarily be complex and have a negative real part. For sinusoidal e" conditions (s and -j(o will 
be interchangeable in this section; e*" time dependence insures Hankel functions of complex 
arguments asymptote properly), Maxwell's equations are of the form 

V x E = - \isH (8-1) 

V*H = J + (p + es)E (8-2) 

Because of the small-diameter assumption, d/d<p of scattered fields are zero by definition, and the 
partial differential equations specifically take the form 

BE       BE dE7 -^--t~-t-^--t <8-3) 
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plus two additional coupled equations coming from (8-2) and involving the same three fields. For 
the azimuth-independent case, the TE solutions (E$, Hr, Hz) decouple from the TM solutions (E„ 
Ez, H^, and may be assumed to be absent. 

If we call 

k2 = - us(o + es) (8-4) 

manipulation of the partial differential equations yields the homogeneous circular cylinder wave 
equation for H^ 

d_ 

dr 

( i WJ 
[r      Br   ) 

+ (k2 + y2)H, = 0 

We next define the complex radial wavenumber by 

(K^)
2
 = k2 + f 

(8-5) 

(8-6) 

which leads to the Bessel function solution for the homogeneous fields inside the wire (medium 1) 

H$ = AJ^r) (8-7) 

E (A) _ jvy_ .(*). AJx(K?r) (8-8) 

E. (*) _ 
'z\ (8-9) 

In (8-7) - (8-9), A is an undefined constant which can be related to the homogeneous solution for 
the current flowing on (and in) the wire as 

a 

/<*> = flit (a + es)Ef)rdr = 2TZ a AJ^a) 

0 

(8-10) 

Equations (8-6) - (8-10) can be manipulated to yield the homogeneous fields in terms of 
the homogeneous current in the wire 
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2™ J^a) 

27cafcx    JJ(KJ a) 

'(*) _ ^5Kf>/«    70(K?V) 
W - - ^-^r -rnsr: <»-»> 2 r /«(A) 2na&j      yx(K\ a) 

The fields outside the wire, in air, are obtained by replacing the region subscripts 1 with 2's and 
the Bessel functions with Hankel functions of the first kind in (8-11) - (8-13). 

It remains to evaluate the elusive complex wavenumber y(s). This is done by requiring 
Hff* and/or £*A) to be continuous at the wire surface: 

MP ■/,("?'">   Hjff "■"'off'") 

where y enters (8-14) through (8-6), the definition of KJ*
}
 and K^. Figure 8.1 illustrates the real 

and imaginary parts of y as functions of frequency for a 1 mm radius copper wire. Note that the 
real part of y everywhere possesses the required negative sign. 

We next investigate the radiation resistance associated with the current P} corresponding 
to the homogeneous solution of Maxwell's equations. The power radiated per unit length by the 
wire is obtained by taking the radial component of the Poynting vector 

Sg^fcRe^Ägft (8-15) 

and integrating it around the wire azimuth in the limit as r goes to infinity. Substitution of E£} 

and H$ in the large-r limit yields 
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p(») _ 
°r2    ~ 

(2rar)2 i  (fc)i 

Mo 
ihh 

Re 
|^(^a)| <oe0u0 

(8-16) 

From (8-4), we see that k? must be pure real and positive, while Figure 8.1 shows that y2 will 
normally have phase just over it (in the third quadrant). Thus, icf} will, from (8-6), normally have 
a positive imaginary part in (8-16), and the integral of S$ over the azimuth will have an 
exponentially decaying dependence on r. 

10 100   i*io3   l-io4   i*io5   i-io6   l-io7   i*io8   i-io9 

Frequency (Hz) 

w as Figure 8.1. Real (attenuation) and imaginary (phase-velocity propagation) parts of y 
functions of frequency for homogeneous-mode current on a 1 mm radius copper wire. 
Note Re[y(,,)] is always negative. 

This means that the homogeneous solution of the wire problem does not radiate power; 
i.e., at least in the infinite-wire case, it has no radiation resistance. In retrospect, this outcome 
could have been anticipated: since this solution is homogeneous, incident fields do not couple to 
or drive it. By reciprocity, it thus cannot radiate or scatter. This is the first of several conclusions 
we will point out which are both obvious and easy to overlook. 

One should note that, if pCu were actually zero, (8-14) would have no solution with y 
having a negative real part. The consequences of having Re[y] = 0 are that Im^] = 0, the fields 
lose their decaying exponential dependence on r, and the amount of energy per unit length 
required to set up the fields associated with a nonzero current /A) is infinite. In point of fact, with 
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p - 0, the TM solution corresponding to (8-11) - (8-13) collapses to a TEM solution with no 
fields'in the wire and no E%> field in the air. This, in turn, implies the inward radial component of 
the Poynting vector vanishes everywhere, and, colloquially speaking, no glue remains to bind the 
fields to the wire. [Since (8-14) strictly pertains only to an infinite wire, the conclusions of this 
paragraph have only been proved for an infinite wire.] 

We are not sure when this solution to Maxwell's equation was discovered: in 1941, 
Stratton [5, pp. 524-530] cited a 1927 treatment by Sommerfeld [6] who had stated that for 1 mm 
Cu wire at 1 GHz, a signal traveling in this mode will e-fold in 770 m. At times, this solution is 
referred to as a single-conductor or Goubau transmission line, although the actual Goubau line 
apparently consists of a wire coated with a dielectric, and depends on the dielectric, not the wire 
dissipation, to contain the wave. [7] Physically, this solution corresponds to the surface wave of 
the Sommerfeld problem[8], except here the propagation is axial, whereas in the Sommerfeld 
solution, propagation is along the earth's surface radially from a vertical source. One-dimensional 
surface waves of this type were described as early as 1907 by Zenneck.[9] 

INHOMOGENEOUS SOLUTIONS FOR A WIRE 

Let us now consider the wire to be driven by a plane wave 

El = Ejejk*r = EJe«* + •» + az) (8-17) 

where y of (8-17) is not related to y of the homogeneous case. We can re-express k2 • r as 

V * *2<Y*X + V + Yz*) (8-18) 

with #2 given as 

JfcJ = G>V0e0 = <^o <8"19) 

and (Y, , Y » Y J bein8the direction cosines between k2 and the cartesian axes. Note that E'0 and 
k2 must be orthogonal. 

If the wire is assumed to He on the z-axis, x and y will be zero, and the incident field 
parallel to the wire will be 

E' • i  =E'e"= El eJk*'z = JEr'e A°"^r (8-20) 
l z 

with 6t being the angle between the wavevector and the positive wire (+z) axis. 

As in the homogeneous case, the fields scattered by the wire will be azimuth independent 
(d/d<f> = 0), since the wire has been postulated to be a small fraction of a wavelength. Scattered- 
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field and current dependence on z will be e™ where, unlike y in the homogeneous case, a is pure 
imaginary, and simply obtained from 

a =>>Yz/c0 <8-21) 

The radial wavenumber now becomes, instead of (8-6) 

(K^)
2
 = k2.+ a2 (8-22) 

where a replaces y in the wave equation (8-5) forHp 

Thus, the inhomogeneous, or particular, solutions of Maxwell's equations in the wire are, 

instead of (8-11)- (8-13) 

rr(P)   _ H4>\    ~ 
1™ Jx(yifa) 

(8-23) 

2%ak2   J^d) 
(8-24) 

(8-25) 

In (8-23) - (8-25), W is the inhomogeneous solution for the current flowing on (and in) the wire. 
The fields in air are again obtained by replacing regional subscripts 1 with 2's and Bessel functions 
with Hankel functions of the first kind. 

Now the driven or inhomogeneous wire current P» is the unknown to be obtained by 
matching boundary conditions just as the axial wavenumber y was the unknown in the 
homogeneous case. Matching boundary conditions onE™ at the interface 

'w +£/ =Eg +£o''sin0r (8-26) Eff E. 'zl 

gives 

/*> = £<;sinez 
2na 

,(p) ». 

k2
2HllX^a) ktj^fa) 

(8-27) 
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Figure 8.2 illustrates f^HJE?,, sin 6r) as a function of frequency for a 1 mm radius Cu wire based on 
broadside (Qz = nil, yz = a = 0, K2 = ^ = CD/C0) illumination. [The quantity I0 is introduced in (8- 
27) for later use and reference] 
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Figuree 8.2. Normalized inhomogeneous current, fi'VEl as a function of frequency for 
inhomogeneous mode on a 1 mm radius copper wire as computed by exact solution of 
Maxwell's equations (8-27) and by solution of the approximate telegrapher's equations (8- 
53). Note the telegrapher's current is about 6 dB below the exact solution at 1 GHz. For 
a 5 mm copper wire, the disparity at 1 GHz increases to 8 dB. This figure is based on 
broadside illumination. 

Since the inhomogeneous portion of the current on a wire is field driven, reciprocity 
requires it also to radiate. Let us now seek the radiation resistance associated with I(p\ The radial 
component of the Poynting vector Sjg associated with the driven (scattered) solution of 
Maxwell's equations in air becomes, in the large-r limit, 

S% = V2 Re $?H, (p)* 
4>2 ViRe 

2u0o>|/(p)|: 

{2-Kk.afTir\H^\^}ä)\ 
(8-28) 

where £g> and H$ are obtained from (8-23) and (8-25). This expression represents the power 
scattered per unit length of wire, and the radiation resistance per unit length thus is 
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R 
ItarSS 2u0o Mow 

rad (P)\2 %|/w|2      (27r^a)2|<)(K?)a)|2      8(A2/^): 
(8-29) 

where the last expression in (8-29) is obtained by invoking the requirement that the wire diameter 
be a small fraction of a wavelength, so the Hankel functions can be evaluated as its small- 
argument limit 

\H\l\^ä)\ « 
^ *K§fy 

(8-30) 

Evaluating (8-21) and (8-22) in air indicates that 

(VK?)
2
 = l/sin26z 

(8-31) 

so (8-29) for the radiation resistance can also be written 

u0G>sin26z 
R rad 

(8-32) 

This formula is the same as that derived under quite different circumstances by Vance. [10] 

We can now perform a most interesting computation: if a wire is not infinite, how far 
down the wire from a termination is the termination detectable in the driven current response? 
Consider for analogy a transmission line characterized by (r, /, g, c). For a single-conductor 
transmission line, the concept of a shunt loss g is somewhat vague. Omitting g, the wavenumber 
for a lossy transmission line is 

k  = v)\fic 1 + F 
2w/ 

.,//      2-K I ..II ZTl     , J"z 
= K + JK = ^r l + —T 

/ 
A") 

1 + *«'J (8-33) 

Thus, in a homogeneous plane-wave field, the effects of any discontinuity on the driven-mode 
current will e-fold in a distance 

A = h-tL      Xz - 2fa>/ 
2TT fr"      2n       r 

(8-34) 
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The inductance per unit length / of most free-space transmission lines differs from \i0 only 
by a geometrical constant on the order of unity. (For a wire of radius a at height h over a ground 
plane, the constant is [In (2h/ä)]/(2Tz). For the present case, 2h is approximately replaced by X0.) 
The radiation resistance of (8-32) corresponds to r in (8-34). Thus, we can evaluate A, the e-fold 
attenuation distance of termination effects along a wire, approximately as 

A„i!L.     "     „^ (8_35) 
2TT     Sin26z      sin20z 

l      ' 

with respect to the driven current solution of Maxwell's equations. In other words, if one is more 
than three wavelengths away from the end of a cable, one probably cannot tell from the driven 
portion of the cable response what its termination is. This result is well-known throughout the 
HPM experimental community, although it is not always readily embraced by theorists. [11] 

Having derived the radiated power by evaluating the radial component of the Poynting 
vector at larger r, we next look at the total power extracted (scattered or dissipated) from the 
incident field by the wire. This quantity can be written1 

P^ = V2 Re[£z' /<»*] = y2 Re[£0' sin 62/^*] (8-36) 

If (8-27) is solved for E'0 sin 0„ the result substituted in (8-36), and this result divided by 1/2\1
<P)\2, 

we obtain a formula for the total effective resistance describing the wire's behavior in extracting 
energy from the incident field: 

"      = R    = Re ex 
v&|/w| 2 

yw \&n?\&)      ^KfVoOefV 
2iza k>H?>(&a) ktJx(K?a) 

(8-37) 

This total effective resistance consists of two very distinct parts, the scattering or radiation 
resistance of (8-32) and the ohmic loss of the wire (which is enhanced by the skin effect when the 
skin depth becomes commensurate or short compared to the wire radius a). Figure 8.3 represents 
an overlay of R«, Rracb and the ohmic loss. It may be seen that R^ indeed, is the sum of its two 
constituents. 

MATCHING THE HOMOGENEOUS AND INHOMOGENEOUS SOLUTIONS 

Since the driven current on a wire only propagates a few wavelengths, the obvious 
question arises, how do incident field effects on a cable make their way any distance out of the 
driven region and into a shielded enclosure or asset? The obvious answer is that it is the 

xThe time-domain version of this equation has some implications concerning energy buildup in a 
resonant system which are often misinterpreted (see previous section and Appendix 8A). 
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homogeneous current solution that actually penetrates. Any differential equation has a solution 
consisting of a particular part (the response to local drive) plus a homogeneous part (used to 
match boundary conditions). Thus, the general solution for current on a wire (finite or infinite) is 

/ = /<P> + /(*> = I<P) + ne^z + cue-*2 
(8-38) 

In our statistical model, ax and a2 are the parameters which are matched to obtain continuity of 
current and voltage at segment junctions. We have thus built into our statistical model the 
aforementioned requirement of being able to utilize both homogeneous and inhomogeneous 
solutions. 
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Figure 8.3. Comparison of 1) the total power extracted by a 1 mm radius copper wire 
from the incident plane wave according to (8-37), 2) the skin-effect-enhanced ohmic loss 
of the wire, and 3) the radiation or scattering resistance of the wire (8-32). Note that 1) 
is the (approximate) sum of 2) and 3). This figure is based on the plane wave being 
normally incident on the wire. 

Consider, as a highly idealized model of the situation in the preceding paragraph, an 
infinite wire illuminated by the incident field for z < 0, but in a shadow for z > 0. (Assume 
whatever casts the shadow does not produce diffraction effects at its edge, and that it also does 
not act like ground plane which would modify the characteristic impedance of the wire.) Now the 
current on the negative portion of the wire will be given by the particular or driven solution (8-27) 
(with an eia multiplier), which we will call I0. On the positive (shadowed) portion of the wire 
there is no drive, and the particular or driven solution vanishes. However, current continuity must 
be maintained, so we require a nonzero homogeneous part to match this boundary condition at z = 
0.  Thus, the current or the positive portion of the wire will still be given by (8-27), with an 
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attenuating eYZ multiplier. In other words, to match continuity of current at z > 0, a2 is zero, but 
ax is given by I0, the right side of (8-27), times eyz. There is no physical discontinuity in the wire 
at z = 0. Thus, there is no negative-going homogeneous-mode reflection, and a2 is everywhere 
zero. The wire current solution is mathematically written 

/.eB z<0 
I =   ° (8-39) 

70e
yz z^O K      ' 

(The preceding idealization could be rendered more physically possible by assuming there was 
some sort of physical discontinuity at z = 0, such as the introduction of a shadowing semi-infinite 
perfectly conducting plate. Unlike the initial model, this new conceptualization would reflect at 
the discontinuity, add an e'yz term to the z < 0 region, with an unknown coefficient to be matched, 
and change the coefficient from IQ in the z > 0 region.) This example explains how a cable which 
is partly illuminated and partly dark actually manages to transport energy from the excited region 
to the quiet region, as in the case of an external antenna cable running through a wall and into a 
shielded volume, such as an aircraft fuselage or satellite bus. 

For a second example, let us consider a finite wire running from z = -btob where, to 
avoid complication and confusion, b is presumed much greater than the termination-effect 
penetration length A of (8-34). Here, the particular solution for the current on the wire is still 
given by (8-27), but we have physical discontinuities at z = ±b, so, both ax and a2 will be nonzero, 
in consequence of reflections occurring at both ends of the wire. We thus have 

I = IQe
m + a^v + a2e-v - b < z <; b (8-40) 

The boundary conditions are that I must vanish at ±b. The solution of (8-40), with boundary 
conditions, is 

1 = 1* <j« - £ - eyz + 
e2yb   _  e-2yb ß2yb   _  ß-2yb 

(8-41) 

It may be seen that resonance is appropriately predicted when the wire-length is an integral 
multiple of homogeneous-solution half wavelengths, 

Re[y(o))] -2b = nit (8-42) 

[There is, of course, an additional approximation made here that the scattered field does 
not fringe past the wire end. If this approximation is not made, the first resonance of the wire 
segment occurs when the wire is a bit shorter than XJ2. For higher modes, the deviation of 
resonant wire length from rik<J2 diminishes rapidly with n. A reviewer has pointed out that, had 
we alternatively terminated the wire segment with conducting plates perpendicular to the wire, (8- 
42) would not be just an approximation. Also, we have previously stipulated that the wire 
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segment length 2b is greater than 2A « 5X0, or n ^ 10. Thus, for this example, the end-effect 
issue is somewhat moot anyway.] 

The two examples presented here indicate obvious generalizations to wires with bends, 
discontinuous radii, point impedances, and any other sort of discontinuity, including passing 
through an opening from a system exterior to the interior. (These generalizations do, however, 
depend on our basic assumption of azimuthal independence. Obviously, this assumption will be 
violated to some extent at zero-radius bends and at wire junctions. In some applications, this 
approximation, which explicitly ignores creeping waves and differential-mode current 
concentration of facing sides of proximate cables, may not be tolerable. For our statistical cable 
work, however, where we are interested in spatial-average quantities, it is quite adequate. There 
are doubtless other situations, such as asymptotic antenna theory[3] or the current distribution on 
a conductor segment in a simple MoM model, which have similar toleration.) 

The major impact of this section as pertaining to our statistical work is that we do not 
need to concern ourselves with cable termination conditions on cables inside overmoded chambers 
if we are more than 3A0 from a given termination. 

REVIEW OF TRANSMISSION LINES 

Even the single-wire transmission line has some conventions in common with two- 
conductor systems; the second conductor is just removed to infinity, and the wire has to be 
infinitely long before the commonality is exact. Symbolically, one can still write the homogeneous 
telegrapher's equations 

dVW 
dz 

dim 

dz 

ZI™ (8-43) 

= - YV{h) (8-44) 

For such lines, there are four parameters, y, Y, Z, and Z„ the last being the characteristic 
impedance 

Only two of these parameters are independent. Since we already know y from (8-14) and Zc from 
(8-45), we should be able to determine Fand Z from (8-43) and (8-44). Specifically, it is easy to 
show that 
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Z = - yZc       Y = - y/Zc       Zc = JZJY       y2 = YZ (8-46) 

Sometimes Z and Y are separated into their real and imaginary parts [see (8-33) and (8-34)] 

Z = r -jiol = - yZc (8-47) 

Y = g -jac = -y/Zc (8-48) 

Let us consider an element dz of the wire. The net power entering dz is 

P% = * ^ 
y{h) j{h)*     _    y{h) j(h)* (8-49) 

where a + subscript indicates a +z-going wave and a - subscript indicates a -z-going wave. 
Equation (8-49) is a sort of generalized ID divergence relation (in so far as "generalized ID" is 
not an oxymoron). 

Generous manipulations of (8-43) - (8-49) lead to the result 

P% = * (l'?T + \I-h)\2)(g\Zf + ') (8-50) 

This is the power per unit length dissipated by the homogeneous mode. It is possible to extract r 
and g from (8-47) and (8-48). Results are plotted as functions of frequency in Figure 8.4 for a 
copper wire of 1 mm radius. This figure yields the curious result that the series resistance in this 
model is negative, and that g\Zc\

2 cancels r to three orders of magnitude (even though the sum 
does remain positive, i.e., dissipative). 

Our purpose of this exercise is to demonstrate that, while (8-43), (8-44), (8-47) and (8- 
48) are at least symbolically correct, use of (8-47) and (8-48) for representing the broad-band 
response of a single-wire transmission line seems unwise. (This is another example of a result one 
might not anticipate prior to undertaking an examination of the form presented here.) If they are 
used, one will generate some very curious intermediate values, and if they are subjected to FDTD 
representation, the negative nature of r at all but the lowest frequencies could lead to numerical 
instability. The foregoing discussion does not imply it is ever dangerous to use the equations 
preceding (8-47). (In geometries where more is present than a single wire, doing so may be 
needlessly difficult, but will not result in error.) 
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Figure 8.4. The total effective resistance per unit length for the single-conductor (1 mm 
radius Cu wire) homogeneous mode, broken down into 1) shunt and 2) series portions. 
This figure demonstrates the probable inappropriateness of using a lumped-parameter 
series-shunt model for partitioning the dissipation in this case: the model of the series 
dissipation r changes sign at the 10 kHz notch in the \r\ plot. 

NUMERICAL COMPARISON WITH A SIMPLER MODEL 

In most practical solutions of the wire problem, one works with the inhomogeneous 
telegrapher's equations 

dz 
ZI(P) + EW 8-51) 

dl{p) 
yy(p) (8-52) 

not the exact solution of Maxwell's equations (8-27). These equations may be combined with the 
useful definitions in (8-46) of the previous section on transmission lines to obtain the telegrapher's 
solution 

' „ <*z 

/ = are
yz a^e 

YE!e 

Y2-«2 
(8-53) 
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oEleaz 

V = - Zc{a^z - a2e-^ - -^— (8-54) 
Y -a2 

where the general homogeneous solution has been added to the obviously particular term. In (8- 
53) and (8-54), Y is taken from the exact solution, (8-14) or Figure 8.1. The undetermined 
homogeneous solution coefficients ax and az are again used to match continuity of current and 
voltage at each segment of the statistical model. Note that, like (8-38), this simplified 
telegrapher's model still retains the use of both homogeneous and particular solutions. 

It is interesting to see how much the exact solution for fi'VEJ as given by (8-27) (see 
Figure 8.2) differs from the telegrapher's approximation as given by (8-53). Consequently, we 
have overlaid the result of (8-53) on (8-27) in Figure 8.2. It may be seen that for broadside 
illumination of a 1 mm radius copper wire, the telegrapher's equation does remarkably well at 
least up to 1 MHZ, although it does under predict driven current by about 6 dB at 1 GHz. (We 
consider (8-27) to be more accurate than (8-53) because (8-27) specifically takes into account 
subtle differences between the driven- and the homogeneous-mode solutions, while (8-53) is a 
mixture of their properties.) 

Our statistical cable network model can be flagged to represent cable segments well- 
removed from other conductors either by formulas based on (8-53) and (8-54) or on (8-14) and 
(8-27), although the more exact and preferred selection in this case is the latter. [For cable 
segments close to a ground plane, however, we shall see that (8-53) and (8-54) become adequate, 
and are much easier to use.] 

INTRODUCTION OF A GROUND PLANE 

The last topic we shall consider in the body of this paper is the effect on the particular or 
driven wire solution of introducing a ground plane. Basically, we now let the driving field consist 
of 1) the old incident field, E'z, 2) the reflection of this field by the ground plane, and 3) an 
infinite sum of fields scattering between the cable and the ground plane. The idea behind the sum 
is first finding the scattered fields resulting from a particular solution driven by the incident field 
and its reflection. The scattered field is then reflected from the ground plane and used to 
reinforce the wire drive. This results in another scattered field which is then reflected from the 
ground plane and again used to drive the cable. This process is continued to form the infinite sum 
of driving/response terms. 

The first quantity to find is the ratio of the scattered field to the incident field. Using (8- 
25) and (8-27), the relations between the scattered field to the wire current, and between the wire 
current to the incident field, we find the ratio of scattered to incident fields at a center line image 
separation of 2h is 
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-l 

»0») (8-55) 

The next scattering parameter to determine is the ratio of the incident field to the field first 
reflected by the ground plane. This is just 

S™ = RD™ = ~e 
jlhnf (8-56) 

which is simply a delay time or phase difference times a -1 reflection coefficient R. Thus, the non- 
scattered field driving the wire is 

E'' = £z'(l + BDf) 

The driving field from the second reflection is 

(PKOCP) El" = -E'(l + RD™)S, 

and the total field driving the wire is 

Eftot = E'(l *RDf)(l -S!?+Sf-Sf---) 
(p\ 

= E. 
' (1 -BSf) 

(8-57) 

(8-58) 

(8-59) 

Consequently, the net effect on the particular current solution fl» of adding a ground plane 
is to replace (8-27) by 

/<"> = Eg sin 6Z 
2ira 

1 I^W*?'«)       ^J0(K?a) 
2 uW)fJ& tPh (    *iH?>(g>a) KJ^a)   ) 

1 + RD (p) 

1 - RS, (p) 
(8-60) 

Figure 8.5 compares Sf, 1 + RDf and (1 + RDf)l{\ - ÄS*>) for 1 mm radius copper wire as a 
function of frequency for the wire 10 cm above the ground plane (h = .1). 
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Frequency (Hz) 

Figure 8.5. The scattering coefficient ^ (8-55), the incident-plus-reflection coefficient (1 
+ RD^) (8-56), and the overall coefficient of reflection/scattering enhancement (1 + 
RD^)I{\ - RS^]) (8-59), all based on a 1 mm radius copper wire elevated h = 10 cm over 
a ground plane. 

More numerical results appear in Figure 8.6, which shows \(IJEy{\ + RD^)], the 
normalized current predicted with the ground-plane reflection added to the exact free-space 
solution, but with multiple scattering and effects of the ground plane on the exact homogeneous 
parameters IQ, Y= -y/Zc, and y ignored. Also shown in this figure is | F(l + RD^'))/(a2 - y2) |, a 
version of the first curve including the additional approximations of the telegrapher's equations (8- 
53). (Remember a is zero for broadside illumination, so in this case (8-53) reduces to the fourth 
of (8-46).) Lastly, this figure presents \{IJEl)-{\ + RD^)I{\ - R$?% which is the same as the 
first curve, but with the infinite series of wire/ground-plane scattering terms restored (8-60). All t 
hese approximations are plotted as functions of frequency, with 70, Y= -y/Z„ and y all pertaining 
to the ground-plane-absent case 

For wires close to a ground plane, the statistical cable model we use for each segment is 
based on the Maxwell-like solution (8-60) or, alternatively, on the simpler telegrapher's solution, 
(44) and (45).. In this situation, (8-47) and (8-48) usually suffice, and application of the more 
general equations preceding (8-47) is an unnecessary complication. As most wires are near a 
ground plane or conducting wall, this is a conclusion of major significance. In fact, this is the case 
where, if the wire elevation h does not exceed AQ/16, one can replace / and c in (8-47) and (8-48) 
by their dc values, / = u0 ln[(2h/a)]/(2iz) and c = 2-KeJ ln[(2/?/a)], so that Z ~ -jml, Y ~ -y'wc, y2 ~ 
-G)2lc, and Zc * (uo/e0f ln[(2A/a)]/(2n). 
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Figure 8.6. Normalized approximate currents for a 1 mm radius Cu wire 10 cm over a 
ground plane a) based on the exact free-field solution of Maxwell's equations, with the 
field reinforced by the ground-plane reflection but not by multiple scattering (8-57), b) 
based on the telegrapher's equations, but otherwise unchanged from a) (8-54), and c) 
based on the exact free-field solution of Maxwell's equations, with the driving field 
reinforced by the ground-plane reflection and by multiple scattering (8-60). All curves 
assume broadside illumination and use the approximation that the ground plane does not 
alter 70, Y=-y/Zc, ory. 

As one would expect, the two curves in Figure 8.6 which ignore multiple scattering start 
out similarly at low frequency, but gradually diverge as frequency increases and higher-order 
effects, which the telegrapher's equations do not include, come into play. The curve which does 
not omit multiple scattering predicts a much higher current until V4 starts to droP to tne wire 

elevation. For A</4 » /?, the current is effectively induction-limited, and the multiple scattering 
represents the ground-plane proximity, which tends to reduce the series inductance of the model. 
The current dropoff below 1 kHz on this curve represents ohmic impedance dominating induction 
limiting at very low frequencies. In between the two frequency extremes, current is nearly 
frequency independent because the emf driving the wire increases linearly with to, but the 
inductive impedance also increases linearly with GO, and the two effects cancel. 

In the approximation that the wire sees the incident field plus that reflected by the ground 
plane, the power per unit length captured by the wire may be written, with Sgf = 1 + RDf 

P    = y2Re gp 
E'saa-iKw,*)^™ gp 
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At equilibrium, neglecting ohmic losses, this must also be the power radiated per unit length by 
the wire, which we can write as 

Pma - * Re Rrad(l(«>,a)-s£>)-(l(o>,a)-Sl 
(p) 

gp 
(8-62) 

where Rrad is identifiable as the radiation resistance. A similar pair of equations can be written 
with the infinite series of reflections included. This is obtained merely by substituting S$ for S^ 
where S$ is the fraction in (8-59) 

(p\ 

S. 
(l-ÄSf) 

(8-63) 

Figure 8.7 illustrates the radiation resistance for a copper wire of 1 mm radius under these two 
approximations. 

I'lO 

NEmc'Sgp-M^^j-Sgp, 

I^-Sgpj-Ifroij-Sgp. 

Rc(E 
i \ 

• S nc lot,' ('ft 
ai) Stotj] 
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04) S tOtj 

no 
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Figure 8.7. The radiation plus ohmic resistance for a 1 mm radius Cu wire 10 cm over a 
ground plane. It appears that, with our definition of radiation resistance, its value is 
invariant to the inclusion of zero (see Figure 8.4), one, or an infinity of reflections. One 
might interpret this to mean the radiation resistance does not depend on wire height over 
the ground plane.   In a sense this is not surprising, since a wire close to a ground plane, 
which a field cannot couple effectively to, also cannot radiate effectively. However, this 
conclusion certainly is at variance with (3-19). 
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For wires close to a ground plane, the more accurate, Maxwell-like statistical cable model 
we use for each segment is based on (8-60). There can be, however, a physical problem with (8- 
60). In particular, as the separation h between the cable and the ground plane increases, it is 
necessary for the field to return to the free-space result. To enable this, a coefficient [see (3-16)] 

I (8-64) 

is defined to enable taking a linear combination of the reflective and free-space solutions 

1 +RD GO 

T = 
1-RS. <p) 

1+5 

(8-65) 

Then, the net effect on the particular current solution i00 of adding a ground plane is to replace (8- 
27) by 

7W = £0'sinez 
2na 

»i/W/,» •<W r /JPh Ho«K«)       *<Vo(KT«) 
.2 uQ){JP) ip). {    k^\^a) k^J^'a)   ) 

T (8-66) 

instead of (8-60). 

HOMOGENEOUS WAVENUMBER y(w) FOR A WIRE OVER A GROUND 
PLANE 

At the time this work was performed, we had not investigated the exact solution of y(<o) 
for the homogeneous current on a wire above a ground plane. Where y(wi) was required, we 
approximated it with the ground-plane-absent result [(8-14) or Figure 8.1)]. Subsequently to the 
actual performance of this work, we deduced a technique which should lead to the exact y(wi), 
although numerical implementation of this technique has not been performed. 

In particular, this problem has a solution which is obtainable in analogy with the 
inhomogeneous, multiple-scattering approach. The wire will initially radiate (reactively in the 
near-field) in accordance with (8-13), thus giving a first-reflection coefficient of 
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t(A) RD (*) (8-67) 

instead of (8-56). Consequently, the non-scattered field at the surface of the wire, in the presence 
of a ground plane, will be 

£f = 4V)(1 + KD*>) (8-68) 

This field will then lead to an infinite series of scattering terms, each term constituting a member 
of a power series in RS^\ where 5f} is given by (8-55) with y(w) replacing a; i.e., K$ replacing 
K/^. In other words, after the first scattering, we have 

E%" = E%\a)(l + RD^)(1 + itff) (8-69) 

where 

S™ = 
J)LJ T /«.<*)„\ ziW/JW W/«.<*), ^Kr^VoCCflWc^fl)    ^ros"«) 

u^^fa)/^^      /tfW*) 
(8-70) 

After all the infinite series of scattering has occurred, we shall have 

7(h)tot  _   r(h\ 
-"z2 = KM 

(1-itff) 
8 >  - ir(f>X = E%(a)S, m 

tot (8-71) 

Consequently, the free-space equation for y((o) (8-14) is replaced in the presence of a 
ground plane by 

„<*)     T /JfO. .(*)   uMtJto, >W\ 

(8-72) 

where S]® is given by (8-67) and S® is given by (8-70). At present, resources have not been 
allocated to solve (8-6) and (8-72) for y(wi) in the presence of a ground plane. 

SUMMARY OF DRIVER OPTIONS 

The simplest expression for the driven current response is obtained from the frequency- 
invariant transmission-line model/solution of (8-51) - (8-54), 
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J(p) =       z 

Y2 - a2 
(8-73) 

This expression is normally adequate for cables close to a ground plane. The next level of cable- 
driver sophistication, which should be used when a cable is not close to other conductors, comes 
from modeling the fields around the cable as cylindrical harmonics [(8-26) and (8-27)] and 
applying the driven-cable boundary condition 

E™ = E El (8-74) 

This boundary condition results in the driven-current formula 

j(p) K 
2iza 

» uMiJp) .<W JP>, MoWW«)       h^W") 
2 u(l),jp) &h KH?>(g>a) KJ^'a) 

(8-75) 

For a cable h above a ground plane, E[ is replaced by (1 + Sf^l (8-56), where 

T(P)   _ RD, (p) _ /2/7K! 
<P) 

(8-76) 

represents a delayed reflection off the plane. Thus, assuming normal incidence on the ground 
plane, the next level of sophistication for the driven current is (8-58) 

j(p) ,i iTia 
fp) ». u0KW(Kfa)       vtf'Jtä'a) 

fPh KH?><g>a) kiJx(K?a)   ) 
(l + RD™) (8-77) 

The fourth model of cable drive on a wire over a ground plane can be approximated as the 
response of a wire in free space driven by 1) an incident field plus, 2) a reflection of the incident 
field from the ground plane, and plus 3) an infinite sum of fields scattering between the cable and 
the ground plane (8-60) 

/<" = E. 
i Ina 

Jp) uWfJP) (P) JP), ^>H^a)      ^KF-W«) 
\-I 

£n?(&°) kfj^fa) 

1 + RD, (p) 

1- RS. CP) 
(8-78) 
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where h is the distance of the cable above the ground plane. The fifth, and most sophisticated, 
model of cable drive on a wire over a ground plane includes the transition parameter i; of (8-61), 
which permits construction of a "unified field theory" asymptoting to the fourth model if the wire 
elevation is not great compared to a wavelength, but alternatively asymptoting smoothly to the 
free-space model (8-27) if the wire elevation is great 

/<» =£oSin6r- — T (8-79) 

In most problems, it is unnecessary to use the three most sophisticated models, although their 
application will only endanger one's computer budget. 

SECTION SUMMARY 

We have demonstrated that a wire illuminated in free space by a plane wave supports a 
current which separates into a driven and a homogeneous mode. The homogeneous mode does 
not have a radiation resistance, at least where the wire is uniform, and is excited only at wire 
bends, terminations, other wire inhomogeneities, or field nonuniformities. We have worked out 
the dispersion relation for the homogeneous solution and the coupling relation for the driven 
solution in the free field case. The driven solution involves so much radiation resistance that it 
only propagates termination effects two or three wavelengths. The homogeneous solution for an 
infinite wire in free space can only exist if the wire is not perfectly conducting. Our analysis has 
also been extended to a wire over a ground plane, except that we have not actually evaluated the 
transcendental equation numerically for the homogeneous dispersion relationship. Several 
approximations, including the telegrapher's equations, are numerically compared with the exact 
solution of Maxwell's equations. For wires close to a ground plane, telegrapher's equations 
solutions prove to be a reasonable model. For wires well removed from a ground plane, it is 
better to employ the solution derived more directly from Maxwell's equations. We also 
demonstrate (in Appendix 8A) that certain definitions of the quality factor Q, based on rate of 
energy dissipation of a resonator or resonant system, can lead to incorrect interpretations for the 
manner in which system energy transiently builds up during turn-on. 

APPENDIX 8A. ENERGY BUILDUP AND THE MEANING OF Q 

One definition of the quality factor in a resonant system is 

n _ (time-average energy stored inside a system) 
0 (energy loss rate of system) 

This statement can be expressed as the differential rate equation 
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<EnL = - ^.E (8A-2) 
dt Q     " 

Thus, if a system has been driven to the point where it contains energy E^o, and the drive is 
suddenly switched off, energy content will decay as 

E    = E  ne ~"*,IQ (8A-3) 

where (o0 is the system's natural frequency. This result is correct. However, there is a strong 
implication from (8A-2) that, if Emfi is the equilibrium sinusoidal steady-state average system energy, 
upon turning on the drive, energy will build up as 

E„-E„fi{\-e^t,Q) (8A-4) 

This equation, or at least (8A-2), its rate-equation equivalent, often appears in literature. [4] 

However, (8A-4) cannot be correct: it indicates that, just after turn-on of the drive, power 
input is nonzero. Actually, (8-36) indicates that the drive (E'z in this case) does not input energy until 
the response (T00 in this case) has started to build up. 

In order to obtain a more correct interpretation of Q and power build-up, let us consider the 
telegrapher's equations on a transmission line consisting of a length of wire over a ground plane. In 
the time domain, we have, in analogy with (8-43) - (8-50), 

K=-l*L+E&) (8A-5) 
dz at 

= - c— (8A-6) 
dz ot 

where / and c are the complex inductance and capacitance per unit length of the wire with respect to 
the ground plane, 

l = l' + jl" c = c' + jc" (8A-7) 

These relationships can be combined to give, in sinusoidal steady rate, 

— + lew21 =j<acEj(z) (8A-8) 
dz2 
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If the line is shorted to the ground plane at both ends, z = 0andd, the eigenmodes, defined in the 
absence of loss, obey 

Ü + I'c'J* 7=0 —- = 0   at   z = 0, d (8A-9) 
dz* dz 

and are given by 

I   = 
2   cos— (8A-10) 

"    \dl' 

There eigenmodes are orthonormal within a factor of Ml (self- and cross-terms integrate to bmJ V) 
on the wire, and have pure real resonant frequencies 

w„ = — = w^ (8A-11) 

where V is the propagation velocity of the line with loss omitted, v> = ll(T c')Vl. 

If one expands the solution of (8A-8) in terms of the eigenmode functions, 
oo 

m = £ v.« (8A"12> 
w = l 

one finds the eigenmode coefficients to be 
d i<*>F 

B« - HrH I13®1*®* = -7^2 (8A-13) 
«'  - w„    0 0)   -0), n 

with this equation also defining F„. 

The correct way of reintroducing loss into (8A-13), so B„ does not actually go to infinity at 
resonance, is to replace o)2 - co„'2 with 

o>2 - J* -   (o> +MJ) - aJt (8A-14) 

where 

«2T:2 

«4 = KR -7"J2 =    .2„,    .„,   , (8A-15) 
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and where, in the interest of simplicity, we have assumed all losses are associated with the line 
inductance.' The exact rational for the form of (8A-14) is a bit arcane, and outside the scope of our 
present objective. It involves considerations like the symmetry of/1 and c' with respect to w, the anti- 
symmetry of r and c" (/ and /" are Hilbert transform pairs, as are c' and c"), and especially the 
requirement that B„ always have both poles in the lower half-plane of <o space.[12] 

Equation (8A-15) can be manipulated to show 

Qn 
<0 •nR 

2<x> •nl I" 
(8A-16) 

(This equation uses the definition that Q„ is the center frequency of a resonance divided by the 
bandwidth between the two 45 ° points: 

Qn   = 
(0 'nR 

AG> 
(8A-17) 

'45° 

Equation (8A-17) actually proves to be a much less confusing definition of Q then (8A-1).) 

The average electrical energy on the wire can be partitioned between modes as 

Ee = VAc'\V\2dz = y*fc' _L *L 
(öc  dz 

(8A-18) 
n      (D" 

The average magnetic energy can be similarly partitioned as 

Em = %\l'\I\2dz = Y*Y,W 
J n 

(8A-19) 

At resonance <•>„', these two average energies are equal. 

The power dissipation (which must equal the input power) can also be partitioned between 
modes 

Pd = V2 Re fEXz)I(zTdz = Vi Re [Efa E B:in{z)dz 
(8A-20) 

— — E 1^ I 2 //r   " 
2   _    <*** 

2Qn    n 
EW 
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Equations (8A-18) - (8A-20) are clearly equivalent to (8A-1) for each mode's Q. 

If we recall Fn from (8A-13), a lengthy, but ordinary, transient analysis of the telegrapher's 
equations (8A-5)-(8A-6) shows,[12] for drive at resonance, o = o^, that current on the wire builds 
upas 

/(*, z) = £ FnIn{z) A cosco^/(1 - e ^') (8A-21) 

Thus, magnetic (and total) energy on the wire builds up as 11(/, z) |2. From (8 A-21) we see this form 
has a 

(1 - e'^f = (1 - e'^'^2 = 1 - 2e~°w/(2e") + e~^tlQ"       (8A-22) 

temporal dependence, as opposed to (1 - e'0^3"). While this factor starts at 0 and ends at 1, like the 
factor in (8A-4), it initially has the correct zero energy derivative (zero power input) which (8 A-4) 
does not. Perhaps as it must, however, (8 A-2) does lead to the correct description of energy decay 
as previously indicated; transient analysis of the telegrapher's equations does indicate power decay 
characterized by e^ as expressed in (8A-3). 
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Chapter 9. STATISTICAL DISTRIBUTION OF FIELDS IN 
COMPLEX CAVTITES: THE JAYCOR MYSTIQUE 

In 1988, Price et al from JAYCOR released a corporate report on the statistical distribution 
of electromagnetic fields within a complex cavity.[l] In 1993, a somewhat revised version of this 
work appeared in the open literature. [2] 

We have found the style and form of this work, in both versions, to be extremely difficult to 
follow. Also, both versions of this work contain some peculiar definitions, notational and units 
conventions, assumptions of dubious validity, and outright errors. It is the intent of this section to 
provide a more readable presentation of the earlier work with the above difficulties pointed out and, 
where possible, mitigated. 

The present document is not prepared as an indictment of the earlier study, which we believe 
is actually the first really fresh look at EM hazards in a generation. (We would not trouble ourselves 
criticizing and revising someone else's work unless we found it intrinsically outstanding.) Rather, it 
is out hope in this section to clarify the earlier document, so that, in the future, neither we nor others 
have so much trouble comprehending its message. This seems important to us, as the concepts 
developed by Price, et al, are as fundamental to SEM as the classic Yee article is to FDTD.[3] 

SPECIFIC MODE DENSITY 

The Price, et al, report (Eq. 1) begins with a formula for EM mode density associated 
with blackbody (Bose-Einstein) statistics. In particular, let us assume we have a cubic cavity { on 
a side. At frequency v, there can be 2vl/c standing half-waves along each edge. If the structure 
were one-dimensional, this is the number of modes which could exist at frequencies of v and 
below. 

In 3D, there can be up to (Ivllc) standing half-waves along each edge. Thus, the number 
of modes here permitted with frequency below v corresponds to the volume of a sphere with 
radius (2v«/c), except that only the eighth of the sphere where v is positive along all axes pertains: 

2 (9-1) N(y) = - 
8 

2v(? 
3 

where the factor of 2 is added to account for the two possible polarizations. The mode density is 

f^) =  *L v* V (9-2) 
rfv 

where we have replaced P by the cavity volume Fso the result is not restricted to cubic cavities. 

A general conventional definition for Q of a resonant system is 
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~ (time-average energy stored in system) 
U - (0 • : ■~— (.""■'j 

energy loss rate in system 

The Price, et al, definition of Q appears, in a few instances to be half this conventional definition. 

If a series RLC circuit is driven by a voltage source V, the current will be 

/ = VIZin (9-4) 

where 

Z   = R + y'coZ, + — (9-5) 
jaC 

For such a circuit we have, at resonance, the time-average stored energy as 

U   = V*IPL = U  = YACVCVC = U/2 (9-6) 

and the power dissipation as 

Pd = ViIVR (9-7) 

Thus, we find at resonance, w0 

Q = _L_ = _L_ (9-8) 
^        R        Ru0C 

Also, the maximum current will flow at resonance, 

/     = VIR (9-9) max v       ' 

and the maximum power will dissipate at resonance 

Pm = V2VVVR <9-10) 

At some frequency Aw removed from resonance, the current will be 

VIR 
"  1 +72ö(Aco/co0) 

('   ' 
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The Aio at which / and V are separated by 45 ° is the same Aw at which the power dissipation 
drops by Vz. 

Ao) _    1 

This is the normal definition of the bandwidth of a resonant system. 

Price, et al, use a definition of bandwidth which appears different: 

Av, _   1 

v0   ~ Qj 

(9-12) 

(9-13) 

Thus, their resonance bandwidth seemingly differs from the conventional usage by a factor of 2. 
Actually, their Av, is the full bandwidth between 45° points, while Ao of (9-12) is a single 
sideband. Thus, there is actually no physical inconsistency, and we shall hereafter drop the J 
subscript on A v. 

The number of modes excited inside a cavity by a monochromatic excitation is 

^M.Av=iV =^fläV=^ (9-14) 

according to the Price, et al, convention. This number is dubbed the specific mode density. We 
realize this is a sort of qualitative factor, and wish to point out more than criticize the fact that is 
may have a factor of two vagueness. 

MEASURED POWER IN AN OVERMODED CAVITY 

We assume the fields in the cavity can be represented as a summation over the eigenmodes 
(no static fields) 

B(r,t) = £ Bfrfi 
' (9-15) 

E(r,t) = Y,E{r,t) 

This is fine, but the Price, et al, presentation next expands Bt and Et into five factors 
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Bfr,t) = BM^W^wiifat + 4>;) 
(9-16) 

Efr,f) = £0,e>)g,(r)/r(r)cos((D/ + <j>,) 

Price, ef a/., work with the B - field expansion exclusively. The coefficient B0, is the amplitude of 
mode / when this mode is normalized so that the total energy in mode / in the cavity is 

E2V 
ut = ^- (9-i7) 

using JAYCOR units (watts per square cm, etc.). We personally choose to use MKS units, in 
which case the analog of (9-17) is 

U, = -Z- (9-18) 
'       2u0 

where u0 is 4TT X 10"7 H/m. This means that, when ever we pop up a u0, the JAYCOR notation 
would imply a 4n. 

While correct, there is a subtlety in (9-17) or (9-18) which may not be deliberate. The 
actual magnetic energy associated with mode / is 

B2V 
U   = -*- (9-19) 

4 Mo 

but this quantity gets doubled upon addition of the electric energy. Some of the Price, et cd., 
phraseology implies that they may have missed this point. For instance, they refer to B0i as the 
sealer amplitude of the magnetic field of mode /' averaged over the cavity. We think that 
associating B0i with the magnetic field, not the total electromagnetic time-average energy density 
is, at best, misleading. Note again that equations containing B0, will differ from MKS to JAYCOR 
units. We shall try to mitigate this confusion by showing both forms of such equations. 

The second factor, £/r) is a unit vector pointing everywhere along B(r) of mode /'. Price, 
et al, next attempt to partition the expansion into a slowly varying spatial distribution g,(r) and a 
rapidly varying part of the spatial distribution/(r). They eventually set g,(f) to 1, claiming 
physical grounds. The product/(r) gjir) has meaning in the work of Price, et al, but the 
factoring is not of apparent purpose. 
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To elaborate, Price, et al, defines &(r) to be the amplitude of B,(r,i) averaged over time 
and the "phase volume" 

gfi) = 
Yi 

B0iVph(r)   V^r) 

/ By, if*' (9-20) 

where Vph(r) is defined to be a sphere of radius of A/2 centered at r'. We cannot imagine where 
this definition came from or why: It is never explicitly used. The Price, et al, papers also 
systematically omit the Vph(r) term in the denominator of (9-20) and all following equations in 
their development. Unless detected, this omission causes the reader all sorts of dimensionality 
disagreements. 

The remaining rapid variation^/-) can be evaluated from other quantities as 

Bfr,t) = bfr) • [50,6.(r)g/C-)/('-)sin((o/ + <b,)] = BjgtWt (9-21) 

or 

2b.{f) ■ B.(r,f) 
m =   'V .v (9_22) 

where a bar over a quantity here actually implies taking a mean square over the temporal 
dependence (sin(wt + (b;) - Vi), not taking a true average as stated repeatedly) in the Price, et al, 
work. 

PROPERTIES OF THE EIGENFUNCTION COMPONENTS 

This section of the Price, et al, work is especially sloppy, largely because the error in (9- 
20) is allowed to propagate. It will be true that the eigenmodes are orthogonal, 

/(W.) * <W*) Vk* = 2üiM* = BZ™* (9-23) 
v 

as Price, et al, claim. However, their other integral in this section have problems. For instance, 
we find from our corrected version of (9-20) that 
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V ß0i  V     PhK ' V^r) 

V  Vph\r) v\r) V     P* > VJr) 

(Note that here the bar genuinely implies taking an average over time.) 

It is conceivably possible to take the slowly varying g,(rf factor across the integral over 
the phase volume, resulting in 

f^(r)dr = ff^rdr f f?(r)dr> (9-25) 
V V     Ph^r)        V^r) 

or 

PhK J V) 

Price, et al., again omit the Vph(f) term in their denominator of (9-26), thus causing the reader 
even more confusion. If (9-25) and (9-26) are valid, use of (9-23) forces the other result of this 
section in the Price, et al, papers to be 

fgfc)*=V (9„27) 
v 

In the JAYCOR work, (9-26) and (9-27) are pretty much pontificated, with no mention that they 
cannot be true without basing them on (9-23)-(9-25) [although (9-23)-(9-25) do not guarantee 
the validity of (9-26) and (9-27)]. 

Let us now assume we have a B sensor with physical area a, at point rr Let a, point along 
the direction of the sensor's greatest sensitivity. We can thus express a, as 

a. = aya78(r - r) (9-28) 

where, a} is a unit vector aligned with af The voltage picked up is thus 
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Vj = <*a.-B(rJfi (9-29) 

and the power picked up by a square law detector of load impedance R is 

P. = v?(fi.-B(rJtflR (9-30) 

In the future, we shall denote B{rft) as Br A similar convention shall be applied to other 
quantities evaluated at rr 

Let S be the power flux in the cavity as projected on a,. Then the sensor's free-field cross- 
section is ofi where 

SpJ = (aj-Bj)
2<*2/R=PJ. (9-31) 

Moreover, S must obey, from conservation of power, 

Sj = V2Bfclv0 (9-32) 

[The fraction in (9-32) could arguably claimed to be 1/3 or 1/6, as all the energy is not 
propagating along ±o,,] We thus obtain 

^u2 . 2n0 _ q/(o2n0 o  = (a.-BY— • —^ « -^-——- (9-33) 
1        J    J   R      B2c Rc 

} 

or 

K    a  <iT\iQ 
u" 

The JAYCOR units equivalent of (9-34) is 

P  
"       4 it ^ = £<V*/ (9"35> 

At this point, we identify a basic contradiction which Price, et al, have (or will) introduce. 
The power carried by the magnetic field is the sum of two squared quantities (the phase 
quadrature components of the magnetic field). As such, this power should have a chi square 
distribution with two degrees of freedom, provided each of the quadrature components is 
normally distributed (which they should be). Thus, if the sensor responded to B2, Pj could 
reasonably be expected to have a chi square distribution. 
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If frequency is varied, the phase quadrature components of B will have a linear 
dependence on w, and will not be normally distributed however. Thus, there is no reason to 
expect Pj as predicted by (9-30), (9-34) or (9-35) to fit a chi square distribution with two degrees 
of freedom. As best we can determine, Price, et al., seem unaware of this issue, and subsequently 
forces Pj to be chi square by running the P, ensemble (vs frequency) through a filter which 
removes long-term trends (such as an w2 dependence). This mandatory trend removal is not 
mentioned in the JAYCOR work, although we know it has been done. 

If (9-34) for the power detected at r, is expanded in the magnetic eigenmodes of (9-16), 

we obtain 

2Ho 

Mo V   ' 

i,k 
i*k 

(9-36) 

The trigonometric result occurs because 

sin(Grf + <b.)sin(wf+<|>fc) = ^(cos (<tv - (bfc) - cos (2iot + <b, + <$>k)) (9-37) 

In evaluating (9-36), we shall use the facts that eigenmodes integrated over Fare orthogonal (9- 
23), while cross-mode terms evaluated locally do not vanish. 

CAVITY RATE EQUATION AND RESONANCE FUNCTION 

The Price, et al., here put down some formulas for the energy balance in a general cavity. 
There formulas are not easy to understand or develop, and consequently we shall provide an 
alternate explication. We shall work in ID, as this gives the same conclusions exactly as 3D, but 
makes the derivation easier to visualize physically. 

Let us consider a lossy transmission line, short circuited at both ends, and with a localized 
delta-function drive. The transmission in equations are 

E. - -L?L + E 
dx dt 

dx dt 

where L can be non-ideal. There equations can be manipulated to give, in the e"* domain, 

226 



dx2 
+ k2I = -j(x>CE (9-39) 

Now assume the line is driven by a point voltage source at x0, 

E = E06(x - x0)e^ (9-40) 

and that the line extends from 0 to t 

dx2 
+ k2I = -jd)CE0 6(x - x0) 

We can expand / in the current eigenmodes (in this case, a Fourier series) 

1 = E An cos mix 

(9-41) 

(9-42) 

Some easy manipulations lead to A„ being evaluated as 

-j(oCE0 cos (rmx0/H) 
K- 

o)2     n2it2 (9-43) 

Note that mode n is only strongly driven if x0 falls at a point where mode n has a high current 
response. The mode n current is 

ja>CE0cos(rmx0/H) cos (n%x/H) 

~ (9-44) '„= " 

le- 
id 

2    n
2ii2c2 

We also have 

2       1 c2 = 
LC      (L'-jL")C    L'C 

(9-45) 

where L" represents inductive losses and L"IL' is the inductive loss tangent of the line. 

If A„ is unity, the electric plus magnetic energy stored on the line in mode n is 
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U_ = lL'/4 (9-46) 

he power dissipated along the line is 

Pnd = 1/2Re(Zi IJ*) = y2(x>L " cos2 (nnx/i) (9-47) 

which integrates over the line to 

P   = vAL"H n (9-48) 

Thus, according to (9-3), 

Ö„ = 
Pn        L" 

(9-49) 

We can thus expand the term appearing in the denominator of (9-44) as 

^!£! = ^(l+Ä) = co2
n(l+Ä) (9-50) 

This makes it possible to expand the current in mode n as 

-jE0 cos (wroc0/{) cos (mzx/H.) 
',= 

IL (<•>-«„) " J^n 

2Ö„J 

(9-51) 

Thus, the electrical energy contained in this mode is 

U    = fViLIJ^dx ne        J n   n 

0 

Vil^fCOS2«^ 

IL 

-, = ViJ7. 

(« " <">„)2 
<o_ 

20 

(9-52) 

The power input into mode n by the voltage discontinuity is 
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P„ = ViRe^/^x^' 

J- '(\Ef/lL) cos2 irmcß) 
4ß„ _  V„<*n 

(to - 0)„)2 + 
( to  ^ 

l2ß«J 
ß„ 

(9-53) 

The total power input on the line is 

w /n    ___2 

Pc = y2Re[£,/W] = (l^ol2/^)E 
4ß„ 

cos2 (mnxQ/l) 

(to-co)2 + 
'   (0    ^ 

\2Qm) 

(9-54) 

For modes near resonance, o> is nearly com, and Pc can be re-evaluated as 

to m   ___2 

/,e = (W/«^)E 
4ß„ 

cos2 (mrcc0/(!) 

(o + l) 
to. 

20, «/ 

(9-55) 

where a is some averaging parameter to be fitted for accounting that all the modes are not driven 
right at resonance. 

The Price, et al, articles make the rather extreme assumption that a = 0, thus leading to 
the result 

pc = (|zg2/<!Z)££ cos2^™/) 
(0     TO 

(9-56) 

Here, the debatable assumption is also made that Q does not depend much on m. Substitution of 
(\E0\

2/tLL) back into (9-53) re-express the power input to mode n as 

'»/ 
2 cos2 (rmxJQ) 

\2Qn)    
c £ cos2(/mix,/«) 

P_ = 

(to - Co/ + 
t to  N 

l2öj 

i2ß»J 
2 

(u- ■»J1 + f «O 
i2ö»J 

(9-57) 
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In (9-57), e„ is the coupling coefficient for mode n, 

COS2 («TOTf/O 

52 COS2(w7tX0/0 
(9-58) 

Although not pointed out in the first JAYCOR release, by the second release they had 
isolated two attributes of e„ which (9-58) makes fairly apparent: For large n, e„ will be a very 
rapidly changing function of«, and in general it will be true that 

E€„ = l (9-59) 

From (9-3) and (9-57), we thus see that, at steady state, the total energy in mode n on the 

cable is 

Un = 
QJPn 

to 
(w " «„)2 

/ <o„U 

w 
(9-60) 

It is important to point out that, in our simplified ID model, all losses are internal, and no energy 
leaks back out through the port at which it was injected. 

If steady state conditions do not prevail, the energy balance for mode n will be a first- 
order differential equation of the form 

dt 
$Un+Pn = -$Un 

f °"1 2 

P e en 

(CO -«„)2 + 

l2öj 

(9-61) 

where ß is some constant to be determined. It is easy to evaluate ß at steady state from (9-60): 

ß = -^ (9-62) 

so that 
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dU n n    n 

to_ 

2ßn, 
c   n 

dt Q„ 
((0-(0„)2  + '«O* 

l2ßj 

(9-63) 

We also recall from (9-20) that U„ is related to B0n by 

U   = —  (9-64) 

STATISTICAL PROPERTIES OF THE MEASURED POWER 

We now begin a section which is marked by exceedingly lengthy formulas, which probably 
appear more intimidating than they actually are. The mean of the measured power data is denoted 

u = E(P) (9-65) 

and the variance is 

a2 = £(P/) - (E(P))2 (9-66) 

where E () denotes the expectation. 

In view of (9-36), E(P^) can be written 

op. 

£ E^B*«*®, - ^EiäybJEiäybJEigJEigJE^EVJ 
(9-67) 

i*k 

The expectation E(Pf) is even more cumbersome. Taking care not to express separately the 
expectation of terms which are not independent, we find 

EiPj) [EiTJ+EiTJ+EiT,)] (9-68) 

where 
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E{TX) - E^B^-bfg^f] = E EiB^E^-b^Eig^E^ 
k 

M 

£(^2) = 2E E[BIBü1CBW COS(4>, - <j>{))4*. • bf)E(äj ■ Sk) 

k'*i (9-70) 

• Eiä.b^E^g^E^E^E^) 

E(T3) = E £C»aAAA,«»(4>* -*«) «» (*■.-*■)) 
(9-71) 

• £(«. • ^) (i. ■ bt) (a. • bj (a. • *„) E(gvgvglltgJ E(f^fyfmJfn) 

Some factors in this very intimidating-looking set of equations are actually easy to 
evaluate. For example, the probability density function of 0 is 

Piß) = ^sinG (9-72) 

A       A 

Thus, the expectation of ay bj is 
ii 

E(äj ■ b) = V2[ cos 6 sin 6^6 = 0 (9-73) 
o 

Similarly, we can find 

Elfij • bf) = 1/3 E((ij ■ b)4) = 1/5 (9-74) 

JAYCOR workers state that the spatially rapid function/^, almost by definition, averages to zero 

E(ft) I 0 (9-75) 
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We think, however, that either aj • bt oxftj can be bipolar, but both cannot be. It seems more 
logical to let % reverse direction where necessary, as it is already permitted to change orientation. 
This convention invalidates the JAYCOR claim of (9-75), and we will not invoke it in our review 

By definition, we have 

V* = ^T- (9-™) 6 

Thus, it must be true that 

p> kl** 
Hft) = JLr- - -^— <9-77) 

/* 

Because of (9-26), we are forced to conclude that we thus have 

E(fy = 1 (9-78) 

At this point, the JAYCOR people assume that, for a rectilinear cavity, we can express 
f,(r) as 

x/ .       „ rx  ■    d-KX   .    /W7CV   •    n-Kz f.(r) = 2/2 sm — sin —J- sm — (9-79) 
A D C 

[We note that this expression may be incompatible with (9-75). The right side should have 
absolute value signs.] Equation (9-79) leads to the results 

Elfi) = 1 
(9-80) 

E(fy = 27/8 

There expectations are, at least, independent of (i, m, ri) and (A, B, C), and do not depend on the 
right side of (9-79) being modified by an absolute value operator. 

At this point, it is apparent from (9-73) that the second term in (9-67) is zero. This result 
is valid even if (9-75) is not. The expectation for Bj can be evaluated from (9-18) 
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.2, 2^0 E(ßi) = -fE(U,) (9-81) 

using MKS units. We thus find from (9-67) 

u =£(/>) = ^ • Vi • ^ E ^TO *<$ £($ (9-82) y       2u0 F    , 

In spite of the shortcomings of the derivation of (9-27), it implies that 

Eigfr = */ « 1 (9-83) 

Also, we have 

E E,(U) = U (9.84) 

the total energy rattling around in the cavity. Thus, we obtain the mean power sensed as 

E(P) = 2£^L (9-85) 

where appeal is made to (9-80) and (9-82). 

We can determine at once from (9-73) that 

E(T2) = 0 (9-86) 

This conclusion does not depend on the dubiously valid (9-75). 

In (9-71) for E(T3), only terms with even powers of the dot products can be nonzero. 
Thus, only terms with [k, 9) = (m, n) or (n, m) are nonzero, and E(T3) becomes 

E(T3) = 2E E(B!X COS
2
 «b, - 4>8))4«; • *;)2)£((a. • b^Eig^Eig^) 

M (9-87) 

9 k*i 
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We can also express E{7\) as 

EiT,) = E E(ßÜ> 1/5E(g*)E(gZ)EVi)E(f*) + E E(ß&E(ßfr\l9 
k*t 
k,l 

by applying (9-74), (9-80) and (9-82). Finally, assuming 

Eigt) = g-  « 1 

and applying the second part of (9-80) leaves the formula for £(7i) 

(9-88) 

(9-89) 

E(TX) = ZL E E^g* + |E E(ßÜE(p£)g; 
40     k " k*i 

(9-90) 

We now combine (9-68), (9-86), (9-87) and (9-88) to obtain 

OjCgj 

{  2»°) 

EiPj) = 

■^E^o*) + ^E E(ßfoE(ßb 
40       k y k*i 

k,i 

E^o^cos2^-^)) 
k*l 
k,l 

(9-91) 

Thus the variance of the sensed power becomes 

o2 = E(P*) - (E(p))2 = 

OjCgj 
2r 

{   2»o) 

< ajC^ 

27 _J_ 
^ 40 " 9) 

E £(*£) + \ E *(»£*£ cos2 (<|>t - (J)t)) 
it y k*l 

(2*0 

123 
360  k 

E £(<) + 1E E[BIBIcos2(<b, - <b{)) 
k y u 

(9-92) 

where the last sum no longer excludes k ~ d terms. 

The remaining expectations are more of a mess to evaluate. For instance, we have 

235 



£1 (SX) = £ 
k 

TT2    A    2^ A    2 

V2 Y,E 
i4& «W 

(co- 

A 
-<■>/ 

■(- ("0 12&J 
2 (9-93) 

This summation may be approximated in integral form if it is multiplied first by the mode density 
of (9-2). 

" 2 

u+fl 

*(SX)- / 
co,jVPce 

2ßF 

u-Q 
(to - iokf + 

/ V 
I2ß, k) 

SiiVo>k 

(2ncf 
d(ok (9-94) 

If we make the approximation that the denominator of the integral acts like a 8 function at co* - 
co, we obtain 

;(£<) = 4\ 87TKC04 

(2 TIC)3 

H«A 
2QV 

e<2>/ (9-95) 

where 

=(2) Eiel) (9-96) 

is not simply e2 due to the rapid and random fluctuation of ek vs k and where / is the integral 

/ 

d(xi,. 4nQ- 

1  ^ 

\
2

QK) 

2 CO3 (9-97) 
(co - co/ + 

Equation (9-97) is evaluated through the following sequence of variable changes 

u = iok - co 

9 = tan^/(co/20 
(9-98) 
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We can evaluate E&BJ) from (9-95) and (9-97) as 

*(£*i) STZV 

(2-Kcf [ 2QV 

»oPc«>2 4*21,(2) 
0)J 

(9-99) 

If we recognize that [see (9-14)] 

Q =     8TC<O
3 

V      (2ncfN 
(9-100) 

we can express E(B0£) as 

E XX) f„J>2 

■KC- 

e<2> 

TIN 
(9-101) 

or,inJAYCORunits 

t? ElT.B, Ok 

4P w2 
=(2) 

it AT. 
(9-102) 

Further application of (9-100) causes (9-101) to become 

*|E*, Ofr ff^Mo/8)^ 
2 e<2> 

TtJV 
(9-103) 

with the JAYCOR - equivalent being obtained simply from the transformation u0 - 4TT. 

Price, et al, originally did not attempt to treat the coupling coefficient with extra special 
care. Thus, their original formula for e(2) was 

e<2> = i(G>)2 (9-104) 

where 

€((0)  =  — 
D 

(9-105) 

with 
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(2Ö„ / J 

(9-106) 

In view of (9-57) for P„, the power going into mode n, N can also be interpreted as 

tf =TK<D) = £/>„e„/Pc (9.107) 

i.e., as the total coupling efficiency for all the energy going into the cavity. If the energy is 
directly injected into the cavity, N and r|(co) will be unity, as summing the P„'s of (9-57) and 
evaluating co at co„ illustrate. 

The denominator of (9-105) is the same as (9-106) for the numerator, but with the e„ 
factor omitted: 

u+Q 

D-   / 
o-O 

o>_ 

2ß„ 

2   STzVio„dwn 

(2TUC)
3 

(ü>-O>„)
2
 + 22„J 

(9-108) 

Upon evaluating D in (9-108) using the same techniques as applied to (9-100), including 
application of the transformations of (9-98), we find 

D =  (9-109) 

where we have again used (9-100). 

Thus, we see that 

r)(w) = €(«)#,• TC 
(9-110) 

This equation states that, within an approximate factor of (rr/2), the total coupling coefficient to 
the cavity is the sum of the coupling coefficients to the individual modes. 
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The total energy in the cavity is obtained from (9-60) and (9-81). 

U = 
2 Ho V *       ' V '      '      --°(o)-ton)

2
+   -JL 

20 

^  (2ncf 
W 

(9-111) 

where the mode density, (9-2), is again applied to convert the summation to an integral. This 
integral is very similar to (9-106) for N. An identical evaluation process yields 

871 

4e(co)Pco)2 
PM<*)Q 

(>) 
(9-112) 

and 

1?*) 471 

4e(<D)i>2 

(9-113) 

where the term outside the brackets of (9-113) disappears for JAYCOR units. 

Equations (9-101) and (9-112) can be combined to show 

k 

(       \2r 

V47ty 

%TZU r(2) 

e(o)2   nNs 

(9-114) 

where the U(/47t term is gone in JAYCOR units. 

Lastly, let us consider the expectation term with the cosine factor in (9-92). For an RLC 
series circuit, the impedance is 

1 V Z = ju>L + - 
jwC      I 

(9-115) 

where L may be complex. Then we have 

/ = — 

j<*L' + ywc +   Q 
(9-116) 
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The current may be seen to lead the voltage by <j> + TT/2, where 

ianfcj) + n/2) = - 
Re(Z) _     uL/Q (0 

Im(Z) 
wZ, - 

1 2ö,(to - cot) (9-117) 
o)C 

(The Price, et al, papers omit the 7i/2 term, which subsequently cancels out anyway.) From (9- 
111), we have 
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A considerable amount of algebra converts (9-118) to 

££(*£*£ cos» (c^-*,)) = 
M 

^ 2TrVßj   ii. 
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(9-119) 

From (9-117), we find 

sec2((|>k + n/2)dtyk = 
u>kdu>k 2Ö*+   , 

2öfc(w-to/        wfc 

tan2^ + it/2)<%        (9-120) 

Equation (9-120) gives 

tfw,. 
to,. <% 

2Qk sin2((j)t + iu/2) 
(9-121) 

so that we have 
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or 
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Substitution of (9-123) into (9-119) gives 
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Applying (9-112) to (9-124) finally yields 

E40
2Xcos2(<J>fc-d>{)) = ^ 

Thus, from (9-92), (9-114) and (9-125), we obtain 

iWJ 

2     (9-124) 

(9-125) 

E{Pf) - (E(Ppf 
QjCUgj 

3V 
1 + 

123 e<2) 

40TiNse((o)2 
(9-126) 

The final result applies in MKS or JAYCOR units. As a rule, expectations of the £0it's are unit 
dependent, while expectations of powers and energies are not. Equations (9-125) and (9-126) 
contrast this situation nicely. Note that the second term in the brackets of (9-126) goes away for 
a well overmoded cavity. 
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Comparison of (9-85) and (9-126) indicate that the mean and standard deviation of P, for 
well overmoded cavities should both be 

V = 0 = Sf^L (9-127) 
3V 

This attribute is well known for chi square distributions with two degrees of freedom. 

From (9-3) and (9-85), it is possible to derive a formula relating the Q of a complex cavity 
to readily measurable quantities: 

n      3o>F E(P) 
Q =  ~2 -/- (9-128) 

In many cases, it may be true that the deviation of Q from infinity is due to several 
separable factors. For instance, there may be internal loss and P apertures through which energy 
can escape. In this case, the overall system Q is representable by the relationship 

Q'1 =Qü   + to/ (9"129> 
P=\ 

where Qa is associated with internal ohmic dissipation. 

For the simplest case, where P = 1, Qa and Q1 may be determined by first foiling over the 
aperture. Then (9-128) will give Qa. The aperture then unfoiled, which causes (9-129) to give Q. 
From Qa and Q, Qly may be readily extracted. This scheme is easily extended to P apertures by 
foiling and unfoiling apertures one at a time. 

COMPARISON OF THEORY WITH EXPERIMENT: THE K-S TEST 

Let us have a measurement ensemble with N measurements. These measurements can be 
taken as functions of any variable. In our work, frequency, sensor orientation, or sensor portions 
within the cavity would be permissible variables. Let F(x) be the hypothesized cumulative 
probability distribution, where x represents the observed dependent variable (in our case P). Let 
F*(x) be the actually measured cumulative probability distribution. Then for each of the n points 
in the measurement ensemble, we can define 

dn = \F(Pjn) ~ F*(Pjn)\ (9-130) 

where Pj„ is the «th largest value of Pr We can also define 
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DN = max{J„} (9.131) 
n 

Let us now introduce the Kolmogorov - Smirnov distribution 

QQ-) =  £  (-Vke-2k2x2 (9-132) 
k=- 

This is a cumulative probability distribution which is 0 at X = 0 and 1 at X = °°. 

If F*(P) is represented by F(P) with 90% confidence, then 90% of the time DN will be less 
than X/VN. More generally, if F*(PJ) is represented by F(P) with 1 - Q(X) confidence, we have 

/ X ^ 
D > 

\ 

QQ-) (9-133) 

or DN will exceed X//N only Q(X) of the time. Alternatively, we can express (9-133) as 

= 1-ßW (9-134) 
/ X ^ 
D   < — 

\ m 
If one knows the desired confidence limit 1 - Q(X), one can find X from inverting (9-132) 

or using a look-up table.[4] For example, if 1 - QiX) is .9, X is .57; if 1 - Q(X) is .99, X is .44. 
Thus, the permitted deviation \F(P) - F*(P)\ is .57//Wfor 90% confidence and .44/vQVfor 99% 
confidence. Note that the higher the desired confidence, the tighter the restriction placed on 

An alternative way of expressing (9-133) involves reversing the inequality sign. Then we 
can say that the probability that DN will be bounded by XI-fN is only QiX). Should this bounding 
condition turn out to be met, there is a 1 - Q(X) confidence that F(P) is the correct cumulative 
probability distribution. 

We note in conclusion that any monotonic transformation may be applied to P} without 
affecting the validity of the Kolmogorov - Smirnov test: It constitutes a bound on what is 
permitted on the vertical axis only, and cannot be altered in result by any distortion imposed on 
the horizontal axis. 
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Chapter 10. CONCLUSIONS 

This document describes the electromagnetic fields (or power flux densities) inside an 
enclosure either internally driven or excited by an externally incident field which can leak through 
apertures or other points of entry. It also treats the coupling of these fields to the cabling or 
wiring harness inside the enclosure. This study is performed from a statistical, not deterministic, 
perspective. 

The fields inside such an enclosure must be described not only in terms of their statistical 
distribution, but also in terms of their autocorrelation; the fields at observation points separated by 
less than a wavelength are not totally independent variables. The same is true of field responses 
from drives differing by only a very small frequency shift (so the entire enclosure as measured in 
dimensions of wavelength changes by less than unity). In Section 2, we illustrate how to create 
electromagnetic field drivers to couple to the wiring harness, where these fields have any desired 
statistical distribution, and also possess local autocorrelation with respect to small shifts in 
position or frequency. Special emphasis is placed on field distributions which have normally 
distributed phase-quadrature components. Such fields have power-flux distributions which are chi 
square with two degrees of freedom. Consideration is also made of the situations where the 
power-flux distributions are log normal or log log normal. Additionally, we discuss compound 
distributions, such as those whose cumulative distribution functions are made up of a power series 
of normal cumulative distribution functions, where the coefficients of the power series sum to 
unity. 

Actual field data do not often look chi square in power or normal in phase-quadrature 
field. There is usually a slow drift or trend superimposed on the response. This trend is due to 
factors such as a frequency-dependent Q or aperture cross-section (assuming frequency is the 
variable undergoing change to generate a data ensemble). In some respects, sweep-frequency 
measured power-flux data often looks like an amplitude-modulated signal. The curiosity of this 
case is that it is the carrier which is desired and the modulation or trend which is unwanted, at 
least for the first-order statistical studies. Separating the carrier from the modulation and then 
discarding the modulation is referred to as "detrending". The method we use for detrending is 
also discussed in Section 2. 

Section 3 continues the discussion of how to generate fields which have simultaneously 
the desired distribution and autocorrelation. (Introduction of autocorrelation distorts the 
distribution. In Section 3, we show how to restore the distribution without, in turn, 
compromising the autocorrelation.) We then illustrate how to apply these simulated fields to 
cable models and how to obtain the simulated cable currents. This is first done using the 
telegrapher's equations for a cable close to a ground plane, where the four telegrapher's-equation 
circuit parameters are well defined (and nearly frequency independent). Subsequently, this 
simulation is generalized to eliminate the need for a proximate ground and frequency 
independence in the series and shunt parameters. 
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One of the beauties of statistical cavity response modeling is that we do not 
simultaneously have to solve the fields everywhere, use the fields to drive the cables, and then 
couple the cable currents back into the fields. This does not mean we can relax the requirement 
that the cable currents be in some sort of thermodynamic equilibrium with the fields. The physics 
for ensuring this equilibrium is incorporated by damping the cable currents with a radiation 
resistance. A convenient formula is presented indicating how much radiation resistance per unit 
length is physical. For a cable 5 cm off a ground plane, this radiation resistance is 120 Q/m at 317 
GHz, and increases cubically with frequency and quadratically with elevation off the ground plane. 

After much care has been taken to generate drive fields with the proper trendless 
distribution and autocorrelation, and after frequency-dependent radiation resistance has been 
added to the cable model, our procedure gives cable currents with normally distributed phase- 
quadrature components. This result passes a 90% confidence Kolmogorov-Smirnov statistical 
test when the drive fields are also set up to be of normally distributed phase quadrature. 

In Section 4, we concentrate on log normal distributions. Log normal distributions tend to 
occur whenever some ensemble of results depends on a large number of variable factors. Taking 
the log of such a result converts the product of the factors into a summation, which the Central 
Limit Theorem then indicates will be normally distributed. It develops that, if the power-flux 
density is log normally distributed, the squares of the phase-quadrature field components will be 
also very nearly log normal. From this conclusion, it is easy to obtain the distribution of the 
phase-quadrature components themselves. The main result of this section is a set of formulas 
relating the power-flux log normal distribution parameters to those of the phase-quadrature- 
squared log normal parameters. 

There is one problem with log normal models: they tend to give exaggerated population 
densities at the upper and lower tails. The first of these situations leads to unreasonably 
pessimistic likelihoods of system upset or failure. Consequently, we construct an alternative 
hybrid distribution where power flux is log normal over the central 80% of its range and chi 
square (two degrees of freedom) at the upper and lower 10% tails. This hybrid model 
corresponds to phase-quadrature field components being log normal over the central 90% of then- 
range, and normal at the upper and lower 5% tails. The hybrid distribution model eliminates the 
exaggerated upper distribution tail problems of the pure log normal model; comparison with 
experimental data taken on the EMPT AC facility and on the Celestron 8 satellite telescope 
confirms this success, although better comparison with experiment on the Celestron 8 occurs if 
the cross-over to chi square occurs atp = 0.875 instead ofp = 0.9. 

Much of our understanding of such enclosures is owed to Lehman, who, like everyone 
else, observed that the interior of a cavity indeed has physical properties which make the 
electromagnetic power-flux density sampled by an interior dipole antenna look chi square with 
two degrees of freedom. However, he also observed that a leaky enclosure can be illuminated 
from three different directions, with two possible polarizations accompanying each choice of 
illumination direction. Thus, he concluded that power flux inside an externally illuminated leaky 
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chamber, as projected on a dipole antenna, should also have attributes of a chi square distribution 
with six degrees of freedom. The curious mixture of these two distributions which Lehman 
deduced is explained in Section 5. Its probability density function (pdf) is actually a logarithmic 
convolution of the chi square probability density functions with two and six degrees of freedom, 
which turns out to be a modified Bessel function of the second kind, and of order two. This pdf 
may be completely characterized by a single parameter, which, for instance, can be very simply 
related to the mean power flux or to the standard deviation of the power flux inside the enclosure. 
It proves to be fairly difficult and complex, however, to back the pdf of the phase-quadrature field 
components out of the Bessel function distribution for the power-flux pdf. A major portion of 
Section 5 is devoted to this manipulation. 

The Lehman distribution has truly surprising fidelity in the replication of experimentally 
observed power-flux cumulative probability distributions. Its success in replicating the all- 
important upper tail of the distributions is especially remarkable. Moreover, this replication may 
be achieved without first applying trend-removal manipulations, which is an operation some 
would regard as dubious, especially if not later recompensated. A number of illustrations are 
presented which show just how well the Lehman distribution matches EMPTAC and Celestron 8 
power-flux measurements. Perhaps even more significantly, cable current distributions deduced 
from Lehman-modeled field drivers are remarkably accurate, even at the all-critical upper tail. 
The Lehman distribution is the only tool, of our knowledge, which seems able to anticipate the 
upper-tail behavior with good fidelity, especially given that, by definition, the majority of the data 
to which the Lehman-model fit is matched, is midrange. It is very unusual to see a current 
cumulative distribution function based on Lehman-modeled field drivers differ by more than a 
factor of two from subsequently observed cable current cumulative distribution functions. 

The Lehman technique for using logarithmic convolution to mix the internal and external 
attributes of a leaky enclosure can be generalized to other topologies, some quite complex. For 
example, the fields inside a leaky enclosure in a stirred-mode chamber become a triple logarithmic 
convolution with two of the variates being chi square with two degrees of freedom, and the third 
variate having six degrees of freedom. This process can also be used to deduce the response of a 
leaky enclosure to plane-wave illumination, given its response to mode-stirred excitation. As a 
final example, the response inside the inner region of a doubly shielded enclosure is shown to be 
the result of a quadruple logarithmic convolution, with two of the variates having two degrees of 
freedom, and two having six degrees of freedom. 

Section 6 is, in some respects, a continuation of Section 5. For example, the Lehman and 
chi square models are compared head to head versus experimental results: the superiority of the 
Lehman model is always very obvious.   Additionally, in this section we introduce the beta 
probability distribution for power-flux density. We have not yet deduced formulas for relating the 
phase-quadrature field components to power-flux density in this case, so its applicability is 
somewhat limited just now. We do, however, present some ideas on how to simplify the 
extraction of this relationship. 
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In Section 6, we also present the results of a thorough check-out of our modeling 
techniques on a computerized, automated experimental setup and data-recording system using the 
GPS. bus as the enclosure vehicle (see Volumes II and m of this document). 

Here, we additionally introduce the concept of Acceptance Limits, which, unlike 
Confidence Limits, actually bound the reliability of a model. (This is quite different from 
obtaining a measure of how confident we are the model is correct. It is sometimes difficult to 
translate Confidence Limits into practical results. Acceptance Limits, on the other hand, provide 
obviously useful information, such as, "The model response never deviates on a cumulative 
distribution plot by more than 50% from the measured response, even at the upper extremity,/? = 
1.") These, and all our other probabilistic concepts, as well as the different pdf s we have 
introduced, are thoroughly exercised, compared, and critiqued in this section. 

The basic element or building block of statistical electromagnetics, be it Bose-Einstein 
statistics of coupling to cables in an enclosure, are the eigenmodes of the enclosure. 
Consequently, Section 7 is devoted to the studying of these eigenmodes. We first consider the 
eigenmodes of a lossless, leakless volume-it is much easier to do this, and then to add loss and 
leaks as perturbations. 

The ideal enclosure eigenmodes obey Maxwell's equations and, on the internal surface of 
the enclosure, homogeneous boundary conditions. They may be expressed in either electric-field 
or magnetic-field form with complete equivalence. The total electric or magnetic energy inside 
the enclosure is expressed as a summation of the eigenmode coefficients squared times a scaling 
factor-the eigenmodes are orthogonal, and either the electric-field form or the magnetic-field 
form (but not both simultaneously) can be made orthonormal with respect to energy content. 
That is, it is possible to scale the eigenmodes so a mode containing one joule of energy has a 
coefficient of one in either the electric-field or the magnetic-field expression. If the cavity is 
driven by electric and magnetic current densities, the excitation strength of each mode is readily 
expressed as integrals over the enclosure volume of these densities weighted by the modal field 
distributions. 

Upon addition of the loss perturbation to the enclosure description, it is possible to 
approximate the total power dissipation of the enclosure as a similar series involving the squares 
of the eigenmode coefficients. This is particularly easy to implement if dissipation can be 
expressed as loss tangents of the permittivity and permeability. If this is the case, and if the loss 
tangents are uniform throughout the cavity, the Q of each mode is just the reciprocal of the sum 
of the reciprocal loss tangents. Otherwise, the terms in the eigenmode sum of power dissipation 
involve integrals over the enclosure of the eigenmodes squared times the local dissipation 
parameters (that is, the imaginary parts of e and u). 

Section 7 also includes a detailed discussion of start-up transients as they pertain to 
eigenmode expansions, and describes a particular caution which must be exercised if this process 
is formulated in such a way as to involve the Q's of the modes. 
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If the enclosure is driven through apertures, an additional aperture surface integral must be 
added to the formula relating modal amplitudes to the drive. This aperture term is found in 
accordance with Babinet's Principle, Schelkunoffs Equivalence Principle (some cases only) or, 
for electrically small apertures, by Bethe hole theory. 

Eigenmode evaluation and analysis go very naturally with Lagrangian techniques. 
Consequently, Section 7 also includes a discussion of evaluation the electric and/or magnetic 
eigenmodes by this approach, as well as an alternative derivation for relating eigenmode excitation 
amplitudes to volume electric and magnetic current densities and to illumination through 
apertures. As a part of this discussion, we illustrate how to partition the drive coming through 
apertures as exciters of the various eigenmodes, and how to partition (approximately) energy 
leaking back out as dampers of the eigenmodes. Lastly, Section 7 describes how the expand the 
enclosure Green's functions in various combinations and permutations of the electric-field and/or 
magnetic-field eigenmodes: these different combinations relate electric sources to electric fields, 
electric sources to magnetic fields, etc. 

In Section 8, we discuss pickup and scattering by a wire with much more detail than that 
used in Section 2. In this section, we do retain the assumption that the wire is very small 
compared to a wavelength, so the current on the wire and the fields they scatter remain 
completely azimuthally independent. We first obtain the exact, Bessel function homogeneous 
solution for a signal propagating on an infinite wire in free space. This solution moves at very 
nearly the speed of light, and can only exist on an infinite wire if some small loss is present in the 
wire. This solution is primarily characterized by its dispersion relation, which is the complex- 
plane solution of a quite complicated transcendental equation including the wire loss. Real and 
imaginary parts of the wavenumber versus frequency are plotted for a Cu wire of 1 mm radius. 
At 1 Ghz, this solution will e-fold in 770 m. 

A similar exact Bessel-function inhomogeneous solution is then deduced for a wire driven 
by an obliquely incident plane wave. Here, the critical plot is the induced or driven wire current 
as a function of frequency for angle of illumination held constant. If there are no discontinuities 
on the wire, it develops that the homogeneous solution cannot radiate. In view of reciprocity, this 
statement is merely a tautology, since a mode which cannot be field driven (is inhomogeneous) 
cannot drive fields. Energy can couple between the two modes at bends, shadow lines, wire ends, 
and other nonuniformities, especially including discontinuities, however. 

The inhomogeneous solution, unlike the homogeneous solution, does have a radiation 
resistance to maintain equilibrium between fields and wire currents. This radiation resistance, 
o)Ho/8 Q/m, agrees with other results obtained with quite different assumptions. This relatively 
high value of radiation resistance implies that a wire cannot see how it is terminated if the 
termination is more than two or three wavelengths removed~a result which is quite familiar to 
experimentalist, but unexpected by theoreticians. An interesting plot is presented comparing 
ohmic losses with radiation losses, both as functions of frequency, also for a 1 mm radius Cu wire. 
The losses cross over around 10 kHz. 
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At this point, we present a summary of transmission line theory, including again the 
telegrapher's equation, and illustrate how the single wire is a special case of this model. We also 
relate the telegrapher's parameters (r, /, g, c) to the characteristic impedance Z„ and demonstrate 
the rather surprising result that a single wire transmission line has an r which goes negative above 
10 kHz (although the total losses, of course, stay positive). We then compare the telegrapher's 
equation solution with the exact solution, and illustrate how the telegrapher's equation is not well 
suited to modeling single isolated wires. 

Next, we reintroduce a ground plane, and solve for the inhomogeneous case by letting the 
wire reflect itself as an infinite series of reflections in the ground plane. We set up the same 
problem for the homogeneous case, but cannot present results, as we have not yet had support or 
occasion to solve the resulting transcendental ground-plane-present dispersion relation. As one 
would expect, the telegrapher's solution and the exact, ground-plane-present solution (with only 
the first reflection tracked) start out in good agreement, but, for a 1 mm Cu wire 10 cm over a 
ground plane, begin to diverge around 100 MHz. 

The discussion concerning perils of modal startup descriptions involving Q, which we 
began in Section 7, are summarized and concluded here. 

The original statistical electromagnetic modal expansion work of Price and Davis is 
notoriously tedious, and, in some places, hard to follow. Additionally, it contains some peculiar 
unit definitions, and at least one outright systematic error. Section 9 is written to provide a more 
readable presentation of this work, and to correct the outright error(s). 

The present document is not prepared as an indictment of the earlier study, which we 
believe is actually the first really fresh look at EM hazards in a generation. (We would not trouble 
ourselves criticizing and revising someone else's work unless we found it intrinsically 
outstanding.) Rather, it is our hope in this section to clarify the earlier document, so that, in the 
future, neither we nor others have so much trouble comprehending its message. This seems 
important to us, as the concepts developed by Price, et al, are fundamental to statistical 
electromagnetics. 

The main issues addressed in Section 9 are the topics of eigenmode density and the 
number of modes in an enclosure excited between the half-power points by monochromatic 
illumination. Secondary issues include the electric and magnetic energy pumped into each mode, 
the distinction between slow (modulation) and rapid (carrier) fluctuation in the power-flux density 
at any given dipole-antenna observer, and partitioning of the power stored and dissipated in each 
mode. Additional secondary issues treated in Section 9 include the effective coupling coefficients 
of each of the modes, analogies between an actual 3D enclosure versus simplified results obtained 
with a ID violin-string-type resonator, and the relationship between the variance of power seen at 
a dipole antenna and the total energy in the cavity. 
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Section 9 concludes with a tutorial review of the Kolmogorov-Smiraov test for statistical 
significance and fidelity of a distribution model. 
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