
CarnegieMellon
Software Engineering Institute

Proceedings of the
Real-Time Systems
Engineering
Workshop
B. Craig Meyers
Peter H. Feiler
Ted Marz

August 2001

SPECIAL REPORT
CMU/SEI-2001-SR-022

DISTRIBUTION STATEMENT A:
Approved for Public Release -

Distribution Unlimited

20010912 099

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

CarncgicMellon
Software Engineering Institute
Pittsburgh, PA 15213-3890

Proceedings of the
Real-Time Systems
Engineering
Workshop
CMU/SEI-2001-SR-022

B Craig Meyers

Peter H. Feiler

Ted Marz

August 2001

Dynamic Systems Program

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in
the interest of scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright © 2001 by Carnegie Mellon University.

Requests for permission to reproduce this document or to prepare derivative works of this document should
be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE
MATERIAL IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES
NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER
INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY
KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT
INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-00-C-0003
with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded
research and development center. The Government of the United States has a royalty-free government-
purpose license to use, duplicate, or disclose the work, in whole or in part and in any manner, and to have
or permit others to do so, for government purposes pursuant to the copyright license under the clause at
52.227-7013.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark
holder.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our
Web site (http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Abstract iii

1 Introduction 1
1.1 Presentations 1
1.2 Working Session 2
1.3 Workshop Materials 2

2 Foundation Issues 3

3 Management Considerations 5
3.1 Acquisition 5
3.2 Education 6

4 Technical Considerations 9
4.1 Characteristic-Specific Issues 9

4.1.1 Predictability 9
4.1.2 Fault Tolerance 11
4.1.3 Interoperability 12

4.2 Additional Considerations 14
4.2.1 Standards 14
4.2.2 COTS Products 15
4.2.3 Modeling 15
4.2.4 Verification and Validation 16
4.2.5 Evolution 16

5 Community Considerations 19
5.1 Knowledge Sharing 19
5.2 Toward a Practice of Real-Time Systems Engineering 20
5.3 Consortium 20

6 Summary 23

Appendix: Attendees 25

CMU/SEI-2001-SR-022

CMU/SEI-2000-SR-005

Abstract

This report presents the results of a workshop on the topic of real-time systems engineering.
The workshop was held as part of the SEI Symposium in Washington, DC, during September
2000. The objective of the workshop was to identify key issues and obtain feedback from
attendees concerning real-time systems engineering. Two broad keynote presentations were
presented, followed by topical presentations concerning predictability, fault tolerance, and
interoperability. This report summarizes the workshop in terms of foundation, management,
and technical topics, and it contains a discussion related to developing a community of interest

for real-time systems engineering.

CMU/SEI-2001-SR-022

iv CMU/SEI-2001-SR-022

1 Introduction

The Software Engineering Institute (SEI) has initiated a project to improve the practice of sys-
tems engineering for mission-critical real-time systems. The goal of the project is to establish a

real-time systems engineering practice with a focus on both management and technical
aspects. Primary management aspects include acquisition planning, metrics, and risk manage-
ment. Primary technical aspects include predictability, fault tolerance, and interoperability. It
is especially important to recognize that a system is usually part of a larger system (system of

systems perspective).

As part of this project, a workshop was held at the SEI Symposium in September 2000 to iden-
tify key issues and obtain feedback on the topic of real-time systems engineering. The work-

shop had the following objectives:

• Outline an approach to evolve a practice from both acquisition/management and technical

perspectives.

• Obtain feedback from the participants regarding key aspects of a practice.

• Begin to develop a community interested in collaborating in the development of a prac-

tice.

The workshop was organized as a small set of invited presentations followed by working ses-
sions for open discussions. The workshop attendees are listed in the appendix at the end of this

report.

1.1 Presentations
The morning session consisted of two keynote presentations that were broad in their scope of
addressing the topic of real-time systems engineering. These were followed by three presenta-
tions related to predictability, fault tolerance, and interoperability. The agenda follows:

Workshop Agenda

8:00 Mr. John Foreman, SEI, Welcome and Workshop Overview

8:30 Dr. John Short, Naval Undersea Warfare Center, The Challenge
of Real-Time Systems Engineering of Submarine Systems in the
Second Millennium

CMU/SEI-2001-SR-022

9:15 Mr. Frank DeBritz, Lockheed Martin Naval Electronics and
Surveillance Systems, Real-Time Systems Engineering

10:30 Mr. Joe Gwinn, Raytheon Electronic Systems, Predictability —
The Key to Real-Time

11:00 Mr. Chris Walter, WW Technology, Issues Related to Fault Tol-
erance

11:30 Mr. Henry Grüner and Peter Smith, American Systems Corp.,
Battle Force Design and Interoperability; A "System of Sys-
tems" Engineering Integration and Management Problem

1.2 Working Session
The afternoon consisted of a working session which was an open discussion of significant

issues in the broad domain of real-time systems engineering. This session allowed participants

to express their views and concerns about this domain. The discussion was moderated and the

attendees'comments were recorded. The attendees' comments, in addition to information in
the presentations, were used to produce this report.

1.3 Workshop Materials
The slides used by the workshop presenters, as well as this report, are available on the follow-
ing SEI Web site: <http://www.sei.cmu.edu/dsu/rtse_workshop/>.

CMU/SEI-2001-SR-022

Foundation Issues

By the term foundation we mean the collective intellectual capital that forms the basis for real-
time systems engineering. Although it is accepted that systems engineering is a recognized
discipline, it is not clear that there is a discipline for the systems engineering of real-time sys-

tems.

In the domain of real-time systems engineering, attention is paid to particular system
attributes. Examples, some of which were highlighted in this workshop, include predictability,
fault tolerance, and interoperability. The workshop attendees agreed that there are sub-disci-
plines associated with, for example, fault-tolerant systems. However, it was not clear that there
was an integration of these various sub-disciplines in the context of the overall system. This
lack of integration applies also to the application context (in addition to operating system and
other services), where there is a lack of underlying principles on which to perform an acquisi-
tion. The challenge of system attribute integration is fundamental to the successful acquisition

of today's systems.

It is clear that there is a close relation between systems engineering and software engineering.
Over time the relation has changed, with the emphasis shifting more toward software than sys-
tems issues, due to the increasing importance (and cost) of software. One point made was that
software engineering practices should be used as leverage to address systems engineering
issues.

There are other aspects of the systems vs. software approach that relate to the contracting
aspect of acquisition. For example, the contracting and systems engineering communities may
emphasize functional aspects of a system. However, in the software engineering community
the emphasis may be placed on an object-oriented perspective. How does one effectively relate
these different world views?

A final theme that was brought out dealt with the larger context referred to as system of sys-

tems (i.e., a system that is part of a larger system). It was felt that there were several funda-
mental issues in this larger context, for example:

• Is there a need for a new paradigm to better address a system of systems?

• What is the right systems engineering process for the challenging system of systems con-

text?

CMU/SEI-2001-SR-022

In each case identified above, the attendees recognized that there are new challenges, both
technical and managerial in nature. Some issues mentioned included horizontal integration,
more front-end systems engineering, and the education of management about fundamental
challenges that lie ahead. The attendees also stated that there was a need for an overall frame-
work to support a new process, recognizing there is more value in architecture than in code,
for example.

Taken together, the above considerations may be viewed as presenting a serious challenge to
the community interested in real-time systems engineering. Is there a foundation for this com-
munity, and if so, what is it? And can the foundation be scaled to handle the system of systems
challenges?

CMU/SEI-2001-SR-022

3 Management Considerations

A number of management-related concerns were identified and discussed during the work-

shop. These are summarized in terms of acquisition and education.

3.1 Acquisition
Program managers are directly involved in the acquisition process and it is natural for them to
be concerned about real-time systems engineering. The role of acquisition reform and the
anticipated changes associated with it have created a new environment in which the program
manager must operate. Yet it is not clear how the new acquisition regulations can be applied in
a successful manner. It is clear, however, that streamlining the acquisition process will

increase the need for greater use of risk management approaches.

One point was made, in a number of ways, that there is a need for acquisition guidelines.
Although the burden may shift to a contractor for developing a system, the government still
must evaluate proposals and manage risks. Thus, it was felt that guidelines for selected topics
in the real-time systems engineering domain would be of special utility to a program manager.
One example in particular was a request for guidelines relating to a system architecture,

including approaches to evaluate a real-time system architecture.

Further relating to the acquisition are considerations for the rapid upgrade of a system. There
is much greater pressure to provide additional functionality or capability to the user commu-
nity. This comes at a price: there are tradeoffs that must be considered as part of the systems
engineering for technology insertion. While it might be nice if a system were sufficiently mod-
ular for one to substitute piece-parts, that is seldom the case. The existence of subtle depen-
dencies and side-effects, particularly for real-time systems, can be treacherous ground when a

system is upgraded without an adequate foundation in place.

Another topic dealt with cost considerations, a key concern of program managers. In particu-
lar, what are the ways in which the systems engineering process can be applied to make a sys-
tem more affordable? It was noted that previous acquisition approaches, with a heavy
emphasis on the initial specification of requirements, produced enough failures to cause differ-

ent approaches to be considered.

The Congressional emphasis on the use of commercial off-the-shelf (COTS) products was felt
to be one approach that could decrease cost. However, it was not clear whether COTS products

CMU/SEI-2001-SR-022

will be sufficient to solve all the problems in the real-time domain. Further, if there are "some
spectacular COTS failures looming on the horizon" (as one attendee put it), what is the alter-
native approach to further mitigate potential failures?

A final topic that was mentioned was removing legal impediments to allow easier insertion of
new technologies. Of concern here were legal issues associated with reengineering. For exam-
ple, reengineering a product to gain an understanding of behavior or to identify defects may be
necessary for integrating a commercial product with a new application. However, there could
be serious legal issues in reengineering a commercial product.

3.2 Education
One general concern that was raised is the perception that real-time systems engineering is

more a collection of experiences than it is a discipline. This premise, if true, implies a serious

need that must be addressed for the successful acquisition of real-time systems. What, for

example, is the structure of a framework that embodies systems engineering for real-time, or
fault-tolerant, interoperable systems?

In general terms, the attendees agreed that there has been a loss of systems engineering exper-
tise, in part to other industries. This loss was perceived to be in both the knowledge of pro-
cesses and technical depth and knowledge concerning the details of the manner in which a
process is performed. The loss of expertise has serious impacts on the amount of sophistication
that can be brought to bear in system acquisition. This problem is exacerbated by the decrease
in size of program offices. This decrease in the size of program management offices plus the
loss of significant expertise presents a difficult risk that must be addressed.

A number of general approaches were identified to deal with the loss of expertise and the need
for better education. Perhaps most prevalent was a need for better education, including hand-
books, for the real-time systems engineering community. It was also stated that the appropriate
curriculum elements need to be identified. Some other topics that would help in educating the
community are discussed in Section 5.1 on page 19.

In the specific context of program management, it was pointed out that a lack of education for
program managers contributes to misunderstanding between a program manager and the tech-
nical staff. This illustrates the importance of providing sufficient education to program man-
agement staff in the key issues for the real-time systems engineering domain. Some
suggestions to help the manager included the following:

• Valid arguments need to be demonstrated to program managers about the importance of a
system architecture, and program managers need to understand this point.

CMU/SEI-2001-SR-022

• A list of 20 questions that managers should ask and an explanation of how to understand
the consequences of responses should be developed.

• Availability of checklists would help managers easily assess key technical points. Note,
however, that a checklist is not a substitute for depth of either knowledge or understand-

ing!

An undercurrent that persists in the education of management is the potential tension between
the management staff and the technical staff. For example, the technical staff need managers to
understand the value of front-end systems engineering work. However, this directly conflicts
with a perceived "rush to judgment" to get a system deployed. A common understanding of
the entire process by all relevant staffs is needed to narrow the gap in understanding.

CMU/SEI-2001-SR-022

CMU/SEI-2001-SR-022

Technical Considerations

In this section we discuss technical considerations that were identified at the workshop. First
we discuss technical issues associated with the characteristics of predictability, fault tolerance,

and interoperability. Then we describe some additional considerations that were noted.

4.1 Characteristic-Specific Issues

4.1.1 Predictability
"Real-time does not mean really fast."

- Workshop participant

As used in this workshop, predictability refers to the ability of a system to satisfy timing prop-
erties. This is a characteristic of real-time systems, which typically are expected to

• respond predictably to urgent events

• have a high degree of schedulability (meet specified deadlines)

• maintain stability under transient overloads

The real-time characteristic is further divided into

• hard real-time: systems where failure to meet a deadline is interpreted as a system failure

• soft real-time: systems where failure to satisfy a deadline is not considered a failure. In
this case, the response to events may be specified in terms of a (bounded) statistical distri-

bution function.

Real-time systems must typically satisfy various timing requirements. Among them are

• responsiveness: bounded and predictable response to some event

• efficiency: ability of underlying components, notably middleware and operating system,

to provide services, such as bandwidth, to an application

• overload response: reaction to an overload situation. An overload situation can arise natu-
rally or in response to a fault. Also, the system must be able to maintain or release control
as appropriate. For example, if an application blocks forever waiting for the arrival of a

CMU/SEI-2001-SR-022

message, it can do no other productive work. In a case such as this, the use of time-outs or
asynchronous services is necessary.

Much of the application support to achieve predictable performance is provided by the operat-
ing system, or real-time kernel. One way to partition operating system implementations is by
their typical responsiveness, namely:

• order of tens of microseconds

• hundreds of microseconds

• thousands of microseconds

Another partition of operating systems can be based on the source of its specification. Some
interesting observations include

• real-time kernels: typically several hundred thousand lines of code, principally designed
for embedded real-time control applications

• UNIX kernels: typically one to two million lines of code, designed for general purpose use

• Windows variants: over 40 million lines of code that are intended for the desktop environ-
ment

• hybrids (such as RT Linux): typically a real-time operating system bolted on top of a
UNIX-like system so that they share characteristics of each

Successful development of a real-time system requires that care be given to the application
development and the manner in which the application uses services provided by the operating
system. An example of such a concern is priority inversion, where a high-priority thread of
control must wait for a shared resource before continuing to execute. If there is unbounded pri-
ority inversion, where the amount of time a thread waits is not bounded, there are serious
implications for the application to satisfy timing requirements. The near-loss of the Mars
Rover is a classic example of the consequence of unbounded priority inversion.

One approach to dealing with possible priority inversion is to employ services that are
designed to manage a shared resource. Two examples are the priority inheritance protocol and
the priority ceiling protocol. In the case of the former, for example, the priority of the shared
resource is adjusted to that of the priority of the highest waiting thread.

Simply providing services to meet real-time requirements, such as a protocol for management
of shared resources, is necessary, but not sufficient. Multiple implementations may provide
similar (functional) services, yet they differ dramatically in their performance. It is therefore
necessary to develop means by which an application developer can gain an understanding of
the performance characteristics of implementations, especially COTS products.

One approach to understanding performance characteristics of a COTS product is through the
use of benchmarks. Various types of benchmarks can be constructed, with one classification

10 CMU/SEI-2001-SR-022

scheme based on the scope of the benchmark. On the one hand, small-scale benchmarks can be
used to measure a particular service provided by an operating system. On the other hand,
benchmarks can be constructed to mimic the overall performance of an application.

One might expect that a standard for some component, such as an operating system, could
include a specification of benchmarks, reflected as performance metrics. Such an approach
was tried on two occasions in the portable operating system (POSIX) standardization effort.
However, neither of these attempts was successful. In one case, it was not possible to specify a
set of metrics that were simple enough to implement, but complex enough to represent a faith-
ful model of an actual application. There are also considerations of vendor "optimization"
efforts to recognize benchmarks and respond in a particular manner. In the second case, there
were serious concerns raised by vendors that providing certain qualitative information about
their implementation might cause them to lose competitive advantage. The inability to develop
standards for benchmarks is a risk that needs to be managed in an acquisition.

4.1.2 Fault Tolerance
"It's hard to design a system that won't fail."

- Workshop participant

Systems that are currently being developed, and those expected in the future, are more com-
plex, include more stringent real-time requirements, incorporate significant COTS products,
have greater demands on dependability, and are expected to operate in less restrictive environ-
ments. It is inevitable, however, that systems will fail. How then can we develop systems that
satisfy increasing requirements, but at the same time provide a corresponding increase in
assurance that if a failure occurs, it is handled appropriately? The approach presented at the
workshop included several facets of the above question and involved consideration of

• management concerns

• technical approaches

• verification and validation

Management was identified as a concern because experience shows that most program manag-
ers do not have a thorough understanding of fault tolerance. There are consequences to this
lack of understanding. For example, program managers may not understand the consequences
of choices that are made in the development effort (which may take longer than desired to
achieve a sufficiently robust design). If program managers view fault tolerance as too com-
plex, they may be likely to settle, or press for, an oversimplified approach to meet cost or
schedule constraints. Although traditional risk management approaches apply to fault toler-
ance, there is a certain amount of knowledge of fault tolerance that is required to manage risks
in that domain successfully. As with other topics discussed at the workshop, the education of

program managers is an issue that must be addressed directly.

CMU/SEI-2001-SR-022 11

The design and development of fault-tolerant systems requires special considerations. A num-
ber of issues were specified, including

• identification of fault models

• identification of failure semantics

• use of transactional fault-tolerant (atomic) mechanisms

• role of online detection and diagnosis of faults

• load balancing

It was emphasized that each of the above issues requires a system perspective. This perspective
includes an understanding and specification of the problem, flexible architectures to support
the use of different approaches, and the use of a theoretical approach to the problem. This is

especially true in the real-time domain, where there may be performance issues associated

with the use of various fault-tolerant approaches. Although there is a need to engineer for con-
sequences of a failure, it may not always be clear when enough has been done and when to
stop.

For verification and validation, there are current approaches that apply to fault-tolerant sys-
tems. It was argued, however, that there is value in the increased use of formal methods. For-
mal methods are tools that can provide advantages such as specifying the system to understand
its expected behavior, and then using the formal specification as a means against which to test.

It is safe to say that formal methods have had a checkered history in their application to sys-
tems engineering. More often than not, they have not been used, but where they have, there is
recognized value in their application. Further exposition of the use of formal methods would
be a workshop in itself!

4.1.3 Interoperability

"We need to return to fundamentals."
- Workshop participant

The term interoperability has a number of definitions; for our purposes, we consider interoper-
ability as the ability of systems to exchange and use information. Interoperability assumes a
position of central importance in the context of system of systems. In fact, in the system of sys-
tems context, the issues are broader than ever before. They are not simply technical issues, but
impact systems, processes, procedures, organizations, and missions.

There are trends and pressures that make achieving interoperability difficult. On the one hand,
current trends include decreasing budgets, uniqueness of fielded systems, and shorter cycles
associated with system upgrades. On the other hand, there is increased pressure (better, faster,

12 CMU/SEI-2001-SR-022

cheaper!) in acquisition (e.g., DoD 5000.2), the use of COTS products, joint programs, and
rapid technology insertion. An integrated systems engineering discipline must be able to

account for the above trends and pressures.

An example where interoperability is an important issue is in the integration of C4 (Command,

Control, Communications, and Computers) and weapons systems. Weapons systems are tradi-
tionally real-time in nature, while C4 systems are traditionally non-real-time. The integration
of C4 systems and weapons systems has increasing performance (including functional) expec-
tations from the user community. Many of the preceding comments apply to this general class
of problems: lack of a process to apply in development and test, lack of management under-
standing, and lack of expertise in program offices to develop useful acquisition documents
(such as a request for proposal). Hence, the issues that were identified in a local context now
propagate to the system of systems context, and there are new concerns that must be

addressed.

Clearly, one of the concerns is legacy system integration in a larger context; large-scale sys-
tems will not be built from scratch. However, legacy systems have their own problems when
integrated in a larger context. For example, legacy systems may have never been designed to
integrate with other systems. The fact that legacy systems may be based on different technolo-
gies, and different implementations, can make integration of legacy systems all the more diffi-

cult.

The concerns for system of systems and interoperability considerations are broader in scope
than in platform-centric systems. In addition to technical consideration such as engineering
process and architecture development, organizational issues (including politics) play a larger

role.

Some of the key issues related to engineering, integration, and management processes include
a need for the application of a new, unified, top-down approach that addresses

• requirements analysis

• functional analysis and allocation of requirements to systems

• integration and synthesis of systems

Each of the above activities must be performed in an integrated management context that con-
siders all of the elements that constitute the system of systems. Current trends are toward a
bottom-up system-integrated approach, in contrast to the application of first-principle, top-

down approaches.

Architectural considerations are pervasive when considering a system of systems. Some of the
concerns addressed the need for an integrated information flow architecture, allocation of

CMU/SEI-2001-SR-022 13

functional and performance requirements to architectural components, and the ability to deal
with architectural mismatches when systems are integrated to form a larger system.

Just as there was concern expressed about the lack of an integrated discipline related to real-
time systems engineering, that same concern applies in the larger, system of systems context.
That is, the perceived lack of a disciplined process for the integration of timing predictability
and fault-tolerant characteristics in a system context is magnified when we consider the larger
system of systems context.

Another topic of relevance was the development and test process for systems that must inter-
operate. The development process needs to account for distributed configuration management.
It must also support cooperative distributed engineering and integration test. There has been
success in the use of early integration testing through the use of distributed, wide-area integra-

tion facilities. System testing in the context of a distributed engineering plant appears to hold

promise. Here, one can integrate the system of systems in a developmental context without

experiencing the costs associated with operational deployment.

4.2 Additional Considerations

4.2.1 Standards

Standards are valuable because they represent the codification of a state of the practice in some
domain. They also provide a specification that can serve as the basis for COTS products. It is
the pipeline of standards to COTS products that can serve as the foundation for technology
insertion.

However, it was noted on multiple occasions during the workshop that there are missing stan-
dards for the domain of real-time systems. Examples noted were the need for standards to
ensure predictable behavior, fault tolerance, and interoperability. Another area where stan-
dards do not exist is the remote management of a system. The lack of standards implies a lack
of conforming COTS implementations. Thus, developers must each create interfaces and
implementations of their own choice, often working independently. There is a lack of reuse on
a large scale because of fragmented development efforts.

In addition, there are no standards that describe processes for the acquisition of real-time sys-
tems. It was noted that there is not a specified, repeatable practice of real-time systems engi-
neering. In such a case, it is clear that standards cannot exist. Yet it is also recognized that such
process-oriented standards would add value to the domain. For example, a standard that
defined an overall process for the engineering of real-time systems would be of clear value.

14 CMU/SEI-2001-SR-022

A necessary condition for the development of appropriate standards is the existence of a com-
munity that understands the domain and that has sufficient expertise and resources to pursue
the standards-development efforts. This topic is further explored under the discussion of Com-

munity Considerations in Section 5.

4.2.2 COTS Products
As we noted earlier, there is an increased emphasis on the use of COTS products. It is hoped
that the use of COTS products will allow organizations to take advantage of a competitive
market and to develop and insert technology faster. The increased use of COTS products in a
top-down engineering model does not work well: the analogy provided was that one goes to a
store, sees what is available, buys selected items, and then assembles those items. This is a
major change from a traditional top-down model and adds complexity to the acquisition pro-

cess that is needed to meet the goals of rapid technology insertion.

COTS products are just one example of system components that are provided by others.
Implementation details may not be available to the component user. However, for such compo-
nents to be used effectively and predictably, their specifications must be enriched to provide
relevant information that can be validated. The following issues are of particular concern:

• enrichment of interface specifications by adding relevant models of behavior and other

expected component properties

• robust black-box testing of components to ensure compliance with specifications and reli-
ability, especially in systems where fault tolerance and safety are of importance

• understanding system-level performance implications of component performance

The above are just some of the issues that must be faced in the use of COTS products. Clearly,
COTS products can affect system performance and fault tolerance. In addition, COTS prod-
ucts can have large-scale effects in integration, especially in the system of systems context. It
is not clear that the relevant risks to the use of COTS products have been identified. Of greater
concern, perhaps, is the lack of a disciplined process for acquisition that treats COTS products

as first-class components.

4.2.3 Modeling
During the workshop, it was recognized that there are various opportunities where modeling
can help in the acquisition process for real-time systems. Of particular interest was the devel-
opment and use of models for the operational system. Some of the ideas expressed included

the following:

• models of COTS products and their performance characteristics

CMU/SEI-2001-SR-022 15

• analyzing how sensitive various system properties are to changes (e.g., how well does a
particular system architecture accommodate change in certain dimensions, such as input
load)

• models to experiment with the system of systems context

It was pointed out that the modeling needs to be at the appropriate level for a particular pur-
pose. For example, models used early in the acquisition may differ dramatically from those
used to obtain quantitative performance measures later in the process. Other types of models
can be applied. For example, formal specification, benchmarks, and simulation have value in
the development of the operational system.

4.2.4 Verification and Validation
In the domain of real-time systems engineering, verification and validation (V&V) are impor-

tant because many of the systems are mission critical in nature. In addition to V&V activities,
certification also is an important concern. Traditionally, verification and validation have con-
sisted of a limited degree of design analysis and exhaustive testing of designs that exhibit a
high degree of determinism in terms of both functional and timing behavior. However, such
methods do not scale well, and integration test costs dominate development costs. This leads
to issues of

• demonstrating the value of front-end engineering (i.e., early and continuous analysis of
systems in terms of behavior, timing, performance, and reliability)

• understanding the benefits and limitations of various V&V methods in the context of real-
time systems; where and when they can be applied appropriately

• understanding the technical and social aspects of performance specification and bench-
marking

• scaling and adapting the certification process to rapidly changing large-scale systems—
combining and leveraging build-test and design-analyze approaches

• role of self-testing, especially for COTS products, in a system context

• relation between a "build a little, test a little" approach and V&V methods

The use of modeling and analysis of system architectures and their properties, such as behav-
ioral model checking, schedulability analysis, and reliability analysis was recognized as hav-
ing value for the V&V effort.

4.2.5 Evolution
Evolution in systems and their deployment environment is inevitable. System capabilities
must be added, and software technologies used in the implementation must be upgraded or
replaced repeatedly over the life of the system. The following issues are of particular concern:

16 CMU/SEI-2001-SR-022

engineering tradeoffs in rapidly changing technology: what, when, and how often to
upgrade

cost of accommodating change and portability in terms of performance

prototyping and benchmarking of key technologies to understand impact on performance

understanding technology trends in terms of resource capacity and understanding system
trends in terms of resource demands to predict and plan for technology replacement

ability to perform fault-free upgrades to a system

market analysis for the assessment of standards and associated COTS products that may
be of relevance

As one might expect, in a system of systems context, the above issues are amplified. In addi-
tion, acquisition personnel must now address programmatic integration and synchronization
among the relevant programs and the systems for which they are individually responsible.

CMU/SEI-2001-SR-022 17

18 CMU/SEI-2001-SR-022

5 Community Considerations

"A rising tide lifts all boats."
- Workshop participant

One of the goals of the workshop was to initiate a community of interest for the real-time sys-
tems engineering domain. Support for this idea was expressed by several attendees who indi-
cated that interacting with people from other programs, who often faced similar challenges,

made their attendance at the workshop very valuable.

5.1 Knowledge Sharing
The most frequent comment was that a community could share interests and experiences based
on lessons learned. One example cited was experience in the use of COTS products in a real-
time, fault-tolerant system. Drawing on the broader community would benefit other programs
and projects. Possible sources for information could be organizations, as well as lessons
learned from independent technical assessments (sometimes referred to as "red teams.") There
was a request that the lessons learned be presented in a simple manner, perhaps in a "cook-
book" form. It was also noted that lessons learned should be focused on good news as well as
bad news. A related idea was that the community needs a repository for best practices for real-

time systems engineering.

It was also recognized that there are many problems that are common across different organi-
zations. Some of the suggested topics that are worthy of a community approach include

• missing standards: It was recognized that while standards are important, there are stan-
dards that do not exist. Some suggested areas include standards for fault tolerance and

middleware.

• horizontal integration: Although this term is receiving increased attention, it was not clear
what it really means. In particular, what are the technical and management issues that must

be addressed, especially for integration across different domains?

• middleware: The use of middleware is becoming more common especially to achieve a
specific purpose. However, it is also necessary to achieve a solution whose scope is from
the application interface to the distributed system infrastructure. Hence, how does one

effectively deal with localization of middleware effects?

CMU/SEI-2001-SR-022 19

5.2 Toward a Practice of Real-Time Systems Engi-
neering

An established engineering practice has several key characteristics:

• a community that uses a common terminology

• a set of proven best practices

• training and education

Common terminology is important to a community in order for its members to communicate
effectively. Attendees felt that a common terminology does not currently exist. For example,
the terms open and modular are sometimes used interchangeably, but they are also used in
very different ways. In addition to developing common terminology, the attendees felt that
communication of system concepts and experiences would be valuable to the community.

There are generally accepted industry practices that are applied in an acquisition. Some exam-

ples of these include risk management, formal inspections, and configuration management.

However, there do not appear to be sufficient best practices in the real-time systems engineer-
ing domain.

A third aspect for an established practice is the ability to provide training and education. Sev-
eral times in this report the need for education has been noted. This includes educating man-
agement and technical staffs at various levels.

5.3 Consortium
Finally, the attendees suggested that a consortium be established in the area of real-time sys-
tems engineering. This consortium should be open to members from government, industry,
and the academic community. In principle, the consortium should be broad in its scope. It
should also investigate new approaches to systems engineering that may result in leaner and
more versatile approaches to acquisition. It was felt that the consortium should focus on topics
that are non-competitive. That is, the work performed by consortium members should not pro-
vide a competitive advantage to one member over other members.

Possible areas of work that were suggested for a consortium included the following:

• Work with Air Force Institute of Technology (AFIT), Defense Systems Management Col-
lege (DSMC), and Naval Postgraduate School (NPS) to improve real-time systems engi-
neering education programs.

• Work to establish a curriculum in real-time systems engineering for undergraduate institu-
tions.

20 CMU/SEI-2001-SR-022

• Work within the scope of the professional engineering community to establish licensing

programs.

• Work with senior acquisition executives to initiate congressional action to modify acquisi-

tion laws to allow for agile acquisition practices.

Finally, it was noted that a consortium would allow members to develop common, consensus-
based practices in relevant domains. A consensus-based framework for real-time systems

engineering was recognized as being very valuable.

CMU/SEI-2001-SR-022 21

22 CMU/SEI-2001-SR-022

6 Summary

This report has presented the results of presentations and discussions at the Real-Time Sys-
tems Engineering Workshop, held in conjunction with the SEI Symposium in September 2000.
Many issues were raised throughout the workshop. The following list summarizes what we
believe were the most important issues raised during the workshop:

• Although there is a recognized practice of systems engineering, and there are practices
associated with predictability and fault tolerance, there is a lack of an integrated discipline

for real-time systems engineering.

• There is a pressing need to educate program managers and their staffs about fundamental
acquisition issues in the real-time systems engineering domain.

• The problems associated with achieving an interoperable system of systems loom large on

the horizon.

• There is a need to establish a community of interest for dealing with real-time systems

engineering.

The attendees agreed there is a need for continuing the interaction and work initiated at this

workshop.

CMU/SEI-2001-SR-022 23

24 CMU/SEI-2001-SR-022

Appendix: Attendees

Name Company

Jeff Calcatera NRO

Terry Dailey SEI

Frank DeBritz Lockheed Martin

Tom DeLuca NAVSEA PEO-TSC

Rick Dotson Bechtel Bettis

Doug Elgin Teledyne Brown Engineering

Peter Feiler SEI

John Foreman SEI

Dave Gluch SEI

John Goodenough SEI

Henry Grüner American Systems Corp.

Joe Gwinn Raytheon

Barbara Langworthy Mercury Computer Systems

Harris Liebergot NIST/ATP

Bill Locke Bechtel Bettis

TedMarz SEI

Robin McCollum Bechtel Bettis

Brian McNamara NAVSEA 08K

Craig Meyers SEI

Barry Miller Anteon Corp

Gus Neitzel NRO

Mike Nifontoff NAVSEA 08K

Steve Palmquist SEI

Tuan Phan PEO-TSC PMS461

Daniel Plakosh SEI

Tom Roberts NAVSEA 08K

Linda Roush NAVAIR Warfare Center, Weapons Division, China Lake

CMU/SEI-2001-SR-022 25

Name

John R. Short

Jim Smith

Robert Stoddard

Chris Walter

Oliver Watterson

Chuck Weinstock

Duard Williams

John Wood, LCDR

Company

Naval Undersea Warfare Center

SEI

Motorola

WW Technology Group

Naval Undersea Warfare Center

SEI

CSX Transportation

US Coast Guard

26 CMU/SEI-2001-SR-022

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden (or this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Dav.s Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

7. AGENCY USE ONLY (leave blank) REPORT DATE

August 2001
10. TITLE AND SUBTITLE

Proceedings of the Real-Time Systems Engineering Workshop
12. AUTHOR(S)

B. Craig Meyers, Peter H. Feiler, Ted Marz
13. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

15. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

REPORT TYPE AND DATES COVERED

Final

11. FUNDING NUMBERS

F19628-00-C-0003

14. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2001-SR-022

16. SPONSORING/MONITORING
AGENCY REPORT NUMBER

17. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12.D DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This report presents the results of a workshop on the topic of real-time systems engineering. The workshop
was held as part of the SEI Symposium in Washington, DC, during September 2000. The objective of the
workshop was to identify key issues and obtain feedback from attendees concerning real-time systems
engineering. Two broad keynote presentations were presented, followed by topical presentations concerning
predictability, fault tolerance, and interoperability. This report summarizes the workshop in terms of
foundation, management, and technical topics, and it contains a discussion related to developing a
community of interest for real-time systems engineering.

14. SUBJECT TERMS

system engineering, real-time systems, fault tolerance, interoperability

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

NSN754Ö-Ö1-28Ö-5SÖÖ

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY
CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

26
16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL

Standard Form 298 (Rev. 2-i
Prescribed by ANSI Std. Z39-18
298-102

