
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS
SUPPORTING THE SECURE HALTING OF USER

SESSIONS AND PROCESSES IN THE LINUX OPERATING
SYSTEM

by

Jerome P. Brock

June 2001

Thesis Advisor:
Co-Advisor:

Paul C. Clark
Cynthia E. Irvine

Approved for public release; distribution is unlimited.

20010905 133

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

June 2001
3. REPORT TYPE AND DATES COVERED

Master's Thesis

4. TITLE AND SUBTITLE

Supporting The Secure Halting Of User Sessions And Processes In The Linux
Operating System

6. AUTHOR(S)

Brock, Jerome P.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School
Monterey, CA 93943-5000

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

The views expressed in this thesis are those of the author and do not reflect the official policy or position of
the Department of Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

One feature of a multi-level operating system is a requirement to manage multiple, simultaneous user-sessions
at different levels of security. This session management is performed through a trusted path between the user and
operating system. Critical to this functionality is the operating system's ability to temporarily halt dormant sessions,
thereby ensuring their inability to perform any actions within the system. Only when a session must be reactivated are
its processes returned to a runnable state.

This thesis presents an approach for adding this "secure halting" functionality to the Linux operating system.
A detailed design for modifying the Linux kernel, the core of the operating system, is given. A new module, allowing
an entire session to be halted and woken up, is designed. A new process state, the "secure halt" state, is added.
Additionally, the kernel's scheduling manager is modified to properly manage processes in the secure halt state. The
research has led to the implementation of the design as a proof of concept.

This research is meant to be used in combination with other efforts to enhance the security of the Linux
operating system.

14. SUBJECT TERMS

Secure Halt, Trusted Path, Secure Attention Key, Linux, Computer Security
15. NUMBER OF
PAGES

76

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

SUPPORTING THE SECURE HALTING OF USER SESSIONS AND
PROCESSES IN THE LINUX OPERATING SYSTEM

Jerome P. Brock
Captain, United States Army

B.S., United States Military Academy, 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 2001

Author:

Approved by:
Paul C. Clark

~r&-+-* S. T-^\^J-U^^_,

Cynthia E. Irvine

fc-^

Dan Boger, Chair
Department of ComputerlScience

in

IV

ABSTRACT

One feature of a multi-level operating system is a requirement to manage

multiple, simultaneous user-sessions at different levels of security. This session

management is performed through a trusted path between the user and operating system.

Critical to this functionality is the operating system's ability to temporarily halt dormant

sessions, thereby ensuring their inability to perform any actions within the system. Only

when a session must be reactivated are its processes returned to a runnable state.

This thesis presents an approach for adding this "secure halting" functionality to

the Linux operating system. A detailed design for modifying the Linux kernel, the core

of the operating system, is given. A new module, allowing an entire session to be halted

and woken up, is designed. A new process state, the "secure halt" state, is added.

Additionally, the kernel's scheduling manager is modified to properly manage processes

in the secure halt state. The research has led to the implementation of the design as a

proof of concept.

This research is meant to be used in combination with other efforts to enhance the

security of the Linux operating system.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. COMPUTER SECURITY 1
B. ACCESS CONTROL 1

1. Mandatory Access Control 2
2. Discretionary Access Control 2

C. IDENTIFICATION AND AUTHENTICATION ..3
D. THE TRUSTED PATH 3

1. Windows NT/2000 5
2. Trusted Solaris 7
3. STOP 9

E. SESSION CONTROL 11
E SUMMARY 11

H. PROCESS SECURE HALT MECHANISM DESIGN 13

A. PROCESS STATE MODIFICATIONS 13
1. Standard Process Lifecycle : 13
2. Fully Connected Secure Halt State Process Lifecycle 14
3. Single Entry Secure Halt State Process Lifecycle 16

B. SECURE HALT FLAG 18
C. SECURE HALT MECHANISM MODULES 19

1. Secure_Halt_Module 19
2. Secure_Halt_Session_Module 19
3. Secure_Halt_Routing_Module 20

HI. LINUX MODIFICATIONS 21

A. PROCESS STATES IN LINUX 21
1. Comparison of Standard Process States with Linux'

Implementation 22
2. Actual Linux Kernel Implementation of Process States 23
3. Linux Kernel Process State References 24

B. ADDING THE SECURE HALT FLAG AND STATE 25
1. Adding the Secure Halt Flag 25
2. Adding the Secure Halt State 26

C. SECURE HALT MECHANISM MODULES 26
1. Secure Halt Module 27
2. Secure Halt Session Module 28
3. Secure Halt Routing Module 29

a. The Linux Scheduler 29
b. Adding The Secure Halt Routing Module 30

Vll

IV. CONCLUSIONS 31

A. PROGRESS MADE 31
B. PROBLEMS ENCOUNTERED 31
C. FUTURE RESEARCH 32

1. Trusted Path 32
2. Disabling I/O Buffering 33
3. ps Command 33

APPENDIX A. MODULE DESIGN 35

A. SECURE HALT COMMON TYPES MODULE 35
B. SECURE_HALT_MODULE 35

1. init_secure_halt 35
2. is_secure_halted 36
3. secure_halt_task 37
4. secure_unhalt_task 38

C. SECURE_HALT_SESSION_MODULE 38
1. is_secure_halted_session 39
2. secure_halt_session 40
3. secure_unhalt_session 41

D. SECURE_HALT_ROUTING_MODULE 42
1. schedulable 42

APPENDDCB. SOURCE CODE 45

A. SECURE HALT COMMON TYPE MODULE 45
1. include/linux/secure_halt_types.h 45

B. SECURE_HALT_MODULE 45
1. include/linux/sched.h 45
2. include/linux/secure_halt.h 46
3. kernel/secure_halt.c 47

C. SECURE_HALT_SESSION_MODULE 49
1. include/linux/secure_halt_session.h 49
2. kernel/secure_halt_session.c 50

D. SECURE_HALT_ROUTING_MODULE 53
1. kernel/sched.c 53

APPENDK C. TESTING FRAMEWORK 55

A. GOAL 55
B. SOURCE CODE 55

1. drivers/char/sysrq.c 55
2. include/linux/secure_halt_test.h 55
3. drivers/char/secure halt teste 56

Vlll

LIST OF REFERENCES 59

INITIAL DISTRIBUTION LIST 61

IX

I. INTRODUCTION

A. COMPUTER SECURITY

Computers are everywhere. They provide useful services in an almost unlimited

range of areas. Given their widespread use, the importance of computer security cannot

be understated. Initial attempts at computer security revolved around physically

protecting the computer. Early computers were rare, large, expensive machines. One

user at a time would have access to the computer. There was no need to protect one

user's data from another's as only one user's data was on the computer at any one time.

Since then, the method of computer use has changed dramatically.

Modern computers are shared by multiple users. This necessitates protecting one

user's data from another's. This duty falls on the computer's operating system. An

operating system is a computer program that sits between the user's programs/data and

the hardware. One of its primary responsibilities is to accept user requests and decide the

most efficient manner in which to allocate its resources in order to accomplish the

request. As part of this responsibility, the operating system must decide if the user is

authorized access to the requested resource. This duty is known as access control.

B. ACCESS CONTROL

Modern operating systems provide some methodology of protecting users from

each other and the operating system from the users. This protection is called access

control. In general, access control requires that the operating system mediate all requests

by a user wishing to utilize a resource. In a computer, a process executing on behalf of a

user is known as a subject. An object is something on the system that must be protected,

i.e. files, printers, ports, etc.

The reference validation mechanism (RVM) is responsible for validating all

requests by a subject to access an object. The RVM does this by comparing the security

attributes of the subject with those of the object. If the access is acceptable in accordance

with the RVM's rule set, the RVM will allow the access. RVM rule sets fall into two

major categories: mandatory access control and discretionary access control.

1. Mandatory Access Control

In a mandatory access control (MAC) system, each subject and object's security

attributes are unchangeable. Certain individuals, usually the system administrators, are

responsible for specifying the security attributes of a newly created user ID. Those

security attributes specify a range of values. When a user logs on, he selects a value from

this range. This selected value is given to the user's initial subject when he first logs in.

2. Discretionary Access Control

With discretionary access control (DAC) the operating system also enforces a set

of access rules. The fundamental difference between MAC and DAC is that in a DAC

system an object's security attributes may be changed during its lifetime. DAC is

discretionary in that the authority for a subject to access an object is left to someone's

discretion. In most systems that someone is the user who owns a particular object,

however, some systems limit this discretion to some other selected individual. The

owner does not directly allocate access rights to subjects. Rather, the owner allocates

access rights to specific user IDs. Thus access to resources lies at the discretion of one or

more individuals.

C. IDENTIFICATION AND AUTHENTICATION

Identification is the process by which an entity informs another entity of their

existence. Authentication is the process by which one entity proves to another the

authenticity of the identification. In computers, the most common method of

identification and authentication is the use of a user ID and a password [GAS88]. The

operating system prompts the user to enter his user ID. It then prompts the user to enter

his password. The operating system then looks up the password entry for the supplied

user ID in an internally maintained database. If the password entry matches the one the

user supplied, he has successfully logged onto the system. Thus, the user ID is the

identification and the password is the authentication.

Clearly, the previous sections on MAC and DAC illustrate the importance of

accurate identification and authentication. Both systems rely on the user ID to set a

subject's security attributes. The subject's attributes are then used to determine what

actions may be performed. If an individual possesses the user ID and password of a

legitimate user, he can use them to log onto the system. As far as the system is

concerned, the individual is the legitimate user. After all, he provided the proper

identification and authentication. While a user's ID is usually not a secret, his password

is. A user must protect his password.

D. THE TRUSTED PATH

A potential difficulty in protecting a password from disclosure occurs during the

very time it must be divulged. During the logon procedure, the user must provide both

his user ID and password. As previously stated, the user ID / password pair is how the

user identifies and authenticates himself to the operating system. However, has the

operating system authenticated itself to the user? While the logon prompts may look like

they have been provided by the operating system's logon process, a user process

illegitimately masquerading as the logon process may have provided them. This

masquerading process can steal passwords. Such a process is an example of a "Trojan

horse."

A Trojan horse appears to be one thing when it is actually another [PLF97].

While it may or may not provide its expected services, it also provides some other service

that the user does not know about and would not willingly request. A Trojan horse acting

as the logon process and recording a user ID and password pair is known as a logon

spoofer. A logon spoofer can store the captured information and/or send it to an

unauthorized individual. This can result in unauthorized use of the computer system.

Some method is required to allow the operating system to authenticate itself to the user.

This method is known as a trusted path.

A trusted path is a communication channel between the user and the operating

system. It is invoked through some action initiated by the user that is guaranteed to result

in communication with the operating system directly. This may take the form of a certain

combination of keystrokes, as in the XTS-300 or Microsoft Windows NT/2000, or by

placing the mouse on a certain portion of the screen in a graphical user interface, as in

Trusted Solaris. The keystroke method of invoking the trusted path is referred to as a

secure attention key (SAK), because it is a secure method of requesting the operating

system's attention. On systems that support a trusted path, it must be invoked for actions

that require communication with security-critical portions of the operating system. Such

actions may include the previously mentioned process of logging on to the system,

changing a password, logging off, etc.

In the subsections that follow, the basic security features of several operating

systems are summarized. Specific attention is paid to the manner in which a user invokes

a trusted path and how the operating system ensures that user processes are not able to

interact with the user during the time that he is communicating with security-critical

portions of the operating system. Attention is also paid to the manner in which each

operating system handles simultaneous users.

1. Windows NT/2000

Microsoft Windows NT and Microsoft Windows 2000 are two operating systems

that enforce a discretionary access control. Both also provide an implementation of a

trusted path. The SAK for these systems is the pressing of the Ctrl-Alt-Del keys

simultaneously. This invokes a trusted path to the logon process. Only after these keys

are pressed does the logon dialog box appear. The user then enters his user ID and

password and is validated by the system. Note that in Windows 2000 Professional the

requirement to press the SAK in order to logon is not enabled by default. It is enabled by

default for the other products, e.g. NT Workstation, NT Server, and 2000 Server.

Once a user is logged onto the system, security critical communication with the

operating system is accomplished by pressing the SAK. This displays the "Windows

Security" dialog box [MICOO]. This consists of an information section which displays

the

• User ID

• Logon date and time

It also consists of a panel containing the following buttons:

• Lock Computer - locks the console until the S AK is again pressed and the
user reenters his password.

• Log Off - logs the user off of the system.

• Shut Down - logs the user off of the system and causes the operating
system to stop all programs, in an orderly manner, so the computer may be
turned off.

• Change Password - prompts the user to reenter his old password, for
confirmation, and type in, twice, a new password.

• Task Manager - brings up the task manager. The task manager allows the
user to kill applications or processes and to view system performance
information.

• Cancel - returns the user to whatever he was previously doing.

By requiring a user to press the SAK prior to logging on or changing his

password, Windows NT/2000 ensures that a logon-spoofing program left by another user

is not attempting to capture his password. The other actions (i.e., log off, shut down, and

displaying the task manager) can all be initiated through other means in addition to

pressing the SAK.

While multiple users may be simultaneously logged on to a Windows NT/2000

system, only one user at a time may be logged onto the computer from the physical

console. The other users must logon to the system via a network connection. For the

console user, the system ensures that pressing the SAK temporarily halts all screen output

of running processes during the time that the user is interacting with the trusted path.

Otherwise, a previous user could leave a trusted path window masquerade program

executing.

2. Trusted Solaris

Sun's Trusted Solaris 7 provides an implementation of a trusted path on an

operating system that enforces mandatory access control and discretionary access control.

Sun has chosen not to require the pressing of a set of keys to invoke a trusted path as part

of the logon process. All that is required to logon is for the user to enter his user ID in

one dialog box and then enter his password in another. This method is secure due to the

trusted path that is present when the user is logged on. When a user is logged on, the

bottom of the screen has an area known as the "trusted stripe." It displays security

information, such as the security level of the currently selected window. Whenever the

mouse cursor is positioned in an area of the graphical user interface that has direct

communication with the operating system, a trusted path indicator appears at the left end

of the trusted stripe. Trusted Solaris stops user level processes from drawing over the

trusted stripe. Therefore, there is no need for a SAK; the user invokes the trusted path via

mouse placement. The existence of the trusted stripe is the reason that a user process

cannot spoof the login dialogs. When logging-in, it is the absence of the trusted stripe

that informs the user that he is being presented with the authentic logon dialogs. As

cautioned in the Trusted Solaris User's Guide:

You should never see the Trusted Stripe when the login screen
appears. If you ever see the screen stripe while attempting to log in or
unlock the screen, do not type your password because there's a chance you

are being spoofed, that is, an intruder's program is masquerading as a login
program to capture passwords. [SUN99]

Once a user is logged onto the system, the standard list of trusted path options is

presented when the user clicks the right mouse button in the center of the panel just above

the trusted stripe. Among the options is one to allow the user to change his password.

See Figure 1. Once again, this must be done via a trusted interface to ensure a user level

process is not spoofing the "change password" process.

Since Trusted Solaris implements mandatory access controls, there are additional

options, both during login and via the trusted path menu to set security attributes. During

logon a menu appears allowing the user to select the range of attributes to allow during

this logon. The range must fall within the limits set by the administrator for the user.

Workspace Three

Add Workspace
JDelete
Rename
Change Workspace SL
Assume admin Role
Assume oper Role
Assume root Role
Assume secadmin Role

Change £assword _,
Allocate Device
Query Window Label
:Shut Down

;Help

Figure 1. Trusted Path Menu [SUN99]

Once the user is logged-on, he may specify the security attributes for future

windows that he opens. This allows the user to have multiple windows open

8

simultaneously, each with the same or different security settings. However, just like

Windows NT/2000, only one user can be logged onto the system from the console at any

one time.

3. STOP

Wang Federal's STOP is a secure operating system developed for the XTS-300.

It provides an implementation of a trusted path on an operating system that enforces

mandatory access control and discretionary access control. STOP is a custom-built

operating system that provides an emulation of the Unix operating system. Unlike either

Windows NT/2000 or Trusted Solaris, STOP has a text-based trusted path user interface.

A windowing system, X Window, can be run on top of the operating system, however,

interactions with the trusted elements of STOP are accomplished with a text-based

interface.

For this operating system the SAK is invoked by simultaneously pressing the

Alt-SysRq keys. The system then displays a welcome message, and prompts the user for

a user ID and password. Once authenticated, the user is informed of the current security

attributes and is presented with a standard Unix command prompt. If the user wishes to

invoke the trusted path the SAK is pressed. This clears the screen and presents the user

with the trusted menu shown in Figure 2.

Entering trusted environment at sec lvl 0 int lvl 3
Detached from process family 1
Enter command
9

Figure 2. STOP Trusted Menu

Once in the trusted environment, the user can enter any of the following

commands [WAN98]:

• cdl - change default level - changes the default security level for the
user's future logons

• chd - change home directory

• cup - change user password

• disconnect - allows the user to disassociate a specified process family
from a user session. This allows processes to continue running even if the
user logs out of the system.

• fsm - file system management - allows the user to perform various file
system commands, i.e. change directory, copy file, etc.

• ikill - immediate kill - immediately terminates all processes associated
with a process family.

• kill - initiates termination of all processes associated with a process
family. The processes are sent a signal informing them that the yare being
killed. However there is no guarantee that the processes will comply.

• logout - kills all processes associated with the user that have not been
disconnected and logs the user out of the system.

• reattach - reattaches the user to a process family.

• run - begins execution of a process family.

• session - displays the status of the current session.

• sg - set group - sets the group identifier for the current session.

• si - set level - allows the user to specify the current security attributes

• system - displays the status of the system

STOP allows a user to have more than one session open. Each session can have

security attributes set to a valid value within the user's allowed range. STOP refers to

each session as a process family. The user can press the SAK, use the si command to

10

change the security level, and execute the run command to start running the new session.

This process of switching between sessions is more difficult than that provided by

Trusted Solaris where all that is required is clicking the mouse in a window running the

desired session.

E. SESSION CONTROL

If an operating system allows multiple user sessions, it must have some method of

controlling their execution. The XTS-300, with its text-based trusted path interface,

adopts a technique of completely stopping the execution of a user session. This occurs

when the session is not "connected" to the console. A specific session is not connected to

the console when:

• The user is interfacing with the trusted path.

• Another session is connected to the console.

For this technique to work there must be some mechanism enabling the operating

system to place a process in a "secure halt" state. The operating system can then

guarantee that secure halted process will not execute and cannot perform any actions,

including malicious ones.

F. SUMMARY

The remainder of this thesis proposes modifications to the Linux operating system

that add the ability to secure halt processes and sessions. This will lay the foundation for

a trusted path that is capable of managing multiple sessions. Note that the resulting

system, while adding some of the functionality found in the XTS-300, in no way rises to

the same level of assurance. To do so would require designing an operating system from

the ground up, with special emphasis on security.

11

The remainder of this thesis is organized as follows:

• Chapter II is a high-level design of the secure halt mechanism design.

• Chapter DI is description of the changes required to the existing Linux kernel

in order to add a secure halt mechanism.

• Chapter IV provides a summary of the thesis work, including implementation

progress, problems encountered, and suggested future research topics.

• Appendix A provides detailed specifications of the new modules.

• Appendix B provides a listing of the source code for new modules.

• Appendix C provides a description of the framework developed to allow

testing of the secure halt mechanism.

12

II. PROCESS SECURE HALT MECHANISM DESIGN

This chapter describes the high-level design of the secure halt mechanism.

Chapter IH describes the specific changes required to Linux in order to implement this

design.

A. PROCESS STATE MODIFICATIONS

A process is said to be "secure halted" when it will not execute regardless of other

system events. An explicit request to "unhalt" the process is the only way that a process

will return to the normal flow of execution. To understand what is required to achieve

the secure halt status, it is necessary to understand the lifecycle of a process.

1. Standard Process Lifecycle

The standard lifecycle of a process is shown in Figure 3.

(^ NEW J (TERMINATED)

admitted \. exit

S^—""^r
interrupt

~~~/^*~     ~^X   / 
(   READY    J (   RUNNING   J 

scheduler dispatch     \»^^    ^^/ — __—T    i 

ID or event completion ~~-y~^~      ~~~~-^^^     IIO or event wait 
(SUSPENDED ) 

Figure 3. Typical Process State Diagram [SBL98] 

The states are described as follows: 

•    New - A process that is being created. 

13 



• Ready - A process that is ready to run. It is waiting for the scheduler to 

assign it to a processor. 

• Running - A process that is executing on a processor. This is the only state in 

which a process is actually "doing" something. 

• Suspended - A process is waiting on some input/output or event. This could 

be keyboard input from the user, a disk read, etc. 

• Terminated - A process that has completed its execution. A process will 

remain in the terminated state until the operating system has determined that 

the process' information is no longer needed 

Adding a secure halt mechanism involves the addition of a new state. This is 

called the secure halt state. 

2.        Fully Connected Secure Halt State Process Lifecycle 

Adding a new state raises the question: What events will cause the process to 

enter and leave the secure halt state? Additionally, what current states will a process be 

allowed to depart in order to enter the secure halt state, and vice versa? Clearly, a 

process in the new or terminated states will not need to enter the secure halt state. In the 

first case, the process is being created with the intent of letting it execute. In the second 

case, the process is finished and will not have a chance to execute again. A possible 

solution is shown in Figure 4. This solution shows that a process can enter from or depart 

to the secure halt state from any of the remaining states: ready, running, or suspended. 

This is called a. fully connected secure halt state. 

14 



There is a problem with this solution. A process in the suspended state is waiting 

for an I/O operation to complete or waiting for some specified event. If a process is 

removed from the suspended state and placed in the secure halt state, then it must also be 

removed from the queue in which it was waiting. What should then be done when the 

I/O event completes? Does the next process in the queue get the event? Is the event 

discarded? In either case the event will be lost to the process. What should be done 

when the process departs the secure halt state and is returned to the suspended state? Is it 

requeued for the I/O event? Determining how to handle this would be difficult. 

110 or event completion 

Figure 4. Fully Connected Secure Halt Entry 

15 



A process in the ready state, and by extension in the ready queue, could easily be 

removed from and replaced into the ready state and queue. A process in the running state 

could be removed from the processor, enter the secure halt state, and the scheduler 

allowed to select a new process from the ready queue to move to the running state. 

Difficulties may arise, however, when several processes that were formerly running are 

removed from the secure halt state simultaneously. A decision must be made as to which 

one will be selected to run, while the others are sent to the ready queue. This decision 

could be made by the scheduler since this is exactly the type of decision that the 

scheduler is designed to make. However this does not address the problem of returning a 

process to the suspended state. These problems render this fully connected solution 

unacceptable. 

3.        Single Entry Secure Halt State Process Lifecycle 

A second solution is shown in Figure 5. 

ISO or event completion I/O or event wait 

Figure 5. Single Entry/Exit Secure Halt State 

16 



This solution allows entry to the secure halt state from the ready state, and 

departure from the secure halt state to the ready state. This is accomplished by having a 

secure halt router to decide which processes to route to the secure halt state. The secure 

halt router will send processes that are not secure halted on to the scheduler. Since the 

scheduler must analyze each process while making its scheduling decisions, the 

additional check does not change the locus of decision-making. The scheduler normally 

acts as a "gatekeeper" to enter the running state. The secure halt router acts as a 

gatekeeper to the scheduler. 

This solution implies that a request to enter the secure halt state will not be 

immediately granted. It will be deferred until the process comes up for scheduling. 

Enabling this deferral requires a secure halt flag. The flag will be set when a request is 

received to secure halt the process. The secure halt router, seeing a set flag, will send the 

process to the secure halt state. If the flag is not set the secure halt router will send the 

process to the scheduler. When a request is received to remove a process from the secure 

halt state, the secure halt flag is cleared and the process is returned to the ready state and 

queue. 

This solution solves the problem of the suspended state. A request to enter the 

secure halt state for a process in the suspended state will result in the secure halt flag 

being set. The process will continue to wait until the I/O or event is complete. It will 

then take its normal path to the ready state and queue, where the secure halt router will 

perform as explained above. A critical issue is ensuring that I/O destined for a process 

that has been secure halted, will not be sent to another process instead. This would create 

17 



confusion as well as a major security concern. Since the process has waited for its I/O 

event, it will receive the I/O data, not some other process. 

It raises a new problem: what to do with a process in the running state. When a 

secure halt request is received, the process cannot be allowed to continue executing. 

Setting its secure halt flag and immediately invoking the scheduler solves this. The 

currently running process will then take its normal path to the ready state and queue, 

where the secure halt router will perform as explained above. Most modern operating 

systems, such as Windows NT [SOL98] and Linux [BEC98], have an idle process that 

executes when no other processes are ready. Thus we are guaranteed that the scheduler 

can find a process that has not been secure halted. 

B.        SECURE HALT FLAG 

As mentioned in the section on Single Entry Secure Halt State Process Lifecycle, 

a system that supports a secure halt state will require the addition of a secure halt flag to 

each process control block. When a process is in the new state, i.e. it is being created, the 

secure halt flag is initialized to "cleared." When it is requested that a process enter the 

secure halt state, the secure halt flag must be set. A new code module, the 

Secure_Halt_Routing_Module must guarantee that it will send to the secure halt state any 

process it finds in the ready queue with its secure halt flag set. When it is requested that a 

process depart the secure halt state, its secure halt flag must be cleared prior to its return 

to the ready queue. Another new module, the Secure_Halt_Module is the part of the 

operating system responsible setting and clearing the secure halt flag. 

18 



C.       SECURE HALT MECHANISM MODULES 

This section describes the modules required to support the process secure halt 

mechanism. In this context, the term "module" refers to an active part of the system that 

manages a particular database or flow of control. 

1.        Secure_HaIt_ModuIe 

The Secure_Halt_Module is responsible for controlling a process' entry and exit 

from the secure halt state. It provides a single point of entry for interfacing with the 

secure halt mechanism. The Secure_Halt_Module will provide the following interface: 

• A function for initializing a process' secure halt state. 

• A function that returns whether or not a process is in the secure halt state. 

• A function for setting a process into the secure halt state. This function must 

also determine if the process is currently executing. If so it must call the 

scheduler to remove the process from execution. 

• A function for removing a process from the secure halt state. This function 

must determine if the process is in the secure halt state. If so, it must send the 

process to the ready state and queue. 

2.        Secure_Halt_Session_Module 

A session is defined as a group of processes that will be managed together. The 

Secure_Halt_Session_Module is responsible for controlling a session's entry and exit 

from the secure halt state. It provides a single point of entry for sessions interfacing with 

the secure halt mechanism. This is equivalent to a process family on an XTS-300 system 

19 



or the processes assigned to a virtual terminal in Linux. The 

Secure_Halt_Session_Module will provide the following interface: 

• A function for querying if all the processes in a session have been secure 

halted. 

• A function for secure halting a session. This function must guarantee that is 

sets the secure halt flag of each member of the session to be halted. 

Furthermore, is must guarantee that a currently executing process that is part 

of the session will be immediately removed from the running state. If so it 

must call the scheduler to remove the process from execution. 

• A function for secure unhalting a session. 

3.        Secure_HaIt_Routing_ModuIe 

The Secure_Halt_Routing_Module is responsible for ensuring that a process with 

its secure halt flag set that is about to be examined by the scheduler, will instead be sent 

to the secure halt state. A process with its secure halt flag cleared will be sent to the 

scheduler for normal processing. 

20 



III.    LINUX MODIFICATIONS 

This chapter describes the modifications that must be made to the Linux kernel to 

support the design proposed in Chapter II. 

A.       PROCESS STATES IN LINUX 

Once again the starting point will be analyzing process states, this time in a Linux 

system, as shown in Figure 6. 

creation 

End of i/o 

Figure 6. Linux Process State Diagram [CAR98] 

These states are defined as follows: 

• Ready - A process that is ready to run. It is waiting for the scheduler to 

assign it to a processor. 

• Executing - A process that is executing on a processor. This is the only state 

in which a process is actually "doing" something. 

• Suspended - A process is waiting on some input/output or event. This could 

be keyboard input from the user, a disk read, etc. 

21 



• Zombie - A process that has completed its execution. A process will remain 

in the terminated state until the operating system has determined that the 

process' information is no longer needed 

• Stopped - A process has been halted by some other process [CAR98]. The 

other process can restart the halted process as necessary. The stopped state is 

usually used by a debugger as it is stepping through a program. 

1.        Comparison of Standard Process States with Linux' Implementation 

A comparison of Figure 6 with Figure 3 is shown in Table 1. 

Standard Process State Linux Process State 

New 

Ready Ready 

Running Executing 

Suspended Suspended 

Terminated Zombie 

Stopped 

Table 1. Generic O/S vs. Linux Process States 

While Linux does not have a "new" state, it does recognize that a process in the 

midst of creation does not fall into one of the other states. Of note is Linux' addition of a 

stopped state. In the stopped state, a process is unable to proceed until restarted by a 

controlling process. Since the controlling element is a process, and therefore, in user 

space, the stopped state is not acceptable as a substitute for our concept of a secure halt 

state. Control of entry to and exit from the secure halt state must reside in the kernel. 

22 



Linux cannot, by any stretch of the imagination, be considered a secure operating system. 

Nevertheless, potentially allowing control of the secure halt mechanism from outside the 

kernel would not be a good design decision. A better design would be to have a new 

method of implementing a secure halt mechanism that depends on a minimal amount of 

current mechanisms [SCH75]. 

Linux further subdivides the waiting state into two sub states: interruptible and 

non-interruptible [MAX99]. In the interruptible state, the process is waiting for an event. 

However, sending it a signal may wake it up. Signals are the Linux implementation of 

inter-process communication [BEC98]. There are signals to kill a process, to wakeup a 

process, etc. In the uninterruptible state, the waiting process may not be woken up by a 

software signal. It will remain in the waiting state until some hardware condition occurs. 

2.        Actual Linux Kernel Implementation of Process States 

The Linux kernel defines a process through a task_struct defined in the file 

"include/sched.h" [TOR92b]. Each process, upon creation, has a task_struct allocated to 

it. One of the members of the taskjstruct is the state variable. The state variable, which 

is a long integer, is supposed to be assigned one of the defined process states. The Linux 

kernel defines process states in the header file, "include/sched.h" [TOR92b]. These 

defined states are: 

• TASK_RUNNTNG 

• TASKJNTERRUPTIBLE 

• TASK_UNINTERRUPTIBLE 

• TASK_ZOMBIE 

23 



• TASK_STOPPED 

• TASK_SWAPPING - this state is never assigned to the state variable. 

The above list does not include something like "TASK_READY." This is 

because all tasks that are ready to run are assigned the TASKJRUNNTNG state. They are 

all placed in the ready_queue. When the scheduler selects a process to run on a 

processor, it is not removed from the ready_queue. Nor is its state variable changed 

from TASK_RUNNTNG. Instead, its has_cpu flag, also declared in the task_struct, is 

set. The net result is that a process is in the ready state if and only if the following 

conditions are true: 

• Its state variable is set to TASK_RUNNTNG. 

• It is in the ready_queue. 

• Its has_cpu flag is cleared. 

A process is in the running state if and only if: 

• Its state variable is set to TASK_RUNNTNG. 

• It is in the ready_queue. 

• Its has_cpu flag is set. 

Thus, although a process' state variable is never set to some "ready" value, the Linux 

kernel does have a ready state, albeit a virtual one. 

3.        Linux Kernel Process State References 

A search of the kernel source using the Linux Cross Reference [GLEOO] gave 

results shown in Table 2. 

24 



Process State Number of Files 
Referencing 

TASK_RUNNING 114 

TASKJNTERRUPTIBLE 186 

TASK_UNINTERRUPTBLE 51 

TASKJZOMBIE 14 

TASK_STOPPED 26 

TASK_SWAPPING 3 

Table 2. Process State Access Search Results 

Scrutinizing some of the actual references shows that many of them involve the 

modification of a process' state variable. This is a gross violation of the philosophy of 

limiting changes to a few, well-specified modules. Attempting to implement the secure 

halt state as a new legal value to assign to a process' state variable would not be very 

secure. This leaves the following problem: how to implement the secure halt state in 

code? 

B.        ADDING THE SECURE HALT FLAG AND STATE 

1.        Adding the Secure Halt Flag 

Recall that the secure halt flag signifies that a process must not be placed in the 

running state, and that it must be diverted to the secure halt state by the secure halt 

routing module prior to reaching the scheduler. As stated in the high-level design in 

Chapter n, the secure halt flag is used to notify the secure halt routing module that a 

process in the ready_queue must be sent to the secure halt state. The simplest location 

25 



to place the flag, which is required for each process, is in the task_struct assigned to 

each process. Therefore, the secure halt flag was added to the task_struct. Also, code 

was added to the initialization of the task_struct so that a process is created with its 

secure halt flag cleared. 

2.        Adding the Secure Halt State 

Returning to the problem of implementing a secure halt state, a solution presents 

itself that is an extension of the manner in which Linux implements the ready and 

running states. A process can be said to be in the secure halt state if and only if all of the 

following conditions are true: 

• Its state variable is set to TASK_RUNNING. 

• It is in the ready_queue. 

• Its has_cpu flag is cleared. 

• Its secure halt flag is set. 

This approach has an important benefit. It makes use of a new addition to a 

process' task_struct: the secure halt flag. Since this new flag is unknown to the rest of 

the kernel, a well-defined interface, the secure halt module, can be used to centralize 

access to the flag. 

C.       SECURE HALT MECHANISM MODULES 

This section describes the modules required to support the secure halt mechanism. 

Critical to the module implementation is an understanding of the potential for the Linux 

kernel to be multi-threaded. One of the choices to make when compiling the Linux 

kernel is whether or not to enable symmetric multi-processing (SMP) support. SMP 

26 



support allows the kernel to make full use of multiple processors on SMP-compliant 

hardware. However, this means that the kernel's data structures, including the process' 

task_struct, and the ready_queue, must be protected from simultaneous attempts at 

modification. This is accomplished through the classical use of locks and semaphores. A 

primary consideration in designing these modules is that they each specialize in one area 

of the secure halt mechanism [PAR72]. 

1.        Secure Halt Module 

The secure halt module provides functions for: 

• Querying a process' secure halt status. 

• Placing a process in the secure halt state. 

• Removing a process from the secure halt state. 

The second and third functions modify the secure halt flag in a process' taskjstruct. 

Therefore, they must properly lock the taskjist while making their modifications. The 

taskjist is a list containing all tasks in the system, regardless of their current state. 

These functions must also ensure that they release their lock on the taskjist when 

completed. 

Also critical is the need to deal with a request to secure halt a process that is 

running. This requires, in addition to the standard behavior, that the function call the 

scheduler to immediately cause it to perform scheduling. This will ensure that the 

process is removed from the running state. 

27 



2.        Secure Halt Session Module 

While the secure halt module is responsible for managing the secure halt status of 

individual processes, the secure halt session module is responsible for managing the 

secure halt status of entire sessions. Linux supports the concept of virtual terminals. A 

typical Linux system has six virtual terminals. Each virtual terminal has the ability to 

manage one user login. Thus in the typical system six users, or the same user six times, 

or any combination, can be logged-in to a Linux system from one keyboard and monitor. 

Each of these virtual terminals has a unique session ID associated with it. Furthermore, 

each process created in support of a virtual terminal has the session variable of its 

task_struct set to the virtual terminal's session ID. 

The secure halt session module provides functions for: 

• Querying a session's secure halt status. 

• Placing a session in the secure halt state. 

• Removing a session from the secure halt state. 

Note that a session is in the secure halt state if and only if all processes that are part of 

that session are in the secure halt state. 

The most straightforward way to implement the functions of the secure halt 

session module would be to iterate through the taskjist and call the matching function in 

the secure halt module for each process that is part of the session in question. However, 

this is not the most efficient approach. Recall that the secure halt modules modification 

functions lock and unlock the taskjist while performing their work. For a session 

28 



containing multiple processes, this would result in multiple attempts to lock and unlock 

the taskjist. 

The approach actually implemented is to have the secure halt session module's 

modification functions lock the taskjist, iterate through the taskjist, modify the secure 

halt flag for processes that are part of the session in question, and release the lock on the 

taskjist. While this approach improves efficiency, it does so at the cost of a layered 

design. Once again special attention was paid to ensure that if a process that is part of a 

session being secure halted is running, that the scheduler will be called to remove it from 

the running state. 

3.        Secure Halt Routing Module 

Implementation of the secure halt routing module requires an understanding of the 

Linux scheduler. 

a. The Linux Scheduler 

The Linux scheduler selects a process in the ready state and places it in the 

running state. The actual algorithm used by the scheduler can be changed and is 

irrelevant to the current discussion. The scheduler iterates through the ready queue 

searching for processes that are schedulable. The definition of a schedulable process 

depends on whether the kernel is compiled with or without SMP support. 

If the kernel is compiled without SMP support, then a schedulable process 

is defined as any process in the ready_queue. Even if a process is currently on the one, 

and only processor, it can potentially be selected for continued execution. If the kernel is 

compiled with SMP support, then a schedulable process is defined as any process in the 

29 



ready_queue that is not currently running on another processor. It would not be efficient 

to force a process off of one processor because another one has selected it. 

Once the scheduler has determined that a process is schedulable, it 

computes a "goodness" value. The goodness value represents a way of deciding which 

process is the most suitable for selection to run. If the process currently being examined 

by the scheduler has a higher goodness than previously seen, it is selected as the potential 

winner of the selection process. This goes on until the scheduler has examined all 

processes in the ready queue. The scheduler then declares the potential winner the actual 

winner and proceeds to place it into the running state. 

b.        Adding The Secure Halt Routing Module 

Given the proposed implementation of the secure halt flag and state, 

implementation of the secure halt routing module is straightforward. Recall the secure 

halt router's task: ensure that the scheduler cannot place a process in the secure halt state 

into the running state. Decision-making by the secure halt routing module can take place 

within the scheduler. If the module's decision-making code is collocated with the 

scheduler's determination of a schedulable process, then it can properly ensure that the 

scheduler cannot select a securely halted process for execution. 

The decision-making code consists of calling the secure halt module's 

query function for the process being tested for schedulability. If the process has been 

secure halted, then it will not be analyzed by the scheduler and, therefore, will not be 

selected for execution. 

30 



IV.    CONCLUSIONS 

The goal of this research was to add a mechanism allowing the Linux operating 

system to halt processes in a security-related manner. This mechanism provides key 

functionality necessary for future design and implementation of a trusted path. This 

chapter details the progress made toward this goal, the problems encountered, and areas 

of future research. 

A. PROGRESS MADE 

The secure halt mechanism was successfully added to the Linux operating system. 

The SECURE_HALT_MODULE and the SECURE_HALT_SESSION_MODULE were 

both fully implemented. A testing framework, as described in Appendix C, was designed 

to test the efficacy of the design. It was confirmed that all processes that were part of a 

session that had been halted were no longer able to execute until subsequently unhalted. 

B. PROBLEMS ENCOUNTERED 

The primary problem was the need to understand how the Linux kernel handled 

the scheduling of processes and how it defined process states. Unfortunately, the Linux 

kernel makes heavy use of "goto" statements and global variables. These make 

understanding the logical flow difficult. The most useful tool for finding the declaration 

and use of variables was the Linux Cross Reference [GLEOO]. 

Additionally, the usual difficulties were encountered when developing at the 

operating system level. While compiling the kernel source code is straightforward, it 

requires several steps that must be carefully followed [WAR01]. The complete 

turn-around time for making a small change to the kernel, compiling, rebooting, testing 

31 



the new kernel, and rebooting back to the development environment took an average of 

20 minutes. Furthermore, as a debugger cannot be used on the kernel, it was necessary to 

use the kernel printing facility, printk, to generate debugging traces and view variable 

values. This was not a very efficient procedure, but it was all that was available. 

One helpful configuration was to have the development Linux installation share a 

common boot partition with the secure halt mechanism test Linux installation. This 

greatly simplified installation of the newly compiled kernel. 

It may be possible to reduce the turn-around time by developing on a computer 

running VMware. VMware is a software program that sits between the hardware and the 

operating system. It allows multiple virtual machines, i.e. installations of an operating 

system, to run concurrently. Each machine thinks it is running directly on the hardware. 

Developing on such a system would allow development on one virtual machine and 

testing on another. The testing machine could be rebooted without disturbing the 

development machine. [VMW01] 

An examination was made into the feasibility of modifying the ps command so it 

will display the secure halt status of processes (see Future Research). Several attempts 

were made to compile the original source code, without modification [JOH00]. These 

attempts were unsuccessful and the examination was terminated. 

C.       FUTURE RESEARCH 

1.        Trusted Path 

The secure halt mechanism was developed as a support mechanism for adding a 

trusted path to Linux. The difficulty in adding a trusted path will center on performing 

32 



I/O from within the kernel. Currently, the kernel print command, printk, can be used to 

display output to the user from within the kernel. No comparable command exists for 

accepting input from the user. A possible solution may be found in capturing all 

keystrokes at the keyboard driver level when the trusted path has been invoked. Solving 

the input problem would go a long way toward designing a functional trusted path for 

Linux. 

2. Disabling I/O Buffering 

When a session is suspended, even though none of the processes belonging to the 

session can execute, the keyboard I/O queue continues to buffer keystrokes. All of the 

keystrokes entered for a session while the session is secure halted are buffered and given 

to the session when it is unhalted. While this is not as dangerous as if the keystrokes 

were being given to an incorrect process, it is not a desired behavior. Research should be 

done into how the keyboard I/O queue buffers keystrokes and how to stop this from 

happening for a session while it is secure halted. 

3. ps Command 

The ps command, which displays process status information, should be modified 

so it is able to display the secure halt status of each process. Given that the secure halt 

mechanism has been added in kernel-space and the ps command executes in user-space, 

enabling this functionality will require determining how to export the secure halt state 

information to a location accessible to the ps command and importing the data into the ps 

command. A cursory examination of the source code showed that the ps command 

gathers it information by parsing information stored in the /proc directory for each 

33 



process. Logically, adding the secure halt state information to the data written by the 

kernel into the /proc directory should go a long way to adding this functionality. 

34 



APPENDIX A. MODULE DESIGN 

A. SECURE HALT COMMON TYPES MODULE 

This module defines constants used by other modules 

External Constants: 

• SEC_HALT_TRUE 

• SEC_HALT_FALSE 

• SEC_HALT_SUCCESS 

B. SECURE_HALT_MODULE 

This module defines the interface of the Secure_Halt_Module described in 

Chapter HI. This module does not depend on any other modules. 

External Constants: 

• SEC_HALT_ERROR_INVALID_PROCESS 

External Entry Points 

• init_secure_halt 

• is_secure_halted 

• secure_halt_task 

• secure_unhalt_task 

1.        init_secure_halt 

a.        Processing 

Sets p's secure_halted flag so that a call to is_secure_halted will return 

SEC_HALT_FALSE. 

35 



b. External Interface 

int init_secure_halt( 
task_struct *p 

); 

c. Inputs 

• p - the process which needs its secure halt flag initialized. 

d. Outputs 

• <function result> 

o   SEC_HALT_SUCCESS if p's securejialted flag was 

properly initialized, 

o    SEC_HALT_ERROR_INVALID_PROCESS if p is 

NULL. 

2.        is_secure_halted 

a. Processing 

Checks the status of the securejialt flag. 

b. External Interface 

int is_secure_halted( 
task_struct *p 

); 

c. Inputs 

•    p - the process whose secure halt flag is being questioned. 

36 



d.        Outputs 

•    <function result> 

o   SEC_HALT_TRUE if p's secure_halted flag is set. 

o   SEC_HALT_FALSE if p' s secure_halted flag is not set. 

o   SEC_HALT_ERROR_INVALID_PROCESS if p is 

NULL. 

3.        secure_halt_task 

a. Processing 

Sets p's secure_halted flag so that a call to is_secure_halted will return 

SEC_HALT_TRUE. If p is currently executing, this function calls the scheduler to 

remove p from execution. 

b. External Interface 

int secure_halt_task( 
task_struct *p 

); 

c. Inputs 

• p - the process which is to have its secure_halted flag set. 

d. Outputs 

• <function result> 

o   SEC_HALT_SUCCESS if p's securejialted flag was 

successfully set. 

37 



o   SEC_HALT_ERROR_INVALID_PROCESS if p is 

NULL. 

4.        secure_unhalt_task 

a. Processing 

Sets p's securejhalted flag so that a call to is_secure_halted will return 

SEC_HALT_FALSE. Also, the process is returned to the ready state and queue. 

External Interface 

int secure_unhalt_task( 
task_struct *p 

); 

Inputs 

p - the process which is to have its secure_halted flag cleared. • 

d. Outputs 

•    <function result> 

o   SEC_HALT_SUCCESS if p's secure_halted flag was 

properly cleared, 

o   SEC_HALT_ERROR_INVALID_PROCESS if p is 

NULL. 

C.       SECURE_HALT_SESSION_MODULE 

This module defines the interface of the Secure_Halt_Session_Module described 

in Chapter HI. This module depends on the Secure_Halt_Module and the 

Scheduler_Module. 

38 



External Constants: 

• SEC_HALT_ERROR_INVALID_SESSION 

External Entry Points 

• is_secure_halted_session 

• secure_halt_session 

• secure_unhalt_session 

1.        is_secure_halted_session 

a. Processing 

Iterates through the taskjist. For each task, p, whose session number 

matches the input parameter, it checks is_secure_halted(p). If all such processes return 

SEC_HALT_TRUE, this function returns SEC_HALT_TRUE. If at least one of the 

processes returns SEC_HALT_FALSE, this function returns SEC_HALT_FALSE. If no 

process in the task list has a session number matching the input parameter, this function 

returns SEC_HALT_ERROR_INVALID_SESSION. 

b. External Interface 

int is_secure_halted_session( 
int session 

); 

c. Inputs 

•    session - the session whose processes are being queried as to their 

secure_halted flag status. 

39 



d. Outputs 

•    <function result> 

o   SEC_HALT_TRUE if every process in the input session 

has its secure_halted flag set. 

o   SEC_HALT_FALSE if not every process in the input 

session has its secure_halted flag set. 

o   SEC_HALT_ERROR_INVALID_SESSION if the input 

session is not a valid session ID. 

2.        secure_halt_session 

a. Processing 

Iterates through the taskjist. For each task, p, whose session number 

matches the input parameter, it calls secure_halt_task(p). If any of the tasks is currently 

executing on a processor, the Scheduler_Module's schedule() function is called to 

immediately perform scheduling. If no process in the task list has a session number 

matching the input parameter, this function returns 

SEC_HALT_ERROR_INVALID_SESSION. Otherwise this function returns 

SEC_HALT_SUCCESS. 

b. External Interface 

int secure_halt_session( 
int session 

); 

40 



c. Inputs 

• session - the session whose processes are having their 

secure_halted flag set. 

d. Outputs 

• <function result> 

o   SEC_HALT_SUCCESS if every process in the input 

session has its secure_halted flag successfully set. 

o   SEC_HALT_ERROR_INVALID_SESSION if the input 

session is not a valid session ID. 

3.        secure_unhalt_session 

a. Processing 

Iterates through the task_list. For each task, p, whose session number 

matches the input parameter, it calls secure_unhalt_task(p). If no process in the task list 

has a session number matching the input parameter, this function returns 

SEC_HALT_ERROR_INVALID_SESSION. Otherwise this function returns 

SEC_HALT_SUCCESS. 

b. External Interface 

int secure_unhalt_session( 
int session 

); 

41 



c. Inputs 

• session - the session whose processes are having their 

secure_halted flag cleared. 

d. Outputs 

• <function result> 

o   SEC_HALT_SUCCESS if every process in session has its 

secure_halted flag successfully cleared. 

o   SEC_HALT_ERROR_INVALID_SESSION if session is 

not a valid session ID. 

D.        SECURE_HALT_ROUTING_MODULE 

This module defines the interface of the Secure_Halt_Routing_Module described 

in Chapter DI. 

External Entry Point 

•    schedulable 

1.        schedulable 

a. Processing 

Queries the process' is_secure_halted result. If the result is 

SEC_HALT_FALSE, the process is not sent to the scheduler. Otherwise, the process is 

sent to the scheduler. 

42 



b. External Interface 

int schedulable( 
task_struct *p 

); 

c. Inputs 

• p - the process which is to be checked for schedulability. 

d. Outputs 

• <function result> 

o   SEC_HALT_TRUE if p's secure_halted flag is set. 

o   SEC_HALT_FALSE if p's secure_halted flag is not set. 

o   SEC_HALT_ERROR_INVAIID_PROCESS if p is 

NULL. 

43 



44 



APPENDIX B. SOURCE CODE 

This appendix contains the source code enabling a secure halt mechanism in 

Linux. The secure halt mechanism was implemented on version 2.2.18 of the Linux 

kernel. Each section is devoted to a module with each subsection corresponding to 

individual source and header files. 

A.       SECURE HALT COMMON TYPE MODULE 

1.        include/linux/secure_halt_types.h 

/* 
******************************************************************** 
* File:   include/linux/secure_halt_types.h 
* 
* Description: 
* This file contains types and constants that are common to all 
* Secure Halt modules. 
* 
* 2001-04-05  Created by Jerome Brock. 
******************************************************************** 
*/ 

#ifndef _SECURE_HALT_TYPES_H 
#define _SECURE_HALT_TYPES_H 

#define SEC_HALT_TRUE  (1) 
#define SEC_HALT_FALSE (0) 

#define SEC_HALT_SUCCESS (0) 

#endif /* defined(_SECURE_HALT_TYPES_H) */ 

B.       SECURE_HALT_MODULE 

1.        include/linux/sched.h 

•    Added 

#include <linux/secure_halt_types.h> 

45 



• Added to task_struct 

struct task_struct { 

/* secure halt flag */ 
int secure_halted:l; 

}; 

• Added to INITTASK 

#define  INIT_TASK  \ 

/*   sec   halt   */      SEC_HALT_FALSE,    \ 
} 

2.        include/linux/secure_halt.h 

/* 
******************************************************************** 
* File: include/linux/secure_halt.h 
* 

* Description: 
* This is the header file for code which places tasks into 
* and out of the secure halt mode. 
* 

* 2001-04-05  Created by Jerome Brock. 
******************************************************************** 

*/ 

#ifndef _SECURE_HALT_H 
#define _SECURE_HALT_H 

#include <linux/secure_halt_types.h> 
#include <linux/sched.h> 

#define SEC_HALT_ERROR_INVALID_PROCESS (1001) 

/* 
******************************************************************** 

* Function: 
* is_secure_halted 
* Inputs: 
* p        The task whose state is being checked. 
* Outputs: 
* <result>  SEC_HALT_TRUE if p is secure halted. 
* SEC_HALT_FALSE if p is not secure halted. 
* SEC_HALT_ERROR_INVALID_PROCESS if p is NULL. 
* Description: 
* Returns whether a specified process is secure halted. 
******************************************************************** 

*/ 
extern  inline  int is_secure_halted(struct task_struct *p){ 

46 



if (p == NULL){ 
return(SEC_HALT_ERROR_INVALID_PROCESS); 

} 
else if (p->secure_halted == SEC_HALT_FALSE){ 

return(SEC_HALT_FALSE); 
} 
else{ 

return(SEC_HALT_TRUE); 
} 

} 

/* 
******************************************************************** 
* Function: 
* secure_halt_task 
* Inputs: 
* p        The task which is being secure halted. 
* Outputs: 
* <result>  SEC_HALT_SUCCESS if p was successfully halted. 
* SEC_HALT_ERROR_INVALID_PROCESS if p is NULL 
* Description: 
* Sets a task's secure halt flag.  If the task is 
* currently executing, this call will call the scheduler, which 
* will swap out the task. 
******************************************************************** 

*/ 
extern int secure_halt_task(struct task_struct *p); 

/* 
******************************************************************** 
* Function': 
* secure_unhalt_task 
* Inputs: 
* p        The process which is being secure unhalted. 
* Outputs: 
* <result>  SEC_HALT_SUCCESS if p was successfully unhalted. 
* SEC_HALT_ERROR_INVALID_PROCESS if p is NULL 
* Description: 
* Clears a task's secure halt flag. 
******************************************************************** 
*/ 

extern int secure_unhalt_task(struct task_struct *p); 

#endif /* defined(_SECURE_HALT_H) */ 

3.        kernel/secure_halt.c 

/* 
******************************************************************** 
* File: kernel/secure_halt.c 
* 

47 



* Description: 
* This is the implementation file for code which places tasks 
* into and out of the secure halt mode. 
* 

* 2001-04-05  Created by Jerome Brock. 
******************************************************************** 

*/ 

#include <linux/secure_halt.h> 

/* 
******************************************************************** 
* Function: 
* secure_halt_task 
* Inputs: 
* p        The task which is being secure halted. 
* Outputs: 
* <result>  SEC_HALT_SUCCESS if p was successfully halted. 
* SEC_HALT_ERROR_INVALID_PROCESS if p is NULL 
* Description: 
* Sets a task's secure halt flag.  If the task is 
* currently executing, this call will call the scheduler, which 
* will swap out the task. 
******************************************************************** 

*/ 
int secure_halt_task(struct task_struct *p){ 

if (p == NULL){ 
return(SEC_HALT_ERROR_INVALID_PROCESS); 

} 

write_lock(&tasklist_lock); 
p->secure_halted = SEC_HALT_TRUE; 
write_unlock(&tasklist_lock); 

if (p == current){ 
/* if p is the currently executing process, call the scheduler. */ 
schedule(); 

} 
return(SEC_HALT_SUCCESS); 

} 

/* 
******************************************************************** 

* Function: 
* secure_unhalt_task 
* Inputs: 
* p        The process which is being secure unhalted. 
* Outputs: 
* <result>  SEC_HALT_SUCCESS if p was successfully unhalted. 
* SEC_HALT_ERROR_INVALID_PROCESS if p is NULL 
* Description: 
* Clears a task's secure halt flag. 
******************************************************************** 

*/ 

48 



int secure_unhalt_task(struct task_struct *p){ 
if (p == NULL){ 
return(SEC_HALT_ERROR_INVALID_PROCESS); 

} 

write_lock(&tasklist_lock); 
p->secure_halted = SEC_HALT_FALSE; 
write_unlock(&tasklist_lock); 

return(SEC_HALT_SUCCESS) ; 
} 

C.       SECURE_HALT_SESSION_MODULE 

1.        include/linux/secure_ha!t_session.h 

/* 
******************************************************************** 
* File: include/linux/secure_halt_session.h 
* 

* Description: 
* This is the header file for code which places sessions into 
* and out of the secure halt mode. 
* 

* 2001-04-05  Created by Jerome Brock. 
******************************************************************** 

#ifndef _SECURE_HALT_SESSION_H 
#define _SECURE_HALT_SESSION_H 

#define SEC_HALT_ERROR_INVALID_SESSION (2001) 

/* 
******************************************************************** 

* Function: 
* is_secure_halted_session 
* Inputs: 
* session  The session whose state is being checked. 
* Outputs: 
* <result>  zero if any process in the specified session is not 
* secure halted, any other value if all processes in 
* the specified session are secure halted. 
* Description: 
* Returns whether a specified session is secure halted. 
******************************************************************** 

*/ 
extern int is_secure_halted_session(int session); 

/* 
******************************************************************** 

* Function: 
* secure_halt_session 

49 



* Inputs: 
* session  The session which is being secure halted. 
* Outputs: 
* <none> 
* Description: 
* Places a session in the secure halt mode.  All tasks belonging 
* to the specified session will be secure halted.  If any of the 
* tasks are currently executing, this function will call the 
* scheduler, which will swap out the tasks. 
******************************************************************** 

*/ 
extern int secure_halt_session(int session); 

/* 
******************************************************************** 

* Function: 
* secure_unhalt_session 
* Inputs: 
* session  The session which is being secure unhalted. 
* Outputs: 
* <none> 
* Description: 
* Removes a session from the secure halt mode.  All tasks 
* belonging to the specified session will be secure unhalted. 
******************************************************************** 

*/ 
extern int secure_unhalt_session(int session); 

#endif /* defined(_SECURE_HALT_SESSION_H) */ 

2.        kerneI/secure_halt_session.c 

/* 
******************************************************************** 
* File: kernel/secure_halt_session.c 
* 

* Description: 
* This is the implementation file for code which places sessions 
* into and out of the secure halt mode. 
* 

* 2001-04-05  Created by Jerome Brock. 
******************************************************************** 

*/ 

#include <linux/secure_halt_session.h> 
#include <linux/secure_halt.h> 
#include <linux/sched.h> 

/* 
******************************************************************** 

* Function: 
* is_secure_halted_session 
* Inputs: 

50 



* session The session whose tasks are being checked. 
* Outputs: 
* <result> SEC_HALT_TRUE if every task in session is 
* secure halted. 
* SEC_HALT_FALSE if every task in session is not 
* secure halted. 
* SEC_HALT_ERROR_INVALID_SESSION if session is not a 
* valid session ID. 
* Description: 
* Returns whether all tasks in a session are secure halted. 
******************************************************************** 

*/ 
int is_secure_halted_session(int session){ 

struct task_struct *p; 
int found_session = SEC_HALT_FALSE; 

for_each_task(p){ 
if (p->session == session){ 

found_session = SEC_HALT_TRUE; 

if (is_secure_halted(p) != SEC_HALT_TRUE){ 
return(SEC_HALT_FALSE); 

} 
} 

} 

if (found_session){ 
return(SEC_HALT_TRUE); 

} 
else{ 

return(SEC_HALT_ERROR_INVALID_SESSION); 
} 

/* 
******************************************************************** 

* Function: 
* secure_halt_session 
* Inputs: 
* session  The session whose tasks are being secure halted. 
* Outputs: 
* <result>  SEC_HALT_SUCCESS if every task in session was 
* secure halted. 
* SEC_HALT_ERROR_INVALID_SESSION if session is not a 
* valid session ID. 
* Description: 
* Places a session in the secure halt mode.  All tasks belonging 
* to the specified session will be secure halted.  If any of the 
* tasks are currently executing, this function will invoke the 
* scheduler. 
******************************************************************** 

*/ 
int secure_halt_session(int session){ 

51 



// This does not call secure_halt_task for efficiency reasons, i.e 
//we only want one call to lock and unlock the task list 

int proc_is_executing = SEC_HALT_FALSE; 
struct task_struct *p; 
int found_session = SEC_HALT_FALSE; 

write_lock(&tasklist_lock); 

for_each_task(p){ 

if (p->session == session){ 
p->secure_halted = SEC_HALT_TRUE; 
found_session = SEC_HALT_TRUE; 

if (p == current){ 
proc_is_executing = SEC_HALT_TRUE; 

} 
} 

} 

write_unlock(&tasklist_lock); 

if (proc_is_executing == SEC_HALT_TRUE){ 
schedule(); 

} 

if (found_session == SEC_HALT_TRUE){ 
return(SEC_HALT_SUCCESS) ; 

} 
else{ 

return(SEC_HALT_ERROR_INVALID_SESSION); 
} 

/* 
********************************************************************* 
* Function: 
* secure_unhalt_session 
* Inputs: 
* session  The session whose tasks are being secure unhalted. 
* Outputs: 
* <result>  SEC_HALT_SUCCESS if every task in session was 
* secure unhalted. 
* SEC_HALT_ERROR_INVALID_SESSION if session is not a 
* valid session ID. 
* Description: 
* Removes a session in the secure halt mode.  All tasks belonging 
* to the specified session will be secure unhalted. 
•••••A************************************************************** 

*/ 
int secure_unhalt_session(int session){ 

// This does not call secure_unhalt_task for efficiency reasons, 
i .e 

52 



//we only want one call to lock and unlock the task list. 

struct task_struct *p; 
int found_session = SEC_HALT_FALSE; 

write_lock(&tasklist_lock); 

for_each_task(p){ 

if (p->session == session){ 
found_session = SEC_HALT_TRUE; 
p->secure_halted = SEC_HALT_FALSE; 

} 
} 

write_unlock(&tasklist_lock); 

if (found_session == SEC_HALT_TRUE){ 
return(SEC_HALT_SUCCESS); 

} 
else{ 

return(SEC_HALT_ERROR_INVALID_SESSION); 
} 

} 

D.       SECURE_HALT_ROUTING_MODULE 

The SECURE_HALT_ROUTING_MODULE is implemented by adding code to 

the existing Linux scheduler [TOR92a]. 

1.        kernel/sched.c 

a. Added 

#include <linux/secure_halt.h> 

b. Changed the scheduleQ function 

•    From: 

while (p != &init_task) { 
if (can_schedule(p)) 
{ 

int weight = goodness(prev, p, this_cpu); 
if (weight > c) 

c = weight, next = p; 
} 
p = p->next_run; 

} 

53 



• To: 

while (p != &init_task) { 
if ((is_secure_halted(p) != SEC_HALT_TRUE) 

&& (can_schedule(p))) 
{ 

int weight = goodness(prev, p, this_cpu); 
if (weight > c) 

c = weight, next = p; 
} 
p = p->next_run; 

} 

54 



APPENDIX C. TESTING FRAMEWORK 

A.       GOAL 

The goal in developing a testing framework was to enable a user to selectively 

halt and unhalt the session associated with a given virtual terminal. The framework 

consisted of adding a new option to the "magic system request" facility and creating a 

module that toggles the session on the current virtual terminal into and out of the secure 

halt state. The magic system request facility is a specific combination of keystrokes that 

the keyboard driver reroutes to the SYSTEM_REQUEST module for processing instead 

of passing them through the usual path [MAR77]. The magic system request key 

combination is "Alt-SysRq" and the specific system request option. The option added for 

the testing framework was "Alt-SysRq-X." 

B.        SOURCE CODE 

1.        drivers/char/sysrq.c 

a. Added 

#include <linux/secure_halt_test.h> 

b. Added to function handle jsysrq 

switch   (key)   { 

case 'x': /* X — Secure Halt Test */ 
if (tty) 

toggle_tty_secure_halt(tty); 
break; 

} 

2.        include/linux/secure halt test.h 

/ * 
******************************************************************** 

55 



* File: include/linux/secure_halt_test.h 
* 

* Description: 
* This is the header file for code which tests the operation of 
* the secure halt mechanism. 
* 

* 2001-03-26  Created by Jerome Brock 
******************************************** 

*/ 

#ifndef _SECURE_HALT_TEST_H 
#define _SECURE_HALT_TEST_H 

#include <linux/tty.h> 

/* 
******************************************************************** 

* Function: 
* toggle_tty_secure_halt 
* Inputs: 
* tty      The tty whose processes are having their secure halt 
* state toggled. 
* Outputs: 
* <none> 
* Description: 
* Toggles the secure halt state of processes that are part of the 
* specified tty's session.  If the session is currently secure 
* halted, it will be unhalted, and vice versa. 
******************************************************************** 

*/ 
void toggle_tty_secure_halt(struct tty_struct *tty); 

#endif /* defined(_SECURE_HALT_TEST_H) */ 

3.   drivers/char/secure_halt_test.c 

/* 
******************************************************************** 

* File: drivers/char/secure_halt_test.c 
* 

* Description: 
* This is the implementation file for code which tests the 
* operation of the secure halt mechanism. 
* 

* 2001-03-26  Created by Jerome Brock 
******************************************************************** 

*/ 

#include <linux/config.h> 
#include <linux/kernel.h> 
#include <linux/sched.h> 
#include <linux/secure_halt.h> 
#include <linux/secure halt session.h> 

56 



#include <linux/secure_halt_test.h> 

tdefine INTER_INVOCATION_SEC 2 

/* 
******************************************************************** 
* Function: 
* toggle_tty_secure_halt 
* Inputs: 
* tty      The tty whose processes are having their secure halt 
* state toggled. 
* Outputs: 
* <none> 
* Description: 
* Toggles the secure halt state of processes that are part of the 
* specified tty's session.  If the session is currently secure 
* halted, it will be unhalted, and vice versa. 
******************************************************************** 

*/ 
void toggle_tty_secure_halt(struct tty_struct *tty){ 

static time_t last_invocation = 0; 

int tty_num = MINOR(tty->device) ; 
time_t curr_time = CURRENT_TIME; 

/* only allow invocation every so many seconds */ 

if ((curr_time - last_invocation) < INTER_INVOCATION_SEC){ 
return; 

} 

last_invocation = curr_time; 

printk("secure_halt_test:\n"); 

if (is_secure_halted_session(tty->session)){ 
secure_unhalt_session(tty->session) ,- 
printk("   unhalted session %i on tty%i\n", 

tty->session, tty_num); 
} 
else{ 

secure_halt_session(tty->session); 
printk("   halted session %i on tty%i\n", 

tty->session, tty_num); 
} 

57 



THIS PAGE INTENTIONALLY LEFT BLANK 

58 



LIST OF REFERENCES 

[BEC98] Beck, Michael, et al., Linux Kernel Internals, Second Edition, 
Addison-Wesley, New York, 1998. 

[CAR98] Card, Remy, Eric Dumas, Frank Mevel, The Linux Kernel Book, West 
Sussux, John Wiley and Sons, 1998. 

[GAS88] Gasser, Morrie, Building a Secure Computer System, Van Nostrand 
Reingold, New York, 1988. 

[GLEOO] Gleditsch, Arnie Georg, Per Kristian Gjermshus, Cross-Referencing 
Linux, http://lxr.linux.no, 2000. 

[JOH00] Johnson, Michael K., et al.,procsps, version 2.0.7, 2000. 

[MAR77]        Mares, Martin, Linux Kernel 2.2.18, drivers/char/sysrq.c, 1977. 

[MAX99]       Maxwell, Scott, Linux Core Kernel Commentary, Coriolis Group, 
Scottsdale, Arizona, 1999. 

[MIC00] Microsoft, Windows 2000 Online Help, Microsoft Corporation, 2000. 

[PAR72] Parnas, D.L., "On the Criteria To Be Used in Decomposing Systems into 
Modules," Communications of the ACM, Association for Computing 
Machinery, December 1972. 

[PLF97] Pfleeger, Charles S., Security in Computing, Second Edition, Prentice Hall 
PTR, Upper Saddle River, New Jersey, 1997. 

[SCH75] Schroeder, Michael D., "Engineering a Security Kernel for Multics," 
Proceedings of the Fifth Symposium in Operating System Principles, 
Association of Computing Machinery, 1975. 

[SIL98] Silberschatz, Abraham, Peter Baer Galvin, Operating System Concepts, 
Fifth Edition, Addison-Wesley, Berkeley, California, 1998. 

[SOL98] Soloman, David A., Inside Windows NT, Second Edition, Microsoft Press, 
Redmond, Washington, 1998. 

[SUN99] Sun Microsystems, Trusted Solaris User's Guide, version 7, 1999. 

[TOR92a]       Torvalds, Linus, Linux Kernel 2.2.18, kernel/sched.c, 1992. 

[TOR92b]       Torvalds, Linus, Linux Kernel 2.2.18, include/linux/sched.h, 1992. 

59 



[VMW01]       WMware, WMware Workstation Product Specification, 
http://www.vmware.com/pdf/detailed-specs-linux.pdf, 2001. 

[WAN98]        Wang Government Services, XTS-300 User's Manual, STOP 4.4.2, 1998. 

[WARO1 ]        Ward, Brian, The Linux Kernel Howto, v2.0, 2001. 

60 



INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 2 
8725 John J. Kingman Rd., STE 0944 
Ft. Belvoir, Virginia 22060-6218 

2. Dudley Knox Library 2 
Naval Postgraduate School 
411 Dyer Rd. 
Monterey, California 93943-5101 

3 Chairman, Code CS 1 
Computer Science Department 
Monterey, California 93943-5000 

4. Dr. Cynthia E. Irvine 3 
Computer Science Department Code CS/Ic 
Monterey, California 93943-5000 

5. Mr. Paul C. Clark 3 
Computer Science Department Code CS/Cp 
Monterey, California 93943-5000 

6. Carl Siel 1 
Space and Naval Warfare Systems Command 
PMW161 
Building OT-1, Room 1024 
4301 Pacific Highway 
San Diego, CA 92110-3127 

7. Commander, Naval Security Group Command 1 
Naval Security Group Headquarters 
9800 Savage Road 
Suite 6585 
Fort Meade, MD 20755-6585 

8. Ms. Deborah M. Cooper 1 
Deborah M. Cooper Company 
P.O. Box 17753 
Arlington, VA 22216 

61 



9. Ms. Louise Davidson 1 
N643 
Presidential Tower 1 
2511 South Jefferson Davis Highway 
Arlington, VA 22202 

10. Mr. William Dawson 1 
Community CIO Office 
Washington DC 20505 

11. Capt. James Newman 1 
N64 
Presidential Tower 1 
2511 South Jefferson Davis Highway 
Arlington, VA 22202 

12. Mr. Richard Hale 1 
Defense Information Systems Agency, Suite 400 
5600 Columbia Pike 
Falls Church, VA 22041-3230 

13. Ms. Barbara Hemming 1 
Defense Information Systems Agency, Suite 400 
5600 Columbia Pike 
Falls Church, VA 22041-3230 

14. CPT Jerome P. Brock 3 
1469 Hoffman Ave. 
Monterey, California 93940-1622 

62 


