
Carnegie Mellon
Software Engineering Institute

Maintaining
Transactional
Context: A Model
Problem

Daniel Piakosh
Santiago Comella-Dorda
Grace Alexandra Lewis
Patrick R.H. Place
Robert C. Seacord

August 2001

TECHNICAL REPORT
CMU/SEI-2001-TR-012

ESC-TR-2001-012

20010912 098

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Carnegie Mel Ion
Software Engineering Institute
Pittsburgh, PA 15213-3890

Maintaining
Transactional
Context: A Model
Problem
CMU/SEI-2001-TR-012
ESC-TR-2001-012

Daniel Piakosh
Santiago Comella-Dorda
Grace Alexandra Lewis
Patrick R.H. Place
Robert C. Seacord

August 2001

COTS-Based Systems

Unlimited distribution subject to the copyright.

This report was prepared for the

SEI Joint Program Office
HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the interest of
scientific and technical information exchange.

FOR THE COMMANDER

Norton L. Compton, Lt Col., USAF
SEI Joint Program Office

This work is sponsored by the U.S. Department of Defense. The Software Engineering Institute is a
federally funded research and development center sponsored by the U.S. Department of Defense.

Copyright 2001 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-O0-C-OOO3 with Carnegie Mel-
lon University for the operation of the Software Engineering Institute, a federally funded research and development center.
The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the work,
in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the copy-
right license under the clause at 252.227-7013.

For information about purchasing paper copies of SEI reports, please visit the publications portion of our Web site
(http://www.sei.cmu.edu/publications/pubweb.html).

Table of Contents

Table of Contents

Abstract

Introduction
1.1 Model Problems
1.2 Case Study

Contingency Planning
2.1 MQSeries
2.2 Object Transaction Service
2.3 Oracle Pro*COBOL
2.4 Net Express

2.4.1 Wrapping COBOL Code
2.4.2 Calling Java from COBOL

Model Problem Definition

Model Problem Solution
4.1 Design of the Model Solution
4.2 Installing the EJB Server
4.3 EJB Bean Deployment
4.4 Building the Test Adapter

Evaluation

Legacy System Assumptions
6.1 MicroFocus COBOL
6.2 Java Transaction Service

6.3 JDBC 28
6.4 SQL 28

7 Summary and Conclusions

Appendix

References

VII

1
1
2

7
7
8
9
9
9

10

13

15
15
17
17
18

25

27
27
28

29

31

33

CMU/SEI-2001-TR-012

CMU/SEI-2001-TR-012

List of Figures

Figure 1: RSS Modernization 2

Figure 2: The Operational System During
Modernization 3

Figure 3: Sequence Diagram Showing Transaction
Update of Database Records 4

Figure 4: Queue-Based Communication
Using MQSeries 7

Figure 5: Contigency Plan 10

Figure 6: Initial Architecture 16

Figure 7: Model Solution Architecture 16

Figure 8: Java Integer Code 20

Figure 9: COBOL Integer Code 20

Figure 10 Expanded Integer Java Code 21

Figure 11: Expanded Integer Cobol Code 22

Figure 12 Error Return From Test Adapter 23

Figure 13: Statement Causing Error 23

Figure 14: Missing Class Path Values 23

Figure 15: Java Proxy 27

Figure 16: Transaction Demarcation Using JTS 28

CMU/SEI-2001-TR-012

'v CMU/SEI-2001-TR-012

List of Tables

Table 1: Java COBOL Mapping 19

CMU/SEI-2001-TR-012

Vl CMU/SEI-2001-TR-012

Abstract

Due to their size and complexity, modernizing enterprise systems often requires that new
functionality be developed and deployed incrementally. As modernized functionality is de-
ployed incrementally, transactions that were processed entirely in the legacy system may now
be distributed across both legacy and modernized components.

In this report, we investigate the construction of adapters for a modernization effort that can
maintain a transactional context between legacy and modernized components. One technique
that is particularly useful in technology and product evaluations is the use of model prob-
lems—focused experimental prototypes that reveal technology/product capabilities, benefits,

and limitations in well-bounded ways.

This report describes a model problem used to verify that a mechanism for maintaining a
transactional context between legacy and modernized components exists and could be used to
support the modernization of a legacy system. In this report, we describe a model problem
constructed to verify the feasibility of building this mechanism. We also discuss the results of
our investigation including the problems we encountered during the construction of the
model problem and workarounds that were discovered.

CMU/SEI-2001-TR-012 vii

viü CMU/SEI-2001-TR-012

1 Introduction

Due to their size and complexity, modernizing enterprise systems often requires that new
functionality be developed and deployed incrementally. As modernized functionality is de-
ployed incrementally, transactions that were processed entirely in the legacy system may now
be distributed across both legacy and modernized components. Identifying and validating a
design solution to this problem is a prerequisite to the overall modernization effort.

Our approach to identifying and validating design solutions involves the use of model prob-
lems—focused experimental prototypes that reveal technology/product capabilities, benefits,
and limitations in well-bounded ways. Model problems are used to reduce design risk.
However, no amount of modeling short of building the actual system can completely elimi-
nate design risk. Therefore, the designer must be satisfied with achieving a degree of cer-

tainty in the design approach.

1.1 Model Problems
The use of model problems is a component-based software engineering technique described

by Wallnau et al. [Wallnau 01].

A model problem is actually a description of the design context. The overall process consists
of the following steps, which are executed in sequence. There are two roles defined by the
process: the architect and the engineer. The architect is the overall technical lead on the pro-
ject who makes overall design decisions. The engineer is a designer who is tasked by the

architect to execute the model problem.

1. The architect and engineer identify a design question. This question initiates the model
problem and refers to an unknown that is expressed as a hypothesis.

2. The architect and engineer define the a priori evaluation criteria. These criteria de-
scribe how the model solution will be shown to support or contradict the hypothesis.

3. The architect and engineer define the implementation constraints. These constraints
specify the fixed (i.e., inflexible) part of the design context that governs the implementa-
tion of the model solution. These constraints might include things such as platform re-
quirements, component versions, and business rules.

4. The engineer produces a model solution situated in the design context. The model solu-
tion is a minimal spanning application that uses only those features of a component (or
components) that are necessary to support or contradict the hypothesis.

CMU/SEI-2001-TR-012

5. The engineer identifies a posteriori evaluation criteria. These evaluation criteria in-
clude the a priori criteria plus criteria that are discovered as a by-product of implement-
ing the model solution.

6. Finally, the architect evaluates the model solution against the a posteriori criteria. The
evaluation may result in the design solution being rejected or adopted, but often leads to
the generation of new design questions that must be resolved in a similar fashion.

1.2 Case Study
This report focuses on a particular case study, which provides the context for the model prob-
lem. This case study involves the modernization of a large Retail Supply System (RSS) for a
major U.S. retailer. The RSS consists of approximately 2 million lines of MicroFocus
COBOL code running on a Solaris workstation. Data is stored in an Oracle 8i database.
However, the overall architecture of the system has remained largely unchanged over 30
years, resulting in a system that is extremely brittle and difficult to maintain. (Comella-
Dorda et al. provide a relevant description of an information system life cycle [Dorda 00]).

As a result, the decision was made to modernize the RSS to a Java 2 Enterprise Edition
(J2EE) platform. In particular, the modernized system will consist of Enterprise JavaBeans™
(EJBs) written in the Java programming language and deployed on an EJB application server.

Figure 1 shows an overview of the RSS modernization process. Initially the system consists
completely of legacy COBOL code. At the completion of each increment, the percentage of
legacy code decreases while the percentage of modernized code increases. Eventually, the
system is completely modernized. Dependencies between legacy and modernized code re-
quire adapters to map between legacy and modernized system components.

Ongoing operations

Require use of Adapters

Mogefefced;.

Require access to COBOL code

Figure 1: RSS Modernization

Enterprise JavaBeans is a trademark of Sun Microsystems, Inc.

CMU/SEI-2001-TR-012

The modernization process consists of replacing legacy program elements with functionally
equivalent EJBs. These beans are then deployed on a J2EE platform, in this case, the Web-

Sphere application server developed by IBM.

As modernized functionality is deployed incrementally, transactions that were processed en-
tirely in COBOL may now be distributed across both legacy and modernized components.
Figure 2 shows the system after the incremental deployment of some modernized compo-
nents. Apparent in this illustration is the fact that both the legacy COBOL code and modern-

ized EJBs may update or access the database.

COBOL "co
■o

Application

r >, ^
T3

Adapter LU
LLI
CM
—1

Micro Focus
1

O
E

X Oracle CD
T3
O
O

(EJB)

DB

_l
o
m
O

SQL

Figure 2: The Operational System During Modernization

CMU/SEI-2001-TR-012

An updated operation involving both legacy code and modern components is shown in the
sequence diagram illustrated in Figure 3. In this diagram, the legacy COBOL module updates
Table 2 by means of a SQL UPDATE. The COBOL module then invokes a method in a
modernized component via an adapter that results in a SQL UPDATE to Table 1. Because the
RSS modernization strategy is to maintain records in a single Oracle 8i database, there is no
need to support two-phase commit in this scenario.1

To perform these updates within a transactional context, it is necessary to start and commit
the transaction. Some scenarios might suggest that we alternately start or commit transac-
tions in either the legacy or modernized components, but for simplicity we will assume that
transactions are always started and committed from the legacy COBOL system.

:COBOL
Main

:COBOL
Module 1

: COBOL to
Java Adapter

: Seiv ice Component Data Entity 1

: Table 1

start transaction

. SQL UPDATE

t- I

update()

commit/rollback j

update()

update()
update ()

—s*. SQL UPDATE

J
P

^

1
1

< ' ■

: Table 2

Figure 3: Sequence Diagram Showing Transaction Update of Database Records

The problem we now face is how to maintain transactional integrity across the COBOL-to-
EJB interface.

Transaction managers and resource managers use the two-phase commit (2PC) protocol with pre-
sumed roll back. That is, if something goes wrong, the transaction and resource managers involved in
the transaction will always attempt to roll back their portions of the transaction. In Phase One, the pre-
pare phase, the transaction manager asks all resource managers if they are ready and able to commit a
transaction. If a resource manager responds negatively, it will automatically roll back any work it per-
formed on behalf of the transaction and discard any knowledge it had of the transaction. In Phase Two,
the commit phase, the transaction manager determines if there are any negative replies, and if so, in-
structs all resource managers to roll back. If all replies are positive, it will instruct the resource manag-
ers to commit.

CMU/SEI-2001-TR-012

There are several possible solutions, which we present in Section 2.

CMU/SEI-2001-TR-012

CMU/SEI-2001-TR-012

2 Contingency Planning

A fundamental tenement of component-based software engineering is contingency-based de-

sign. Simply put, contingency-based design allows for multiple design options to be pursued
in parallel. This is critical when dealing with commercial components, as the implementa-
tions of these components are typically opaque to the architect, and their evolution is driven

by the marketplace.

There are a number of possible design options that can be used to maintain the transactional
context between the legacy COBOL system and the modernized system. Each of these con-
tingencies is considered in this section of the report, along with our initial evaluation of the

feasibility of each solution.

2.1 MQSeries
Existing modernization plans for the RSS assumed the use of MQSeries as a communication
mechanism between the legacy COBOL and modernized EJB systems. MQSeries is an IBM
product that provides asynchronous communications and uses independent queues to relay

messages between communicating processes as shown in Figure 4.

Figure 4: Queue-Based Communication Using MQSeries

CMU/SEI-2001-TR-012

MQSeries has some potential problems with respect to supporting transactions; in its current
release, integration between MQSeries and WebSphere is limited. However, IBM claims that
these products will be further integrated in the next release of WebSphere (Version 4.0) due
out in the fall of 2001. However, even this future target state has severe limitations that can
best be illustrated in an example. We assume that process A in Figure 4 represents the legacy
system code written in MicroFocus COBOL and that B represents a modernized component
developed as an FJB and deployed in the WebSphere application server. Queue 1 is an input
queue for the modernized component. The legacy code is passing a message via MQSeries to
the modernized component to perform a function. We also assume that this function needs to
be accomplished as part of a transaction. To do this, the MicroFocus COBOL program ele-
ment will need to start a transaction and pass a message. In the planned Version 4 release of

WebSphere, MQSeries will be able to maintain a transactional context through delivery of the
message to the remote queue. However, once the EJB component removes the message from

the queue, the transaction context is no longer maintained. This means that any database op-

erations performed by the EJB component will take place outside of the transaction context.

We did not develop MQSeries further as a model problem solution due to this limitation in
transaction propagation, although we maintained this option as a possible design contingency
in case an asynchronous, message-oriented approach became a requirement.

2.2 Object Transaction Service
Object Transaction Service (OTS) is a distributed transaction-processing service specified by
the Object Management Group (OMG). This specification extends the CORBA model and
defines a set of interfaces to perform transaction processing across multiple CORBA objects.
CORBA uses the Internet Inter-ORB Protocol (HOP) as an interoperable protocol for com-
munication between distributed objects.

As of the EJB Version 1.1 specification, the Remote Method Invocation (RMI) over HOP has
become the standard mechanism for supporting communication between a client and EJBs,
and between EJB containers. HOP is well suited for this purpose as it supports the propaga-
tion of both a transaction and security context. The WebSphere product, in particular, has
been built around ComponentBroker ORB developed by IBM, even prior to the release of the
EJB Version 1.1 specification.

To use OTS as a solution, we would need to find COBOL language bindings to a CORBA
and OTS implementation. Optimally, if ComponentBroker had a MicroFocus COBOL inter-
face, we could be fairly confident that this product would work in our target environment.

Although this approach appears to have potential, we had difficulty identifying a MicroFocus
COBOL CORBA binding. A possible workaround was to use a Java CORBA binding, ac-
cessed through a MicroFocus COBOL-to-Java language interface. However, we decided not

8 CMU/SEI-2001-TR-012

to develop an OTS model problem at this time, but maintained it as a potentially viable de-

sign contingency.

2.3 Oracle Pro*COBOL
The Pro*COBOL precompiler is a programming tool that supports embedded SQL statements
in high-level programming languages. This precompiler accepts the program as input, trans-
lates the embedded SQL statements into standard Oracle runtime library calls, and generates

a source program that can be compiled, linked, and executed.

Although Pro*COBOL claims to be compatible with the MicroFocus Object COBOL Version
4.0 for 32-bit Windows® NT/95 compilers, it does not provide a solution for transaction man-

agement. Pro*COBOL is used primarily to preserve business logic in legacy COBOL pro-
grams when data is migrated to an Oracle database. Pro*COBOL supports transactions in
embedded SQL statements, but does not solve the problem of maintaining a transactional
context between legacy and modernized components. As a result, we eliminated this contin-

gency as a possible design solution.

2.4 Net Express
MicroFocus Net Express® is an integrated development environment (IDE) for developing proce-

dural COBOL/Object COBOL-based applications. Net Express supports mixed-language pro-
gramming support for procedural COBOL, Object COBOL, and Java mixed-language program-
ming, as well as WebSphere distributed-transaction technologies.

In supporting mixed-language programs, Net Express supports calling Java code from Mi-
croFocus COBOL as well as calling MicroFocus COBOL from Java code. In particular, Net
Express supports wrapping MicroFocus COBOL within an EJB. Potentially, each approach
to supporting mixed-language programs could be used, so we examined each in turn.

2.4.1 Wrapping COBOL Code
Wrapping COBOL code within EJBs would allow the system to be migrated quickly to a
J2EE environment, although clearly not one consisting of 100% pure Java code. To imple-
ment this approach, each legacy program element must be wrapped as an EJB, and all the
internal calls must be converted to invoke the new Java methods—requiring the COBOL
code inside the Java code to call Java again. There are several apparent consequences to this

approach:

1. Turning legacy program elements into EJBs guarantees that the legacy architecture is
maintained, as the decomposition of the system remains constant and the calls between

® Windows is a registered trademark of Microsoft Corporation.
® MicroFocus Net Express is a registered trademark of MERANT.

CMU/SEI-2001-TR-012

modules remain the same. As a result, this approach is incompatible with the RSS desire
to migrate to a new target architecture.

2. The majority of the modernized system, in particular the business logic, is still imple-
mented in COBOL. This means that any maintenance problems that existed will remain
and be further complicated by the problems associated with maintaining a multi-
language system.

3. Modernizing the system in this manner is not conducive to incremental development and
would require a big-bang deployment of COBOL-filled EJBs.

The primary advantage of this approach is that it is a relatively inexpensive way to create a
componentized system, but the characteristics of this modernized system would not be very
different from those of the legacy system. As a result, we eliminated this approach as a pos-
sible design contingency.

2.4.2 Calling Java from COBOL
The second approach using Net Express is to call Java directly from the MicroFocus COBOL

program elements. This approach would allow us to invoke EJB methods directly from Mi-
croFocus COBOL and support WebSphere distributed transactions. As this approach appears
to satisfy all of our requirements, we decided to construct a model problem to evaluate this
design contingency.

i Infeasible

/
contingency

Wrapping

NetExpress

COBOLtoJava
primary

Transactional
Context

\
contingency

MOSeries \ iv/r A i ^

contingency

Model
Problem

OTS

contingency Infeasible
Pro*COBOL --""

Figure 5: Contigency Plan

10 CMU/SEI-2001-TR-012

Figure 5 illustrates the result of the contingency planning. We have eliminated two contin-
gencies, those of wrapping COBOL code using Net Express and using Oracle Pro*COBOL.
Of the remaining three contingencies, we have decided to implement a model problem using

Net Express to call Java from COBOL.

CMU/SEI-2001-TR-012 11

12 CMU/SEI-2001-TR-012

3 Model Problem Definition

To initiate a model problem, we must first create a hypothesis in two parts that establishes the

design question:

Hypothesis Part #1: The MicroFocus Net Express integrated development envi-

ronment can be used to support mixed-language programming with Java.

Hypothesis Part #2: The Java subroutines, invoked from MicroFocus COBOL,

can interface with an EJB server and perform transactions with an Oracle 8i da-

tabase.

If the first part cannot be supported, the second part is irrelevant. Now that we have defined
the design question, we must identify the a priori evaluation criteria that will allow us to de-

termine if the hypothesis can be supported:

Criterion #1: Committed updates from both the COBOL process and EJBs are

applied correctly to the database.

Criterion #2: A roll-back operation preserves the state of the database prior to

the start of the transaction.

The final step in defining the model problem is to identify any implementation constraints on
the model solution. These constraints are set by the design context and are an important part
of the model problem definition. For example, without the addition of the following con-
straints to this model problem, both of the stated criteria can be satisfied trivially:

1. The transaction must be started from the MicroFocus COBOL program and use the Java
Transaction Service (JTS).

2. The MicroFocus COBOL program and the EJB must write to the Oracle 8i database as
part of the same transaction.

3. The MicroFocus COBOL program will write to the Oracle 8i database using JDBC and
SQL.

Taken together, the design question, a priori evaluation criteria, and implementation con-
straints provide the definition of the model problem. The next step is for the engineer to pro-

duce a model solution situated in this design context.

CMU/SEI-2001-TR-012 13

14 CMU/SEI-2001-TR-012

4 Model Problem Solution

This section describes our experience with the setup and development of the model solution.

4.1 Design of the Model Solution
The first step in implementing the model solution was to identify the sequence of steps that
must be followed. In particular, the model solution must

1. Start a transaction using the JTS from a MicroFocus COBOL program.

2. Write to the Oracle 8i database using JDBC and SQL.

3. Invoke an EJB method that also wrote to the same Oracle 8i database as part of the same
transaction.

4. Return control to the COBOL program.

5. Either roll back or commit the database changes made by both the COBOL and EJB pro-
grams.

For purposes of evaluation, it is often convenient to start with an existing prototype. Sample
programs shipped with development tools are often ideally suited for this purpose. In this
case, our model solution is based upon a sample banking program that manages client ac-
counts using EJB. The EJB application consists of a database, a Java client, two EJBs, an Ac-
count Bean, and a Transfer Bean as shown in Figure 6. The Account Bean is an entity bean
that persists in a relational table, and the Transfer Bean is a session bean that withdraws funds
from one account and deposits the same amount in another account in the context of a single
transaction. The Java client is a simple program that accepts a request from the user and in-
vokes the beans to perform account creations or transfers. The client uses the Java Naming
Directory Interface (JNDI) to get references to different resources and the Java Transaction

API (JTA) to start, commit, and roll back transactions.

CMU/SEI-2001-TR-012 15

BM JVM 1.2.2 WebSphere

* Transfer Session Bean Java Code i

i i. V

Java Client

Account Entity Bean

EJB Server

Oracle 8i Managed JDBC Account
Table

^.Container
w "'Persistence

Database

Figure 6: Initial Architecture

The Java client program was used to verify the operation of the banking application using
EJB, transaction logic, and interaction with the Oracle 8i database.

This client program was later used to construct a test adapter as shown in Figure 7. The Java
client is replaced with a combination of MicroFocus COBOL and Java code developed using
Net Express MicroFocus COBOL.

Net Express Micro Focus WebSphere

COBOL
Code

fe Java
► Transfer Session Bean w Code i

i k 1

Adapter

Account Entity Bean

i

EJB Server

k

0racle 8i ..nun Managed k. Account
Table

Container
Persistenc ;e

Database

Figure 7: Model Solution Architecture

16 CMU/SEI-2001-TR-012

4.2 Installing the EJB Server
For our EJB server, we used WebSphere Application Server Advanced Edition (AE) for Win-
dows. We installed the application server on a 256MB Windows 2000 machine.

The first thing we learned during the installation is that Windows 2000 is not supported by
WebSphere AE but only "tolerated." Tolerated means that there is a newsgroup for people
trying to install WebSphere on Windows 2000. You need to browse through the newsgroup to
learn the tricks to make WebSphere work in that particular operating system (OS). For exam-
ple, the software has to be installed from an "admin" account. We are not referring to any
account with administrative privileges or to the default "administrator" account. It must be an
account named "admin" for the installation to work. After learning this and other tricks we
were able to complete the software installation in a reasonable amount of time.

4.3 EJB Bean Deployment
After installing the tool, we deployed two beans from the examples into the server. The de-
ployment was quite straightforward; the only noteworthy issue we found is that the examples
were configured to work with IBM's DB2®. Unfortunately, the demo version of WebSphere

AE uses InstantDB, a pure Java database from IBM. We had to reconfigure the data sources

of the server for the beans to work.

Creating the Java client (described in Section 3) was much more interesting. The clients in
the examples are all Applets, Java Server Pages, and other Web-centered artifacts. We didn't
want to clutter the model problem, so we developed a stand-alone Java client that does the
minimum operations required to connect and access the application server. We noted that
Java clients accessing WebSphere AE require IBM proprietary libraries to work; this contra-
dicts the EJB standard but will probably have minimal impact over the program under con-

sideration.

The real problems started when we changed the Java clients to access the database through
JDBC in the same transaction as the data being modified by the Entity Beans. We first fol-
lowed the WebSphere recommendations to get a JDBC connection from WebSphere's con-
nection pool; this didn't work, probably because of InstantDB limitations. We then tried to
create a brand new JDBC connection in the client code. This worked better, but we had data
consistency problems between the beans and the client. This again turned out to be an In-
stantDB limitation. Finally, we decided to change the InstantDB for the Oracle 8i database.
Swapping databases was not trivial, but it solved all data access problems.

The Oracle 8i database was installed using a typical installation. A SQL*Net connection to
the database was defined; the Oracle initialization file had to be modified; and two users re-

1 DB2 is a registered trademark of International Business Machines.

CMU/SEI-2001-TR-012 17

quired by WebSphere had to be created so that the Account bean could be deployed. These
instructions were found in the WebSphere documentation.

The Oracle JDBC thin driver was also installed. The JDBC thin driver is a 100% pure Java,
type-4 driver that requires no client installation. The driver talks to the database using a 100%
pure-Java presentation/session protocol. The Oracle JDBC thin driver is targeted towards
applet developers and has all the functionality needed in this case. After these installations
were complete, the JDBC connection in the client was modified so that it could use the JDBC
driver and the SQL*Net connection.

4.4 Building the Test Adapter
As stated earlier, the test adapter requires the use of mixed-language programming using
COBOL and Java. Therefore, our first step was to gain an understanding of how MicroFocus
COBOL interfaces with Java.

We obtained an evaluation version of MicroFocus Net Express® IDE Version 3.1 and began
working with the product to determine how to invoke Java methods from a COBOL program.
Initially this seemed to be a trivial task, but it took much longer than we expected.

First, we examined the documentation provided with MicroFocus Net Express for informa-
tion on how to invoke Java Methods from within a COBOL program. The documentation
provides the mapping of COBOL types to Java types as shown in Table 1. It is currently not
known how well the COBOL types defined for interacting with Java will map into the
COBOL types used in the RSS. This is an area that requires further investigation.

After a thorough review of the documentation, we determined that information concerning
MERANT's Java support was spotty at best. Besides mapping and setup information, the
documentation contained only fragmented code examples that were incomplete and confus-
ing and had not been updated completely to reflect the current version of the software. The
documentation inaccuracies were actually discovered some time later when we browsed
MERANT's Web site for additional information and determined that Version 3.1 of the soft-
ware had significant improvements with respect to Java support. Next, we examined the Java
demonstration programs that are provided as part of the IDE software package.

18 CMU/SEI-2001-TR-012

Table 1: Java COBOL Mapping

Java User
defined

COBOL Object COBOL Description

Byte jbyte pic s99 comp-5 pic s99 comp-5 Signed 1-byte integer
Short j short pic s9(4) comp-5 pic s9(4) comp-5 Signed 2-byte integer
Int jint pic s9(9) comp-5 pic s9(9) comp-5 Signed 4-byte integer
Long jlong pic s9(18) comp-5 pic s9(18) comp-5

by ref only
Signed 8-byte integer

Boolean j boolean pic 99 comp-5 pic 99 comp-5 Zero value is false; non-zero is true.
Char jchar (Unicode)

pic 9(4) comp-5
N/A

All characters in Java are represented
by 2-byte Unicode characters.

Float j float comp-1 comp-1 (by ref only
on Unix)

Floating-point number

Double jdouble comp-2 comp-2 by ref only Double-precision floating-point num-
ber

String

Mf-string Pointer pic x(n)

mf-jstring is a user-defined type giving
the address, size and capacity of a
string or buffer. For a String, the
capacity is always zero. You should
consider a string passed into a COBOL
program as read-only, and not to be
amended. For a StringBuffer, the ca-
pacity is the total size of the buffer, and
the size the length of the string cur-
rently held in the buffer.

StringBuffer

Objects

N/A

Pointer object reference Any Java object. The pointer returned
to procedural COBOL can be used
with Java Native Interface (JNI) calls.

objectf] Pointer object reference to
instance of class
j array

An array of Java objects. The pointer
returned to procedural COBOL can be
used with JNI calls. Jarray is an Object
COBOL class for accessing the con-
tents of Java arrays.

The Java examples contained helpful information on how to call Java from COBOL and vice
versa. These examples were interesting, because none of them showed how to call Java from
a COBOL executable or how to pass strings from COBOL to Java. Examples typically con-
sisted of a Java program calling a COBOL procedure linked into a Dynamic Link Library
(DLL). Then, while executing the COBOL code inside the DLL, the COBOL program would

invoke some Java method.

CMU/SEI-2001-TR-012 19

public class TestJava
{
public void Passlntfint IntFromCOBOL)
{
System.out.println("int from COBOL: "+IntFromCOBOL);

}
}

Figure 8: Java Integer Code

Since we could not find an example or documentation that met our needs, we developed a
simple test program that passed an integer from COBOL to Java. The Java and COBOL sec-
tions of the program are shown in Figure 8 and Figure 9. Next, we tried to get these two sim-
ple programs to compile and execute. We thought that building this tiny mixed-language pro-
gram was going to be a trivial exercise; the Java portion was in fact easy enough, but the

COBOL portion turned out to be much more difficult than we had imagined.

We encountered several difficulties building the COBOL portion of the program. These

problems ranged from builds that would compile, link, and execute without error, but only
return to the command prompt when executed (not even an error log was produced), to prob-
lems with the IDE not really doing a complete rebuild when instructed. These problems were
coupled with a lack of documentation on how to correctly configure the linker and the other
compile parameters in the IDE to properly build a COBOL program that calls Java methods.
This made this part of the task extremely difficult, but after spending some time in trial-and-
error mode, we eventually got our simple program to execute correctly.

$set ooctrl(+p-f)
program-id. COBOLCal1ingJava.

class-control.
TestJava is class '$java$Tes tJava"

working-storage section,
copy Javatypes.

01 IntForJava jint.
01 JavaClassRef object reference.

procedure division,
display "Load Java Class"
invoke TestJava "new" returning JavaClassRef
display "Java Class Load Complete"
set IntForJava to 123456
invoke JavaClassRef "Passlnt" using IntForJava
invoke JavaClassRef "finalize" returning JavaClassRef
stop run

Figure 9: COBOL Integer Code

20 CMU/SEI-2001-TR-012

After discussing these problems with a MERANT representative, we were encouraged to
download the various patches for the product that are available from MERANT's Web site.
These patches fixed many of the problems that we were having with the BDE.

public class TestJava {
public String Passlnt(String StringFromCOBOL, int IntFromCOBOL) throws Ex-
ception {

System.out.println(StringFromCOBOL+IntFromCOBOL);
if (IntFromCOBOL==1234)

{
Exception e = new Exception ("Test Exception for COBOL");
throw e;

}
return!"Hello from Java");

}

Figure 10: Expanded Integer Java Code

Next, we expanded our test program to include the passing of a string, a return value, and the
ability to catch Java exceptions in the COBOL portion of the program. The documentation
provided showed how to perform Java exception handling in COBOL, but did not indicate
how to pass a string from COBOL to Java. We looked through MERANT's support "Answers
Lab" for information and eventually found a sample Java/COBOL program that performed
string passing between COBOL and Java. It turned out that string passing was much simpler
than we had expected. We had thought that string passing would be much more difficult—
based on some old Net Express Version 3.0 examples we had found on MERANT's Web site
and could not get to work correctly. Our updated COBOL and Java programs are shown in
Figure 10 and Figure 11. We tested our new mixed-language application, and everything

seemed to work correctly.

CMU/SEI-2001-TR-012 21

$set ooctrl(+p-f)
program-id. COBOLCallingJava.

class-control.
ExceptionManager
EntryCallback
JavaExc ep t i onManager
TestJava

working-storage section,
copy Javatypes.
01 JavaClassRef
01 wsCallBack
01 wslterator
01 IntForJava
01 StringFromJava

is class "exptnmgr"
is class "entrycll"
is class "javaexpt"
is class "$java$TestJava"

object reference,
object reference,
object reference,
j int.
pic x(100)

linkage section.
01 InkErrorNumber pic x(4) comp-5.
01 InkErrorObject object reference.
01 InkErrorTextCollection object reference.
01 InkException object reference.
01 anElement object reference.

procedure division,
invoke EntryCallback "new" using z"JException" returning wsCallback

invoke ExceptionManager "register" using javaexceptionmanager wsCallback

*>Register a CallBack to use as an Iterator (For Errors)
invoke EntryCallback "new" using z"DispError" returning wslterator

display "Load Java Class"
invoke TestJava "new" returning JavaClassRef
display "Test Java Load Complete"
display "Enter a integer to pass"
Accept IntForJava.
invoke JavaClassRef "Passlnt" using z"Int From COBOL :" IntForJava

returning StringFromJava
display "String Returned from Java = " StringFromJava
invoke JavaClassRef "finalize" returning JavaClassRef
stop run

entry "Jexception" using InkException InkErrorNumber InkErrorTextCollection.

display "Error calling Java Class !"
display "The Error from Java was:-"
invoke InkErrorTextCollection "do" using wslterator
stop run

entry "DispError" using anElement.

display " " with no advancing
invoke anElement "display"
display " "
goback

Figure 11: Expanded Integer Cobol Code

22 CMU/SEI-2001-TR-012

Now that we had determined how to pass data successfully from a COBOL program to a Java
program and handle Java exceptions from within COBOL, we were ready to begin building a
test adapter. The test adapter was constructed from the Java client described in Section 3.
Similar to the Java client, this adapter uses the Account Bean, Transfer Bean, JNDI, and JTA,
except that it is controlled and instantiated via the COBOL portion of the program.

The Java portion of our adapter required Version 1.2.2 of the Java Virtual Machine (JVM) de-
veloped by JEM. We discovered that our version of Net Express only supported the JVM Ver-
sion 1.1.8, so we called MERANT to ask if there was a patch that would allow us to run the
JVM Version 1.2.2. Within a few days, MERANT sent us a beta patch set.

We installed the patch files, rebuilt our adapter program, and ran the program. During the
program execution we received the obscure error shown in Figure 12.

Error calling ()V constructor for instance of class UltimateBankingApplica-

tion

Figure 12: Error Return From Test Adapter

To determine the cause of the error, we included print statements in the class constructor of
the Java portion of our adapter and exception handlers to print out a stack trace. The only in-
formation that we could determine from this approach was that the error was occurring dur-
ing the construction of ivj initContext, as shown in Figure 13.

ivjInitContext = new InitialContext(properties);

Figure 13: Statement Causing Error

For some unknown reason, we could not get the Java stack trace option to print amplifying

information in particular situations.

Next, to isolate the error we decompiled the class files associated with the InitialCon-
text () constructor using Jad (a Java decompiler) and then recompiled these classes with
debug information. During this process we discovered that the default internal class path that
was used when running the JVM from the Java command was different from the internal
class path used by MERANT when the COBOL program loaded the JVM. This difference
turned out to be the cause of the error shown in Figure 12. The class path values that were

missing are shown in Figure 14.

C:\IBMJDK\jre\lib\ext\rmiorb.jar;
C:\IBMJDK\jre\lib\ext\iioprt.jar;

Figure 14: Missing Class Path Values

CMU/SEI-2001-TR-012 23

We added the two missing jar files to the class path of the IDE build configuration for the test
adapter and rebuilt out test adapter. When executed, our test adapter no longer failed con-
structing ivj initContext, but we discovered that strings were not being passed to Java
correctly.

Even though our program that passed a string and an integer to Java seemed to work cor-
rectly, we determined through our test adapter that COBOL strings must be NULL terminated
before they are passed in a Java invocation, and that Java methods receiving strings from a
COBOL program must strip off any trailing spaces. Additionally, we noticed that any
COBOL string that is used as a return value for a Java method invocation must be cleared
before the Java method is invoked. We did not notice this issue with our simple test program,
because we: were only passing one string; were not performing string compares; and only
invoked the Java method once instead of repeatedly.

We made the modifications described above to the COBOL and Java portions of the program
and the adapter executed correctly interacting with EJBs and Oracle 8i.

24 CMU/SEI-2001-TR-012

5 Evaluation

Once the model solution has been completed, it is the job of the engineer and the architect to
define the a posteriori evaluation criteria. These criteria most often include all of the a priori
criteria plus criteria that are discovered as a by-product of implementing the model solution.

Perhaps the biggest surprise encountered during the implementation of the model solution
was the difficulty we encountered passing simple types between MicroFocus COBOL and
Java. Most of these difficulties stemmed not from deficiencies in the COBOL compiler, but
from shortcomings in the product documentation. Nevertheless, as a result of our experience,
we added an a posteriori evaluation criterion to test Hypothesis #1 (The MicroFocus Net Ex-
press integrated development environment can be used to support mixed-language program-

ming with Java.):

Criterion #3: Simple data types can be exchanged between MicroFocus COBOL
and Java, and Java exceptions can be handled in the MicroFocus code.

Now that we had completed the model problem and defined our a posteriori evaluation crite-
ria, we could evaluate the model problem solution. Both Criterion #1 and Criterion #2 are
easily satisfied by the solution. Criterion #3 was at least partially satisfied, in that we were
able to communicate both integers and strings (these being the most critical data types) and
provide exception handling in the COBOL code. As a result, the Net Express contingency of
calling Java from MicroFocus COBOL was adopted as the primary contingency.

We also identified other areas of concern during the execution of the model problem, includ-
ing performance and scalability, but as the model problem was not designed to evaluate these
qualities, we did not add these as criteria for evaluating this model solution.

CMU/SEI-2001-TR-012 25

26 CMU/SEI-2001-TR-012

6 Legacy System Assumptions

The solution described in this report for maintaining transactions between the legacy and
modernized systems assumes certain characteristics of the legacy system. These assumptions
are documented in this section of this report. While this approach may not be the only solu-
tion for maintaining transactions, deviation away from these assumptions concerning the leg-
acy system could invalidate the solution described in this report.

6.1 MicroFocus COBOL
MERANT supports mixed-language programming with Java through a Java domain in Object
COBOL. The Java domain provides the capability to declare Java classes inside a COBOL
program, as well as to send and receive messages from Java classes. The Java domain support
works by creating a COBOL proxy object for each Java object, as shown in Figure 15.

Object COBOL
Program

Object COBOL
messages :■
(invokes)

Object COBOL
RTS

Java
messages*!

Java
Object

Jma.bj.ct
.jpl

Figure 15: Java Proxy

The Java class itself, which is declared in the COBOL portion of the program, is a proxy for
the static methods of the Java class. Mixed-language Java/COBOL programs can be either
procedural or object-oriented COBOL, but they must conform to the following:

• The environment variable cobjvm must be set to the desired JVM.

• The system path must be set so that the jvm. dll can be located.

• The mf cobol. j ar file must be included in the Java class path.

• The command ooctrl (+p-f) must be included in the COBOL portion of the program.
This command adds type information to invoke statements, which the COBOL runtime
system needs to convert data correctly between the COBOL and Java domains. This
command also prevents the compiler from converting the method names that it invokes to
lowercase (Java method names are case sensitive).

• Programs must be linked with the multi-threaded runtime system.

CMU/SEI-2001-TR-012 27

6.2 Java Transaction Service
The model problem implemented in this report uses Java Transaction Service APIs for pro-
grammatic transaction demarcation. Figure 16 shows a segment of Java code that creates a
user transaction and then uses it to begin and commit a transaction. Operations on the data-
base would normally be inserted between the calls to the begin () and commit () transac-
tion methods.

import 3avax.transaction.*;

//transaction staff
UserTransaction ut = null;
ut = (UserTransaction)ivjInitContext.lookup("j ta/usertransaction");

ut.begin();

ut.commit();

Figure 16: Transaction Demarcation Using JTS

Most likely, Java utility methods to perform equivalent JTS calls will be created and invoked
directly from the MicroFocus COBOL code.

6.3 JDBC
The model problem assumes the use of Oracle's JDBC thin driver, which is a Type 4 driver
written completely in Java. This driver connects directly to Oracle using Java sockets with-
out the need for a JDBC-specific middle tier and can only connect to a database if a Trans-
parent Network Substrate (TNS) Listener2 is up and listening on TCP/IP sockets. Type 4
drivers are typically database specific and provided only by the database vendor.

6.4 SQL
The model problem assumes the use of standard SQL.

2 Transparent Network Substrate (TNS) Listener is a server process designated to listen for incoming
connections to client applications using SQL*Net Version 2.

28 CMU/SEI-2001-TR-012

7 Summary and Conclusions

Model problems are an effective component-based software engineering technique for evalu-
ating design contingencies. In this report, we developed a model problem to evaluate the fea-
sibility of maintaining transactional integrity from COBOL to EJBs using MicroFocus
COBOL, WebSphere, and Oracle 8i.3 We were able to create and demonstrate a model prob-
lem that satisfied the a posteriori evaluation criteria for the model problem, increasing our

confidence in the viability of the design option.

As a result of this model problem, the system architect identified this design solution as the
principal design contingency. Becoming the principal design contingency does not guarantee
that the solution will be adopted, but typically the principal contingency will receive the most
resources to further verify the viability of the approach and reduce design risk. For example,
we identified some additional risks during the implementation of the model solution, includ-
ing how well the COBOL types defined for interacting with Java map into the COBOL types
used in the RSS. In addition, we did little to verify the performance, robustness, and scalabil-
ity of this approach. These attributes of the design solution must be considered further.

Although the principal contingency is not always adopted, it is an important step nonetheless.
As a result of this decision, other design solutions are potentially starved of evaluation re-
sources. If, for example, we had selected the OTS approach, we may never have applied the
resources to identify the mixed-programming language approach as a viable design option.
Time is also an important factor. As time passes, the design becomes more entrenched in the
principal contingency as this design solution becomes a design constraint in other model
problems and as engineering expertise is acquired in the requisite technologies. Eventually,
the cost of replacing the principal design solution with a contingency becomes prohibitive.

1 Information concerning some of the features of these products is provided in the Appendix.

CMU/SEI-2001-TR-012 29

30 CMU/SEI-2001-TR-012

Appendix

This appendix provides a brief description of the commercial software products used in the

construction of the model problem.

NetExpress MicroFocus
MicroFocus Net Express is an integrated development environment for developing proce-
dural COBOL/Object COBOL-based applications. Net Express has built-in support for the

following types of applications:

• mixed-language programming: provides support for procedural COBOL, Object
COBOL, and Java mixed-language programming

• Web-based applications: includes a tool set to create, develop, build, and test Web appli-
cations and a personal Web Server

• Windows-based applications: includes support for the development of applications that
use the Microsoft Windows user interface

• component-based/distributed applications: provides support for EJBs and Microsoft OLE
automation products (COM/DCOM and ActiveX)

• Distributed Transaction Processing: supports EJBs, Microsoft Transaction Server, and
WebSphere distributed-transaction technologies

WebSphere Application Server
The WebSphere Application Server is an application server incorporating the following

technologies:

• HTTP server that includes administration GUI and support for Lightweight Directory
Access Protocol (LDAP) and Simple Network Management Protocol (SNMP)

• management and security controls for user-, group-, and method-level policy and control

• database access using JDBC for DB2 Universal Database and Oracle

• Java servlets, Java Server Pages, and XML for the display and construction of dynamic
Web content

• EJBs server for implementing EJB components that incorporate business logic: allows
the integration of EJB and CORB A components to business applications and includes full
support for both Session Beans and Entity Beans (container-managed and bean-managed
persistence)

• support for distributed transactions and transaction processing

CMU/SEI-2001-TR-012 ~~~ Ü"

Oracle 8i Database
The Oracle 8i Database is a relational database. Here are just a few key features:

JDBC and SQLJ for Java applications

Oracle JServer: Java VM in the database

data security

object relational database support

backup and recovery

content management

data warehousing

transaction processing

parallel-server, data management, and SQL

national language support

32 CMU/SEI-2001-TR-012

References

[Dorda 00] Comella-Dorda, Santiago; Wallnau, Kurt; Seacord, Robert C; &
Robert, John. A Survey of Legacy System Modernization Approaches

(CMU/SEI-2000-TN-003, ADA377453). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University, 2000.

Available WWW: <URL:
http://www.sei.cmu.edu/publications/documents/00.reports/00tn003.html>.

[Wallnau 01] Wallnau, Kurt; Hissam, Scott; & Seacord, Robert C. Building Systems from
Commercial Components (ISBN: 0201700646). New York, NY: Addison-

Wesley, 2001.

CMU/SEI-2001-TR-012 33

34 CMU/SEI-2001-TR-012

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any
other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations
and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-
0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

August 2001

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Maintaining Transactional Context: A Model Problem

5. FUNDING NUMBERS

F19628-00-C-0003

6. AUTHOR(S)

D. Plakosh, S. Comella-Dorda, G. Lewis, P. Place, R. Seacord

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION

REPORT NUMBER

CMU/SEI-2001-TR-012

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
HanscomAFB,MA01731-2116

10. SPONSORING/MONITORING AGENCY

REPORT NUMBER

ESC-TR-2001-012

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

Due to their size and complexity, modernizing enterprise systems often requires that new func-
tionality be developed and deployed incrementally. As modernized functionality is deployed in-
crementally, transactions that were processed entirely in the legacy system may now be distrib-
uted across both legacy and modernized components.
In this report, we investigate the construction of adapters for a modernization effort that can
maintain a transactional context between legacy and modernized components. One technique
that is particularly useful in technology and product evaluations is the use of model problems—
focused experimental prototypes that reveal technology/product capabilities, benefits, and limita-
tions in well-bounded ways.
This report describes a model problem used to verify that such a mechanism exists and could be
used to support the modernization of a legacy system. In this report, we describe a model prob-
lem constructed to verify the feasibility of building this mechanism. We also discuss the results of
our investigation including the problems we encountered during the construction of the model
problem and workarounds that were discovered.

14. SUBJECT TERMS

modernization, legacy system, transaction, COBOL, EJB

15. NUMBER OF PAGES

42

16. PRICE CODE

17. SECURITY CLASSIFICATION OF

REPORT

Unclassified

18. SECURITY CLASSIFICATION OF

THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF

ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18 298-102

