
NASA/CR-2001-211042
ICASE Report No. 2001-22

A V

Robust Airfoil Optimization to Achieve Consistent
Drag Reduction Over a Mach Range

WuLi
Old Dominion University, Norfolk, Virginia

Luc Huyse
ICASE, Hampton, Virginia

Sharon Padula
NASA Langley Research Center, Hampton, Virginia

ICASE
NASA Langley Research Center
Hampton, Virginia
Operated by Universities Space Research Association

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 2001

Prepared for Langley Research Center
under Contract NAS1-97046

Report Documentation Page

Report Date
00AUG2001

Report Type
N/A

Dates Covered (from... to)

Title and Subtitle
Robust Airfoil Optimization to Achieve Consistent Drag
Reduction Over a Mach Range

Author(s)
Wu Li, Luc Huyse, Sharon Padula

Contract Number

Grant Number

Program Element Number

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
National Aeronautics and Space Administration Langley
Research Center Hampton, Virginia 23681-2199

Sponsoring/Monitoring Agency Name(s) and
Address(es)

Performing Organization Report Number

Sponsor/Monitor's Acronym(s)

Sponsor/Monitor's Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes
ICASE Report No. 2001-22

Abstract
Abstract. We prove mathematically that in order to avoid point-optimization at the sampled design points
for multipoint airfoil optimization, the number of design points must be greater than the number of
free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil
optimiza- tion method (called the pro le optimization method) is developed and analyzed. This
optimization method aims at a consistent drag reduction over a given Mach range and has three
advantages: (a) it prevents severe degradation in the o-design performance by using a smart descent
direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it
generates, and (c) it allows a designer to make a trade-o between a truly optimized airfoil and the amount
of computing time consumed. For illustration purposes, we use the pro le optimization method to solve a
lift-constrained drag minimization problem for 2-D airfoil in Euler ow with 20 free-design variables. A
comparison with other airfoil optimization methods is also included.

Subject Terms

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
SAR

Number of Pages
22

ROBUST AIRFOIL OPTIMIZATION TO ACHIEVE CONSISTENT DRAG REDUCTION

OVER A MACH RANGE *

WU Lit, LUC HUYSEt, AND SHARON PADULA§

Abstract. We prove mathematically that in order to avoid point-optimization at the sampled design

points for multipoint airfoil optimization, the number of design points must be greater than the number of

free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimiza-

tion method (called the profile optimization method) is developed and analyzed. This optimization method

aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe

degradation in the off-design performance by using a smart descent direction in each optimization iteration,

(b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make

a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration

purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for

2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods

is also included.

Key words, robust optimization, airfoil shape optimization, consistent drag reduction, lift-constrained

drag minimization, adaptive weight adjustment

Subject classification. Applied and Numerical Mathematics

1. Introduction. Optimization of aerospace vehicles or aircraft wings is based on a mathematical

model of the physical reality. The design variables are parameters in the mathematical model and changes

in these design variables result in new physical objects. Aerodynamic optimization is a process of finding

a set of design variables that corresponds to a new physical object with better aerodynamic and structural

properties.

For airfoil shape optimization, design variables are parameters that define the airfoil shape. One accepted

practice for modeling airfoil shapes is to use empirical algebraic expressions that are based on the knowledge

of aerodynamic properties of airfoils. There are two advantages to such an airfoil model:

(a) Each set of design variables (such as maximum thickness, camber, radius of leading edge, etc.)

generates an airfoil with aerodynamic properties that are well understood by experts.

(b) The number of design variables is small, thus the corresponding optimization problem is computa-

tionally affordable.

A drawback to such an airfoil model is that the optimization process is merely selecting a desirable airfoil

shape among the predetermined shapes given by the specific airfoil model. The usefulness of the optimal

airfoil is essentially determined by the usefulness of the airfoil model.

To achieve truly innovative airfoil designs, it is therefore desirable to consider "free-form" shape opti-

mization, which allows "truly optimum" designs to be computed [5, Section 1]. Here "free-form" means

geometric shapes represented by a linear combination of general basis functions (such as splines or sinusoidal

"This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-97046
while the first two authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681.

'Department of Mathematics and Statistics, Old Dominion University, Norfolk, VA 23529 (email: wli@odu.edu).
+ICASE, NASA Langley Research Center, Hampton, VA 23681 (email: luc@icase.edu).
§MDO Branch, NASA Langley Research Center, Hampton, VA 23681 (email: S.L.PADULA@LaRC.NASA.GOV).

basis functions). However, there are several challenges associated with "free-form" airfoil shape optimiza-

tion. Drela [5, Subsection 5.1] pointed out that if presented with sufficient design model resolution, an

optimizer will readily (and annoyingly) manipulate and exploit the flow at the smallest significant physical

scales present that tends to produce improved performance only near the sampled operating conditions.

The point-optimized airfoil often shows a possibly severe degradation in the off-design performance and

optimized aerodynamic shapes are usually "noisy" and usually require a posteriori smoothing.

The main objective of this paper is to develop a robust airfoil optimization scheme for achieving consistent

drag reduction over a given Mach range. This scheme (called the profile optimization method) has the

following three advantages: (a) it prevents severe degradation in the off-design performance by using a smart

descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate

it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount

of computing time consumed.

The term "robustness" has been used to mean a variety of things. For optimization under uncertainty,

we can distinguish the following meanings and goals of "robust optimization":

1. Identify designs that minimize the variability of the performance under uncertain operating condi-

tions. This is the objective of Taguchi methods [8], which are most practical when the expected

value of the performance can be adjusted at negligible cost.

2. Mitigate the detrimental effects of the worst-case performance. This is the objective of minimax

strategies, which can be used to find a design with the optimal worst-case performance [4].

3. Provide the best overall performance of a system by maximizing the expected value of its utility

[12].

4. Achieve consistent improvements of the performance over a given range of uncertainty parameters.

This is the main objective of this work.

The paper is organized as follows. In Section 2, we give a brief introduction to the airfoil optimization

problem. Section 3 is devoted to Drela's hypothesis on the necessity of using at least 0(m) design points

for multipoint airfoil shape optimization, where m is the number of free-design variables. The main result

is a mathematical proof of the fact that the multipoint airfoil shape optimization needs at least (m + 1)

design points. We present two robust airfoil shape optimization formulations in Section 4 and prove the

mathematical equivalence between these two formulations under finite sampling in Section 5. The profile

optimization method is introduced in Section 6. The implementation issues of the profile optimization

method are discussed in Section 7 and numerical simulation results are given in Section 8. Final conclusions

are drawn in Section 9.

2. Airfoil Shape Optimization. Recently, there has been significant progress in airfoil shape opti-

mization (see [2, 3, 5, 16] and references therein). These papers demonstrate impressive shape optimization

using high-fidelity CFD codes, reliable grid generation, and numerically efficient sensitivity calculations.

Equally impressive progress has been made in optimization of 3-D wings [6, 7, 17] and in coupled structural-

aerodynamic optimization [9]. However, except Drela's work [5], these aerodynamic shape optimization

projects all find optimal shapes based on fixed operating conditions. In this paper, we study a simplified

2-D airfoil shape optimization problem using a low-fidelity Euler flow solver, but we include uncertainty in

the operating conditions for the airfoil shape optimization.

Airfoil shape optimization is a PDE-constrained optimization problem. A general mathematical frame-

work for airfoil optimization can be described as follows (see [3, 16, 17] for details).

For a given flow and turbulence model (a set of PDEs), one could compute the energy, velocity, and

pressure around a given airfoil, which will be denoted by one vector-valued function S. For an airfoil

optimization problem (which is a 2-D problem), S is a function of (x,y) for fixed (D,a,M), where D

denotes the set of geometric design parameters that defines the airfoil, a is the angle of attack, and M is

a given Mach number. Note that M and a are parameters representing the flight conditions. The PDE

equations for S are solved by a numerical method that involves grid generation, discretization of the PDEs,

and iterations for solving systems of nonlinear equations.

For a given geometric design vector D, the generated grid (denoted by X) is determined by D, i.e.,

X — X{D) is a function of D. Usually, X(D°) is generated for an initial design vector Z?° based on a grid

generation method, and X(D) (for D ^ D°) is generated by a grid movement strategy (such as the spring

analogy or the elasticity model) [16].

The system of nonlinear equations derived from a discretization of the PDEs for the flow and turbulence

model will be denoted by

(2.1) R(D,a,M,X,S)=0,

where S is a vector whose components are values of S at the grid points (or the cell centers). For any given

(D,a,M,X), a numerical solution of (2.1) gives S.

If we consider minimization of the drag coefficient under a minimal requirement on the lift coefficient,

then the multipoint airfoil optimization problem can be formulated as follows [5]:

r

(2.2) min Y'wicd(D,ai,Mi,X(D),Si(D,ai))

subject to

(2.3) ci(D,ai,MuX(D),Si(D,ai)) >c*t for 1 < i < r

and D € T, where w*'s are positive weights, c\ is the minimal lift value, T is a given feasible set for

geometric design variables, Si(D,ai) is the solution of (2.1) for M — Mi and a — a», and c^ (or q) denotes

an approximate value of the drag (or lift) coefficient. The feasible set T mainly depends on the airfoil model.

In this paper, we use splines for airfoil shape modeling: the components of D are the control points for a

spline curve and the feasible set T — H™, where m is the number of geometric design variables.

Recently, Drela [5] studied the behavior of the optimization solutions of (2.2) in two-dimensional viscous

flow when the number of free-design variables is relatively large. Drela [5] concluded that increasing the

number of geometric design variables requires a corresponding increase in the number of design conditions

(Mach numbers) used in the multipoint optimization problem (2.2). He also suggested that it is necessary to

have r — 0(m), where m is the number of free-design variables, to achieve a smooth airfoil geometry. Other

notable conclusions made by Drela [5, Conclusion] are:

• Near-continuous sampling of the operating space (i.e., in the range of Mach numbers) may be

required in the theoretical limit of a general airfoil design problem with a very large number of

degree of freedom (for geometric variables) — a very expensive proposition.

• The most suitable operating points to be actually sampled in multipoint airfoil optimization (i.e.,

Mi, M2,..., Mr) are not apparent a priori. From limited experience, sampling somewhat beyond

the expected operating range appears to be best.

• The point weights (i.e., wi, w-z,..., wr) used in multipoint airfoil optimization are arbitrary, and

their appropriate values can not be easily estimated without prior experience.

• Optimized aerodynamic shapes are usually "noisy" and require a posteriori smoothing.

3. The Critical Number of Design Points for Multipoint Airfoil Optimization. In this sec-

tion, we give a mathematical proof of Drela's hypothesis on the necessity of having the number of design

points proportional to the number of design variables. Specifically, we prove that in order to avoid point-

optimization at the design points, the number of design points must be at least (m + 1), where m is the

number of free-design variables.

In (2.2), the angle of attack, a», is predominantly determined by the constraint on the lift coefficient at

Mi. Therefore, it is theoretically possible to eliminate the constraint and consider the following unconstrained

reformulation of (2.2):

r

(3.1) mm ^Wi/(I?,Afi),

where Mj's are design points, wi's are positive weights, and / is a function related to the drag coefficient.

Let D be an optimal solution of (3.1). Then

(3.2) ^2wi^(D,Mi) = 0,
i—l

where ^ denotes the gradient of / with respect to D.

If r < m, then (r — 1) < m. So we can find a nonzero vector AD in the orthogonal complement of the

subspace of It™ generated by the following (r — 1) vectors:

g(D,M2),...,g(D,Mr).

By (3.2) and wi > 0, AD must also be orthogonal to -^(D,Mi). Therefore, we obtain a nonzero vector

AD such that

(3.3) /-j-{D,Mi),AD\=Q for 1 < i < r,

where (u, v) denotes the dot product of vectors u and v.

Let Mr+i be any Mach number such that

(3.4) /|^(D,Mr+1),AD\/0.

Let {u>i,..., wr+i} be a set of arbitrary positive weights. By Taylor expansion, we get

r+1 r+1 r+1 , „, ,

(3.5) Y ^«/(^+*AI?>Mi)= X) ^/(A Mi)+* X)^ (m&> Mi)^D) + °i^)-
i—l i—l i—l ^ '

It follows from (3.5) and (3.3) that

(3.6) Y v>if{D + tAD, Mi) = Y<bi!{D, Mf) + twr+1 (-^(D, Mr+1), AD \ + 0{t2).
i—l i—l \ '

By (3.4), we can choose t such that \t\ is sufficiently small and

*(J^(D,Mr+1),AD\<0.

Then (3.6) implies

r+l r+1

^Wi/(£) + *Aö,Mi) <^jWif{D,Mi).

That is, after adding one more design point, D is not an optimal solution no matter how the weights are

selected. ■

In summary, if the number of design points is less than the number of free-design variables, then it is

possible to have a first-order reduction of the value of / at some Mach number Mr+i (in order of \t\) and only

second-order increments of the values of / at Mi's (1 < i < r) (in order of t2). This results in a much better

performance of the airfoil at an off-design point Mr+i with a marginal deterioration of the performance at

other Mach numbers.

4. Robust Airfoil Optimization Formulations. For engineering design problems, an optimal design

is usually obtained under some explicit/implicit assumptions. This leads to a design that works well under

ideal operating conditions but may perform inadequately under non-ideal (i.e., off-design) conditions. The

problem is that the optimal design does not consider the uncertainty or variability of some parameters/data

that will affect the actual performance of the design in a real-world situation. Therefore, it is necessary to

include uncertainties in a practical design optimization process. In this paper, we assume that M is the only

uncertain parameter and [Mmin, Mmax] is the range of Mach numbers considered.

Let p(M) be the probability density function of the uncertain parameter M. Then a stochastic pro-

gramming formulation for airfoil optimization under uncertainty can be described as follows [12]:

(4.1) min / cd{D,M,a{M))p{M) dM
DM:) ,/M„,i„

(■Mn

1 M„

subject to

(4.2) ci{D, M, a{M)) > c£ for Mmin < M < Mmax

and D € T, where T is the feasible geometric design space and cjT is the minimal lift value. This corresponds

to the third definition of "robust optimization" given in the introduction.

On the other hand, one can also use the following minimax optimization formulation for robust opti-

mization under uncertainty [4]:

(4.3) min max p(M) cd(D, M, a(M))
D,a(.) Mmill<M<Mmtux

subject to the constraints given in (4.2). Here p(M) > 0 is a positive weighting function of M. This

corresponds to the second definition of "robust optimization" given in the introduction.

The constraints on the lift can be eliminated by choosing an appropriate value for the angle of attack

corresponding to each M. In fact, Elliott and Peraire [6] suggested to incorporate a means for adjusting

the angle of attack to satisfy the lift constraint into the flow analysis algorithm. One problem with this

elimination approach is that the angle of attack becomes a function of M and D, and the derivatives of a

with respect to D have to be computed in order to get the derivatives of q and cd with respect to D. In

this study, we retain the lift constraint to make our methods applicable to general constrained aerodynamic

optimization problems (with constraints on the pitching moment and the leading edge radius, etc.).

5. Approximations to Robust Optimization Formulations. Since we cannot compute Q and cd

for all M in the Mach range [Muli„, Mmax], computationally tractable approximations of (4.1) and (4.3) must

be used. The simplest approximation scheme is to replace [Mmi„, Mmax] by a finite subset of [Mmin, Mmax],

say {Mi,M2,...,Mr}. Then (4.1) is reduced to the following multipoint optimization problem [5]:

r

(5.1) min V" wt cd(D, Mt, at)
D,oci,,,,,ocr *—^

subject to

(5.2) D eJ7, ci(D, Mucci) > c\ for 1 < i < r,

where the weights wi depend on the probability density function p(M) and a chosen integration scheme.

Similarly, the minimax formulation (4.3) can be discretized as follows:

(5.3) min max piCd(D,Mi,ai),

subject to the constraints given in (5.2). Here pi > 0 is determined by p(M) and M».

It seems that (5.1) and (5.3) are completely different. However, under the strict complementarity

condition (i.e., Lagrange multipliers are nonzero for all active constraints), (5.1) is mathematically equivalent

to (5.3). Here we give a proof of the mathematical equivalence between (5.1) and (5.3).

Let (D,&i,..., ar) be a stationary solution of (5.1). For simplicity, assume that D is in the interior of T

and the equality holds for lift constraints. Then, under the strict complementarity condition, the following

first-order optimality condition (or the KKT-condition) for (5.1) holds:

^^(AM^-^A^AM,«;)^,
i—1 i—1

(5.4) wj|^(A Afi,d{) = X~{D,Mi,a^ for 1 < i < r,

Define

A» > 0, ci{£>, Mi7 &i) - c\ for 1 < i < r.

7 ;= ^2wiCd{D,Mi,&i),

Pi :— TT-t- > 0 for 1 < i < r,
cd{D,Mi,&i)

$i :— — for 1 < i < r.
Pi

Then (5.4) implies the following conditions:

J2eiPi^{D,Mi,ai)-J2xi^{D,Mi,ai) = 0,
i—1 i—1

9iPi^(D,Mi,ai) = X~(D,Mi,&i) for 1 < i < r,
Otti Otti

(5.5) A» > 0, ci(D, M.h &i) - of for 1 < i < r,

PiCd(D7 Mu äi) = 7 for 1 < i < r,

r

^ > 0 for 1 < i < r, and ^ 0* = 1.

By (5.5), (7, D, di,..., dr) satisfies the KKT-condition of the following optimization problem:

(5.6) min 7 subject to ci{D,cci,Mi) > cjT and Cd{D,ai,Mi) <— for 1 < i < r.
D,ai,j pi

Since (5.6) is mathematically equivalent to (5.3), (D,äi,...,ar) is also a stationary point of (5.3).

On the other hand, assume that (D, di,..., ar) is a stationary point of (5.3), the equality holds in (5.2),

and piC^D, Mi, en) — 7 for 1 < i < r, where

7 :— max c^D, Mj, dj).
l<i<r

Then (7, D,&i,... , dr) is a stationary solution of (5.6). If we further assume that the strict complementarity

condition holds, then the KKT-condition (5.5) for (5.6) holds. It follows from (5.5) that (5.4) holds for

Wi — Piffi. Therefore, {D,&i,... ,dr) is also a stationary point of (5.1). ■

REMARK 1. Note that the strict complementarity condition holds naturally for (5.1). In fact, if the

lift is greater than its target value, then one can reduce the angle of attack so that the lift with respect to

the new angle of attack is equal to the target value, but the drag with respect to the new angle of attack

is reduced. This is not possible at a stationary point. Therefore, all lift constraints at a stationary point

become equality constraints. Also, the derivative of the drag with respect to the angle of attack is positive for

the range of the angle of attack considered herein, which implies that the Lagrange multipliers Aj are positive

(cf. (5.4) or (5.5)). Thus, the strict complementarity condition for (5.1) always holds. An implication is

that it is possible to recover an optimal solution of (5.1) by solving (5.3) with appropriate choices of pi's.

However, it is a little more difficult to claim that a stationary point of (5.3) is also a stationary point

of (5.1). In the proof given above, we used two additional assumptions: (a) all piCd{D,Mi,a,i) have the

same value 7, and (b) the strict complementarity condition holds for the drag constraints in (5.6). The first

assumption is not realistic in the sense that we do not know how to choose pis to make pic^D, Mi,ai) have

the same value for an optimal solution. Adaptive adjustments of pi's are used in the profile optimization

method to ensure all pid(p, Mi, ai) (1 < i < r) have the same value during the optimization iterations. The

assumption (b) is a natural one, since the strict complementarity condition for the drag constraints means

that every drag constraint is necessary for getting the optimal solution. ■

The results in [5] indicate that the multipoint airfoil optimization formulation (5.1) tends to produce

airfoils that have possibly severe degradation in the off-design performance, which Drela referred to as point-

optimization behavior. The above equivalence analysis also implies that the same conclusion holds for the

minimax formulation (5.3).

Huyse and Lewis [12] concluded that the point-optimization behavior can be attributed to the discretiza-

tion error between (4.1) and (5.1). The multipoint formulation (5.1) approximates the integral as a discrete

sum: low drag is obtained at the selected Mach numbers Mi,...,Mr, but there is no control over, nor

requirements for, the drag at the other Mach numbers. Due to the highly nonlinear nature of the PDEs

for flow simulation, the optimizer is able to mold the objective function c<j to its own advantage: distinct

drag troughs appear at each of the Mach numbers Mi,..., Mr (see also [5]). To prevent the optimization

algorithm from exploiting the approximation error, Huyse and Lewis [12] suggest changing the integration

points Mi,...,Mr during each optimization step. This effectively ensures that low drag is obtained not

for just r fixed Mach numbers, but for any combination of r Mach numbers Mi,..., Mr. In their study,

they added a random perturbation to the integration points in each optimization step but state that "any

adaptive scheme that varies the location of the integration points Mk for each optimization step will do."

We will show that with only far fewer design points than the number of free-design variables, the profile

optimization method can adaptively adjust pi's in (5.3) to achieve a consistent drag reduction over the given

Mach range, so there will be no degradation in the off-design performance of an optimal airfoil.

6. Profile Optimization Method. In this section, we first give a motivation for a new shape opti-

mization strategy based on the robust optimization model (5.3) and then present the profile optimization

method.

Let D be a fixed feasible design vector. We can plot the drag with respect to the Mach numbers over

the interval [Muli„, Mmax] while keeping the lift at a constant value by adjusting the angles of attack for

different Mach numbers. Such a plot will be called a profile for D (see Fig. 8.3(a) for example). Ideally, we

want to obtain a design vector D with a desirable profile (for example, with the drag rise occurring at a very

high Mach number).

Suppose that a "perfect" airfoil D could be obtained by some magic process, which might be either

theoretical or experimental. Let us look at the unknown process from a reverse engineering point of view.

That is, even though we have no idea about how the airfoil was designed, we want to construct an optimization

scheme that produces an airfoil with a similar or better profile.

Assume that the profile curve is generated by computing the drag coefficients at Mach numbers Mi, M2,

..., Mr. Let 1/pi be the value of the drag coefficient of the "perfect" airfoil at Mach number M* with angle

of attack a*, which is chosen so that the lift coefficient is equal to cjT. Then the global optimal value of (5.3)

is no more than 1. If (D, &i,..., ar) is a global optimal solution of (5.3), then

cd(D, Mu OH) < - = cd(D, Mu äi) for 1 < i < r.
Pi

Therefore, with the given analysis (i.e., using the profile of the drag coefficient at Mi,..., Mr), D is no worse

than the "perfect" design vector D.

This shows that for any given profile analysis method, it is possible to recover or improve a desirable

airfoil by solving (5.3), if the weights are appropriately chosen. In this sense, (5.3) provides a very flexible

tool for airfoil optimization. By experimenting with various choices of the weights pi, a robust airfoil may

be obtained (if such an airfoil exists). However, instead of guessing the appropriate weights in (5.3), we

can adaptively adjust the weights during the optimization iterations. This leads to the profile optimization

method.

Before presenting the profile optimization method, we give a linear programming formulation of a trust-

region method for solving (5.3). Using linearization of the nonlinear functions in the mathematically equiv-

alent formulation (5.6) at the current iteration point (Dk, alik, ..., aTjk), we get the following trust-region

subproblem for (5.6):

(6.1) min 7 subject to

—Ujd* < AZ?i < Ujd* for 1 < i < m,

-aijk < A«j < amax - aijk for 1 < i < r,

ci{Dk,aijk,Mi) + (^{Dk,aijk,Mi),^D\ + ^{Dk, aijk, M)Aa» > c\ for 1 < i < r,

cd{Dk,aijk,Mi) + (^-{Dk,aijk,Mi),AD) + ^{Dk,aijk, Mi)Aat < ^ for 1 < i < r,
\oD I da pi

where AD and Aai are the increments for D and a;, respectively, a-; and S are positive constants that define

the trust region for AD, and amax is the maximum angle of attack allowed.

ALGORITHM 6.1. (Profile Optimization Method) Suppose that D° is a given design vector and

Ali, M2, ■ ■ ■, Mr we the design points. Let 0 < i] < 1 be the predicted percentage reduction rate of the drag for

the trust-region method and let 0 < e < 1 be a parameter for termination of the algorithm. Then construct

a new design vector as follows.

(6.1.0) Initialize the angles of attack: Find aii0, «2,01 • • •, ar,o such that ci(D°, a^o, Mi) — cjT for 1 <

i < r; and let k — 0.

(6.1.1) Adjust weights: Let

Pi "•— —7T71 r for 1 < i < r. 11 cd{Dk,aijk,Mi) ~ ~

(6.1.2) Check early termination: // the zero vector is an optimal solution of (6.1), then output Dk as

an optimal solution and terminate the algorithm.

(6.1.3) Find a trust region for the predicted percentage reduction of the drag: Find S > 0 such

that the optimal objective function value of (6.1) is (1 — r/).

(6.1.4) Solve the trust-region subproblem: Find the least norm solution (ADk, Aaijk,..., Aartk) of

(6.1).

(6.1.5) Generate the new iterate: Let a.[jk+i — a.[jk + Aa.[jk for 1 < i < v, and Dk+1 — Dk + ADk.

(6.1.6) Check heuristic termination conditions: //

(6.2) max pi Cd{Dk+1,ai k+±, Mi) > 1 and
l<i<r '

r

(6.3) tk <tJ2 cd{Dk,aijk,Mi),
i—l

where ek is the accumulative reduction of the drag at the design points defined by

r

£fc :=Y, (cd{Dk,aiik,Mi) - cd{Dk+1 ,aiik+1,Mi)y,
i-l

then output Dk as an optimal solution and terminate the algorithm.

(6.1.7) Start a new iteration: Update k :— k + 1 and go back to (6.1.1).

REMARK 2. The adaptive adjustment of weights makes it possible to achieve a consistent drag reduction

over the Mach range [Mmin, Mmax]. Note that moving along the descent direction ADk gives a simultaneous

drag reduction at all design points M±,..., Mr (at least if a small step is used). If the selected design points

are a "fair representation" of all Mach numbers in [Mmin, Mmax], then moving along ADk will not induce any

hidden rise of the drag at some unselected Mach number. This leads to a robust optimization method that

achieves a consistent drag reduction over the given Mach range from iteration to iteration (see the profiles

of the drag coefficient for iterates generated by the profile optimization method in Fig. 8.4(a)).

In contrast, without adaptive weight adjustments, it is necessary to use at least (m + 1) design points,

where m is the number of free-design variables, in order to avoid point-optimization at selected design points

(cf. Sections 3 and 5).

Besides the adaptive adjustment of weights, there are three features of the profile optimization method

that are not standard for a trust-region method.

(a) First, the size of the trust region is modified to achieve a given predicted percentage reduction rate r/

of the drag. This approach is employed to avoid the following two problems, which are incurred in practical

applications of a standard trust-region method: (i) an appropriate size of the trust region is unknown without

prior experiences, and (ii) if each iteration takes a long time to complete, then rejecting a new iterate might

be hard to accept by a designer.

For airfoil shape optimization, if the percentage reduction of c<j is too small, then the reduction could be

a consequence of numerical errors and is less reliable. If the predicted percentage reduction of Cd is too large,

then the size of the trust region is also relatively large and the predicted reduction can not be trusted. By

choosing an appropriate percentage reduction rate for each iteration, these two problems might be avoided.

Note that the choice of the predicted percentage reduction rate depends on a user's knowledge of the

accuracy of the simulation analysis tool involved, the time allowed to generate a new design, and the expected

overall performance improvement. For example, if the relative numerical error for computing c^ is 0.5%,

each iteration takes 3 hours, a designer has 1 day to generate a new design, and the expected improvement

is 8%, then the designer could set r/ = 1% so that each iteration will produce some meaningful improvement

of the design and the final design might have about 8% improvement over the original design after 1 day (or

8 iterations).

(b) The second non-standard feature is that we use the least norm solution of the linear programming

problem (6.1), which can be obtained by solving a quadratic perturbation of (6.1) [14]. Our implicit assump-

tion here is that the original airfoil is reasonable. Therefore, we do not want a new airfoil to deviate too much

from the original one if unnecessary. By using the least norm solution of (6.1), we intend to select a new

airfoil closest to the original one while achieving a predetermined amount of improvement in performance.

(c) The third non-standard feature of the profile optimization method is the termination criterion, which

is based on design heuristics. The basic idea is that if a good descent direction for drag reduction at all

design points does not work (i.e., (6.2) holds) and the overall percentage reduction is insignificant (i.e., (6.3)

holds), then there is no need to continue the optimization process. ■

7. Implementation of Profile Optimization Method. The main implementation issues related to

the profile optimization method are the following:

• parallel processing of the function and gradient evaluations for r Mach numbers,

• finding initial values of the angles of attack for r Mach numbers,

• finding the size r/ for the trust region in an iteration,

• computing the least norm solution of (6.1).

In the next four subsections, we discuss these four implementation issues.

7.1. Parallel Processing of Function and Gradient Evaluations. Approximate values of cj (or

Cd) can be obtained with one flow analysis (i.e., solving the PDE once) and the gradient of c\ (or c<j) can

be obtained with one sensitivity analysis (i.e., solving one adjoint equation). The function values and the

gradients of c<j (or c\) at different Mach numbers can be calculated independently. Therefore, if 2r processors

are available in a parallel computing environment, the walltime for function and gradient evaluations in each

iteration of the profile optimization is one flow analysis and one sensitivity analysis.

It is desirable to have a parallel wrapper code for the profile optimization method to run several instances

of a CFD code without requiring any modifications to the code. For this purpose, we store multiple copies

of an executable CFD code (FUN2D [15] for the current implementation) under different directories (called

hosting directories) in a file server. Each copy of the CFD code communicates with the profile optimization

10

method by writing its output into its own hosting directory and the profile optimization method collects

all function values and gradients from the hosting directories. The architecture of a parallel computing

environment (such as shared memory or distributed memory) has no impact on the implementation since

there is no communication between any two different processors.

The current parallel wrapper code is based on a shell-level parallel computing protocol "pbsdsh" on Coral

[13] at ICASE. Coral is a Beowulf-class cluster of 96 Intel Pentium processors with 3 additional file servers.

To get the function values and the gradients for q and c^ at r different Mach numbers simultaneously, we

just create 2r hosting directories. For 1 < i < r, in the i-th directory, we use FUN2D to compute the

function value and the gradient of q for the i-th Mach number M*, and in the (r + i)-th directory, we use

FUN2D to compute the function value and the gradient of c<j for the i-th Mach number M*. Therefore, with

2r processors, we get all function values and gradients for cj and c^ in the walltime for one flow analysis and

one sensitivity analysis.

Note that on Coral, the Unix command "pbsdsh gradfun" makes the same executable code "gradfun"

run on different nodes of Coral in parallel. Here is a brief description of how to write a C-code that generates

an executable code "gradfun" for parallel processing of function and gradient evaluations on Coral:

• Create a shell script called "getid", whose content is

echo $PBD_NODENUM

The output of "getid" is the value of the environment variable $PBD JNODENUM, which is (i — 1)

if "get-id" is executed on the i-th node.

• Write a C-code that does the following:

— use "gethostname(HOST-NAME)" to get the host name (such as n013) of the node running

the C-code;

— execute a system command

"getid > HOST_NAME"

in the C-code that gets the $PBD_NODENUM environment variable and stores it in a file

whose name is the content of the string HOST-NAME;

— read the index number id in the file whose name is the content of HOST_NAME;

— go to the id-tli hosting directory; and

— execute FUN2D to get the function value and gradient for q (or c<j) at M* if and only if i — id+1

(or r + i — id + 1) for 1 < i < r.

7.2. Finding Initial Values of the Angles of Attack. For a fixed airfoil shape and a fixed Mach

number, the lift is almost a linear function of the angle of attack [10, p. 99]. Therefore, we use the following

search method based on a linear interpolation to find an angle of attack for which the corresponding lift is

the given target value.

ALGORITHM 7.1. Choose an error tolerance e > 0 and an initial adjustment rate 0 < « < 1. Let «o be

an initial guess of the angle of attack for a given Mach number M and a given geometric design vector D.

Then the following procedure will find a value of a such that \ci(D, M, a) — cjT| < e.

(7.1.0) Initialize the range variables «i and «2: Ifc{(D,M,ao) > c\, thena\ — (1 —K)«Q and«2 — «o;

otherwise, «i — «o and «2 — (1 + K)«Q.

(7.1.1) Use linear interpolation to predict a: Let

a - ci(D,M,ai)
a^ai + c,(I?,Af,a2)-Q(I?,Af,a1)

(a2 " ^

11

(7.1.2) Check the termination condition: //

\d{D,M,a)-c$\<ec$,

then output a and terminate the algorithm.

(7.1.3) Update a± and «2:

• if a < a.i, then a2 — «i and «i — a;

• if a > a-2, then «i — «2 and «2 — a;

• if «i < a < a2 and ci(D, M, a) < c*lr then «i — a;

• if «i < a < «2 and Q(D, M, a) > cjf, t/ien «2 = a.

(7.1.4) Start a new iteration: Go back to (7.1.1).

7.3. Finding the Size of the Trust Region. It is well-known that the optimal objective function

value of (7.1) is a non-increasing and piecewise affine function of 6. Therefore, we use the following search

method based on a linear interpolation to find 6.

ALGORITHM 7.2. Let y(S) be the optimal function value of (7.1) for any given S. Choose an error

tolerance e > 0 and an initial adjustment rate 0 < K < 1. If the zero vector is not an optimal solution of

(7.1) for S — SQ with 0 < d*o < 1, then for any e > 0, the following procedure will find 0 < S < 1 such that

|7(*)-(1-V)l<e.
(7.2.0) Initialize the range variables S± and 6*2: //7(6*0) > 1 — t], then S± — So and #2 — (1 + n)So;

otherwise, d\ — (1 — K)SQ and S? — SQ.

(7.2.1) Use linear interpolation to predict S: Let

^^-1+
(1":/)"Tf;)fe-^).

7(^2)-7(^1)

(7.2.2) Check the termination condition: If

\1{S)-{l-r1)\<t,

then output S and terminate the algorithm.

(7.2.3) Update d\ and d~2:

• if S < Si, then d"2 — S\ and S± — S;

• if S > S'z? then d\ — S? and S? — S;

• if Si < S < d*2 and j(S) > (1 — rj), then S± — S;

• if Si < S < d*2 and j(S) < (1 — rf), then d"2 — S.

(7.2.4) Start a new iteration: Go back to (7.2.1).

REMARK 3. In general, we use the value of S in the previous iteration of the profile optimization

method as SQ. With this choice of S, n — 0.02, and e — 0.01 • r/, we usually solve about 4 linear programming

subproblems to find S in our numerical simulation runs. ■

7.4. Least Norm Solution of LP Subproblem. By using slack variables ut and vi, we can convert

(6.1) into a linear programming problem with equality constraints and simple bound constraints:

(7.1) min 7 subject to

0 < ut < c*l7 0 < vi < 1, for 1 < i < r,

-aiik < A«j < amax - aiik for 1 < i < r,

12

—Ujd* < ADi < Ujd* for 1 < i < m,

ci{Dk,aiik,M{) + (^{Dk,aiik,M{),AD\ + ^-{Dk,aitk, Mi)Aon ~ «i = c\ for 1 < % < r,

cd{Dk,aijk7Mi) + l^-{Dk,aijk,Mi), Au) + ^{Dk,aiik,Mi)Aai + vt = ^ for 1 < i < r.
\ ÖD I oa pi

The least norm solution of (7.1) can be found by solving a strictly convex quadratic programming

problem [14] that is derived by replacing the objective function in (7.1) by

/ r m

(7.2) 7+\ w+E [«?+< + (A«*)2]+E (Az?*):

where s (— 10~8 in our implementation) is a small positive scalar.

Note that minimizing the objective function in (7.2) will force all vi's to be more or less the same.

As a consequence, it produces a descent direction that gives an almost identical relative reduction of the

drag for all the design points Mi,...,Mr. We believe that this balanced reduction of drag will prevent

point-optimization at the sampled design points. Furthermore, the least norm solution generates a new

design vector that stays as close to the original design vector as possible while achieving the predetermined

percentage reduction of the drag. This is desirable in a practical design process, since if a new design deviates

too far away from the original airfoil, then designers might have less confidence in the predicted performance

of the new airfoil.

8. Numerical Simulation Results. We use the NACA-0012 airfoil as the initial point for all opti-

mization methods discussed in this section. A periodic spline representation of the NACA-0012 with 23

control points is used to get an initial parametric model of the airfoil:

22 22

x = Ea*p*(*)' y-E&igiW' foro<*< i,
i—0 i—0

where pi and qi are spline basis functions. The shape of the airfoil can be modified by changing the values

of the bi's. The tip and the tail of the airfoil are fixed during the optimization (i.e., bo, bn, and 622

are fixed) so that the chord length remains constant. As a consequence, we have 20 free-design variables

{bi, ■ ■ ■, ho, bvi, ■ ■ ■, &21) in the airfoil shape optimization.

The CFD code FUN2D is used to compute the function values and gradients of the lift and drag [15].

Some technical details of the flow solver (for function evaluations) and the adjoint equation solver (for

gradient evaluations) in FUN2D can be found in [1] and [16], respectively.

We use Euler flow to demonstrate the usefulness of the profile optimization method as a robust airfoil

optimization tool. The main reason to choose Euler flow simulation analysis is that we can complete our

preliminary evaluation of the profile optimization method in a reasonable amount of time.

Elliott and Peraire [6, Section 1] stated that almost any drag minimization exercise based on the Euler

equations and applied to modern supercritical wings in cruise condition is doomed to failure. However, they

also concluded that Euler-based optimization can be useful as a first step in the design process [7, Abstract].

For a given initial grid, FUN2D generates numerical approximations to the lift/drag coefficients and

their derivatives. We use 10~9 as the error tolerance for the flow solver in FUN2D to find an approximate

solution of the nonlinear system derived from discretization of the Euler equation. The number of time steps

used in solving the discrete adjoint equation is 10000 and the spring analogy method in FUN2D is used for

grid movement [16].

13

The initial grid for FUN2D used in this paper has 124 points around the airfoil and 32 points at the far

field (at a distance of 50 chord lengths). The grid has 3060 nodes, 9025 faces, and 6120 elements. Fig. 8.1

shows the initial grid around the NACA-0012. See [11] for a comparison of the numerical approximations of

the lift and drag using this grid and other grids.

FIG. 8.1. The grid used for solving the Euler equation by FUN2D

All simulation results are obtained by parallel processing of function and gradient evaluations on Coral

(cf. Subsection 7.1). For the grid we use, it takes about 120 seconds to solve a flow problem and about 180

seconds to solve an adjoint equation. Therefore, with 2r processors, each iteration of the profile optimization

method takes about 5 minutes, no matter what the number of design points is.

We compute the least norm solution of (7.1) by the quadratic programming solver QLD, which was first

developed by Powell [18] and then modified by Schittkowski [19].

Our numerical simulations are designed to examine the impact of the number of design points and

the target lift value on the profile optimization method. Also, we shall compare the simulation results

obtained by the profile optimization method with the multipoint optimization method and the expected

value optimization method. Therefore, we consider the following cases for numerical simulation:

1. the profile optimization with 4 design points equally spaced in the Mach range [0.7,0.8], cjT — 0.4, a

fixed percentage reduction rate r/ — 5%, and a termination parameter e — 0.3%;

2. the profile optimization with 3 design points equally spaced in the Mach range [0.7,0.8], cjT — 0.4, a

fixed percentage reduction rate r/ — 5%, and a termination parameter e — 0.3%;

3. the profile optimization with 8 design points equally spaced in the Mach range [0.7,0.8], c\ — 0.4, a

fixed percentage reduction rate r/ — 5%, and a termination parameter e — 0.3%;

4. the profile optimization with 4 design points equally spaced in the Mach range [0.7,0.8], c\ — 0.2, a

fixed percentage reduction rate r/ — 5%, and a termination parameter e — 0.3%;

5. the multipoint airfoil optimization with 4 design points equally spaced in the Mach range [0.7,0.8],

wi — Wi — 1/6, W2 — Wz — 1/3, and cjT — 0.4;

6. the expected value airfoil optimization with adaptive changes of wi corresponding to 4 randomized

integration points, and c\ — 0.4.

The first case is the benchmark case. The next two cases are included to examine the impact of the

number of design points on the profile optimization. We use Case 4 to examine the impact of the target

lift value on the profile optimization. The last two cases are for comparison of the profile optimization with

14

other optimization methods. The profiles of the drag coefficient for a given c\ are plotted by using 24 equally

spaced Mach numbers in [0.7,0.8].

8.1. Impact of the Number of Design Points. The profile optimization method terminates after

69, 67, and 57 iterations for 3, 4, and 8 design points, respectively. The number of design points has no

significant impact on the optimal airfoils generated by the profile optimization method. All optimal airfoils

have similar shapes (cf. Table 8.1) and only a marginal drag reduction is achieved by adding more iterations

(cf. Table 8.2).

TABLE 8.1

The relative- differences (in percentage) of the design vectors

NACA-0012 3 Points 4 Points 8 Points

NACA-0012 - 24.5 25.7 23.8
3 Points 24.7 - 1.7 1.2

4 Points 25.9 1.8 - 2.6
8 Points 23.9 1.2 2.6 -

Each number in Table 8.1 denotes the relative difference of two design vectors: ||Dr — Dc||/||Dr||, where

Dr (or Dc) is either the NACA-0012 or the optimal design vector obtained by the profile optimization

method with the number of design points listed in the corresponding row (or column).

A typical optimal airfoil is given in Fig. 8.2(b). This Mach wave plot illustrates how one strong shock

wave for the NACA-0012 is reduced to several weaker shock waves for the optimal airfoil.

(a) NACA-0012 (b) Profile Optimization

FIG. 8.2. The Mach waves (for the Mach number 0.796) around the NACA-0012 and an optimal airfoil generated by the

profile optimization method

With 4 design points, the profile optimization method achieves consistent drag reduction over the Mach

range [0.7,0.8] (cf. Fig. 8.3(a) and 8.4(a)). There is no random distortion of airfoil shapes during the

optimization process (cf. Fig. 8.3(b) and 8.4(b)).

It is worth pointing out that the iterates generated by the profile optimization method are also indepen-

dent of the number of design points. For example, the 56-th iterate generated by the profile optimization

method for 4 design points differs from the 56-th iterate corresponding to 3 (or 8) design points by 0.35%

(or 1.2%). The profiles of the drag coefficient for optimal airfoils generated by the profile optimization with

15

3 and 4 design points, respectively, are almost identical. The profile of the drag coefficient for the optimal

airfoil corresponding to 8 design points is very similar to the drag profile of the 57-th iterate generated by

the profile optimization with 4 design points.

8.2. Impact of the Target Lift Value. The target lift value cjT has a quite significant impact on the

optimal airfoil generated by the profile optimization method.

14

12

x10 (a) Profile Optimization With Lift at 0.2

„10

Design Points
NACA-0012
the 6-th iterate
the 12-th iterate
the 18-th iterate
the 24-th iterate
the 33-th iterate

(b) Profile Optimization With Lift at 0.2

0.04
/ . ^F^H^N

0.02 u \^v

I '1 \ \ \ \ \ \
0 - / / /') ')

[

\ \ \ / / / /
0.02 \\ \\\\ />yyZ - \ \ \\\\ //////
0.04

■ \
\ \ x \ /'/ // / jS

II OK
1 , , 1 1 1 1 1 1

0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8
Mach Number From Left to Right: NACA-0012, 6-th, 12-th, 18-th, 24-th, and 33-th Iterates

FIG. 8.3. The two figures illustrate the behaviors of the iterates generated by the profile optimization method, with cj — 0.2
and 4 equally spaced design points. Fig. 8.3(a) shows profiles of the drag coefficient versus the Mach number for the iterates

and Fig. 8.3(b) shows the shapes of airfoils corresponding to the iterates. (Note. The airfoils are shifted to improve the

With c* — 0.2, the NACA-0012 is almost optimal for low Mach numbers. Therefore, we can not

simultaneously reduce the drag over the Mach range [0.7,0.8]. The profile optimization method tries to keep

the drag as low as possible for Mach numbers between 0.7 and 0.75, while reducing the drag significantly for

Mach numbers between 0.75 and 0.8 (cf. Fig. 8.3(a)).

Note that the drag bucket {i.e., a drop of the drag before its dramatic rise) occurs near M — 0.73 for

the NACA-0012 and the drag bucket for the optimal airfoil occurs near M — 0.78. Such a delay of the drag

rise is desirable. The only compromise made by the optimal airfoil to the NACA-0012 is a small increase of

the drag around the original drag bucket for the NACA-0012, which is quite reasonable.

For the higher target lift cjf — 0.4, the optimal airfoil shape (shown in Fig. 8.4(b)) deviates more from

the NACA-0012. Also, the 33rd iterate generated by the profile optimization method for c\ — 0.4 differs

from the 33rd iterate for c\ — 0.2 by 10%.

Note that the shape variations of the airfoils corresponding to iterates generated by the profile optimiza-

tion method follow a similar trend no matter what the target lift is: the aft end thickens while the front

section narrows. This pushes the shock location towards the aft region of the airfoil.

A similar airfoil with thin front and fat tail was obtained by Elliott and Peraire [6, Figure 34] in a

totally different context, where they used two thickness design variables and one camber design variable for

a lift-constrained drag optimization with 2-D separated viscous flow and an additional area constraint. The

initial airfoil used by them is also the NACA-0012. Their explanation of the merit of an airfoil with thinner

front and fatter tail over the NACA-0012 is that the thickness distribution has been redistributed such that

the maximum is further aft (i.e., closer to the tail), like the early natural laminar flow airfoils, this delays

the start of the adverse pressure gradient to aft of that maximum thickness point.

16

8.3. Impact of the Optimization Strategy. From the analysis given in Sections 3 and 5, we know

that if the design points and weights are fixed as in either (5.1) or (5.3), then a severe degradation in the

off-design performance is likely when the number of design points (i.e., 4) is much smaller than the number

of free-design variables (i.e., 20). Fig. 8.5(a) clearly reveals the point-optimization features of the optimal

airfoil generated by the multipoint optimization method. Fig. 8.4(c) suggests that the point-optimization

behavior does not occur until the end of the optimization iterations, since the drag curve for the 25-th iterate

does not have any drag trough.

The expected value optimization method [12] adds a random perturbation to the integration points

from iteration to iteration and adjusts the weights accordingly so that a severe degradation in the off-design

performance can be avoided. Fig. 8.4(e) shows that this technique allows the optimizer to reduce the drag

while avoiding point-optimization.

The profile optimization avoids the problem of point-optimization at the design points (cf. Fig. 8.3(a)

and 8.4(a)) by using a smart descent direction to achieve consistent drag reduction over the whole Mach

range.

TABLE 8.2

Relative drag reduction rates (in percentage)

Max Min Average

Profile Optimization (3 Points) 82.9 5.1 70.2

Profile Optimization (4 Points) 82.7 1.4 69.7
Profile Optimization (8 Points) 82.6 4.1 67.9

Multipoint Optimization (4 Points) 89.4 46.2 81.1
Expected Value Optimization (4 Points) 89.4 49.6 82.6

Table 8.2 gives an overall sense of how each optimization method reduces the drag coefficient with

c\ — 0.4. Let Mi,M2,..., M24 be 24 equally spaced points in [0.7,0.8]. For each M*, let c^i (or c<j?t) be

the drag coefficient of the NACA-0012 (or an optimal airfoil) with the lift coefficient fixed at 0.4. Then the

relative reduction of the drag at each Mach number M» is (c^* — c^ij/c^i- The numbers in "Max", "Min",

and "Average" columns of Table 8.2 correspond to

max
1<*<24

cd,i cd,i

Cd,i
mm

1<*<24

cd,i cd,i

Cd,i
and

X^ C<M ~ X^ 6<M) / (X^ C<M) ' rcsPcctivcly-

Note also that the expected value optimization method (as well as the multipoint optimization method)

resulted in an optimal airfoil with a drag curve that is consistently lower over the Mach range than the

profile optimization method (cf. Fig. 8.5(a)). It seems that it should be possible for the profile optimization

method to find a descent direction for a consistent drag reduction over the whole Mach range [0.7,0.8], by

moving toward the optimal solution given by either the multipoint optimization method or the expected

value optimization method. However, due to nonlinearity of the drag coefficient (with respect to the design

variables), the profile optimization method can not find such a descent direction by using the local derivative

information only.

9. Conclusion. In this paper, we introduce a new robust optimization scheme called the profile opti-

mization method and use airfoil optimization under uncertain flight conditions as a case study to evaluate

17

(a) Profile Optimization

0.025

0.02

0.015

0.01 -

0.005

o Design Points
• NACA-0012
* the 13-th iterate
n the 26-th iterate
> the 39-th iterate

- o the 52-th iterate
< the 69-th iterate

^^SSZ^y-
0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

(c) Multipoint Optimization

0.03

0.025

0.02

o Design Points
• NACA-0012
« the 6-th iterate
a the 12-th iterate
> the 18-th iterate
o the 25-th iterate
< the 32-th iterate

~^„J^^-^JS j^L^^L,

0.015

0.01

0.005

^rit^^~£^fr^£; r r "IT^ kd_j-6S|—»-^<5^^S?* *^=

0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

(e) Expected Value Optimization

0.03 T

0.025

0.02 -L

0.015-

0.01

0.005,

NACA-0012
4 the 4-th iterate
D the 9-th iterate
f> the 14-th iterate
0 the 19-th iterate
<] the 24-th iterate

0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.8

(b) Profile Optimization

0.06

0.04 "if / / / J \ Xx \ \^ \ >»
1 A'/ \^ \^

0.02 ill /// \ ̂ \\\\\
I | 1 1 1 \\\\\\ 0 \
I

\ ///'A7
0.02
\\\ \ \ \ \

/ / ////
\ \ \ \ / / / X / /

- \ \ / S X
U.04 " \ ^

0 06
1 , , , ' II ii

From Left to Right: NACA-0012, 13-th, 26-th, 39-th, 52-th, and 69-th Iterates

(d) Multipoint Optimization

0 06

><*^\ ^ \"
0.04 / \.\/\ """"X^ \

0.02 i //
/ /

f /

/ /
N,

\ \ \ \ \

0 h w 'i^y
0.02

\ \ \ \
V

\ \
// / / / / /

0.04 \
v ^v

Vv \^^^^-^_

0.06 r ' '
 i , , ,

From Left to Right: NACA-0012, 6-th, 12-th, 18-th, 25-th, and 33-th Iterates

(f) Expected Value Optimization

0.06
7 , \ \ ^\

0.04
■ / / /' / / / ' "^~ \\\

/ / / /
0.02 w 'If \v \\ \ \ \ \ \ \ X \ \ \ \ \ \ \

0
i | I //////

0.02 \\\ \ V \
/

/ / / / / / / / / / / / / / / /
\ \ \\ / / / /jS \ \ \

U.U4
■ \ ^ 0\\^ '~^-^ s

0.06 r, , , i TT^-T-V: 1 1 II

From Left to Right: NACA-0012, 4-th, 9-th, 14-th, 19-th, and 24-th Iterates

FIG. 8.4. These, figures show the behaviors of iterates generated by various optimization methods with cj — 0.4 and 4

design points.

this method. We used an Euler-based CFD code, which does not include viscous effects, to test the profile

optimization method. Because of this lack of fidelity, the generated airfoils may be somewhat unrealistic.

The profile optimization method adaptively adjusts the weights in a minimax optimization formulation

to find a drag reduction direction for all design conditions, which leads to a consistent drag reduction over

18

x10 ' (a) Profiles of the Drag Coefficient (b) Optimal Airfoils

0.7 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 O.f From Left to Right: Profile Opt, Multipoint Opt, and Expected Value Opt

FIG. 8.5. Fig. 8.5(a) compares the profiles of the drag coefficient for various optimal airfoils and Fig. 8.5(b) compares

the optimal airfoil shapes.

a given range of Mach numbers from iteration to iteration.

Without adaptive adjustment of weights, we prove that it is necessary to use at least (m + 1) design

points, where m is the number of free-design variables, in order to avoid point-optimization at selected design

points.

Our numerical results demonstrate that the profile optimization method is not sensitive to the number of

selected design points. With 20 free geometric design variables and as little as 4 design points, the optimal

airfoil generated by the profile optimization method is smooth and has no degradation in the off-design

performance.

The profile optimization method can be easily modified to solve other optimization problems under

uncertainty by replacing c<j with another performance measurement function and M with other uncertain

parameters.

The profile optimization method also has the potential of becoming a practical design tool for optimiza-

tion under uncertainty. The use of a small number of sampled design points from the range of uncertain

parameters makes the profile optimization method computationally affordable. The consistent performance

improvements over the range of uncertain parameters from iteration to iteration allows a designer to stop

the iterative process at any time with an improved new design.

Acknowledgement. We are grateful to Perry A. Newman at the MDO Branch of NASA Langley Research

Center and Manuel D. Salas at ICASE for their insightful comments on aerodynamics related to airfoil

designs, and to Eric Nielsen at the Aerodynamic and Acoustic Methods Branch of NASA Langley Research

Center for his expertise of FUN2D. We also extend our thanks to Michael Lewis for suggesting airfoil

optimization as a case study of robust optimization methods.

REFERENCES

[1] W. ANDERSON AND D. BONHAUS, An implicit upwind algorithm for computing turbulent flows on

unstructured grids, Computers and Fluids, 23 (1994), 1-21.

19

[2] W. ANDERSON AND D. BONHAUS, Airfoil optimization on unstructured grids for turbulent flows, AIAA

Journal, 37 (1999), 185-191.

[3] W. ANDERSON AND V. VENKATAKRISHNAN, Aerodynamic design optimization on unstructured grids

with a continuous adjoint formulation, AIAA-97-0643, 1997.

[4] A. BEN-TAL AND A. NEMIROVSKI, Robust truss topology design via semidefinite programming, SIAM

J. Optim., 7 (1997), 991-1016.

[5] M. DRELA, Pros and cons of airfoil optimization, in "Frontiers of Computational Fluid Dynamics 1998",

edited by D.A. Caughey and M.M. Hafez, World Scientific, 1998.

[6] J. ELLIOTT AND J. PERAIRE, Aerodynamic optimization on unstructured meshes with viscous effects,

AIAA-97-1849, 1997.

[7] J. ELLIOTT AND J. PERAIRE, Constrained, multipoint shape optimization for complex 3-D configura-

tions, Aeronautical Journal, 102 (1998), 365-376.

[8] W. FOWLKES AND C. CllEVELlNG, Engineering Methods for Robust Product Design Using Taguchi

Methods in Technology and Product Development, Addison-Wesley, Reading, MA, 1995.

[9] G. GUMBERT, G. Hou, AND P. NEWMAN, Simultaneous aerodynamic analysis and design optimization

(SAADO) for a 3-D flexible wing, 39th AIAA Aerospace Science Meeting and Exhibit, Reno, Nevada,

AIAA-2001-1107, 2001.

[10] E. HOUGHTON AND A. BROCK, Aerodynamics for Engineering Students, Edward Arnold (Publishers)

LTD., London, 1960.

[11] L. HUYSE, Free-form airfoil shape optimization under uncertainty using maximum expected value and

second-order second-moment strategies, NASA/CR-2001-211020 or ICASE Report No. 2001-18,

2001.

[12] L. HUYSE AND R. LEWIS, Aerodynamic shape optimization of two-dimensional airfoils under uncertain

operating conditions, NASA/CR-2001-210648 or ICASE Report No. 2001-1, 2001.

[13] J. LONCARIC, ICASE, http://www.icase.edu/CoralProject.html, 2001.

[14] O. MANGASARIAN, Normal solutions of linear programs, Math. Prog. Study, 22 (1984), 206-216.

[15] E. NIELSEN, NASA LaRC, http://fmad-www.larc.nasa.gov/~nielsen/Fun/fun.html, 2001.

[16] E. NIELSEN AND W. ANDERSON, Aerodynamic design optimization on unstructured meshes using the

Navier-Stokes equations, AIAA-98-4809, 1998.

[17] E. NIELSEN AND W. ANDERSON, Recent improvements in aerodynamic design optimization on un-

structured meshes, AIAA-2001-0596, 2001.

[18] M. POWELL, ZQPCVX, a FORTRAN subroutine for convex programming, Report

DAMTP/1983/NA17, University of Cambridge, England, 1983.

[19] K. SCHITTKOWSKI, QLD - A FORTRAN code for quadratic programming, User's Guide. Mathematis-

ches Institut, Universität Bayreuth, Germany, 1986.

20

