
AFRL-HE-WP-TR-2001-0120

UNITED STATES AIR FORCE
RESEARCH LABORATORY

Effifefc

ADVANCED DISPLAY INTERFACE
FOR OPEN SYSTEM HIGH RESOLUTION

MILITARY AND COMMERCIAL APPLICATIONS

David J. Hermann
Daniel A. Perkins

BATTELLE MEMORIAL INSTITUTE
ELECTRONICS AND AVIONICS SYSTEMS

COLUMBUS OH 43201-2693

JUNE 2001

20010906 015
FINAL REPORT FOR THE PERIOD 23 SEPTEMBER 1998 TO 1 APRIL 2001

Approved for public release, distribution unlimited.
Human Effectiveness Directorate
Crew System Interface Division
2255 H Street
Wright-Patterson AFB, OH 45433-7022

NOTICES

When US Government drawings, specifications, or other data are used for any purpose
other than a definitely related Government procurement operation, the Government
thereby incurs no responsibility nor any obligation whatsoever, and the fact that the
Government may have formulated, furnished, or in any way supplied the said drawings,
specifications, or other data, is not to be regarded by implication or otherwise, as in any
manner licensing the holder or any other person or corporation, or conveying any rights
or permission to manufacture, use, or sell any patented invention that may in any way be
related thereto.

Please do not request copies of this report from the Air Force Research Laboratory.
Additional copies may be purchased from:

National Technical Information Service
5285 Port Royal Road
Springfield, Virginia 22161

Federal Government agencies and their contractors registered with the Defense Technical
Information Center should direct requests for copies of this report to:

Defense Technical Information Center
8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, Virginia 22060-6218

DISCLAIMER
This Technical Report is published as received and has
not been edited by the Air Force Research Laboratory,
Human Effectiveness Directorate.

TECHNICAL REVIEW AND APPROVAL

AFRL-HE-WP-TR-2001-0120

This report has been reviewed by the Office of Public Affairs (PA) and is releasable to
the National Technical Information Service (NTIS). At NTIS, it will be available to the
general public.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

MARIS M. VIKMANIS
Chief, Crew System Interface Division
Air Force Research Laboratory

REPORT DOCUMENTATION PAGE t-oim Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding Ms burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway Suite
1204, Arlington. VA 22202-4302. and to the Office of Management and Budget, f^perwork Reduction Pn^ed (0704^1881 Washington, DC 20503. " ''

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
June 2001

4. TITLE AND SUBTITLE

ADVANCED DISPLAY INTERFACE FOR OPEN SYSTEM HIGH RESOLUTION
MILITARY AND COMMERCIAL APPLICATIONS

3. REPORT TYPE AND DATES COVERED

FINAL REPORT 23 September 1998-1 April 2001

6. AUTHOR(S)

David J. Hermann, Daniel A. Perkins

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Battelle Memorial Institute
Electronics and Avionics Systems
Columbus OH 43201-2693

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Air Force Research Laboratory
Human Effectiveness Directorate
Crew System Interface Division
Air Force Materiel Command
Wright-Patterson AFB OH 45433-7022

C: F33615-98-C-6003
PE: 62708E
PR: ARPH
TA: EC
WU: 01

8. PERFORMING ORGANIZATION

10. SPONSORING/MONITORING

AFRL-HE-WP-TR-2001-0120

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release, distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Commercial display interfaces are transitioning from analog to digital format. Although this transition is in the early stages, the
military needs to begin planning its own transition to digital. There are many problems with analog interfaces in
high-resolution display systems that can be resolved by changing to a digital interface. Also, lower display system cost can be
achieved by implementing a digital interface to a high-resolution display rather than an analog interface. The Advanced
Display Interface (ADI) is designed to replace the analog RGB interfaces currently used in high definition workstation displays.
The goal is to create a standard digital display interface for military applications that is based on current commercial standards.
Support for military application-specific functionality is addressed, including display test and control. The main challenges to
implementing a digital display interface are described, along with approaches to address the problems. Conceptual ADI
architectures are described and contrasted. The current commercial standards for digital display interfaces are reviewed in
detail. Finally, a demonstration system based on the chosen ADI architecture is described.

14. SUBJECT TERMS

Digital Video, Display Interface, Digital Display, Video Interface, Legacy Video,
Digital Video Interface, ADI

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES
109

16. PRICE CODE

20. LIMITATION OF
ABSTRACT

Unlimited
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89) Prescribed by ANSI Std Z-39-18

298-102 COMPUTER GENERATED

CONTENTS

ABSTRACT (SF 298) •• i

LIST OF FIGURES iv

LIST OF TABLES iv

FOREWORD v

PREFACE • vi

ACKNOWLEDGEMENTS vi

1. SUMMARY l

2. INTRODUCTION 2

3. METHODOLOGY 6

4. RESULTS AND DISCUSSION 10

5. CONCLUSIONS 25

6. RECOMMENDATIONS 26

7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS 27

8. REFERENCES 30

APPENDICES
A. TRANSMITTER SCHEMATIC 33

B. RECEIVER SCHEMATIC 41

C. TRANSMITTER LAYOUT 49

D. RECEIVER LAYOUT 51

E. TRANSMITTER VERY HIGH LEVEL DESCRIPTION LANGUAGE 53
F. RECEIVER VERY HIGH LEVEL DESCRIPTION LANGUAGE 77
G LIST OF PUBLICATIONS RELATED TO THIS DARPA-SPONSORED PROGRAM ...105

in

LIST OF FIGURE CAPTIONS

Figure 1. Migration to a digital display interface 2

Figure 2. Demonstration system architecture 7

Figure 3. Transition minimized differential signaling repeater 7

Figure 4. Extended interface 8

Figure 5. Transition minimized differential signaling link architecture 13

Figure 6. Video Electronics Standards Association Plug & Display connector 14

Figure 7. Digital Flat Panel connector ■ 14

Figure 8. Digital Video Interface bandwidth scalability 15

Figure 9. Digital Video Interface connector 16

Figure 10. Gigabit video interface architecture 18

Figure 11. Demonstration system 20

Figure 12. Advanced Display Interfacer transmitter 23

Figure 13. Advanced Display Interface receiver 24

LIST OF TABLE TITLES

Table 1. Display categories 10

Table 2. Typical environmental requirements 11

Table 3. Transition minimized differential signaling bandwidth 13

Table 4. Personal computer configuration 21

Table 5. Flat panel display specifications 22

Table 6. Cable specifications 22

IV

FOREWORD

This Contract F33615-98-C-6003 (ASTARS1 WU2 ARPHEC01) entitled "Advanced Display
Interface for Open System High Resolution Military and Commercial Applications," was
selected under Defense Advanced Research Projects Agency (DARPA) Broad Agency
Announcement (BAA) 97-42, entitled "High Definition Systems (HDS)." This contract between
the government and Battelle Memorial Institute (BMI) required the government to provide 100%
of the total project funding of $102,703 under DARPA Order A940/47 to Dr. Hopper at the Air
Force Research Laboratory (AFRL) as DARPA Agent. Mr. Reginald Daniels of AFRL served as
the contract monitor. Performance was over the period 23 September 1998 through 1 April
2001. The program was slowed down by Battelle during the effort because of (a) dramatic
activity in commercial digital interface standards during 1999-2000 and (b) the need for key
Battelle personnel to provide engineering support to the Air Force Warner-Robins Air Logistics
Center (WR-ALC) during their acquisition phase of the Common Large Area Display Set
(CLADS) program in 1999-2000. Most of the present effort was accomplished during the period
January-April 2001. Thus, the data are current even given the dynamic activity in digital
standards in military and civil applications.

This report has been formatted in accordance with a commercial standard, with tailoring from the
AFRL Scientific Technical Information Office. That standard is: "Scientific and Technical
Reports—Elements, Organization, and Design," American National Standard ANSI7NISO
Z39.18-1995 (NISO Press, Bethesda MD, 1995), available electronically via the following
website address: http://www.wrs.afrl.af.mil/librarv/sti-pubh.htm

This report was edited by several AFRL personnel. This editing included a complete re-
formatting of the draft provided by Battelle Memorial Institute on 3 May 2001 to comply with
the aforementioned standard in the front matter, report body, and the first page for each
appendix. In addition, the front matter sections were re-written and a three-page acronyms
section was created. An Appendix G was added for publications produced with support from the
present contract.

Appendices A-F have been retained in the reduced image format provided by Battelle. The
drawings comprising these appendices are too large to present at larger resolution in the print
version of this report. An electronic version this technical report will be made available to
readers who may then view enlarged images of pages in these appendices via electronic
magnification on their computers. The electronic version will be posted on an AFRL web site,
www.hec.afrl.af.mil, with links on several other web sites, including Battelle Memorial Institute,
www.battelle.org , and the Society for Information Display (SID), www.sid.org .

Technical review of this document was accomplished by Dr. Darrel G. Hopper, Mr. Reginald
Daniels, and Mr. Frederick Meyer of AFRL and Mr. James Byrd of the Aeronautical Systems
Center (ASC). Only minor changes, approved by Battelle, were made to technical content.

1 A Science and Technology Activity Reporting System (ASTARS)
2 Workunit (WU)

PREFACE

This program leverages the digital interface developed by Battelle under the WR-ALC Design
Engineering Contract for the CLADS program for dim-ambient airborne mission crewstations in
systems including the E-3 Airborne Warning and Control System, the E-8 Joint Surveillance
Target Acquisition Reconnaissance System, C-130 tactical Airborne Command, Control and
Communications system, and, possibly, the Airborne Laser System (see References 1 and 2).
The program manager for CLADS is Mr. Bob Zwitch of WR-ALC. Several AFRL personnel
(Dr. Darrel G. Hopper and Messrs. Frederick M. Meyer and Reginald Daniels) have consulted on
CLADS since its inception.

The goal of this effort was to advance the development and adoption of the Advanced Display
Interface (ADI) standard initiated under the CLADS program at WR-ALC.

There were several objectives of the ADI that are unique to military display applications. The
interface must support high-resolution workstation graphics in industry-standard formats ranging
from the video graphics array (VGA, 640 x 480 pixels), super VGA (SVGA, 800 x 600 pixels),
extended graphics array (XGA, 1024 x 768 pixels), super XGA (1280 x 1024 pixels), wide-
SXGA (W-SXGA, 1440 x 1024 pixel), to ultra-XGA (UXGA, 1600 x 1200 pixels). In addition
to these resolution requirements, the ADI must support both monochrome (8-bit) and color
displays (18-bit to 24-bit) at 15 to 30 frames per second (fps). The intent of the ADI is to replace
the interface between graphics card and display, so compatibility with emerging commercial
standards for commercial off-the-shelf (COTS) graphics cards and graphic accelerator chips is
required. The interface must provide this high data bandwidth without adding artifacts or
degradation, potentially excluding the Motion Pictures Experts Group (MPEG) or other
compression schemes. The digital interface should support extended cable lengths (up to 100 ft)
for the many military applications where the graphics generators are located remotely from the
displays. Also, the interface must support legacy video cabling, including miniature coax. The
Digital Video Interface (DVI) standard, for example, limits cables to ten meters and does not
support the cable types that exist in legacy systems. Finally, the interface should include all
required functionality to specifically support military applications, including functionality not
normally supported by a standard commercial interface, such as display built-in test (BIT) and
display control, such as BIT initiate and reporting, display enable, brightness and contrast.

ACKNOWLEDGEMENTS

We gratefully acknowledge the financial support received from DARPA under Contract Number
F33615-98-C-6003. We thank Dr. Darrel G. Hopper, and Mr. Reginald Daniels of the AFRL for
their support throughout the project.

3 Editors note: Additional formats and far higher resolutions must now be added to the list for military application
to leverage the rapidly advancing commercial state-of-the-art. First, several formats for digital high definition
television (HDTV), ranging from 1280 x 768 to 1920 x 1080 pixels, must be considered given the deployment of
HDTV broadcast just been initiated. Second, flat panel displays (FPDs) based on active matrix thin-film transistor
(TFT) liquid crystal displays (LCD) became available in June 2001 with resolutions of quad-UXGA (QUXGA,
3 200 x 2,400 pixels) and QUXGA-wide (QUXGA-W, 3840 x 2400): the Toshiba 20.8 in. QUXGA TFT-LCD
Monitor (com net@ish.thoshiba.co.jp) and the IBM 22.2-Inch QUXGA-Wide T220 Flat Panel Color Monitor
rht^p://www2jbm^nkJbmxonVcp^hil^/maste^?xh^iCKPbPfZl^:DdlUSenGnN9332&^enuest=announcements&parms=H%Sf101%2d178&xfr=N)

VI

1. SUMMARY

As the world increasingly moves from analog to digital technology, the analog display interface
is becoming obsolete. New flat panel display (FPD) technologies provide better performance at
lower life cycle cost with a digital video interface. This is especially true for high-resolution
displays, where the analog interface cost and undesirable artifacts both increase as resolution
increases. When the analog display interface eventually becomes completely obsolete and
unsupported in the commercial marketplace, the military will face a difficult technology
obsolescence problem. Supporting the analog interface between ruggedized computers and
FPDs well into the future will become expensive.

The military needs to make the transition to digital display interfaces. Displays implementing
analog interfaces today should be incorporating open system architectures such as the Common
Large Area Display Set (CLADS) to ease the transition to digital. More importantly, the military
needs to adopt an open standard digital display interface. Without a standardized interface, each
new digital FPD insertion will have a unique (and often proprietary) interface. Each new digital
interface will be justified by optimizing it for a single new application. The many different
'standards' will continue to stovepipe military systems and increase maintainability costs while
decreasing COTS leverage potential. By adopting a standard digital interface now, the military
can break open existing closed systems and ensure that new systems cannot stovepipe all the way
to the display. This will increase competitive opportunities in the military display business,
resulting in lower display life cycle cost.

This report documents the initial effort to develop this standard, the Advanced Display Interface
(ADI). Development is in the initial stages, beginning with an assessment of emerging
commercial standards, enabling technologies, and military application requirements. The ADI
standard is based on current commercial standards for digital display interfaces. The goal is to
maximize COTS leverage potential when implementing ADI and display systems. In unison
with this goal, every effort has been made to minimize COTS obsolescence by using a
commercially successful standard (for example, the 15-pin VGA interface has been around since
1987). A demonstration system has been designed, and initial results have shown that it will be
cost effective.

Further efforts are needed to complete the ADI standard. Support is needed from military users
to develop, promote, and adopt the ADI standard.

2. INTRODUCTION

2.1 Background
Most high-resolution displays in use today are part of a computer workstation. These
workstation displays are typically large, bulky, high-resolution cathode-ray tube (CRT) displays.
Since the CRT is an analog device, these displays utilize an analog red, green, blue (RGB) video
interface. The CRT-based displays also require analog display adjustments for a number of
CRT-specific corrections (image sizing, centering, pincushion, trapezoid, rotation, keystone,
etc.). The graphics generators in the current workstations are almost entirely digital circuits.
The graphics card includes a random access memory digital-to-analog converter (RAMDAC) as
the last stage of video generation to create an analog RGB output to interface to an analog CRT.
The only purpose of the RAMDAC and analog interface is to provide the analog video signal
required by the CRT.

The current trend is towards workstations with FPDs, as shown in Figure 1. These FPDs are
characterized by completely digital electronics with direct-mapped pixels. Although the FPDs
are high resolution, each pixel is individually addressed with digital accuracy. In the future
workstations, the graphics cards will be completely digital, with no RAMDAC or analog
components. A digital interface is used to provide digital video to the digital FPD for direct
display without distortion or artifacts.

Computer

Digital
Graphics

31
D/A

Converter

The Existing
Analog System

Analog Cable

/RGB Video /

Digital Display

Digital
Panel

A/D
Converter

-►
Computer

Digital
Graphics

Data
Formatter

Digital
Display

Interface

Data Cable

/Digital Video/

Digital Display

Digital
Panel

z:
Data

Receiver

Figure 1. Migration to a digital display interface.

2.2 Advanced Display Interface
The ADI is an open standard digital display interface capable of supporting high-resolution
displays in military applications. The ADI program builds on previous Battelle efforts with
digital display interfaces. In 1996, Battelle developed one of the first practical high-resolution
digital display interfaces for the Common Large Area Display Set (CLADS) program. The
CLADS head assembly test set provides digitally-accurate test images and video at 1280 by 1024
resolution with 24-bit color at a fast 60 Hz refresh rate (Reference 1). This test set consists of a
digital graphics card and digital Application Video Interface Module (AVIM). The digital
graphics card is a standard personal computer interface (PCI) graphics card that runs under
Microsoft Windows® with standard graphics card software drivers. The digital AVIM receives
the graphic card digital video and reformats it for the standard DVI used by the display head.

The graphics card and digital AVM are connected by multiple copper Fibre Channel4 links,
allowing up to 75 feet between the test computer and display under test (Reference 2). Also for
the CLADS program, Battelle developed an open standard High Speed Digital Display Interface
(HSDDI). This interface is used between a modular AVM and the head assembly within a
CLADS unit. The HSDDI provides 24-bit digital video at 1280 by 1024 resolution and beyond
(Reference 3).

The ADI concept is consistent with recommendations of the former DoD Large Display Work
Group (LDWG) Interfaces Subgroup. DoD advocates the use of an open standard digital
interface between graphics generator and display device for both intelligent and 'dumb' displays
(Reference 4).

The ADI is based on emerging commercial digital display interface open standards. The most
prominent commercial digial video interfaces are based on transition minimized differential
signaling (TMDS). These standards include the Video Electronics Standards Association
(VESA) Plug & Display (P&D) standard (Reference 5), the VESA Digital Flat Panel (DFP)
standard (Reference 6), and the Digital Display Working Group (DDWG) Digital Visual
Interface (DVI) (Reference 7). All of these commercial standards are very similar and all use
the PanelLink™ TMDS technology. In addition to these medium cable length TMDS interfaces,
ADI will consider much longer cable applications using the Fibre Channel standard physical
layer interface (Reference 8).

The ADI program can provide immediate benefits to military programs with difficult display
interface problems. The ADI may be a potential solution for the E-3 Airborne Warning and
Control System (AWACS) upgrade problems. In this application, the displays (currently being
upgraded to digital technology) are up to 100 feet from the graphics generators (also being
upgraded). These must be connected using existing cabling, which consists of four mini-coax
cables (type RG-179B) and a twin axial (twinax) sync cable. The ADI can also provide a
solution for a number of other avionics displays that Battelle is currently evaluating, especially in
cases where the displays are not located near the host computers.

2.3 Video Interface Problem
Many of the current problems with today's display systems originate from the analog RGB
interface. This interface was developed primarily to interface to analog CRT technology, for
which it is well suited; however, the analog RGB must be digitized for use with FPDs. This
creates several difficult problems that are not cheaply solved. First, the analog video must be
sampled using high-speed analog-to-digital converters (ADCs). With high-resolution displays,
the sample clock can easily be over 120 MHz, requiring three costly ADCs (for full-color) to
recover the original digital signal. Due to bandwidth considerations and signal-to-noise
limitations of the analog system and high-speed ADCs, only about six of the original eight bits of
gray scale can be accurately recovered.

Another difficult problem involves accurate time sampling of the original graphics pixels. The
ADC does not know the exact locations of the pixels because it does not have the original pixel

4 Fibre Channel is the name of a digital interface standard developed by the American National Standards Institute It
is defined at http://www.ancor.com/fcinfo.htm and http://www.fibrechannel.com . Also, see Section 4.1.2.5 below.

clock available to it (this clock does not leave the graphics card in an analog RGB interface). An
expensive and sensitive ultra-precision phase lock loop (PLL) is used to recover the pixel clock
from the video sync information. The PLL makes a best guess at the pixel locations, but there is
always an error associated with the PLL sample clock. This error, or clock jitter, causes aliasing
errors in the resulting digitized video. These aliasing errors cause visual artifacts on the FPD,
reducing the display system performance.

Another problem with the analog interface is accurately centering the digitized video on the
FPD. Since the FPD is a digital device, it typically has exactly the number of pixels available on
the display that are required for the given graphics resolution. If the image is not exactly
centered both horizontally and vertically, image pixels will be lost.

The solution to all these problems is to use a digital display interface instead of analog RGB.
Only a digital interface will provide full performance for digital FPDs.

2.4 Digital Interface Objectives
There are several objectives for a military digital display interface to meet. Obviously, the
interface must replace analog RGB video with digital video, without adding artifacts or
degradation. The digital video interface should be standardized and open, and should be based
on or related to commercial standards such as DDWG DVI. The digital interface should support
extended cable lengths for the many military applications where the graphics generators are
located remotely from the displays. The interface should be rugged enough to meet military
environmental requirements. Finally, the interface should include all required functionality to
specifically support military applications, including functionality not normally supported by a
standard commercial interface. This includes support for display BIT and display control, such
as BIT initiate, BIT reporting, display enable, brightness control, and contrast control.

2.5 Challenges
There are several challenges to implementing the digital interface, centering on each of the three
parts of the video interface system. Beginning at the video source, the graphics generator or
graphics card raises certain legacy issues. Most graphics cards available today provide analog
RGB output and do not include any digital video output.5 The commercial graphics accelerator
chips that these cards are based on contain internal RAMDACs, so the digital video raster does
not exist outside the graphics chip.

The interface cable between the graphics generator and the display has potential problems. The
TMDS physical interface does not support extended cable lengths. The DVI standard, for
example, limits cables to ten meters. Other optional interfaces, such as the Universal Serial Bus
(USB) and the Institute of Electrical and Electronics Engineers (IEEE) standard IEEE1394
(nickname: Firewire), further limit the VESA P&D standard to five meter cables (Reference 5).
Also, TMDS is not supported for arbitrary cable types that may exist in legacy systems.

5 It is still true in June 2001 that most graphics cards provide analog but not digital output, although there are many
more graphics cards with DVI outputs than at the start of this project in 1998. Looking at the entire graphics card
market, only the high end cards have DVI output, but if one wanted to put together a system with DVI output, one
could obtain the necessary card from several vendors (at a premium price). Most presentation projectors and LCD
displays have DVI input, but the statement here is related to DVI output on graphics cards.

Although there is an approach to providing TMDS signals over fiber optic cable, other cable
types have not been addressed. There may also be environmental issues related to COTS TMDS
support.

Finally, the FPD raises several interface issues. There'is no standard BIT interface for military
displays. Also, there is no standard display control interface. Although VESA Display Data
Channel 2 (DDC2, Reference 9) provides a standard data interface to the display, this is
primarily used for system initialization (data from display to graphics card only). The DDC2
was originally developed to support plug-and-play of displays, but it could be extended to
include display controls such as brightness and contrast.

The solution to the challenges given above is to develop an Advanced Display Interface that
addresses all these issues. The ADI will specifically support military and industrial users and
applications. The ADI will be based on open commercial standards, as an extension of existing
or emerging digital interface desktop standards. The ADI will, however, specifically address the
unique needs of military users.

3. METHODOLOGY

The general approach of the ADI program is to leverage existing standards to improve military
display systems by improving performance while reducing cost. This is accomplished through
COTS technology insertion and maintaining an open systems environment. A primary objective
is to avoid "reinventing the wheel," attained through utilization of commercial standards and
COTS technology by extending the existing capabilities.

3.1 Technology Assessment
The first step towards developing an advanced display interface centers about defining the
requirements and applications of such an interface. This is accomplished by an assessment of the
current technology and future applications of displays. The technology assessment includes
investigations of both commercial and military applications and the enabling technologies
available for a digital video interface.

3.1.1 Display Requirements
Current and future display requirements for both military and commercial markets are reviewed
for potential applications of ADI. This includes a survey of graphics modes for ADI, including
resolution, colors, and refresh rates. An analysis of cost tolerance of ADI is considered for both
military and commercial markets. Data sources for military applications include conference
papers, military program offices, display vendors, and the Military Display Market
comprehensive report published by AFRL (Reference 10).

3.1.2 Digital Interface Standards
Current and emerging display standards were researched for applicability to ADI. These include
the VESA and Fibre Channel standards. Specific signaling and synchronization details of these
standards are summarized into a set of guidelines for the development of the ADI standard. Also,
addressed are cable interconnect issues. For long cable runs, the ADI program explores methods
to extend TMDS data to 100 feet. This also includes adapting to legacy system cable media,
such as miniature coax or triax. For example, TMDS data could be converted into a Fibre
Channel data stream and transmitted on RG-179B coax media. Such a system could provide
digital video interface solution for E-3 AW ACS, where four RG-179B cables connect each
monitor to a graphics generator up to 100 feet away.

3.1.3 Enabling Technologies
Current and emerging technologies were researched for potential components in the
implementation of ADI. Included are integrated circuits (ICs), graphics cards, cables, and
software that may be used to implement ADI. Problems were addressed in each of the three
parts of the video interface system: graphics card, cabling, and display. For graphics card
issues, we examined emerging COTS graphics cards with digital interfaces. Most of the cabling
issues are already addressed with the Digital Interface Standards. Display issues include
integrated digital data receivers in the emerging flat panel displays.

3.2 Demonstration System
To demonstrate a digital video interface over long cables, Battelle designed and built a
laboratory demonstration system. This included interfacing to the cable media type at both ends
of the cable. The demonstration system has a digital video source, cable media driver, cable,
cable media receiver, and display device, as shown in Figure 2. These demonstration system
components were used to evaluate cable types and lengths and ADI data rates, resolutions, and
color depths.

Standard
DVI Cable

Application
• Cable

Standard
H\/l nahlo

DVI
Repeater

Transmitter

DVI
Repeater
Receiver

Graphics
Generator

w k
Display
Device w

i—100'—)

w

<-15'J <-15'->

Figure 2. Demonstration system architecture.

There are a number of different possible architectures for an ADI system. To maximize the
applications suitable for ADI insertion, the ADI is inherently flexible in physical layout and
electrical hierarchy. Two sample architectures are shown in Figure 3 and Figure 4. The first is a
simple TMDS repeater. The TMDS repeater is designed to provide a standard TMDS interface
to both the graphics generator and the FPD. A transmitter and receiver pair converts the TMDS
signals to a format compatible with the application cable. The transceiver hardware also
provides the DDC link throughput. The transmitter and receiver could leverage other
commercial data standards, such as Fibre Channel (Reference 8), to provide the data pipe on the
legacy application cable over long distances. This approach provides maximum leverage of
COTS components: the graphics card and FPD appear to be connected to each other via a
standard TMDS cable. The repeater hardware provides an electrically transparent extension of
the commercial standard TMDS interface.

Standard
TMDS Cable

Graphics
Generator

15'-*l

TMDS
Repeater

Transmitter

Application
Cable

J^—100'—$1

TMDS
Repeater
Receiver

Standard
TMDS Cable

Display
Device

^-15'->

Figure 3. Transition minimized differential signaling repeater.

A second, more integrated, architecture is shown in Figure 4. This extended interface integrates
the function of the repeater transmitter into the workstation computer and the function of the
repeater receiver into the display. A standard mezzanine connector is defined for the graphics
card, and a daughter card is inserted for the specific cable type used. The application cable then
plugs directly into this daughter card. At the display end, an AVTM in a modular display (such
as CLADS) interfaces directly with the application cable (Reference 2). The AVIM then
converts the data into a standard format for use by the display device via a plug-in connector
between the AVIM and display device. Although this provides a more integrated and clean
solution, the components are electrically equivalent to the repeater design.

Workstation Display

Mezzanine
Connector

Application
Cable

Plug-in
CYinnoHnr

Extender
Interface

Extended
Interface Graphics

Generator
Card

V i Display
Device Mezzanine

Card
100'

r Receiver
(AVIM)

1 " V s I

Figure 4. Extended interface.

3.2.1 Display Interface Standard
The display interface standard chosen for the demonstration system is the DVI. This was chosen
based on the assessment of Digital Interface Standards and the commercial success of DVI. The
DVI interface applies to both the graphics card and the display device. The DVI interface is
based on TMDS.

3.2.1.1 Digital Video Source
The digital video source is a COTS Microsoft Windows® personal computer (PC) with a DVI
output graphics card. This provides a low-cost and versatile digital graphics generator.

3.2.1.2 Flat Panel Display
The display device is a COTS active matrix liquid crystal display (AMLCD) with DVI input
capability. This provides a low-cost high-quality output device to evaluate the performance of
ADI.

3.2.2 Cable Interface
The cable interface is a standard Fibre Channel physical layer media interface. The specific
supported media type is miniature coax, although twisted-pair, twinax, and optical fibre can also
be supported with minor modifications of the media interface. The Fibre Channel output drivers
are implemented using Cypress HOTLink transmitter and receiver integrated circuits. The Fibre
Channel links are unidirectional, and none of the upper-level protocols are implemented. The
Fibre Channel components are used to implement a low-cost reliable bit pipe without any of the

overhead required by a Fibre Channel network data link. The cable interface receives DVI data,
converts it to Fibre Channel data, transports the data across coax, and converts it back to DVI.

3.2.2.1 Cable Media Driver
The cable media driver receives full-rate high-resolution digital video from a DVI graphics card.
The TMDS data is received via a standard TMDS cable and connector. The cable driver
performs data rate reduction by slowing down the data to 15 fps from 60 fps. The bit-depth is
also reduced from 24-bit to 16-bit. The reduced bandwidth data is transmitted over one to four
miniature coax cables to the receiver.

3.2.2.2 Legacy Cable
The legacy cable chosen for the demonstration system is RG-179B miniature 75 Q, coax. This
cable type was chosen for maximum applicability to military aircraft display cabling. One to
four cables can be utilized, with increased bandwidth available with more cables. The
assessment of Display Requirements indicates that one to four cables may be present in a
military display system.

3.2.2.3 Cable Media Receiver
The cable media receiver converts the reduced bandwidth Fibre Channel data from the
transmitter to standard DVI data for the display. The receiver provides 24-bit, 60 fps DVI output
to the display by zero-stuffing the truncated bits and sending each frame four times.

4. RESULTS AND DISCUSSION

A list of journal and proceedings publications reporting work accomplished under this DARPA-
sponsored Cooperative Agreement in additional detail is provided in Appendix G.

4.1 Technical Assessment
The results of the initial technical assessment were originally published in Reference 11. That
assessment material has been updated in this report (below) and the military display
requirements have been added.

4.1.1 Display Requirements
Current military display systems can be grouped into three main size categories, based on
required resolution. These groups are shown in Table 1.

Table 1. Display categories.

Category Size Resolution

Small Up to 4 x 6 in. Up to 640 x 480 (VGA)

Medium 4 x 6 in. to
6 x 8 in.

640 x 480 (VGA) to
1024 x 768 (XGA)

Large Greater than
6 x 8 in.

1024 x 768 (XGA) to
1600 x 1200 (UXGA)

In addition to the resolution requirements shown in Table 1, military displays typically require
either 256 gray shades (8-bits per monochrome pixel) for monochrome displays or between 64
and 256 gray shades (18-bits to 24-bits per color pixel) for color displays (Reference 12).
Required frame rates vary from 30 frames per second (fps) for sensor video displays to 15 fps for
workstation displays.

The typical environmental requirements of military display systems are given in Table 2 The
components of the display interface must also meet these requirements. Environmental
qualification should be in accordance with Radio Technical Commission for Aeronautics
(RTCA) Document (DO) number DO-160C (Reference 13).

10

Table 2. Typical environmental requirements.

Parameter Typical Requirement
Temperature Operating: -54 to +55°C

Short-term high: +70 °C
Non-operating: -54 to +95 °C

Altitude 0 to 50,000 ft
Humidity 100% with condensation
Vibration 1.4 g RMS total
Shock Operating: 20 g each axis (11ms)

Crash: 40 g (impulse)
Explosive Atmosphere Explosion proof
Sand, Dust, Salt Spray Sealed
Fungus Resistant
EMI* MIL-STD-462D Class Alb (Reference 32)
* Electromagnetic interference

An auxiliary data channel is typically needed between the computer and the display. This data
channel is used for BIT and control; it is bi-directional and must be reliable over the same long
cables as the digital video. Standard open system protocols for both BIT and display controls
will ease integration of FPDs into military systems. The protocols can be integrated with
standard commercial monitor control interfaces such as VESA DDC2, Reference 9. The
resulting merged control data (DDC2 with extensions) is transferred through ADI on a separate
conductor or by piggybacking on the serial video data stream.

4.1.2 Digital Interface Standards
Currently, there is much activity in the commercial sector related to digital FPD interfaces. In
the past few years, several different standards and methods for digitally interfacing FPDs to
computers have been developed. From these ongoing efforts, several commercial standards are
available for use as a basis for an ADI system; however, it is likely that only one standard will
dominate the commercial marketplace and the others will be eventually abandoned. To provide
the most COTS leverage, ADI needs to take advantage of the success of the winning commercial
standard interface.

The first formally standardized digital FPD interface is the VESA P&D interface, Reference 5.
This is documented in a detailed 109 page open standard first released June 11, 1997. This
standard uses the PanelLink™ TMDS for the video data. A lower cost alternative to VESA P&D
was then developed independently and later adopted by VESA, the Digital Flat Panel interface
standard, Reference 6. The final standard was released by VESA on February 14, 1999, and is
only 16 pages. It references VESA P&D for much of the detail, including the same TMDS
interface. On April 2, 1999, the DDWG published the first release of the DVI standard,
Reference 7. This detailed 76-page standard also uses the TMDS interface, and is backward
compatible with both VESA P&D and DFP.

11

Another commercial standard data interface, Low Voltage Differential Signaling (LVDS), is
available for use in digital video interfaces; however, there is no detailed standard for
implementing LVDS FPD interfaces. Several solutions exist from LVDS silicon vendors in the
form of applications notes, but no independent standards organization has adopted an LVDS
FPD interface standard. The main LVDS standard includes the physical layer interface only, and
is generic for any type of digital data pipe, not specifically for FPD interfacing.

There is also a Special Working Interest Group (SWIG) within the Fibre Channel Association
that is working on an Audio/Video transport mapping for Fibre Channel (FC-AV). The current
draft (Reference 15) is from August 1997, and contains high-level protocol and data mappings
for television and MPEG. Another Fibre Channel SWIG is working on an Avionics
Environment (FC-AE) for Fibre Channel. The current draft (Reference 16) is from April 1996,
and contains Fibre Channel extensions to support avionics command, control, instrumentation,
simulation, signal processing, and sensor/video data distribution. Boeing is pushing the Fibre
Channel approach for both civil and military aircraft avionics (Reference 31).

Sony has developed an alternative FPD interface, the Gigabit Video Interface (GVBF), which
remains proprietary. The GVIF uses considerably fewer conductors than TMDS, allowing a
much thinner cable and miniature connectors to be used for portable applications (Reference 17).

4.1.2.1 Video Electronics Standards Association Plug & Display
The VESA P&D standard was developed by VESA members to provide an open standard for
digitally interfacing FPDs to PCs. The VESA members are comprised of graphics card
manufacturers and display manufacturers (325 member companies) with the following mission:
"To promote and develop timely, relevant, open display and display interface standards, ensuring
interoperability, and encouraging innovation and market growth." (Reference 18). The standard
was released in June 1997 with support from the following companies and institutions: 3M,
AMP, Canon, Chips and Technologies, Hewlett Packard, Hirose Electric, Hitachi, Hosiden,
IBM, JAE, Madison Cable, Mitsubishi, Molex, National Semiconductor, NEC Technologies, the
US Department of Commerce National Institute for Standards and Technology (NIST),
Panasonic, Philips, Silicon Image, Sun Microsystems, Texas Instruments (TI), Toshiba, and
others.

The P&D interface is designed to be a complete interface between PC and display, including
legacy support for analog CRTs and optional data interfaces for future expansion. The P&D
standard allows cable lengths up to 10 meters using TMDS signaling and a single connector for
all supported interfaces. The included analog option consists of RGB video and pixel clock (to
support analog interface FPDs).

The TMDS interface used in P&D is based on the VESA Flat Panel Display Interface (FPDI-2)
developed for laptop computers. This interface is used in many laptops with resolutions of 1024
by 768 pixels or higher. The TMDS-based FPDI-2 interface uses the PanelLink™ technology to
reduce EMI emissions and allows high-resolution laptops to pass testing required by the Federal
Commuications Commission (FCC). Figure 5 shows the TMDS link architecture, and Table 3
shows some of the TMDS bandwidth data for high-resolution applications.

12

Graphics

Controller

 V>>nc. I
lU7.il)

Pl.l. SV\L l.O
 C'TI.l ►

f>(7:(>)

in.:
 L\l.i —H

H(7:»J

•CI«k-

TXO =£E

TXI =Ds

rx: =t*
TXC

Data

3 Pairs

3?

°r X2
Clock

1 Pair

^>- RXO

> RX]

3> RX2

J>- RXC

Daca(2J/4S>
 1

Hsync.

V'SvllC.

DE

Controls (4)

Clock

Display

Controller

Figure 5. Transition minimized differential signaling link architecture (Reference 5).

Table 3. Transition minimized differential signaling bandwidth.

Resolution
Horiz. Vertical

Frame
Rate
(Hz)

Pixel
Clock
(MHz)

24-bit Data
Rate

(MB/s)

CRT
Refresh

(Hz)
1024 768 30 24 71 60
1280 1024 30 40 120 60
1600 1200 30 59 176 60
1920 1080 30 62 187 60

(interlaced)
* MB: megabyte

The P&D standard uses the VESA Display Data Channel (DDC2) for display initialization and
control (Reference 9). This includes initialization logic in the display, support for the VESA
Extended Display Identification Data (EDID) standard, support for the VESA Display Power
Management Standard (DPMS), and support logic in the graphics adapter.

The P&D standard includes USB and IEEE 1394 (Firewire) as optional data interfaces that are
carried along the same P&D interface cable. Use of either of these optional interfaces limits
cables to five meters or less. With these optional interfaces, the display becomes a connectivity
hub for the workstation computer. With USB, for example, the display becomes a USB hub with
the mouse and keyboard plugging directly into connectors on the display. Other peripherals,
such as printers, digital cameras, and scanners, can also be plugged directly into the display.
This allows the workstation computer to be located on the floor or away from the display,
without the need to wire everything into the back of the computer box. A single cable connects
the display to the computer and provides the peripheral bus interconnection.

The P&D standard uses a single connector for all interface signals. The connector is shown in
Figure 6. The P&D connector includes 30 data contact pins and four analog 75Q pins
(MicroCross™ quasi-coax).

13

PIN I-

■q.95

-36.32-

-27.B4-

■17.15-

KW"

Ynjiguiiiii
1.905 -I I- PIN 30-

 40.64-

SING MATING

f—q.57 REF.
SLOT WIDTH

 J

Figure 6. Video Electronics Standards Association Plug & Display connector (Reference 5).

4.1.2.2 Video Electronics Standard Association Digital Flat Panel
In 1998, an effort was made to develop a low-cost version of P&D to enable more rapid
penetration of digital FPD interfaces into the PC marketplace. In May 1998, ATI Technologies,
Inc.(ATI), a manufacturer of graphics cards, began a partnership to develop and promote the
DFP port. The DFP Working Group, headed by Compaq, was formed to propose DFP as a
VESA standard. Before the standard was adopted, Compaq began manufacturing and selling
PCs and FPDs with the DFP interface (Reference 19). VESA released the final version of the
standard in February 1999. The standard is endorsed by several companies, including 3dfx
Interactive Inc., 3Dlabs, 3M, AMP, ATI, Compaq, Creative Labs, Matrox Graphics, Molex,
Pixelworks, Princeton, S3, Taiko Denki, VideoLogic, and ViewSonic (Reference 20).

The DFP interface is a subset of VESA P&D with several features removed and a different
connector. The standard, Reference 6, is very brief, and references the P&D standard for much
of the details. It uses PanelLink™ TMDS for video data and VESA DDC2B for control. It does
not include the analog option or optional data interfaces (USB and Firewire) of P&D. The
control protocol includes VESA DDC2B support only, with EDID and DPMS functions. To
simplify the data interface, only a single simple data mapping is used (P&D includes other data
mappings to support Dual Scan Twisted Nematic (DSTN) LCD panels). The DFP interface uses
a single connector with cables limited to five meters. The connector, shown in Figure 7, is a
low-cost 20-pin mini-D ribbon (MDR) connector.

Ol
JLQ- _1_
uuuuuuuuuu
nnnnnnnnnn

TÜ- TT

EO

Figure 7. Digital Flat Panel connector (Reference 6).

14

4.1.2.3 Digital Displays Working Group Digital Visual Interface
In September 1998, Intel formed the DDWG to produce a single industry specification for the
digital display interface (Reference 21). The goal of the DDWG is to eliminate the confusion
caused by the many specifications and consortiums that currently exist for digital displays. The
DDWG Promoters include Intel, Silicon Image, Compaq, Fujitsu, Hewlett-Packard, IBM, and
NEC. Other prominent members include Microsoft, Dell, and Molex. The first release of the
DVI, Reference 7, was in April 1999. DVI is based on 'Open Intellectual Property (IP),' a
mutual agreement amongst companies to license patents and other IP necessary to implement the
interface on a reciprocal, royalty free basis (Reference 22). This may free DVI implementers
from any IP issues related to the patented PanelLink™ TMDS technology from Silicon Image.
Although the DVI is independent from VESA, its members are VESA members and the DDWG
intends to keep VESA informed of its activities and progress. The DDWG has made every effort
to make DVI interoperable with both VESA P&D and DFP (using adapter cables).

DVI is based on both P&D and DFP, and uses the same PanelLink™ TMDS interface. It also
uses VESA DDC2B for control and references several other VESA specifications for video
timing and signals on the analog option of DVI. DVI, however, differs from P&D in that it
allows for additional TMDS links to increase interface bandwidth. With dual TMDS links (six
data pairs and a clock pair), DVI supports resolutions beyond 2K by 2K (max. 350 MHz pixel
clock). DVI bandwidth scalability is shown in Figure 8.

Figure 8. Digital Video Interface bandwidth scalability (Reference 7).

15

Cable lengths are similar to other TMDS interfaces, about ten meters maximum. DVI does not
support any optional interfaces such as USB or Firewire. DVI uses a single connector, shown in
Figure 9. The connector includes 24 data pins and four quasi-coax connections. A digital-only
version omits the four quasi-coax signals.

1.9*6

I t i.sss Kv

135 1 ^

P[N 14-

—3S.K MAX.-

—B.SB »

* MdX. 7.TZ

|

1
1
1
1
1
I

 T

f4
T-FBT1
- B.ZS MAX. ■■

Figure 9. Digital Video Interface connector (Reference 7).

4.1.2.4 Low Voltage Differential Signaling
Low Voltage Differential Signaling (LVDS) is an open-standard alternative to TMDS. However,
the primary LVDS standard from the American National Standards Institute (ANSI), namely
ANSI/TIA/EIA-644-1995, Reference 23, is a generic physical layer standard. As such, it merely
defines the low levels of a generic bit-pipe, and is not a digital video interface standard. There is
an LVDS implementation standard, IEEE 1596.3, but this defines the physical layer of LVDS for
Scalable Coherent Interface (SCI) applications. SCI is a scalable computer bus architecture for
building large parallel-processing systems.

There are a number of LVDS display interface solutions from different silicon vendors. These
FPD interfaces are not endorsed open standards, and consist of application notes, design support,
and integrated circuit product lines. These include the FPD Link, Reference 24, from National
Semiconductor and FlatLink™, Reference 25, from TI. LVDS technology has the ability to
support high-resolution displays with the following 24-bit color resolutions: 1280 x 1024, 1600 x
1200,1920 x 1080, and 2048 x 1536 (Reference 26).

4.1.2.5 American National Standards Institute Fibre Channel
Fibre Channel is an integrated set of ANSI standards that define new protocols for flexible
information transfer (Reference 27). It is a common, efficient transport system supporting
multiple protocols or raw data using native Fibre Channel guaranteed delivery services.
Interoperability profiles define Fibre Channel uses for different protocols or applications
(Reference 28). The physical interface is defined in a Fibre Channel standard known as FC-PH,
Reference 8, including the bit pipe (copper or fiber), encoding, and framing. The upper-layer
protocols provide application-specific mapping and protocols.

16

There are several approaches to using Fibre Channel in a FPD interface. The simplest, used by
Battelle (Reference 2) for the CLADS head assembly test set, is to use the Fibre Channel FC-0
physical interface of Fibre Channel to provide a high-bandwidth bit-pipe. Raw video data is then
transmitted on this bit-pipe in a dedicated point-to-point topology. Another approach is to build
a high-speed Fibre Channel data network, and then embed video data packets into the network as
high-priority unacknowledged packets (see 5.3 Network Display Interface). This is similar to the
Internet streaming video formats such as RealVideo by RealNetworks, Reference 29.

An alternative is to define an upper-level mapping and add it to the Fibre Channel standards;
there are two such efforts underway. The Fibre Channel Audio/Video (FC-AV) protocol is a
transport mapping for video. The current draft, Reference 15, is Rev. 1.4, dated Sept. 17, 2000,
available at ftp://ftp.tl 1 .org/tl l/pub/fc/av/00-252v3.pdf and contains 114 pages. The standard is
currently in committee and is scheduled for release in June 2001. The FC-AV is fairly high-
level, and is concerned mainly with digital television and MPEG packetization and transport, as
well as future audio/video interfaces. It is primarily intended for broadcast applications to
facilitate the 'digital studio' concept. The Fibre Channel Avionics Environment (FC-AE),
Reference 16, consists of several extensions to the Fibre Channel standard for classes of service,
login, connection management, and data security. The FC-AE is for avionics command, control,
instrumentation, simulation, signal processing, and sensor/video data distribution. The current
draft is dated April 9, 1996, and contains 74 pages of protocol enhancements and data mappings.
As these extensions are approved, additional text is added to other Fibre Channel standards (such
as FC-PH-3) for interoperable handling of the new protocols.

17

4.1.2.6 Gigabit Video Interface
Although not an open standard interface, the gigabit video interface (GVIF) from Sony
represents a considerably different approach to FPD interfacing than either TMDS or LVDS.
Most notably, GVIF uses a single link serial data transmission system on a single twinax cable.
This allows very thin cables (up to ten meters) and miniature connectors to be used with GVTF
(Reference 17). All synchronization and control data is embedded into the data stream, and a
PLL is used in the receiver to regenerate the data clock, as shown in Figure 10.

Transmitter

RGB

Shi
Clock
ihifr

o
t
CD

Encod
er

Parallel
to

Serial

u
Cable
Driver

PLL L^ Transmission

synthesiz sr clo=k

Receiver

-bit
serial data

*» Decode

ClOCk & DATA Transmission

recovery clock

I reset

Counter"*"

'SYNC

Shift
Clock

Figure 10. Gigabit Video Interface architecture (Reference 17).

There are, however, some limitations to this approach that make it difficult to apply with high
resolution panels. GVIF is currently limited to only 512 colors (9-bit) at 1280 by 1024
resolution. Higher resolutions are not supported. The standard allows the use of a dual-link
(two-pair cable) to provide 18-bit color at 1280 by 1024 resolution. This still falls short of the
desired 24-bit support at resolutions beyond 1280 by 1024. A triple-link system (not referenced
by the GVEF documents) might provide sufficient bandwidth, but at three twinax pairs, the GVIF
no longer has a cabling advantage over TMDS or LVDS.

18

A more serious issue with GVIF may eliminate its consideration for ADI: it is a proprietary
interface of Sony Corporation. The potential problems of basing ADI or any other interface on
proprietary technology are alluded to in the following statement (taken from the GVIF chip set
datasheet, Reference 30):

"Sony reserves the right to change products and specifications without prior
notice. This information does not convey any license by any implication or
otherwise under any patents or other right. Application circuits shown, if any, are
typical examples illustrating the operation of the devices. Sony cannot assume
responsibility for any problems arising out of the use of these circuits."

Sony is currently the only company that can produce the necessary GVIF silicon, and they can
change it or abandon it at any time. Similar statements can be found on the datasheets of the
FPD Link and FlatLink™ LVDS solutions.

4.1.3 Enabling Technologies
The primary interface technologies are already discussed in above. The most relevant interface
technologies, TMDS and Fibre Channel differential positive emitter-coupled logic (PECL), are
both used in ADI. The focus here is the most cost-effective methods of incorporating these into
ADI.

The interface issues center on the graphics accelerator integrated circuits (ICs). The current and
emerging COTS accelerator ICs provide significant capability for both fast workstation graphics
and advanced 3D capability. These accelerator ICs offer an excellent opportunity for military
systems to leverage commercial advances in computer graphics. These ICs may or may not
include internal RAMDACs for CRT compatibility. Since most proposed commercial interfaces
use TMDS, it is reasonable to expect that future COTS graphics accelerator ICs will integrate
TMDS drivers and provide direct TMDS outputs, just as current ICs integrate RAMDACs and
provide direct analog outputs. If this is the case, all ADI solutions will have to deal with TMDS
digital video at the graphics generator end of the interface. The newest graphics accelerator IC
from ATI includes integrated TMDS drivers for no-cost FPD support (Reference 14).

Most new and emerging COTS flat panel monitors include DVI input capability. The necessary
TMDS receivers have been integrated into LCD monitor controller ICs for low-cost DVI
support.

TMDS drivers and receivers are also available separately from industry vendors. These are used
to implement the standard DVI interface for ADI. The TMDS ICs include all the necessary
logic, timing, synchronization, and control functions integrated into a single IC.

Fibre Channel transmitters and receivers are available from several vendors that implement the
entire physical layer interface in a single IC. These are used to build a high-bandwidth data pipe
using legacy cable (coax, miniature coax, twinax, twisted-pair, shielded twisted-pair, and optical
fiber). The Fibre Channel ICs include all the necessary coding, clock recovery, synchronization,
and control functions integrated into a single IC.

19

4.2 Demonstration System
The demonstration system defined in section 2.2 was designed. This includes procurement of the
COTS components and design of the ADI transmitter and repeater. The demonstration system is
shown in Figure 11 below.

Transmitter Receiver

DVI
Cable

rorn tCTTl

FourRG-179B
Coax Cables

100 Feet

DVI
Cable

Windows PC Flat Panel Monitor

Figure 11. Demonstration system.

4.2.1 Desktop Computer
The graphics generator is a COTS Microsoft Windows® PC with a DVI output graphics card.
The COTS PC is a custom-built model from Multiwave Technology, 17901 East Ajax Circle,
Industry, California, 91748. The PC configuration is shown in Table 4.

20

Table 4. Personal computer configuration.

Model

C830-59
A06275

A02610
A03470
130570

081789
A00803
A00695

682373
000044
511815

Item
Motherboard &
Central Processing Unit
Operating System
Case&
Power Supply
Memory
Graphics Card

Hard Drive
Compact Disk (read only)
Floppy Drive

Network Card
Mouse

Description (company name, designation)
ABIT KT7A Motherboard with
AMD Thunderbird 1 GHz & Cooling Fan
Microsoft Windows® 98 2nd Edition
Mwave CI-6606/4 Middle Tower with
300 W ATX Power Supply
Multiwave 32X64 PC 133 256MB SDRAM DIMM
ATI Radeon All-in-Wonder 32MB AGP NTSC
Western Digital 40.0GB WD400BBRTL
EIDE Ultra-ATA/100 7200RPM
Aopen CD950E 50x EIDE Internal
Sony 1.44MB
3Com 10BT/100BTX Fast Etherlink XL
3C905BTXNM PCI
Microsoft Intellimouse Optical PS2/USB

Keyboard Microsoft Natural Elite PS/2 Keyboard
* ABIT, AMD, Microsoft, Mwave, Multiwave, ATI, Western Digital, Aopen, Sony, and 3Com

are names of companies. Designations are provided by the companies to identify their
product model; refer to company literature for explanations.

4.2.2 Flat Panel Display
The display device is a COTS desktop AMLCD monitor. The monitor is model number VG181
from ViewSonic Corporation, 381 Brea Canyon Road, Walnut, California, 91789. The VG181
has 1280 by 1024 native resolution and an 18 inch diagonal viewing area. The VG181 has both
analog RGB and DVI inputs. Full specifications are shown in Table 5.

4.2.3 Legacy Cable
The legacy cable installation is simulated using a 100 ft spool of RG-179B coax, with four
separate cable strands. This cable is available from Alpha Wire Company, 711 Lidgerwood
Avenue, Elizabeth, New Jersey, 07207. The cable specifications are listed in Table 6. The
cables are terminated with standard baby "N" connectors (BNCs) at each end. The BNCs are
used on the IEEE 802.3 (Ethernet) standard type RG58 coaxial networks.

21

Table 5. Flat panel display specifications.

Parameter Performance
Active Area Size 18.1 in. diagonal (4:3 aspect)
True Resolution 1280 x 1024 pixels
Brightness 235 nit
Contrast Ratio 300:1
Viewing Angle 160° horizontal

160° vertical
Glass Surface Anti-glare
Video Inputs RGB (analog) &

DVI-V (digital)
Bandwidth 135 MHz
Sync Inputs Separate TTL*

Composite sync
Sync on green

Sync Frequency Range 30-82 kHz horizontal
50-75 Hz vertical

Connectors 15-pin mini D-sub (analog)
DVI-V (digital)

Power 90-264 VAC, 50-60 Hz, 70 W
Dimensions 18.1 x 18x9.4 in.
Weight 22 lbs
* TTL: transistor-to-transistor logic

Table 6. Cable Specifications.

Parameter Performance
Part Number 9179B
Type RG-179 B/U

75 Q coaxial
Inner Conductor 30 AWG* stranded

silver coated copper coated steel
Dielectric TFE** Teflon
Shield 93% braid

silver coated copper
Jacket Fluorinated Ethylene-Propylene
Velocity of Propagation 70%
Capacitance 19.6 pF/ft
Attenuation 100 MHz

200 MHz
400 MHz

1000 MHz

9.8 db/100 ft
12.7 db/100 ft
15.8 db/100 ft
25.0 db/100 ft

* AWG: American wire gage
** TFE: Tetraflourethylene (Teflon)

22

4.2.4 Advanced Display Interface Transmitter
The ADI transmitter accepts DVI and outputs Fibre Channel data to the coax cables,
transmitter block diagram is shown in Figure 12.

The

Figure 12. Advanced Display Interface transmitter.

The transmitter schematic diagram is given in Appendix A. The layout of the transmitter circuit
board is shown in Appendix C. The Very High Level Description Language (VHDL) source
code for the transmitter logic is provided in Appendix E.

4.2.5 Advanced Display Interface Receiver
The ADI receiver accepts Fibre Channel data from the coax cables and outputs DVI to the
display. The receiver block diagram is shown in Figure 13.

23

Figure 13. Advanced Digital Interface receiver.

The receiver schematic diagram is given in Appendix B. The layout of the transmitter circuit
board is shown in Appendix D. The VHDL source code for the transmitter logic is provided in
Appendix F.

24

5. CONCLUSIONS

From the technology assessment, the most promising commercial interface today is DVI. This
interface can be adapted for use by military display systems provided some shortcomings are
addressed. One of the most significant limitations of DVI is cable type and length. Standard
DVI must use a specific type of cable not found in legacy military applications and is limited to
ten meter cable length. This limitation is overcome using an ADI transmitter/receiver pair to
interface with legacy cable.

The legacy cable will not support the highest data rates possible with DVI. Several methods are
used in combination to reduce the required data rate so that existing video cabling can be used.
These include bit-depth reduction from 24-bits to 16-bits and frame rate reduction from 30 Hz
interlaced to 15 Hz non-interlaced. Also, the legacy cable bandwidth will ultimately limit the
maximum resolution possible with a usable frame rate.

A prototype system has been designed with an ADI transmitter/receiver pair. The transmitter
converts standard DVI from a COTS graphics card to Fibre Channel based data for transmission
on coax cables. The receiver converts the Fibre Channel data back to standard DVI for a COTS
flat panel display. The transmitter and receiver utilize both bit-depth reduction and frame rate
reduction to transmit digital video on one to four coax cables.

The ADI transmitter and receiver circuit boards are small size and low power. They can be
produced at relatively low cost.

25

6. RECOMMENDATIONS

6.1 Interface Definition
The next effort is to complete the interface definition to create an industry standard open systems
interface. The result of this effort should be a formal specification of the complete ADI
interface. This would include a graphics card specification for graphics modes, software
interface, digital data formats, and connectors. Also included would be the display specifications
for supported graphics modes, digital data formats, and connectors. The complete ADI standard
should include cable specifications and open protocol definitions in addition to the above.
Once the ADI standard is complete, commercialization of ADI should be encouraged through
standardization. The ADI standard should be proposed to commercial standards organizations as
an open standard or extension to existing standard. There may be an ADI extension to DVI or a
Fibre Channel upper layer protocol for ADI as a Class 4 (fractional bandwidth) or Class 6
(unidirectional broadcast) Fibre Channel service.

6.2 Advanced Display Interface Adoption
An important step towards adopting ADI in military systems is to demonstrate the interface in a
military application. Several efforts could result in a complete demonstration system that can be
refined into a final interface solution. First, an ADI graphics card should be developed. This
digital graphics card provides ADI video from a workstation computer. The ADI graphics card
may consist of a COTS digital graphics card and a format converter. Next, an ADI receiver
should be developed and integrated with a military FPD. An example is a CLADS A VIM
designed to receive ADI video and display it on a CLADS head assembly.
Once the prototype ADI hardware is developed, it should be demonstrated in a military system.
For example, the ADI system could be demonstrated on the E-3 AWACS with CLADS. Any
high-resolution military FPD application is a good candidate for an ADI demonstration and
eventual integration. The lessons-learned during the development efforts and demonstrations
would then lead to refinements of both the ADI specification and the ADI system design.

6.3 Network Display Interface
Another important variant of the ADI is the Network Display Interface (NDI) for network
display applications. The NDI is a digital data network version of ADI, where video data is
packetized and transported using a COTS standard data network. With the NDI, graphics
generators are plugged into a data network and driver software is used to create NDI packets that
are injected into the network. Each NDI display also plugs into the same network and receives,
decodes, and displays the video data. The NDI displays may be intelligent, allowing several
windows to display multiple NDI streams from several sources.

To develop the NDI, first an assessment needs to be conducted to define the NDI architecture.
The assessment should include potential military applications and enabling technologies. This
should include analysis of Internet streaming video formats and video compression techniques.
Next, a NDI specification should be developed. The result is an industry standard open systems
display video interface for networks. The standard could be supported by several COTS network
fabrics, including Fibre Channel and Ethernet. Finally, a prototype NDI system should be
developed. The goal of the prototype system is to demonstrate packetized display video over a
COTS data network.

26

7. LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

ADC
ADI
AFRL
AMLCD
AVIM
ANSI
AWACS
AWG
BAA
BIT
BMI
BNC
bps
CLADS
Coax
COTS
CRT
DARPA
DDC2
DDI
DDWG
DFP
DLP™
DMD
DPMS
DSTN
DVI
DVI-V
EDID
EMI
Ethernet

FC
FC-AE
FC-AV
FC-PH
FCC
Fibre Channel

FIFO
Firewire

FPD

Analog-to-digital converter
Advanced display interface
Air Force Research Laboratory
Active matrix liquid crystal display
Application Video Interface Module (part of CLADS)
American National Standards Institute
Airborne Warning and Control System
American Wire Gauge
Broad Agency Announcement
Built-in test
Battelle Memorial Institute
Baby "N" connector (used on Ethernet type RG58 coaxial networks)
bits per second
Common Large Area Display Set
Coaxial (cable)
Commercial-off-the-shelf
Cathode ray tube
Defense Advanced Research Projects Agency
Display Data Channel 2 (VESA standard data interface to display)
Digital display interface
Digital Display Working Group
Digital Flat Panel (VESA standard)
Digital Light Processing (TI trademark for projection light engines using DMDs)
Digital micromirror device
Display Power Management Standard (VESA standard)
Dual scan twisted nematic (LCD)
Digital Video Interface (DDWG standard)
Designation for DVI digital connector
Extended Display Identification Data (VESA standard)
Electromagnetic interference
Nickname for the IEEE 802.3 standard for access/distribution layers of a data
communications system; 100 Mbps to 100m; 1 Gbps to 10 km; 10 Gbps to 40 km
Fibre Channel
Fibre Channel Avionics Environment
Fibre Channel Audio Video (for TV and MPEG)
Fibre Channel, Physical Interface
Federal Communications Commission
Nickname for the set of ANSI standards for high-speed data transfer among
workstations, mainframes, and display devices for distances to 10 km
First-in first-out (signal protocol)
Nickname for the IEEE1394 standard for bus forming digital network backbone;
IEEE1394b: 800 Mbps in Versatile Home Network; potential: 1.6 Gbps to 12 m;
DDB-1394: 24.8Mbps in autos for Media Oriented Transport Consortium (Most)
Flat panel display

27

fps frames-per-second
GB Gigabyte, 109 bytes (1 byte is typically equal to 8 bits)
Gbps Gigabits per second
GVIF Gigabit video interface (Sony standard)
HDL High Level Description Language
HDS High Definition Systems
HDTV High Definition Television

(720 to 1080 lines, 1024 to 1920 spots/line, interlaced or progressive scan)
HSDDI High Speed Digital Display Interface (part of CLADS)
IC Integrated circuit
IEEE Institute of Electrical and Electronics Engineers
I/O Input/Output
IP Intellectual property
LCD Liquid crystal display
LDWG Large Display Work Group
LVDS Low Voltage Differential Signaling
MB Megabyte, 106 bytes (1 byte is typically equal to 8 bits)
MDR Mini-D ribbon (20-pin connector)
MPEG Motion Pictures Experts Group
NDI Network Display Interface
NIST National Institute for Standards and Technology, US Department of Commerce
nit Candela per meter2 (standard unit of luminance)
NTSC National Television Standards Committee U.S. TV broadcast standard

(525 lines, 336 spots/line, interlace scan)
P&D Plug and Display (VESA standard, 30-pin connector)
PCI Personal computer interface
PECL Positive emitter-coupled logic (used in Fibre Channel)
PLD Programmable logic device
PLL Phase locked loop
QXGA Quad-XGA (3,145,728 pixels in 2048 x 1536 format)
QUXGA quad-UXGA (7,680,000 pixels in 3,200 x 2,400 format)
QUXGA-W QUXGA-wide (9,216,000 pixels in 3840 x 2400 format)
RAMDAC Random access memory digital-to-analog converter
RG-179B Miniature coax cable (75 Q), used for AWACS crewstations (legacy equipment)
RGB Red, Green, Blue
RMS Root mean square
RPM Revolutions per minute
RTCA/DO Radio Technical Commission for Aeronautics / DOcument
SCI Scalable Coherent Interface
SID Society for Information Display
SPIE International Society for Optical Engineering

(previously known as Society of Photo-Optical Instrumentation Engineers)
SVGA Super VGA (480,000 pixels in 800 x 600 format)
SXGA Super-extended Graphic Array (standard involving 1280 x 1024 pixel resolution)
SYNC Synchronization (signal)
TFE Tetraflourethylene, C2F4 (polymerization of this monomer produces Teflon)

28

TFT Thin-film transistor
TI Texas Instruments
TMDS Transition Minimized Differential Signaling
TTL Transister-to-transister logic
TV Television
twinax twin axial (cable)
USB Universal Serial Bus
UXGA Ultra-extended Graphic Array (1,920,000 pixels in 1600 x 1200 format)
VAC Volts, alternating current
VESA Video Electronics Standards Association (VESA)
VGA Video Graphic Array (307,200 pixels in 640x480 format with 15-pin connector)
VHDL Very High-Level Description Language
WR-ALC Warner-Robins Air Logistics Center
WSXGA Wide-SXGA (1,474,560 pixels in 1440 x 1024 format)
XGA extended Graphics Array (786,432 pixels in 1024 x 768 format)

29

8. REFERENCES

1. Ronald L. Gorenflo and David J. Hermann, "21 inch technology independent common display
set (CLADS) design for rugged workstation applications," in Cockpit Displays IV: Flat Panel
Displays for Defense Applications, Darrel G. Hopper, Editor, Proceedings of SPIE Vol. 3057,
428-439 (1997).

2. David J. Hermann and Ronald L. Gorenflo, "Analog and digital interfaces for the common
large area display set," in Cockpit Displays IV: Flat Panel Displays for Defense Applications,
Darrel G. Hopper, Editor, Proceedings of SPIE Vol. 3057, 446-456 (1997).

3. High Speed Digital Display Interface (HSDDI) Interface Control Document, Battelle,
Document No. 3310030015, Columbus, Ohio, 2 April 1998. Available to DoD Agencies and
DoD Contractors via request to WR-ALC/LYLCB, Robins AFB GA 31098-1638.

4. D. Hopper, F. Meyer, "Advanced aerospace display interfaces," in Cockpit Displays V:
Displays for Defense Applications, Darrel G. Hopper, Editor, Proceedings of SPIE Volume 3363,
448-459 (1998).

5. VESA Plug and Display (P&D™) Standard, Video Electronics Standards Association
(VESA), Version 1, 11 June 1997, http://www.vesa.org.

6. VESA Digital Flat Panel (DFP) Standard, Video Electronics Standards Association (VESA),
Version 1, 14 February 1999, http://www.vesa.org.

7. Digital Visual Interface (DVI), Digital Display Working Group, Revision 1.0, 2 April 1999,
http://www.ddwg.org.

8. Fibre Channel Physical and Signaling Interface - 2 (FC-PH-2), Computer & Business
Equipment Manufacturers Association, American National Standard X3T11 Committee, Project
901-D, Draft Revision 7.4, 10 September 1996, http://www.fibrechannel.com.

9. VESA Display Data Channel (DDC™) Standard, Video Electronics Standards Association,
Version 3, 15 December 1997, http://www.vesa.org.

10 (a) D D Desjardins and D.G. Hopper, Military Display Market: Second Comprehensive
Edition, Technical Report AFRL-HE-WP-TR-1999-0211 (August 1999), 434 pp. Available to
Government Agencies and their Contractors via request to AFRL/HECV (Dr. Hopper), 2255 H
Street, Room 300, Wright-Patterson AFB OH 45433-7022; (b) Darrel G. Hopper and Daniel D.
Desjardins, "Military display market: second comprehensive edition," in Cockpit Displays VII:
Displays for Defense Applications, Darrel G. Hopper, Editor, Proceedings of SPIE Vol. 4022,
19-28 (2000); (c) Daniel D. Desjardins and Darrel G Hopper, "Military display market segment:
aerospace cockpits," in Cockpit Displays VIII: Displays for Defense Applications, Darrel G.
Hopper, Editor, Proceedings of SPIE Vol. 4362, paper 4 (2001).

30

11. David J. Hermann and Ronald L. Gorenflo, "Digital interface for high resolution displays,"
in Cockpit Displays VI: Displays for Defense Applications, Darrel G. Hopper, Editor,
Proceedings of SPIE Vol. 3690, 317-328 (1999).

12. (a) Darrel G. Hopper, William K. Dolezal, Keith Schu, and John W. Liccione, Draft
Standard for Color Active Matrix Liquid Crystal Displays (AMLCDs) in U.S. Military Aircraft,
Wright Laboratory Technical Report WL-TR-93-1177, 60 pp (June 1994); available from the
Defense Technical Information Center (DTIC), Springfield VA, DTIC Accession No. AD-
A282950. Wright Laboratory became part of the Air Force Research Laboratory in 1997.
Report is also available from AFRL/HECV (Dr. Hopper), WPAFB OH 45433-7022;
(b) Darrel G. Hopper, William K. Dolezal, Keith Schu, and John W. Liccione, "Draft Standard
for Color AMLCDs in U.S.Military Aircraft," in Cockpit Displays, Darrel G. Hopper Editor,
Procceedings of SPJE Vol. 2219, 230-238 (1994). Summary of the technical report.

13. Environmental Conditions and Test Procedures for Airborne Equipment, Radio Technical
Commission for Aeronautics, December 1989, RTCA/DO-160C.

14. "ATI, the leader in digital flat panel graphic accelerators, announces support for Intel's
Digital Visual Interface," ATI Technologies, Inc. Press Release, Toronto, 8 April 1999,
http ://w w w. atitech .com/ca_us/corporate/press/l 999/4183 .html.

15. Fibre Channel - Audio Video (FC-AV), National Committee for Information Technology
Standardization, American National Standard Til Committee, Project 1237-D. Rev. 1.4, dated
Sept. 17, 2000, is available at ftp://ftp.tl 1 .ore/tl l/pub/fc/av/00-252v3.pdf and contains 114
pages, http://www.fibrechannel.com.

16. Fibre Channel Avionics Environment (FC-AE), X3T11 Avionics Environment Working
Group, Project 2009-D, Draft Revision 0.4,9 April 1996, http://www.fibrechannel.com.

17. H. Kikuchi, T. Fukuzaki, R. Tamaki, and T. Takeshita, "Gigabit Video Interface: A Fully
Serialized Data Transmission System for Digital Moving Pictures," International Conference on
Consumer Electronics (ICCE), 1998, http://www.world.sony.com/Electronics/SC-HP/N_Techno/
GVJE/PDF/icce98d.pdf.

18. "VESA Mission Statement," Video Electronics Standards Association, http://www.vesa.org/
mission.html.

19. "Compaq PC Technologies: Digital Flat Panel (DFP) Port," Compaq Computer Corporation,
1998, http://www.compaq.com/athome/pc_technologies/pcdemo_dfp.html.

20. "VESA Adopts Digital Flat Panel (DFP) Standard," Video Electronics Standards
Association (VESA) Press Release, 29 March 1999, http://www.vesa.org/news032999.html.

21. "Intel, Compaq, Dell, Fujitsu, Hewlett Packard, IBM, Microsoft, NEC, Silicon Image Form
Digital Display Working Group To Define Digital Connectivity Specification," Intel Developer
Forum, Palm Springs, CA, September 17,1998, http://www.intel.com/pressroom/archive/
releases/CN91798b.HTM.

31

22. "DVI Frequently Asked Questions," Digital Display Working Group, http://www.ddwg.org/
faq.html.

23. Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits,
Telecommunications Industry Association, ANSI/TIA/EIA-644-1995, 25 March 1996,
http://www.tiaonline.org.

24. S. Poniatowski, "An Introduction to FPD Link," National Semiconductor Application Note
1032, July 1998, http://www.national.com/an/AN/AN-1032.pdf.

25. K. Gingerich, "FlatLink™ Data Transmission System Design Overview," Mixed-Signal
Products, Texas Instruments, Inc., 1997, http://www-s.ti.com/sc/psheets/slla012/slla012.pdf.

26. J. Goldi, and G. Nicholson, "A case for low voltage differential signaling as the ubiquitous
interconnect technology," Electronic Systems, Vol. 38, No. 3, p. 42, March 1999,
http://www.estd.com.

27. What is Fibre Channel?, Ancot Corporation, 3rd Ed., October 1996, ISBN 0-9637439-1-0,
http://www.ancot.com.

28. Fibre Channel: Connection to the future, Fibre Channel Association, 2nd Ed., 1998, ISBN 1-
878707-45-0, http://www.fibrechannel.com.

29. V.Thomas, "IP Multicast in RealSystem G2," RealNetworks, Incorporated, White Paper, 15
January 1998, http://docs.real.com/docs/g2multicast.pdf.

30. "Gigabit Video Interface 24-bit Color Chip Set," CXB1454R/55R/56R Preliminary
Datasheet, Sony Semiconductor, 3 February 1999, http://www.world.sonv.com/Electronics/SC-
HP/N Techno/GVIF/PDF/GVIF24E3.pdf.

31. Steven J. Hoener, John Flint, and Alan R. Jacobsen, "Common display performance
requirements for military and commercial aircraft product lines," in Cockpit Displays VIII:
Displays for Defense Applications, Darrel G. Hopper, Editor, Proceedings of SPIE Vol. 4362,
paper 14 (2001).

32. Measurements of Electromagnetic Interference Characteristics, Military Standard number
MIL-STD-462D (11 January 1993).

32

APPENDIX A

TRANSMITTER SCHEMATIC

The following pages are the schematic diagram for the ADI transmitter designed for the
demonstration system.

33

EE

I

flTe ^TT

2
O

O o

a:
LiJ

o

Q O
< SE

!

W.

34

zu

an
UJ >
UJ
o
UJ
Ql

</>
o

!4l

4i

=^i

*\ tfj g g ^

iggs£gg8§iiäii
j 1 I K33KS 1 L.

- jrne] | «33»

"» 9 9 y 9

1| 03B 1

^ tf# 7 9 9 9 9 9

>)) } J J J J

jrta

> iiiiiiiiiiiiiiiiiiiii" A A A A k

35

o
_J
Q.

a

o
a:

—3t-
-3t-
-3h-

-dt-
-3t-

■-3t-
-dt—

"it-

-at

■W-

-S.

-§'

-%■

-f
-i'
-s!

TU-

rr

jjjjjjjljjjjjjjffljjjjjjjjjjjjj
>>>i>ii

fflPfflfflllfflll
1 si §
* K S ™
S £ * ä

SsjR

iK S * * K » s? S S

i»K333=s--3

MUJJMIfflm

iiimmmHifflirammtii'
iüsiRsää

5?s-i»85»*:

!««SäS«

;S S'i
.".. B K !JS

:, < ^- ? 5 < . °i ° at ,

1
c;c

BElSSbli;Sg?-£

■M q g si

,113:

M EWH

im,
0 6 Ü D Q 6

R 2 2 g s"

fgils
s 8 S " S I °i E =i £ j

I«R « ^ 1 1 8
S " 2=? =• 3

J^^J^^ddddd^ddä
<

SSSSSSSSBSS iSSSSSiSS

s
» a a< 2(a s s s(g a(a a| o| oi a 9B989SCS9 9 25

^asd^sa^riää- ^S ssdgs S g qä?RH -^
1 11

; t j>

S 1 i«
2 1

S s | t L \J \ / .JU, d

36

3 <
a:
o
to

rrgpTf

nr?

fl! a saaaaaa

j ooa*
T MOA

p MOA

p OCQA

£ OCOA

g WOA

[T OOOA

OSSA

OSSA
DSSA

OSSA

OSSA'

OSSA.

DSSA

go S
"#^ ? ? T T T #3 «-

0

I I

37

XT

f - £»g 5 = 5:
s 5' s1 s 5 s s1 s' s1 s' 5' §' 51 s s 51 s 51 s1 s s §' s 511

mwimn

fffllfflt Iffilfiili
jliii'si's'i 3 3 i 13113 51" 31 i 11111151151 =
viislllli iiiIlli|iiii|5='":S25i|-lS£

10 ä

Q.

O

o <

n^

Iff

-dh-

—3'

□ r r.uJllljBJt>gd ; a 3 3 3 S 9 1 ^^ = ^

2 ,!!"
525S55S5y*SSSS*

Izzzzzzzzzes B B 0 a 0 B 0 0 OBOBB22 "J

Baiw*i. ; s s :.,^<
Ml

n no ?????? ??05???????? ?

lwa=«o-a»ssi
i Z 3 3J ?! Z ; UJJJgJ^^SJäJ^

A,UA

38

TU

DO 1 H 1 n

tn
or

<

<
X
o

CD

ä I i

1 1 i

39

IZ

3
0_

O

O

<
X
o

a:
m

=3
O

CD

3 Z2
0- a.
1— t-
z> rs
o o
CM ro
_! _J
LJ LU
Z Z
2 z
< <
X X
o o
UJ UJ
o: cc
m DO

id

CO

UJ

ce
o
u.
CO z <

*(>•■ (Cb

0 Ö 6 Q

3 § o o

«T =37 *:

6 6 4

40

APPENDIX B

RECEIVER SCHEMATIC

The following pages are the schematic diagram for the ADI transmitter designed for the
demonstration system.

41

nr

Hi)

o
o

= *
K 3

£■ E

o
(/)
a:

15»i
S _ i.

42

i i i

"II

zu

IQ I

3 a a s

BC.

C/l
z
XX.

C

-*J-

tu

K^f3?^1

H

-«*= 1

3 .S 1
r-

8 S 1
-«*= r-

ü-
JLL

8 K

S^tagkä^

rvrr

äCJ-= <H

=3
0.

<
X
u

<
ü

g a

< <
s z
o o
ÜJ LJ
IC DS
m 03
L. li-

43

TT

CO a:

-air

mm " 8 > j j

0 4 tl

■g I ull.

. = s s i - - •
JJJJJ I J i 8

fff
g«_LS|i-

<

ÜJ

m
Ü.

%i

'^5 S= s 5 s :

!4

o

44

TT

-3;
-3 t-

"it
-St—
-3t-
-3t
-dt-

■-%■

-St-

-St
-~H?

o
on

-it
-it
-it
-ft
-41-
-it-

!* 5 3 5 = 3 3 12

UIJJlJiJIJIfflTOJIfflJlJI
;SB|aB22SBSS|5J

lm
; 3 5 " = - «

ra

a= J»:

!£ = £
»3 «Js: iiss5ii||3ii|i

imiiimnim
«33

-133 a- 3 3

, t. ■> • 9 = !

iiiiiiffliiiittiiniiwiiiiiiii
i s, % i i, 2 51,5 i

ill'S!
;■; !.;!:;; a Z^Z - j j 5 s ■

JJU
-' -' 2 _ ä

5 E * ! s s L 3 k« * ° s = - s s - s s

jsffl^

T77T???,

0 6 0 Q DO

OÖÖÜÖ00Q 0

si s : | g s s | s-

-S3«: 8 s -

Jjjjjjjjjjjdj^djs
llääSSSSISISlSSSSili

* * * ^ * ^ * * * *, *,fl,2,B, °i Bi Bi fli S fii &i fii si 2i Bi 3 *
8 8 8 8 8 8 3 8 8 3 8 8 S 8 8 8 8 8 8 8 8 8 8 8 8 8 S

fo^titiffiiH illilliil11

* 2 i
£ a 3

J J 0 0

< AAJ

45

IZ

r-rdh-

-3t

aaaaasa
: S e ß E t= 1 s [

OOOA

DOOA

DflOA

OOOA

COCA

OOQA.

'OOOA

OOSA

OSSA

OSSA

OSSA

^■^ !T ft

46

;»^^s«s:s:

iss >Sä5 JJSS:

I

Ilffllffi
:'!^l:1lHlillIill||lj ■ in

m

3 a s s is^ JsJ

Hfflliiiijiijiljjjfffij
S S S S S S i

Hl
: 5 g £ o, *

to!

o
o.
o

o <
CD

-djr

Ht

-st-

-3t

.;n;;iraa;]
I sseggs|ss§ss§ssss Jä5**SSSS»

3 i i i i i i i z 5 5 5(9(s s a a a 2 9 9 9 S S S B g S "

, 1"V 1115!8)* -"V*

* 7 ■

s ES (BSSSSS s£

PTpFIpi * s ä E i i

IS >>^«.8=c3sasESBS;

TU
eTJa^J'jJjJ-JdsTJd^ J^K^rfrf

; äiis 5x5*15 5?5 : i 5 5iS||555 £ £ =

U-U iniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniir

47

TU

3

II
—HI—

^i
*>*_

Si
-HI—

54l
<

2 51
—{(-

!%l

8s'

=1 S 8
c 2
—' ii T*

3 1

> 111 AiiAAllixAAAAlllAilli. i | i 1]•

48

APPENDIX C

TRANSMITTER LAYOUT

g| •■

'■IIIIIII iiiiiiii
kW IdIC W tifflf

I» • ■! !••■! !••■! !»•■)

IIIIIII

"IIIIIII" s

IIIIIII

"IIIIIII" 3

_
lllllll_

"m
im

" =3 "IIIIIII"

■ i i i i

^pmiiiBiipminuiiiiiMflür

dl*

L~J

L^J

•
*

S • i

1:1
•

■••••••• •*•
0 •••••••• %• #

Board Dimensions:
3.5 x 8.63 in.

49

■ • ■ •

HnQQaQ
EFQEDE

&3Ö EaS El a H HS a HaS QnE
EEnQQEi SnaQBD anBBaB

H)B BIB B

HEB,.E[HE]B#.I3
BHB,*HHia","[3

□ □□ Han Q
cana DOE DEE □ □C3 M
o r> Q sss 2 GS CS2

_EI • SS • □
S(g] ■ DQ i Cl

o o o
C94 C90 C!8 _QH • 5 n □ •
QB BB0BB0 :_,BDD
BE» BBS BBS
BBS BB| BBS

1 /
7

R34 1=J

R33

BB~BB BB 1 i R35
C9I C87 CM

BBS BBS BBS
sBQ_BB3BB3c70

BBS BBS BBS BB
BB BB" BB* BB
CS2 CSO C75 CG 9

g □ □ D □
r-j □ ca □ 13
Bo«;
HBaac

B a a □ a a» n □ a n Stf o o r> r>
S £ & S

n on o

£J fi n a __
□ ana Q»

Q a Q Q E
□ DSD

QB

QB
R40

dHOcrso
QB C129
Q0C12»

BBy

C125 ITTlB P1re5

C124 n~n@ gFB4
C123 rmjj gfB3

ITTIC131

QBi«

C117 era C»9
BB„BB0BB
BBS BBS BBS
BBgBBgBBl
BB- BB BB-

ci20„ cre„ an
BB=BBSBBC95

cm BBgBBgBBCBS
BB B0nBBSBBC97
BB BBSBB2BBC9B
C»7 C105 mo2

.*. •••••••■
0 %• •••••••• 0

QB««
tEDcM

BB"2

Q0C42
QB«'
Q0C4O
Q0C39
QB«B
QJ0CJ7
QB«5
QB"5

QB™

«39
QB

50

APPENDIX D

RECEIVER LAYOUT

sn _SD_ 3|_4EL g| >□

5

_
lllllll_

"llljlll" 5

_
lllllll_

"llljlll" 3

lllllll

" " S

_
lllllll_

"llljlll"

P7»l

LJ

,©£h©

.©£k©

U^J

.■■■■■.

"um" i i t

•
•

!:! ■ • i

•

I I I 1

Board Dimensions:
3.5x8.63 in.

51

ü» o» n*

• Ulli EEEE
EEEE EBEB

™n □ QEH32 _ -
EBEB B «™

[33 0g m
na 0 □ EB EB ID Q

FIU0 B F110|Q Q >> >» B QFBfl

ciBQ BE man BQ CSBB BB ~ " ""BIP C) C12 Cl

Cl C4
BO BBC» GBci BB

00» a QH'i.n E0Ri.D ^•»° OLEJF» LOH»« EDS« Q[D«4

CH7 cmcKscwcioi CH7 • •
BQ BBBBBBBBBB

D D
BBCIU

BBCKM GQC«

QQCT18
BBCTM BBCtlO »Dono •
BOC97 BBC102 Dp5S5 o

QQCTtl 2 °—"
BBC« BBCIOJ

BBBBBBBH
Sucucnlrao

nncm
GEJGBÖB
cmcBocw

• BooD •

•

•
IS ^ eis? op"

BB« Bac,S

• C3Q3 R32 £30 «*

• „„ BB CI4

BB c«

ggS BBC« •
• • •

BB es?
BB «3

BB ess
SB CM

•
CI:S

C7S CIS C81 CM C83 HB.
BB GBBBBBSBBBC74

t ggtain«» DJlUius QQMI

BBC10 BBCK
BBCBI

catOB+o
BB™ BBC92 QUO««
BBC79 BBC7S

BBC»
IBC87 BBC84

nun««
BBBBBBBBBBBBBBC7e

C8S CJ6 C77CB3C02CB5BB
C94

QEI UW

.*. •••••••□ "* ••••••••
• •

52

APPENDIX E

TRANSMITTER VERY HIGH-LEVEL DESCRIPTION LANGUAGE (VHDL)

The following pages are the schematic diagram for the ADI transmitter designed for the
demonstration system.

The following are the VHDL source files for the ADI transmitter programmable logic devices
(PLDs). The top level diagrams for the front and back end interfaces are followed by the VHDL
source for each major PLD block.

53

ppISj'ÜJlfs

IMililP^

54

55

SDRAM Input Memory Interface
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY lpm;
USE lpm. lpm_coitponents.ALL;

ENTITY SDRAM_INTERFACE IS PORT
(

CLK : IN STD_LOGIC;
IN_FIFO_DATA: IN STD_LOGIC_VECTOR (47 DOWNTO 0);
MEM_SEL : IN STD_LOGIC;

INPUT_VSYNC_PULSE : IN STD_LOGIC;
IN_FIFO_FULL : IN STD_LOGIC;

SDRAMOjlWE, SDRAM0_nCAS, SDRAMO_nRAS : OUT STD_LOGIC;
SDRAM0_BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
SDRAMO_ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);

SDRAMl_nWE, SDRAMl_nCAS, SDRAMl_nRAS : OUT STD_LOGIC;
SDRAM1_BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SDRAM1_ADDRESS : OUT STD_LOGIC_VECTOR (10 DOWNTO 0);

IN_FIFO_RD : OUT STD_LOGIC;

SDRAM0_DATA, SDRAM1_DATA : OUT STD_LOGIC_VECTOR (23 DOWNTO 0)

);
END SDRAM_INTERFACE;

ARCHITECTURE ONE OF SDRAM_INTERFACE IS

SIGNAL in_fifo_rd_d : STD_LOGIC;
SIGNAL input_word : STD_LOGIC_VECTOR(23 DOWNTO 0);
SIGNAL IN_WORD_SEL : STD_LOGIC_VECTOR (0 DOWNTO OK-
SIGNAL nMEM_SEL: STD_LOGIC;
SIGNAL sdram0_mem_signals, sdraml_mem_signals : STD_LOGIC_VECTOR(15 DOWNTO OK-
SIGNAL input_mem_signals, registered_input_mem_signals : STD_LOGIC_VECTOR(16 DOWNTO 0) ,-
SIGNAL INPUTjlWE, INPUT_nCAS, INPUT_nRAS : STD_LOGIC;
SIGNAL INPUT_BA : STD_LOGIC_VECTOR (1 DOWNTO OK-
SIGNAL INPUT_ADDRESS : STD_LOGIC_VECTOR (10 DOWNTO 0 J.-
SIGNAL SDRAM_DATA : STD_LOGIC_2D (1 DOWNTO 0, 23 DOWNTO 0);

COMPONENT INPUT_MEM_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
IN_FIFO_FULL : IN STD_LOGIC;

IN_FIFO_RD : OUT STD_LOGIC;
IN_WORD_SEL : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR(l DOWNTO 0);
ADDRESS : OUT STD_LOGIC_VECTOR (10 DOWNTO 0)

);
END COMPONENT;

BEGIN

INPUT_CONTROL : INPUT_MEM_CONTROL
PORT MAP(

CLK => CLK,
VSYNC_PULSE => INPUT_VSYNC_PULSE,
IN FIFO FULL => IN_FIFO_FULL,

56

IN_FIFO_RD => in_fifo_rd_d,
IN_WORD_SEL => IN_WORD_SEL(0)
nWE => INPUT_nWE,
nCAS => INPUT_nCAS,
nRAS => INPUT_nRAS,
BA => INPUT_BA,
ADDRESS => INPUT_ADDRESS

WORD_MUX: lpm_mux
GENERIC MAP(LPM_WIDTH => 24, LPM_SIZE => 2, LPM_WIDTHS => 1, LPM_PIPELINE => 1)
PORT MAP(data => SDRAM_DATA, clock => CLK, sei => IN_WORD_SEL, result =>

input_word);

nMEM_SEL <= NOT MEM_SEL;

DATA_BUSSES:
FOR i IN 0 to 23 GENERATE

SDRAM_DATA (0 , i) <= IN_FIFO_DATA(i) ;
SDRAM_DATA(1, i) <= IN_FIF0_DATA(24 + i);

SDRAMO_DATA_BUS: TRI
PORT MAP(a_in => input_word(i), oe => nMEM_SEL, a_out => SDRAMO_DATA(i));

SDRAM1_DATA_BUS: TRI
PORT MAP(a_in => input_word(i) , oe => MEM_SEL, a_OUt => SDRAM1_DATA(i)),-

END GENERATE;

input_mem_signals <=
in_fifo_rd_d &
INPUT_nWE &
INPUT_nCAS St
INPUT_nRAS &
INPUT_BA(1 DOWNTO 0) &
INPUT_ADDRESS(10 DOWNTO 0);

SDRAM0_nWE <= sdramO_mem_signals(15) ;
SDRAM0_nCAS <= sdramO_mem_signals(14) ;
SDRAM0_nRAS <= sdramO_mein_signals (13) ;
SDRAM0_BA(1 DOWNTO 0) <= sdramO_mem_signals(12 DOWNTO 11);
SDRAM0_ADDRESS(10 DOWNTO 0) <= sdramO_meni_signals (10 DOWNTO 0) ;

SDRAMl_nWE <= sdraml_mem_signals(15) ;
SDRAMl_nCAS <= sdraml_mem_signals(14) ;
SDRAMl_nRAS <= sdraml_mem_signals(13);
SDRAM1_BA(1 DOWNTO 0) <= sdraml_mem_signals(12 DOWNTO 11);
SDRAM1_ADDRESS(10 DOWNTO 0) <= sdraml_mem_signals(10 DOWNTO 0);

INPUT_REGISTER : LPM_FF
GENERIC MAP(LPM_WIDTH => 17)
PORT MAP(data => input_mem_signals, clock => CLK, q =>

registered_input_mem_signals);

IN_FIFO_RD <= registered_input_mem_signals(16);

CONTROL_BUSSES:
FOR i IN 0 to 15 GENERATE

SDRAM0_CONTROL_BUS: TRI
PORT MAP(a_in => registered_input_mem_signals(i), oe => nMEM_SEL, a_out =>

sdram0_mem_signals(i));

SDRAMl_CONTROL_BUS: TRI
PORT MAP(a_in => registered_input_mem_signals(i), oe => MEM_SEL, a_out =>

sdraml_mem_signals(i));
END GENERATE;

END ONE;

57

ADI Memory Switch
-- ADI Memory Switch

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY lpm;
USE 1pm.lpm_components.ALL;

ENTITY MEM_SWITCH IS
PORT
(

tp_hs_en, tp_vs_en: OUT STD_LOGIC;

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;

SEL: OUT STD_LOGIC;
NOT_FIRST_FRAME: OUT STD_LOGIC

);
END MEM_SWITCH;

ARCHITECTURE ONE OF MEM_SWITCH IS

SIGNAL output_vsync: STD_LOGIC;
SIGNAL output_vsync_pulse : STD_LOGIC;

SIGNAL sel_ff_data, sel_ff_q : STD_LOGIC_VECTOR(0 DOWNTO 0);

TYPE state_type IS (remaining_vsyncs, first_vsync) ,-
SIGNAL ps, ns : state_type := remaining_vsyncs;

COMPONENT lvl2pls
PORT(

d : IN STD_LOGIC;
Clock : IN STD_LOGIC;
q : OUT STD_LOGIC) ;

END COMPONENT;

BEGIN

VSYNC_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 2, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => VSYNC_PULSE, cout => output_vsync};

VSYNC_LVL2PLS: lvl2pls
PORT MAP(d => output_vsync, clock => CLK, q => output_vsync_pulse) ,-

MEM_SEL_FF: lpm_ff
GENERIC MAP(LPM_WIDTH => 1)
PORT MAP(clock => CLK, enable => output_vsync_pulse, data => sel_ff_data, q =>

sel_ff_q);

sel_ff_data(0) <= NOT sel_ff_q(0);
SEL <= sel_ff_q(0);

PROCESS(ps, output_vsync_pulse, VSYNC_PULSE)
BEGIN

CASE ps IS

WHEN remaining_vsyncs =>
NOT_FIRST_FRAME <= '1';

IF output_vsync_pulse = '1' THEN
ns <= first_vsync;

ELSE
ns <= remaining_vsyncs;

END IF;

WHEN first_vsync =>

58

NOT_FIRST_FRAME <= ' 0 ' ;

IF VSYNC_PULSE = ' 1' THEN
ns <= remaining_vsyncs;

ELSE
ns <= first_vsync;

END IF;

END CASE;
END PROCESS;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

IF CLK = '1' THEN
ps <= ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

SDRAM Output Memory Interface
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee. std_logic_1164. all,-

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY SDRAM_INTERFACE IS
PORT
(

CLK :' IN STD_LOGIC;
MEM_SEL : IN STD_LOGIC;

OUTPUT_VSYNC_PULSE : IN STD_LOGIC;
OUT_FIFO_READY : IN STD_LOGIC;

SDRAMO_DATA, SDRAM1_DATA : IN STD_LOGIC_VECTOR(23 DOWNTO 0);

SDRAMO_nWE, SDRAMO_nCAS, SDRAMO_nRAS : OUT STD_LOGIC;
SDRAMO_BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
SDRAMO_ADDRESS : OUT STD_LOGIC_VECTOR (10 DOWNTO 0);

SDRAMl_nWE, SDRAMl_nCAS, SDRAMl_nRAS : OUT STD_LOGIC;
SDRAM1_BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
SDRAM1_ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);

OUT_FIFO_WR : OUT STD_L0GIC;
OUTPUT_FIFO_DATA : OUT STD_L0GIC_VECT0R(23 DOWNTO 0)

);
END SDRAM_INTERFACE;

ARCHITECTURE ONE OF SDRAM_INTERFACE IS

SIGNAL nMEM_SEL : STD_LOGIC;
SIGNAL OUT_FIFO_WR_PIPE_IN : STD_LOGIC;
SIGNAL MEM_SEL_VECTOR : STD_LOGIC_VECTOR(0 DOWNTO 0);
SIGNAL output_mem_signals, registered_output_mem_signals, sdramO_mem_signals,

sdraml_mem_signals : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL OUTPUT_nWE, OUTPUT_nCAS, OUTPUT_nRAS : STD_LOGIC;
SIGNAL OUTPUT_BA : STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SIGNAL OUTPUT_ADDRESS : STD_LOGIC_VECTOR (10 DOWNTO 0) ;
SIGNAL SDRAM_DATA : STD_LOGIC_2D (1 DOWNTO 0, 23 DOWNTO 0);

59

COMPONENT OUTPUT_MEM_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
OUT_FIFO_READY : IN STD_LOGIC;

OUT_FIFO_WR : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) ;
ADDRESS : OUT STD_LOGIC_VECTOR (10 DOWNTO 0)

);
END COMPONENT;

BEGIN

OUPUT_CONTROL : OUTPUT_MEM_CONTROL
PORT MAP(

CLK => CLK,
VSYNC_PULSE => OUTPUT_VSYNC_PULSE,
OUT_FIFO_READY => OUT_FIFO_READY,
OUT_FIFO_WR => OUT_FIFO_WR_PIPE_IN,
nWE => OUTPUT_nWE,
nCAS => OUTPUT_nCAS,
nRAS => OUTPUT_nRAS,
BA => OUTPUT_BA,
ADDRESS => OUTPUT_ADDRESS

),-

nMEM_SEL <= NOT MEM_SEL;

OUT_FIFO_WR_PIPE : LPM_SHIFTREG
GENERIC MAP(LPM_WIDTH => 4)
PORT MAP(shiftin => OUT_FIFO_WR_PIPE_IN, clock => CLK, shiftout => OUT_FIFO_WR)

output_mem_signals <=
OUTPUT_nWE &
OUTPUT_nCAS &
OUTPUT_nRAS &
OUTPUT_BA(l DOWNTO 0) &
OUTPUT_ADDRESS(10 DOWNTO 0);

INPUT_REGISTER : LPM_FF
GENERIC MAP(LPM_WIDTH => 16)
PORT MAP(data => output_mem_signals, clock => CLK, q =>

registered_output_mem_signals);

CONTROL_BUSSES:
FOR i IN 0 TO 15 GENERATE

SDRAM0_CONTROL_BUS: TRI
PORT MAP(a_in => registered_output_mem_signals(i) , oe => nMEM_SEL, a_out =>

sdramO_mem_signals(i));

SDRAM1_CONTROL_BUS: TRI
PORT MAP(a_in => registered_output_mem_signals(i), oe => MEM_SEL, a_out =>

sdraml_mem_signals(i));
END GENERATE;

SDRAM0_nWE <= sdramO_mem_signals (15) ,-
SDRAM0_nCAS <= sdramO_mem_signals(14) ;
SDRAM0_nRAS <= sdramO_mem_signals(13);
SDRAM0_BA(1 DOWNTO 0) <= sdram0_men_signals (12 DOWNTO 11);
SDRAM0_ADDRESS(10 DOWNTO 0) <= sdramO_mem_signals(10 DOWNTO 0);

SDRAMl_nWE <= sdraml_mem_signals(15);
SDRAMl_nCAS <= sdraml_mem_signals(14) ;
SDRAMl_nRAS <= sdraml_mem_signals(13) ;
SDRAM1_BA(1 DOWNTO 0) <= sdraml_mem_signals(12 DOWNTO 11);
SDRAM1_ADDRESS(10 DOWNTO 0) <= sdraml_mem_signals(10 DOWNTO 0);

60

DATA_BUSSES:
FOR i IN 0 to 23 GENERATE

SDRAM_DATA(0, i) < = SDRAMO_DATA(i);
SDRAM_DATA(1, i) < = SDRAM1_DATA(i) ;

END GENERATE;

MEM_SEL_VECTOR(0) <= MEM_SEL;

OUTPUT_FIFO_DATA_MUX : lpm_mux
GENERIC MAP(LPM_WIDTH => 24, LPM_SIZE => 2, LPM_WIDTHS => 1, LPM_PIPELINE => 1)
PORT MAP (data => SDRAM_DATA, Clock => CLK, sei => MEM_SEL_VECTOR, result =>

OUTPUT_FIFO_DATA) ;

END ONE;

ADI Input Memory Controller
— ADI Input Memory Controller
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY INPUT_MEM_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
IN_FIFO_FULL : IN STD_LOGIC;

IN_FIFO_RD : OUT STD_LOGIC;
IN_WORD_SEL : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) ;
ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0)

);
END INPUT_MEM_CONTROL;

ARCHITECTURE ONE OF INPUT_MEM_CONTROL IS
CONSTANT NUM_REFRESH_CYCLES: STD_LOGIC_VECTOR := "111";

SIGNAL refresh_en, refresh_load, refresh_rdy : STD_LOGIC;
SIGNAL refresh_cnt : STD_LOGIC_VECTOR(2 downto 0);

TYPE init_state_type IS (start, wait_for_frame, precharge, refresh_nop, auto_refreshl,
wait_for_refreshl, auto_refresh2, wait_for_refresh2, load_mode_reg, done);

SIGNAL init_ps, init_ns : init_state_type := start;

TYPE memory_state_type IS (initialize, normal_operation);
SIGNAL memory_ps, memory_ns : memory_state_type := initialize;

TYPE normal_op_state_type IS (wait_for_FIFO, active, pre_write_nop, write_first_word,
burst, last_word, burst_terminate, precharge_nopl, precharge_nop2, precharge_nop3, refresh,
refresh_nop, auto_refresh, wait_for_refresh);

SIGNAL normal_op_ps, normal_op_ns : normal_op_state_type := wait_for_FIFO;

TYPE sdram_cmd_type IS (nop, active, read, write, precharge, refresh, load_mode_reg,
burst_terminate);

SIGNAL sdram_cmd : sdram_cmd_type;
SIGNAL test : std_logic_vector(2 DOWNTO 0);

SIGNAL row_rdy, column_rdy, column_en, row_en, bank_en : STD_LOGIC;
SIGNAL bank_count : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL row_count, row_count_ready : STD_LOGIC_VECTOR(10 DOWNTO 0);

61

BEGIN

SIGNAL column_COUnt : STD_L0GIC_VECT0R(7 DOWNTO 0) ;

SIGNAL word_count_en, word_count_clr, word_count_rdy : STD_LOGIC;

nRAS <= test(2) ;
nCAS <= test(l) ;
nWE <= test(0);

WITH sdram_cmd SELECT
test <=

"111" WHEN nop,
"Oil" WHEN active,
"101" WHEN read,
"100" WHEN write,
"010" WHEN precharge,
"001" WHEN refresh,
"110" WHEN burst_terminate,
"000" WHEN load_mode_reg;

AUTO_REFRESH_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 3, LPM_DIRECTION => "DOWN")
PORT MAP(data => refreshment, clock => CLK, cnt_en => refresh_en, sload =>

refresh_load, cout => refresh_rdy);

COLUMN_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 8, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => colurnn_en, q => column_count, sclr =>

VSYNC_PULSE, cout => column_rdy) ;

ROW_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 11, LPM_DIRECTION => "UP")
PORT MAP (clock => CLK, cnt_en => row_en, q => row_count, sclr => VSYNC_PULSE) ,-

ROW_COMPARE : lpm_compare
GENERIC MAP (LPM_WIDTH => 11)
PORT MAPfdataa => row_count, datab => row_count_ready, aeb => row_rdy);

ROW_COUNT_READY_CONSTANT : lpm_constant
GENERIC MAP(LPM_WIDTH => 11, LPM_CVALUE => 1280)
PORT MAP(result => row_count_ready);

BANK_COUNTER: lpm_counter
GENERIC MAP(LPM_WIDTH => 2, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => bank_en, q => bank_count, sclr => VSYNC_PULSE);

WORD_COUNTER: lpm_counter
GENERIC MAP(LPM_WIDTH => 1, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => word_count_en, sclr => word_count_clr, cout =>

word_count_rdy);

SM:
PROCESS(memory_ps, init_ps, normal_op_ps, VSYNC_PULSE, refresh_rdy)
BEGIN

CASE memory_ps IS
WHEN initialize =>

IN_FIFO_RD <= '0' ;
IN_WORD_SEL <= '0';
normal_op_ns <= wait_for_FIFO;
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

CASE init_ps IS
WHEN start=>

refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';

62

sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF VSYNC_PULSE= '1' THEN

init_ns <= wait_for_frame;
ELSE

init_ns <= start;
END IF;

WHEN wait_for_frame=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";

• BA <= "00";

memory_ns <= initialize;
IF VSYNC_PULSE= '1' THEN

init_ns <= precharge;
ELSE

init_ns <= wait_for_frame;
END IF;

WHEN precharge=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= refresh_nop;

WHEN refresh_nop=>
refresh_cnt <= "000";
refresh_en <= '0 ' ;
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize,-
init_ns <= auto_refreshl;

WHEN auto_refreshl=>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refreshl;

WHEN wait_for_refreshl=>
refresh_cnt <= "000";
refresh_en <= '1';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= '1' THEN

init_ns <= auto_refresh2;
ELSE

init_ns <= wait_for_refreshl;
END IF;

63

WHEN auto_refresh2=>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

meniory_ns <= initialize;
init_ns <= wait_for_refresh2;

WHEN wait_for_refresh2=>
refresh_cnt <= "000";
refresh_en <= ' 1';
refresh_load <= '0';
sdram_cind <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= '1' THEN

init_ns <= load_mode_reg;
ELSE

init_ns <= wait_for_refresh2;
END IF;

WHEN load_mode_reg=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= load_mode_reg;
ADDRESS <= "00000110111";
BA <= "00";

memory_ns <= initialize;
init_ns <= done;

WHEN done=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

init_ns <= done;
memory_ns <= normal_operation;

END CASE;

WHEN normal_operation =>

memory_ns <= normal_operation;
init_ns <= done;

CASE normal_op_ps IS
WHEN wait_for_FIFO =>

refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_WORD_SEL <= ■0 ' ;
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_coiont_clr <= ' 1' ;
IN_FIFO_RD <= '0';

IF IN_FIFO_FULL = '1' THEN
normal_op_ns <= active;

64

ELSE
normal_op_ns <= wait_for_FIFO;

END IF;

WHEN active =>
refresh_cnt <= "000";
refresh_en <= ' 0' ;
refresh_load <= '0';
sdram_cmd <= active;
ADDRESS <= row_count;
BA <= bank_count;
IN_FIFO_RD <= ' 1 ' ;
IN_WORD_SEL <= ' 0 ' ;
column_en <= ' 0' ;
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= pre_write_nop;

WHEN pre_write_nop =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdrain_cnid <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0';
column_en <= '1';
row_en <= ' 0 ' ,-
bank_en <= '0' ;
word_count_en <= '0' ;
word_count_clr <= '0';

normal_op_ns <= write_first_word;

WHEN write_first_word =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= write;
ADDRESS <= "10000000000";
BA <= bank_count;
IN_FIFO_RD <= '1';
IN_WORD_SEL <= '0';
column_en <= '1';
row_en <= '0';
bank_en <= '0';
word_count_en <= '1';
word_coumt_clr <= ' 0 ' ;

normal_op_ns <= burst;

WHEN burst =>
refresh_load <= '0';
refresh_cnt <= "000";
refresh_en <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_WORD_SEL <= word_count_rdy;
column_en <= '1';
row_en <- '0 ' ;
bank_en <= ' 0 ' ;
word_count_en <= '1';
word_count_clr <= '0';

IF column_rdy = '!' THEN

65

IN_FIFO_RD <= ' 0 ' ;
normal_op_ns <= last_word;

ELSE
IN_FIFO_RD <= NOT word_count_rdy;
normal_op_ns <= burst;

END IF;

WHEN last_word =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= ' 0 ' ;
IN_WORD_SEL <= word_count_rdy;
word_count_clr <= '0';
coluinn_en <= ' 0' ;
row_en <= '0';
bank_en <= '0';
word_count_en <= ' 1' ;

normal_op_ns <= burst_terminate;

WHEN burst_terminate =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= burst_terminate;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0' ;
coluinn_en <= ' 0 ' ;
row_en <= '1';
bank_en <= row_rdy;
word_count_en <= '1';
word_count_clr <= '0';

normal_op_ns <= precharge_nopl ;

WHEN precharge_nopl =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0' ;
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= precharge_nop2;

WHEN precharge_nop2 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0 ' ;

66

word_count_clr <= ' 0' ;

normal_op_ns <= precharge_nop3;

WHEN precharge_nop3 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0';
coluinn_en <= ' 0 ' ;
row_en <= ' 0' ;
bank_en <= ' 0' ;
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= refresh,-

WHEN refresh=>
refresh_cnt <= "000";
refresh_en <= ' 0' ;
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= refresh_nop;

WHEN refresh_nop=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
IN_WORD_SEL <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= auto_refresh;

WHEN auto_refresh =>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0■;
IN_WORD_SEL <= * 0';
column_en <= '0';
row_en <= '0 ' ;
bank_en <= ' 0' ,-
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= wait_for_refresh;

67

WHEN wait_for_refresh =>
refreshment <= "000";
refreEh_en <= '1';
refresh_ioad <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= ' 0 ' ;
IN_WORD_SEL <= ' 0 ' ;
column_en <= '0';
row_en <= '0';
bank_en <= ' 0' ;
word_count_en <= '0';
word_count_clr <= '0';

IF refresh_rdy= '1' THEN
normal_op_ns <= wait_for_FIFO;

ELSE
normal_op_ns <= wait_for_refresh;

END IF;

END CASE;
END CASE;

END PROCESS SM;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

IF CLK = '1' THEN
memory_ps <= memory_ns;
init_ps <= init_ns;
normal_op_ps <= normal_op_ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

ADI Output Memory Controller
-- ADI Output Memory Controller
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY 1pm;
USE 1pm.lpm_components.ALL;

ENTITY OUTPUT_MEM_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
OUT_FIFO_READY : IN STD_LOGIC;

OUT_FIFO_WR : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0)

);
END OUTPUT_MEM_CONTROL;

ARCHITECTURE ONE OF OUTPUT_MEM_CONTROL IS
CONSTANT NUM_REFRESH_CYCLES: STD_LOGIC_VECTOR := "111";

SIGNAL refresh_en, refresh_load, refresh_rdy : STD_LOGIC;

68

SIGNAL refresh_cnt : STD_L0GIC_VECT0R(2 downto 0);

TYPE init_state_type IS (
start,
wai t_for_frame,
precharge,
refresh_nop,
auto_refreshl,
wait_for_refreshl,
auto_refresh2,
wait_for_refresh2,
load_mode_reg,
done

);
SIGNAL init_ps, init_ns : init_state_type := start;

TYPE memory_state_type IS (initialize, normal_operation);
SIGNAL memory_ps, memory_ns : memory_state_type := initialize;

TYPE normal_op_state_type IS (
wai t_for_vsync,
wait_for_FIFO,
active,
pre_read_nop,
read_first_word,
burst,
read_last_word,
burs t_terminate,
precharge_nopl,
precharge_nop2,
precharge_nop3,
refresh,
refresh_nop,
auto_refresh,
wai t_for_re fresh

);

SIGNAL normal_op_ns : normal_op_state_type := wait_for_vsync;
SIGNAL normal_op_ps : normal_op_state_type := wait_for_vsync;

TYPE sdram_cmd_type IS (
nop,
active,
read,
write,
precharge,
refresh,
1oad_mode_reg,
burst_terminate

);

SIGNAL sdram_cmd : sdram_cmd_type;
SIGNAL test : std_logic_vector(2 DOWNTO 0);

SIGNAL row_rdy, column_rdy, column_en, row_en, bank_en, bank_rdy, frame_en, frame_rdy
STD_LOGIC;

SIGNAL bank_COunt : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL row_count, row_count_ready : STD_LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL column_count : STD_LOGIC_VECTOR(7 DOWNTO 0);

BEGIN

nRAS <= test(2);
nCAS <= test(1);
nWE <= test(0);

WITH sdram_cmd SELECT
test <=

"111" WHEN nop,
"011" WHEN active,
"101" WHEN read,

69

"100" WHEN write,
"010" WHEN precharge,
"001" WHEN refresh,
"110" WHEN burst_terminate,
"000" WHEN load_mode_reg;

AUTO_REFRESH_COUNTER : lpin_counter
GENERIC MAP(LPM_WIDTH => 3, LPM_DIRECTION => "DOWN")
PORT MAP(data => refresh_cnt, clock => CLK, cnt_en => refresh_en, sload =>

refresh_load, cout => refresh_rdy);

COLUMN_COUNTER : lpm_COUIlter
GENERIC MAP(LPM_WIDTH => 8, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => column_en, q => column_count, sclr =>

VSYNC_PULSE, cout => column_rdy);

R0W_C0UNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 11, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => row_en, q => row_count, sclr => VSYNC_PULSE);

ROW_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 11)
PORT MAP(dataa => row_count, datab => row_count_ready, aeb => row_rdy);

ROW_COUNT_READY_CONSTANT : lpm_COnstant
GENERIC MAP(LPM_WIDTH => 11, LPM_CVALUE => 1280)
PORT MAP(result => row_count_ready);

BANK_COUNTER: lpm_COUnter
GENERIC MAP(LPM_WIDTH => 2, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => bank_en, q => bank_count, sclr => VSYNC_PULSE,

cout => bank_rdy);

FRAME_COUNTER: lpm_counter
GENERIC MAP(LPM_WIDTH => 1, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => frame_en, sclr => VSYNC_PULSE, cout =>

frame_rdy);

SM:
PROCESS(memory_ps, init_ps, normal_op_ps, VSYNC_PULSE, refresh_rdy, OUT_FIFO_READY,

column_rdy, frame_rdy)
BEGIN

CASE memory_ps IS
WHEN initialize =>

OUT_FIFO_WR <= ' 0 ' ,-
normal_op_ns <= wait_for_vsync;
column_en <= '0';
row_en <= ' 0' ,-
bank_en <= '0 ' ;
frame_en <= '0 ' ;

CASE init_ps IS
WHEN start =>

refreshment <= "000";
refresh_en <= '0' ;
refresh_load <= ' 0 ' ;
sdram_cind <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF VSYNC_PULSE= ' 1 ' THEN

init_ns <= wait_for_frame;
ELSE

init_ns <= start;
END IF;

WHEN wait_for_frame =>
refreshment <= "000";
refresh_en <= '0';

70

refresh_load <= ' 0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF VSYNC_PULSE= ' 1' THEN

init_ns <= precharge;
ELSE

init_ns <= wait_for_frame;
END IF;

WHEN precharge =>
refresh_cnt <= "000";
refresh_en <= ' 0' ;
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";

inemory_ns <= initialize;
init_ns <= refresh_nop;

WHEN refresh_nop =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init-_ns <= auto_refreshl;

WHEN auto_refreshl =>
refreshment <= NUM_REFRESH_CYCLES;
refresh_en <= '0 ' ;
refresh_load <= '1' ;
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refreshl;

WHEN wait_for_refreshl =>
refresh_cnt <= "000";
refresh_en <= '1' ;
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= ' 1' THEN

init_ns <= auto_refresh2;
ELSE

init_ns <= wait_for_refreshl;
END IF;

WHEN auto_refresh2 =>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refresh2;

WHEN wait_for_refresh2 =>
refresh_cnt <= "000";
refresh_en <= '1';

71

refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= '1' THEN

init_ns <= load_mode_reg;
ELSE

init_ns <= wait_for_refresh2;
END IF;

WHEN load_mode_reg =>
refreshment <= "000";
refresh_en <= ' 0' ;
refresh_load <= ' 0' ;
sdram_cmd <= load_mode_reg;
ADDRESS <= "00000110111";
BA <= "00";

memory_ns <= initialize;
init_ns <= done;

WHEN done =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdrain_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

init_ns <= done;
memory_ns <= normal_operation;

END CASE;

WHEN normal_operation =>
memory_ns <= normal_operation;
init_ns <= done;

CASE normal_opjps IS
WHEN wait_for_FIFO =>

refresh_cnt <= "000";
refresh_en <= '0' ;
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "000000000a0";
BA <= "00";
column_en <= ' 0 ' ;
row_en <= ' 0 ' ,-
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '0';

IF OUT_FIFO_READY = ' 1' THEN
normal_op_ns <= active;

ELSE
normal_op_ns <= wait_for_FIFO;

END IF;

WHEN active =>
refreshment <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= active;
ADDRESS <= row_count;
BA <= bank_count;
OUT_FIFO_WR <= '0';
column_en <= ' 0 ' ;
row_en <= ' 0 ' ;
bank_en <= '0';
frame_en <= '0';

72

normal_op_ns <= pre_read_nop;

WHEN pre_read_nop =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= '0';
column_en <= ' 1' ;
row_en <= '0';
bank_en <= '0';
frame_en <= '0';

normal_op_ns <= read_first_word;

WHEN read_first_word =>
refresh_cnt <= "000";
refresh_en <= ' 0' ;
refresh_load <= '0';
sdram_cmd <= read;
ADDRESS <= "10000000000";
BA <= bank_count;
OUT_FIFO_WR <= '0';
colunm_en <= '1';
row_en <= '0';
bank_en <= '0';
frame_en <= '0';

normal_op_ns <= burst;

WHEN burst =>
refreshment <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= '1';
column_en <= '1';
row_en <= '0';
bank_en <= '0';
f rame_en <= ' 0 ' ,-

IF column_rdy = '1' THEN
normal_op_ns <= read_last_word;

ELSE
normal_op_ns <= burst;

END IF;

WHEN read_last_word=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= ' 1 ' ;
column_en <= '0';
row_en <= '0';
bank_en <= '0';
frame_en <= '0';

normal_op_ns <= burst_terminate;

WHEN burst_terminate =>
refresh_cnt <= "000";
refresh_en <= '0';

73

refresh_load <= '0';
sdram_cmd <= burst_terminate;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= ■ 1' ;
column_en <= ' 0' ;
row_en <= '1';
bank_en <= row_rdy;
frame_en <= bank_rdy AND row_rdy;

normal_op_ns <= precharge_nopl ;

WHEN precharge_nopl =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= ' 0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
frame_en <= '0';

normal_op_ns <= precharge_nop2;

WHEN precharge_nop2 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA "<= "00";
OUT_FIFO_WR <= '0';
column_en <= ' 0 ' ,-
row_en <= ' 0' ,-
bank_en <= '0';
frame_en <= '0';

normal_op_ns <= precharge_nop3;

WHEN precharge_nop3 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= ' 0 ' ;
column_en <= ' 0' ,-
row_en <= '0';
bank_en <= '0';
frame_en <= '0' ;

normal_op_ns <= refresh,-

WHEN refresh=>
refresh_cnt <= "000";
refresh_en <= '0',-
refresh_load <= '0';
sdrairi_cnid <= precharge;
ADDRESS <= "10000000000";
BA <= "00";
OUT_FIFO_WR <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0 ' ;
frame_en <= '0 ' ;

normal_op_ns <= refresh_nop;

74

WHEN refresh_nop=>
refresh_cnt <= "000";
refresh_en <= ' 0' ;
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= ' 0' ;
column_en <= '0';
row_en <= '0';
bank_en <= '0';
frame_en <= ' 0' ;

normal_op_ns <= auto_refresh;

WHEN auto_refresh =>
refresh_cnt <= NUM_REFRESH_ .CYCLES;

. refresh_en <= ' 0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= '0';
colunnn_en <= ' 0 ' ;
row_en <= '0';
bank_en <= '0';
frame_en <= '0';

normal_op_ns <= wait_for_refresh;

WHEN wait_for_refresh =>
refresh_cnt <= "000";
refresh_en <= '1';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= ' 0 ' ;

row_en <= ' 0 ' ,-
bank_en <= ' 0 ' ,-
frame_en <= '0';

IF refresh_rdy= '1' THEN
IF frame_rdy = '1' THEN

normal_op_ns <= wait_for_vsync;
ELSE

normal_op_ns <= wait_for_FIFO;
END IF;

ELSE
normal_op_ns <= wait_for_refresh;

END IF;

WHEN wait_for_vsync =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
OUT_FIFO_WR <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
frame_en <= '0';

IF VSYNC_PULSE = '1' THEN
normal_op_ns <= wait_for_FIFO;

ELSE
normal_op_ns <= wait_for_vsync;

75

END IF;
END CASE;

END CASE;
END PROCESS SM;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

IF CLK = '1' THEN
memory_ps <= memory_ns;
init_ps <= init_ns;
normal_op_ps <= normal_op_ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

76

APPENDIX F

RECEIVER VERY HIGH-LEVEL DESCRIPTION LANGUAGE

The following are the VHDL source files for the ADI receiver PLDs. The top level diagrams for
the front and back end interfaces are followed by the VHDL source for each major PLD block.

77

s s 3
<w «) w
k; i s

i 6 S

1 1 | - i; -'

78

I to

: co < ? c c m <

I
 KKO:„_
ODQDDDDD
cowcocococococococo

0DD0DDDOOO
- z a. c
s -

-A

rsr
@
1

n
L£

O
Li.
U.

") i
Ü

0 ■-i ?

£ *- J

7 "
Ü ■^

u -
I z
H *' IS > s :

h i 1

3
i si * > >•

0. v > :

3 in
^ <« UI

(> T
Zi

S f>
a.

5 7 () > z « > CO

5 I

d 8

S!

Ü Ö 0

IS
I1.

ä-i H>i
N CM

If:
is'i

©

Li

ili

79

SDRAM Input Memory Interface
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY SDRAM_INTERFACE IS
PORT
(

CLK : IN STD_LOGIC;
IN_FIFO_DATA: IN STD_LOGIC_VECTOR(23 DOWNTO 0);
MEM_SEL : IN STD_LOGIC;

INPUT_VSYNC_PULSE : IN STD_LOGIC;
IN_FIFO_READY : IN STD_LOGIC;

SDRAM0_nWE, SDRAM0_nCAS, SDRAM0_nRAS : OUT STD_LOGIC;
SDRAM0_BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0) ;
SDRAMO_ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);

SDRAMl_nWE, SDRAMl_nCAS, SDRAMl_nRAS : OUT STD_LOGIC;
SDRAM1_BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0);
SDRAM1_ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);

IN_FIFO_RD : OUT STD_LOGIC;

SDRAM0_DATA, SDRAM1_DATA : INOUT STD_LOGIC_VECTOR (23 DOWNTO 0)

);
END SDRAM_INTERFACE ;

ARCHITECTURE ONE OF SDRAM_INTERFACE IS

SIGNAL in_fifo_rd_d : STD_LOGIC;
SIGNAL nMEM_SEL: STD_LOGIC;
SIGNAL sdramO_mem_signals, sdraml_mem_signals : STD_LOGIC_VECTOR(15 DOWNTO 0);
SIGNAL input_mem_signals, registered_input_mem_signals : STD_LOGIC_VECTOR(16 DOWNTO 0),
SIGNAL INPUT_nWE, INPUT_nCAS, INPUT_nRAS : STD_LOGIC;
SIGNAL INPUT_BA : STD_LOGIC_VECTOR (1 DOWNTO 0);
SIGNAL INPUT_ADDRESS : STD_LOGIC_VECTOR (10 DOWNTO 0);

COMPONENT INPUT_MEM_CONTROL IS
PORT
(

tp_column_en, tp_column_rdy: OUT STD_LOGIC;

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
IN_FIFO_FULL : IN STD_LOGIC;

IN_FIFO_RD : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR(1 DOWNTO 0);
ADDRESS : OUT STD_LOGIC_VECTOR (10 DOWNTO 0)

BEGIN

);
END COMPONENT;

INPUT_CONTROL : INPUT_MEM_CONTROL
PORT MAP(

CLK => CLK,
VSYNC_PULSE => INPUT_VSYNC_PULSE,
IN_FIFO_FULL => IN_FIFO_READY,
IN_FIFO_RD => in_fifo_rd_d,

80

nWE => INPUT_nWE,
nCAS => INPUT_nCAS,
nRAS => INPUT_nRAS,
BA => INPUT_BA,
ADDRESS => INPUT_ADDRESS

);

nMEM_SEL <= NOT MEM_SEL;

TRI_STATE_BUSSES:
FOR i IN 0 to 23 GENERATE

SDRAMO_DATA_BUS: TRI
PORT MAP(a_in => IN_FIFO_DATA(i) , oe => nMEM_SEL, a_OUt => SDRAMO_DATA(i));

SDRAM1_DATA_BUS: TRI
PORT MAP(a_in => IN_FIFO_DATA(i), oe => MEM_SEL, a_OUt => SDRAM1_DATA(i));

END GENERATE;

input_mem_signals <=
in_fifo_rd_d &
INPUT_nWE &
INPUT_nCAS &
INPUT_nRAS &
INPUT_BA(1 DOWNTO 0) &
INPUT_ADDRESS(10 DOWNTO 0);

SDRAMO_nWE <= sdramO_mem_signals(15);
SDRAMO_nCAS <= sdramO_mem_signals(14);
SDRAM0_nRAS <= sdramO_mem_signals(13);
SDRAM0_BA(1 DOWNTO 0) <= sdram0_mem_signals(12 DOWNTO 11);
SDRAM0_ADDRESS(10 DOWNTO 0) <= sdramO_mem_signals(10 DOWNTO 0);

SDRAMl_nWE <= sdraml_mein_signals(15) ;
SDRAMl_nCAS <= sdraml_mem_signals(14) ;
SDRAMl_nRAS <= sdraml_meni_signals (13) ;
SDRAM1_BA(1 DOWNTO 0) <= sdraml_mem_signals(12 DOWNTO 11);
SDRAM1_ADDRESS(10 DOWNTO 0) <= sdraml_mem_signals(10 DOWNTO 0);

INPUT_REGISTER : LPM_FF
GENERIC MAP(LPM_WIDTH => 17)
PORT MAP(data => input_mem_signals, clock => CLK, q =>

registered_input_mem_signals);

IN_FIFO_RD <= registered_input_mem_signals(16);

CONTROL_BUSSES:
FOR i IN 0 to 15 GENERATE

SDRAM0_CONTROL_BUS: TRI
PORT MAP(a_in => registered_input_mem_signals(i), oe => nMEM_SEL, a_out =>

sdram0_mem_signals(i));

SDRAM1_CONTROL_BUS: TRI
PORT MAP(a_in => registered_input_mem_signals(i), oe => MEM_SEL, a_out =>

sdraml_mem_signals(i));
END GENERATE;

END ONE;

ADI Memory Switch
LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY 1pm;
USE 1pm.lpm_component s.ALL;

ENTITY MEM_SWITCH IS
PORT
(

tp_hs_en, tp_vs_en: OUT STD_LOGIC;

81

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;

SEL: OUT STD_LOGIC;
NOT_FIRST_FRAME: OUT STD_LOGIC

);
END MEM_SWITCH;

ARCHITECTURE ONE OF MEM_SWITCH IS

SIGNAL OUtput_vsyilC: STD_LOGIC;
SIGNAL output_vsync_pulse : STD_LOGIC;

SIGNAL sel_ff_data, sel_ff_q : STD_LOGIC_VECTOR(0 DOWNTO 0)

TYPE state_type IS (remaining_vsyncs, first_vsync);
SIGNAL ps, ns : state_type := remaining_vsyncs;

COMPONENT lvl2pls
PORT(

d : IN STD_LOGIC;
clock : IN STD_LOGIC;
q : OUT STD_LOGIC) ;

END COMPONENT;

BEGIN

VSYNC_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 2, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => VSYNC_PULSE, cout => output_vsync);

VSYNC_LVL2PLS: lvl2pls
PORT MAP(d => output_vsync, clock => CLK, q => output_vsync_pulse) ,-

MEM_SEL_FF: lpm_ff
GENERIC MAP(LPM_WIDTH => 1)
PORT MAP(clock => CLK, enable => output_vsync_pulse, data => sel_ff_data, q =>

sel_ff_q);

sel_ff_data(0) <= NOT sel_ff_q(0);
SEL <= sel_ff_q(0);

PROCESS(ps, output_vsync_pulse, VSYNC_PULSE)
BEGIN

CASE ps IS

WHEN remaining_vsyncs =>
NOT_FIRST_FRAME <= ' 1' ;

IF output_vsync_pulse = '1' THEN
ns <= first_vsync;

ELSE
ns <= remaining_vsyncs;

END IF;

WHEN first_vsync =>
NOT_FIRST_FRAME <= '0';

IF VSYNC_PULSE = '1' THEN
ns <= remaining_vsyncs;

ELSE
ns <= first_vsync;

END IF;

END CASE;
END PROCESS;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

82

IF CLK = '1' THEN
ps <= ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

SDRAM Output Memory Interface
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all,-

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY SDRAM_INTERFACE IS
PORT
(

CLK : IN STD_LOGIC;
MEM_SEL : IN STD_LOGIC;

OUTPUT_VSYNC_PULSE : IN STD_LOGIC;
OUTPUT_HSYNC_PULSE : IN STD_LOGIC;

SDRAMO_DATA, SDRAM1_DATA : IN STD_LOGIC_VECTOR (23 DOWNTO 0);

SDRAMO_nWE, SDRAMO_nCAS, SDRAMO_nRAS : OUT STD_LOGIC;
SDRAM0_BA : OUT STD_L0GIC_VECT0R(1 DOWNTO 0);
SDRAMO_ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0);

SDRAMl_nWE, SDRAMl_nCAS, SDRAMl_nRAS : OUT STD_LOGIC;
SDRAM1_BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) ;
SDRAM1_ADDRESS : OUT STD_LOGIC_VECTOR (10 DOWNTO 0);

OUT_FIFO_WR : OUT STD_LOGIC;
OUT_FIFO_DATA : OUT STD_LOGIC_VECTOR (23 DOWNTO 0)

);
END SDRAM_INTERFACE;

ARCHITECTURE ONE OF SDRAM_INTERFACE IS

SIGNAL nMEM_SEL: STD_LOGIC;
SIGNAL OUT_FIFO_WR_PIPE_IN : STD_LOGIC;
SIGNAL MEM_SEL_VECTOR : STD_LOGIC_VECTOR (0 DOWNTO 0);

SIGNAL output_mem_signals, registered_output_meir_signals, sdramO_mem_signals,
sdraml_mem_signals : STD_LOGIC_VECTOR(15 DOWNTO 0);

SIGNAL OUTPUT_nWE, OUTPUT_nCAS, OUTPUT_nRAS : STD_LOGIC;
SIGNAL OUTPUT_BA : STD_LOGIC_VECTOR(l DOWNTO 0);
SIGNAL OUTPUT_ADDRESS : STD_LOGIC_VECTOR (10 DOWNTO 0);
SIGNAL SDRAM_DATA : STD_LOGIC_2D (1 DOWNTO 0, 23 DOWNTO 0);

COMPONENT OUTPUT_MEM_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
HSYNC_PULSE : IN STD_LOGIC;

OUT_FIFO_WR : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR(l DOWNTO 0);
ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0)

);
END COMPONENT;

83

BEGIN

OUPUT_CONTROL : OUTPUT_MEM_CONTROL
PORT MAP(

CLK => CLK,
VSYNC_PULSE => OUTPUT_VSYNC_PULSE,
HSYNC_PULSE -> OUTPUT_HSYNC_PULSE,
OUT_FIFO_WR => OUT_FIFO_WR_PIPE_IN,
nWE => OUTPUT_nWE,
nCAS => OUTPUT_nCAS,
nRAS => OUTPUT_nRAS,
BA => OUTPUT_BA,
ADDRESS => OUTPUT_ADDRESS

);

nMEM_SEL <= NOT MEM_SEL;

OUT_FIFO_WR_PIPE : LPM_SHIFTREG
GENERIC MAP(LPM_WIDTH => 4)
PORT MAP(shiftin => OUT_FIFO_WR_PIPE_IN, clock => CLK, shiftout => OUT_FIFO_WR)

output_mem_signals <=
OUTPUT_nWE &
OUTPUT_nCAS &
OUTPUT_nRAS &
OUTPUT_BA(l DOWNTO 0) &
OUTPUT_ADDRESS(10 DOWNTO 0);

INPUT_REGISTER : LPM_FF
GENERIC MAP(LPM_WIDTH => 16)
PORT MAP(data => output_mem_signals, clock => CLK, q =>

registered_output_mem_signals);

CONTROL_BUSSES:
FOR i IN 0 TO 15 GENERATE

SDRAM0_CONTROL_BUS : TRI
PORT MAP(a_in => registered_output_mem_signals(i), oe => nMEM_SEL, a_out =>

sdramO_mem_signals(i));

SDRAMl_CONTROL_BUS: TRI
PORT MAP(a_in => registered_output_mem_signals(i), oe => MEM_SEL, a_out =>

sdraml_mem_signals(i));
END GENERATE;

SDRAM0_nWE <= sdramO_mem_signals (15) ,-
SDRAM0_nCAS <= sdramO_men_signals (14) ;
SDRAM0_nRAS <= sdramO_mein_signals (13) ,-
SDRAM0_BA(1 DOWNTO 0) <= sdramO_mem_signals(12 DOWNTO 11);
SDRAM0_ADDRESS(10 DOWNTO 0) <= sdramO_mem_signals(10 DOWNTO 0);

SDRAMl_nWE <= sdraml_mem_signals(15);
SDRAMl_nCAS <= sdraml_mem_signals(14) ;
SDRAMl_nRAS <= sdraml_mem_signals(13);
SDRAM1_BA(1 DOWNTO 0) <= sdraml_mem_signals(12 DOWNTO 11);
SDRAM1_ADDRESS(10 DOWNTO 0) <= sdraml_mem_signals(10 DOWNTO 0);

DATA_BUSSES:
FOR i IN 0 to 23 GENERATE

SDRAM_DATA (0 , i) <= SDRAM0_DATA (i) ;
SDRAM_DATA(1, i) <= SDRAM1_DATA(i);

END GENERATE;

MEM_SEL_VECTOR(0) <= MEM_SEL;

OUT_FIFO_DATA_MUX : lpm_mux
GENERIC MAP(LPM_WIDTH => 24, LPM_SIZE => 2, LPM_WIDTHS => 1, LPM_PIPELINE => 1)
PORT MAP(data => SDRAM_DATA, clock => CLK, sei => MEM_SEL_VECTOR, result =>

OUT_FIFO_DATA);

END ONE;

84

Output Timing Control
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY lpm;
USE lpm.lpm_components.ALL;

ENTITY OUTPUT_TIMING_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
HSYNC_PULSE : IN STD_LOGIC;

FIFO_RD: OUT STD_LOGIC;
DE : OUT STD_LOGIC

>;
END OUTPUT_TIMING_CONTROL;

ARCHITECTURE ONE OF OUTPUT_TIMING_CONTROL IS

TYPE state_type IS (
wait_for_vsync,
wait_for_vertical_active,
wait_for_hsync,
wait_for_horizontal_active,
display_enable

);

SIGNAL ns : state_type := wait_for_vsync;
SIGNAL ps : state_type := wait_for_vsync;

SIGNAL pixel_count_en, line_complete: STD_LOGIC;
SIGNAL pixel_count, pixels_per_line : STD_LOGIC_VECTOR(10 DOWNTO 0);

SIGNAL frame_complete: STD_LOGIC;
SIGNAL line_COunt : STD_LOGIC_VECTOR(9 DOWNTO 0);

SIGNAL front_porch_lines : STD_LOGIC_VECTOR(9 DOWNTO 0);
SIGNAL front_porch_pixels : STD_LOGIC_VECTOR(10 DOWNTO 0);

SIGNAL vertical_active_rdy, horizontal_active_rdy : STD_LOGIC;

BEGIN

PIXEL_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 11, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => pixel_count_en, q => pixel_count, sclr =>

HSYNC_PULSE) ;

PIXEL_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 11)
PORT MAP(dataa => pixel_count, datab => pixels_per_line, aeb => line_complete)

PIXELS_PER_LINE_CONSTANT : lpm_constant
GENERIC MAP(LPM_WIDTH => 11, LPM_CVALUE => 1290)
PORT MAP(result => pixels_per_line);

H_FRONT_PORCH_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 11)
PORT MAP(dataa => pixel_count, datab => front_porch_pixels, aeb =>

horizontal_active_rdy);

H_FRONT_PORCH_CONSTANT : lpm_Constant

85

GENERIC MAP(LPM_WIDTH => 11, LPM_CVALUE => 10)
PORT MAP(result => front_porch_pixels);

LINE_COUNTER : lpm_counter
GENERIC MAP (LPM_WIDTH => 10, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => HSYNC_PULSE, q => line_count, sclr =>

VSYNC_PULSE, cout => frame_complete) ;

V_FRONT_PORCH_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 10)
PORT MAP(dataa => line_count, datab => front_porch_lines, aeb =>

vertical_active_rdy);

V_FRONT_PORCH_CONSTANT : lpm_constant
GENERIC MAP(LPM_WIDTH => 10, LPM_CVALUE => 5)
PORT MAP(result => front__porch_lines) ,-

SM:
PROCESS(ps, HSYNC_PULSE, VSYNC_PULSE, vertical_active_rdy, horizontal_active_rdy,

line_complete, frame_complete)
BEGIN

IF VSYNC_PULSE = '1' THEN
ns <= wait_for_vertical_active;

ELSE
CASE ps IS

WHEN wait_for_vsync =>
pixel_count_en <= ' 0' ;
FIFO_RD <= '0';
DE <= ' 0 ' ;

ns <= wait_for_vsync;

WHEN wait_for_vertical_active =>
pixel_count_en <= ' 0' ;
FIFO_RD.<= '0';
DE <= '0';

IF vertical_active_rdy = '1' THEN
ns <= wait_for_hsync;

ELSE
ns <= wait_for_vertical_active;

END IF;

WHEN wait_for_hsync =>
pixel_count_en <= '0';
FIFO_RD <= '0';
DE <= '0';

IF HSYNC_PULSE = '1' THEN
ns <= wait_for_horizontal_active ;

ELSE
ns <= wait_for_hsync;

END IF;

WHEN wait_for_horizontal_active =>
pixel_count_en <= '1';
FIFO_RD <= '0';
DE <= '0';

IF horizontal_active_rdy = '1' THEN
ns <= display_enable;

ELSE
ns <= wait_for_horizontal_active ;

END IF;

WHEN display_enable =>
pixel_count_en <= '1';
FIFO_RD <= '1 ' ;
DE <= '1';

86

IF line_complete = '1' THEN
IF frame_complete = '1' THEN

ns <= wait_for_vsync;
ELSE

ns <= wait_for_hsync;
END IF;

ELSE
ns <= display_enable ;

END IF;

END CASE;
END IF;

END PROCESS SM;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

IF CLK = '1' THEN
ps <= ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

ADI Input Memory Controller
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY 1pm;
USE lpm.lpm_components.ALL;

ENTITY INPUT_MEM_CONTROL IS
PORT
(

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
IN_FIFO_FULL : IN STD_LOGIC;

IN_FIFO_RD : OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_L0GIC_VECT0R(1 DOWNTO 0);
ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0)

);
END INPUT_MEM_CONTROL;

ARCHITECTURE ONE OF INPUT_MEM_CONTROL IS
CONSTANT NUM_REFRESH_CYCLES: STD_LOGIC_VECTOR := "111";

SIGNAL refresh_en, refresh_load, refresh_rdy : STD_L0GIC;
SIGNAL refresh_cnt : STD_LOGIC_VECTOR(2 downto 0);

TYPE init_state_type IS (start, wait_for_frame, precharge, refresh_nop, auto_refreshl,
wait_for_refreshl, auto_refresh2, wait_for_refresh2, load_mode_reg, done);

SIGNAL init_ps, init_ns : init_state_type := start;

TYPE memory_state_type is (initialize, normal_operation);
SIGNAL memory_ps, memory_ns : memory_state_type := initialize;

87

TYPE normal_op_state_type IS (wait_for_FIFO, active, pre_write_nop, write_first_word,
burst, last_word, burst_terminate, precharge_nopl, precharge_nop2, precharge_nop3, refresh,
refresh_nop, auto_refresh, wait_for_refresh);

SIGNAL normal_op_ps, normal_op_ns : normal_op_state_type := wait_for_FIFO;

TYPE sdram_cmd_type IS (nop, active, read, write, precharge, refresh, load_jmode_reg,
burst_terminate) ;

SIGNAL sdram_cmd : sdram_cmd_type,-
SIGNAL test : std_logic_vector(2 DOWNTO 0) ,-

SIGNAL row_rdy, column_rdy, column_en, row_en, bank_en : STD_LOGIC;
SIGNAL bank_count : STD_LOGIC_VECTOR(l DOWNTO 0);
SIGNAL row_count, row_count_ready : STD_LOGIC_VECTOR(10 DOWNTO 0) ;
SIGNAL column_count : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL word_count_en, word_count_clr, word_count_rdy : STD_LOGIC;

BEGIN

nRAS <= test (2) ;
nCAS <= test (1);
nWE <=' test(0) ;

WITH sdram_citid SELECT
test <= "0111" WHEN nop,

"Oil" WHEN active,
"101" WHEN read,
"100" WHEN write,
"010" WHEN precharge,
"001" WHEN refresh,
"110" WHEN burst_terminate,
"000" WHEN load_mode_reg;

AUTO_REFRESH_COUNTER : lpin_counter
GENERIC MAP (LPM_WIDTH => 3, LPM_DIRECTION => "DOWN")
PORT MAP(data => refresh_cnt, clock => CLK, cnt^en => refresh_en, sload =>

refresh_load, cout => refresh_rdy);

COLUMN_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 8, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => column_en, q => column_count, sclr =>

VSYNC_PULSE, cout => column_rdy);

ROW_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 11, LPM_DIRECTION => "UP")
PORT MAP (clock => CLK, cnt_en => row_en, q => row_count, sclr => VSYNC_PULSE);

ROW_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 11)
PORT MAP(dataa => row_count, datab => row_count_ready, aeb => row_rdy);

ROW_COUNT_READY_CONSTANT : lpm_COnstant
GENERIC MAP (LPM_WIDTH => 11, LPM_CVALUE => 1280)
PORT MAP(result => row_count_ready);

BANK_COUNTER: lpm_counter
GENERIC MAP (LPM_WIDTH => 2, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => bank_en, q => bank_count, sclr => VSYNC_PULSE);

WORD_COUNTER: lpm_counter
GENERIC MAP (LPM_WIDTH => 1, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => word_count_en, sclr => word_count_clr, cout =>

word_count_rdy);

SM:
PROCESS(memory_ps, init_ps, normal_op_ps, VSYNC_PULSE, refresh_rdy)
BEGIN

CASE memory_ps IS
WHEN initialize =>

IN_FIFO_RD <= '0';
normal_op_ns <= wait_for_FIFO;

column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= ' 0' ;

CASE init_ps IS
WHEN start=>

refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= ' 0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
• IF VSYNC_PULSE= '1' THEN

init_ns <= wait_for_frame;
ELSE

init_ns <= start;
END IF;

WHEN wait_for_frame=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF VSYNC_PULSE= '1' THEN

init_ns <= precharge;
ELSE

init_ns <= wait_for_frame;
END IF;

WHEN precharge=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= refresh_nop;

WHEN refresh_nop=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= auto_refreshl;

WHEN auto_refreshl=>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refreshl;

WHEN wait_for_refreshl=>
refresh_cnt <= "000";
refresh_en <= '1';

89

refresh_load <= ' 0 ' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= '1' THEN

init_ns <= auto_refresh2;
ELSE

init_ns <= wait_for_refreshl;
END IF;

WHEN auto_refresh2=>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refresh2;

WHEN wait_for_refresh2=>
refresh_cnt <= "000";
refresh_en <= '1' ;
refresh_load <= '0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= '1' THEN

init_ns <= load_mode_reg;
ELSE

init_ns <= wait_for_refresh2;
END IF;

WHEN load_mode_reg=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= load_mode_reg;
ADDRESS <= "00000110111";
BA <= "00";

memory_ns <= initialize;
init_ns <= done;

WHEN done=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

init_ns <= done;
memory_ns <= normal_operation;

END CASE;

WHEN normal_operation =>

memory_ns <= normal_operation;
init_ns <= done;

CASE normal_op_ps IS
WHEN wait_for_FIFO =>

refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";

90

BA <= "00";
column_en <= ' 0' ;
row_en <= '0';
bank_en <= ' 0' ;
word_count_en <= ' 0' ;
word_count_clr <= '1';
IN_FIFO_RD <= '0';

IF IN_FIFO_FULL = '1' THEN
normal_op_ns <= active,-

ELSE
normal_op_ns <= wait_for_FIFO;

END IF;

WHEN active =>
refreshment <= "000";
refresh_en <= ' 0' ;
refresh_load <= '0';
sdram_cmd <= active;
ADDRESS <= row_count;
BA <= bank_count;
IN_FIFO_RD <= '1';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= pre_write_nop;

WHEN pre_write_nop =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= ■0';
column_en <= '1';
row_en <= '0';
bank_en <= ' 0';
word_count_en <= '0';
word_co\int_clr <= ' 0 ' ;

normal_op_ns <= write_first_word;

WHEN write_first_word =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= write;
ADDRESS <= "10000000000":
BA <= bank_count;
IN_FIFO_RD <= '1';
column_en <= '1';
row_en <= '0';
bank_en <= '0';
word_count_en <= '1';
word_count_clr <= '0';

normal_op_ns <= burst;

WHEN burst =>
refreshment <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000"
BA <= "00" ,-
column_en <= '1';

91

row_en <= ' 0' ;
bank_en <= ' 0' ;
word_count_en <= ' 1' ;
word_count_clr <= ' 0' ;

IF coluinn_rdy = '1' THEN
IN_FIFO_RD <= '0';
normal_op_ns <= last_word;

ELSE
IN_FIFO_RD <= NOT word_count_rdy;
normal_op_ns <= burst;

END IF;

WHEN last_word =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
word_count_clr <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '1';
IN_FIFO_RD <= '0';

normal_op_ns <= burst_terminate;

WHEN burst_terminate =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= ' 0 ' ,-
sdram_cmd <= burst_terminate;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
word_count_clr <= '0';
column_en <= '0';
row_en <= '1';
bank_en <= row_rdy;
word_count_en <= '1' ;

normal_op_ns <= precharge_nopl ;

WHEN precharge_nopl =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
column_en <= '0';
row_en <= '0 ' ;
bank_en <= '0 ' ;
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= precharge_nop2 ,-

WHEN precharge_nop2 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
column_en <= '0';
row_en <= '0';

92

bank_en <= ' 0 ' ,-
word_count_en <= ' 0' ;
word_count_clr <= '0';

normal_op_ns <= precharge_nop3;

WHEN precharge_nop3 =>
refresh_cnt <= "000";
refresh_en <= ' 0' ;
refresh_load <= ' 0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= ' 0 ' ;
column_en <= ' 0' ;
row_en <= '0';
bank_en <= '0';
word_count_en <= ' 0';
word_count_clr <= '0';

normal_op_ns <= refresh;

WHEN refresh=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";
IN_FIFO_RD <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= '0';
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= refresh_nop;

WHEN refresh_nop=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
column_en <= '0';
row_en <= '0 ' ;
bank_en <= ' 0' ;
word_count_en <= '0';
word_count_clr <= '0';

normal_op_ns <= auto_refresh;

WHEN auto_refresh =>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
column_en <= '0';
row_en <= '0';
bank_en <= ' 0' ;
word_count_en <= '0';
word_count_clr <= '.0 ' ;

normal_op_ns <= wait_for_refresh;

WHEN wait_for_refresh =>

93

refresh_cnt <= "000";
refresh_en <= '1';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
IN_FIFO_RD <= '0';
column_en <= '0' ;
row_en <= ' 0' ;
bank_en <= ' 0' ;
word_count_en <= '0 ' ;
word_count_clr <= '0' ;

IF refresh_rdy= '1' THEN
normal_op_ns <= wait_for_FIFO;

ELSE
normal_op_ns <= wait_for_refresh;

END IF;

END CASE;
END CASE;

END PROCESS SM;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

IF CLK = '1' THEN
memory_ps <= memory_ns;
init_ps <= init_ns;
normal_op_ps <= normal_op_ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

ADI Output Memory Controller
LIBRARY altera;
USE altera.maxplus2.ALL;

LIBRARY ieee;
USE ieee.std_logic_1164.all;

LIBRARY 1pm;
USE 1pm.lpm_components.ALL;

ENTITY OUTPUT_MEM_CONTROL IS
PORT

CLK : IN STD_LOGIC;
VSYNC_PULSE : IN STD_LOGIC;
HSYNC_PULSE : IN STD_LOGIC;

OUT_FIFO_WR: OUT STD_LOGIC;
nWE, nCAS, nRAS : OUT STD_LOGIC;
BA : OUT STD_LOGIC_VECTOR (1 DOWNTO 0) ;
ADDRESS : OUT STD_LOGIC_VECTOR(10 DOWNTO 0)

);
END OUTPUT_MEM_CONTROL;

ARCHITECTURE ONE OF OUTPUT_MEM_CONTROL IS
CONSTANT NUM_REFRESH_CYCLES: STD_LOGIC_VECTOR := "111";

SIGNAL refresh_en, refresh_load, refresh_rdy : STD_LOGIC;
SIGNAL refresh_cnt : STD_LOGIC_VECTOR(2 downto 0);

94

TYPE init_state_type IS (
start,
wait_for_frame,
precharge,
refresh_nop,
auto_refreshl,
wait_for_refreshl,
auto_refresh2,
wait_for_refresh2,
load_mode_reg,
done

SIGNAL init_ps, init_ns : init_state_type := start;

TYPE memory_state_type IS (initialize, normal_operation);
SIGNAL memory_ps, memory_ns : memory_state_type := initialize;

TYPE normal_op_state_type IS .(
wait_for_vsync,
wait_for_active_video,
wait_for_hsync,
active,
pre_read_nop,
read_first_word,
burst,
read_last_word,
burst_terminate,
precharge_nopl,
precharge_nop2,
precharge_nop3,
refresh,
refresh_nop,
auto_refresh,
wait_for_refresh

);

SIGNAL normal_op_ns : normal_op_state_type := wait_for_vsync;
SIGNAL normal_op_ps : normal_op_state_type := wait_for_vsync;

TYPE sdram_cmd_type IS (
nop,
active,
read,
write,
precharge,
refresh,
load_mode_reg,
burst_terminate

);

SIGNAL sdram_cmd : sdram_cmd_type;
SIGNAL test : std_logic_vector(2 DOWNTO 0) ;

SIGNAL row_en, row_rdy : STD_LOGIC;
SIGNAL column_en, column_rdy : STD_LOGIC;
SIGNAL bank_en, bank_rdy : STD_LOGIC;
SIGNAL frame_en, frame_rdy : STD_LOGIC;
SIGNAL line_en, line_rdy : STD_LOGIC;

SIGNAL bank_count : STD_LOGIC_VECTOR(1 DOWNTO 0);
SIGNAL row_count, row_count_ready : STD_LOGIC_VECTOR(10 DOWNTO 0);
SIGNAL line_count, line_count_ready : STD_LOGIC_VECTOR(2 DOWNTO 0);
SIGNAL column_COUnt : STD_LOGIC_VECTOR(7 DOWNTO 0);

SIGNAL front_porch_count, front_porch_lines : STD_LOGIC_VECTOR(3 DOWNTO 0)
SIGNAL active_video_rdy : STD_LOGIC;

BEGIN

95

nRAS <= test(2);
nCAS <= test(l);
nWE <= test(O) ,-

WITH sdram_cmd SELECT
test <=

"111" WHEN nop,
"Oil" WHEN active,
"101" WHEN read,
"100" WHEN write,
"010" WHEN precharge,
"001" WHEN refresh,
"110" WHEN burst_terminate,
"000" WHEN load_mode_reg;

AUTO_REFRESH_COUNTER : lpm_COunter ,
GENERIC MAP (LPM_WIDTH => 3, LPM_DIRECTION => "DOWN")
PORT MAP(data => refresh_cnt, clock => CLK, cnt_en => refresh_en, sload =>

refresh_load, cout => refresh_rdy) ,-

COLUMN_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 8, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => column_en, q => column_count, sclr =>

VSYNC_PULSE, cout => column_rdy);

ROW_COUNTER : lpm_COunter
GENERIC MAP(LPM_WIDTH => 11, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => row_en, q => row_count, sclr => VSYNC_PULSE);

ROW_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 11)
PORT MAP(dataa => row_count, datab => row_count_ready, aeb => row_rdy);

ROW_COUNT_READY_CONSTANT : lpm_constant
GENERIC MAP(LPM_WIDTH => 11, LPM_CVALUE -> 1280)
PORT MAPfresult => row_count_ready);

LINE_COUNTER : lpm_counter
GENERIC MAP(LPM_WIDTH => 3, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => line_en, q => line_count, sclr => HSYNC_PULSE)

LINE_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 3)
PORT MAP(dataa => line_count, datab => line_count_ready, aeb => line_rdy);

LINE_COUNT_READY_CONSTANT : lpm_Constant
GENERIC MAP(LPM_WIDTH => 3, LPM_CVALUE => 5)
PORT MAP(result => line_count_ready);

BANK_COUNTER: lpm_COunter
GENERIC MAP(LPM_WIDTH => 2, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => bank_en, q => bank_count, sclr => VSYNC_PULSE,

cout => bank^rdy);

FRAME_COUNTER: lpm_counter
GENERIC MAP(LPM_WIDTH => 1, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => frame_en, sclr => VSYNC_PULSE, cout =>

frame_rdy);

FRONT_PORCH_COUNTER: lpm_COUHter
GENERIC MAP(LPM_WIDTH => 4, LPM_DIRECTION => "UP")
PORT MAP(clock => CLK, cnt_en => HSYNC_PULSE, sclr => VSYNC_PULSE, q =>

front_porch_count);

FRONT_PORCH_COMPARE : lpm_compare
GENERIC MAP(LPM_WIDTH => 4)
PORT MAP(dataa -> front_porch_count, datab => front_porch_lines, aeb =>

active_video_rdy);

FRONT_PORCH_LINES_CONSTANT : lpm_constant

96

GENERIC MAP(LPM_WIDTH => 4, LPM_CVALUE => 10)
PORT MAP(result => front_porch_lines);

SM:
PROCESS(memory_j?s, init_ps, normal_op_ps, HSYNC_PULSE, VSYNC_PULSE, refresh_rdy,

column_rdy, frame_rdy, active_video_rdy)
BEGIN

CASE memory_ps IS
WHEN initialize =>

OUT_FIFO_WR <= ' 0 ' ;
normal_op_ns <= wait_for_vsync;
column_en <= '0';
row_en <= '0';
line_en <= '0';
bank_en <= ' 0 ' ;
frame_en <= ' 0 ' ,-

CASE init_ps IS
WHEN Start =>

refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF VSYNC_PULSE= '1' THEN

init_ns <= wait_for_frame;
ELSE

init_ns <= start;
END IF;

WHEN wait_for_frame =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00" ;

memory_ns <= initialize;
IF VSYNC_PULSE= '1' THEN

init_ns <= precharge;
ELSE

init_ns <= wait_for_frame;
END IF;

WHEN precharge =>
refreshment <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= refresh_nop;

WHEN refresh_nop =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= auto_refreshl;

WHEN auto_refreshl =>

97

refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= ' 0' ;
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refreshl;

WHEN wait_for_refreshl =>
refresh_cnt <= "000";
refresh_en <= ' 1' ;
ref resh_load <= ' 0 ' ,-
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= .' 1' THEN

init_ns <= auto_refresh2;
ELSE

init_ns <= wait_for_refreshl;
END IF;

WHEN auto_refresh2 =>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= '1';
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
init_ns <= wait_for_refresh2;

WHEN wait_for_refresh2 =>
refresh_cnt <= "000";
refresh_en <= '1';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

memory_ns <= initialize;
IF refresh_rdy= '1' THEN

init_ns <= load_mode_reg;
ELSE

init_ns <= wait_for_refresh2;
END IF;

WHEN load_mode_reg =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= load_mode_reg;
ADDRESS <= "00000110111";
BA <= "00";

memory_ns <= initialize;
init_ns <= done;

WHEN done =>
refreshment <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";

init_ns <= done;
memory_ns <= normal_operation;

END CASE;

98

WHEN normal_operation =>
memory_ns <= normal_operation;
init_ns <= done;

CASE normal_op_ps IS
WHEN wait_for_active_video =>

refreshment <= "000";
ref resh_en <= ' 0 ' ;
refresh_load <= ' 0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= ' 0' ;
row_en <= ' 0 ' ;
line_en <= ' 0 ' ;
bank_en <= '0';
frame_en <= ' 0' ;
OUT_FIFO_WR <= '0';

IF active_video_rdy = '1' THEN
normal_op_ns <= wait_for_hsync;

ELSE
normal_op_ns <= wait_for_active_video;

END IF;

WHEN wait_for_hsync=>
refresh_cnt <= "000"; i
refresh_en <= ' 0 ' ;
refresh_load <= ' 0 ' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
coliamn_en <= ' 0 ' ;
row_en <= '0';
line_en <= '0';
bank_en <= '0';
frame_en <= ' 0 ' ;
OUT_FIFO_WR <= '0';

IF HSYNC_PULSE = '1' THEN
normal_op_ns <= active;

ELSE
normal_op_ns' <= wait_for_hsync;

END IF;

WHEN active =>
refreshment <= "000";
refresh_en <= '0 ' ;
ref resh_load <= ' 0 ' ,-
sdram_cmd <= active;
ADDRESS <= row_count;
BA <= bank_count;
column_en <= '0';
row_en <= '0';
line_en <= '0';
bank_en <= '0 ' ;
frame_en <= '0 ' ;
OUT_FIFO_WR <= '0';

normal_op_ns <= pre_read_nop;

WHEN pre_read_nop =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '1' ;
row_en <= '0';

99

line_en <= ' 0' ;
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '0' ;

normal_op_ns <= read_first_word;

WHEN read_first_word =>
refreshment <= "000";
ref resh_en <= ' 0 ' ,-
refresh_load <= ' 0 ' ;
sdram_cmd <= read;
ADDRESS <= "10000000000";
BA <= bank_count;
column_en <= ' 1' ;
row_en <= '0';
line_en <= ' 0' ;
bank_en <= ' 0' ;
f rame_en <= ' 0 ' ,-
OUT_FIFO_WR <= ' 0 ' ;

normal_op_ns <= burst;

WHEN burst =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '1';
row_en <= '0';
line_en <= '0';
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '1';

IF column_rdy = '1' THEN
normal_op_ns <= read_last_word;

ELSE
normal_op_ns <= burst ,-

END IF;

WHEN read_last_word=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '0';
row_en <= '0';
line_en <= '0';
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '1';

normal_op_ns <= burst_terminate;

WHEN burst_terminate =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= burst_terminate;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '0';
row_en <= '1';
line_en <='!';
bank_en <= row_rdy;
frame_en <= bank_rdy AND row_rdy;

100

OUT_FIFO_WR <= ' 1 ' ;

normal_op_ns <= precharge_nopl;

WHEN precharge_nopl =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= ' 0' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
coluinn_en <= ' 0' ;
row_en <= '0';
line_en <= '0';
bank_en <= '0 ' ;
frame_en <= '0';

. OUT_FIFO_WR <= ' 0 ' ;

normal_op_ns <= precharge_nop2;

WHEN precharge_nop2 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= ' 0 ' ,-
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '0';
row_en <= '0';
line_en <= '0';
bank_en <= '0' ;
frame_en <= '0 ' ;
OUT_FIFO_WR <= ' 0 ' ;

normal_op_ns <= precharge_nop3;

WHEN precharge_nop3 =>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
coluirai_en <= ' 0 ' ;
row_en <= '0';
line_en <= '0';
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '0';

normal_op_ns <= refresh;

WHEN refresh=>
refresh_cnt <= "000";
refresh_en <= '0';
refresh_load <= '0';
sdram_cmd <= precharge;
ADDRESS <= "10000000000";
BA <= "00";
column_en <= '0' ;
row_en <= '0 ' ;
line_en <= '0';
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '0';

normal_op_ns <= refresh_nop;

WHEN refresh_nop=>
refresh_cnt <= "000";
refresh_en <= '0';

101

refresh_load <= ' 0 ' ,-
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '0';
row_en <= ' 0 ' ;
line_en <= ' 0' ;
bank_en <= ' 0 ' ;
frame_en <= ' 0' ;
OUT_FIFO_WR <= ' 0 ' ;

normal_op_ns <= auto_refresh;

WHEN auto_refresh =>
refresh_cnt <= NUM_REFRESH_CYCLES;
refresh_en <= '0';
refresh_load <= ' 1' ;
sdram_cmd <= refresh;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= ' 0 ' ;
row_en <= '0 ' ;
line_en <= '0';
bank_en <= '0';
frame_en <= ' 0 ' ;
OUT_FIFO_WR <= ' 0 ' ;

normal_op_ns <= wait_for_refresh;

WHEN wait_for_refresh =>
refresh_cnt <= "000";
refresh_en <= '1';
refresh_load <= '0 ' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= '0';
row_en <= '0';
line_en <= '0';
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= ' 0 ' ;

IF refresh_rdy= '1' THEN
IF frame_rdy = '1' THEN

normal_op_ns <= wait_for_vsync;
ELSE

IF line_rdy = '!' THEN
normal_op_ns <=

wait_for_hsync;
ELSE

normal_op_ns <= active;
END IF;

END IF;
ELSE

normal_op_ns <= wait_for_refresh;
END IF;

WHEN wait_for_vsync =>
refresh_cnt <= "000";
refresh_en <= '0 ' ;
refresh_load <= '0 ' ;
sdram_cmd <= nop;
ADDRESS <= "00000000000";
BA <= "00";
column_en <= ' 0 ' ;
row_en <= '0';
line_en <= '0';
bank_en <= '0';
frame_en <= '0';
OUT_FIFO_WR <= '0';

102

IF VSYNC_PULSE = ' 1 ' THEN
normal_op_ns <= wait_for_active_video,-

ELSE
normal_op_ns <= wait_for_vsync;

END IF;
END CASE;

END CASE;
END PROCESS SM;

STATE_HANDLER:
PROCESS(CLK)
BEGIN

IF CLK = '1' THEN
memory_ps <= memory_ns;
init_ps <= init_ns;
normal_op_ps <= normal_op_ns;

END IF;
END PROCESS STATE_HANDLER;

END ONE;

103

