
NPS-SW-01-003

NAVAL POSTGRADUATE SCHOOL
Monterey, California

System Engineering and Evolution Decision
Support

Final Progress Report (05101/1998 - 09/30/2001)

by

Luqi

September 2001

Approved for public release; distribution is unlimited.

Prepared for: U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

20010904 054

NAVAL POSTGRADUATE SCHOOL
Monterey, California 93943-5000

RADM David R. Ellison Richard S. Elster
Superintendent Provost

This report was prepared for U.S. Army Research Office and funded in part by the U.S. Army
Research Office.

This report was prepared by:

Luqi
Professor, Computer Science

Reviewed by: Released by:

Luqi rect D. W. Netzer
Director, Software Engineering Associate Provost and
Automation Center Dean of Research

Form Approved
REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public Reporting burden for this collection of information is estimated to average I hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comment regarding this burden estimates or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188,) Washington, DC 20503.
1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

09/30/200 1 Final Progress Report
___ 05/01/1998 - 09/30/2001

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

System Engineering and Evolution Decision Support - 360M
Final Progress Report (05/01/1988 - 09/30/200 1)

6. AUTHOR(S)

Professor Luqi

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Software Engineering Automation Center,
Naval Postgraduate School, Monterey, CA 93943 NPS-SW-0 1-003

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

11. SUPPLEMENTARY NOTES
The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official

Department of the Army position, policy or decision, unless so designated by other documentation.

12 a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE
Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

The objective of our effort is to develop a scientific basis for system engineering
automation and decision support. This objective addresses the long term goals of
increasing the quality of service provided complex systems while reducing development
risks, costs, and time. our work focused on decision support for designing operations of
complex modular systems that can include embedded software. Emphasis areas included
engineering automation capabilities in the areas of design modifications, design records,
reuse, and automatic generation of design representations such as real-time schedules and
software.

14. SUBJECT TERMS 15. NUMBER OF PAGES

System Engineering, Decision Support, Evolution, Concurrent Engineering

16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OR REPORT ON THIS PAGE OF ABSTRACT

UNCLASSIFIED. UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18
298-102

Table of Contents

I. FINAL PROGRESS REPORT .. 1

1. Statement of the Problem Studied ... 1

2. Summary of Important Results ... 1

3. List of Publications ... 4

4. Scientific Personnel ... 8

5. R eport of Inventions ... 9

6. Technology Transfer ... 10

II. APPENDICES ... 14

1. "Visual Meta-Programming Notation" by M. Auguston 15

2. "A Software Agent Framework for Distributed Applications", by J. Ge, B. Kin and
V . B erzins ... 27

3. "JAVA Wrappers for Automated Interoperability" by N. Cheng, V. Berzins, Luqi
and S. Bhattacharya .. 33

4. "Computer Aided Prototyping in a Distributed Environment" by J. Ge, V. Berzins
and L uqi .. 53

5. "Subclassing Errors, OOP & Practically Checkable Rules to Prevent Them" by 0.
K iselyov .. 59

6. "The Use of Computer-Aided Prototyping for Reengineering Legacy Software" by
Luqi, V. Berzins and M. Shing .. 69

7. "DCAPS - Architecture for Distributed Computer Aided Prototyping System" by
Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant and B. Kin 81

8. "Intelligent Software Decoys" by J. Michael and R. Riehle 87

9. "Enhancements and Extensions of Formal Models for Risk Assessment in Software
Projects" by M. Murrah, C. Johnson and Luqi ... 95

10. "A Unified Approach for the Integration of Distributed Heterogeneous Software
Components" by R. Raje, M. Auguston, B. Bryant, A. Olson and C. Burt 102

11. "Optimization of Distributed Object-Oriented Servers" by W. Ray and
V . B erzins ... 113

12. "Use of Object Oriented Model for Interoperability Wrapper-Based Translator for
Resolving Representational Differences between Heterogeneous Systems" by
P. Young, V. Berzins, J. Ge and Luqi ... 123

Final Progress Report

System Engineering and Evolution Decision Support

5/1/1998 - 9/30/2001

Luqi
Statement of the Problem Studied:

The objective of our research is to develop an integrated set of formal
models and methods for system engineering automation. These results
will enable building decision support tools for concurrent engineering.
our research addresses complex modular systems with embedded control
software and real-time requirements.

Summary of Important Results:

We focused on automation of design activities that appear in an
evolutionary approach to system development. Decision support for
design synthesis, reuse and evolution is emphasized. This research
extended recently developed formal methods in system engineering to
construct a cohesive set of formal models. These models are used to
create and to connect automated processes for computer aided
prototyping, requirements validation, and design synthesis.
Mathematical models for implementing a set of automated and integrated
engineering automation tools were also developed. Our work combined
very-high-level specification abstractions and concepts with: (1)
formal real-time models, (2) automated management of system design data
and human resources, (3) design transformations, (4) change merging,
(5) automated retrieval of reusable system design components, and (6)
automated schedule construction. We have created automated methods for:
(1) generating real-time control programs, (2) generating simulations
of subsystems, and (3) coordinating concurrent work by engineering
teams. Our work will ensure design consistency and alleviate
communication difficulties.

The significance of our work is to:
- improve system effectiveness and flexibility,
- increase engineering productivity, and
- reduce system maintenance costs.

This was achieved by providing a higher level of engineering automation
coupled directly with requirements validation facilities. our work will
broaden the scope of engineering decision support to include concurrent
whole-system engineering, requirement determination, and system
evolution. Automated decision support will ensure system quality by
decreasing the human effort required. This, in turn, will minimize the
incidence of human error. The trial use of operational system
prototypes linked with software simulations of selected subsystems
enables users to provide feedback for validation and refinement of
system requirements prior to detailed design. Maintenance costs can be

minimized by reducing the need to repair requirement errors af ter
system deployment. We provided methods for process and system re-
engineering at minimal cost. This was achieved by: (1) regenerating new
variations of designs from high-level decisions, (2) combining changes,
and (3) propagating the consequences of design modifications. These
engineering capabilities will enable the Army to improve and integrate
its complex systems with reduced costs. Improved systems can reduce
Army manpower needs while strengthening information warfare
capabilities.

Specific tasks accomplished include:

(1) Formal models, architecture and tools for software evolution

We developed a new relational hypergraph model, architecture and
tools for the computer-aided software evolution process. The new
model provides an integrated framework for integrating software
evolution activities with configuration control, maintaining the
consistency of an evolving system, and organizing and coordinating
the activities involved in the evolution of large systems. The
model also serves as the basis for organizing the repository of
configurations [6-8, 10-12]. The effectiveness of the model was
illustrated via a case study involving C41 systems evolution [9].

(2) Formal model for software project risk assessment

We developed formal risk assessment models for the evolutionary
software process, and methods and tools to assess the risk and the
duration of software projects automatically based on measurements
(requirements volatility, production team efficiency, and product
complexity) that can be obtained early in the development process.
The effectiveness of the models was validated by comparing the
results of the models against data collected from 3 large real
projects and 16 simulated projects [25, 29-32, 37].

(3) Architectures and automated retrieval methods for software reuse

we developed formal models and methods to automate the search and
retrieval of software components from software reuse repositories
[12, 23-24] . We also developed models to support reuse in product
line approach [27-28].

(4) The use of Computer Aided Prototyping in Software Re-engineering

We studied the effective use of computer-aided prototyping
techniques for re-engineering legacy 'software via a case study
involving the development an object-oriented modular architecture
for the existing US Army Janus(A) combat simulation system, and
validating the architecture via an executable prototype using the
Computer Aided Prototyping System (CAPS) . The research showed that
prototyping can be a valuable aid in re-engineering of legacy
systems, particularly in cases where radical changes to system
conceptualization and software structure are needed [16-18, 36].

(5) Automation support for distributed heterogeneous systems
engineering

2

We investigated models and methods for solving the integration and
interoperability problems in component-based distributed
heterogeneous systems development.

our work resulted in models and languages for specifying the
architecture of distributed heterogeneous systems and components
[2-3, 33, 35, 40], as well as technologies to automate the
integration of distributed heterogeneous software component via the
automatic generation of glue and wrapper from specification f 19-22,
26, 34, 37].

We developed an object-oriented model for an interoperability
wrapper-based translator to resolve the representational
differences between heterogeneous systems, an integrated
development environment for users to create such models [43],
methods for determining object correspondence during system
integration, and the use of the Extensive Markup Language (XML) as
a means for establishing interoperability between multiple DoD
databases.

We also developed techniques for maximizing the network
infrastructure [13 and providing decision support for optimizing
distributed object servers utilization [41], as well as the use
software decoys to improve the security of distributed
heterogeneous systems [38].

(6) Formal models for Technology Transition

we worked with the US Army TACOM to develop formal models and
methods to assess the maturity/risk of emerging software
technologies and to assist managers to size the software technology
infrastructure [42].

(7) Technology transfer via software Engineering education

To allow corporate and Department of Defense (DoD) software leaders
and practitioners to effectively utilize the technology available
to them, we developed two Software Engineering graduate degree
programs to address the issues and needs unique to DoD software
development. The Software Engineering program at the Naval
Postgraduate School offers M.S. and Ph.D. degrees in Software
Engineering to both in-residence and distance learning students, to
equip software leaders and practitioners with the tools needed to
achieve information superiority. The Ph.D. Program is the first-
ever doctoral program in Software Engineering. It is designed to
satisfy the great and growing demand within the DoD for Ph.D. level
leadership to direct software research and development projects and
to develop policies regarding software requirements and processes
for design, evolution, reuse and management [4].

List of Publications:

1998

1. M. Dabose and Luqi, "Autonomous Agents Design for Digital
Network Maximization in Joint C41 System", Proceedings of
Modeling and Simulation of Microsystems, Semiconductors, Sensors
and Actuators Conference, Santa Clara, California, April 6-8,
1998.

2. Luqi, C. Chang, H. Zhu, "Specifications in Software
Prototyping", Journal of Systems and Software, Vol. 42, No. 2,
Aug. 1998, pp. 150-177.

3. Luqi, "Formal Models and Prototyping", Proceedings of
Requirements Targeting Software and Systems Engineering
Workshop, Munchen, Germany, April, 1998.

4. M. Shing, V. Berzins, Luqi, M. Holden, and C. Eagle, "Master of
Science in Software Engineering via Distance Learning",
Proceedings Ada Software Engineering and Education Symposium,
Monterey, California, July 27-30 1998.

5. D. Zhang and Luqi, "The Pacific Rim Process Engineering
Research", Proceedings of Asia Pacific Forum on Software
Engineering of the International Conference on Software
Engineering, Kyoto, Japan, April 21, 1998.

1999

7. M. Harn, V. Berzins and Luqi, "Software Evolution via Reusable
Architecture", Proceedings of 1999 IEEE Conference and Workshop
on Engineering of Computer-Based Systems, Nashville, Tennessee,
7-12 March 1999, pp. 11-17.

8. M. Harn, V. Berzins and Luqi, "Computer-Aided Software Evolution
Based on Inferred Dependency", Proceedings of the Conference on
Advanced Information Systems Engineering: 6th Doctoral
Consortium, Heidelberg, Germany, 14-15 June 1999.

9. M. Ham, V. Berzins and Luqi, "A Dependency Computing Model for
Software Evolution", Proceedings of the 11th International
Conference on Software and Knowledge Engineering,
Kaiserslautern, Germany, 17-19 June 1999, pp. 278-282.

10. M. Ham, V. Berzins and Luqi, "Evolution of C41 Systems",
Proceedings of the 1999 Command and Control Research and
Technology Symposium, United States Naval War College, Newport,
Rhode Island, 20 June - I July 1999.

11. M. Harn, V. Berzins and Luqi, "Computer-Aided Software Evolution
Based on a Formal Model", Proceedings of the 13th International
Conference on Systems Engineering, Las Vegas, Nevada, 9-12
August 1999, pp. 55-60.

12. M. Ham, V. Berzins and Luqi, "A Formal Model for Software
Evolution", Proceedings of the 3rd International Conference on

4

Computational Intelligence and Multimedia Applications, New
Delhi, India, 23-26 September 1999, pp. 143-147.

13. M. Harn, V. Berzins and Luqi, "Software Evolution Process via a
Relational Hypergraph Model", Proceedings of the IEEE/IEEJ/JSAI
International Conference on Intelligent Transportation Systems,
Tokyo, Japan, 5-8 October 1999.

14. Luqi and J. Guo, "Toward Automated Retrieval for a Software
Component Repository", Proceedings of the International
Conference and Workshop on the Engineering of Computer Based
Systems (ECBS'99), Nashville, Tennessee, 7-12 March 1999, pp.
99-105.

15. Luqi, "Software Engineering to our Planning Horizon", Electronic
Notes in Theoretical Computer Science, Elsivier Science, 1999.

16. Luqi, "Engineering Automation for Computer Based Systems",
Electronic Notes in Theoretical Computer Science, Elsivier
Science, 1999.

17. M. Shing, Luqi, V. Berzins, M. Saluto and J. Williams,
"Architectural Re-engineering of Janus using Object Modeling and
Rapid Prototyping", Proceedings of the 10th IEEE International
Workshop on Rapid System Prototyping, Florida, 16-18 June 1999,
pp. 210-221.

2000

18. V. Berzins, M. Shing, Luqi, M. Saluto, and J. Williams,
"Architectural Re-engineering of Janus using Object Modeling and
Rapid Prototyping", Design Automation for Embedded Systems,
5(3/4), August 2000, pp.251-263.

19. V. Berzins, M. Shing, Luqi, M. Saluto, and J. Williams, "Object-
Oriented Modular Architecture for Ground Combat Simulation",
Proceedings of the 2000 Command and Control Research and
Technology Symposium, Naval Postgraduate School, Monterey, CA,
June 26-28, 2000.

20. V. Berzins, "Static Analysis for Program Generation Templates",
Proceedings of the 7th Monterey Workshop "Modeling Software
System Structures in a Fastly Moving Scenario", Santa Margherita
Ligure, Italy, June 13-16, 2000. Also available on-line at
http://www.disi.unige.it/person/ReggioG/PROCEEDINGS/

21. N. Cheng, V. Berzins, Luqi and S. Bhattacharya, "JAVA Wrappers
for Automated Interoperability", Lecture Notes in Computer
Science, Vol. 1966, Springer-Verlag, 2000, pp 45-64.

22. J. Ge, V. Berzins and M. Shing, "An Agent-Based, Distributed
Prototyping System for Software Interoperability Study",
Proceedings of the 13th International Conference on Computer
Applications in Industry and Engineering of the International
Society for Computers and Their Applications, Honolulu, HI, USA,
November 1-3, 2000, pp. 224-227.

5

23. J. Ge, V. Berzins and Luqi, "Computer Aided Prototyping in a
Distributed Environment", Proceedings of the International ICSC
Congress on Intelligent Systems & Applications (ISA'2000),
University of Wollongong, Australia, December 11-15, 2000.

24. J. Guo and Luqi, "Reuse and Re-engineering of Legacy Systems",
Proceedings of the 5th World Conference on Integrated Design &
Process Technology, Dallas, TX, June 4-8,2000.

25. J. Guo, and Luqi, "A Survey of Software Reuse Repositories",
Proceedings of the 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems (IEEE ECBS
-2000), Edinburgh, Scotland, UK, April 6-7, 2000.

26. Luqi and J.C. Nogueira, "A Risk Assessment Model for
Evolutionary Software Projects", Proceedings of the 7th Monterey
Workshop "Modeling Software System Structures in a Fastly Moving
Scenario", Santa Margherita Ligure, Italy, June 13-16, 2000.
Also available on-line at
http://www.disi.unige.it/person/ReggioG/PROCEEDINGS/

27. Luqi, V. Berzins, M. Shing, R. Riehle and J.C. Nogueira,
"Evolutionary Computer Aided Prototyping System (CAPS)",
Proceedings of the TOOLS USA 2000 Conference, Santa Barbara, CA,
July 30-August 3, 2000.

28. N. Nada, Luqi, D. Rine and K. Jaber, "Product Line Stakeholder
Viewpoint and Validation Models", Proceedings of the Workshop on
Software Product Lines: Economics, Architectures, and
Implications, The 22nd International Conference on Software
Engineering (ICSE2000), Limerick, Ireland, June 4-11, 2000.

29. N. Nada, Luqi, D. Rine and E. Damiani, "A Knowledge-Based System
for Software Reuse Technology Practices", Proceedings of the
Third International Workshop on Intelligent Software Engineering
(WISE3), The 22nd International Conference on Software
Engineering (ICSE2000), Limerick, Ireland, June 4-11, 2000.

30. J.C. Nogueira, Luqi and V. Berzins, "Risk Assessment in Software
Requirement Engineering", Proceedings of the 5th World
Conference on Integrated Design & Process Technology, Dallas,
TX, June 4-8,2000.

31. J.C. Nogueira, C. Jones and Luqi, "Surfing the Edge of Chaos:
Applications to Software Engineering", Proceedings of the 2000
Command and Control Research and Technology Symposium, Monterey,
CA, June 26-28, 2000.

32. J.C. Nogueira, Luqi, V. Berzins and N. Nada, "A Formal Risk
Assessment Model for Software Evolution", Proceedings of the 2nd
International Workshop on Economics-Driven Software Engineering
Research (EDSER-2), The 22nd International Conference on
Software Engineering (ICSE2000), Limerick, Ireland, June 4-11,
2000.

6

33. J.C. Nogueira, Luqi and S. Bhattacharya, "A Risk Assessment
Model for Software Prototyping Projects", Proceedings of the
11th IEEE International Workshop on Rapid System Prototyping,
Paris, France, June 21-23, 2000.

2001

33. M. Auguston, "Visual Meta-Programming Notation", Proceedings of
the 8th Monterey Workshop "Engineering Automation for Software
Intensive System Integration" (Monterey Workshop 2001),
Monterey, California, June 19-21, 2001.

34. J. Ge, B. Kin and V. Berzins, "A Software Agent Framework for
Distributed Applications", Proceedings of the 14th International
Conference on Parallel and Distributed Computing Systems,
Dallas, TX, August 8-10, 2001.

35. 0. Kiselyov, "Subclassing errors, OOP & Practically Checkable
Rules to Prevent Them", Proceedings of the 8th Monterey Workshop
"Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California,
June 19-21, 2001.

36. Luqi, V. Berzins and M. Shing, "The Use of Computer-Aided
Prototyping for Reengineering Legacy Software", Proceedings of
the 8th Monterey Workshop "Engineering Automation for Software
Intensive System Integration" (Monterey Workshop 2001),
Monterey, California, June 19-21, 2001.

37. Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston, B. Bryant and B.
Kin, "DCAPS - Architecture for Distributed Computer Aided
Prototyping System", Proceedings of the 12th IEEE International
Workshop on Rapid System Prototyping (RSP2001), Monterey,
California, June 25-27, 2001, pp. 103-108.

38. J. Michael and R. Riehle, "Intelligent Software Decoys",
Proceedings of the 8th Monterey Workshop "Engineering Automation
for Software Intensive System Integration" (Monterey Workshop
2001), Monterey, California, June 19-21, 2001.

39. M. Murrah, C. Johnson and Luqi, "Enhancements and Extensions of
Formal Models for Risk Assessment in Software Projects",
Proceedings of the 8th Monterey Workshop "Engineering Automation
for Software Intensive System Integration" (Monterey Workshop
2001), Monterey, California, June 19-21, 2001.

40. R. Raje, M. Auguston, B. Bryant, A. Olson and C. Burt, "A
Unified Approach for the Integration of Distributed
Heterogeneous Software Components", Proceedings of the 8th
Monterey Workshop "Engineering Automation for Software Intensive
System Integration" (Monterey Workshop 2001), Monterey,
California, June 19-21, 2001.

7

41. W. Ray and V. Berzins, "Optimization of Distributed Object-
Oriented Servers", Proceedings of the 8th Monterey Workshop
"Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California,
June 19-21, 2001.

42. M. Saboe and Luqi, "A Software Technology Transition Engine",
Proceedings of the 8th Monterey Workshop "Engineering Automation
for Software Intensive System Integration" (Monterey Workshop
2001), Monterey, California, June 19-21, 2001.

43. P. Young, V. Berzins, J. Ge and Luqi, "Use of Object Oriented
Model for Interoperability Wrapper-Based Translator for
Resolving Representational Differences between Heterogeneous
Systems", Proceedings of the 8th Monterey Workshop "Engineering
Automation for Software Intensive System Integration" (Monterey
Workshop 2001), Monterey, California, June 19-21, 2001.

Scientific Personnel:

Dr. Luqi, Professor, NPS

Dr. Valdis Berzins, Professor, NPS

Dr. Man-Tak Shing, Associate Professor, NPS

Dr. Bret Michael, Associate Professor, NPS

Dr. Du Zhang, Visiting Professor, NPS

Dr. Swapan Bhattacharya, National Research Council Research Associate

Dr. Jiang Guo, National Research Council Research Associate

Dr. Jun Ge, National Research Council Research Associate

Dr. Mikhail Auguston, National Research Council Research Associate

Dr. Oleg Kiselyov, National Research Council Research Associate

Dr. Barrett Bryant, National Research Council Research Associate

Dr. Nabendu Chaki, Visiting Professor, NPS

Dr. Bruce C. Shultes, Visiting Assistant Research Professor

J. Kominiak, "Software System Requirements for the Fuel Automation
Subsystem of the Integrated Combat Service Support System (ICS3) Using
the Computer Aided Prototyping System (CAPS)", Master's thesis, NPS,
March 1998.

G. Meckstroth, "A GUI Interface for Reusable Components Storage and
Retrieval in the CAPS Software Base", Master's thesis, NPS, March 1998.

T. Rambidis, "Security Issues for the Software Evolution Model",
Master's thesis, NPS, March 1998.

8

J. T. Hirschfelder and Mr. L. M. Nixon, "Re-engineering of a Mission
Critical Satellite Communications Component TD-1271B/U", Master's
thesis, NPS, March 1998.

0. Korkut, "Software Architecture for a Multi-level Real-time System",
Master's thesis, NPS, September 1998.

Jose Carlos Alves de Almeida, "Software Architecture for Distributed
Real-Time Embedded Systems", Master's thesis, NPS, September 1998.

Mickey Ham, "Computer-Aided Software Evolution Based on Inferred
Dependencies", PhD's dissertation, NPS, December 1999.

Hanh Le, "Design of A Persistence Server for The Relational Hypergraph
Model", Master thesis, NPS, December 1999.

Eric Matsuo, "Risk Assessment in Incremental Software Development",
Master thesis, NPS, December 1999.

J.C. Nogueira, "A Formal Model for Risk Assessment in Software
Projects", Doctoral Dissertation, Software Engineering, NPS, September
2000.

Boon Kwang Kin, "A Simple Software Agents Framework for Building
Distributed Applications", Master thesis, NPS, March 2001.

Eddie Davis, "Evaluation of the Extensive Markup Language (XML) as a
Means for Establishing Interoperability Between Multiple DoD
Databases", Master thesis, NPS, June 2001.

Robert Halle, "Extensible Markup Language (XML) Based Analysis and
Comparison of Heterogeneous Databases", Master thesis, NPS, June 2001.

Craig Johnson and Robert Piirainen, "Application of the Nogueira Risk
Assessment Model to Real-Time Embedded Software Projects", Master
thesis, NPS, June 2001.

Wayne Mandak and Charles Stowell, "Dynamic Assembly for System
Adaptability Dependability and Assurance (DASADA) Project Analysis",
Master thesis, NPS, June 2001.

Paul Nelson, "A Requirements Specification of Modifications to the
Functional Description of the Mission Space Web-based Tool", Master
thesis, NPS, June 2001.

Randolph Pugh, "Methods for Determining Object Correspondence during
System Integration", Master thesis, NPS, June 2001.

William Windhurst, "An Application of Role-Based Access Control in an
Organizational Software Process Knowledge Base", Master thesis, NPS,
June 2001.

Report of Inventions: N/A

Technology Transfer:

1998

B.C. Shultes, "Using Semi-Markov and Semi-Stationary Models to Speed-Up
Rare Event Simulations" presented at the INFORMS National Meeting in
Seattle, October 1998.

B.C. Shultes, "The Balanced Likelihood Ratio Method for Estimating
Performance Measures of Highly Reliable Systems" presented at the 1998
Winter Simulation Conference in Washington DC, December 1998.

Luqi, Panel Chair, Process Engineering, International Conference on
Software Engineering, was held in Kyoto, Japan, April, 1998.

Luqi, Advisory Committee, Quality Week, International Conference, was
held in San Francisco, April, 1998.

Luqi, Program Committee, 10th International Conference on Software
Engineering and Knowledge Engineering (SEKE 98), was held in San
Francisco, June 18-20 1998.

Luqi, Chair, Program Committee, 1998 ARO/ONR/NSF/DARPA Monterey
Workshop on Engineering Automation for Computer Based Systems, held in
Carmel, CA, October 26-29 1998.

1999

M. Shing, "Architectural Re-engineering of Janus using Object Modeling
and Rapid Prototyping" presented at the 10th IEEE International
Workshop on Rapid System Prototyping, Florida, June 1999.

M. Ham, "Software Evolution via Reusable Architecture," presented at
the 1999 IEEE Conference and Workshop on Engineering of Computer-Based
Systems, Nashville, Tennessee, March 7-12, 1999, pp. 11-17.

M. Ham, "Computer-Aided Software Evolution Based on Inferred
Dependency," presented at the Conference on Advanced Information
Systems Engineering: 6th Doctoral Consortium, Heidelberg, Germany, June
14-15, 1999.

M. Ham, "A Dependency Computing Model for Software Evolution,"
presented at the Eleventh International Conference on Software and
Knowledge Engineering, Kaiserslautern, Germany, June 17-19, 1999.

M. Harn, "Evolution of C41 Systems," presented at the 1999 Command and
Control Research and Technology Symposium, United States Naval War
College, Newport, Rhode Island, June 29 - July 1, 1999.

M. Harn, "Computer-Aided Software Evolution Based on a Formal Model,"
presented at the thirteenth International Conference on Systems
Engineering, Las Vegas, Nevada, August 9-12, 1999.

M. Harn, "A Formal Model for Software Evolution", presented at the 3rd
International Conference on Computational Intelligence and Multimedia
Applications," New Delhi, India, September 23-26, 1999.

10

A. Mori, "Software Evolution Process via a Relational Hypergraph
Model," presented at the IEEE/IEEJ/JSAI International Conference on
Intelligent Transportation Systems, Tokyo, Japan, October 5-8, 1999.

Jiang Guo, "Toward Automated Retrieval for a Software Component
Repository", presented at the International Conference and Workshop on
the Engineering of Computer Based Systems (ECBS), Nashville, USA, March
7-12, 1999.

2000

V. Berzins, member, Steering Committee, 2000 ARO/NSF/CNR Monterey
Workshop on Modeling Software System Structures in a Fastly Moving
Scenario, held in Santa Margherita Ligure, Italy, June 13-16, 2000.

V. Berzins, "Static Analysis for Program Generation Templates",
presented at the 7th Monterey Workshop "Modeling Software System
Structures in a fastly moving scenario", Santa Margherita Ligure,
Italy, June 13-16, 2000.

V. Berzins, "A formal Risk Assessment Model for Software Evolution", in
presented at the 2nd International Workshop on Economics-Driven
Software Engineering Research (EDSER-2), the 22nd International
Conference on Software Engineering (ICSE2000), Limerick, Ireland, June
4-11, 2000.

J. Gou, "Reuse and Re-engineering of Legacy Systems", presented at the
5th World Conference on Integrated Design & Process Technology, Dallas,.
TX, June 4-8,2000.

Luqi, "A Survey of Software Reuse Repositories", presented at the 7th
IEEE International Conference and Workshop on the Engineering of
Computer Based Systems (IEEE ECBS 2000), Edinburgh, Scotland, UK, April
6-7, 2000.

Luqi, "A Risk Assessment Model for Evolutionary Software Projects",
presented at the 7th Monterey Workshop "Modeling Software System
Structures in a Fastly Moving Scenario", Santa Margherita Ligure,
Italy, June 13-16, 2000.

Luqi, "A Risk Assessment Model for Software Prototyping Projects",
presented at the l1th IEEE International Workshop on Rapid System
Prototyping, Paris, France, June 21-23, 2000.

Luqi, Chair of the Program Committee, the 11th IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

Luqi, Co-Chair, Program Committee, 2000 ARO/NSF/CNR Monterey Workshop
on Modeling Software System Structures in a Fastly Moving Scenario,
held in Santa Margherita Ligure, Italy, June 13-16, 2000.

J.C. Nogueira, "Risk Assessment in Software Requirement Engineering",
presented at the 5th World Conference on Integrated Design & Process
Technology, Dallas, TX, June 4-8,2000.

11

J.C. Nogueira, "Surfing the Edge of Chaos: Applications to Software
Engineering", presented at the 2000 Command and Control Research and
Technology Symposium, Monterey, CA, June 26-28, 2000.

R. Riehle, "Evolutionary Computer Aided Prototyping System (CAPS)",
presented at the TOOLS USA 2000 Conference, Santa Barbara, CA, July 30-
August 3, 2000.

R. Riehle, chair of the Tutorial Committee, the TOOLS USA 2000
Conference, Santa Barbara, CA, July 30-August 3, 2000.

M. Shing, "Object-Oriented Modular Architecture for Ground Combat
Simulation", presented at the 2000 Command and Control Research and
Technology Symposium, Naval Postgraduate School, Monterey, CA, June 26-
28, 2000.

M. Shing, member of the Program Committee, the 11th IEEE International
Workshop on Rapid System Prototyping, held in Paris, France, June 21-
23, 2000.

2001

M. Auguston, V. Berzins, S. Bhattacharya, J. Ge, 0. Kiselyov, D. Zhang,
members of the Program Committee, the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

M. Auguston, member of the Program Committee, the 12th IEEE
International Workshop on Rapid System Prototyping (RSP2001), Monterey,
California, June 25-27, 2001.

M. Auguston, "Visual Meta-Programming Notation", presented at the 8th
Monterey Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

J. Ge, "A Software Agent Framework for Distributed Applications",
presented at the 14th International Conference on Parallel and
Distributed Computing Systems, Dallas, TX, August 8-10, 2001.

0. Kiselyov, "Subclassing Errors, OOP & Practically Checkable Rules to
Prevent Them", presented at the 8th Monterey Workshop "Engineering
Automation for Software Intensive System Integration" (Monterey
Workshop 2001), Monterey, California, June 19-21, 2001.

Luqi, co-chair of the Program Committee, the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

Luqi, General Co-Chair, the 12th IEEE International Workshop on Rapid
System Prototyping (RSP2001), Monterey, California, June 25-27, 2001.

J. Michael, "Intelligent Software Decoys", presented at the 8th
Monterey Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

12

M. Murrah, "Enhancements and Extensions of Formal Models for Risk
Assessment in Software Projects", presented at the 8th Monterey
Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

R. Raje, "A Unified Approach for the Integration of Distributed
Heterogeneous Software Components", presented at the 8th Monterey
Workshop "Engineering Automation for Software Intensive System
Integration" (Monterey Workshop 2001), Monterey, California, June 19-
21, 2001.

W. Ray "Optimization of Distributed Object-Oriented Servers", presented
at the 8th Monterey Workshop "Engineering Automation for Software
Intensive System Integration" (Monterey Workshop 2001), Monterey,
California, June 19-21, 2001.

M. Saboe, "A Software Technology Transition Engine", presented at the
8th Monterey Workshop "Engineering Automation for Software Intensive
System Integration" (Monterey Workshop 2001), Monterey, California,
June 19-21, 2001.

M. Shing, Chair, Local Arrangement, the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

M. Shing, Chair, Local Organization, the 12th IEEE International
Workshop on Rapid System Prototyping (RSP2001), Monterey, California,
June 25-27, 2001.

M. Shing, "The Use of Computer-Aided Prototyping for Re-engineering
Legacy Software", presented at the 8th Monterey Workshop "Engineering
Automation for Software Intensive System Integration" (Monterey
Workshop 2001), Monterey, California, June 19-21, 2001.

M. Shing, "DCAPS - Architecture for Distributed Computer Aided
Prototyping System", presented at the 12th IEEE International Workshop
on Rapid System Prototyping (RSP2001), Monterey, California, June 25-
27, 2001.

P. Young, "Use of Object Oriented Model for Interoperability Wrapper-
Based Translator for Resolving Representational Differences between
Heterogeneous Systems", presented at the 8th Monterey Workshop
"Engineering Automation for Software Intensive System Integration"
(Monterey Workshop 2001), Monterey, California, June 19-21, 2001.

13

APPENDICES

FY2001 Publications

14

Visual Meta-Programming Notation'

Mikhail Auguston2

Department of Computer Science

Naval Postgraduate School

833 Dyer Road, Monterey, CA 93943 USA

auguston@cs.nps.navy.mil

Abstract

This paper describes a draft of visual notation for meta-programming. The main suggestions of this work include special-
ized data structures (lists, tuples, trees), data item associations that provide for creation of arbitrary graphs, visualization
of data structures and data flows, graphical notation for pattern matching (list, tuple, and tree patterns, graphical notation
for context free grammars, streams), encapsulation means for hierarchical rules design, two-dimensional data-flow dia-
grams for rules, visual control constructs for conditionals and iteration, default mapping rules to reduce real-estate re-
quirements for diagrams, and dynamic data attributes.

Two-dimensional data flow diagrams improve readability of a meta-program. The abstract syntax type definitions for
common programming languages and related default mappings (parsing and de-parsing) provide for a practically feasible
reuse of those components.

1 Introduction and objectives

Meta-programs are programs manipulating other programs. Typical applications include compilers, interpreters, source
code static analyzers and checkers, program generators, and pretty-printers. Domain-specific language implementation and
rapidly evolving generative programming [9] are the latest examples of developments in this domain. The complexity and
sophistication of meta-programs may be quite significant, so the readability and maintainability become an issue.

Compiler and generator design is a domain that has been studied extensively. There is a pretty good understanding of
what to do and how to do it, especially for front-end design, and a lot of domain-specific software design templates are ac-
cumulated in literature. The following domain features are among the most common for language processor design.

• Use of context-free grammars to specify syntax and serve as a basis for parser design.

* Intermediate representation of the input in the form of an abstract syntax tree. The importance of different tree data
structures is recognized in general for this problem domain.

* Typically, the main components of a language processor are very hierarchical and structured along the structure of data
(recursive descent parser is an excellent example of this feature). In other words, language processors are heavily data-
based applications.

* It appears that the most commonly used data structures include trees, lists, stacks, tables, and strings.

* The architecture of a language processor in most cases can be represented as a data flow between components (e.g., the
famous compiler data flow diagram on the page 13 of the "Dragon Book"[l]).

* The notion of an attribute associated with the data item, and attribute dependency and propagation schemes are of a
great relevance (the attribute grammar framework captures some of the essential static checking needs; the data flow
analysis performed for the optimization stage in a compiler may be considered as an attribute propagation over the
program graph).

'This research was supported in part by the U. S. Army Research Office under grant number 40473-MA-SP.
2 On leave from New Mexico State University, USA

15

* Tree (and graph) traversal and transformation is a common template for optimization and code generation tasks.
* Pattern matching (e.g., with respect to regular expressions or context-free grammars) may be a useful control structure

for this problem domain.

These considerations and experience with the compiler writing tools RIGAL[2][3], lex and yacc[l 1], and ELI[10] contrib-
uted to this work. Data-flow paradigm is quite natural for meta-programming domain since it is heavily data dependent,
and consequently, the graphical notation for data-flow diagrams could be appropriate. This should be integrated with visu-
alization of typical data structures, pattern matching, and encapsulation to provide for well-structured, hierarchical pro-
grams. Data-flow diagrams are most commonly used to represent dependencies between data and processes in visual pro-
gramming languages, for instance, in LabVIEW[5] and Prograph[8].

Two-dimensional diagram notation could significantly improve readability of meta-programs. Some of these ideas have
been explored in our previous work[4].

The main suggestions of this work are as follows:

"* specialized data structures (lists, tuples, trees),

"* data items associations that provide for creation of arbitrary graphs,.

"* visualization of data structures and data flows,

"* graphical notation for pattern matching (list, tuple, and tree patterns; graphical notation for context free grammars and
streams),

"* encapsulation means for hierarchical rules design,

"* two-dimensional data-flow diagrams for rules,

"* visual control constructs for conditionals and iteration,

"* default mapping rules to reduce screen real-estate requirements for diagrams,
"• dynamic (Last #rule Sattribute) and static (via associations) data attributes,

"* data-flow notation that assumes potential parallelism in the data processing,

"* abstract syntax type definitions for common programming languages and related default mappings (parsing and de-
parsing) that provide for a practically feasible reuse of those components.

2 Constructs

This paper was not intended to give a complete and precise syntax and semantics of the visual language. At this point it is
rather a notation that will be upgraded to programming language status after the implementation effort is completed. A
(simplified) example of a compiler from a small subset of Lisp (called MicroLisp) to the C language will be used to present
the main ideas. Figures 3- 7 present several annotated parsing and code generation rules of the MicroLisp to C compiler.
Appendix A contains the MicroLisp context-free grammar and an example of a program.

2.1 Data flow diagrams

Detailed rationale for data-flow diagram notation and a survey of related work can be found in a previous paper[4].
Briefly, a meta-program is rendered as a two-dimensional data flow diagram that visualizes the dependencies between data
and processes. Diagrams actually are similar to the notion of procedure in common programming languages. A diagram
represents a single function called a rule, and rule calls may be recursive. The data-flow diagram supports the possibility of
parallel execution of threads within the rule.

The data-flow paradigm is closely related to the functional programming paradigm [7] and shares with that paradigm ref-
erential transparency and good correspondence between the source code (the diagram) and the order of program execution.

Each diagram represents a single function with several inputs and outputs. At the top of a diagram a signature of a rule
provides the rule name and types of its inputs and outputs. Besides data items, the diagram may also contain control struc-
tures, such as other rule calls, conditional data flow switches, and iterative constructs [4]. All of those constructs are illus-
trated in the MicroLisp examples.

16

The rectangular boxes in our notation denote values, and circles and ovals denote patterns, that could be matched with
data objects.

2.2 Types

Type represents a set of values (or objects). Basic predefined types include char (characters) and int (integers). There
is also a universal type ANY (which is a super type for any type) and the minimal type NULL (which is a subtype of any
other type and contains a single value Nul 1 representing also an empty list or tuple).

Aggregate types are ordered tuples of heterogeneous objects, which are useful for abstract syntax representation, and lists
(sequences of homogeneous objects that could be dynamically augmented). Extended BNF notation may be used to define
tuple types. To a large degree the type system is similar to the type mechanisms in VDM[13] and Refine[12].

Example of a tuple type definition.

prog::= function-def* expression

This establishes that an object of the type prog is a sequence of zero or more objects of the type function-def followed by
an object of the type expression. This could be considered as an abstract syntax representation for the MicroLisp program
level. Notice that ordered sequence of objects of the type function-def is nested within an object of the type prog.

Example of a list type definition.

text :: [char]

There is a predefined list type id: : [char] , which stands for a set of character strings that are valid identifiers.

Example of a type definition with several alternatives (union type).

expr :: int Iid I simple-expression

This effectively declares that types int and id are subtypes of expr in the scope of this definition.

Appendix B presents some of the type definitions for the MicroLisp example.

2.3 Default mappings

P-!

C-Headr~ileC-CodeFile

Figure 1. The top level data flow diagram for Mi.rosp to C compiler

Certain rules may be declared as default mappings. It means that corresponding rule calls are optional in the diagrams,
and input and output data boxes may be connected directly. This helps to save some screen real estate and to make diagrams
less crowded and more readable. Typically default mappings may be introduced for text-to-abstract syntax (parsing) and for
abstract syntax-to-text mappings (de-parsing, or abstract syntax-to-concrete syntax mappings).

Yet another kind of default mappings is associated with concatenation operations for tuples and sequences. In fact this is a
composition of parsing and de-parsing default mappings applied in the context of (visualized) concatenation. See MicroLisp
generation rules for examples (Figures 6-7).

17

Definitions of abstract syntax types for common programming languages and related parsing and de-parsing default map-
pings may be valuable assets for reuse.

Default mappings also open the road for "lightweight" inference. For example, suppose that type A is defined as follows:
A ::B IC

and there are default mappings B. -> D and C -> D, then it is possible to derive a default mapping for A -> D. This example
actually addresses the polymorphism. issue in our lightweight type system. Similar inference rules could be developed for
other aspects of type system based on transitivity of subtype relation.

2.4 Associations

Data objects may be associated with other data objects. Each of those objects may have other associations as well. Associa-
tions are not a necessary part of the type definition (although they could be included in the type definition as well) and are
rather optional named attributes of particular objects. Associations may be used to create arbitrary graphs from objects. The
following picture on Figure 2 illustrates the creation of a graph structure via associations from three data objects. Associa-
tion is not symmetric. According to the following diagram object A has been associated with an attribute B via an associa-
tion named ab, object B with C via bc, and C with A via ca.

Associated objects are retained when the host objects are the source and target in an identical transformation (plain arrow
connecting data boxes of the same type) or are passed as inputs and outputs of rule calls. A special built-in rule #COPY
creates a copy of an object but retains only those components declared in the type definition. Associated objects could be
retrieved by pattern matching. For instance, on the right-hand diagram on Figure 2, object C (belonging to the associations
established in the previous example) may be passed as input, and an access to objects B and A can be obtained via pattern
matching (circles denote object patterns here). Notice that the direction of association arrow indicates the access path from
the host object to the attribute object. The association mechanism may be useful to simulate attribute-grammar-like attribute
propagation in ensembles of objects, to represent collections of objects as graphs, to implement symbol tables (where identi-
fiers may be represented as associations names), and so on.

ZabL7 [:B] C

ca
ca

bc

A ab B

Figure 2. Construction of associations between objects and retrieval of them
using pattern matching

2.5 Patterns and streams

Data object patterns are used to visualize structure of objects in order to provide access to object components and associ-
ated objects. An object pattern may be placed in any part of the data flow and is matched with the object connected to the
pattern input.

18

If pattern matching is successful the input object is passed downstream. If pattern matching fails, the entire diagram exe-
cution fails, and the diagram sends to its outputs a default value Null, unless the pattern has been provided with the
'Failed' output route. See MicroLisp rules in Figures 3-4 for examples.

If a rule's input is a list, patterns applied to this input may be chained in a sequence (using thick gray arrows) to be ap-
plied consecutively. This pattern sequence consumes as many objects from the stream as it can successfully match. The no-
tion of stream corresponds to the sequence in RIGAL language[2][3], and semantics of pattern matching is derived from
RIGAL's pattern matching semantics. See MicroLisp parsing rules for example (Figures 3-5).

Rules can create output streams of objects as well.

2.6 States and dynamic attributes

Rule may have states - objects that persist while rule instance is active and can be updated by assignment operators within
the rule or from oher rules called from this rule. This mechanism could be actually considered a macro extension for dia-
gram notation when a corresponding state object is passed to the called rules as an additional parameter and returned back
to the callee as an additional output. States have names starting with the $ symbol, e.g. $X. The reference to the rule's #A
state $X has a form Last #A $X. When referred within the rule #A, the prefix Last #A can be dropped. See Figures 4-5 for
examples.

3 Examples of MicroLisp to C compiler rules

The following diagrams present three top level parsing rules and two top level generation rules for MicroLisp -> C com-
piler. They illustrate most of the notations discussed above. Additional annotations provide more specific details and discus-
sion. Those rules are deployed according to the data flow diagram on Figure 1 and default mappings in Appendix B.

3.1 Parsing

The source code of MicroLisp program is represented as a stream of characters. It is assumed that there is a lexical com-
ponent that filters out comments, spaces, tabs, end-of-line characters from the stream before it is fed to the parsing rules.

19

#program: Stream [char]-> prog, Stream [message]
state $func-list: [id] -- updated by #func-def

L~ #func -def '9 im~I~ #expr

messagem:e_ _ _
"?expected"

po atax err e o-tab

S;; Sytax 'err

Aeprogo:
message:• I'i

"Errors rlfunc-def
c e

detected" ••

prog :
Null

Figure 3. Parsing rule for the grammar rule
program : := func-def * ?'expression

Annotations for the rule #program

" This rule has a state $func-list which will be gradually updated by the rule -ffunc-def calls (see Figure 4). At the end of

parsing, object $func-list will be added as an attribute (via association with the name Func-tab) to the resulting object of
the type prog. The box containing $func-list has a dummy input of the type ANY, which is activated when the last pat-
tern #expr terminates with success. This ensures the timing when the state value is picked up for the association opera-
tion.

"* The rules #func-def and #expr are used as patterns. If pattern matching encapsulated in these rules is successful, the
rules also are successful and return values, which are used to assemble the return value of the rule #program.

"* If pattern matching for the pattern '?' fails, the entire rule #program also fails and returns object Null, but before it
happens two messages will be sent to the output stream. Markers labeled 'Syntax err' are used to prevent a mess with
arrow intersections.

"* A data flow fork denotes duplication of the data item sent to two or more threads.

"* Nesting boxes and forwarding output of pattern rules of the types func-def and expr inside the resulting box of the type
prog provide an intuitive visualization for the tuple constructor.

"* The application of pattern #func-def may be repeated zero or more times (indicated by the ellipsis '***'), and it is syn-
chronized with the tuple constructor (as the box of the type func-def in the resulting prog box is also accompanied by
an ellipsis).

20

#func-def: Stream [char]-> Func-def, Stream [message]
state $param-list: [id] -- used in #expr

"DEFINE" #dt #Ident ')' #exP1r

Failed

f $param-list

message:
• wrong
function

name" Last #program $func-list

Name:

Name IN Last _,

F#programu func-listg m

S~False

An name Func-defr:

defined
twice

Figure 4. Parsing rule for a function definition by a grammar rule
Function-definition :=('DEFINE '(' Name Param *)'Expression)

Annotations for the rule #func-def

" Built-in rule #Ident matches a character string that is an identifier. When successful, this identifier (an object of the
type id) is input to the conditional data flow switch to check whether the function name is already on the list. If true,
the id item is forwarded to the message output stream. If false, it goes to the resulting tuple constructor.

" A function name is also sent to update state $func-list in the current instance of rule #program. I.:= stands for the op-
eration to append an element to the end of list. This assignment operation updates the state Last #program $func-list.

* The entire sequence of patterns in this rule consumes part of the input stream delegated from the calling rule #program.

* Parameter names are appended to the state variable $param-list. All state variables are initialized by Null, which stands
for empty list in this case.

21

#expr Stream [char] -> expr, Stream [message]

not defined#simple-exp

Figure 5. Parsing rule for MicroLisp expression for the grarn•ar rule
expression::= integer I parameter-name I '(' SimpleExpression ')'

Annotations for the rule #expr

"* A pattern may have several alternatives. The alternatives are applied in order of appearance, if the first alternative
fails, the pattern matching backtracks in the input stream and the next alternative is applied until one of alternatives is
successful. If all alternatives fail, the entire alternative pattern also fails.

"* The built-in rules #Number and #Ident, when successful, return objects of the types int and id, correspondingly.
Since the type expr is defined as a supertype for £nt and id, the data flow to the resulting object of the type expr is
consistent.

3.2 Code generation

Code generation rules take as input a MicroLisp abstract syntax object and output C abstract syntax objects. Target code
template representation in the diagrams is based on default mappings for C abstract and concrete syntax and visual repre-
sentation of append operation as nested boxes.

Annotations for the rule #gen-program

22

#gen-program: prog -> C-HeaderFile, C-CodeFile

C-HeaderFile:

Oidude<Mdo~h>
prog:

fi=n-def

C-CodeFile:
#include "lisp.h"

O000

intmainO{
printf("The result i:/d\W",

Figure 6. Geramon rule for the NMcroLisp pog-am level

The input is of the type prog (abstract syntax object for MicroLisp) and a patternfor this object provides an access
to the component retrieval. Since func-def components may be repeated zero or more times, the ellipsis in the pat-
tern represents the iterative traversal.

* The iteration of the input is synchronized with the iterative generation of objects in two outputs. The
transformations itself are carried by default mappings func-def -> C-func-prototype and func-def -

> C- func-definition. The rule #gen-function-prototype in the next example gives the algorithm for the first
of these default mappings. Since the template provides particular concrete syntax for parts of the C code, those text
segments will be stored with corresponding C abstract syntax objects. The resulting parse tree for include and
printf will contain objects of the type id and text-string that hold values, such as "int", "printf", and other. These
concrete syntax values are retrieved by default mappings when pretty-printing corresponding C abstract objects.

* The rule #gen-program constructs the target C code in the abstract syntax form. The mapping from abstract syntax
to the text will be done according to the main diagram in Figure 1 by corresponding de-parsing default mappings
for the C language. Both the abstract syntax definitions and default parsing and de-parsing mappings for the C
language may be reused for any other meta-program that uses C as a target.

23

Annotations for the rule #gen-function-prototype
* This rule provides the flavor of hierarchical structure of generation templates.

* The first appearance of the string "hit" in the target object C-func-prototype object will be converted by the C default
parsing mapping into object C-type and the string "int" will be associated with it as a value. The same is true also for
the iteration of "int" in the parameter list.

* Box around the second instance of "int" is needed to indicate the binding with the iteration of id in the source object
func-def.

#gen-function-prototype: func-def - C-func-prototype

func-def : C-func-prototype:

S~int

Figure 7. Generation rule for C function prototype.

* Parentheses, semicolon, and comma (as a separator between iterated elements; in the graphical interface there should
be a way to indicate that comma is related to the iteration ellipsis) in the target object are optional, and if present, will
be consumed by corresponding C default parsing mappings. The resulting object is still an abstract syntax object.

4 Preliminary conclusions

This paper presents very preliminary results on the visual notation for meta-programming. Work continues on the lan-
guage itself, case studies, and implementation issues. At the moment of this writing the interpreter for the core of data-flow
language is already implemented, and work is in progress on the graphical editor and advanced features like default map-
pings and tuple pattern matching. In it current form, the concepts presented may be used as a useful supplement to the
meta-program design documentation. We expect the advantages of this approach to be as follows.

"* Visualization of data and data flow provides for better readability and uncovers parallelism in data processing.

"* The tuple type provides for a precise, disciplined, and flexible way to define abstract syntax.

0 The simple association mechanism provides a natural way to introduce data attributes and opens the road for proc-
essing of arbitrary graphs without cluttering the language with additional means.

"* Pattern matching notation covers in a uniform way data objects, rule calls, associations, and extended BNF nota-
tion for parsing.

24

"* The language provides for systematic and consistent correspondence between constructors and patterns.

"* The dynamic attributes (states) are actually macro extensions of pure functional paradigm (may be considered as
additional inputs and outputs for diagrams referring to the states), provide for more efficiency, and make the data
flow diagram simpler and less cluttered.

"* Default mappings may be very convenient for generation templates, provide basis for lightweight type inference,
and rule reuse.

"* Data streams and patterns give a flexible and expressive framework for parsing rules supporting extended BNF no-
tation, support reasonable and informative parsing error messages.

"* Control mechanism, such as data flow switch, iteration and recursion fit well with data-flow notation and provide
for transparent and expressive language to define different kinds of meta-programming algorithms.

References

[1] A.Aho, R.Sethi, J.Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, 1986

[2] M.Auguston, "RIGAL'- a programming language for compiler writing", Lecture Notes in Computer Science, Springer Verlag,
vol.502, 1991, pp.529-564.

[3] M.Auguston, "Programming language RIGAL as a compiler writing tool", ACM SIGPLAN Notices, December 1990, vol.25, #12,
pp.61-69

[4] M.Auguston, A.Delgado, Iterative Constructs in the Visual Data Flow Language, in Proceedings of IEEE Symposium on Visual
Languages, Capri, Italy, 1997, pp. 152-159

[5] E.Baroth, C.Hartsough, Visual Programming in the Real World, in Visual Object-Oriented Programming, Concepts and Environ-
ments, (ed. M.Bumett, A.Goldberg, T.Lewis), Manning 1995, pp.21-42

[6] D.Batory, Gang Chen, E.Robertson, Tao Wang, Design Wizards and Visual programming Environments for GenVoca Generators,
IEEE Transactions on Software Engineering, Vol. 26, No 5, May 2000, pp.441-452

[7] R. Bird, T. Scruggs, M. Mastropieri ,Introduction to Functional Programming, Prentice Hall, 1998

[8] P.T.Cox, F.R.Gilles, T. Pietrzykowski, "Prograph", in Visual Object-Oriented Programming, Concepts and Environments, (ed.
M.Bumett, A.Goldberg, T.Lewis), Manning 1995, pp. 4 5-66

[9] K.Czamecki, U.Eisenecker, Generative Programming, Methods, Tools, and Applications, Addison Wesley, 2000, pp.832, ISBN 0-
201-30977-7

[10] R. W. Gray, V. P. Heuring, S. P. Levi, A. M. Sloane, and W. M. Waite. Eli: A Complete, Flexible Compiler Construction System,
Communications of the ACM, 35(2):121-131, February 1992.

[11] J. Levine, T.Mason & D.Brown, lex & yacc, 2nd Edition, O'Reilly, 1992

[12] Reasoning Systems, "Refine User's Guide", Palo Alto, 1992

[13] The Vienna Development Method: The Meta-Language, D. Bjomer et al, eds, LNCS 61, Springer 1978

Appendix A. Syntax of MicroLisp language and an example of a program

Program ::= Function-definition* '?' Goal-Expression

Goal-Expression ::= Expression

Function-definition ::= ' ('DEFINE' ('Function-name Parameter-name*')f Expression ')

Expression ::= Integer I Parameter-name I'(' SimpleExpression '1)

SimpleExpression ::= BinOperation Expression Expression I UnOperation Expression

Function-name Expression* I COND Branch + I READNUMBER

Branch::= '('Expression Expression '1)

BinOperation ::= ADD I SUB I MULT I DIV I MOD I EQ I LT IGT I AND I OR

25

UnOperation ::= MINUS I NOT

Function-name ::= Identifier

Parameter-name ::= Identifier

Example of a MicroLISP program.

DEFINE (gcd x y)

(COND (EQ x y) x)

(GT x y) (gcd (SUB x y) y)

1 (gcd x (SUB y x))))

? (gcd (READNUMBER) (READNUMBER)

Appendix B. Type definitions for MicroLisp -> C compiler

message:: [char I

program:: (funcdef* expr)l NULL

attribute func tab: lid]

funcdef:: id id* expr

expr:: number I id 1(op expr expr)1 (op expr)lreadnum I cond I function-call

function-call:: id expr*

cond:: (expr expr)*

default mappings

#prog: [char I -> prog

#genprogram: prog -> C-HeaderFile, C-CodeFile

#gen-function-prototype: Func-def -> C-func-prototype

#gen-function-def: Func-def -> C-func-definition

#prettyprintprog: prog -> [char

This is a sketch of a (over)simplified version of C abstract syntax.

CCodeFile:: include-statement * C-func-definition +

CHeaderFile:: include-statement C-func-prototype *

C_funcprototype:: C-type func-name C-type *

C-type:: id

C func definition'::

C~expr: :......

Default mappings include parsing rules and pretty-printing rules (abstract syntax to text mappings).

26

A Software Agent Framework for Distributed Applications+

Jun Ge, Boon Kwang Kin, Valdis Berzins
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943, USA

Email: {gejun, berzins}@cs.nps.navy.mil, bkkin@nps.navy.mil

Abstract Some of these problems are heterogeneity, latency, partial
Software wrapper and glue technology is used to build the failure, synchronous and coordination.
architecture for distributed systems. This paper proposes
a simple framework using agents to act as interfaces Rewriting legacy software to run in a distributed
among processes interacting and cooperating to support environment tends to be prohibitively expensive and
the wrapper-glue architecture. These agents encapsulate complex. Many of this legacy software are expensive
the implementation details and make the network investment developed over many years, replacing them
transparent to the running processes. The proposed with new designs is usually not easily justifiable in term
framework is built on JINI infrastructure and uses Linda of cost and resource allocation. Although, the only way to
TupleSpace type model of communication mechanism for keep such legacy software useful is to incorporate them
processes to interact with one another. The agent into a wider cooperating community in which they can be
interface is written in Java programming language with exploited by other pieces of software, this tends to be very
two language wrappers, C Library wrapper and ActiveX complex in software design.
Component wrapper to support processes written in
multiple languages including Java, C++/C, Ada and Recently, the techniques to "glue" multiple processes
Visual Basic. The agents can run on platforms with JVM running in a heterogeneous environment range from low
support. This agent framework serves in the development level sockets and messaging techniques to more
of distributed systems as the "glue" among components sophisticated technologies object resource broker
for communications. Test examples implemented in (CORBA, DCOM). Many of these techniques either
various languages are provided, require developers to perform"' significant work in

constructing the communication mechanisms or need

Key words7 wrapper and glue, agent, distributed system, developers to have a good knowledge of the interface
JINI, software wrapper details before designing. Hence, "glue" pieces of

processes are a difficult task and require skillful
1. Introduction designers.

In the last few years, the computing landscape has Existing technologies for distributed system design
changed dramatically, as more devices such as hand include these models, namely client/server model and
phones, PDAs (Personal Device Assistance) and internet distributed object model.
terminals, become network-connected, and as more
companies depend on the Internet to operate and The client/server model contains a set of server processes;
communicate; distributed applications (one that involves each one acting as a resource manger for a collection of
multiple processes and devices) will become the natural resources of a given type such as database server, file
way we build systems, while the standalone desktop server, print server. All shared resources are held and
applications will become out-dated and less commonly managed by the server processes. Beside server processes,
built it also contains a collection of client process; each one

performs a task that requires access to some shared
Distributed applications offers many benefits compare to hardware and software resources. The client/server model
standalone applications such as gain in performance, is a form of distributed computing in which the client
better scalability, resource sharing, fault tolerance and communicates with the server for the purpose of
availability. Despite their benefits, distributed exchanging or retrieving information. Both the client and
applications are difficult to design, build and debug. The server usually speak the same language (protocol) to
distributed environment introduces many problems that communicate. The major problem with client/server
are not concerns when writing standalone applications, model is that the control of individual resource is

centralized at the server; this could create a potential

+ This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and

40473-MA.

27

bottleneck and a single point of failure. Moreover, to of services and client programs. The runtime
improve performance and cater to increasing number of infrastructure resides on the network and provides
clients, implementations of similar functions are usually mechanisms for adding, subtracting, locating, and
replicated multiple servers. On the other hands, the accessing services as the system is used. Services use the
centralized of resources at a single location greatly runtime infrastructure to make themselves available when
simplifies the management of these resources. The they join the network. A client uses the runtime
client/server model can be implemented in various ways. infrastructure to locate and contact desired services. Once
Typically, it is done using low-level sockets, remote the services have been contacted, the client can use the
procedure calls or high-level message oriented programming model to enlist the help of the services in
middleware such as message queue. achieving the client's goals.

A distributed object-based system is a collection of Tuple Space model was first conceived in the mid-1980 at
objects that isolates the requestor of services from the Yale University by professor David Gelemteri4] under a
providers of services (servers) by a well-defined project called Linda. Tuples are typed data structures.
encapsulating interface. Clients are isolated from the Collections of tuple exist in a shared repository called a
implementation of services as data representations and tuple space. Coordination is achieved through
executable code. In distributed object model, a client communication taking place in a tuple space globally
sends a message to an object, which in turn interprets the shared among several processes; each process can access
message to decide what service to perform. This service the tuple space by inserting, reading or withdrawing
could be performed either through the object or a broker. tuples.
Distributed object systems such as CORBA, DCOM, and
Java RMI provide the infrastructure for supporting remote In this model, the programmer never has to be concerned
object activation and remote method invocation in a with or program explicit message passing constructs and
client-transparent way. A client program obtains a pointer never has to manage the relatively rigid, point-to-point
(or a reference) to a remote object, and invokes methods process topology induced by message passing. In contrast,
through that pointer as if the object resides in the client's coordination in Linda is uncoupled and anonymous. The
own address space. The infrastructure takes care of all the first means that the acts of sending (producing) and
low-level issues such as packing the data in a standard receiving (consuming) data are independent (akin to
format for heterogeneous environments (i.e., marshaling buffered message passing). The second means that
and unmarshaling), maintaining the cormmunication process identities are unimportant and, in particular, there
endpoints for message sending and receiving, and is no need to "hard wire" them into the code.
dispatching each method invocation to the target object.
Among all the different vendors for distributed object Software wrapping is a technique in which an interface is
systems, CORBA is the most widely supported standards, created around an existing piece of software, providing a
Its advantages are platform independence, open industry new view of the software to external systems, objects, or
standards that contains over 750 industry members. users. Wrapping can be accomplished at multiple levels:

around data, individual modules, subsystems, or entire
Jini is one of a large number of distributed systems systems. There is not standard specifically for wrappers.
architectures, including industry-pervasive system such as Wrappers can be used to interface legacy code to
CORBA and DCOM. It is distinguished by being based standardized architectures. For example, IDL is
on Java programming language, and deriving many implemented via tools that automatically generate
features that leverage on the capabilities that this language wrappers to interface to CORBA.
provides, like object-oriented programming, code
portability, RMI (Remote Method Invocation), network This paper tries to integrate the effort on both JIM
support and security. technology and software wrapping method in rapid

prototyping practice E21. A simple framework is proposed
Some of the features Jini Technologies offers include by using software agents to act as interfaces among
enabling users to share services and resources over a various processes that interact and cooperate in
network, providing easy access to resources anywhere on distributed environment. It shields developers from the
the network while allow the network location of the user underlying dynamic and complex network environment,
to change, and simplifying the task of building, offers developers a simple set of APIs (Application
maintaining, and altering a network of devices, software, Program Interface) to build distributed applications
and users. without worry about their platform and programming

languages, and presents exiting software a easier way to
Jini technology consists of a programming model and a interact and cooperate with other applications in
runtime infrastructure. The programming model helps heterogeneous environment. Therefore, the proposed
designer build reliable distributed systems, as a federation agent framework becomes a concrete implementation for

28

glue library in wrapper and. glue architecture. Session II not have worry about the low-level communication
presents an overview of the proposed framework and a protocol. Client processes can dynamically locate and
simple description of its features and underlying design. access services held in the lINI community using its
The language wrapper design for the framework is runtime infrastructure, even if they do not lknow their host
introduced in Session III. Session IV gives a test-bed URL addresses.
example of using the agent frame in multiple language
wrappers. The framework uses a Linda TupleSpace model type of

communication mechanism for inter-processes
2. Design communications. Processes are loosely coupled, rather

than through direct communication, they interact in a
An overview of our framework is given in this session. It globally shared space - repository service (provides by
also describes the underlying design and the features of Java.Space Service), through share variables - entries.
our agents. Being loosely coupled, processes need not be physically

connected all the time and do not have to worry about the
The proposed framework builds on JINT infrastructure point-to-point topology induced by message passing.
and uses lIN network technology to simplify the task of Several processes residing on same machines or on
building and maintaining reliable distributed systems different machines can access the repository
(Figure 1). This technology consists of a well-defined simultaneously. They interact among each other by means
progranmining model, allowing us to easily create our own of reading, writing or consuming entries stored in the
service and leverage on services already built to support repository service.
JINI infrastructure. Using this prog~ramming model, we do

Laptop Personal Computer

Module

Agent Network 7

Service _Service

Module Module
____ lii L....~J ~ -~'Servers

printer Prx e.g Database
Rule Base Engine

fC~hIZ ~ Services
* (77 ~ransactionJ

Service
* ServicZI.I~] AqIn

Coe Java Space Agentic
* ~~Reposito Sevc

Figure 1. An example of a distributed application using the agent framework

Repository service is a shared, network-accessible depot match entries store in the repository- only entries that
for entries storage. It behaves like a lightweight relational match exactly the data types and fields defined in the
database, where agents acting on behalf of their processes template are returned by the repository service.
can store, retrieve and query entries stored in it. Unlike
database, where users construct Structured Query Entries are collection of values or objects place in
Language (SQL) statements to query records; agents use repository service by coordinating processes for
pre-constructed templates, defined in our framework, to information sharing. Before a process can start operating

29

on an entry, it first has to declare the entry, identifying by to worry about the point-to-point topology
a unique name and an entry type, with its agent; just like induced by message passing.
variables declaration in programming techniques. The V Several processes residing on same or different
entry type varies -from simple primitive types (like machines can access the repository service and
integer, float, double and etc) to more complex types (like retrieve data simultaneously in a reliable manner.
queue, stack, list and etc), where process can. manage V Agent Service provides authentication and
entries as groups. The entry, upon declaration, is assigned control mechanism to manage processes using its
an entry handler to serve operations for accessing the services.
repository service. V Avoid the needs to create and manage

remote/virtual classes (e.g. stubs and skeletons in
Entry handler is responsible for carry out operations Rlvf and CORBA implementations)
pertaining to a declared entry. There are many kinds of / Provide callback mechanism that invokes user-
entry handlers, each one is associated to an entry type and defined methods when conditions are met.
has methods designed specifically to handle .that V Support transaction, enforcing consistency over a
particular entry type. Methods that are common in all set of entry operations
handlers are: read, write, take, update and notify methods, V Support leasing, preventing resources from
process mainly use them for manipulating entries store in growing out of bound.
repository service. Each entry handler consists of a set of
attributes that determine how it carries out its operations. 3. Language Wrappers
Many of them can be overwritten, after entry declaration,
by processes to meet different application needs. For There are many compelling reasons for the agent to
instance, an entry-leasing attribute, which determine the support a wider variety of programming languages beside
validity of the entry process store in repository, can be Java language. Some of these reasons are software reuse,
used a real-time application to specify the deadline of integration with legacy code, leveraging on tools that are
information, preventing the receipts from accessing not available for Java language, and performing low low-
obsolete information, which sometime can be more level activities such as hardware interface.
damaging than not have any.

Two agent wrappers, ActiveX Component Wrapper and
Establishing a session with agent service is done in two Native C Library Wrapper, are implemented. ActiveX

-simple steps: first locate the service -and then perform a Component.Wrapper allows our agent to be encapsulated
login registration. If process knows the network address as objects in Visual Basic, Visual C++ or Microsoft
where agent service is located, process can bypass the Office applications running in Window platform, *hereas
search procedures. Searching for services in JIMN network Native C Library Wrapper allows our agent to be bind
is done using multicast protocol - agent inserts a package together with native languages such as Ada, C and C++.
into a network and wait for lookup services to respond, a
lookup service is a facility where services publish their The wrapper modules consist of two separate
services. The lookup services, upon receiving the request components: an ActiveX wrapper and C Library wrapper
package, response by returning a list of service items, (Figure 2). An ActiveX wrapper embedded the agent as
each item describes its service properties and functions. object such that it can be call by process written in Visual
Agent search through the list, comparing their service Basic, Visual C++ or Microsoft Office application in
attributes with those of the agent service. After it has window platform environment. C Library wrapper allows
determined a match, it proceeds to establishing a the agent to be bound together with processes written
connection follow by service registration, providing a using machine dependents languages like C, C++- or Ada.
valid login ID and a password to the agent service.

The implementation of the ActiveX Wrapper was done
Below is a summary of features the framework provides, using a packager, an ActiveX Packager for Java Bean,

V A simple and yet comprehensive interface that that come along with JVM plug-in provided by Sun
allow multiple processes to get connected and MicroSystem. This packager automatically generates the
interact with one another in a distributed wrapper for any Java bean by going through sequence of
environment. pre-compiling. Two files are eventually produced after the

V Processes can be written in Java, Visual Basic, process, an OCX (OLE Control Extension) and TLB
C/C++, or Ada; two agent wrappers are included, (Type LiBrary). To make the* OCX available to the
ActiveX wrapper and a C library wrapper. window environment, developers have to explicitly

V Processes are- loosely coupled; they need not be register them with the window registry.
physically connected all the time and do not have

30

ProcessrB

Pr s J1 process

Servic Java Space ,
Lookup ..

Figure 2. Agent wrappers

Together with the Java Bean Bridge and JVM (Java a message "agent connected" if it successfuil with agent
Runtime Environment), any method calls on this OCX service. Declare a new entry, with same entry name and

component will marshaled over the bridge and gets of same type, on both machine using those buttons locate
executed in the JRE memory space; the return for the on the lower left-hand panel.
flmction is unmnarshalled by the bridge and given back to
the OCX component. •

Pr ssz a

"The C Library Wrapper was build using JINI (Java Native .:_.._: --'" " "
Interface) APes and the building process is more process

" ... complicated and tedious compare to implementing the 2. Agent wrappers

ActiveX Wrapper. We have to map every Java types to C

use in agent interfaces, create corresponding interfaces in sw s ey e
C language for every methods defined in the agent os
interfaces, and manage the memory resources to prevent t l -h

memory leak.

4. Example of Language Wrappers was b

Three simple test programs are created, written in athe
different language, to test the configuration of services in
and client processes. These three programs serve as agent___

distributed system to share information. Figure 3a to 3cpreve

show the graphical user interfaces of these test programs: _____________________

a Java GUI, Visual Basic GUI and C GUI respectively. ___

These test programs has implemented most of the Figure 3a. Java Language version Test Bench

commonly used fuenctions descript in our framework.
Besides, using them for testing the setup, they also
provide another source for developers to understand how
some of the features descript in our framework works.

Once the gIcN services (includes our agent service) are
started, rn the test programs on separate machines, these
machines must share a common network. Next, update the
agent setting, by overwriting the fields under "Agent
Setting" header, if the setting varies from our defaults.

Following that, press the "initAgents" button, it will show

31

"- (3) It eliminates the process of encoding and decoding
S.... -process for the case of message passing.

_________________________ (4) It is easy to integrate with existing software
, - components.

_____________._____ (4) It provides good scalability. Currently two services,
_ .. : _ :transaction service and repository service, are used,

i'"' • ri-• . 1•a" t A-0 while new services can easily be added, such as
a-, •-• database connection/query.

- : F' : •w (5) It enables a callback mechanism that invokes user-
':: p. I•'1r l ri defined methods when conditions are satisfied.

With these advantages, the proposed agent framework
plays as the communication layer glue in the software

, i;i wrapper and glue technology. It provides a concrete
implementation practice for glue library for higher-level
wrapper to call. The whole architecture is used in rapid
prototyping architecture for heterogeneous distributed
systems.

.......... r
t7*.. 77 -7

Figure 3b. Visual Basic Language version Test Bench References

S................... v. Communication in Linda,

ACM Trans. Programming Languages and
Systems, 7(l), Jan 1985, pp. 80-112

[2] Luqi, "Computer-aided prototyping for command
and control system using CAPS", IEEE Software,
"9(1), Jan. 1992, pp 56-67

[3] Cloudscape, Cloudscape Java database,

httD://www.cloudscape.com

[4] Bill Joy, The Jini Specifications, Addison Wesley,
Inc., 1999

Figure 3c. C Language version Test Bench

5. Conclusions

The proposed agent framework with the language
wrappers focuses on the high-level architectures and
process interfaces. It ensures that the design is scalable
and process can be written in a variety of programming
languages by designing a common set APIs and building
wrappers for non-Java processes. The framework can be
used in various domains. The implementation has been
chosen to build on top of JINI/JavaSpace. It provides the
following benefits for distributed system design.

(1) It avoids the need to create or to manage the
remote/virtual classes (e.g. stubs and skeletons in
RMI and CORBA implementations)

(2) The development of dynamic and distributed
applications is relatively easy. Programmers do not
have to manipulate remote accesses to objects/classes
(such as the stubs and skeletons in Sun's RMI or the
virtual objects.

32

JAVA Wrappers for Automated Interoperability

Ngom Cheng, Valdis Berzins, Luqi, and Swapan Bhattacharya

Department of Computer Science
Naval Postgraduate School
Monterey, CA. 93943 USA

(cheng, berzins, luqi, swapan}@cs.nps.navy.mi!

Abstract. This paper concentrates on the issues related to implementation of
interoperability between distributed subsystems, particularly in the context of re-
engineering and integration of several centralized legacy systems. Currently, most
interoperability techniques require the data or services to be tightly coupled to a
particular server. Furthermore, as most programmers are trained in designing stand-
alone application, developing distributed system proves to be time-consuming and
difficult. Here, we addressed those concerns by creating ain interface wrapper model
that allows developers to treat distributed objects as local objects. A tool that
automatically generates the features of Java interface wrapper from a specification
language called the Prototyping System Description Language has been developed
based on the model.

1 Introduction

Interoperability between software systems is the ability to exchange services from.
one system to another. In order to exchange services, commands and data are relayed
from the requesters to the service providers. Current business and military systems
are typically 2-tier or 3-tier systems involving clients and servers, each running on
different machines in the same or different locations. Current approaches for n-tier
systems have no standardization of protocol, data representation, invocation
techniques etc. Other problems related to interoperability are the implementation of
distributed systems and the use of services from heterogeneous operating
environments. These include issues concerning sharing of information amongst
various operating systems, and the necessity for evolution of standards for using data
of various types, sizes and byte ordering, in order to make them suitable for
interoperation. These problems make interoperable applications difficult to construct
and manage.

1.1 Current State-of-the-Art Solutions

Presently, the solutions attempting to address these interoperability problems range
from low-level sockets and messaging techniques to more sophisticated middleware
technology like object resource brokers (CORBA, DCOM), Middleware technology
uses higher abstraction than messaging, and can simplify the construction of
interoperable applications. It provides a bridge between the service provider and

S. Bhalla (Ed.): DNIS 2000, LNCS 1966, pp. 45-64,2000.
0 Springer-Verlag Berlin Heidelberg 2000 33

N. Cheng et al.

requester by providing standardized mechanisms that handle communication, data
exchange and type marshalling. The implementation details of the middleware are
generally not important to developers building the systems. Instead, developers are
concerned with service interface details. This form of information hiding enhances
system maintainability by encapsulating the communication mechanisms and
providing stable interface services for the developers. However, developers still need
to perform significant work to incorporate the middleware's services into their
systems. Furthermore, they must have a good knowledge of how to deploy the
middleware services to fully exploit the features provided.

Current middleware approaches have another major limitation in design - the data and
services are tightly coupled to the servers. Any attempt to parallelize or distribute a
computation across several machines therefore encounters complicated issues due to
this tight control of the server process on the data. Tuning performance by
redistributing processes and data over different hardware configurations requires
much more effort for software adjustment than system administrators would like.

1.2 Motivation

Distributed data structures provide an entirely different paradigm. Here, data is no
longer coupled to any particular process. Methods and services that work on the data
are also uncoupled from any particular process. Processes can now work on different
pieces of data at the same time. Until recently, building distributed data structures
together with their requisite interfaces has proved to be more daunting than other
conventional interoperability middleware techniques. The arrival of JavaSpace has
changed the scenario to some extent. It allows easy creation and access to distributed
objects. However, issues concerning data getting lost in the network, duplicated data
items, out-dated data, external exception handling and handshaking communication

between the data owner and data users are still open. Developers have to devise ways
to solve those problems and standardize them between applications.

1.3 Proposal

The situation concerning interoperability would greatly improve if a developer
working on some particular application could treat distributed objects as local objects
within the application. The developers could then modify the distributed object as if it
is local within the process. The changes may, however, still need to be reflected in
other applications using that distributed object without creating any problems related
to inconsistency. The current research aims at attaining this objective by creating a
model of an interface wrapper that can be used for a variety of distributed objects. In
addition, we seek models that can automate the process of generating the interface
wrapper directly from the interface specification of the requirement, thereby greatly
improving developers' productivity.

A tool, named the Automated Interface Codes Generator (AICG), has been developed
to generate the interface wrapper codes for interoperability, from a specification
language called the Prototype System Description Language (PSDL) [9]. The tool

34

JAVA Wrappers for Automated Interoperability

uses the principles of distributed data structure and IavaSpace Technology to
encapsulate transaction control, synchronization, and notification together with
lifetime control to provide an environment that treats distributed objects as if there
were local within the concerned applications.

2 Review of Previous Works

A basic idea for enhancing interoperability is to make the network transparent to the
application developers. Previous approaches [1] include 1) Building blocks for J
interoperability, 2) Architectures for unified, systematic interoperability and 3)Packaging for encapsulating interoperability services. These approaches have been

assessed and summerized using Kiviat graphs by Berzins [1] with various weight
factors. The Kiviat graphs give a good summary of the strong and weak points of
various approaches. ORBs and Jini are currently among the promising technologies
for interoperability. . M

2.1 ORB Approaches

There are however,. some concerns with the ORB models. Sullivan [13] provides a
more in-depth analysis of the DCOM model, highlighting the architecture conflicts
between Dynamic Interface Negotiation. (how a process queries a COM interface and
its services) and Aggregation (component composition mechanism). Interface I
negotiation does not function properly within the aggregated boundaries. This
problem arises because interacting components share an interface. An interface is
shared if the constructor or QueryInterface functions of several components can return
a pointer to it. QueryInterface rules state that a holder of.a shared interface should be*
able to obtain interfaces of all types appearing on' both the inner and outer
components. However, an aggregator can refuse to provide interfaces of some types
appearing on an. inner component by hiding the inner component. Thus, 4
QueryInterface can fail to work properly with respect to delegation to the inner
interface.

Hence, for the ORB approaches, detailed understanding of the techniques is required
to design a truly reliable interoperable system. Programmers however, are trained
mostly on standalone programming techniques. Adding specialized network
programming models increases the learning as well as development time, with
occasional slippage of target deadlines. Furthermore, bugs in distributed programs are
harder to detect and consequences of failure are more catastrophic. An abnormal
program can cause other programs to go astray in a connected distributed environment
[9], [12].

2.2 Prototyping

The demand for large, high quality systems has increased to the point where a
quantum change in software technology is needed [9]. Requirements and

35

N. Cheng et al.

specification errors are a major cause of faults in complex systems. Rapid
prototyping is one of the most promising solutions to this problem. Completely
automated generation of prototype from a very high-level language is feasible and
generation of skeleton programming structures is currently common in the computer
world. One major advantage.of the automatic generation of codes is that it frees the
developers from the implementation details' by executing specifications via reusable
components [9].

In this perspective, an integrated software development environment, named
Computer Aided Prototyping System (CAPS) has been developed at the Naval
Postgraduate School, for rapid prototyping of hard real-time embedded software
systems, such as missile guidance systems, space shuttle avionics systems, software
controllers for a variety of consumer appliances and military Command, Control,
Communication and Intelligence (C31) systems [11]. Rapid prototyping uses rapidly
constructed prototypes to help both the developers and their customers visualize the
proposed system and assess its properties in an iterative process. The heart of CAPS is
the Prototyping System Description Language (PSDL). It serves as an executable
prototyping language at a specification and software architecture level and has
special features for real-time system design. Building on the success of computer
aided rapid prototyping system (CAPS) [11], the AICG model also uses PSDL for
specification of distributed systems and automates the generation of interface codes
with the objective of making the network transparent from the developer's point of
view.

2.3 Transaction Handling

Building a networked application is entirely different from building a stand-alone
system in the sense that many additional issues need to be addressed for smooth
functioning of a networked application. The networked systems are also susceptible to
partial failures of computation, which can leave the system in an inconsistent state.

Proper transaction handling is essential to control and maintain concurrency and
consistency .within the system. Yang has examined the limitation of hard-wiring
concurrency control into either the client or the server. He found that the scalability
and flexibility of these' configurations is greatly limited. Hence, he presented a
middleware approach: an external transaction server, which carries out the
concurrency control policies in the process of obtaining the data. Advantages of this
approach are 1) transaction server can be easily tailored to apply the desired
concurrency control policies of specific client applications. 2) The approach does not
require any changes to the servers or clients in order to support the standard
transaction model. 3) Coordination among the clients that share data but have
different concurrency control policies is possible if all of the clients use the same
transaction server.

The AICG model uses the same approach, by using an external transaction manager
such as the one provided by SUN in the JINI model. All transactions used by the
clients and servers are created and overseen by the manager.

36

JAVA Wrappers for Automated Interoperability

3 The AICG Interaction Model

The AICG model encapsulates some of the features of JavaSpace and Jini to provide
a simplified ways of developing distributed applications.

3.1 Jini Model

The Jini model is designed to make a service on a network available to anyone who
can reach it, and to do so in a type-safe and robust way [4]. The ability of Jini model
is based on five key concepts: (1) Discovery is the process used to find communities
on the network and join with them. (2) Lookup governs how the code that is needed to
use a particular services finds its way into participants that want to use that service.
(3)Leasing is the technique that provides the "ini self recovering ability. (4) Remote
events allow services to notify each other of changes to their state (5) Transactions
ensure that computations of several services and their host always remain in "safe"
state.

The Jini model was designed by Sun Microsystems with simplicity, reliability and
scalability as the focus. Its vision is that Jini-enable devices such as PDA, cell phone
or a printer, when plugged into a TCP/IP network, should be able to automatically
detect and collaborate with other Jini-enabled devices.

The powerful features of Jini provide a good groundwork for developing
interoperability systems. However, the lack of automation for creating interface
software and the need for developers to fully understand the Jini Model before they
can use it created the same problems for developers as other interoperability
approaches.

3.2 The javaSpace Model

The JavaSpace model is a high-level coordination tool for gluing processes together in
a distributed environment. It departs from conventional distribution techniques using
message passing between processes or invoking methods on remote objects. The
technology provides a fundamentally different programming model that views an
application as a collection of processes cooperating via the flow of freshly copied
objects into and out of one or more spaces. This space-based model of distributed
computing or distributed structure has its roots in the Linda coordination language [3]
developed by Dr. David Gelernter at Yale University.

3.2.1 Distributed Data Structure and Loosely Coupled Propgamming
Conceptually a distributed data structure is one that can be accessed and manipulated
by multiple processes at the same time without regard for which machine is executing
those processes. In most distributed computing models, distributed data structures are
hard to achieve. Message passing and remote method invocation systems provide a
good example of the difficulty. Most of the systems tend to keep data structure behind
one central manager process, and processes that want to perform work on the data

37

N. Cheng et al.

structure must "wait in line" to ask the manager process to access or alter a piece of
data on their behalf. Attempts to parallelize or distribute a computation across more
than one machine face bottlenecks since data are tightly coupled by the one manager
process. True concurrent access is rarely achievable.

Distributed data structures provide an entirely different approach where wo uncouple
the data from any particular process. Instead of hiding data structure behind a
manager process, we represent data structures as collections of objects that can be
independently and concurrently accessed and altered by remote processes. Distributed
data structures allow processes to work on the data without having to wait in line if
there are no serialization issues.

3.2.2 Space
A space is a shared, network-accessible repository for objects. Processes use the
repository as a persistent object storage and exchange mechanism Processes perform
simple operations to write new objects into space, take objects from space, or read
(make a copy of) objects in a space. When taking or reading objects, processes use a

simple value-matching lookup to find the objects that matter to them. If a matching
object is not found immediately, then a process can wait until one arrives. Unlike
conventional object stores, processes do not modify objects in the space or invoke
their methods directly. To modify an object, a process must explicitly remove it,
update it, and reinsert it into the space. During the period of updating, other processes
requesting for the object will wait until the process writes the object back to the space.
This protocol for modification ensures synchronization, as there can be no way for
more than one process to modify an object at the same time. However, itf is possible

for many processes to read the same object at the same time.

Key Features of JavaSpace:
e Spaces are persistent: Spaces provide reliable storage for objects. Once stored in

the space, an object will remain there until a process explicitly removes it.

* Spaces are transactionally secure: The Space technology provides a transaction
model that ensures that an operation on a space is atomic. Transactions are
supported for single operations on a single space, as well as multiple operations
over one or more spaces.

a Spaces allow exchange of executable content: While in the space, objects are just
passive data, however, when we read or take an object from a space, a local copy
of the object is created. Like any other local object, we can modify its public fields
as well as invoke its methods.

3.3 The AICG Approach

The AICG approach to interoperability has two parts. The first part is to develop a

model to completely hide the interoperability from the developers and the second part

of the approach is to design a tool that automates the process of integrating the AICG

model into the distributed application so as to aid the development process.

38

JAVA Wrappers for Automated Interoperability

3.3.1 The AICG Model
The AICG model is built on JavaSpace and Jini. It is designed to wrap around data
structures or objects that are shared between concurrent applications across a network.
The model gives the applications complete access to the contents of the objects as
though they were the sole owners of the data. Synchronization, transaction and error
handling are built into the model, freeing the developers to concentrate on the actual
requirement of the applications.

AICG uses the JavaSpace Distributed Data Structure principles as the main
communication channel for exchange of services. The model also encompasses Jini
services like Transaction, Leasing and Remote Event. However, the difference is that
the model wraps the services provided by the JavaSpace and Jini and hide their usage
from the application. Developers are not required to understand the underlying
principles before they can use the model. They should however be aware of object
oriented programming constraints such as no direct access to the attributes of an
object is allowed without going through the object methods.

The most common use of the AICG model is to encapsulate objects that are to be
shared. This form of abstraction has an advantage over direct use of a JavaSpace. The
JavaSpace distributed protocol for modification ensures synchronization by enforcing
that a process wishing to modify the object has to physically remove it from the space,
alter it and write it back to the space. There can be no way for more than one process
to modify an object at the same time. However, this does not prevent other processes
from overwriting the updated data. For example, in an ordinary JavaSpace, the
programmer of Process A could specify a "read" operation, followed by a "write"
operation. This would result in 2 copies of the object in the Space. The AICG model
prevents this since the 3 basic commands are embedded into distributed objects that
are automatically generated to conform to the proper protocol. All modifications on
the object are automatically translated to "take", followed by "write" and all
operations that access the fields of the distributed object are translated to "read".
These ensure that local data are up-to-date and serialization is maintained.

Although the basic idea of the AICG model is simple, it requires many supporting
features to make it work. Distributed objects may be lost if a process removes them
from the space and subsequently crashes or is cut off from the network. Similarly, the
system may enter a deadlock state if processes request more than one distributed
object while, at the same time, holding on to distributed objects required by other
processes. Similarly, latency and performance are very different between local access
and remote access. Those issues should not be ignored in any interoperability
techniques, if the systems to be built using the techniques must be robust. ORB
techniques such as RPC and CORBA do not even consider performance and latency
as part of their programming model, they treat it as a "hidden" implementation detail
that programmer must implicitly be aware of and deal with while they preach that
accessing remote object is similar to accessing local object.

The AICG model has a set of four supporting modules to handle those situations.
These modules provide transaction handling and user-defined latency to ensure
integrity of the updates, exception handling for reporting errors and failures without

39

* N. Cheng et al.

crashing the system, a notification channel to inform the application of certain events,
and lease control for freeing up unused object during "house keeping". The supporting
features are discussed in section 5.

3.3.2 The AICG Tool
The second part of the research aims at developing a tool that generates software
wrapper realizing the AICG model to aid the construction of distributed applications.
The tool is designed to generate interface wrappers for data structures or objects that
need to be shared, and is particularly useful for applications that can be modeled as
flows of objects through one or more servers. The tool allows the developers to use all
the features in the AICG model without the need to write complicated codes. This
enhances interoperability by making network and concurrent issues transparent to the
application developers.

The interface wrappers are -generated from an extension of a prototype description
language called Prototyping System Description Language (PSDL). The extended
Description language (PSDL-ext) expands property definitions that are specific only
to AICG model.
Some of the salient features of the AICG model generated by the tool are:
* Distributed objects are treated as local objects within the application process. The

-application code need not depend on how the object is distributed, since the local
object copy is always-synchronous with the distributed copy.

* Synchronization with various -applications is automatically handled. Since the
AICG model is based on the space transaction secure model and all operations are
atomic. Deadlock is prevented automatically within the interface and each object
has through transaction control. Any type of object can be shared as long as the
object is serializable. Any data structure and object can be distributed as long as it
obeys and implements the java serializable feature.

* Every distributed object has a lifetime. The distributed object lifetime is a period
of time guaranteed by the AICG model for storage and distribution of the object
The time can be set by developer.

* All write operations are transaction secure by default. AICG transactions are based
on the Atomicity, Consistency, Isolation, and Durability (ACID) features.

a Clients can be informed of changes to the distributed object through the AICG
event model. A client application can subscribe for change notification, and when
the distributed object is modified, a separate thread is spawned to execute a
callback method defined by the developer.

* The wrapper codes are generated from high-level descriptive languages; hence,
they are more manageable and more-maintainable.

4 Types of Services

Services can -be basic raw data, messages, remote method invocation, complex data
structures, or object with attributes and methods. The AICG model is suited for
exchange and sharing of complex data structures and objects. It can be tailored for
raw data, messaging, and remote method invocation types of communication.

40

JAVA Wrappers for Automated Interoperability

The AICG model uses the space as. a transmission medium and hence loosens the tie
between producers and consumers of services which are forced to interact indirectly
through a space. This is a significant difference, as loosely coupled systems tend to
*be more flexible and robust.

4.1 Overview of the PSDL Interface

Prototype System Description Language (PSDL) provides a data flow notation
augmented by application-orientated timing and control constraints to describe a
system as a hierarchy of networks of processing units communicating via data streams

[1]. Data Streams carry values of abstract types and provide error-free communication
channels. PSDL can be presented in a semi-graphical form for easy specifying of the
specifications and requirements. An introduction to the real-time aspects of the PSDL
can be found in [1] and [2].

In PSDL, every computational entity such as an application, a procedure, a method or
a distributed system is represented as an operator. It is hierarchical in nature and each
operator can be decomposed to sub-operators and streams. Every operator is a state
machine. Its internal states are modeled by variable sets local only to this operator.
Operators are represented as circular icons in PSDL Graph, and triggered by data
stream or periodic timing constraints. When an operator is triggered, it reads one data

value from each input stream and computes the results if the execution guard or
constraint is satisfied. The results are placed on the output streams if the output guard
is satisfied.

Operators communicate via data streams. These data streams contain values that are
instances of an abstract data type. For each stream, there are zero or more operators
that write data on the stream and zero or more operators that read data from that
stream. There are two kinds of streams in PSDL, dataflow and sampled streams.

Dataflow streams act as FIFO buffers, where the data values cannot be lost or
replicated. These streams are used to synchronize data from multiple sources.
Consumers of dataflow streams never read an empty stream. Similarly, each value in a
stream is read only once. The control constraint used by the PSDL to distinguish a
stream as dataflow is 'TRIGGERED BY ALL".

Sampled Streams act as atomic memory cells providing continuous data. Connected
operators can write on or read from the streams at uncoordinated rates. Older data are
lost if the producer is faster than the consumer. Absence of "TRIGGERED BY ALL"
control constraint implies the stream is sampled.

If any of the streams have any initial value, then it is known as State Stream. State
Streams are declared in specification of the parent operator and are represented by

thicker lines in the PSDL graph. State streams correspond to spaces that contain
objects intended to be updated.

The mapping of dataflow streams or sampled streams into space-based
communication is accomplished by treating the services, which in this case are the
communication streams as objects to be shared.

41

N. Cheng et al.

4.2 Benefit of Loosely Coupled Communication

In tightly coupled systems, the communication process needs the answers to the
questions of "who" to send to, "where" the receiving parties are located, and "when"
the messages need to be sent. The "who" is which processes, "where" is which
machines, and "when" is right now or later. They must be specified explicitly in order
for the message to be delivered. Hence, in a distributed environment, in order for a
producer and consumer to communicate successfully, they must know each other's
identity and location, and must be running at the same time. This tight coupling leads
to inflexible applications that are not mobile and in particular difficult to build, debug
and change. In loosely coupled systems the issues of "who?", "where?" and "when?"
are answered with "anyone", "anywhere" and "anytime".

"Anyone": Producers and consumers do not need to know each oter's identities, but
can instead communicate anonymously. In the sampled stream mapping, the
producers place a message entity into the space without knowing who will be reading
the messages. Similarly, the consumers read the message entity from the space
without concern with the identity of the producers.

"Anywhere": Producers and consumers-can be located anywhere, as long as they have
access to an agreed-upon space for exchanging messages. The producer does not need

to know the consumer's location. Conversely, the consumer picks up the message
from the space using associative lookup, and has no need to be aware of the pKoducer
location. This is especially useful when the producers and the receivers roam from
machine to machine, because the space-based programs do not need to change.

"Anytime": With space-based communication, producers and consumers are able to
communicate even if they do not exist at the same time, because message entries
persist in the space. This works well when. the producers and the consumers operate
asynchronously (Sampled Stream). This does not mean that synchronous
communication would not work; the space is also an event driven repository and can
trigger the consumers whinever new entities are created in the space. This
decoupling in time is useful because it enables operators to be scheduled flexibly to
accommodate real-time constraints.

5 How AICG. Unifies Localized and Distributed Systems

The AICG model aims at bridging the differences between localized and distributed
systems by simplifying the distributed model and encapsulating all the necessary
elements of the distributed systems into the wrapper interfaces.

5.1 Localized and Distributed Systems

The major differences between localized and distributed systems concern the areas of
latency, memory access, partial failure, and concurrency. Most *of interoperability
techniques try to hide the network and simplify the problems by stating that locations

42

JAVA Wrappers for Automated Interoperability

of the software components do not affect, the correctnes's of the computations, just the
performance. These techniques concentrate on addressing the packing of data into
portable forms, causing an invocation of a remote method somewhere on the network
and so forth. However, latency, performance, partial failure and concurrency are
some of the characteristics of distributed systems which also need serious attention.

5.1.1 Latency and Memory Access
The most obvious difference between accessing a local object and accessing a remote
object has to do with the latency of the two calls. The difference between the two is
currently between four and five orders of magnitude. In the AICO model vision of

unfed object where remote access is actually a three steps process, step one retrieves
remote object from the space, step two executes the method of the remote object
locally and lastly step three returns the object back to the space if it is modifed.
Developers must be aware of the latency and performance concerns. To ensure that
the developers are aware of the issues, the AICG model requires the developers to
specify the maximum latency period before an exception is raised. This forces the
developers to consider the latency issues for the type of data and methods that are to
be shared.

Another fundamental difference between local and remote computing concerns access
to memory, -specifically in the use of pointers. Simply stated, pointers are valid only
within the local address space. There are two solutions; either all the memory access
must be controlled by the underlying system, or the developers must be aware of the
different type of access, whether local or remote.

Using the object-oriented paradigm to the fullest is a way of eliminating the boundary
between the. local and remote computing. However, it requires the developers to build
an application that is entirely object-oriented. Such a unified model is difficuilt to.
enforce. The AICG solution to this issue is by enforcing the object-oriented paradigm
only on distributed objects. The distributed object wrapper generated automatically
forces all access to the actual shared object to go through the wrapper which is alway's
a local object, eliminating direct reference to the actual object itself. This promotes
and enforces the principle that "remote access and local access are exactly the same".

5.1.2 Partial Failure and Concurrency
In case of local systems, failures are usually total, affecting all the components of the
system working together in an application. In distributed systems; one subsystem can
fail while other systems continue. Similarly, a -failure of network link is
indistinguishable from the failure of a system on the other end of the link. The system
may still function with partial failure, if certain unimportant components have
crashed. It is however difficult to detect partial failure since there is no common
agent that is able to determine which systems have failed, and this may result in the
entire system going into unstable states

The AICO model uses the loosely-coupled paradigm, and component failure may
have impact on the distributed system when the systems retrieve objects from the
space and later crash before returning the objects back to space. The AICG model
resolves this issue by enforcing update of distributed objects with transaction control

43

N. Cheng et al.

and allowing the developers to specify useful lifetime or lease for the object. When a
lease has expired, the object would be automatically removed from the space.

Distributed objects by their nature must handle concurrent access and invocations.
Invocations are usually asynchronous and difficult to model in distributed systems.
Usually most models leave the concurrency issues to the developers discretion during
implementation. However, this should be an interface issue and not solely an
implementation issue, since dealing with concurrency can take place only by passing
information from one object to another through the agency of the interface. The
AICG model handles concurrency by design since there is only one copy of
distributed object at a time in the entire distributed system. Processes are made to wait
if the shared objects are not available in the. space.

5.2 Transaction

Transaction control must validate operations to ensure consistency of the data,
particularly when there are consistency constraints that link the states of several
objects. The AICG model implements the transaction feature with the Jini
Transaction model and provide a simplified interface for the developers.

5.2.1 Jini Transaction Model
All transactions are overseen by a transaction manager. When a distributed
application needs operations to occur in a transaction secure manner, the. process asks-
the transaction manager to create a transaction. Once a transaction has been -created,
one or more processes can perform op'erations under the transaction. A transaction can
complete in two ways. If a transaction commits successfully, then all operations
performed under it are complete. However, if problems arise, then the transaction is
aborted and none of the operations occur. These semantics are provided by a two-
phase commit protocol. that is performed by the transaction manager as it interacts
with the transaction participants.

5.2.2 AICG Transaction Model
AICG model encapsulates and manages the transaction procedures. All operations on
a distributed object can be either with transaction control or without. Transaction
control operations are controlled with a default lease of six sec. This default value of
leasing time may, however, be overridden by the user. This is kept by the transaction
manager as a leased resource, and if a lease expires before the operation committed,
the transaction manager aborts the transaction.

The AICG model by default, enables all transactions for write operations with a
transaction lease time of six seconds. The developer can modify the lease time
through the PSDL SPACE transactiontime property.

All the read operations in the AICG model do not have transactions enabled by
default. However, the user can enable it by using the property transactiontime with the
upper limit in transaction time for the read operation.

44

JAVA Wrappers for Automated Interoperability

5.3 Object Life Time (Leases/Timeout)

Leasing provides a methodology for controlling the life span of the distributed objects
in the AICG space. This allows resources to be freed after a fixed period. This model
is beneficial in the distributed environment, where partial failure can cause holders of
resources" to fail thereby disconnecting them from the resources before they can
explicitly free them. In the absence of a leasing model, resource usage could grow
without bound.

There are other constructive ways to harness the benefit of the leasing model besides
using it as a garbage collector. For example, in a real-time system, the value of the
information regarding some distributed objects becomes useless after certain
deadlines. Accessing obsolete information can be more damaging in this case. By
setting the lease on the distributed object, the AICG model automatically removes the
object once the lease expires or the deadline is reached.

Java Spaces allocate resources that are tied to leases. When a distributed object is
written into a space, it is granted a lease that specifies a period for which the space
guarantees its storage. The holder of the lease may renew or cancel the lease before it
expires. If the leaseholder does neither, the lease simply expires, and the space
removes the entry from its store.

Generally, a distributed object that is not a part of a transaction lasts forever as long as
the space exists, even if the leaseholder (the process that creates the object) has died.
This configuration "is enabled by setting the SPACE lease property in the.
Implementation to 0.
In real-time environment, a distributed object lasts for a fixed duration of x ms
specified by the object designer., To keep the object alive, a write operation must be
performed on the object before the lease expires. This configuration is set through the
SPACE lease property in the Implementation to the time in ms required.

If an object has a lifetime, it must be renewed before it expires. In the AICG model,
renewal is achieved by calling any method that modifies the object. If no modification
is required, the developer can provide a dummy method with the spacemode set to
"write". Invoking that method will automatically renew the lease.

5.4 AICG Event Notification

In a loosely-coupled distributed environment, it is desirable for an application to react
to changes or arrival of newly distributed objects instead of "busy waiting" for it
through polling. AICG provides this feature by introducing a callback mechanism that
invokes user-defined methods when certain conditions are met.

Java provides a simple but powerful event model based on event sources, event
listeners and event objects. An event source is any object that "fires" an event, usually
based on some internal state change in the object. In this case, writing an object into
space would generate an event. An event listener is an object that listens for events
fired by an event source. Typically, an event source provides a method whereby

45

N. Cheng et al.

listeners can request to be added to a list of listeners. Whenever an event source fires
an event, it notifies each of its registered listeners by calling a method on the listener
object and passing it an event object.

Within a Java Virtual machine (JYVM), an application is guaranteed that it will not
miss an event fired from within. Distributed events on the other hand, had to travel
either from one IVM to another JVM within a machine or between machines
networked together. Events traveling from one JVM to a*nother may be lost in transit,
or may never reach their event listener. Likewise, an event may reach its listener more
than once.

Space-based distributed events are built on top of the Jini Distributed Event model,
and the AICG event model further extends it. When using the AICG event model, the
space is an event source that fires events when entries are written into the space
matching a certain template an application is interested in. When the event fires, the
space sends a remote event object to the listener. The event listener codes are found in
one of the generated AICG interface wrapper files. Upon receiving an event, the
listener would spawn a new thread to process the event and invoke the application
callback method. This allows the application codes to be executed without involving
the developer in the process of event-management.

The distributed objects must have the SPACE properties for Notification set to yes.
One of the application classes must implement (java term for inherit) the notifyAICG
abstract class.- The notifyAICG class has only one method, which is the callback
method. The. user class must override this method with the codes that need to be
executed when an event fires.

6 Developing Distributed Application with the AICG Tool

This section describes the steps for developing distributed applications using the
AICG model. An example of a C4ISR application is introduced in section 6.2 to aid
the explanation of the process..

6.1 Development Process

The developer starts the development process by defining shared objects using the
Prototyping System Description Language (PSDL). The PSDL is processed through a
code generator (PSDLtoSpace) to produce a set of interface wrapper codes. The
interface wrappers contain the necessary codes for interaction between application
and the space without the need for the developers to be concerned with the writing
and removing of objects in the space. The developers can treat shared or distributed
objects as local objects, where synchronization and distribution are automatically
handled by the interface codes.

46

JAVA Wrappers for Automated Interoperability

6.2 Input Definition to the Code Generator

The following example demonstrates the development of one of the many distributed
objects in a C4ISR system. Airplane positions picked up from sensors are processed
to produce track objects. These objects are distributed over a large network and used
by several clients' stations for displaying the positions of planes. Each track or plane
is identified by track number. The tracks are 'owned' by a group of track servers, and
only the track servers can update the track positions and its attributes. The clients only
have read access on the track data. PSDL codes define (1) track object and as well as
(2) Track_list object with the corresponding methods. AICG has used an extended
version of the original PSDL grammar to model the interactions between applications
in an entire distributed system.

The track PSDL starts with the definition of a type called track. It has only one
identification field tracknumber. Of course, the track objects can have more than
one field, but only one field is used in this case to uniquely identify any particular
track object. The type track_list on the other hand, does not need an identification
field since there is only one track_list object in the whole system. Track_list is used
to keep a list of the tracknumbers of all the active tracks in the system at each
moment in time.
All the operators (methods) of the type are defined immediately after the specification.
Each method has a list of input and output parameters that define the arguments of the
method. The most important portion in the method declaration is the implementation.
The developer must be able to define the type of operation the method supposed to
perform. The operation types are constructor (used to initialize the class), read (no
modification to any field in the class) and write (modification is done to one or more
fields in the class). These are necessary, as the code generated will encapsulate the
synchronization of the distributed objects.

The other field in the implementation portion of the method, is transactiontime.
transactiontime defines the upper limit in milliseconds within which the operation
must be completed.

Upon running the example through the generator tool, a set of Java interface wrapper
files are produced. Developers can ignore most of the generated files. except the
following:

0 Track.java: this file contains the skeleton of the fields and the methods of the
track class. The user is supposed to fill the body of the methods.

0 TrackExtClient.java: this is the wrapper class that the client initializes and uses
instead of the track class.

0 TrackIxtServer.java: this is the wrapper class that the server initializes and uses
instead of the- track class.

* Notif-yAICG.java: this class must be extended or implemented by the application
if event-notification and call-back are needed.

47

N. Cheng et al.

The methods found in the trackExtClient and trackExtServer have the same method
names and signatures as the track class. In fact, the track class methods are called
within trackExtClient or trackExtServer.

7 AICG Wrapper Design

This section explains the design of the AICG and the codes that are generated from
psdl2java program.

7.1 AICG Wrapper Architecture

The AICG wrapper codes generated consists of four main module types. They are the
Interface modules, the Event modules, Transaction modules and the Exception
module. The interface modules implement the distributed object methods and
communicate directly with the application. In reference to the example in section 6.2,
the interface modules are entryAICG, track, trackExt, trackExtClient, trackExtServer.
Instead of creating the actual object (track), the application should instantiate the
corresponding interface object, either the trackExtClient or trackExtServer. Event
modules (eventAICGID, eventA!CGHandler, notifyAICG) handle external events
generated from the JavaSpace that are of interest to the application. Transaction
modules (transactionAICG, transactionManagerAICG) support the interface module
with transaction services. Lastly, the exception module (exceptionAlCG) defines the
possible types of exceptions that can be raised and need to be captured by the
application.

Each time the application instantiates a track class by creating a new trackExtServer,
the following events take-place in the Interface:
1. An Entry object is created together with the track object by the trackExtServer.

The tack object is placed into the Entry object and stored in the space.
2. Transaction Manager is enabled.
3. The reference pointer to trackExtServer is returned to the application.

Each time a method (.getID, getCallsign, getPosition) that does not modify the
contents of the object is invoked, the following events take place in the Interface:
1. The application invokes the method through the Interface

(trackExtServer/trackExtClient).
2. The Interface performs a Space "get" operation to update the local copy.
3. The method is then executed on the updated copy of the object to return the value

back to the application.

Each time a method (setCallsign, setPosition), which does modify the contents of the
object is invoked, the following events take place in the Interface:
1. The application invokes the method through the Interface.
2. The interface performs a Space "take" operation, which retrieves the object from

the space.
3. The actual object method is then invokdd to perform the modification.

48

JAVA Wrappers for Automated Interoperability

4. Upon completion of the modification, the object is returned to the space by the
interface using a "write" operation.

7.2 Interface Modules

The interface modules consist of the following modules; an entry (entryAICG) that is
stored in space, the actual object (trackExt) that is shared and the object wrapper
(trackExt, trackExtClient, trackExtServe.).

7.2.1 Entry
A space stores entries. An entry is a collection of typed objects that implements the
Entry interface. The Entry interface is empty; it has no methods that have to be
implemented. Empty interfaces are often referred to as "marker" interfaces because
they are used to mark a class as suitable for some role. That is exactly what the Entry
interface is used for, to mark a class appropriate for use within a space.

All entries in the AICG extend from this base class. It has one main public attribute,
an identifier and an abstract method that returns the object. Any type of object can be
stored in the entry. The only limitation is that the object must be serializable. The
serializable property allows the java virtual machine to pass the entire object by value
instead of by reference

All Entry attributes are declared as publicly accessible. Although it is not typical of
fields to be defined as public in object-oriented programming style, an associative
lookup is the way the space-based programs locate entries in the space. To locate an
object in space, a template is specified that matches the contents of the fields. By
declaring entry fields public, it allows the space to compare and locate the object.
AICG encourages object-oriented programming style by encapsulating the actual data
object into the entry. The object attributes can then be declared as private and made
accessible only through clearly defined public methods of the object.

7.2.2 Serialization
Each distributed interface object is a local object that acts as a proxy to the remote
space object. It is not a reference to a remote object but instead a connection passes all
operations and value through the proxy to the remote space. All the objects must be
serializable in order to meet this objective. The Serializable interface is "marker"
interface that contains no methods and serves only to mark a class as appropriate for
serialization. Classes marked as serializable should not contain pointers in their
representation.

7.2.3 The Actual Object
We now look at the actual objects that are shared between servers and clients. The
psdl2java generates a skeleton version of the actual class with the method names and
its arguments. The bodies of the methods and its fields need to be filled by the
developers.

49

N. Cheng et al.

7.2.4 Object Wrapper
Wrapping is an approach to protecting legacy software systems and commercial off-
the-shelf (COTS) software products that require no modification of those products [1].
It consists of two parts, an adapter that provides some additional functionality for an
application program at key external interfaces, and an encapsulation mechanism that
binds the adapter to the application and protects the combined components [1].

In this context, the software being protected contains the actual distributed objects,
and the AICG model has no way of knowing the behaviors of the distributed objects
other than the operation types of of ' the methods. The adapter intercepts all
invocations to provide additional functionalities such as synchronization between the
local and distributed object, transaction control, event monitoring and exception
handling. The encapsulation mechanism has been explained in the earlier section
(AICG Architecture). Instead of. instantiation of the actual object, the respective
interface wrapper is instantiated. Instantiating the interface wrapper indirectly
instantiates the actual object as well as storing the object in the space.

Three classes are generated for every distributed object. There are named with the
object nameappended with the following Ext, ExtClient, and ExtServer.

7.3 Event Modules

The event modules consist of the event callback template (notifyAICG), the event.
handler (eventAICGHandler) and the event identification object (eventAICGID).

7.3.1 Event Identification Object
The event identification object is used to distinguish one event from others. when an
event of interest is registered, an event identification object is created to store the
identification and event source. The object has only two methods, an 'equals" method
that checks if two event identification objects are the same and a 'to string' method
which is used by the event handler for retrieving the right event objects from the hash
table.

7.3.2 Event Handler
Event Handler is the main body of the event operation in the AICG model. It handles
registration of new events, deletion of old events, listening for event and invoking the
right callback for that event. Inside the event handler are in fact, three inner classes to
perform the above functions. Events are stored in a hash table with the event
identification object as the key to the hash table. This allows fast retrieval of the event
object and the callback methods.

The event handler listens for new events from the space or other sources. When an
object is written to the space, an event is created by the space and captured by the all
the listeners. . The event handler would immediately spawn a new thread and check
whether the event is of interest to the application.

50

JAVA Wrappers for Automated Interoperability

7.3.3 The Callback Template
The callback template is a simple interface class with an abstract method
listenerAICGEvents. Its main function is to allow the AICG model to invoke the
application program when certain events of interest is "'fired". As explained earlier,
the notifyAICG interface needs to be implemented by each application that wishes to
have notification. ".

7.4 The Transaction Modules

The transaction modules consist of a transaction interface (transactionAICG) and the
transaction factory (transactionManagerAICG).

The transaction interface is a group of static methods that are used for obtaining
references to the transaction manager server somewhere on the network. It uses the
Java RMI registry or the look-up server to locate the transaction server.

The transaction factory uses the transaction interface to obtain the reference to the
server, which is then used to create the default transaction or user-defined
transactions. In short the transaction factory can perform the following:

1. Invoke the transaction interface to obtain a transaction manager.
2. Create'a default transaction with lease time of 6 seconds.
3. Create a transaction with a user defined lease time.

7.5 The Exception Module'

The exception module defines all the exception codes that are returned to the
application when certain unexpected conditions occur in the AICG model. The
exceptions include

, "tUnDefinedExceptionCode"; unknown error occur.
* "SystemExceptionCode"; system level exceptions, such disk failure, network

failure. 4
* "ObnjectNotFoundException"; the space does not contain the object.
* "TransactionException"; transaction server not found, transaction expired

before commit.
* "LeaseExpiredException"; object lease has expired.
* "CommunicationException"; space communication errors.
* "UnusableObjectException"; object corrupted.
* "ObjectExistsException"; there another object with the same key in the space.
* "NotificationException"; events notification errors.

8 Conclusion

The AICG vision of distributed object-oriented computing is an environment in
which, from the developer's point of view, there is no distinct difference between

51-

N. Cheng et al.

sharing of objects within an address space and objects that are on different machines.
The model takes care of underlying interoperability issues by taking into account
network latency, partial failure and concurrency. Automating the generation of
interface wrappers directly from the Prototype System Description Language further
enhances the reliability of the systems. by enforcing proper object-oriented
programming styles on the shared objects. Usage of PSDL for specification of shared
o.bjects also results in increased efficiency and shorter development time.

References

1. Valdis Berzins, Luqi, Bruce Shultes, Jiang Guo, Jim Allen, Ngom Cheng, Karen
Gee, Tom Nguyen, and Eric Stierna: Interoperability Technology Assessment for
Joint C4ISR Systems. Naval Postgraduate School Report NPSCS-00-001
September, (1999).

2. Nicholas Carriero, David Gelernter : How to Write Parallel Programs: A Guide to
the Perplexed. ACM Computing Surveys, September (1989) 102-122.

3. David Gelernter : Generative Conimunication in Linda. ACM Transaction on
Programming Languages and Systems, Vol. 7, No. 1, January (1985) 80-112.

4. Bill Joy : The Jini Specification. Addison Wesley, Inc. (1999)
5. Edward Keith: Core Jini. Prentice Hall, PTR, (1999)
6. Eun-Gyung Kim: A Study on Developing a Distributed Problem Solving System.

IEEE Software, January (1995) 122-127
7. Fred Kuhns, Carlos O'Ryan, Douglas Schmidt, Ossama Othman, Jeff Parsons:

"The Design and Performance of a Pluggable Protocols Framework for Object
Request Broker Middleware. IFIP 6' International Workshop on Protocols For
High-Speed Networks (PfHSN' 99), August 25-27, (1999)

8. David Levein, Sergio Flores-Gaitan, Douglas Schmidt: An Empirical Evaulation
of OD Endsystem Support for Real-time CORBA Object Request Brokers.
Multimedia Computing and Network 2000, January (2000).

9. Luqi, Valdis Berzins : Rapidly Prototyping Real-Time Systems. ITEE Software,
September (1988) 25-35

10.Luqi, Valdis Berzins, Bernd Kraemer, Laura White : A Proposed Design for a
Rapid Prototyping Language. Naval Postgraduate School Technical Report, March

(1989)
11.Luqi, Mantak Shing: CAPS - A Tool for Real-Time System Devleopment and

Acquisition. Naval Research Review, Vol 1 (1992) 12-16
12.Luqi, Valdis Berzins, Raymond Yeh : A Prototyping Language for Real-Time

Software. IEEE Softare, October (1998) 1409-1423
13. Kevin Sullivan, Mark Marchukov, John Socha : Analysis of a Conflict Between

Aggregation and Interface Negotiation in Microsoft's Component Object Model.
IEEE Transactions on Software Engineering, Vol. 25, No. 4, July/August (1999)
584-599

14.Antoni Wolski : LINDA: A System for Loosely Integrated DataBases. IEEE
Software, January (1989)66-73.

52

Computer Aided Prototyping in a Distributed Environment

Jun Ge, Valdis Berzins, Luqi
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

U.S.A.

Abstracte important in various application areas from e-business to

military applications. These systems have strict

Previous work on computer-aided prototyping system requirements on accuracy, safety and reliability. Usually
(CAPS) is stepping into a distributed environment to meet such software is large and built on several legacy systems
the requirement of integrating legacy systems in to make use of the partial or fill functionalities of these

heterogeneous network. A three-module architecture legacy systems. When the legacy systems are physically
design, including Supporting Database, System Tools and located in a distributed network, they are connected
Execution Manager, is proposed in this paper for the through certain network protocols. Fast prototyping of

distributed CAPS system (DCAPS). By using these systems helps the users in analysis, design,
wrapper/glue technique, different prototyping tools in a implementation, verification, validation and optimization.
heterogeneous environment share the input/output data Approaches for modeling, realizing, reconfiguring and

files for prototypes. The architecture is generalized for the allocating logical processes and interactions to processors
communication among legacy systems for data and communication links are needed to make prototyping
interchange. DCAPS not only provides a useful tool for useful in this domain.

distributed real-time system prototyping, but also is a
demonstrati'on of distributed system in heterogeneous This paper describes a distributed CAPS system (DCAPS)
environment, to fulfill the requirements for distributed software

prototyping. Prototype System Description Language

Key words: software interoperability, fast prototyping, (PSDL), a prototyping language, is applied in the

distributed system, multi-agent system description of the real-time software in DCAPS system.
. ... PSDL provides the specifications not only for real-time.

1. Introduction constraints, but also for the connection and interaction
among software components. PSDL has open syntax for
the design of new features that arise in the context of

Computer aided prototyping has been found useful in disibt omung. Wrapper an gle tehnol
softaredeveopmntý speialy fo lage ral-ime distributed computing. Wrapper and glue technology is

software development, especially for large real-time applied for the normalization and data transfer of legacy

systems. Prototyping provides the capability to accurately system A la t echn is d toan age the

simulate requirements in new application areas. Previous exems.io pro aess.

work such as the Computer Aided Prototyping Systemexecution process.

(CAPS) has demonstrated real-time issues, software reuse Section 2 introduces the three-module architecture of
and process scheduling in fast prototyping for a single DCAPS system. All the modules are described in detail in
processor computing environment . However, it is sll Section 3, 4 and 5 separately. ection 6 gives a simple
hard to make use of existing systems in a distributed example prototype in DCAPS.
environment, especially for real-time systems under a
heterogeneous environment. With the fast development of 2. System architecture
networks and the Internet, interoperability has become the
focus of current research. This paper extends research onCAPS to distributed and network computing. Earlier work on computer-aided prototyping system

(CAPS) uses PSDL, a prototype description language, to

Distributed real-time software system prototyping and describe the real-time software E43. PSDL itself has an

inte.roperability in a heterogeneous environment form the open structure so that the user is able to define new

focus of this paper. In recent years, hard real-time, soft properties for software components, such as new-added

real-time and embedded systems are increasingly network configurations. CAPS prototypes a software
system in the following steps. First, user selects the
software components from the reusable component

+ This research was supported in part by the U. S. Army libraries t construct the prototype in a graphic editor.

Research Office under contract/grant number 35037-MA This prototype is saved as a plain text file in PSDL format.

and 40473-MA. User may also use the graphic user interface (GUI)

53

generator provided by CAPS to create the new GUI In this architecture, DCAPS provides users support from
interface for the prototype. Then, the translator and three aspects. Databases help users to manage and reuse
scheduler work on this PSDL file to generate the the prototyping requirements and reusable software
wrapper/glue code and dynamic/static schedules components. It also validates the prototypes for
respectively. Both the source code of reusable components components' evolution. Prototyping tools help user in
and automatic generated source code will be compiled automatically generating connection code, GUI code, and
together to get the executable final software. It will be data type conversion code among components during the
tested in CAPS (simulation) for both the execution design process. Execution manager controls and visualizes
correctness and the real-time requirements. the simulation process to validate the system design,

particularly on real-time constraints.
As described above, CAPS consists of various prototyping
tools to provide all these functionalities. They play DCAPS inherits prototyping tools that were implemented
different roles during the prototyping process. For in different operating systems including SunOS, Solaris
example, the scheduler just needs the information of and Windows NT. It provides different user interfaces for
timing constraints for every component, while the multiple operating systems including Windows NT. All
translator does not care about such information other than the tools, which are in the three modules, are located in a
the network configurations and data type definitions, distributed environment during one prototypingjob.
When new properties are enabled in PSDL description of
the prototype, for instance to prototype a networked 3. Supporting databases
software, some tools must be updated by new generations
while the rest stay the same. Therefore, the architecture of Supporting databases provide intelligent guidance to users
CAPS must consider the evolution of its own components. so that in a form of adaptive control it is integrated into the

systemn prototyping. There are two types of database
CAPS tools were originally developed in SunOS operating support involved in DCAPS system. One is the software
system for components which are located on one reuse database. It contains the specifications for all the
processor. To consider the user's requirement, the user reusable software components so that they are able to be
interface is required to migrate to Windows NT operating retrieved and to be accessed during the prototyping
system. At the same time, the old operating system is not procedure and the execution (siinulation). Software
s.upported by some new technologies. To avoid the version control should also be considered within this
complexity of migrating the whole system to a new database support. The other is the requirement database.
operating system, CAPS now has to work in a distributed It allows users to reuse the previous prototypes that are
and heterogeneous environment. A new architecture stored in the database. Thus it may shorten the design
becomes important for the system. On the other hand, cycle and even optimize the design. The decomposition of
CAPS is required to prototype software systems in this module is shown in Figure 2.
distributed and heterogeneous environtments. The
requirements to develop the distributed CAPS (DCAPS)
are consistent for constructing the distributed software : RqieetSfwr-es
prototypes, i.e., DCAPS itself is a demonstration of Database Database

distributed software construction. A three-module S

architecture is proposed to design the distributed CAPS •-,•A ",
system (DCAPS). =Database ! Manager
From the viewpoint of prototyping procedure, DCAPS can Manager

group its tools into three basic modules (Figure 1). Request & response

Supportingb Figure 2. Supporting database system

DataasesThe browse and retrieve operations for the database
includes both syntactic exclusion and semantic exclusion
to narrow the search range

Prototyping Eci 4. Prototyping tools
• Tools ave

Prototyping tools module is decomposed as follows
Figure 1. Three-module architecture design of DCAPS (Figure 3). It includes GUI for various operating systems,

54

which includes a PSDL graphic editor, the prototype
scheduler [91, the prototype translator (automatic code The different tools, which are 'located in different
generator for data communication among components), computers, communicate with each other through TCP/IP

source code compilers and code optimizers for various protocol. The wrapper/glue technique is applied.
languages and operating systems. The major operating However, because the data types in communication are

systems considered in DCAPS are SunOS, Solaris and known to each other, the wrappers among different tools
Windows NT. Job Dispatcher works on a server platform are blank to each other.
to receive user's commands from GUI and to dispatch jobs

to correspondent tools. 5. Execution manager

The compiler in different operating systems just needs. to The execution of the distributed system, i.e., the simulation
work with the correspondent automatically generated code. of the prototype, is managed by the Execution Manager. It

With the change of language in a specific operating uses a virtual centralized synchronization timer for
system, it is not necessary to change the other components different task schedules in different processors. This

of DCAPS. subsystem must compensate for clock drift due to
' an......a.e..............w differences in clock rates without violating global timing

(SunOS) (Solaris) : constraints as long as clock drift rates remain within
Code Optimizer Compiler Compiler : specified bounds. A multi-agent system is used in the

distributed work to coordinate the computing processes.

The Prototyping Scheduler generates one specific task
Compiler

(Solas) oplschedule (both dynamic and static) for each node.• -" Execution Manager provides a centralized Executor to

JWb Dispatcher ,inNT) v administrate and to synchronize the processes in different

PSDL editor platforms on which reusable components are located
P i (Figure 5). The procedure of execution is also sent back to

(SuOS)S) (SuOa GUI of DCAPS so that the user may see a visualized
(Sun) • TranslatorS PSDL e r process and have clear information on the prototype.

a aSchedifle raa tor PSDL editor a

Figure 3. Decomposition of System Tools Node B

The DCAPS GUI can be. further decomposed as in Figure (Unix) vi I timer agent
4. Execution

Manager

PSDL Database (Linux) (T
Editor support Node A NodeC

Prototype as
PSDL file & Legend: [local timing agents

user command. TJ DCAPSWrapperI Menu Figure 5. Execution model for a distributed system

In each node, for all the legacy components, the
Execution Execution wrapper/glue technology is applied in data interchange

visualizatio n (Figure 6). A form of software wrapper and glue
technology provides standardized interactions between
legacy systems in a heterogeneous network in DCAPS. It

Figure 4. Decomposition of DCAPS GUI makes interoperability and integration possible for - a

distributed structure. Legacy systems under the wrappers
The graphic PSDL editor should be enhanced for new- collaborate through the message passing approach in the

added properties in the PSDL description of prototype, glue connection. Wrappers provide a generic interface for

such as network configuration, different timing constraint, every single legacy system so that its input and output

etc. Even in such cases, the system architecture does not become uniform, both for consuming data from other

have to change at all except that the respective modules are legacy systems and for generating data to others. On the

replaced. other hand, glue structure supports an abstract data class

55

for data transfer. It encodes any type of data to a common
type before putting it into a data stream at the sender's end. For each processor, a local timing agent manages the
At the receiver's end, the data is decoded to the required execution tasks under the schedule. I/O data of each
data type that may be different from that at the sending component is received/sent between legacy system and the
end. Wrapper and glue concepts are the basis of a formal uniform software wrapper, which is autormtically
model for software and hardware co-design. generated and transferred through glue agents generated by

glue code, which hides the specific network configurations
A multiple-agent system is generated automatically by the via derived design and network mode/parameters.
Prototyping Translator tool in the architecture as the
"glue" for the network communication of the legacy 6. Prototyping example
system's inputs and outputs. For each input/output data
flow, an agent is associated as an automatic pipe of data The system of a weather station is prototyped in DCAPS to
transmission. It makes use of the run-time library of demonstrate the ability of prototyping the distributed
network communication according to the specific network software in heterogeneous operating system.
protocol in the node that is provided in component
information. This "glue" allows the legacy systems not to
worry about the network settings for the communication to me, iLe•%es.
other components. The communication among agents can.. 4 -

reference to several available techniques such as i i T• i.1•, ..
JavaSpace, Jini C7], etc. The technology used in real _ .w
application should be selected according to the real .,_. --
network configuration. . ,

type control/conversion, firing condition, exception .

handling, timing constraints, etc. The "wrapper" is simply • j
composed in several different layers so that all the features
that user concerns are tunable according to user's
selections. The "wrapper" communicates to the agents for

-- data outgoing and incoming. Under certain specific Figure 7. Top level of weather-station prototype-
conditions, some layer of the wrapper may become
transparent based on enhanced information. For example, .'M- .-

in the design of DCAPS, the input/output of different

prototyping tools are standardized in advance. Therefore, .i-
the data type conversion is not required. Because DCAPS
itself does not have real-time constraint, the wrapper for . .
timing constraints is transparent. . ' . ..*

E Output Output

.. •1 2
system wrapper ~i.;L

"handler \ conversion Figure 8. Decomposition of sys_b

Timing
"constraints

....S5Sts.............s...S.sf..

Figure 6. Wrapper/glue architecture for one component

56

w- -P The two sub-systems are located in different computers.
' "They are connected through network in TCP/IP protocol.

I ~ . .. A SOCKET communication run-time library is provided
-for data interchange.

DCAPS provides the graphic user interface to edit the
prototype in multi-level. For each component, it provides
an interface (Figure 10) so that user may specify properties

_.___" __- .: such as timing constraints, network configuration, data
flow type, etc. PSDL editor also supports a GUI code
generator so that user can create a personal-style user
interface for the prototype.

S*>W.** 7. Conclusions

Figure 9. Decomposition of sysý_a The DCAPS system provides a useful tool for distributedreal-time software fast prototyping. A three-module

_. architecture is proposed to m ake DCAPS system suitable
-.. .. -,for distributed environment. The wrapper/glue method

rused in DCAPS can be generalized to system construction

J- ' and interconnection of legacy systems. By automatically
. [sA. generating the codes for the "wrappers and glue" and

4.. providing a powerful environment, DCAPS allows the
designers to concentrate on the difficult interoperability

. ,.." ._ --....... -•problems and issues, freeing them from implementation

Fn....[~ 3 .;• . details. It also enables easy reconfiguration of software
. and network properties to explore design alternatives.

__.. -... ' -.. -.--.-- ,.. DCAPS is an on-going " research project for the
development and refinement of its prototyping tools.

}i .~..References

1. Luqi, V. Betzins, Rapidly prototyping real-time
_______-7_____......___-- _____ systems, IEEE Software, September 1988, pp. 25-36

- 2.Luqi, W. Royce, Status report computer-aided
...- , 1 ;,. prototyping, IEEE Software, Vol. 9, No. 6, November

_.•g•,r.I�... ,. i. 1992, pp. 77-81
__...._........... - - "3. Luqi, M. Shing, Real-time scheduling for software

_ y_ .._"_' prototyping, J. of Systems Integration, special issue on
-___.__._..__ .computer-aided prototyping (Vol. 6, No. 1, 1996), pp.

- --.. ~ . _ CE~ ~ ~ c-~2-~v41-7-2
"4. Luqi, V. Berzins, R. Yeh, A prototyping language for

Figutre 10. Properties configuration for component s real time software, IEEE Transactions on Software
Engineering, October 1988, Vol. 14, No. 10, pp. 1409-

As shown in Figure 7-9, weather station system consists of 1423"5.R. Steigerwald, Luqi, 1. McDowell, A CASE tool for
two parts: sys_.b is the sensor and sys-a is the controller. reuaesware copnn store A rEtrel in
The sensor system includes two sub-sensors which are
wind direction sensor and temperature sensor. The rapid prototyping, Information and Software
measurements are converted in specified units. It reports Technology, England, Vol. 38, No. 9, Nov. 1991, pp.
the measurement results to the controller. The controller 6. Luqi, V. Berzins, M. Shing and N. Nada,
sends control signal of signal unit to the sensor system so
that the sensor can be configured automatically. Both the Evolutionary computer aided prototyping system
sub-systems have their own user interfaces in the local (CAPS), to appear in the Proceedings of the TOOLS
systems. USA 2000 Conference, Santa Barbara, CA, July 30 -August 3, 2000

57

7. Jini teclmology architectural overview, URL: heterogeneous systems development and Integration,
htt=://www.sun.com/iini/whitepaners/architecture.htm to appear in the Proceedings of the 2000 Command
_, retrieved 07/31/2000. and Control Research and Technology Symposium,

8. V. Berzins, Luqi, B. C. Shultes, et al, Interoperability Naval Postgraduate School, Monterey, CA, 26-28
technology assessment for joint C41SR systems, June 2000
Technical Reports, Naval Postgraduate School, 11. Jiang Guo, Luqi, Toward automated retrieval for a
Monterey, CA, USA, October 1999 software component repository, Proceedings of IEEE

9. Luqi and M. Shing, real-time scheduling for Software International Conference and Workshop on the
prototyping, Journal of Systems Integration, Vol. 6, Engineering of Computer Based Systems (IEEE
No. 1-2, pp.41-72, 1996 ECBS), Nashville, USA, March 7-12, 1999. Pp. 99-

10. Luqi, V. Berzins, M. Shing, N. Nada and C. Eagle, 105
Computer aided prototyping system (CAPS) for

58

Subelassing errors, OOP, and practically checkable rules to prevent them

Oleg Kiselyov
Software Engineering, Naval Postgraduate School, Monterey, CA 93943

oleg@pobox.com, oleg@acm.org

Abstract

This paper considers an example of Object-Oriented Progr�amming (OOP) leading to subtle errors that break separation of
interface and implementations. A comprehensive principle that guards against such errors is undecidable. The paper introduces
a set of mechanically verifiable rules that prevent these insidious problems. Although the rules seem restrictive, they are
powerful and expressive, as we show on several familiar examples. The rules contradict both the spirit and the letter of the
OOP. The present examples as well as available theoretical and experimental results pose a question if OOP is conducive to
software development at all.

Keywords: object-oriented programming, subtyping, subclassing, implementation inheritance, C++, functional program-
ming

1 Introduction

Decoupling of abstraction from implementation is one of the holy grails of good design. Object-oriented programming is
claimed to be conducive to such a separation, and therefore to more reliable code. In the end, productivity and quality are the
only true merits a programming methodology is to be judged upon. This article will discuss a simple example that qtlestions if
Object-Oriented Programming (OOP) indeed helps separate interface from implementation. First we demonstrate how easily
subclassing errors arise and how difficult (in general, undecidable) it is to prevent them. We later introduce a set of expressive
rules that preclude the subclassing errors, and can be mechanically verified. Incidentally the rules run contrary to the OOP
precepts.

We take a rather familiar example that illustrates the difference between subclassing and subtyping: the example of Sets
and Bags. The example is isomorphic to that of circles vs. ellipses or squares vs. rectangles. Section 2 introduces the example
and carries it one step further, to a rather unsettling result: a "transparent" change in an implementation suddenly breaks client
code that was written according to public interfaces. We set out to follow good software engineering practices; this makes the
resulting failure even more ominous. Section 3 brings up a subclassing vs. subtyping dichotomy and the Liskov principle of
behavioral substitutability. We show that Sets and Bags viewed as mutable or immutable objects are not subtypes of each other.
The indiscriminate use of implementation inheritance indeed prevents separation of interface and implementation. In Section
4 we take a contrary point of view, of bags and sets as values without a hidden state and whose responses to external messages
cannot be overridden. We prove that a set truly is-a bag; a set is substitutable for a bag, a set can always be manipulated as
a bag, a set maintains every invariant of a bag - and it is still a set. The section also shows that if we abide by practically
checkable rules we obtain a guarantee that the subtle subclassing errors cannot occur in principle. We will also show that the
rules do not diminish the power of a language.

Inheritance and encapsulation, two staples of OOP, make checking of the Liskov Substitution Principle (LSP) for derived
objects generally undecidable. On the other hand, the proposed rules, which can be checked at compile time, make derived
values satisfy LSP.

The article aims to give a more-or-less "real" example, which we can run and see the result for ourselves. By necessity
the example had to be implemented in some language. The present article uses C++. It appears however that similar code and
similar conclusions can be carried on in many other object-oriented languages (e.g., Java, Python, etc).

59-

2 Coupling of interface and implementation

Suppose I was given a task to implement a Bag - an unordered collection of possibly duplicate items (integers in this example).
I chose the following interface:

typedef int const * collIterator; // Primitive but will do
class CBag I
public:
int size(void) const;
int count (const int elem) const;
virtual void put (const int elem);
virtual bool del(const int elem);
CollIterator begin(void) const;
CollIterator end(void) const;

CBag (void);
virtual CBag * clone(void) const;

private: ... // implementation details elided
1;

The class CBag defines usual methods to determine the number of all elements in a bag, to count the number of occurrences

of a specific element, to put a new element into a bag and to remove one. The latter function returns f al s e if the element to

delete did not exist. We also define the standard enumerator interface [11] - methods begin () and end () - and a method to

make a copy of the bag. Other operations of the CBag package are implemented without the knowledge of CBag's internals:

the print-on operator < <,the union (merge) operator +=, and operators to compare CBags and to determine their structural

equivalence. These functions use only the public interface of the CBag class:

void operator *- (CBag& to, const CBag& from);
bool operator <- (const CBag& a, const CBag&'b);

inline bool opera:zr >- (const CBag& a, const CBag& b)

{ return b <= a; 1
inline bool operatcr -- (const CBag& a, const CBag& b)

return a <= b && a >- b;

The complete code of the whole example is available in [7]. It has to be stressed that the package was designed to minimize

the number of functions that need to know details of CBag's implementation. Following good practice, I wrote validation code

(file vCBag. cc [7]) that tests all the functions and methods of the CBag package and verifies common invariants.

Suppose you are tasked with implementing a Set package. Your boss defined a set as an unordered collection where each

element has a single occurrence. In fact, your boss even said that a set is a bag with no duplicates. You have found my CBag

package and realized that it can be used with few additional changes. The definition of a Set as a Bag, with some constraints,

made the decision to reuse the CBag code even easier.

class CSet : public CBag
public:
bool memberof(const int elem) const

{ return count(elem) > 0;

// Overriding of CBag::put
void.put(const int elem)
{ if(!memberof(elem)) CBag::put(elem); I

CSet * clone(void) const

{ CSet * new._set = new CSet(;
*new__set += *this; return newset;

CSet(void) {}
1;

The definition of a CSet makes it possible to mix CSets and CBags, as in set += bag; or bag += set; These operations

are well-defined, keeping in mind that a set is a bag that happens to have the count of all members exactly one. For example,

set += bag; adds all elements from a bag to a set, unless they are already present. On the other hand, bag += set; is

no different than merging a bag with any other bag. You too wrote a validation suite to test all CSet methods (newly defined

as well as inherited from a bag) and to verify common expected properties, e.g., a+=a =- a.

60

In my package, I have defined and implemented a function that, given three bags a, b, and c, decides if a+b is a subbag of
c:

bool foo(const CBag& a, const CBag& b, const CBag& c)
// Clone a to avoid clobbering it

CBag & ab = *(a.clone());
ab += b; // ab is now the union of a and b
bool result = ab <= c;
delete &ab;
return result;

It was verified in the test suite. You have tried this function on sets, and found it satisfactory.
Later on, I revisited my code and found my implementation of foo () inefficient. Memory for the ab object is unneces-

sarily allocated on heap. I rewrote the function as

bool foo(const CBag& a, const CBag& b, const CBag& c)

CBag ab;
ab += a; // Clone a to avoid clobbering it
ab += b; //ab is now the union of a and b
bool result = ab <= c;
return result;

It has exactly the same interface as the original foo). The code hardly changed. The behavior of the new implementation is
also the same - as far as I and the package CBag are concerned. Remember, I have no idea that you are re-using my package.
I re-ran the validation test suite with the new foo 0 : everything tested fine.

However, when you run your code with the new implementation of foo (), you notice that something has changed! The
complete source code [7] contains tests that make this point obvious: Commands make vCBagl and make vCBag2 run
validation tests with the first and the second implementations of foo (). Both tests complete successfully, with the identical
results. Commands make vCSet 1 and make vCSet 2 test the CSet package. The tests - other than those of foo () - all
succeed. Function foo () however yields markedly different results. It is debatable which implementation of foo () gives
truer results for CSets. In any case, changing internal algorithms of a pure function foo () while keeping the same interfaces
is not supposed to break your code. What happenied?

What makes this problem more unsettling is that both you and I tried to do everything by the book. We wrote a safe,
typechecked code. We eschewed casts. g++ (2.95.2) compiler with flags -W and -Wa 11 issued not a single warning. Normally
these flags cause g++ to become very annoying. You did not try to override methods of CBag to deliberately break the CBag
package. You attempted to preserve CBag's invariants (weakening a few as needed). Real-life classes usually have far more,
obscure algebraic properties. We both wrote validation tests for our implementations of a CBag and a CSet, and they passed.
And yet, despite all my efforts to separate interface and implementation, I failed. Should a programming language or the
methodology take at least a part of the blame? [10, 4, 1]

3 Subtyping vs. Subclassing

The breach of separation between CBag's implementation and interface is caused by CSet design's violating the Liskov Substi-
tution Principle (LSP) [9]. CSet has been declared a subclass of CBag. Therefore, C++ compiler's typechecker permits passing
a CSet object or a CSet reference to a function that expects a CBag object or reference. However, it is well known [3] that a
CSet is not a subtype of a CBag. The next few paragraphs give a simple proof of this fact, for the sake of reference.

The previous section considered bags and sets from the OOP perspective - as objects that encapsulate state and behavior.
Behavior means an object can accept a message, send a reply and possibly change its state. From this point of view, bags
and sets are not subtypes of each other. Indeed, let us define a Bag as an object that accepts two messages: (send a-
Bag 'put x) puts an element x into the Bag, and (send a-Bag ' count x) gives the occurrence count for x in
the Bag (without changing a-Bag's state). Likewise, a Set is defined as an object that accepts two messages: (send a-
Set ' put x) puts an element x into a-Set unless it was already there, (send a-Set 'count x) gives the count of
occurrences of x in a-Set (which is always either 0 or 1). Throughout this section we use a different, concise notation to
emphasize the general nature of the argument.

61

Let us consider a function

(define (fnb bag) (send bag 'put 5) (send bag 'put 5) (send bag 'count 5))

The behavior of this function, its contract, can be summed as follows: given a Bag, the function adds two elements into it and
returns (+ 2 (send orig-bag ' count 5)). Technically you can pass to fnb a Set object as well. Just as a Bag, a Set
object accepts messages ' put and ' count. However applying fnb to a Set object will break the function's post-condition
stated above. Therefore, passing a set object where a bag was expected changes the behavior of a program. According to the
LSP, a Set is not substitutable for a Bag - a Set cannot be a subtype of a Bag.

Let us consider another function

(define (fns set) (send set 'put 5) (send.set 'count 5))

The behavior of this function is: given a Set, the function adds an element into it and returns 1. If you pass to this function a
bag (which -just as a set - replies to messages ' put and ' count), the function fns may return a number greater than 1.
This will break fns's contract, which promised always to return 1.

One may claim that "A Set is not a Bag, but an ImmutableSet is an ImmutableBag." This is not correct either. An im-
mutability per se does not confer subtyping to "derived" classes of data, as a variation of the previous argument shows [8]. C++
objects are record-based. Subclassing is a way of extending records, with possibly altering some slots in the parent record.
Those slots must be designated as modifiable by a keyword virtual. In this context, prohibiting mutation and overriding
makes subclassing imply subtyping. This is the reasoning behind BRules introduced below. However merely declaring the
state of an object immutable is not enough to guarantee that derivation leads to subtyping: An object can override parent's
behavior without altering the parent. This is easy to do when an object is implemented as a functional closure, when a handler
for an incoming message is located with the help of some kind of reflexive facilities, or in prototype-based 00 systems [8].
Incidently, if we do permit a derived object to alter its base object, we implicitly allow behavior overriding. For example, an
object A can react to a message M by forwarding the message to an object B stored in A's slot. If an object C derived from A
alters that slot it hence overrides A's behavior with respect to M.

The OOP point of view thus leads to a conclusion that neither a Bag nor a Set are subtypes of the other. The interface or an
implementation of a Bag and a Set appear to invite subclassing of a Set from a Bag, or vice versa. Doing so however will violate
the LSP - and we have to brace for strikingly subtle errors. The previous section intentionally broke the LSP to demonstrate
how insidious the errors are and how difficult it may be to find them. Sets and Bags are very simple types, far simpler than the
ones that typically appear in a production code. Since LSP when considered from an OOP point of view is undecidable, we
cannot count on a compiler for help in pointing out an error. As Section 2 showed, we cannot rely on validation tests either.
We have to see the problem [4, 10, 1].

4 Mechanically preventing subclassing errors

Bags and sets - as objects - indeed are not subtypes. Subclassing them violates LSP, which leads to insidious errors. Bags
and sets however do not have to be viewed as objects. We can take them as pure values, without any state or intrinsic behavior
- just like the numbers are. In Section 2, CBag and CSet objects encapsulated a hidden state - a collection of integers. The
objects had an ability to react to messages, e.g., put and del, by altering their state. In this section we re-do the example of
Section 2 using a different approach. Bags and sets no longer have a state that is distinct from their identity and that can be
altered. Equally important we do not allow any changes to the behavior of bags and sets with respect to applicable operations,
by overriding or otherwise. In other words, every post-condition of a bag or a set constructor holds throughout the lifespan of
the constructed values. This approach makes the subclassing problems and breach of encapsulation disappear. It turns out that
a set truly is-a bag; a set is substitutable for a bag, a set can always be manipulated as a bag, a set maintains every invariant of
a bag - and it is still a set.

The LSP says, "If for each object o 1 of type S there is another object o2 of type T such that for all programs P defined in
terms of T, the behavior of P is unchanged when ol is substituted for o2, then S is a subtype of T." If type T denotes a set of
values that carry their own behavior, and if values of type S can override some of T values behavior, the LSP is undecidable.
Indeed, a mechanical application of LSP must at least be able to verify that all methods overridden in S terminate whenever
the corresponding methods in T terminate. This is generally impossible. On the other hand, if T denotes a set of (structured)
data values, and S is a subset of these values - e.g., restricted by range, parity, etc. - the LSP is trivially satisfied.

This section also shows that if one abides by mechanically verifiable rules he obtains a guarantee that the subtle subclassing
errors cannot occur in principle. The rules do not reduce the power of a language.

62

4.1 BRules

Suppose I was given a task to implement a Bag - an unordered collection of possibly duplicate items (integers in this example).
This time my boss laid out the rules, which we will refer to as BRules:

* no virtual methods or virtual inheritance
* no visible members or methods in any public data structure (that is, in any class declared in an. h file)
o no mutations to public data structures

- a strict form: no assignments or mutations whatsoever
- a less strict form: no function may alter, directly or indirectly, any data it receives as arguments

The rules break the major tenets of OOP: for example, values no longer have a state that is separate from their identity. Prohibi-
tions on virtual methods and on modifications of public objects are severe. It appears that not much of C++ is left. Surprisingly
I still can implement my assignment without losing expressiveness - and perhaps even gaining some. The exercise will also
illustrate that C++ does indeed have a pure functional subset [12], and that you can program in C++ without assignments.

4.2 Interface and implementation of a FBag

class FBag I
public: 0
FBag(void);
FBag(const FBag& another); // Copy-constructor
-FBag(void);

.private:

class Cell; // Opaquie type
const Cell * const head;
FBag(const Cell * const cell); // Private constructor

// Declaration of three friends elided

Indeed, there are no virtual functions, no methods or public members. We also declare functions that take a FBag as (one
of the) arguments and return the count of all elements or a specific element in the bag, print the bag, fold [5] over the bag,
compare two bags for structural equivalence, verify bag's invariants, merge two bags, add or delete an element. The latter three
functions do not modify their arguments; they return a new FBag as their result. It must be stressed that the functions that
operate on a FBag are not FBag's methods; in particular, they are not a part of the class FBag, they are not inherited and they
cannot be overridden. The implementation is also written in a functional style. FBag's elements are held in a linked list of
cells, which are allocated from a pre-defined pool. The pool implements a mark-and-sweep garbage collection, in C++.

Forgoing assignments does not reduce expressiveness as the following snippet from the FBag code shows; the snippet
implements the union of two FBags:

struct union_f {
FBag operator() (const int elem, const FBag seed) const

return put (seed, elem);

1;
FBag operator + (const FBag& bagl, const FBag& bag2)

return fold(bagl,unionfO(,bag2);

Following good practice, I wrote a validation code (file vFBag. cc [7]) that tests all the functions of the FBag package and
verifies common invariants.

4.3 Implementation of a FSet. FSet is a subtype of a FBag

Suppose you are tasked with implementing a Set package. Your boss defined a set as an unordered collection where each
element has a single occurrence. In fact, your boss even said that a set is a bag with no duplicates. You have found my FBag

package and realized that it can be used with few additional changes. The definition of a Set as a Bag (with some constraints)

made the decision to reuse the FBag code even easier.

63

class FSet : public FBag
public:
FSet (void) f)
FSet(const FBag& bag) : FBag(remove-duplicates(bag)) {}

1;

bool memberof(const FSet& set, const int elem)
J return count(set,elem) > 0;)

Surprisingly, this is the whole implementation of a FSet. A set is fully a bag. Because FSet constructors eventually call FBag
constructors and do no alter the latter's result, every post-condition of a FSet constructor implies a post-condition of a FBag
constructor. Since FBag and FSet values are immutable, the post-conditions that hold at their birth remain true through their
lifespan. Because all FSet values are created by an FBag constructor, all FBag operations automatically apply to an FSet value.
This concludes the proof that an FSet is a subtype of a FBag.

The FBag. cc package [7] has a function verify (const FBag&) that checks to make sure its argument is indeed a
bag. The function tests FBag's invariants, for example:

const FBag bagnew = put (put (bag,5),5);

assert(count(bagnew,5) == 2 + count(bag,5) &&
size(bagnew) == 2 + size(bag));

a*sert(count(del(bagnew,5),5) -= 1 + count(bag,5));

Your validation code passes a non-empty set to this function to verify the set is indeed a bag. You can run the validation code
vFSet. cc [7] to see for yourself that the test passes. On the other hand, FSets do behave like Sets:

const FSet a112 = put(put(put(FSet),l),l),2);
assert(count(all2,1) == 1);

const F.Set donce= FSet() + a112;
const FSet dtwice = donce + a112;
assert(dtwice == a112);

where a112 is a non-empty set The validation code vFSet. cc you wrote contains many more tests like the above. The code
shows that a FSet is able to pass all of FBag's tests as well as its own. The implementation of FSets makes it possible to take a
union of a set and a bag; the result is always a bag, which can be made a set if desired. There are corresponding test cases as
well.

To clarify how an FSet may be an FBag at the same time, let us consider one example in more detail:

// An illustration that an FSet is an FBag

int cntb(const FBag v) f
FBag bl = put(v, 5); FBag b2 = put(bl, 5);
FBag b3 = del(b2, 5);
return count(b3, 5); }

const int cbl = cntb(FBago); // cbl has the value of 1
const int cb2 = cntb(FSeto(); // cb2 has the "value of 1

// An illustration that an FSet does act as a set

int cnts(const FSet v) I
FSet sl = put(v, 5); FSet s2 = put(sl, 5);
FSet s3 = del(s2, 5);
return count(s3, 5);

const int cs = cnts(FSet(0); // cs has the value of 0

This example is one of the test cases in vFSet . cc [7]. You can run it and check the results for yourself. Yet it is puzzling:
how come cs has the value different from that of cbl if there is no custom del () function for FSets? The statement FSet
s2 put (s i, 5) ; is the most illuminating. On the right-hand side is an expression: putting an element 5 to a FBagfFSet
that already has this element in it. The result of that expression is a FBag {5,5 }, with two instances of element 5. The statement
then constructs a FSet s2 from that bag. A FSet constructor is invoked. The constructor takes the bag f 5,5}, removes the
duplicate element 5 from it, and "blesses" the resulting FBag to be a FSet as well. Thus s2 will be a FBag and a FSet, with
one instance of element 5. In fact, s 1 and s 2 are identical. A FSet constructor guarantees that a FBag it constructs contains
no duplicates. As objects are immutable, this invariant holds forever.

64

4.4 Discussion

Surprising as it may be, assertions "a Set is a Bag with no duplicates" and "a Set always acts as a Bag" do not contradict each
other, as the following two examples illustrate:

Let {value ... I be an unordered collection of val- Let uf-integer denote a natural number whose prime fac-
ues: a Bag. Let us consider the following values: tors are unique. Let us consider the following values:
vA : 42, vB : {42}, vC : {43}, vD : {4243}, vE : vA : A, vB : 42, vC :43, vD : 1806, vE : 75852
{42 43 42} vA is not an integer; vB, vC, vD, and vE are integers.
vA is not a collection; vB, vC, vD, and vE are bags. vB, vC, and vD are also uf-integers. vE is not a uf-
vB, vC, and vD are also Sets: unordered collections integer as it is a product 2 * 2 * 3 * 3 * 7 * 7 * 43 with
without duplicates. vE is not a Set. Every Set is a Bag. factors 2, 3, and 7 occurring several times. Every uf-
but not every Bag is a Set. integer is an integer but not every integer is a uf-integer.
We introduce operations merge (infix +) and subtract We introduce operations multiply (infix *) and reduce
(infix -). Both operations take two Bags and return a (infix %): a%b = a/gcd(a, b). Both operations take two
Bag. Either of the operands, or both, may also be a Set. integers and return an integer. Either of the operands,
The result, a Bag, may or may not be a Set. For example, or both, may also be a uf-integer. The result, an integer,

may or may not be a uf-integer. For example,
vB + vC =- vD Both of the operands and the result are

also Sets vB * vC • vD Both of the operands and the result are
also uf-integers

VB + vD > vE The argument Bags are also Sets, but

the resulting Bag is not a Set vB * vD =:' vE The argument integers are also uf-

integers, but the resulting integer is not a uf-
vE + vE 42 43 42 42 43 42} None of the Bags integer

here are Sets •

vE * vE . 5753525904 None of the integers here are
vD - vC =' vB The argument Bags are also Sets, so is uf-integers

the result.
vD%vC =• vB The argument integers are also uf-

vE - vC ý> {42 42} One of the arguments is a Set, the integers, sois the result

resulting Bag is not a Set.

vE%vC > 1764 One of the arguments is a uf-integer,
vE - vE = {} The argument Bags are not Sets, but the resulting integer is not a uf-integer

the resulting Bag is.

vE%vE => 1 The argument integers are not uf-
integers, but the resulting integer is.

65

Bags are closed under operation merge but subsets of Integers are closed under operation multiply but sub-
Bags - Sets - are not not closed under merge. On sets of integers - uf-integers - are not closed under

the other hand, both Bags and Sets are closed under multiply. On the other hand, both integers and uf-
subtract. integers are closed under reduce.
We may wish for a merge-like operation that, being ap- We may wish for a multiply-like operation that, being
plied to Sets, always yields a Set. We can introduce a applied to uf-integers, always yields a uf-integer. We can
new operation: merge - if - not - there. We can de- introduce a new operation: lcm, the least common mul-
fine it specifically for Sets. Alternatively, the operation tiple. This operation is well-defined on integers; it would
can be defined on Bags; it would apply to Sets by the apply to uf-integers by the virtue of inclusion polymor-
virtue of inclusion polymorphism as every Set is a Bag. phism as every uf-integer is an integer. uf-integers are
Sets are closed with respect to merge-if-not-there. closed with respect to the lcm operation.
On the other hand, to achieve closure of Sets under On the other hand, to achieve closure of uf-integers un-
merge we can project - coerce - the result of merging of der multiply we can project - coerce - the product of

two Sets back into Sets, a subset of Bags. The FBag/FSet two uf-integers back into uf-integers, a subset of inte-
package took this approach. If we merge two FSets gers. If we multiply two uf-integers and want to get
and want to get an FSet in result we have to specifi- a uf-integer in result we have to specifically say so, by
cally say so, by applying a projection (coercion) oper- applying a projection (coercion) operator: remove -
ator: FSet::FSet (const FBag& bag). That oper- duplicate - factors. That operator creates a new inte-
ator creates a new FBag without duplicates. This fact ger without duplicate factors. This fact makes the result-
makes the latter a FSet. Thus FSet(vB + vD) =:. vD, ing integera uf-integer. Thus uf-integer(vB*vD) =.
an FSet. vD, a uf-integer

It has to be stressed that the two columns of the above table are not merely similar: they are isomorphic. Indeed, the right
column is derived from the left column by the following substitution of words that preserves meaning: Bag -+ integer, Set

Suf-integer, merge + multiply, subtract ++ reduce. The right column sounds more "natural" - so should the left column as

integers and uf-integers are representations for resp. FBags and FSets.
From an extensional point of view [2], a type denotes a set of values. By definition of a FSet, it is a particular kind of FBag.

Therefore, a set of all FSets is a subset of all FBags: FSet is a subtype of FBag. A FBag or a FSet do not have any "embedded"
behavior - just as integers do not have an embedded behavior. Behavior of numbers is defined by operations, mapping from
numbers to numbers. Any function that claims to accept every member of a set of values identified by a type T will also accept
any value in a subset of T. Frequently a value can participate in several sets of operations: a value can have several types at

the same time. For example, a collection { 42 } is both a Bag and a Set. This fact should not be surprising. In C++, a value
typically denoted by a numeral 0 can be considered to have a character type, an integer type, a float type, a complex number

type, or a pointer type, for any declared or yet to be declared pointer type. This lack of behavior is what puts FBag and FSet
apart from CBag and CSet discussed in the previous article. FSet is indeed a subtype of FBag, while CSet is not a subtype of
a CBag as CSet has a different behavior. Incidentally LSP is trivially satisfied for values that do not carry their own behavior.

FBags and FSets are close to so-called predicate classes. Since instances of FSets are immutable, the predicate needs to be
checked only at a value construction time.

4.5 Polymorphic programming with BRules

The FSet/FBag example above showed BRules in the context of subtypes formed by a restriction on a base type. As it turns

out, BRules work equally well with existential (abstract) types. To illustrate this point, the source code accompanying this

article [7] contains three implementations of a collection of polymorphic values. The collection is populated by Rectangles and

Ellipses, which are instances of concrete classes implementing a common abstract base class Shape. A Shape is an existential

type that knows how to draw, move and resize itself. A file Shapes-oop.cc gives the conventional, OOP-like implementation,
with virtual functions and such. A file Shapes-no-oop.cc is another implementation, also in C++. The latter follows BRules,

has no assignments or virtual functions. Any particular Shape value is created by a Shape constructor and is not altered after

that. Shapes-no-oop.cc achieves polymorphic programming with the full separation of interface and implementation: If an

implementation of a concrete Shape is changed, the code that constructs and uses Shapes does not even have to be recompiled!

The file defines two concrete instances of the Shape: a Square and a Rectangle. The absence of mutations and virtual functions

guarantees that any post-condition of a Square or a Rectangle constructor implies the post-condition of a Shape. Both particular

66

shapes can bepassed to a function set-dim(const Shape& shape, const float width, const float
height) ; Depending on the new dimensions, a square can become a rectangle or a rectangle square. You can compile

Shapes-no-oop.cc and run it to see that fact for yourself.
It is instructive to compare Shapes-no-oop.cc with Shapes-h.hs, which implements the same problem in a purely functional,

strongly-typed language Haskell. All three code files in the Shapes directory solve the same problem the same way. Two C++

code files - Shapes-oop.cc and Shapes-no-oop.cc - look rather different. On the other hand, the purely functional Shapes-no-
oop.cc and the Haskell code Shapes-h.hs are uncanny similar - in some places, frighteningly similar. This exercise shows that

BRules do not constrain the power of a language even when abstract data types are involved.

5 Conclusions

It is known, albeit not so well, that following the OOP letter and practice may lead to insidious errors- [10, 1]. Section 2 of

this article showed how subtle the errors can be even in simple cases. In theory, there are rules - LSP - that could prevent the

errors. Alas, the rules are in general undecidable and not practically reinforceable.

In contrast, BRules introduced in this article can be statically checked at compile time. The rules outlaw certain syntactic

constructions (for example, assignments in some contexts, and non-private methods) and keywords (e.g., virtual). It is

quite straightforward to write a lint-like application that scans source code files and reports if they conform to the rules. When

BRules are in effect, subtle subclassing errors like the ones shown in Section 2 become impossible. To be more precise,

with BRules, subclassing implies subtyping. Subelassing by definition is a way of creating (derived) values by extending,

restricting, or otherwise specializing other, parent values. A derived value constructor must invoke a parent value constructor

to produce the parent value. The former constructor often has a chance to alter the parent constructor's result before it is cast

or incorporated into the derived value. If this chance is taken away, the post-condition of a derived value constructor implies

the post-condition of the parent value. Disallowing any further mutations guarantees the behavioral substitutability of derived

values for parent values at all times.
As the examples in this article showed, following BRules does not diminish the power of the language. We can still benefit

from polymorphism, we can still develop practically relevant code. Yet BRules blur the distinction between the identity and the

state, a characteristic of objects. BRules are at odds with the practice if not the very mentality of OO. This begs the question:

Is OOP indeed conducive to software development?
One can argue that OOP - as every powerful technique - requires extreme care: knives are sharp. Likewise, goto is

expressive, and assembler- or microcode-level programming are very efficient. All of them can lead to bugs that are very

difficult, statically impossible, to find. On the other hand, if you program, for example, in Scheme, you never have to deal with

an "invalid opcode" exception. That error becomes simply impossible. Furthermore, "while opinions concerning the benefits

of OOSD [Object-Oriented Software Development] abound in 00 literature, there is little empirical proof of its superiority"

[6].

Acknowledgments

I am grateful to Valdis Berzins for valuable discussions and suggestions on improving the presentation. This work has been

supported in part by the National Research Council Research Associateship Program, Naval Postgraduate School, and the

Army Research Office under contracts 38690-MA and 40473-MA-SP.

References

[1] Cardelli, L. Bad Engineering Properties of Object-Oriented Languages. ACM Comp. Surveys 28(4es), 1996, article 150.

(2] Cardelli, L., Wegner, P. On Understanding Types, Data Abstraction, and Polymorphism. ACM Comp. Surveys, 17(4):

December 1985, pp. 471-522.

[3] Cook, W.R., Hill, W.L., Canning, P.S. Inheritance Is Not Subtyping. In: Carl A. Gunter and John C. Mitchell. Theoretical

Aspects of Object- Oriented Programming. MIT Press. ISBN 0-262-07155-X.

[4] Hatton, L. Does 00 sync with how we think? IEEE Software 15(3), May-June 1998, pp. 46 -54.

67

[5] Hutton, G. A tutorial on the universality and expressiveness of fold. Journal of Functional Programming, 9(4):355-372,
July 1999.

[6] Johnson, R.A. The Ups and Downs of Object-Oriented Systems Development. Comm. ACM 43(10), October 2000, pp.

69-73.

[7] Kiselyov, 0. Complete code that accompanies the article. <http://pobox.com/-oleg/ftp/packages/subclassing-
problem.tar.gz>, August 4, 2000.

[8] Kiselyov, 0. Subtyping, Subclassing, and Trouble with OOP. <http://pobox.com/-oleglftp/Computation/Subtyping/index.htmr
August 4, 2000.

[9] Liskov, B., Wing, J. M. A Behavioral Notion of Subtyping. ACM Trans. Programming Languages and Systems, 16(6),

November 1994, pp. 1811-1841.

[10] Ousterhout, J.K. Scripting: Higher-Level Programming for the 21st Century. IEEE Computer, March 1998, pp. 23-30.

[11] Standard Template Library Programmer's Guide. SGI Inc, 1996-1999. <http://www.sgi.com/tech/stl/>.

[12] Stroustrup, B. The Real Stroustrup Interview. IEEE Computer 31(6), June 1998, pp. 110-114.

68

The Use of Computer Aided Prototyping for Re-engineering Legacy Software'

Luqi, V. Berzins, M. Shing
Department of Computer Science

Naval Postgraduate School
Monterey, CA 93943

Abstract

Re-engineering is typically needed when a system performing a valuable service must change, and its
current implementation can no longer support cost-effective changes. The process of re-engineering old
procedural software to a modem object-oriented architecture introduces certain complexities into the
software analysis process. The direct products of reverse engineering, such as requirements or design
specifications, are likely to have a functionally based structure. As a result, some transformation of the
recovered requirements and design specifications is necessary in order to obtain specifications for the new
structures. It is often very difficult to quickly determine if the transformed specification is a true
representation of the desired requirements. This paper discusses the effective use of computer-aided
prototyping techniques for re-engineering legacy software, and presents results of a case study which
showed that prototyping can be a valuable aid in re-engineering of legacy systems, particularly in cases
where radical changes to system conceptualization and software structure are needed.

Keywords: Software re-engineering, Object-oriented architecture, Computer-aided prototyping, Software
evolution, Combat simulation

1. Introduction

Legacy systems embody substantial institutional knowledge, which includes basic and refined
requirements. design decisions, and invaluable advice and suggestions from domain users that have been
implemented over the years. To effectively use these assets, it is important to employ a systematic strategy
for continued evolution of the current system to meet the ever-changing mission, technology and user
needs. Re-engineering has frequently been proven to be more cost effective than new development and is
also known to better promote continuous software evolution.

However, the institutional knowledge implicit in a legacy system is difficult to recover after many
years of operation. evolution, and personnel change. These software systems were originally written twenty
or more years ago using what many now view archaic and ad-hoc methods. Such legacy systems usually
lack accurate documentation, modular structure, and coherent abstractions that correspond to current or
projected requirements. Past optimizations and design changes have spread design decisions that now must
be changed over large areas of the code, and may have introduced inconsistencies and faults.

Software re-engineering can be defined as the systematic transformation of an existing system into a
new form to realize quality improvements, such as increased or enhanced functionality, better
maintainability, configurability, reusability, performance, or evolvability at a reduced cost, schedule, or risk
to the customer. This process involves recovering existing software artifacts from the system and then
transforming and re-organizing them as a basis for future evolution of the system. Since typical legacy
systems were originally designed and implemented using a functionally based approach, some
transformation of the recovered information is necessary in order to obtain an object-oriented model. It is
often very difficult to obtain a transformed specification that accurately represents the desired
requirements.

Since legacy systems are usually re-engineered only when the existing systems need some kind of
improvement, it is unlikely that the initial version of the reconstructed requirements adequately reflects

'This research was supported in part by the U.S. Army Research Office under contract number 350367-
MA and 40473-MA.

69

current user needs. Prototyping provides a means to identify and validate changes to system requirements
while simultaneously enabling prospective users to get a feel for new aspects of the proposed system. It is
a well-established approach that can be highly effective in increasing software quality [15]. When used in
conjunction with conducting a major re-engineering effort, prototyping can be extremely useful in assisting
in many areas of software modification, validation, risk reduction, and the refinement of new software
architectures and user requirements.

This paper describes a case study that illustrates the effective use of computer-aided prototyping
techniques for re-engineering legacy software [3, 16]. The case study consists of developing an object-
oriented modular architecture for the existing US Army Janus(A) combat simulation system [19], and
validating the architecture via an executable prototype using the Computer Aided Prototyping System
(CAPS), a research tool developed at the Naval Postgraduate School [14]. Janus(A) is a software-based war
game that simulates ground battles between up to six adversaries [9]. It is an interactive, closed, stochastic,
ground combat simulation with color graphics. Janus is "interactive" in that command and control functions
are entered by military analysts who decide what to do in crucial situations during simulated combat. The
current version of Janus operates on a Hewlett Packard workstation and consists of over 350,000 lines of
FORTRAN code. The FORTRAN modules are organized as a flat structure and interconnected with one
another via 129 FORTRAN COMMON blocks, resulting in a software structure that makes modification to
Janus very costly and error-prone. The Software Engineering group at the Naval Postgraduate School was
tasked to extract the existing functionality through reverse engineering and to create a base-line object-
oriented architecture that supports existing and required enhancements to Janus functionality.

The paper presents the re-architecturing process and the resultant object-oriented architecture in
Sections 2. Section 3 describes the use of computer aided prototyping to validate the resultant architecture
and Section 4 draws some conclusions.

2. The Re-Architecturing Process

The re-architecturing process used in the case study consists of 3 major phases: -reverse engineering,
object-oriented design and design validation via prototyping (Figure 1).

Object-oriented Design Validation
Design domain expert via Prototvping.

feerack x

model oriented mntai

source code, dataflow dia object- executableSoriented prototype
design documents, structure •bh pomtdelsuser manual,. O..r- /•eieJ bject-oriented object"-

domai experts object- atreSo~ da rchitectu re o rien ted

generation dataffow diagrams, executable

strupture charts[prototype
object-ori4nted forward to target 00
architectu.e system implementation

Figure 1. The object-oriented re-architecturing process.

70

2.1 Reverse Engineering

The first phase is reverse engineering. Input to this phase includes the legacy source code, design
documents, user manuals, and information from domain experts. Since the goal of the initial re-engineering
effort is to duplicate the. functionality of the existing system within a modular, extensible architecture and
to reuse domain concepts, models and algorithms instead of the existing code, we should avoid including
any requirements/constraints that are consequences of issues related to FORTRAN implementation. The
best places to extract domain concepts from the existing system are the user manuals and the database
management system manuals. These manuals were written using the lingo of the user community and
should be relatively free of implementation details. We found the JANUS Data Base Management Program
Manual [10] particularly useful because it contains detailed information on what kind of data are needed to
model the battlefield and how they are organized (logically) in the database. The top-level structure of the
database is shown in Figure 2.

Janus Database

Symbols Combat Systems Terrain

General Weather Optical/Thermal
Characteristics Characteristics Sensors

Functional CMR vs. Contrast Ce
Characteristics Temperature heal t

Volume/Weight General Barrier Delays On-board Seekers Heat Stress

Detection Characteristics Non-Arty Smoke Range Dependent Chemical
Mine Round Guidance VEES Characteristics Susceptibility

Vulnerability MOPP Effects Grenades Capability Chemical
POL PH / PK Data Smoke Pots Footprints Rounds
Weapons/Ordina Sets Large Area BCIS Heat Stress

nce By Weapon Generators Characteristics
Weapon By Target Minefields Flyer

Selection/ Dispensing Fuselage/Rotor
Firing System Clearing Data Status

Weapon Mine Detection / Rotor Track Radii
Selection/ Duds Rotor Acquisition
Target System Activation / Kill Times

Kill Categories Fuselage
Vulnerability to Probability

Indirect Fire Track
Artillery Systems Fuselage Radar
Indirect Fire X-section

Lethalities Jammer/Radar
Arty Cloud Data Characteristics
Optical & Jammer

Thermal Effectiveness
Contrast Probability of

Smoke Grenade Detection Data
Data vs. Aircraft

Aircraft Systems
Radar Systems

Figure 2. The top-level structure of the Janus Database.

71

Not shown in Figure 2 are the interdependencies between the data, whereby data entered in one
category affect directly or indirectly the data in other categories. For example, the barrier delay attributes of
the Engineer Data depend on specific weather conditions derived from the Weather Data and system
functional characteristics derived from the System Data. The overall network of interdependencies is highly
complex and can only be understood through construction and analysis of a functional model of the
existing Janus software.

Analysis of the legacy implementation of 350,000 lines of source code is a daunting but inescapable
part of this step. We recoiled from the magnitude of this effort and analyzed the Janus User's manual [9],
the Janus Programmer's Manual [7], the Janus Software Design Manual [8], and the Janus Algorithm
Document [18] instead. These documents helped us get started because they contained higher level
information and were much shorter than the code. However, they were also older, and it was a constant
struggle to determine which parts were still accurate, and which were not. In hindsight, avoiding analysis of
the code was a mistake that slipped the schedule of the project by several months. Understanding a design
of this complexity requires time for mental digestion, even with tool support and judicious sampling. We
should have started analysis of the code right away and should have persistently continued this task in
parallel with all other re-engineering activities. Cross-fertilization between all the tasks would have helped
us recognize some dead-end directions earlier and would have enabled us to spend meeting time more
effectively.

Using manual techniques augmented with the text matching tool grep [1], which takes a regular
expression and a list of files and lists the lines of those files that match the pattern, we were able to walk
through the code and get a fairly good idea of what each subroutine was designed to do. We also used the
Software Programmers' Manual [7] to aid in understanding each subroutine's function. In doing so we were
able to group the subroutines by functionality to get a better understanding of the major data flows between
programs and develop functional models from the data flows. We used CAPS to assist in developing the
abstract models [3]. CAPS allowed us to rapidly graph the gathered data and transform it into a more
readable and usable format. Additionally, CAPS enabled us to concurrently develop our diagrams, and
then join them together under the CAPS environment, where they can be used to generate an executable
model.

We also had a series of brief meetings with the client, TRAC-Monterey, asking questions and making
notes on the system's operation and its current functionality. We paid attention to the client's view of the
system to gather their ideas on its strengths, weaknesses, and desired and undesired functionality. These
meetings were indispensable because they gave us information that was not present in the code. Since we
were not familiar with the domain of ground combat simulation, we were using these meetings to determine
the requirements of this domain, often playing the role of "smart ignoramuses" [4]. Domain analysis has
been identified as an effective technique for software re-engineering [17]. Our experience suggests that
competent engineers unfamiliar with the application domain have an essential role in re-engineering as well
as in requirements elicitation because lack of inessential information about the application domain makes it
easier to find new, simpler design structures and architectural concepts to guide the re-engineering effort.

2.2. Object-Oriented Design

Next, we developed object models and architecture of the Janus System using the aforementioned
materials and products, to create the modules and associations amongst them. Information modeling is
needed to support effective re-engineering of complex systems [5]. This was probably the most difficult
and most important phase. It required a great deal of analysis and focus to transform the currently scattered
sets of data and functions into small, coherent and realizable objects, each with its own attributes and
operations. In performing this phase, we used our knowledge of object-oriented analysis and the UML
notations to create the classes and associated attributes and operations [20]. This was a crucial phase
because we had to ensure that the classes we created accurately represented the functions and procedures
currently in the software.

Restructuring software to identify data abstractions is a difficult part of the process. Transformations
for meaning-preserving restructuring can be useful if tool support is available [6]. We used the HP-UNIX
systems at the TRAC-Monterey facility to run the Janus simulation software to aid in verifying and
supplementing the information we obtained from reviewing the source code and documentation. This step
enabled us to better analyze the simulation system, gaining insight into its functionality and further
concentrate on module definition and refinement.

72

The re-engineering team met several times each week for a period of two and a half months to discuss
the object models for the Janus core data elements and the object-oriented architecture for the Janus
System. We presented the findings to the Janus domain experts at least once per week to get feedback on
the models and architectures being constructed. In addition, the re-engineering team also presented the
findings to members of the OneSAF project, the Combat21 project, and the National Simulation Center
project. We found that information from these domain experts was essential for understanding the system,
particularly in cases where the legacy code did not correspond to stakeholder needs. This supports the
hypothesis advanced in [11] that the involvement of domain experts is critical for nontrivial re-engineering
tasks.

Early involvement of the stakeholders in the simulation community also paid off in the long run. Both
the National Simulation Center and Combat2l projects were able to save time and money by reusing our
work and came up with designs that look remarkably like ours (although much larger). Now, OneSAF
developers have been directed to look at the Combat21 class design and reuse as much as possible. So, our
efforts have directly benefited other simulation developers.

Based on the feedback from the domain experts, the re-engineering team revised the object models for
the Janus core elements and developed a 3-tier object-oriented architecture for the Janus System (Figure 3).

Tier 1 JANUS
User Interface User Interface

Tier 2 ,- I
Applications

Systems Cob t JAAWS POSTP i

DBMSimulationL, Elemnts

Doa~sinee} Cma

"Ser ices-"

DB Uhnterace

Tier 3
Storage &
Communication DIS/HLA

Note: Lines showing the dependency of the Combat Systems DBMS, Scenario Management, JANUS
Combat Simulation, JAA WS, POSTP, DB Utilities and Pass Interface subsystems on the Core
Elements packages are omitted from the diagram to keep it clear and simple.

Figure 3. The resultant 3-tier object-oriented architecture.

73

We extracted most of the data and operations from the existing Combat System DBMS, Scenario
Management, Janus Combat Simulation, JAAWS and POST? subsystems and encapsulated them as
simulation objects in the Core Elements package, leaving only application specific control codes that use
the simulation objects in each of these five subsystems. Figures 4 and 5 show the top level class structures
of the object models of the core elements. Details of the associated attributes and operations can be found
in [3, 22] and are omitted from these diagrams due to space limitations.

L~

Envronment
"Forc self

Command Combat
& Control Element

* consists

Aggregate of Unit Brir Minefield Clu

SMap
A

Sybl Ovra

Figure 4. The top-level structure of the Janus Core Elements Object Model.

Enionment

Wind
[ode

Elevaton Terrai Weather c e
Data -~Data

Bul

TerrainVisibility

________ j ~Extinction
BuildingCoefficient

Objet ObectCurve

Figure 5. The Environment Object Class.

74

Central to the Janus Combat Simulation Subsystem is the program RUNJAN, which is the main event
scheduler for the simulation. RUNJAN determines the next scheduled event and executes that event. If the
next scheduled event is a simulation event, RUNJAN will advance the game clock to the scheduled time of
the event and perform that event. The existing Janus Simulation System uses 17 different categories to
characterize the events. RUNJAN then handles these 17 events using tevnth dlrsown i iue6

1) DOPLAN -Interactive Command and Control activities
2) MOVEMENT - Update unit positions
3) DOCLOUD - Create and update smoke and dust clouds
4) STATEWT - Periodic activity to write unit status to disk
5) RELOAD - Plan and execute the direct fire events
6) INTACT - Update the graphics displays
7) CNTRBAT - Detect artillery fire
8) SEARCH - Update target acquisitions, choose weapons against potential targets, and

schedule potential direct fire events
9) DOCHEM - Create chemical clouds and transition units to different chemical states
10) FIR.ING - Evaluate direct fire round impacting and execute indirect fire missions
11) IMPACT - Evaluate and update the results of an indirect round impacting
12) RADAR - Update an air defense radar state and schedule direct fire events for "normal"

radar
13) COPTER - Update helicopter states
14) DOARTY - Schedule indirect fire missions
15) DOHEAT - Update unit's heat status
16) DOCKPT - Activity to record automatic checkpoints
17) ENDJAN - Housekeeping activity to end the simulation

Figure 6. The event handlers for the legacy Janus system.

Like all typical Fortran programs, the existing event scheduler uses global arrays and matrices to
maintain the attributes of the objects in the simulation. Hence, one of the major tasks in designing an
object-oriented architecture for the Janus Combat Simulation Subsystem was to distribute the event
handling functions to individual objects. However, many of the current event handler categories contained
redundant code. They did not seem to be independent of each other and were not consistent with the class
hierarchy we created. For example, the set of event handlers used to simulate the activities of a particular
unit to search for targets, select weapons, prepare for a direct fire engagement, and then execute that direct
fire engagement differs depending upon whether the unit has a normal radar, special radar, or no radar at
all. The existing Janus Simulation System uses the RADAR event handler to carry out the entire procedure
if the unit has normal radar. However, it uses the SEARCH, RADAR, and RELOAD event handlers to
carry out the procedure if the unit has special radar. Finally the system uses the SEARCH and RELOAD
event handlers to conduct the procedure if the unit has no radar at all. We conjecture that this lack of
uniformity is due to a series of software modifications made by different people at different times without
full knowledge of the software structure. The example also illustrates another problem: the legacy event
handlers were not designed to perform independent tasks, and had complicated interactions with each other.

It was necessary to redefine some event categories in order to reduce interdependencies between the
event handlers, to factor simulation behavior into more coherent modules, to eliminate redundant coding of
the same or similar functions and to take advantage of dynamic dispatching of event handling functions in
the object-oriented architecture. Moreover, the Janus system was originally designed to work in isolation,
and has since been adapted to interact with other simulation systems. Interactions between the simulation
engine and the world modeler (the interface to the distributed simulation network) are performed implicitly
within the various event handlers in the existing Janus. Such interactions are made explicit in the new
architecture in order to provide a uniform framework to update World Model objects during the simulation.
The new architecture uses an explicit priority queue of event objects to schedule the simulation events. We
were able to reduce the total number of event handlers needed in the simulation, from 17 to 14, by
eliminating identified redundant code (Figure 7).

75

S Event

Time For Event *Simulation

ExecuteE

Impaetiffect• . Dfiecti• [Contrttt

Execute() |J Execue()

DoPlan Display " t

Execute() Execute()

12 Searchret~ re UpdateHeatStatut
ec E xtEe 0

Execute() | Execute() Execute0

Figure 7. The event class hierarchy.

We tried to make the actions of the new event handlers independent and orthogonal. Independent
means that one event handler does not invoke or depend on the action of another. Orthogonal means that
the purpose of one event handler is completely separate from that of another. Although" our architecture
does not completely meet these goals, it comes much closer to them than the legacy design does. We
believe that these properties of the architecture are desirable because they impose a partitioned structure on
the system that aids future enhancements and modifications. If an enhancement affects only one kind of
event, then it becomes relatively easy to isolate the affected part of the code. If suitable naming conventions
are followed, relatively low-tech tool support will be adequate for helping system maintainers find the parts
of the code that must be understood and modified to make a future change to the system.

Every event has an associated simulation object in the new architecture. This associated object is the target of the

event. Depending on the subclass to which an event object belongs, the "execute" method of the event will invoke the

corresponding event handler of the associated simulation object. (See [3] for details.) The new event hierarchy enables

a very simple realization of the main simulation loop:

initialization;
while not empty(event.queue) loop

e = remove _event(event_queue);
e. execute(;

end loop;
finalization;

Note that this same code is used to handle all of the event handlers, including those for future
extensions that have not yet been designed. Event objects with associated simulation objects are created
and inserted into the event queue by the initialization procedure, the constructors of simulation objects, and
the actions of other event handlers. Depending on the actual event, events are inserted into an event
priority queue based on time and priority.

Our newly designed architecture eliminates the need for the simulation loop to know what kind of
object it is handling. Thus when adding an object type not yet designed, the simulation loop does not
require additional code to invoke the new object's event handlers. By localizing all changes to the newly
added object class, our architecture eliminates the possibility of introducing errors into the existing parts of
the simulation.

76

3. Design Validation Via Prototyping

The process of transforming a design developed using the functional approach into an object-oriented
design introduces risks of unintentionally altering system behavior. In the context of our case study, the
resultant object oriented architecture and the new event dispatching control structure are areas of high risk
since they differ significantly from the functional design of the legacy software. UML provides two ways to
model behavior. One is to capture the behavior of individual objects over time using state machines, and
the other is to capture the interactions of a set of objects in the system using sequence diagrams and
collaboration diagrams. While state machines are precise, they only focus on a single object at a time and is
hard to understand the behavior of the system as a whole. The sequence diagrams and the collaboration
diagrams, on the other hand, lack a formal semantics for precise description of the system behaviors.

One way to reduce the risk is to validate the dynamic behavior of the proposed architecture and to refine
the interfaces of subsystems via prototyping at the early design stage. To be effective, prototypes must be
constructed and modified rapidly, accurately, and cheaply. Computer aid for constructing and modifying
prototypes makes this feasible [15]. The CAPS system is an integrated set of software tools that generate
source programs directly from high-level requirement specifications.

Due to time and resource limitations, we developed a prototype for only a very small simulation run,
which consists of a single object (a tank) moving on a two-dimensional plane, three event subclasses
(move, dojplan, and endsimulation), and one kind of post-processing statistics (fuel consumption).

We developed an executable prototype using CAPS. Figure 8 shows the top-level structure of the
prototype, which has four subsystems: janus, gui, Jaaws and the post.processor. Among these four
subsystems, the janus and the gui subsystems (depicted as double circles) are made up of sub-modules
while the jaaws and the post.processor subsystems (depicted as single circles) are mapped directly to
modules in the target language. After entering the prototype design into CAPS, we used the CAPS
execution support system to generate the code that interconnects and controls these subsystems. In addition,
a simple user interface was developed using CAPS/TAE [21].

-- .--. - PSDLEMMtw -o

9-il

Figure 8. Top-level decomposition of the executable prototype.

The resultant prototype has over 6000 lines of program source code, most of which was automatically
generated, and contains enough features to exercise all parts of the architecture. The code that handles the
motion of a generic simulation object was very simple, but it was designed so that it would work in both
two and three dimensions without modification (currently the initialization and the movement plan of the
tank object never call for any vertical motion). The code was also designed to be polymorphic, just as was
the main event loop. This means the same code will handle the motion of all kinds of simulation objects

77

without any modifications, including new types of simulation objects that are part of currently unknown
fiuture enhancements to Janus and have not yet been designed or implemented.

Our prototyping experiment showed that the proposed object-oriented architecture allows design issues
to be localized and provides easy means for future extensions. We started out with a prototype consisting of
only two event subclasses (move and end simulation) and were able to add a third event subclass (do jplan)
to the prototype without modifying the event control loop of the Janus combat simulator.

We also demonstrated the use of inheritance and polymorphism to efficiently extend/specialize the
behavior of combat units. For example, the move _update -object method of a tank subclass uses the
general-purpose method from its superclass to compute its distance traveled and a specialized algorithm to
compute its fuel consumption. We simply include one statement to invoke the moveý update objetmto
of its superclass followed by three lines of code to update its fuel consumption. Moreover, other combat
unit subclasses can be added easily to the prototype without the need to modify the event
scheduling/dispatching code and usually without modifying existing event handlers.

The issues raised by the design of the prototype also resulted in the following refinements to the
proposed architecture:
I1. Extend the interface of the Execute_-Event operation to return the time at which the next event is to be

scheduled for the same simulation object, and introduce a special time value "NEVER" to indicate that
no next event is needed. The proposed change turns the communication between the event dispatcher
and the simulation objects from a peer-to-peer communication into a client-server communication.
This change eliminates dependencies of event handlers on event queue details and allows the event
dispatcher to use a single statement to schedule all recurring events for all event types.

2. Instead of recording the history of a simulation run in sets of data files, model the simulation history as
a sequence of events. The proposed change provides a simple and uniform way to handle history
records for all events, and allows the same modular architecture to be used for real-time simulations as
well as post-simulation analysis. It also eliminates the need for the write-status event, reducing the
number of events still fulrther. This approach provides the greatest possible resolution for the event
histories, which implies that any quantity that could have been calculated during the simulation can
also be calculated by a post-simulation analysis of the event history, without any loss of accuracy. The
only constraint imposed by this design refinement is that the simulation objects in the events must be
copied before being included in the simulation history, to protect them from further changes of state as
the simulation proceeds. This constraint is easy to meet in a full-scale implementation because the
process of writing the contents of an event object to a history file will implicitly make the required
copy.

3. It is beneficial to allow null events appear in the event queue. A null event is one that does not affect
the state of the simulation, such as a move event for an object that is currently stationary. The
prototype version adopted the position that such events should not be put in the event queue, since this
corresponds to current scheduling policies in Janus, and appears at first glance to improve efficiency.
Our experience with the development of the prototype suggests that this decision complicates the logic
and may not in fact improve efficiency. The current design uses the process create-new-events to scan
all simulation objects once per simulation cycle to determine if any dormant objects have become
active, and if so, schedules events to handle their new activity. The alternative is to have the
constructor of each kind of simulation object schedule all of its initial events, and to have each event
handler specify the time of next instance of the same event even if there is nothing for it to do
currently. Handlers might still set the time of its next event to NEVER in the case of a catastrophic kill;
however this is reasonable only if it is impossible to repair or restore the operation of the units that
have suffered a catastrophic kill. The reasons why this design change may improve efficiency in
addition to simplifying the code are that:
(a) the check for whether a dormant object has become active is done less often - once per activity of

that object, rather than once per simulation cycle,
(b) executing a null event is very fast - a few instructions at most, so the "unnecessary" null events

will not have much impact on execution time, and
(c) the computation to find and test all simulation objects periodically would be eliminated.
We recommend allowing null events in the event queue, and explicitly scheduling every kind of event
for every object unless it is known that there cannot be any non-empty events of that type in any
possible future state of the object. For example, under the proposed scheduling policy, immobile or
irrecoverably damaged objects would not need to schedule future move events, but those that are

78

currently at their planned positions would need to do so, because a change of plan could cause them to
move again in the future, even though they are not currently moving. The resulting architecture enables
a very simple realization of the main simulation.

4. Conclusion

Our conclusion is that substantial and useful computer aid for re-engineering is possible at the current
state of the art. Human analysts and domain experts must also play an important part of the process because
much of the information needed to do a good job is not present in the software artifacts to be re-engineered.
Success depends on cooperation between skilled people and appropriate software tools.

The missing information needed for re-engineering is related to deficiencies of the current system at all
levels, from requirements through design and implementation. Thorough and accurate knowledge of these
deficiencies is crucial for success. The clients never want the re-engineered system to have the exactly
same behavior as the legacy system - if they were satisfied, there would be little motivation to spend time,
effort, and resources on a re-engineering project. Even if a system is being re-engineered for the ostensible
goal of porting to different hardware, the desired behavior at the interface to the hardware and systems
software will be different.

In practical situations, the requirements for the re-engineered system are different from those for the
legacy system. Key parts of the requirements for the new system are often missing or incorrect in the
legacy documents. Some of that information is present only in the minds of the clients, often fragmented
and scattered across members of many different organizations. Communication is a large part of the
process, and that communication cannot be automated away, although it can be enhanced by appropriate
use of prototyping. We found that the most important communications were those regarding newly
recognized requirements issues, and that such recognition were often triggered by discussions between
people with different areas of expertise.

Uncertainties about the true. requirements play a central role in both re-engineering and the
development of new systems. We therefore hypothesized that prototyping could play a valuable role in re-
engineering efforts. Our experience in the case study reported here support that hypothesis.

We also found that prototyping can contribute substantially to the process of inventing, correcting, and
refining the conceptual structures on which the architecture of the new system will be based. Most legacy
systems are too complicated for individuals to understand.

This maze of details hides potential opportunities for simplifying and regularizing the conceptual
structure of the system to be re-engineered, and makes it difficult to recognize deficiencies in design and
architectural structure. The amplification process implicit in constructing skeletal prototypes helps expose
such opportunities.

We found that there are fundamental conceptual errors embodied in the legacy structures and
algorithms. Some of those errors were exposed when structural asymmetries and irregularities are
discovered in the process of extracting a model of the legacy software. Others were discovered only with
the help of the oversimplified models that are common in the early stages of prototyping a proposed new
architecture. Constructing a small and simple instance of the proposed architecture raises many of the main
design issues, and the simplicity of the model makes it much easier to consider and evaluate alternative
designs to find improved structures.

To be effective, prototypes must be constructed and modified rapidly, accurately, and cheaply. The
UML interaction diagrams lack the preciseness to support automatic code generation for the executable
prototype. This weakness can be remedied by the use of the prototype language PSDL [12, 13] and the
CAPS prototyping environment, which provide effective means to model the system's dynamic behavior in
a form that can be easily validated by user via prototype demonstration.

References
[1] A. Aho, "Pattern Matching in Strings", in Formal Language Theory: Perspectives and Open

Problems, R. Book (editor), Academic Press, NY, 1980, pp. 325-347.
[2] V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, Re-engineering the Janus(A) Combat

Simulation System, Technical Report NPS-CS-99-004, Computer Science Department, Naval
Postgraduate School, Monterey, CA, January 1999.

79

[3] V. Berzins, M. Shing, Luqi, M. Saluto and J. Williams, "Architectural Re-engineering of Janus using
Object Modeling and Rapid Prototyping," Design Automation for Embedded Systems, 5(3/4), August
2000, pp.25 1-263. A preliminary version of the paper also appeared in Proceedings of the loth
IEEE International Workshop in Rapid Systems Prototyping, Clearwater Beach, Florida, 16-18 June
1999, pp. 216-221.

[4] D. Berry, Formal Methods: The Very Idea, "Some Thoughts About Why They Work When They
Work," Proceedings of the 1998 ARO/ONRINSFIDARPA Monterey Workshop on Engineering
Automation for Computer Based Systems, 1998, pp. 9-18.

[5] 0. Bray and M. Hess, "Reengineering a Configuration-Management System," IEEE Software, Vol.
12, No. 1, Jan. 1995, pp. 55-63.

[6] V. Cabaniss, B. Nguyen and J. Moregenthaler, "Tool Support for Planning the Restructuring of Data
Abstractions in Large Systems," IEEE TSE, Vol. 24, No. 7, July 1998, pp. 534-558.

[7] Janus 3.X/UNIX Software Programmer's Manual, Prepared for: Headquarters TRADOC Analysis
Center, Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications Group, Leavenworth,
Kansas, Nov. 1993.

[8] Janus 3.X/UNIX Software Design Manual, Prepared for: Headquarters TRADOC Analysis Center,
Ft. Leavenworth, Kansas. Prepared by: Titan, Inc. Applications Group, Leavenworth, Kansas, Nov.
1993.

[9] Janus Version 6 User's Manual, Simulation, Training & Instrumentation Command, Orlando,
Florida, 1995.

[10] Janus Version 6 Data Base Management Program Manual, Simulation, Training & Instrumentation
Command, Orlando, Florida, 1995.

[11] S. Jarzabek and P.K. Tan, "Design of a Generic Reverse Engineering Assistant Tool," Proceedings
of the Second Working Conference on Reverse Engineering (WCRE'95), 1995, pp. 61-70.

[12] B. Kraemer, Luqi, and V. Berzins, "Compositional Semantics of a Real-Time Prototyping
Language," IEEE Transactions on Software Engineering, Vol. 19, No. 5, May 1993, pp. 453-477.

[13] Luqi, V. Berzins, and R. Yeh, "A Prototyping Language for Real-Time Software," IEEE
Transactions on Software Engineering, Vol. 14, No.10, October 1988, pp. 1409-1423.

[14] Luqi and M. Ketabchi, "A Computer-Aided Prototyping System," IEEE Software, Vol. 5, No. 2,
1988, pp. 66-72.

[15] Luqi, "System Engineering and Computer-Aided Prototyping," Journal of Systems Integration -
Special Issue on Computer Aided Prototyping, Vol. 6, No. 1, 1996, pp. 15-17.

[16] Luqi, V. Berzins, M. Shing, M. Saluto, J. Williams, J. Guo and B. Shultes, "The Story of Re-
engineering of 350,000 Lines of FORTRAN Code," Proceedings of the 1998
ARO/ONRINSFIDARPA Monterey Workshop on Engineering Automation for Computer Based
Systems, Carmel, CA, 23-26 October 1998, pp. 151-160.

[17] M. Moore and S. Rugaber, "Domain Analysis for Transformational Reuse," Proceedings of 4th
Workshop on Reverse Engineering, IEEE Computer Society, 1997, pp. 156-163.

[18] J. Pimper and L. Dobbs, Janus Algorithm Document, Version 4.0, Lawrence Livermore National
Laboratory, California, 1988.

[19] L. Rieger and G. Pearman, "Re-engineering Legacy Simulations for HLA-Compliance,"
Proceedings of the Interservice/Industry Training, Simulation and Education Conference (IITSEC),
Orlando, Florida, December 1999.

[20] J. Rumbaugh, I. Jacobson and G. Booch, The Unified Modeling Language Reference Manual,
Addison-Wesley, Reading, MA, 1999.

[21] TAE Plus C Programmer's Manual (Version 5.1). Prepared for: NASA Goddard Space Flight
Center, Greenbelt, Maryland. Prepared by: Century Computing, Inc., Laural, Maryland, April 1991.

[22] J. Williams and M. Saluto, Re-engineering and Prototyping Legacy Software Systems-Janus Version
6.X, master's thesis, Naval Postgraduate School, Dept. of Computer Science, Monterey, CA, March
1999.

80

DCAPS - Architecture for Distributed Computer Aided Prototyping System'

Luqi, V. Berzins, J. Ge, M. Shing, M. Auguston2 , B. Bryant3 , B. Kin
Department of Computer Science

Naval Postgraduate School
833 Dyer Road

Monterey, CA 93943 USA
{ luqi,berzins,gejun,mantak,auguston,bryant,bkkin } @ cs.nps.navy.rmil

Abstract forms that work together via multiple communication links
and protocols [3][4]. The use of COTS components shifts

This paper describes the architecture for the distributed problems from software development to software integra-
CAPS sy'stem (DCAPS). The system accomplishes distrib- tion and interoperability. Builders of COTS-based systems
uted software prototyping with legacy module reuse. often have no control over the network on which compo-

Prototype System Description Language (PSDL), the nents communicate. They have to work with available in-

prototyping language, is used to describe real-time soft- frastructure and need tools and methods to assist them in
ware in the DCAPS system. PSDL specifies not only real- making correct design decisions to integate COTS co1-
time constraints, but also the connection and interaction ponents into a distributed network based system.

among software components. Automatic generation of Furthermore, as software development has evolved into
software wrappers and glue is applied for the normaliza- national and even global cooperative efforts with the ex-
tion of data transfer between legacy sstems. Inmplenmenta- plosion of the Internet and World Wide Web, the need for
lian of the DCAPS communication layer is based on the an effective distributed development environment to sup-
JavaSpacesrm lilrary. DCAPS supports collaborative port such geographically dispersed enterprises became
prototype design in a distributed environment, critical. The support is needed both for the distributed

design and demonstration of real time system prototypes.

1 Introduction and objectives This paper addresses distributed rapid prototyping sup-
port for heterogeneous and network-based systems. It pres-

.The value of computer-aided prototyping in software ents the underlying architecture to support the specification

"development is clearly recognized. It is a very effective and automatic generation of codes to integate and execute
* way to gain understanding of the requirements, reduce the COTS components across a heterogeneous network.
. complexity of the problem and provide an early validation

of the system design. Bernstein estimated that for every 2 Motivation and related work
dollar invested in prototyping, one could expect a $1.40
return within the life cycle of the system development [1].
To be effective, prototypes must be constructed and modi- 2.1 Prototyping
fled rapidly, accurately, and cheaply. Computer aid for
rapidly and inexpensively constructing and modifying The demand for large, high quality systems has in-

. prototypes makes it feasible [2]. creased to the point where a quantum change in software
"; With advances in wide area networks, there is a need for technology is needed [5]. Requirements and specification

errors are a major cause of faults in complex systems.
methods and tools to produce distributed, heterogeneous, Rapid prototyping is one of the most promising solutions to
and network-based systems that are reliable, flexible and t
cost effective. Many of these systems are COTS based Z

types from a very high-level language is feasible and gen-(cormmercial off-the-shelf, .including "legacy systems"), Zrto fseeo rgamn tutrsi urnl

consisting of a set of subsystems, running on different plat-

This research was supported in part by the U.. S. Army Research Office. under contract/grant numbers 35037-MA and

40473-MA.

2 On leave from Computer Science Department, New Mexico State University, USA

On leave from Department of Computer and Information Sciences, University of Alabama at Birmingham, USA

81
1074-6005101 S 10.00 © 2001 IEEE

common in the computer world. One major advantage of CAPS prototypes a software system in the following
the automatic generation of codes is that it frees the devel- steps. First, the user selects software components from the
opers from the implementation details by executing speci- reusable component libraries to construct the prototype in a
fications via reusable components [5]. graphic editor. This prototype is saved as a plain text file

An integrated software development environment, in PSDL format. The user may also use the graphical user
named Computer Aided Prototyping System (CAPS) [61 interface (GUI) generator provided by CAPS to create a

has been developed at the Naval Postgraduate School for new GUI for demonstrating and observing the behavior of
rapid prototyping of hard real-time embedded software the prototype. Then, the translator and scheduler work on
systems, such as missile guidance systems, space shuttle this PSDL file to generate the wrapper/glue code [9] and
avionics systems, software controllers for a variety of con- dynamic/static schedules [10] respectively. Both the
sumer appliances and military Command, Control, Com- source code of reusable components and automatically
munication and Intelligence (C31I) systems [7]. Rapidly generated source code will be compiled together to get the
constructed prototypes are used to help both the developers executable. It will be run in the DCAPS environment in
and their customers visualize the proposed system and as- order to check both execution correctness and the real-time
sess its properties in an iterative process. The heart of requirements. As described above, CAPS consists of vari-
CAPS is the Prototyping System Description Language ous prototyping tools to provide all these functionalities.

CAP ise they Protoeypin System Tuietepooy gpoes(PSDL). It serves as an executable prototyping language at hey play different roles during the prototyping process.
the software architecture level and has special features for For example, the scheduler just needs the timing con-
real-time system design. Building on the success of the straints and execution order for every component, while the
Computer Aided Prototyping System (CAPS), the DCAPS translator does not care about information other than the
model also uses PSDL for specification of distributed sys- network configurations and data type definitions.
tems and automates the generation of interface codes with In order to automate the integration of COTS in a dis-
the objective of making the network transparent from the tributed environment, we need to enhance the modeling
developer's point of view. capability of PSDL to describe the special operating re-

quirements of the COTS components and the quality-of-
2.2 PSDL and CAPS service characteristics for the target networks. The en-

hancement is done via the open syntax provided by the.
PSDL, a prototype description language [8], to describe vertex property. and edge property of the PSDL graph. Fig-

the real-time software has an open structure so that the user ure I shows an example where the monitor_ environment
As able to define new properties for software components, and the temperature.control operators are realized by
such as newly added network configurations. PSDL allows COTS components that must run on a Windows NTTm op-
the specification of both input and output guards to provide crating system and the valve..control operator is realized
conditional execution of an operator and conditional output by a COTS component that must run on a SunOST oper-
of data. Guards can include conditions on timers that ating system. Furthermore, the valve..adjustment data must
measure duration of system states, and can allow operators be transmitted via network links with high security and low'
to execute only when fresh data has been written to an in- latency while the temperature data can be transmitted via.'-
put stream. Real-time applications, design flexibility, and network links with low security and higher latency. When
code reuse motivate the timing and non-procedural control new properties are introduced in the PSDL descriptions of
constraints of PSDL. Each time critical operator has a a prototype, for instance to prototype networked software,
maximum execution time constraint, representing the some tools must be updated while the rest stay the same.
maximum time the operator may need to complete execu- Therefore, the architecture of CAPS must consider the
tion after it is fired, given access to all required resources. evolution of its own components.
In addition, each periodic operator has a period and a
deadline. The period is the interval between triggering CAPS tools were originally developed in the SunOS
times for the operator and the deadline is the maximum operating system for components located on one processor.
duration from the triggering of the operator to the comple- To avoid the complexity of migrating the whole system to

tion of its operation. Each sporadic operator has a maxi- a new operating system, CAPS now has to work in a dis
mum response time and a minimum calling period. The tributed and heterogeneous environment
minimum calling period is the smallest interval allowed
between two successive triggering of a sporadic operator. 2.3 Transaction handling in distributed systems
The maximum response time is the maximum duration al- Building a networked application is entirely different
lowed from the triggering of the sporadic operator to the from building a stand-alone systeri in the sense that many

completion of its operation. To model distributed systems, additional issues need to be addressed for smooth func
PSDL also provides the option of specifying the maximum edelaytioning of a networked application. Networked systems ai

82

MET= 100 ms
PERIOD = 500 ms the one provided by SUN in the JiniTM [14] model. All

monitor.. PROPERTY os= NT transactions used by the clients and servers are created and
environmn~ft

overseen by the manager.

temperature celsius2.
LATENCY= 1000 2.4 JavaSpaces model
S. roPErTYsecurity = low JavaSpaces [14] is a mechanism based upon the Tuple

• fuel: gallons METr=200 tts Space model [15] to support coordination among a loosely
WRT= 2000 ms coupled collection of distributed software systems. Tuples
MCP = 500 ms

f temperature. TRIGGERED BYALL temperature are typed data structures. Collections of tuples exist in a
control OUTPUT valve-adjustment shared repository called a tuple space. Communication

IF lvalve._adjusrmentl > 0.01
PROPERTY -- NT takes place in a tuple space shared among several proc-

"esses; each process can access the tuple space by inserting,
valve~adjustment real reading or withdrawing tuples.

SrERTcY r= 500 ms When taking or reading objects, processes use a simple• (PROPERTY security =high

value-matching lookup to find the objects that matter to
SMET= 200 .ms' them. If a matching object is not found immediately, then a

valve MRT= 2000 ms process can wait until one arrives. Unlike conventional
t RGR MCP,= 500 ms object stores, processes do not modify objects in the spaceTRIGGERED BY ALL valve..adjustment

PROPERTY os = SunOS or invoke their methods directly. To modify an object, a
PROPERTY mem >= 128 NIB process must explicitly remove it, update it, and reinsert it

into the space. During the period of updating, other proc-
Figure 1. PSDL specification with additional properties esses requesting for the object will wait until the process

writes the object back to the space. This protocol for modi-
also susceptible to partial failures of computation, which fication ensures synchronization, as there can be no way
.can leave the system in an inconsistent state. for more than one process to modify an object at the same

Proper transaction handling is essential to control and time. However, it is possible for many processes to read
maintain concurrency and consistency within the system. the same object at the same time.
Yang [11] has examined the limitation of hard-wiring The main benefits of JavaSpaces from the point of view
concurrency control into either the client or the server. He of DCAPS are:
found that the scalability and flexibility of these configura-
tions is greatly limited. Hence. he presented a middleware * Spaces are persistent: Spaces provide reliable storage

* approach: an external transaction server, which carries out for objects. Once stored in the space, an object will

the concurrency control policies in the process of obtaining remain there until a process explicitly removes it. This

the data. Advantages of this approach are: 1).The transac- allows a system to perform communication with other
tion server can be easily tailored to apply the desired systems which may not have begun running yet.
concurrency control policies of specific client applications. 0 Spaces are transactionally secure: The JavaSpaces
2) The approach does not require any changes to the serv- technology provides a transaction model that ensures
ers or clients in order to support the standard transaction that an operation on a space is atomic. Transactions
model. 3) Coordination among the clients that share data are supported for single operations on a single space,
but have different concurrency control policies is possible as well as multiple operations over one or more
if all of the clients use the same transaction server. PSDL spaces.
already has a very simple and effective transaction model * Spaces allow exchange of executable content: While
[12][13] . Transactions are determined by the simple rule in the space, objects are just passive data, however,
that the effect of firing a composite operator must always when we read or take an object from a space, a localbeeualntoeeuigiasasimple atomic action. we era rtk nojc rmasae oa
be equivalent to executing it as a scopy of the object is created. Like any other local ob-
Optimizations may introduce concurrency and interleave ject, we can modify its public fields as well as invoke
substeps only if that can be done consistently with this rule. its methods.

The DCAPS implementation architecture uses the same
approach, by using an external transaction manager such as

83

"* Spaces transcend network topologies: Not only do DISTRIBUTED COMPUTER AIDED
senders and receivers of messages not need to know PROTOTYPING SYSTEM
each others identities, they also may be located any-
where on the network as long as both have access to CAPS Ovevih Sect.

the common space. P.SDL Ovenrvini,

Edir

"* Spaces support for time-outs for data. Editor Overvie" .-e ' t

These properties greatly facilitate the communication)roronm

layer to be inserted by DCAPS between the various legacy + .raslat.
systems being integrated, and ensure the interoperability of Com•i•e

these systems. Contart sSchedule

Ho._e RBack

3 Architecture

3.1 Design time slice of the architecture Figure 3. The DCAPS Web Interface

source configuration under which that system is to be run,
The design phase in the DCAPS environment empha- will be input to the compiling tools residing on the server

sizes the retrieval of PSDL specifications, legacy code side (Figure 4). In actuality, these compilation tools may be
(when needed) and distributed resource configuration de- downloaded to the client side, e.g. using a Java applet, to
scriptions both from -the server's Project repository and achieve the compilation.
client side directories (Figure 2). DCAPS allow users to
model, develop, execute and evaluate prototypes of the Client Side Server Side

proposed systems from different hardware platforms with
different operating environments via a web interface shown tgcy
in Figure 3, where the hyperlinks on the left side of the
web-page allow visitors to access information about CAPS,
PSDL and request accounts, while the hyperlinks on the specification and

right are password protected and can only be accessed by distributed resourceconfiguration ,.-"'

authorized users. description

Client Side Server Side I

PSDL editor Istatic target code trasDlatr"•

I IGlue/wrapper cod

Prject repository:!
PSDL software base Instantiated DCAPS

- project files JavaSpaces library GUISpciictin - individual ' ojtsgenerator ,.!?. •

Saccounts object Z::

Figure 2. Design Time Slice of Architecture Target programrri:i:i•i..
The JavaM-based user GUI ensures that the basic de- -- cod"e_,_

sign time tools, such as the graphical PSDL editor, static Fgr .CmieTm lc fAcietr -i::-.
checker, user help and on-line documentation, and demos Fgr 4CmlTeicoAh

are available for clients to run on heterogeneous platforms.
An integral part of the Project repository is also individualaccount information and log- files from previous Several subsystems that generate source code at various YI:•...°

levels are involved in PSDL compilation. The PSDL -
prototyping sessions. translator itself produces PSDL target code and wrapper ,

and glue code to connect the PSDL target code to other
3.2 Compile time slice of the architecture distributed components. In this process the objects from

In the compilation phase of DCAPS, the client-side leg- the JavaSpaces library are instantiated and integrated with

acy system and PSDL specification of that system, its inter- the target code. The DCAPS GUI generator produces run-.

face to the external environment, and the distributed re- time GUI code which serves as the user interface wrapper

84

for the legacy system. Finally, the static scheduler auto- Client Side Server Side

matically generates the schedule code component that en-
sures the target program observes the real-time constraints User GUI wrapper

specified by the PSDL specification. Process Execution
I

"

Trace
* The existing PSDL data streams are encapsulated as ge- LtTrace

neric AdaTm objects that provide the basic read and write wrapper dule

* operations. The actual behavior of the read and write op- n
Global

erations varies depending on whether the data is a FIFO , navanpates
0 Javapacesschedules

buffer or Sampled buffer. Such encapsulation makes the Library Objects.Instantied localnd

extension of PSDL data streams to JavaSpaces objects ,I. JavaSpaces schedules

transparent. The only modification is to invoke the Communicationn - Library for

JavaSpaces service registration operation during the. in- Oc Instantiate

stantiation and initialization of the data objects, and to use % JavaSpaces

the read, write and take JavaSpaces library operations to [tLbrary Object
implement the read and write PSDL operations. Wrapper |Local Libraries

3.3 Run time slice of the architecture Process

" The current principle of the DCAPS run time architec-

utre is to delegate the inter-process communication layer
and scheduling mechanism to the server side (Figure 5).
The prototyping session starts at the client side by notify- Figure 5. Run Time Slice of Architecture
ing the server and other clients (by remote login).

The worst-case point-to-point network delay bounds initial
The process instances running on one or several client differences between local clocks. Hardware clocks with

sites use wrappers and instantiated JavaSpaces library ob- stable rates are available and relative drift rates are typi-
jects to send and receive messages. The JavaSpaces library cally small. The product of the worst-case clock drift rate
via the underlying tuple space provides the environment for and the length of the schedule bounds clock drift error. The
,message flow between processes. schedule must account for worst-case clock differences and

The server side also maintains the global logical clock worst-case clock drift error in addition to worst-case net-
used by the run time scheduler to synchronize process work latency between two nodes when scheduling two op-
communication and to activate process instances according erations with a data flow precedence constraint [12][13].
to PSDL semantics.

Another set of lava-based wrappers for user GUI's gen- 3.3.2 Accurate Simulations on Imperfect Networks
crated by DCAPS at compile time provides platform-eratendeby proess at. compecutime provides, plaom-g Absolute guarantees of real-time constraints are clearly
independent process 1/0. Execution traces, i.e. message imosbewndsgerhaeocntlovrhee-transaction logs, could be created and stored at the server impossible when designers have no control over the net-swork. In order to simulate a network with guaranteed real

time service on an imperfect network, we need the notion
of simulated time and supporting mechanisms in the form

3.3.1 Synchronization and Logical Clock of:

The formal real-time model of PSDL is based on the * Time stamps attached to all communicated data
notion of a global clock [12][13]. When operators allo- values,
cated to different hardware nodes must communicate
within strict deadlines, we must account for network delays * A time-out period attached to every data communi-

cation to work around unbounded delays in the
and imperfect clock synchronization. Our architecture uses
local clocks and time reference signals that are broadcast network,
once per iteration of a cyclic schedule to approximate a * The mechanism for logical clock synchronization,
global clock. Each processor has one such schedule, and all * Message buffering for sampled streams based on
schedules cover the same length of time. The time refer- time-stain order.
ence signals determine the local time for the beginning of
the schedule at each node. Periodic re-calibration of these All this results in an accurate approximation of the behav-

time references prevents divergence of the local clocks ior of a PSDL prototype on a target network with real time
over long periods of time. service guarantees in a prototyping environment whose

networks have no such guarantees.

85

4 Current state and future work References

A Java-based prototype editor has been implemented [1] L. Bernstein, "Forward: Importance of Software

for the DCAPS. It has been tested in Windows NT, Linux, Prototyping", Journal of Systems Integration - Special Issue

and SolarisTM environments. Different native interfaces on Computer Aided Prorotyping, 6(1), pp. 9-14, 1996.

have been implemented as the language wrappers for the [2] Luqi and W. Royce, "Status report: computer-aided

Java Spaces-based communication library so that it can be prototyping", IEEE Software, 9(6), Nov. 1992, pp. 77 -81.

called from applications implemented in different lan- [3] M. Boasson, IEEE Software Special Issue on Architecture,
guages. Java Native InterfaceTM (JNI) makes the library 12(6), Nov 1995.
available for C programs, while ActiveXTM wrappers en- [4] S. Mellor and R. Johnson, IEEE Software - Special Issue on
able Visual BasicTM (VB) programs to call the functions Object Methods, Patterns, and Architectures, 14(1), Jan/Feb
directly. The JNI wrapper makes it possible to create an 1997.
interface between Ada and C so that programs in Ada can
interface betwervienA Cs o t[5] Luqi, V. Berzins, "Rapidly prototyping real-time systems",
use JavaSpaces services. IEEE Software, September 1988, pp. 25-36.

The use of centralized control imposes extra communi- [6] Luqi and M. Ketabchi, "A computer-aided prototyping sys-
cation overhead and creates potential bottleneck on the ten", IEEE Software , 5(2), March 1988, pp. 66 -72.

target heterogeneous system. We plan to conduct empirical
studies to analyze the performance of such an approach in [7] Luqi, "Computer-aided prototyping for a command-and-
support of real-time systems, and investigate ways to relax conro ste ui CS an

centralized control by allowing bounded clock drifts
among local clocks while still• adhering to the constraints [8] Luqi, V. Berzins, R. Yeh, "A prototyping language for real
imposed by the PSDL timing model. time software", IEEE Transactions on Software Engineer-

ing, 14(10), October 1988, pp. 1409-1423.
The current DCAPS scheduler generates a static as- [9] H. Cheng, Automated generation of wrappers for

signment of the operators of the distributed prototype to
the target network. In order to improve the global perform- School, Monterey, Calif., March 2000.

ance and efficiency of the distributed system, the runtime
environment may require a dynamic scheduler to perform [10] Luqi, M. Shing, "Real-time scheduling for softwareprototyping", Journal of Systems Integration - Special Issue
runtime load balance and operator reassignment. The mo- p rototyping" Sysem Ie i - S

on Computer Aided Protoiyping, 6(l), pp. 41-7-2.
bility provided by the JavaSpaces-based library will sup-
port such requirement. " [1I] J. Yang, and G. Kaiser, "JPemLite: Extensible Transaction

"Services for the WWW", IEEE Transactions on Knowledge
The DCAPS system provides a useful tool for distrib- and Data Engineering, 11 (4), July/August 1999, pp. 639-

uted real-time software rapid prototyping in a distributed 657.
environment. The wrapper/galue method used in DCAPScan be generalized to system construction and interconnec- [12] Luqi, "Real-Time Constraints in a Rapid Prototyping Lan-S~~guage", Computer Languages, 18, 1993, pp. 77-103. :"

tion of legacy systems. By automatically generating the g ou 8 pcodes for the "wrappers and glue" and providing a power- [13] B. Kramer, Luqi and V. Berzins, "Compositional semantics
ful environment, DCAPS allows the designers to concen- of a real-time prototyping language", IEEE Transaction of

trate on the interoperability problems and issues, freeing Software Engineering, 19(5), May 1993, pp. 453-477.
them from implementation details. It also enables easy [14] E. Freeman, S. Hupfer and K. Arnold, JavaSpaces: Princi-

reconfiguration of software and network properties to ex- ples, Patterns, and Practice, Addison-Wesley, 1999.

plore design alternatives. DCAPS is an on-going research [15] D. Gelernter, "Generative Communication in Linda," ACM

project for the development and refinement of its Trans. Programming Languages and Systems, 7(1), Jan.

prototyping tools. 1985, pp. 80-112.

86

INTELLIGENT SOFTWARE DECOYS

James Bret Michael and Richard Riehie
Naval Postgraduate School, Department of Computer Science

833 Dyer Road, Monterey, CA 93943-SI118
bmichael@cs.nps.navy.mil, rdriehle@nps.navy.mil

ABSTRACT
We present an architectural framework for protecting objects from malicious attacks by mobile agents in which the agent
tries of circumvent the object-interface to change the behavior of the targeted object. If the agent's interaction with the ob-
ject-interface contract interface fails preconditions, postconditions, or a class invariant, then the targeted object attempts to
both deceive the agent into concluding that the attack has been successful and keep the attacker occupied. The architecture is
founded on an abstraction we refer to as an intelligent software decoy: it adapts its behavior to changes in its operating envi-
ronment. The software decoy is autarkic in that it does not rely on the internal state of other objects to protect itself. The
software decoy disguises and defends itself by modifying its object-interface contract at run-time through the use of both
polymorphism and late binding. The nature and extent of any change to an object is governed by its class invariant.

KEYWORDS
Agent, broadcast architecture, deception, decoy, distributed system, message architecture, object, security, software,
survivability

1. INTRODUCTION

Suppose that there exists a distributed system of thousands of landmines in which each landmine is field-programmable
via software hooks. A soldier could broadcast messages to all or a subset of the mines instructing them to either activate or
deactivate the electromechanical triggering mechanism, change the compression-pressure threshold value for detonation, or
substitute the existing software algorithm for controlling the trigger mechanism with a new algorithm. In addition, the soldier
could query the status of the landinines to access the readiness of the minefield to protect against an attack by enemy forces.

On arriving at the software interface of a landmine, a mobile agent would interact with the landnjine to reach the goal
given to the agent by the owner of the agent. However, if the mobile agent is poorly designed, its flaws may lead the agent to
try to interact with the mine-based software in a way that was not intended by the creator of the agent. This could include
accidentally tripping a software-based self-destruction mechanism within the landmine. If the software agent is malicious, it
may try to sabotage the mine. For example, it might try to alter the mine software so enemy forces can safely cross the mine-
field. If the software is written in Java, the agent might try to change the behavior of one of the objects or classes. In early
versions of the Java Virtual Machine (JVM), such an attack was quite easy to effect due to the fact that a rogue process could
insert its own class definition using the same name as the original predefined Java class [12].

The minefield example illustrates the potential for mobile agents to modify the software-controlled behavior of a distrib-
uted system or a subset of the components of the system in a mischievous way. One approach to protecting a system such as
the distributed system of landmines is to both encrypt the messages and to authenticate the mobile agents to the objects.
However, McHugh and Michael have identified some of the challenges in managing cryptographic keys in such systems, es-
pecially when group membership (e.g., subgroups of the mines) changes frequently [13]. Moreover, an authenticated mobile
agent may have been compromised, or its creator, who at one time was trustworthy, may no longer be so. In summary, en-
cryption and authentication do not address the issue of discovering and responding to the goals or actions of mobile agents.

Another approach to protecting the distributed system from mobile agents would be to require that the agents only interact
with the landmines via a well-defined object-interface contract. This is the well-known design-by-contract model described in
the work of Meyer [15]. However, a malicious agent would likely try to bypass the contract to modify the behavior of the
targeted object. Thus, precondition assertions for controlling access to the object may only be effective at thwarting the ac-
tions of non-malicious agents, that is, agents whose flawed design induces unintended interactions with objects through the
interfaces to these objects. This is known in the epigranmmatic world as "Locks are intended to keep honest people honest."

In this paper we present an architectural framework for use in protecting objects from malicious attacks by mobile agents,
in particular, attacks in which the attacker tries of circumvent the object-interface in order to change the behavior of the tar-
geted object. The architecture is founded on an abstraction we call an intelligent software decoy. The software decoy is
intelligent in the sense that it adapts its behavior to changes in its operating environment. The software decoy is autarkic in
that it does not rely on the internal state of other objects to protect itself. The software decoy disguises and defends itself by

87

altering its contract at mun-time through the use of polymorphism. The nature and extent of any change to an object is gov-
erned by its class invariant. The invariant, and in some cases, a postcondition, will ensure that no mischief has occurred
during the execution of the object's mun-time code.

2. SOFTWARE DECOYS

A decoy is intended to deceive something or someone into believing it is the object it advertises itself to be. Therefore,
the creator of a decoy must actualize the decoy as much as possible to complete the deception. The more the external ob-
server is deceived, the better the decoy is performing its role. Daniel and Herbig define deception as the "deliberate
misrepresentation of reality done to gain a competitive advantage" [4].

When a duck hunter deploys decoys on a lake, those decoys are painted to resemble the species of duck being pursued. If
the decoys can be made to move about, the deception may be more effective: the real ducks will think that the decoys are
also real since the decoys appear to be paddling through the water. In this case, the effectiveness of the decoys need only be
good enough so as to draw the real ducks within shotgun range.

A software decoy has some of the same properties as the physical decoy. It certainly has the same objective: deception.
If the decoy is intelligent, it can continually deceive the target of the deception into action that accomplishes several goals. In
the case of an attack or the deployment of countermeasures executed by an attacker, one of the goals of the owner of the de-
coy is to protect the actual entity being shielded from attack and anti-decoy countermeasures.

Another goal, in the context of an attack, is to ensure that every attack reveals the presence of an attacker. In this way, the
decoy can use its own intelligence to deploy more decoys and to alert the actual entities that an attack has been attempted. As
more decoys are deployed, their creator can also alter their own characteristics so that the decoys appear to be different from
the one originally attacked.

In an ideal situation, the decoys will be able to adopt a chameleon-like character that allows them to appear to be different
as other decoys and attackers change form. In the context of software decoys, this model of decoys raises the concept of
intelligent agents to a new level of sophistication. It requires that both the interfaces and the objects be polymorphic, that is,
the contract for each object must be polymorphic. Consequently, any message to a decoy can be encrypted, but the decoy will
have~ its own knowledge of the encryption scheme based'on the parameters of the polymorphic message. Successful execu-
tion of the decoy will require satisfying the precondition, the invariant, and the postcondition. Since the postcondition is
internal to the object, it is not easily compromised even with dynamic patching schemes.

3. PRIOR RESEARCH

The general notion of a software decoy is not new. For example, the term "decoy" has been used in the context of rea-
soning with incomplete information in multiagent systems. According to Zlotkin and Rosenshein [25],

One obvious way in which uncertainty can be exploited can be in misrepresenting an agent's true goal. In a
task oriented [sic] domain, such misrepresentation might involve hiding tasks, or creating false tasks
(phantoms, or decoys), all with the intent of improving one's negotiating position. The process of reaching
an agreement generally depends on agents declaring their individual task sets, and then negotiating over the
global set of declared tasks. By declaring one's task set falsely, one can in principle (under certain circum-
stances), change the negotiation outcome to one's benefit.

This earlier research indirectly addresses the Byzantine Generals problem [11] in that they try to construct incentive-com-
patible negotiation mechanisms such that "no agent designer [sic] will have any reason to do anything but make his agent
declare his true goal in a negotiation." In contrast to the work of Zlotkin and Rosenshein, in which interaction between
agents was investigated, we explore the use of software decoys in the context of the interaction between agents and software
components.

ITuring introduced the "imitation game" [23], now known as the Turing test, for testing the intelligent behavior of soft-
ware. The participants in the test consist of a computer, a human, and an interrogator. The goal of the interrogator, who is a
human subject, is to distinguish between the computer and the human 'with whom he or she carries on a conversation. The
identity of the respondent, that is the computer or human, is hidden from the interrogator. The measure of intelligent behav-
ior of the software system is the percentage of time that the interrogator cannot correctly distinguish between the response of
the computer, which simulates a human response, and that of the person typing responses. Thus, the game is one of decep-
tion: programming a machine to deceive, via impersonation, a human into believing that the machine he or she is conversing
with is also a human being.

In contrast to the approach taken by Turing to test for intelligent behavior reasoning by a computer, Goldberg [7] attempts
to address questions of intelligent'reasoning by computers, arguing that a computer cannot deceive itself. His argument relies
on a "commonsense view of the mind," that is, that a computer cannot possess beliefs or self-knowledge, as can a human.

88

However, Goldberg does not address the issue of whether one computer can deceive another. In our own work, we argue that
it is possible for a software component to deceive an agent by creating a deceptionf based on either direct inspection of the
internal state of the other agent, or alternatively, assessing the intentions of the agent by monitoring the agent's behavior. In
addition, we subscribe to the theory posed by Hirstein that self-deception can be due to conflicts other than between beliefs,
namely, a "conflict between two representations, a 'conceptual one' and an 'analog' one" [8]. Our conception of a decoy is
one in which a decoy, agent, or other type of software can itself possess conflicting representations.

In [5], examples are presented of the use of deception in military campaigns dating back thousands of years. In [3],
Cohen presents a classification of defenses for information systems, in which one of those defenses is deception:

Defence 98: deceptions. Typical deceptions include concealment, camouflage, false and planted informia-
tion, reuses [sic], displays, demonstrations, feints, lies, and insight (Dunnigan, 1995). Examples include
facades used to misdirect attackers as to the content of a system, false claims that a facility or system is
watched by law enforcement authorities, and Trojan horses planted in software that is downloaded from a
site. Deceptions are one of the most interesting areas of information protection, but little has been done on
the specifics of the complexity of carrying out deceptions. Some work has been done on detecting
imperfect deceptions.

Cohen has explored this class of defense for use in protecting computing resources in a distributed system. He refers to
such protection techniques as "defensive network deceptions" [I], and has attempted to develop formal models of defensive
deceptions and the types of attackers for which these deceptions are to be used. In one of these models, the attacker is
characterized as an agent "who believes that information systems are vulnerable and [the attacker] has finite resources to
attack" the systems. In this model, the attacker relies on intelligence reports about the information systems in order to
identify and choose a specific vulnerability of the system to target, and that the attacker will not attack unless it believes that
"there exists an exploitable weakness of value." In the other model Cohen presents, the attacker and defender are both
assumed to believe that all systems of positive non-zero economic worth have at least one exploitable weakness.

Cohen introduces six goals for defensive network deceptions [1]; they are to make the following:

I1. Likelihood of any individual intelligence probe encountering a real vulnerability low.
2. Likelihood of any individual intelligence probe encountering a deception high.
3. Time to defeat a deception infinite.
4. Time to detect a vulnerability once a deception is encountered from a given attack location infinite.
5. Time to detect an intelligence probe against a deception very small.
6. Time to react to an intelligence probe against a deception very small.

These goals, to some extent, have been incorporated into the Deception Toolkit (DTK) [2]. Prior to the emergence of the
DTK,, the most widely used type of tool for defensive network deception was the honey pot, which is still used today. A
honey pot is a decoy that is placed in a highly visible location within an information system so as to draw the attention of
attackers. According to Cohen, honey pots have not proved to be very effective at influencing the decision making of an at-
tacker because each honey pot "consumes such a small portion of the overall intelligence space and has little effect on
altering the characteristics of the typical intelligence probe" [1].

The DTK distributes deceptions throughout the network to be protected, with the deceptions utilizing unused network-
system resources. An example of a deception that can be created using the DTK is to populate the network with!?P addresses
masquerading as addresses of valuable system resources: the fake I? addresses and dummy resources associated with them
serve as decoys. The DTK has evolved from a simple extension to honey-pot systems to incorporate techniques'to both
increase the size of the search space (i.e., for a real versus decoy service) and the sparseness of actual vulnerabilities. Cohen
has also used the DTK as an experimental apparatus for testing strategies to improve the quality of deceptions. The strategies
he lists in [1] include the following: injecting synthetic network traffic into the network, reconfiguring the deception network
over time,, injecting synthetic information about the organization and its constituents into the system, and using real systems
rather than software sandboxes as decoys.

Moose [16], like Cohen, has tried to model deception from a systems view. He explicitly models the evolution of pairs of
stimuli and responses between the defenders of a system who are using deception techniques and that of the attackers. The
modeling paradigm is intended to capture deception and counter-deception scenarios, the plans of actors (i.e., defender and
attacker), uncertainty associated with intelligence information, feedback loops, and the risk models of actors.

The Denial and deception Analyst Workbench (DAWS) [10] is an interactive system used by intelligence analysts to
maintain denials and deceptions, in other words, cover stories. DAWS consists of a set of integrated tools, managed by an
expert system. DAWS pre-processes raw intelligence data so that it can be automatically forwarded to analysts based on
pattern matches on their information-needs profiles. The other tools help the user manage denials and deceptions that are
perpetuated for a target audience. DAWS and DTK are similar in that they both are designed with the human in the loop.

89

The development of counter-deception techniques has been a very active area of research in the information theory com-
munity. For example, in the 1 970s, Gilbert et al. [6] explored the use of codes to detect evidence of deception on the part of
an opponent that tries to intercept or change messages between a transmitter and its intended receiver. The opponent tries to
capture message streams on a channel without letting the original transmitter or the intended receiver know that the message
has been captured. The typical attack scenario involves a rogue process, such as a Trojan horse, that redirects message traffic
on trusted channels or via a covert channel (i.e., a channel that bypasses the information system's reference monitor). The
opponent may raise the deception to an even higher level of sophistication by implementing a man-in-the-middle attack. In
such an attack, the opponent captures a message, m, modifies the captured message, yielding m', and makes m / looks as
thouggh it has not been tampered with. The opponent impersonates the original transmitter while forwarding m 'to the receiver
that the original transmitter had intended m to reach.

Recent advances in information theory, such as those reported in [9, 14, 20] have produced authentication-coding
schemes for detecting deception in authentication channels with single or multiple usage (i.e., without changing the key after
each message is sent). The authentication codes are used to derive the lower bounds on the probability that an opponent will
successfully deceive the receiver via substitution or impersonation.

Tognazzini [22] has investigated constructive uses of deception for designing human-computer interfaces. He compares
the art of illusion, as practiced by magicians, to the illusions created by the designers of graphical user interfaces, that is, the
virtual reality that the user of the interface perceives. Some of the techniques that he explores are misdirection, attention to
detail, and the manipulation of time. He concludes his essay with a discourse on the concept of a threshold of believability
(on the part of the user of a graphical user interface) and the ethics of impersonation, in the form of anthropomorphism (i.e.,
software agents impersonating humans).

4. INTELLIGENT SOFTWARE-DECOY ARCHITECTURE

In this section we characterize the components and connections of our software-decoy architecture.

Components, Named Interfaces, and Reuse

We treat~intellieent software decoys as objects within components, following the usage by Szyperski of the terms "com-
ponent," "object," and -interface" to describe component-based software architectures [21].- The connectors between
components are named interfaces. There is no requirement for the name that a decoy advertises to other components to be
unique. The interface of a decoy consists of an ordered list of arguments. The arguments can be either primitive types or ob-
ject classes. In the latter case, the argument supports polymorphic types. Each class is composed of its own arguments and
behavior. The arguments are used to access the methods of objects within a component.

A software decoy can replicate itself, using the same name for the cloned components. Mobile agents cannot distinguish
a component from its decoy. In order for components to be able to distinguish amongst themselves, one could implement the
architecture using a single address space operating system such as Sombrero [19], or possibly a distributed operating system
that supports object-request brokers, such as StratOSphere [24].

Dynamic Component Interface

An intelligent software decoy can change the form of its contract interface at run-time. The modification of the form of a
decoy's interface is supported by polymorphism; that is, the component inherits its interface from its parent class. The modi-
fication of the interface can involve changing one or more of the following: the number of arguments, the order of
arguments, or the data type or class of arguments. The number of possible combinations of input arguments, in theory, is
infinite, as is the number of class derivations. The permutation of arguments to introduce randomness into a system is not
new. For example, Rothstein introduced the idea of using permuted arguments as a form of decoy in his work on message
opaciflers [18].

In addition to permuting the ordering of the arguments and changing the quantity and type of arguments, randomness is
injected into the interface by padding the input-argument list with one or more dummy arguments. While the total number of
arguments is held constant, the position of the dummy arguments in the argument list can be changed, as can the data types of
any of the arguments. The number of permutations, denoted by P, of the input-argument list for this strategy is

Pm,n= km.-(m +n)! (Eq. 1)

where m is the total number of dummy arguments, n is the total number of legitimate arguments, and k is the number of
unique data types (both primitiye and class-based) from which to assign a type to a dummy argument.

90

A mobile agent computes an argument list for an object it wants to access and passes that list along with authentication
information to the interface of the target object. After the agent is authenticated to the object, the object verifies that the ar-
gument list that the agent passed to it is correct.

Definition (Correct agent-generated argument list): An agent-generated argument list is correct if and only if the number,
ordering, and type of these arguments exactly match those of the target object's interface.

If the agent-generated argument list is correct, then the client where the object resides checks the access control list to
determine whether the agent holds the permissions to access the method (e.g., execute the method locally or export the
method for remote execution).

Protection of Object Behavior from Unauthorized Modification

Preconditions, postconditions, and class invariants govern the behavior of an intelligent software decoy. If the pre- or
postconditions fail during an interaction with a mobile agent, then the decoy either aborts the requested call or both raises an
exception and unwinds to the caller. An alternative policy to raising exceptions is to retry the operation with a new set of
data. The class invariants protect decoys from having their behavior modified in an unauthorized way. An agent cannot
modifyt the behavior beyond the extent to which such modification is permitted by the parent class of the decoy.

Randomness can also be introduced into the design of the decoys by allowing the preconditions on the invocation of
methods of a component to vary.

Pm,n,,q =km .(m+n+q)! (Eq. 2)

where q is the number of unique preconditions in the sample space. We do not allow for the class invariant to be permuted.

Polymorphic Types

As mentioned earlier, component interaction is based on a contract that is controlled by assertions (i.e., preconditions) as
well as by a polymorphic type. The polymorphic type permits a late-binding of the message interaction. The preconditions
require certain characteristics to be satisfied for each interaction ter be carried forward. Preconditions are not a strong enough
mechanism for all circumstances. They are particularly ineffective at guarding against mischievous action.

Polymorphic types are a little more interesting. We declare that certain parameters can have different characteristics
within some accepted range of types. The types themselves may carry a set of encryption features as well as other encoding
that makes them less likely to be compromised by an attacker.

An important difference in a software decoy is when the encryption error is rejected. Ordinarily, if a password fails on a
routine, that routine rejects the attempt at entry. The software decoy instead, lets mischief proceed unnoticed by the attacker.
Instead of repelling the attack, the software decoy engages it without revealing that its action is benign. This could be called
the Venus flytrap model. This pleasant looking little flower lets its prey enter, enjoy the fragrance of its pollen, and encloses
it for a tasty meal.

If the precondition is satisfied and the mischief is in the form of a patch, both the software decoy and the non-decoy are
defended by the invariant and the postcondition. Once again, if the invariant fails within the decoy, the attacker is never noti-
fied. If the postcondition fails, we apply a kind of software flu fitsu within that decoy. This means we allow the attacker to
believe it has been successful in overpowering the defenses while tumbling it harmlessly through the code instead of letting it
forward any messages to other agents. Our approach to deception is a cross between ambiguity-increasing (A-type) decep-
tion [4], in which the decoy seeks to ensure that the "level of ambiguity always remains high enough to protect the secret of
the actual operation," and misleading (M-type) deception [4], which entails reducing ambiguity by "building up the attrac-
tiveness" of a decoy, thus causing the attacker to concentrate its resources on the decoy.

Exchange of Roles

A legitimate object can exchange its role with one of its decoys. It initiates an exchange of roles when it detects an ano-
malous behavior of a mobile agent.

Definition (Anomalous behavior of a mobile agent): An anomalous behavior of a mobile agent is one in which a request
for access to a legitimate object by a mobile agent fails the test of authentication, test for correctness of the agent-generated
argument list, or the check for the necessary access permissions.

Policy 1 (Exchange of roles): If a legitimate object detects anomalous behavior of a mobile agent, then the legitimate object
exchanges roles with one of its decoys.

91

The purpose of Policy 1 is to free up the legitimate object from processing legitimate requests so that it can take on the role of
a software decoy, in particular, gather information about the mobile agent.

Observation-Inference Component

The software decoy tries to determine the nature of a mobile agent's interaction with it in order to respond appropriately
to the mobile agent. The software decoy records the messages passed to its interface by the mobile agent. The software de-
coy has a pattern recognition capability for distinguishing between whether an anomalous behavior exhibited by a mobile
agent is due to an error in the mobile code or an attack by that agent.

Response Component

The role of design-by-contract [15] is critical. There can be a failure of the precondition, in which case, we must have a
response policy for precondition violations. In general, failure of a precondition means the agent will not do any of its work.
The policy question remains for each agent: what action is appropriate when the precondition fails? A bad precondition may
originate from a benign source or may represent an attempted attack. At the very least, we keep track of such failures. Fail-
ure of the invariant or postcondition intuitively represents a higher probability of an attack on the agent. In particular, the
failure of the postcondition should trigger the self-modifying behavior of the decoy.

The policy for responding to a mobile agent is embedded in the software decoy. The person or organization that owns the
software decoy might specify the following policies:

Policy 2 (Containment by decoy): If a mobile agent, due to a software error in its code, passes an incorrect argument list to
the to the software decoy or the real object, then the decoy should activate its containment countermeasure, rather than ac-
tively attack the mobile agent.

Policy 3 (Counterattack by decoy): If the mobile agent intended to attack the object, then the object should not under re-
spond by treating the interaction as being due to a software error.

In this scenario, an active attack on a non-malicious mobile agent could trigger a counterattack by the mobile agent or the
mobile agent's coordinating agent. Rather, in this scenario, the policy embedded in the object might be to apply containment
countermeasures that involve an active attack on the mobile agent, the applet that generated the agent, or even the user who
invoked the applet.

5. LANGUAGE SUPPORT FOR INTELLIGENT SOFTWARE DECOYS

We believe that Eiffel is a natural choice of programming languages for implementing intelligent software decoys, at least
for the purposes of initial experimentation with such decoys. In contrast to Ada, for example, Eiffel provides explicit support
for design-by-contract in the form of built-in language constructs for specifying preconditions and postcondtions in routines.
Returning to the example of software-controlled landmines, the software routines for enabling the triggering mechanism of a
landmine could be protected by wrapping the routines with preconditions and postconditions as follows:

class LANDMINE
-- A landmine with identification number and a status (armed or disarmed)
feature

definitions
arn_mine(parameter list) is
-- routine for arming the trigger mechanism of a mine
require

preconditions
do

operations
ensure

postconditions
invariant

invariants
end

Moreover, Eiffel provides for inheritance of the assertions from ancestor classes by a descendant class, which is need to
preserve the integrity of the software contracts for the software decoys that are generated by a software component.
However, not all Eiffel systems support the full range of the levels of run-time assertion monitoring.

92

6. CONCLUSION

Our approach to deception is different from that proposed in [1] in that we introduce the use of software contracts and
polymorphism to create and manage software decoys. The software contracts are used to specify security policy and mediate
the interaction under policy between the intelligent software decoy and attacker: the postconditions and invariants place fail-
safe constraints on the behavior of the decoy, thus permitting the decoy to allow the attacking mobile agent to interact with
the decoy while containing the agent. The class invariant makes it impossible for the attacker to modify the behavior of a
decoy, while polymorphism permits the decoy to change its appearance, in the form of preconditions, to the attacker.
Moreover, the intelligent software decoys populate the entire system space; that is, every software component can switch
roles at run-time-from non-decoy to a decoy, and vice versa-and replicate itself. In addition, the decoys can operate in an
autonomous manner, due to their autarkic nature, or they can communicate their intentions to other software components to
coordinate their actions to either deceive attackers or trace the source and nature of the attack.

7. FUTURE WORK

We are in the process of refining the mathematical formulation of the software-decoy architecture, in addition to typing
decoys, such as distinguishing between "volunteer" and "drafted" decoys. We have also begun investigating the technical
feasibility of realizing the various concepts we have introduced: we are implementing intelligent software decoys using
Eiffiel and intend to perform analyses of the behavior of decoys under various scenarios.

In addition, we are exploring ways to apply intelligent software decoys in distributed databases in which lightweight ob-
jects perform queries on multidatabases. In particular, we are developing an example of how intelligent software decoys can
be used in the DBMS-Aglet Framework proposed by Papastavrou, Samaras, and Pitoura [17].

ACKNOWLEDGEMENTS

We thank Bruce Allen, Joel Pawloski, Christopher Slattery, and Michael Wathen for critiquing our formulation of the
software-decoy architecture. Their comments and words of encouragement spurred us on in the preparation of this manu-
script. We also thank the anonymous reviewers for their comments.

This work was supported by a grant from the Naval Postgraduate School Institutionally Funded Research Program. The
views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the U.S. Government. The U.S. Government is authorized
to reproduce and distribute reprints for Government purposes notwithstanding any copyright annotations thereon.

REFERENCES

1. Cohen, F. A mathematical model of simple defensive network deceptions. Computers & Security 19, 6 (2000), 520-528.
2. Cohen, F. A note on the role of deception in information protection. Computers & Security 17, 6 (1998), 483-506.
3. Cohen, F. Information system defences: a preliminary classification scheme. Computers & Security 16, 2 (1997), 94-114.
4. Daniel, D. C. and Herbig, K. L. Propositions on military deception. In Kaniel, D. C. and Herbig, K. L., eds., Strategic

Military Deception. Pergamon Press, New York, 1982, pp. 3-30.
5. Dunnigan, J. F. and Nofi, A. A. Victory andDeceit. William Morrow & Co., New York, fifth ed., 1995.
6. Gilbert, E. N., MacWilliams, F. J., and Sloane, N. J. A. Codes which detect deceptions. Bell Syst. Tech. Jour. 53, 3

(1974), 405-424.
7. Goldberg, S. C. The very idea of computer self-knowledge and self-deception. Minds and Machines 7, 4 (Nov. 1997),

515-529.
8. Hirstein, W. Self-deception and confabulation. Jour. Philosophy of Science 67, 3 (Suppl. S, Sept. 2000), S418-S429.
9. Johansson, T. Lower bounds on the probability of deception in authentication with arbitration. IEEE Trans. Inf Theory

40, 5 (Sept. 1994), 1573-1585.
10. Kisiel, K. W., Rosenberg, B. F., and Townsend, R. E. DAWS: Denial and deception analyst workstation. In Proc. In-

ternat. Conf on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, Vol. II, IEEE
(Tullahoma, Tenn., June 1989), 640-644.

11. Lamport, L, Shostak, R, and Pease, M. Byzantine Generals problem. ACM Trans. Programming Languages and Sys-
tems 4, 3 (1982), 382-401.

12. McGraw, G. and Felton, E. Java Security: Hostile Applets, Holes, and Antidotes. John Wiley & Sons, New York, 1996.
13. McHugh, J. and Michael, J. B. Secure group management in large distributed systems: What is a group and what does it

do? In Proc.New Security Paradigms Workshop, ACM (Caledon Hills, Ont., Sept. 1999), 80-85.
14. Meijer, A. R. Deception in authentication channels with multiple usage. In Proc. IEEE South African Symp. on Com-

munications and Signal Processing, IEEE (Matieland, South Africa, Oct. 1994); 60-67.

93

15. Meyer, B. Object-Oriented Software Construction. Prentice-Hall, Upper Saddle River, N.J., 1998.
16. Moose, P. H. A systems view of deception. In Kaniel, D. C. and Herbig, K. L., eds., Strategic Military Deception. Per-

gamon Press, New York, 1982, pp. 136-150.
17. Papastavrou, S., Samaras, G., and Pitoura, E. Mobile agents for world wide web distributed database access. IEEE

Trans. Knowledge and Data Engin. 12, 5 (Sept.-Oct. 2000), 802-820.
18. Rothstein, J. Parallel processable cryptographic methods with unbounded practical security. In Proc. Internat. Symp. on

Inf. Theory, IEEE (Ithaca, N.Y., Oct. 1977), 43.
19. Skousen, A. and Miller, D. The Sombrero single address space operating system prototype: A testbed for evaluating

distributed persistent system concepts and implementation. In Proc. Internat. Conf on Parallel and Distributed Proc-
essing Techniques and Applications, CSREA Press, (Las Vegas, Nevada, June 2000), 557-563.

20. Smeets, B. Bounds on the probability of deception in multiple authentication. IEEE Trans. Inf Theory 40, 5 (Sept.
1994), 1586-1591.

21. Szyperski, C. Component Software: Beyond Object-Oriented Programming. Addison-Wesley, 1999.
22. Tognazzini, B. Principles, techniques, and ethics of stage magic and their application to human interface design. In

Proc. Conf on Human Factors in Computing Systems, ACM (Amsterdam, Neth., Apr. 1993), 355-362.
23. Turing, A. M. Computing machinery and intelligence. Mind 59, 236 (Oct. 1950), 433-460.
24. Wu, D., Agrawal, D., and El Abbadi, A. StratOSphere: mobile processing of distributed objects in Java. In Proc.

Fourth Annual Internat. Conf on Mobile Computing and Networking, ACM (Dallas, Tex., Oct. 1998), 121-132.
25. Zlotkin, G. and Rosenschein, J. S. Mechanism design for automated negotiation, and its application to task oriented do-

mains. Jour. ArtificialIntelligence 86, 2 (Oct. 1996), 195-244.

94

Enhancements & Extensions of
Formal Models for Risk Assessment in Software Projects

Michael R. Murrah Luqi Craig S. Johnson
mrrnun'ah(-d!nps.navv.nmi LuqCi(rcvcs.nps.navv.mil csiohnson~idcnmdw.dcma.niiI

Naval Postgraduate School
2, University Circle

Monterey, CA 93943 USA

Abstract 1. Introduction
The current state of the art techniques of risk

Over the past 40 years limited progress has assessment rely on checklists and human
been made to help practitioners estimate the risk expertise. This constitutes a weak approach
and the required effort necessary to deliver because different people could arrive at different
software solutions. Recent developments conclusions from the same scenario. The
improve this outlook, one in particular, the difficulty of estimating the duration of projects
research conducted by Juan Carlos Nogueira [1]. applying evolutionary software processes adds
Dr. Nogueira developed a formal model for risk intricacy to the risk assessment problem.
assessment that can be used to estimate a
software project's risk when examined against a 2. Dr. Nogueira's Risk Assessment Model
desired development time-line. This model is Dr. Nogueira's research introduces a formal
based on easily obtainable software metrics. method to assess the risk and the duration of
These metncs are quantifiable early in the software projects automatically, based on
software development process. measurements that can be obtained early in the

Dr. Nogueira developed his model based on development process. The method has been
data collected from a series of experiments designed according to the characteristics of
conducted on the Vite'Project simulation P]. evolutionary software processes, and utilizes
This unique approach provides a starting point quantifiable indicators such as efficiency,
towards a proven formal model for risk requirement volatility and complexity. The
assessment, one that can be applied early in the formal model, based on these three indicators
software development lifecycle. Approaching estimates the duration and risk of evolutionary
software risk estimation has never previously software processes. The approach introduces
been successfully accomplished in this manner. benefits in two fields:

The proposed research will provide
definitive evidence that software risk assessment a) Automation of risk assessment.
can be conducted early in software development b) Early estimation methods for
using quantifiable metrics and simple techniques. evolutionary software processes.
Enhancements will be made to Dr. Nogueira's
model, based on calibrations against post- Dr. Nogueira developed four software risk
mortem projects. These enhancements will e r. modeira shoped promise in
result from many threads of research, extension etimatin modthat g pro mise in
of input metrics, increased number of simulation determining a software projects' associated riskruns, simulation scenarios based on actual early in the software development life cycle.

andntheintrodution faengariosba o n g aThe models accomplish early estimation by
projects, and the introduction of a "gearing utilizing a set of quantifiable metrics that can be
factor". Ultimately, the research will yield an collected from the beginning of project
improved risk assessment model, one that has development. In actuality, the requirements
been validated against thousands of post-mortem volatility metric is an estimation during the first
projects, having applicability to any software development cycle and during subsequent
development activity, development cycles is quantifiable. After each

iteration of software development, the required

95

input metrics can be applied to the model in system and is a function of the fan-in and fan-out
order to reduce the error in the model's results. data streams related to the operator [1]. For the

The minimum required input metrics, to purposes of the completed research and our

support risk assessment, required for Dr. notion of future research, the FGC metric is too

Nogueira's estimation model are the following: specialized; our efforts concentrate on just the
representation of the LGC.

a. Efficiency (EF) - The efficiency of the FGr = f-nn+fan-out

organization can be measured observing the fit
between people and their roles [1]. Dr. Software developers can utilize Dr.
Nogueira's research indicates that the efficiency Nogueira's four models to assess either the
of an organization can be directly calculated by development time required to develop a project
computing the ratio of direct time (working and or determine the associated probability of
correcting errors) divided by the idle time (time completing a software project given the project's
spent without work to do). duration.

b. Requirements Volatility (RV) - 3. Previous Validation Research
Requirements volatility expresses how difficult In this section of the paper we present the
the requirement elicitation process is. The results of validation attempts when using Dr.
requirements volatility is obtained by the Nogueira's estimation models. The first is a
following formula [1]. result of the research conducted by Dr. Nogueira

Requirements Volatility = Birth Rate Percentage + in his initial research and supplies data from

Death Rate Percentage simulations and comparisons to one project. The
second validation endeavor is the results of

Birth Rate Percentage (BR%) = the research conducted on two additional projects
percentage of new requirements incorporated in [5].
each cycle of the software evolution process as
calculated by: 3.1 Dr. Nogueira's Validation

BR% = (New Requirements I Total Requirements) * In conducting his research, Dr. Nogueira
derived some initial conclusions with the

100 percent models. The simulations showed that the three

Death Rate Percentage (DR%) = the risk factors observed during the causal analysis
percentage of requirements that are dropped by (efficiency, requirements volatility, and
the customer in each cycle of the evolution complexity) have compound effects over the
process as calculated by: three parameters of the Weibull distribution [1].

DR% = (Deleted Requirements / Total Dr. Nogueira illustrates the results of the
Requirements) * 100 percent models against 16 simulated projects. Each

model derives an increasing degree of accuracy
c. Complexity (CX) - Complexity has a based on: metrics from the three risk factors,

direct impact on quality because the likelihood Weibull cumulative density function, and the
that a component fails is directly related to its derivation of the time.
complexity [1]. The complexity metrics can be
determined in tm forms: large granular Models 1-2. Model 1 can be used when the
complexity and fine granular complexity. These requirements volatility is small. Model 2
two forms of complexity can be directly considers the three factors (EF, RV, and CX),
determined from software specifications written but neglects the combined effect of EF and RV.
in the Prototype System Description Language Figure 1 illustrates the results of the models
(PSDL) [3]. which were calculated using 95% of confidence

(p=0.95). Note the errors as vertical segments
Large Granular Complexity (LGC) between the estimated and real values.

expresses the relational complexity of the system
as a function of the number of operators (0),
data streams (D), and types (T)

LGC=O+D+T

Fine Granular Complexity (FGC) expresses
the relational complexity of each operator in the

96

000 o"'° A :::°'

S+o00

+o & 5 oo .- _.1

.10 - I 0 000 a.0 000 200 000 000 000

Figure 2. Scatter Plot of Models 3-4
Figure 1. Scatter Plot of-Models 1-2

The scatter plot in Figure 2 compares the
Model 3. Model 3, illustrated in Figure 2, simulated times versus the estimated times.

considers the three factors as well as the Most of the errors are overestimations and the
combined effects of EF and RV. The analysis of duration of the project has no effect over the
variance shows that the samples obtained from percentage of error. Model 4 is conservative.
the simulations and the samples obtained from The maximum overestimation error was less than
the estimates using Model 1, 2 or 3 cannot be 16% and the maximum underestimation was less
statistically differentiated. than 4%.

Another interesting result is that the errors Model 4 gives a good estimation for projects
remain in the range of ±15% for all of the between 4,000 and 20,000 LGC (128 and 640
scenarios. This result is interesting if we KLOC of Ada). The estimation seems to be too
compare it with the results of COCOMO (±20% optimistic for projects smaller, than 1000 LGC
in the best cases). Barry Boehm in reference to but it is quite good for larger projects. To verify
the validation of COCOMO said, "In terms of the model Dr. Nogueira used a real project
our criterion of being able to estimate within consisting of 1836 LGC developed in 1.5 years
20% of projects actuals, Basic COCOMO by the Uruguayan Navy'. Model 4 predicts 17
accomplishes this with only 25% of the time, months instead of 18 months, the actual
Intermediate COCOMO 68% of the time, and development time.
Detailed COCOMO 70% of the time." [4].

Model 4. Model 4, Figure 2, can be used for 3.2 Additional Project Validation
any range of complexity and requirements Proiect A [5. We used Nogueira's Model 4
volatility, and considers the three factors, their to calculate the probability of completion curve
combined effects, and the following a priori for the projects. For consistency, we used
assumptions: working days, defined as 22 days per month, the

"* A project with 0 LGC will take 0 days same as used in the original Nogueira model.
"* a, P, and-1> 0 The model predicted that the minimum time,
"* If RV increases the p(x<=tI) decreases in days, necessary to have a probability of
"* If CX increases then p(x<--t) decreases completion of 100% is approximately 260
"* If EF increases then p(x<=-t) increases working days. When compared to the actual

time it took, which was 336 working days, the
model predicted completion sooner. The model
predicted 76 working days less, or a 22.6% delta.

(I - (260/336))(100)= 22.6.

At this point, with 22.6% variability, we
decided to investigate and see what the original

SIMTAS a simulator for war gaming with

75,240 lines of code

97

estimated completion date was from project Additionally, this project did not utilize a
records. The original estimation was 200 lower case tool such as Rational Rose. We
working days, with the project schedule slipping believe use of such a tool is essential when
136 working days for build 3. The developer attempting to apply the Nogueira formal model,
missed the original completion estimation by as it provides the capability to collect detailed
40.5%. information, over the software development

lifecycle, that can later be extracted and used for
(1- (200/336))(100)=40.5. input to the Nogueira model metrics.

The Nogueira model missed the developer's 4. Issues with Dr. Nogueira's Risk
original estimate by 23.1% Assessment Model

Applying Dr. Nogueira's risk assessment
(1-(200/260))(i00)--23.1 model, in its current form, presents a number of

issues that must be resolved before substantial
Does this mean that the Nogueira model is progress can be achieved validating the model's

too optimistic as are most developers' estimates, results. The first issue and most notable draw
or is it a better fit? This data point leaves us fith back when using Dr. Nogueira's risk assessment
an inconclusive position as to the validation of model is limited confidence that the model
the model against the first project. It appears provides valid results. This is due to three
that there is a difference when using real projects factors: the limited amount of time that the
with real data versus simulated project data, and model has been in existence, the model has not
this reflects what the real world is - 'been exercised on a wide base of real world
unpredictable. projects (completed or on-going), and the fact

that the model was developed using simulation
Project B [51. We used Dr. Nogueira's techniques. The first factor noted can only be

Model 4 to calculate the probability of dealt with in the passage of time. However, this
completion curve for Build 2 using; BR=2.59, research will exploit a unique opportunity to
DR=3.04, RV=5.63, O=2544, D=40 10, T=11003. impact the latter two issues.
The model predicted Impossible. Although Dr. Nogueira's research shows

Actual time for build 2 took from 4/24/00 promise in estimating the associated risk when
until 7/10/00 or 68 working days at 22 working developing software systems, the model has not
days a month. We believe this inconsistency is been significantly exercised beyond theoretical
due primarily because the calculation for the simulation. Three 'teal world" projects to date
LGC count is based on all six Computer have been applied against the estimation model
Software Configuration Items (CSCI). Core hv enapidaantteetmto oe
Sfunctwonar y Conguration Ims (CSCI), Core, [1], [5]. It should be noted that all three of these
functionality on three CSCIs; CSCI-A, CSCI-B, poetwrexrcsdot-rt.Mde

and CSCI-C had been previously developed and projects were exercised post-mortem. Model
validate hd. Hwever, thevuildsl developedtaid validity has not been demonstrated in the contextvalidated. However, the builds during th~is targeted by the model's original design,

period, involved addition of functionality to the estimating risk early in a software project's life

following CSCIs: CSCI-D, CSCI-E, and CSCI-F. e .

That is, build 2 was modifying only a portion of cycle.

the total software system code, but the LGC data A second issue that exist when using Dr.
Nogueira's risk assessment model is the required

gives a view of all six CSCIs combined. input metrics. This issue is a double-edged
The available data was not broken down into sword. A major attraction to using Dr.

separate CSCIs, nor does it, post-mortem, Nogueira's model are these metrics. They are
identify the code that was being worked h a determined in a definitive, quantifiable manner
previous software release. We cannot fault the and can be derived extremely early in the
developer for not collecting metrics for research software development process [1], [6].
concepts that they are not aware of, nor do we However, these metrics are quite unique.
believe that this type of data collection is a Currently, outside of the academic environment,
requirement of CMM level 3. it is not common practice to collect these unique

A finding of this research is the need to metrics in the required form to utilize Dr.
adjust the CX when applying the Nogueira Nogueira's risk assessment model.
model to evolved projects that are developing or In order to establish confidence in the
enhancing only a portion of their CSCIs. usefulness and accuracy of Dr. Nogueira's risk

estimation model, the model must be exercised

98

against numerous projects. It would be ideal,
and perhaps over time, to exercise the model Id-f -. f 2 I

according to it original design; early in the MmPd

software development cycle. However, the next
logical step is to continue to exercise the model
in a post-mortem basis. Before this can be -U-Z• N,

accomplished, two things need to happen: First P,6, W sum .'

correlations must be determined between Dr.
Nogueira's required metrics and metrics that are
frequently collected in historical project i Wid""

databases. By establishing metrics correlations, .-- ""
the model can be exercised against an additional '" -.--

project base helping address the second factor of ___: ___.

problem one. And second, a method other than
the use of PSDL to generate 0, D and T metrics
counts must be developed. Dr. Nogueira's Figure3. Phases of Research
model was based on using PSDL to
automatically scan and generate counts for 0, D, Phase one: During phase one of the
and T input to his model. It is unlikely that research, post-morten projects will be identified
PSDL was used on any programs that we have whose characteristics are similar to the
post-mortem data on. characteristics are projects pr e

The final problem associated with Dr. characteristics of the three projects previously
Nogueira's risk assessment model is the exercised against Dr. Nogueira's risk assessment
configuration of the Vite'Project simulation. Dr. model. This affords the opportunity to begin
Nogueira developed the configuration of with a baseline before proceeding to future
Vite'Project using Organizational Consultant phases.
expert system. Fictitious software engineering Phase two: This is tih e most challenging

organizations were developed to represent the phase of the research and we hypothesize that

typical software development department. Based this phase will consume the majority of the
on the results of establishing fictitious CMM available resources. In this phase, detailed
level 2 and level 3 organizations, the analysis is conducted against the available
Vite'Project was calibrated. Calibrating the metrics that have been collected on the projects
simulation in this manner, could yield different established during phase one. Correlations are
results than calibrating the simulation with actual determined in the available data against the three

resltstha caibrtin th siulaionwit acual metrics that are necessary when utilizing Dr.
information derived from real projects. If Dr. mogrirs mode ne completion oth
Nogueira's model can be verified by Nogneira's model. Upon completion of this
reprogramming the Vite'Projert configuration phase, when a suitable "metric map" has been
this would provide additional assessment to the developed, research can continue to phase three.
third factor of problem one. The intent of the metric map is to provide a

common platform to exercise Dr. Nogueira's

5. Proposed Research model using metrics that were not originally

The proposed research will expand the collected for this purpose.

efforts of the previous validation effort. Figure 3 Phase three: Once a suitable metric map has

outlines the research approach. been established, research continues by
exercising Dr. Nogueira's model against the set
of post-mortem projects determined in phase
one. This phase is essential to establish
confidence in the results produced when using
Dr. Nogueira's model. Additionally during this
phase, another risk assessment method is
introduced, Quantitative Software
Management's® (QSM) SLIM, to help in the
validation process. Essentially, there will be a
comparison of three artifacts: the recorded
project performance, the estimated project
performance using Dr. Nogueira's model, and

99

the estimated project performance as determined "gearing factor". In this research, the use of this
by QSM's SLIM. An assumption during this term is intended to represent a value that is
phase will be the accuracy of QSM's SLIM. Of multiplied by the results determined in Dr.
course, if the expected results are not achieved Nogueira's model, adjusting the results for the
during this phase, additional research must be new domain. In some cases the model may
performed to determine the cause of the provide suitable results without the use of a
variance, gearing factor, other domains and development

Phase three (a): One potential cause of the methodologies may require this adjustment due
variance observed during phase three could be a to the unique nature of the software's
flaw in the metric map determined during phase development.
two. Continued research will be conducted to Phase four: Phase four of the proposed
modify the mapping and eventually minimize the research is the culmination of all of the proposed
chance that the metric map is the source of the research. This phase delivers the improved
deviation. Nogueira model. A caveat to this phase and all

Phase three (b): Another factor that can of the sub-phases conducted during phase three
influence deviation between the actual project is the introduction of the Vite'Project API. This
data, Dr. Nogueira's estimation model, and automated tool will improve the statistical
QSM's SLIM estimation model is the original significance obtained when utilizing the
configuration used to establish project scenarios Vite'Project simulation, greatly increasing the
in the Vite'Project. Organizational Consultant number of simulation runs provided by the
expert system was used to establish fictitious simulation.
software engineering organizations. Research
may indicate that reprogramming the 6. Validation
Vite'Project with actual information from We propose to validate our research by
software development organizations could yield conducting controlled experiments against post-
different results in the Vite'Project simulation. mortem projects. QSM, founded in 1978 by
This was a fundamental factor in the Larry Putnam, has collected and maintained an
development of Dr. Nogueira's research. A extensive database of " over" 5,000 software
substantial change in the simulated results could projects [7]. Experiments can be conducted,
require extensive rework of Dr. Nogueira's utilizing the available software metrics from
model. QSM's database, that correlate the required

Phase three (c): Finally, after exhausting metrics in Dr. Nogueira's model. This will
Phases three (a & b), research may lead to afford our research the means to evaluate actual
examination of Dr. Nogueira's model with closer projects against Dr. Nogueira's model.
scrutiny. If deviation continues to present itself Another source of validation is obtained by
when conducting phase three, we may have configuring Vite'Project with actual software
essentially resort to "ground zero" to establish project development information. As previously
potential conflicts, mentioned, Vite'Project scenario's were

It should be noted that phases three (a, b, & originally established by the creation of fictitious
c) should not be considered mutually exclusive, software development organizations. Different
Research could indicate that partial results could be derived from simulations
modifications are required in all three sub- configured according to actual projects.
phases. Finally, we propose to increase the statistical

Phase three (d): Dr. Nogueira's risk significance of Dr. Nogueira's software risk
assessment model is perfectly suited for any assessment model. We can accomplish this by
evolutionary software process because it follows increasing the simulation runs of each scenario
the same philosophy [1]. Dr. Nogueira presents through automation via the Vite' API when
no hypothesis of the model's validity when the available.
model is exercised outside of this domain. Once
phase three is accomplished and confidence has 7. Conclusion
been established against the set of projects This research introduces a research plan to
determined during phase one, the model can be validate a formal risk assessment model for
exercised against additional projects, from software projects based on probabilities and
different industry sectors and different software metrics automatically collectable early in the
development methodologies. This may require project. The approach enables a project manager
the development of what we are calling a to evaluate the probability of success of the

100

project very early in the life cycle. For more
than twenty years the estimation standards
(COCOMO 81, COCOMO II, Putnam) have
been characterized by a common limitation: the
requirements should be frozen in order to make
estimations. This promising model removes this
important limitation, facing the reality that
requirements are inherently variable.

The problem of risk assessment for projects
has been treated as unstructured. Research
shows, and experiments will prove, a structured
method to solve the problem based on metrics
automatically collected from the project
baselines. This contribution impacts the software
engineering state of the art, as well as risk
management in general. These metrics measure
three risk factors identified in the research:
complexity, requirements volatility, and
efficiency. The subjectivity issue characteristic
of previous research has been eliminated. Any
decision-maker will arrive at the same estimates,
independently of his or her expertise.

Finally, current research is based on
simulations and a small set of real projects. It is

- desirable to collect and analyze metrics and
completion times of a larger set of real software
projects to confirm and refine the models. Our
research will provide the missing elements from
the models, validation, enhancements, and
extensions.

References

[1] Nogueira J.C., A Formal Modelfor Risk
Assessment in Software Projects. PhD
Dissertation. Naval Postgraduate School.
Monterey, California. 2000.
[2] The Vite'Project Handbook. Vite©. 1999.
[3] Berzins, V. and Luqi. Software Engineering
with Abstractions. Addison-Wesley, 1990.
[4] Boehm, B.Software Engineering Economics.
Prentice Hall, 1981.
[5] Johnson, C. S., Piirainen R. A. Application of
the Nogueira Risk Assessment Model to Real-
Time Embedded Software Projects. Masters
Thesis. Naval Postgraduate School. Monterey,
California. March 2001.
[6] Nogueira, J.C., Luqi, Bhattacharya, S. A Risk
Assessment Model for Software Prototyping
Projects. Rapid System Prototyping, 2000. RSP
2000. Proceedings. 11 th International Workshop
on, 2000 Page(s): 28 -33
[7] SLIM MasterPlan User's Guide. QSM®
March 2001.

101

A Unified Approach for the Integration of
Distributed Heterogeneous Software Components 1

Rajeev R. Raje 2 3 Mikhail Auguston4 5 Barrett R. Bryant4 6 Andrew M. Olson 2 Carol Burt 7

Abstract

Distributed systems are omnipresent these days. Creating efficient and robust software for such systems is a highly
complex task. One possible approach to developing distributed software is based on the integration of heterogeneous
software •.omponents that are scattered across many machines. In this paper, a comprehensive framework that will allow
a seamless integration of distributed heterogeneous software components is proposed. This framework involves: a) a meta-
model for components and associated hierarchical setup for indicating the contracts and constraints of the components,
b) an automatic generation of glues and wrappers, based on a designer's specifications, for achieving interoperability, c)
a formal mechanism for precisely describing the meta-model, and d) a formalization of quality of service (QoS) offered
by each component and an ensemble of components. A case study from the domain of distributed information filtering is
described in the context of this framework.

Keywords: Distributed systems, Formal methods, Glue and Wrapper technology, Quality of Service

1 Introduction
The rapid advances in the processor and networking technologies have changed the computing paradigm from a centralized
to a distributed one. This change in paradigm is allowing us to develop distributed computing systems (DCS). DCS
appear in many critical domains and are, typically, characterized by: a) a large number of geographically dispersed and
interconnected machines, each containing a subset of the required data, b) an open architecture, c) a local autonomy
over the hardware and softw-are resources, d) a dynamic system configuration and integration, e) a time-sensitivity of the
expected solution, and f) the quality of service with an appropriate notion of compensation. These characteristics make
the software design of DCS an extremely difficult task.

One promising approach to the softwa-re design of DCS is based on the principles of distributed component computing.
Under this paradigm DCS are created by integrating geographically scattered heterogeneous software components. These

components constantly discover one another, offer/utilize services, and negotiate the cost and the quality of the services.
Such a view provides a scalable sohltion and hides the underlying heterogeneity.

Various distributed component models, each with strengths and weaknesses, are prevalent and widely used. However,
almost a majority of these models have been designed for 'closed' systems, i.e., systems, although distributed in nature,
are developed and deployed in a confined setup. In contrast, a direct consequence of the heterogeneity, local autonomy
and the open architecture is that the software realization of DCS requires combining components that adhere to different
distributed models. This in turn increases the complexity of the design process of DCS. Hence, a comprehensive framework,
that provides a seamless access to underlying components and aids in the design of DCS, is needed.

In this paper, one such framework is described. This framework consists of: a) a meta-model for components and
associated hierarchical setup for indicating the contracts and constraints of the components, b) an automatic generation of
glue and wrappers, based on a designer's specifications, for achieving interoperability, c) a formal mechanism for precisely
describing the meta-model, and d) a formalization of the notion of quality of service offered by each component and an
ensemble of components. The paper also presents a case study that shows the application of the framework to a specific
problem domain.

The rest of the paper is organized as follows. The next section contains a detailed discussion about the meta-model.
As an application of the meta model, a case study from the domain of distributed information filtering is presented in
the Section 3. Section 4 deals with the formal specification of the meta model, the automated system integration, and
evaluation of the approach. Finally, we conclude in Section 5.

'This material is based upon work supported by, or in part by, the U. S. Office of Naval Research under award number N00014-01-1-0746.
2 Department of Computer and Information Science, Indiana University Purdue University Indianapolis, 723 W. Michigan Street,

SL 280, Indianapolis, IN 46202, USA, {rraje, aolson}@cs.iupui.edu, +1 317 274 5174/9733
3 This material is based upon work supported by, or in part by, the National Science Foundation Digital Libraries Phase II grant.
4 Computer Science Department, Naval Postgraduate School, 833 Dyer Rd., SP 517, Monterey, CA 93943, USA,

{auguston, bryant}@cs.nps.navy.mil, +1 831 656 2509/2726
sThis material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office under

contract/grant number 40473-MA. On leave from Computer Science Department, New Mexico State University, USA.
6This material is based upon work supported by, or in part by, the U. S. Army Research Laboratory and the U. S. Army Research Office

under contract/grant number DAAD19-00-1-0350. On leave from Department of Computer and Information Sciences, University at Alabama at
Birmingham, USA.

7 2AB, Inc., 1700 Highway 31, Calera, AL 35040, USA, cburt@2ab.com, +1 205 621 7455

102

2 Component Models and a Meta-model
Many models and projects for the software realization of DCS have been proposed by academia and industry. A few
prominent ones are: JavaTr'M Remote Method Invocation (RMI) [16], Common Object Request Broker Architecture
(CORBAT

M) [16, 20], Distributed Component. Object Model (DCOMTM) [11, 16], Web-component model/DOM [10],
Pragmatic component web [5]: Hadas [6], Infospheres [4], Legion [22], and Globus [21]. Each of these models/projects has
strength and weaknesses. Some of these are language-centric and only assume a uniform way of the world (Java); while
the others allow a limited interoperability (CORBA - allowing implementations in different languages). Some of these
are general-purpose, i.e., not concentrating on any particular application domain (DCOM), while others are specifically
tailored to high-performance computing applications (Legion). However, almost all of these models/projects do not assume
the presence of other models. Thus, the interoperability which they provide is limited mainly to the underlying hardware
platform, operating system and/or implementational languages. Also, there are hardly any models which emphasize the
notion of quality of service offered by the components. Projects, such as Agent TCL [8], etc., based on the principles of
intelligent agents have imbibed the notion of the quality of service and related compensation. However, the agents are at
a higher level of abstraction than components and many of the agent projects/frameworks use one or the other existing
distributed-component models at the low-level.

2.1 Why a Meta-model?

Given the above mentioned plethora of component-based models and also noting the fact that components, by their
definition, are independent of the implementation language, tools and the execution environment; it is necessary to answer
the questions: -why is a meta-model needed for a seamless interoperation of distributed heterogeneous components? and
how would a meta-model assist in seamlessly integrating distributed heterogeneous software components? The answer to
these question lies in: a) in any organization, software systems undergo changes and evolutions, b) local autonomy is an
inherent characteristic of today's geographically (or logically) dispersed organizations, and c) if reliable software needs to
be created for a DCS by combining components then the quality of service offered by each component needs to become a
central theme of the software development approach.

The consequence of constant evolutions and changes is that there is a need to rapidly create prototypes and experiment
with them in an iterative manner. Thus, there is no alternative but to adhere to cyclic (manual or semi-automatic)
component-based software development for DCS. However, the solution of decreeing a common COTS environment, in an
organization, is against the principle of local autonomy. Hence, the development of a DCS in an organization will, most
certainly, require creating an ensemble of heterogeneous components, each adhering to some model. Also, every DCS is
designed and developed with a certain goal in mind, and usually that goal is associated with a certain perception of the
quality (as expected from the system) and related constraints.

Thus, there is a need for a comprehensive meta-model that will seamlessly encompass existing (and future) heterogeneous
components by capturing their necessary aspects, including the quality of service offered by each component and an
amalgamation of components.

2.2 Unified Meta-component Model (UMM)

In [17] we have proposed a unified meta-component model (UMM) for global-scale systems. The core parts of the UMM
are: components, service and service guarantees, and infrustructure. The innovative aspects of the UMM are in the
structure of these parts and their inter-relations. UMM provides an opportunity to bridge gaps that currently exist in the
standards arena. For example, the CORBA Component Model (CCMTM) [13] and Java Enterprise Edition component

models (J2EETM) are consistent, and yet, because of the absence of a formal meta-model, it is difficult during the evolution
of each to recognize when the boundaries that maintain the consistency are crossed. Similarly, it has been demonstrated in
numerous products that the Component Object Model (COMTM) [18] and CORBA component models are similar (in an
abstract sense) enough to allow meaningful bridging. It is, however, not possible to point to a Meta-model that constrains
the implementations of these technologies.

For enterprise component solutions, this is an area where significant standards work is now focused. The OMG Meta
Object Facility (MOFTM) [14] provides a common meta-model that allows the interchange of models between tools as well

as the expression of models in XMITM (an MOF compliant XMLTMI (eXtended Markup Language)) [12]. This work allows
the generation of interfaces from Unified Modeling Language (UML) [19] models, however, a careful analysis of the resulting
interface specifications makes it clear that distribution is not a key factor in the algorithms used. For example, quality of
service requirements for performance, scalability and/or security would dictate the use of iterators, the factoring of interfaces
to separate "query" and "administrative" operations, and the use of structures and/or objects passed by value. The current
standards in this tend to focus on data access with accessors and mutators and relationship transversal. This is acceptable
in a single machine environment, but unacceptable for highly distributed communications and collaborations. The recent
shift in focus for the Object Management Group to "Model Driven Architecture" (MDATM) [15] is a recognition that
to create mechanized software for the collaboration and bridging of component architectures will require standardization

103

of Business and Component Meta-Models. The need to support the evolution of component models and to describe the
capabilities of the models will be key to realizing the full potential of an B-business economy.

The following sections describe the various aspects of UMM in detail.

2.2.1 Component

In UMM, components are autonomous entities, whose implementations are non-uniform, i.e., each component adheres to
some distributed-component model and there is no notion of either a centralized controller or a unified implementational
framework. Each component has a state, an identity and a behavior. Thus, all components have well-defined interfaces
and private implementations. In addition, each component in UMM has three aspects: 1) a 'computational aspect, 2) a
cooperative aspect, and 3) an auxiliary aspect.

Computational Aspect

The computational aspect reflects the task(s) carried out by each component. It in turn depends upon: a) the objective(s)
of the task, b) the techniques used to achieve these objectives, and c) the precise specification of the functionality offered
by the component. In DCS, components must be able to 'understand' the functionality of other components. Thus, each
component in UMM supports the concept of introspection, by which it will precisely describe its service to other inquiring
components. There are various alternatives for a component to indicate its computation - ranging from simple text to
formal descriptions. Both these extremes have advantages and drawbacks. UMM takes a mixed approach to indicate the
computational aspect of a component - a simple textual part, called inherent attributes and a formal precise part, called
functional attributes.

The functional part is formal and indicates precisely the computation, its associated contracts and the level(s) of service
offered by the component. Multi-lev 'el contracts for components have been proposed by [2], classifying the contracts into
four levels - syntactic, behavioral, concurrency and quality of service (QoS). UMM integrates this multi-level contract
concept into the functional part of the computational aspect. As stated earlier, in DCS each component will be offering a

.service and hence, the level related to the QoS is especially critical in UMM. The QoS depends upon many factors such
as, the algorithm used, the execution model, resources required, time, precision and classes of the results obtained. 11MM
makes an attempt at quantifying the QoS by creating a vocabulary and providing multiple levels of quality, which could
be negotiated by the components involved in an interaction. The functional part will also be specified by the creator of
the component.

- -- -- -Cooperative~ Aspect

In 11MM, components are always in the process of cooperating with each other. This cooperation may be task-based
or greed-based. The cooperative aspect depends on many factors: detection of other components, cost of service, inter-
component negotiations, aggregations, duration, mode, and quality. Informally, the cooperative aspect of a component
may contain: 1) Expected collaborators - other components that can potentially cooperate with this component, 2) Pre-
processing collaborators - other components on which this component depends upon, and 3) Post-processing collaborators
- other components that may depend on this component.

Auxilfiary Aspect

In addition to computation and cooperation, mobility, security, and fault tolerance are necessary features of DOS. The
auxiliary aspect of a component will address these features. In UMM, each component can be potentially mobile. The
mobility of the component will be shown as a'mobility attribute' (a notion similar to the inherent attribute). If a component
is mobile, then the mobility attribute will contain the necessary information, such as its implementation details and required
execution environment. Similarly, security in DOS is a critical issue. The security attribute of a component will contain the
necessary information about its security features. As DOS are prone to frequent failures, full and partial, fault tolerance is
critical in these systems. Similar to mobility and security, each component contains fault-tolerant attributes in its auxiliary
aspect.

2.2.2 Service and Service Guarantees

The concept of a service is the second part of the UMM. A service could be an intensive computational effort or an access to
underlying resources. In DOS, it is natural to have several choices for obtaining a specific service. Thus, each component,
in addition to indicating its functionality, must be able to specify the cost and quality of the service offered.

The nature of the service offered by each component is dependent upon the computation performed by that component.
In addition to the algorithm used, expected computational effort and resources required, the cost of each service will be
decided by the motivation of the owner and the dynamics of supply and demand. In a dynamic environment costs must
always be accompanied by the duration for which the costs are valid. As the system dynamics undergo constant changes,
the methodologies used to fix the cost of a service will evolve as time progresses, thereby creating a need to indicate the
time sensitiveness of the- cost. The quality of service is an indication given by an component, on behalf of its owner, about

104

its confidence to carry out the required services in spite of the constantly changing execution environment and a possibility
of partial failures. The techniques used to determine the cost, the time-validity and the quality of a service will depend
upon the tasks carried out by the component and the objectives of its owner and will involve principles of distributed
decision making.

There are many parameters that a component can use to indicate its quality of service. A few examples are: i)
Throughput - number of methods executed per second and classification of methods based on their read/write behaviors,
ii) Parallelism constraints - synchronous or asynchronous, iii) Priority, iv) Latency or End-to-End Delay - turn-around
time for an invocation, v) Capacity -- how many concurrent requests a given component can handle, vi) Availability -
indication of the reliability of a component, vii) Ordering constraints - can invocations (asynchronous) be executed out
of order by a component, viii) Quality of the result returned - does the component provide a classification or ranking
of the result, and ix) Resources available - how many resources (hardware/data) are accessible to the component under
consideration and what are the types of resources.

When a component uses certain metrics to indicate its QoS (either all the mentioned criteria or a sub/super set of
them), three interesting issues need to be addressed: a) how does the component developer decide these parameters?,
b) how does the developer guarantee the advertised QoS during the execution?, and c) when components are collected
together as a solution for specific DCS, what happens to the QoS of the combination and how does the combined QoS
meet the quality requirements of DCS?

The parameters to be used to describe the QoS of a component are highly context (application) dependent. The
proposed approach is to create lists of QoS metrics for common application domains. A few examples of such domains
are: scientific computing, multi-media applications, information filtering, and databases. Once such lists are created, they
would be used as a template by the component developers while advertising the QoS of their components.

QoS of Components

The issue of guaranteeing a particular QoS, for a component, in an ever changing dynamic DCS is extremely critical;
mainly because of external (e.g., policy matters related to resources) and internal (e.g., changes in algorithms) factors
that affect a life cycle of a component. In addition, as the software realization of DCS is based on an amalgamation of
heterogeneous components, a proper guarantee of a QoS offered by a component effectively decides the QoS of the entire
DCS. The quality metrics are expected to vary from one application domain to another and which metrics to select would
depend on the intentions of the component developer and the functionality offered by that component. A few examples of
such QoS metrics are already mentioned in the previous section. Irrespective of th6 metrics selected, there is a need for
a well-defined mechanism that will assist the developer to achieve the necessary QoS when that component is deployed.
Just like any software development process, the process of guaranteeing a certain QoS, as offered by a component, will be -.

an incremental and iterative one, as will be discussed later.

QoS of an Integrated System

In addition to the QoS of individual components, there is a need to achieve a certain QoS for the ensemble of heterogeneous
components assembled for a distributed system under discussion. The QoS of such an amalgamation will be decided by
the design constraints of the system under construction. However, the integral characteristics of such a system typically
cannot be expressed as a function of individual components but as a property of the whole system behavior. Hence, there
is a need for a formal model of system behavior, which will integrate the behaviors of each component in the ensemble
along with its QoS guarantees.

The proposed approach to address the problem of QoS is as follows. First, build a precise model of systems behavior
(event trace notion), provide a programming formalism to describe computations over event traces, and then apply these
in order to define different kinds of QoS metrics. Constructive calculations of QoS metrics on a representative set of test
cases is one of cornerstones of the proposed iterative approach to system assembly from components meeting user's query
specifications.

This approach to the design of a system behavior model assumes that the run time actions performed within the system
may be observed as detectable events. Each event corresponding to an action is a time interval, with beginning, end, and
duration. Certain attributes could be associated with the event, e.g. program state, source code fragment, time, etc. There
are two binary relations defined for the event space: inclusion (one event may be nested within another), and precedence
(events may be partially ordered accordingly to the semantics of the system under consideration). Hence, when executed,
a system generates an cvent trace - set of events structured along the relations above. This event trace actually can be
considered as a formal behavior model of the system ("lightweight semantics"). This model could be presented as a set of
axioms about event trace structure called event grammar [1].

For example, suppose that the entire system execution is represented by an event of type execute-system. It may
contain events of the type evaluate-component-A and evaluate-component-B. Event grammar may contain an axiom:
execute-system: (evaluate-component-A evaluate-component-B) *
which states that evaluate-component-A is always followed by the evaluate-component-B event, and these pairs may be
repeated zero or more times.

A new concept for specification and validation of target program behavior based on the ideas of event grammars and

105

computations over program execution traces has been developed, and assertion language mechanisms, including event
patterns and aggregate operations over event traces, to specify expected behavior, to describe typical bugs, and to evalu-
ate debugging queries to search for failures (e.g. gathering run time statistics, histories of program variables, etc.) have
been created. An event grammar provides a basis for QoS metrics implementation via target program automatic instru-
mentation. Since the instrumentation is conditional, it doesq not deteriorate the efficiency of the final version generated
code. This mechanism based on independent models of system behavior makes it possible to define QoS metrics as generic
trace computations, so that the same metric may be applied to different versions of an assembled system (via automatic
instrumentation). To facilitate use of the event grammar model for thc assembled system, the event definitions should be
consistent through the entire component space. The QoS metrics: for components should adhere to this principle. The
process proposed in Section 4.4 for assembling a distributed system from components in a distributed network offers a
possible approach to achieving this.

2.2.3 Infrastructure

As local autonomy is inherent in open DCS, forcing every component developer to abide by certain rigid rules, although
attractive, is doomed to fail. UMM tackles the issue of non-uniformity with the assistance of the head-hunter and Internet
Component Broker. These are responsible for allowing a seamless integration of different component models and sustaining
a cooperation among heterogeneous (adhering to different models) components.

Head-hunter Components

The tasks of head-hunters are to detect the presence of new components in the search space, register their fu~nctionalities,
and attempt at match-making between service producers and consumers. A head-hunter is analogous to a binder or a
trader in other models, with one difference - a trader is passive, i.e., the onus of registration is on the foreign components
and not on the trader. In contrast, a headhunter is active, i.e., it discovers other components and makes an attempt to
register them with itself. There are many approaches possible for the discovery of components. They range from the
standard search techniques to broadcasts and multi-casts to selected machines. At a conceptual basis, UMM does not tie
*itself. to a specific approach but during the prototype development a particular approach will be selected for the discovery
process. During registration, each component will inform the head hunter about all its aspects. The head hunter will
use this information during matching. A component may be registered with multiple head-hunters. Head-hunters may
cooperate with each other in order to serve a large number of components. The functionality of head hunters makes it
necessary for them to communicate with components belonging to any model, implying that the cooperative aspect of
head hunters be universal. Considering the heterogeneous nature of the components, it is conceivable that the software
realization of a distributed system will require an ensemble of components adhering to different models. This requires a
mediator, the Internet Component Broker, that will facilitate cooperation between heterogeneous components.

Internet Component Broker

The Internet Component Broker (IGB) acts as a mediator between two components adhering to different component
models. The broker will utilize adapter technology, each adapter component providing translation capabilities for specific
component architectures. Thus, a computational aspect of the adapter component will indicate the models for which it
provides interoperability. It is expected that brokers will be pervasive in an Internet environment thus providing a seamless
integration of disparate components. Adapter components will register with the ICB and while doing so they will indicate
their specializations (which component models they can bridge efficiently). During a request from a seeker, the head hunter
component will not only search for a provider, but it will also supplyý the necessary details of an IGB.

The adapter components achieve interoperability using the principles of wrap and glue technology [9]. A reliable,
flexible and cost-effective development of wrap and glue is realized by the automatic generation of glue and wrappers based
on component specifications. Wrapper software provides a common message-passing interface for components that frees
developers from the error prone tasks of implementing interface and data conversion for individual components. The glue
software schedules time-constrained actions and carries out the actual communication between components.

The functionality of the IGB is analogous to that of an object request broker (ORB). The ORB provides the capability
to generate the glue and wrappers necessary for objects written in different programming languages to communicate
transparently; the ICB provides the capability to generate the glue and wrappers necessary for components implemented in
diverse component models (and providing service guarantees) to collaborate across the Internet. An ORB defines language
mappings and object adapters. An ICB must provide component mappings and component model adapters. While the
1GB conceptually provides the capabilities of existing bridges (COM-CORD1A for example), the ICB will provide key
features that are unique; it is designed to provide the auxiliary aspects of the Internet - collaboration between autonomous
environments, mobility and security. In addition, the UMM includes quality of service and service guarantees. The 1GB, in
conjunction with head-hunters provide the infrastructure necessary for scalable, reliable, and secure collaborative business
using the Internet.

106

3 A Case Study

In order to explain the UMM and the proposed approach, below a case study from the domain of distributed information
filtering is presented. Although the case study uses a specific domain, the principles can be easily extended to other
application domains that involve the software realization of a DCS.

3.1 Distributed Information Filtering

It is desired to develop a global information filtering system, in which, users will be interested in receiving selected
information, based on their preferences, from scattered repositories. Usually, a filtering task involves contacting the
scattered resources, performing an initial search to gather a subset of documents, representing, classifying and presenting
based on the user profile. Many different methods are employed for the sub-tasks involved in filtering. Thus, it can be easily
envisioned that different components, each employing a different algorithm to perform these sub-tasks, will be scattered
across an interconnected system. Each component may belong to a different model, may quote different costs and offer
different qualities of service.

Hence, a typical distributed information filtering system consists of the following types of components: a) Domain
Component (DC), b) Wrapper Component (WC), c) Representer Component (RC), d) Classifier Component (CC), and e)
User Interaction Component (UIC). In addition to these domain-specific components, headhunter components (HC) and
the ICB are needed.

All these components, their aspects and characteristics need to be defined using UMM. For the sake of brevity, only
the complete description of the domain component (DC) is shown below.

3.2 Domain Component

The domain component is responsible for maintaining a repository of URLs of associated information sources for particular
type (e.g., text, structure, sequence) of information that needs filtering.

For example, the inherent attributes might consist of Author (name of the component developer), Version (current
version of the component), Date Deployed, Execution Environment Needed and Component Model (e.g., Java-RMI 1.2.2),
Validity (e.g., one month from the deployment), Atomic or Complex (indivisible or an amalgamation of other components,
e.g. atomic), Registrations (with which headhunters this component is registered, e.g., HI - www. cs.iupui.edu/hil and
H2 - ww. cis. uab. edu/h2).

An informal description of the functional part of a component may contain:.............

1. Computational Task Description -- e.g., searching a selected set of databases over the Internet.
2. Algorithm Used and its Complexity -- Webcrawling and 0(n-2), respectively.
3. Alternative Algorithms -- Indexing.
4. Expected Resources (best, average and worst-cases)-- multi-processor, uni-processor (300MHz
with an CPU utilization of 50%,), and uti-processor (100MHz with CPU utilization of 997.), respectively.
5. Design Patterns Used (if any) -- Broker.
6. Known Usages -- for assembling an up-to-date listing containing addresses of known information
repositories for a particular domain.
7. Aliases-- such a component is usually called a Pro-active Agent.
8. Multi-level contracts:
e.g., for a function like List getURLs (Domain inputDomain, Compensation inputCost), the behavioral
contract could specify the pre-condition to be (valid Domain Name and cost), post-condition to be:
if successful (activeClientThreads++ and cost+=inputCost)
else (raise DomainNotKnownException and InvalidCostException)
and the invariant could be (ListOfURLs > 1). Also, for the same function, the concurrency contract
could specify (maximum number of active threads allowed = 50).

The cooperation attributes of the domain component may consist of 1) expected collaborators UIC, WC, HC, TC and
RC, 2) pre-processing collaborators HC and TC, and 3) post-processing collaborators RC and UIC.

The auxiliary attributes of the domain component are 1) fault-tolerant attributes, e.g., check-pointing versions, 2)
security attributes, e.g., simple encryption, and 3) mobility attributes, e.g.. "not mobile."

For the domain component, the QoS parameters may contain 1) number of available URL's, 2) ranking of UR.L's, and
3) average rate of UR.L collection.

A component developer may offer several possible levels of QoS, e.g., Li) novice (number of URL's < 50 and no ranking
of URL's and average rate of UR-L collection > I week and average latency > 2 minutes), L2) intermediate (number of
URL's < 500 and simple ranking of URL's and average rate of URL collection > 3 days and average latency ?_ 1 minute),
and L3) expert (number of URL's < 1500 and advanced ranking of URL's and average rate of URL collection > 1 day and
average latency > 5 seconds).

107

Compon at Implemenmtion

Domn.in Knowledge Bam

r• • computationa•

UMM specification, UM nefc G

O ` N LP = GM M G ene a or 5 :v1 oV a t so sract y ? Y

Remnne the UMM Specification d the Implmemnton orthe Compormo ulth

Hi eunte)

Figure 1: The Component Development and Deployment Process in UMM

The expected compensations for the above levels in terms of the number of URLs could be 1) Li > 100 and < 200, 2)

L2 > 200 and < 400, and 3) L3 > 400 and < 600.

4 Component and System Generation Using UMM Framework

The development of a software solution, using the UMM approach, for a DCS has two levels: a) component level - in this
level, different components are created by developers, tested and verified from the point of view of QoS, and then deployed
on the network, and b) system level - this level concentrates on assembling a collection of components, each with a specific
functionality and QoS, and semi-automatically generates the software solution for the particular DCS under consideration.
These two levels and associated processes are described below.

4.1 Component Development and Deployment Process

The component development and deployment process is depicted in Figure 1. As seen in the figure, this process starts with
a UMM specification of a component (from a particular domain). This specification is in a natural-language format, as
illustrated in the previous section. This informal specification is then refined into a formal specification. The refinement

is based upon the theory of Two-Level Grammar (TLG) natural language specifications [3, 23], and is achieved by the
use of conventional natural language processing techniques (e.g. see [7]) and a domain (such as information filtering)

knowledge base. TLG specifications allow for the generation of the interface (possibly multi-level) for a component. This
interface incorporates all the aspects of the component, as required by the UMM. The developer provides the necessary
implementation for the computational, behavioral, and QoS methods. This procesq is followed by the QoS validation. If the

results are satisfactory (as required by the QoS criteria) then the component is deployed on the network and eventually,
it is discovered by one or more headhunters. If the QoS constraints are not met then the developer refines the UMM

specification and/or the implementation and the cycle repeats.

4.2 Formal Specification of Components in UMMVI

Since the UMM specifications are informally indicated in a natural language like style, our approach is to translate this
natural language specification into a more formal specification using TLG. TLG is a formal notation based upon natural
language and the functional, logic, and object-oriented programming paradigms. The name "two-level" in Two-Level
Grammar comes from the fact that TLG consists of two contex-t-free grammars, one corresponding to a set of type
declarations and the other a set of function definitions operating on those types. These type and function definitions are
incorporated into a class which allows for new types to be created.

The type declarations of a TLG program define the domains of the functions and allow strong typing of identifiers used
in the function definitions. On the other hand, function definitions may be given without precisely defined domains for

a more flexible specification approach. This framework consists of a knowledge-base which establishes a context for the

natural language text to be used in the specification under a particular domain model, in this case information filtering.
This allows the TLG to be translated into internal representations such as predicate logic, the natural representation for

TLG, event grammars, or multi-level Java interfaces taking the form of the UMM specification template. For the case

108

study, we may use a TLG class to describe the component structure and functionality as elaborated in the following
subsections.

4.2.1 Component Structure Specification

Syntactically, TLG type declarations are similar to those in other languages. Types are capitalized whereas constants
begin with lower case letters. The usual primitive types, such as Integer, Float, Boolean, and String are present as are
list constructors based upon regular expression notation, e.g. {X}* and {X}+ mean 0 or more and 1 or more occurrences
of X, respectively.

The types of the domain component in our information filtering system are defined in the following way in TLG.

Component :: DomainComponent; WrapperComponent; RepresentationComponent; ClassificationComponent;
UserInteractionComponent; HeadhunterComponent; ICB.

DomainComponent :: Name, InformalDescription, Attributes, Service.
Name :: dc.
Attributes :: ComputationalAttributes, CooperationAttributes, AuxiliaryAttributes.
ComputationalAttributes :: InherentAttributes, FunctionalAttributes.
InherentAttributes :: Author, Version, DateDeployed, ExecutionEnvironment,

ComponentModel, Validity, Structure, Registrations.
FunctionalAttributes :: TaskDescription, AlgorithmAndComplexity,

Alternatives, Resources, DesignPatterns, Usages, Aliases, FunctionsAndContracts.
AlgorithmAndComplexity :: vebcrawling, n-2;
Alternatives :: {Algorithm.AndComplexity}*.
Resource :: Architecture, Speed, Load.
Architecture :: uni-processor; multi-processor.
Speed Integer.
Load Integer.
DesignPatterns :: broker;
Aliases :: pro-active agent;
FunctionAndContract :: Function, BehavioralContract, ConcurrencyContract.
Function.....
BehavioralContract Precondition, Invariant, Postcondition.
ConcurrencyContract':: single threaded; maximum number of active threads allowed = Integer; -.

CooperationAttributes ExpectedCollaborators, PreprocessingCollaborators, PostprocessingCollaborators.
ExpectedCollaborator uic; wc; hc; tc; rc.
PreprocessingCollaborator hc; tc.
PostprocessingCollaborator rc; uic.
AuxiliaryAttribute :: FaultTolerantAttribute; SecurityAttribute; MobilityAttribute.
FaultTolerantAttribute :: check-pointing versions;
SecurityAttribute simple encryption;
MobilityAttribute mobile; not mobile.
Service :: ExecutionRate, ParallelismConstraint, Priority, Latency, Capacity, Availability,

OrderingConstraints, QualityOfResultsReturned, ResourcesAvailable.
ExecutionRate :: Float.
ParallelismConstraint :: synchronous; asynchronous.
Priority Integer.
Latency AverageRateOfURLCollection.
AverageRateOfURLCollection :: Float.
Capacity :: NumberOfAvailableURLs.
NumberOfAvailableURLs :: Integer.
Availability :: Float.
OrderingConstraint :: Boolean.
QualityOfResultsReturned :: {URL}+.
ResourcesAvailable HardvareResources, SoftwareResources.
HardwareResources
SoftwareResources

The remaining components (e.g., wrapper, representation, etc.) may be described in a similar manner. All domains not
specified explicitly in the above example are assumed to be of type String, with the exception of Function which may take
the form of an interface definition in a programming language such as Java. Using standard natural language processing
techniques [7], the UMM specification may be automatically refined into this TLG specification, with user assistance as

109

needed to clarify ambiguities. The process is facilitated by the presence of a knowledge base which understands the domain
of information filtering from the point of view of vocabulary which may be used in making the original UMM specification.

4.2.2 Component Functionality Specification

The second level of the TLG specification is for function declarations. These resemble logical rules in logic programming
with variables coming from the domains established in the type declarations. For the Domain Component example, the
levels of Quality of Service may be specified as follows.

number of urls size of Quality0fResultsReturned.
average latency

.no ranking of urls
simple ranking of urls
advanced ranking of urls
average latency : ...
qos level 1 is novice : number of urls < 50, no ranking of urls,

AverageRateofURLCollection >= 1 week, average latency >= 2 minutes.
qos level 2 is intermediate : number of urls < 500, simple ranking of urls,

AverageRateoflURLCollection >= 3 days, average latency >= I minute.
qos level 3 is expert : number of urls < 1500, advanced ranking of uris,

AverageRateofURLCollection >= 1 day, average latency >= 5 seconds.

Each rule defines how the particular entity is to be computed. As these rules are normally part of a class definition
encapsulating a corresponding set of type declarations, each rule has access to the data specified in the type declarations.
These natural language like rules may be further refined into a more formal specification, e.g. using event grammars.

4.3 QoS Guarantee of a Domain Component
For the case study, the event grammar to describe the system behavior is given below. The first part is the set of type
definitions and the second part is the description of computations over event traces implementing different QoS metrics.

exec.syst :: (request-sent I response-received)*
"response-received (URL-detected I failed)

These type definitions describe the types of events which may occur as the system executes. The computations over these
events include verification that the number of URL's detected is less than 50 and also the latency (e.g., for all requests for
URL's, every response received occurs within 10 units of time). id is an event attribute which associates a unique identifier
between query attributes and corresponding responses. Both of these metrics yield Boolean values.

CARD [URL.detected from exec-syst] < 50

Forall x : request-sent from exec-syst
Exists y response-received from exec-syst

id (x) - id (y) & begintime (y) - end-time (x) < 10

4.4 Automated System Generation and Evaluation based on QoS
In general, different developers will provide on the Internet a variety of possibly heterogeneous components oriented
towards a specific problem domain. Once all the components necessary for implementing a specified distributed system
are available, then the task is to assemble them. Figure 2 shows a process to accomplish this. The developer of the desired
distributed system presents to this process a system query, in a structured form of natural language, that describes the
required characteristics of the distributed system. For example, such a query might be a request to assemble an information
filtering system. The natural language processor (NLP) processes the query. It does this aided by the domain knowledge
(such as key concepts in the filtering domain) and a knowledge-base containing the UMM description (in the formn of a
TLG) of the components for that domain. The result is a formal UMM specification that will be used by headhunters
for component searches and as an input to the system assembly step. This formal UMM specification will be a basis for
generating a set of test cases to determine whether or not an assembly satisfies the desired QoS. The framework, with the
help of the infrastructure described in Section 2.2.3, collects a set of potential components for that domain, each of which
meets the QoS requirement specified by the developer. From these, the developer, or a program acting as a proxy of the
developer, selects some components. These components along with the component broker and appropriate adapters (if
needed) form a software implementation of the distributed system. Next this implementation is tested using event traces
and the set of test cases to verify that it meets the desired QoS criteria. If it does not, it is discarded. After that, another
implementation is chosen from the component collection. This process is repeated until an optimal (with respect to the
QoS) implementation is found, or until the collection is exhausted. In the latter case, the process may request additional

110

UM&1ThO ofCompooco Dom~ain Kn%,Icskdpo B=a

'\ .\Scdectir C~tcri.

Syssm Ammobk fro Coopom

(Nw,: -. I- NP.Z =srmciLHlgudh mdl cppers)

Sys mis theFo oloam

5inlConclusion Wtp•

NO -- Rfie i O•r cri1er'w /

Yes

Sysfth e Alsambnn fropaionos
systemI is Re• for Deployment

Figure 2: The Iterative System Integration Process in UMM

components or it may attempt to refine the query by adding more information about the desired solution from the problem

domain. Once a satisfactory implementation is found, it is ready for deployment.

5 Conclusion

This paper has presented a frame~work that allows an interoperation of heterogeneous and distributed software components.

The software solutions for future DCS will require either automatic or semi-automatic integration of software components,

while abiding with the QoS constraints advertised by each component, and the collection of components. The result of using

UMM and the associated tools is a semi-automatic construction of a distributed system. Glue and wrapper technology

allows a seamless integration of heterogeneous components and the formal specification of all aspects of each component will

"eliminate ambiguity. while detecting and using these components. The UMM does not consider network failures or other

considerations related to the hardware infrastructure, however, these could be integrated into the QoS level of components.

The UMM approach to validating QoS is to use event grammar to calculate QoS metrics over run-time behavior. The

QoS metrics are then used as a criteria for an iterative process of assembling the resulting system as shown in Section 4.4.

UMM also provides an opportunity to bridge gaps that currently exist in the standards arena. Although, the paper has

only presented a case study from the domain of distributed information filtering, the principles of UMM may be applied

to other distributed application domains. Future work includes refinement of the UMM feature thesaurus and methods

for translating UMM specifications into Two-Level Grammar, refining the head-hunter mechanism, developing Quality of

Service metrics for components and systems, and development of generation mechanisms for domain-specific component

reuse.

References

[1] Auguston, M. A Language for Debugging Automation. In Proceedings of 6th International Conference on Software

Engineering and Knowlcdge Engineering, pages 108-115, 1994.

[2] Beugnard, A., Jezequel, J., Plouzeau, N. and Watkins, D. Making Components Contract Aware. IEEE Computer,

32(7):38- 45, July 1999.

[3] Barrett R. Bryant. Object-Oriented Natural Language Requirements Specification. In Proceedings of ACSC 2000,

the 23rd Australasian Computer Science Conference, January 31-February 4, 2000, Canberra, Australia, pages 24-30,

January 2000.

[4] California Institute of Technology. Caltech Infospheres On-line Documentation,

URL:- http://www.infospheres.caltech.edu/, 1998.

[5] Fox, G. The Document Object Model Universal Access Other Objects CORBA XML Jini JavaScript etc.

http://www.npac.syr.edu/users/gcf//srcobjectsapriL99, 1999.

[6] Israel, B. and Kaiser, G. Coordinating Distributed Components Over the Internet. IEEE internet Computing, pages

83-86, 2(2), 1998.

[7] Jurafsky, D. and Martin, J. H. Speech and Language Processing. Prentice Hall, 2000.

111

[8] Kotz, D., Gray, R.., Nog, S., Rus, D., Chawla, S. and Cybenko, G. Agent TCL: Targetting the Needs of Mobile

Computers. IEEE Interinet Computing; pages 58-67, 1(4), 1997.

[9] Luqi, Berzins, V., Ge, J., Shing, M., Auguston, M., Bryant, B. R. and Kin, B. K. DCAPS - Architecture for Distributed
Computer Aided Prototyping System. In Proceedings of RSP 2001, the 12th International Workshop on Rapid System
Prototyping, 2001.

[10] Manola, F. Technologies for a Web Object Model. IEEE Internet Computing, 3(1):38-47, January-February 1999.

[11] Microsoft Corporation. DCOM Specifications, URL:- http://www.microsoft.com/oledev/olecom, 1998.

[12] Object Management Group. XML Metadata Interchange. Technical report, Object Management Group Document
No. ad/98-10-05, October 1998.

[13] Object Management Group. CORIBA Components. Technical report, Object Management Group TC Document
orbos/99-02-05, March 1999.

[14] Object Management Group. Meta Object Facility (MOF) Specification, Version 1.3. Technical report, Object Man-
agement Group, March 2000.

[15] Object Management Group. Model Driven Architecture: A Technical Perspective. Technical report, Object Manage-
ment Group Document No. ab/2001-02-01, February 2001.

[16] Orfali R, and Harkey, D. Client/Server Programming with JAVA and CORBA. John Wiley & Sons, Inc., 1997.

[17] Raje, R. UMM: Unified Meta-object Model for Open Distributed Systems. In Proceedings of the fourth IEEE

International Conference on Algorithms and Architecture for Parallel Processing (ICA3PP'2000), 2000.

[18] Rogerson, D. Inside COM. Microsoft Press, 1996.

[19] Rumbaugh, J., Jacobson, I. and Booch, G. The Unified Modeling Language Reference Manual. Addison-Wesley, 1998.

[20] Siegel, J. CORBA Fundamentals and Programming: John Wiley & Sons, Inc., 1996.

[21] The Globus Project. Globus Website, URL:- hftp://www.globus.org/, 2000.

[22] University of Virginia. Legion Project, URL:- http://www.cs.virginia.edu/ legion, 1999.

[23] van Wrijngaarde n, A. Orthogonal Design and Description of a Formal Language. Technical report, Mathematisch
Centrum, Amsterdam, 1965.

112

Optimization of Distributed Object-Oriented Servers
William J. Ray

SPAWAR Systems Center, (619) 553-4150, ray@spawar.navy.mil

Valdis Berzins
Naval Postgraduate School, (831) 656-2610, berzins@cs.nps.navy.mil

Abstract - This paper presents a method for deploying distributed object servers to optimize client response time.
Object-Oriented (00) computing is fast becoming the de-facto standard for software development. Distributed 00
systems can consist of multiple object servers and client applications on a network of computers, as opposed to a single
large centralized object server. Optimal deployment strategies for object servers change due to modifications in object
servers, client applications, operational missions and changes in various other aspects of the environment.

As multiple distributed object servers replace large centralized servers, there is a growing need to optimize the
deployment of object servers to best serve the end user's changing needs. A method that automatically generates object
server deployment strategies would allow users to take full advantage of their network of computers.

States of the art load balancing techniques schedule a given number of independent tasks on a set of machines.
However, object servers do not have independent tasks: all methods in an object are related. Also, the number of times
a method is called is usually dependent on interactions with end users.

The proposed method profiles object servers, client applications, user inputs and network resources. These profiles
determine a system of non-linear equations that is solved to produce an optimal deployment strategy.

Keywords: - Distributed Object, Load Balancing, Client Response Time, Optimization, Server Deployment and
Software Engineering

1. INTRODUCTION
The future of computing is heading for a universe of distributed object servers. The evolution of object servers to
distributed object servers will parallel the evolution of the relational databases. Over time, object servers will provide
functionality to more client applications than their original applications, just as relational databases were used by more
applications than the original application. In both cases, systems optimized for the original application may not perform
well for the new applications. Tools that allow a programmner to model an object and easily create object servers with all
the necessary infrastructure code needed to work as a distributed object server are available [12]. This will lead to an
explosion in the number of object servers available to client applications.

A user's network of computers will change frequently. Object servers, applications, hardware and user preferences will
be in a constant state of flux. No static deployment strategy can adequately take advantage of the assets accessible on the
network in such an environment.

No system can accurately predict user interaction with a system. Two separate users performing the same job will
interact with a system differently. The same user may interact differently while performing the same job at different
times. For these reasons and combinatorial. explosion problems, an adaptive software engineering approach is proposed
instead of a traditional computer science approach.

Most deployment strategies today are dictated by the system engineer's view of how the systems will be utilized. Of
course, the system engineer doesn't revisit these strategies every time hardware, software or user interactions change.
The goal is to allow the user to update hardware and usage profiles. Software developers would supply new profiles
when their code changes. Any time a profile is updated, the model would be run and an automated reconfiguration of the
object server deployment could occur. In most cases, the frequency of change will be greatest in the hardware and usage
pattern profiles. Since many of these changes can take place without the knowledge of a system engineer or the budget to
employ one, a method that allows the users to update these profiles and initiate the reconfiguration is desired.

2. PREVIOUS WORK
There has been little work on deployment strategies for distributed object servers. The closest relevant research is in the
fields of load balancing, client/server performance and distributed computing. Most state of the art load balancing
techniques address scheduling of given set of tasks on a set of given machines. Some techniques only deal with tasks
that are independent. Others deal with dependent tasks that are usually linked together by temporal logic and mutual
exclusion constraints.

Object servers do not have independent tasks. All methods in all object types in a single object server are related at least
by locality and more often by the interaction between the object types. Also, the number of times a method is called is
not given, but rather depends on undetermined interactions with end users, very much like the situation in client/server
performance research. We propose a system that enables optimization of object server deployment to meet changing
needs.

3. CURRENT PRACTICES
Because of the difficulty in producing the infrastructure code necessary to support distributed object computing, many
developers produce huge monolithic object servers [11]. A powerful machine is usually needed to adequately handle this
server and successful applications that experience large increases in the number of users may outgrow the capabilities of
the fastest available single machine. With automated code-generation tools, these servers will be much easier to produce
and reconfigure [12]. This allows servers to be partitioned by allocating unrelated or loosely related objects types to
different physical servers that can be deployed across the network to take advantage of the available assets. By taking
advantage of all the assets on the network, faster response times can be achieved [11].

Loosely related object types are defined as object types that contain associations to other object types. When these
object types reside in different physical object servers, the result is an object server that calls on other object servers. A
server that calls other servers is a complex. server [11.

Many networks of compu ters are installed with a single purpose in mind. Over time, these networks support an evolving
set of tasks. Even though the original role the network played can change dramatically, rarely does a single system
engineer revisit the deployment strategy for the entire system. What a user ends up with is usually the product of
multiple system engineers' choices made based on the latest incremental changes without regard for the sysitem as a
whole and interactions among its roles. It is infeasible, because of cost, to hire a. system engineer to re-assess the whole
system every time a change occurs. In the end, the user is left with a system whose deployment strategy borders on
randomness.

4. OPTIMIZATION OF DISTRIBUTED OBJECT-ORIENTED SYSTEMS
The goal of this paper is to describe a method that can generate distributed object oriented server deployment
architectures to take advantage of network resources for the purpose of reducing average client response time. A system
that carries out this method must be able to reason about deployment strategies of loosely related objects. The proposed
system maps all of these profiles into equations to minimize average client response time.

Average client response time was chosen as the optimization criteria over others. In this paper, the goal was to be user
centric. Criteria that focused on maximizing machine utility were not germane. Average client response time was
chosen over minimizing the maximum response time of one call because the method takes into account the entire usage
profile.

4.1 Optimization Model
The equations that need to be solved will minimize the sum of all of the response times for a given call pattern over a
given time interval. Since we want to allow the user the freedom to run client applications from anywhere on the
network, we will ignore all processing on the client machines and all network delay between client machines and server
machines. The only factors we will consider for optimizing our server deployment are the processing on the object
server and the network delay between complex object servers. Therefore, the objective function that we wish to
minimnize is:

Minimize [~anm * Rn Snorin ff Qu]Y _'

114

subject to the following four constraints:

1. Object Servers cannot be split across machines.
a nm = 1, iff server n is running on machine m

0, otherwise
2. Each Server can run on only one machine [no multiple instances of the same server.

Vn [Ea.m 1]

3. RAM usage by the object servers cannot pass a set threshold on each machine.

Vm [anm* V.5T.,*U
-n=O

4. CPU time on a given machine cannot surpass the corresponding real time interval.

Nm[a.. * Snor <C
In=O S.a

where

N = Number of object servers
M = Number of physical machines
anm = server n is running on machine m

Rn = Normalized machine load of server n (seconds, s)

S norm = Speed of the normalizing machine (MHz)

Sm = Speed of machine m (MHz)

Bui = Data sent between server i to server j (bits, b)

aiJ = Network Speed between server i to server j (bps)

T. = Physical RAM on machine m (bits, b)

V. = Memory allocated by server n (bits, b)

U = Multiple to limit RAM utilization [0.1,3.0]

C = Time Interval [seconds, s]

NOTE: All terms are fixed either by measurement or input except for anm . The model varies all possible

combinations for anm and finds the minimum based on the above objective function and constraints.

4.2 Evolution
Over time, a collection of hardware, software and user requirements will change in a given environment. Common
hardware changes consist of adding new computers, removing old computers, upgrading CPUs, modifying RAM and
modifying network bandwidth capacity. Each of these hardware changes will produce an event that would trigger the
system to re-evaluate its deployment strategy.

115

Software can also be quite dynamic in nature. New object servers and applications can appear. Old ones can be
removed. Existing object schemata and methods can be changed. Each of these changes would trigger an event to re-
evaluate the deployment strategy.

4.3 Loosely Related Objects
Not all objects types that are related must necessarily be contained in a single object server. There is a point where the
performance of the system would improve by moving the object type into a different server. This is usually the case
when none of the application code exercises an inter-server method call or exercises it only very rarely. Large message
sizes and slow network speeds will push for related object types to be co-located. The approach will be able to reason
about not only deploying object servers, but also recommend the schema supported by these object servers.

4.4 Priority Setting
User requirements can also be in a state of flux. Most computer systems are used to support multiple jobs. Business-
hour requirements can differ greatly from after-hours computational requirements. A developer's network of computers
can support multiple projects, but may need to be optimized for a single project for demonstrations. In the military, the
operational mission being supported can change significantly. For example, a set of distributed object servers could be
used to support many applications aboard a ship. These applications could handle such tasks as Anti-Submarine Warfare
(ASW), Anti-Surface Warfare (ASUW), Anti-Air Warfare (AAW), Electronic Warfare (EW), humanitarian missions and
rescue missions. The relative computational activity of these applications could differ significantly on different missions
of the ship.

Optimizing a system of object servers for all possible roles would not be optimal when the system is only performing a
couple of missions at a time. By profiling each role, the user could choose to re-optimize his deployment to decrease the
response time when user chosen roles change. In this way, the user could tune his system to give peak performance for
the task he is currently trying to perform.

4.5 Profiles.
The tricky part is to figure out what elements are needed in the different profiles, how to map these profiles into
equations and then model how these profiles interact with each other. The more complex the modeling of the hardware
becomes the more computationally intensive the approach will become. Initially we demonstrxate an approach with
rather simplistic profiles to demonstrate its capabilities.

4.5.1 Hardware Profiles
The aspects being modeled in the hardware profiles include characteristics of each computer such as CPU speed and
physical RAM size. The hardware profile also models the network speed between each computer. Current hardware
profiles do not directly support multi-processor computers, but they could be modeled as groups of separate nodes with
very high "network speeds" between them.

4.5.2 Object Server Profiles
Object servers need to be profiled for mnetrics associated with each method call in each object. The computational time
of each method call should be captured and normalized to a specific hardware architecture. Since object servers ideally
run continuously, the RAM of the object server must also be measured and summarized. The hardware profile and the
object server profile is sufficient to optimize the server deployment for the case where all the funictionality contained in
all the objects is of equal value to the user. Metrics can be collected easily with a small client application that exercises
each method call and records the data. Thus, actual implementation code for the application isn't needed to estimate the
object server profiles.

4.5.3 Client Application Profiles
Ideally, client applications would be delivered with their profiles. If the code is available, then the source can be parsed
to find all possible object invocations. Since exact frequencies of method calls are not algorithmically computable in the
general case, measurement is necessary to reliably estimate frequencies of calls. The system must allow a user to create
typical scenarios and record the method calls that occur in the scenario. This could be done by simulation or monitoring
calls to the object servers when the system is in a training mode. The plus side to this method is that the user could
represent more complex tasks involving many user interactions in a single profile. Numerous tools exist for complex
event processing in a distributed system [5, 6].

116

4.5.4 User Profiles
User profiles or roles indicate how a user interacts with the system over a given period of time. In simplistic terms, it is
like keeping track of how many times each button is selected over a given time interval. Average button push rates can
be expressed as number of events per second. The user can collect this data manually or automatically by the system
with audit trails. Multiple roles can exist for each user. The user could then select a set of roles and have the system
come up with an optimal deployment strategy to meet these criteria.

4.6 Profile Mappings
In order to compute the optimal deployment strategy given a set of profiles, one needs to map these profiles into
equations that can be solved for minimum response time. To illustrate the mappings, we present an example. The
example consists of three machines, three object servers and three client applications. The method demonstrates the
differences in deployment for a system tuned to a users-specific role. Table 1 shows the profile for the computer
hardware available.

Table 1. Machine profile for example.

IMACHINE IRAM (bits) ICPU Speed (MHz)
-SIX 512,000,000 = 64MB 600
IBR733 11,024,000,000 = 128MB I733
GIGA 1,024,000,000 = 128MB 1000

Table 2 shows the network bandwidth available to communicate from each machine to the other. In this example, the
machines will have equal bandwidth between machines as is the case when all servers are running on the same local
LAN. The speed of communications between servers on the same machine is more difficult to predict. These speeds
usually lie in the interval bounded by the speed of the machines back plane and the speed of the network. It is dependent
on the operating system, implementation of the middleware, and other factors. For this example, we assume that intra-
machine communication is twice as fast as inter-machine communication. In the absence of measurements, the system
can be run with best and worst case scenarios by specifying the boundary values identified above.

Table 2. Network speed.

Machine to Machine -SIX BR733 GIGA
Speed (bps)

six .200,000,000 100,000,000 100,000,000
BR733 -100,000,000 200,000,000 100,000,000
GIGA 1 100,000,000 100,000,000 200,000,000

Besides the hardware profiles, we need to have the server profiles. Table three lists each server's RA.M requirements.

Table 3. Server RAM requirements.

SERVER RAM Required (bits)
A 352,000,000 = 44MB
B 480,000,000 = 60MB
C 528,000,000 = 66NMB

Additional parts of the object server are the timing of each individual method call available in each server and a list of
complex method calls. All of these measurements were taken on a single machine to normalize the values. In this
example, server A has one four methods, server B has two methods, and server C has three methods.

Table 4. Normalized Server Loads.

SERVER Method CPU time (s) Average Size of
Message ()

A 1 0.5796 112000
A 2 2.6203 18400
A 3 1.18175 44800
A 4 2.0264 176000
B 1 1.76655 4000000
B 2 3.70085 2720000

117

C 1 3.0043 320000
C 2 4.8040 4000000
C 3 0.48815 400000

A complex method call is a method call that calls another object server. These method calls require special handling in
measuring their load on the host server and in the objective function for optimizing the system. Table 5 lists the complex
method calls in this example.

Table 5: Complex Method Calls

I Complex Method Exterior Calls
B.2 C.1

The last information needed to optimize the system is information about the applications and the users. This step adds
roles to the list of profiles for the system to optimize. These roles have more realistic use patterns for the different jobs a
user would actually perform on the system. For this example, we will have three client applications with two buttons,
nine buttons and three buttons respectively.

Let's assume that there are three different roles the network of computers supports for the user and the following is the
use pattern shown in Table 6, and that the buttons call the following server methods shown in Table 7. Method calls that
appear in italics in Tables 7 and 8 are complex method calls. They appear in italics to remind us that these methods
require special handling when figuring out the objective function.

Table 6. Roles.
ROLE CALL PATTERN (observation interval is 990 seconds)
Role 1 50 C1.B1 + I CI.B2 + I C2.B1 + I C2.B6
Role 2 10 CLI.B + 40 C1.B2 + 24 C3.B2
Role 3 50 C2.B5 + 10 C2.B9 + 30 C2.B3 + I C2.B2 + I C3.B2

Table 7. User interface calls.

Button Methods Called
CL.B1 A.1
CL.B2 A.2 + B.1
C2.B1 C.1 + C.2
C2.B2 C.3
C2.B3 C.2
C2.B4 C.3
C2.B5 A. 1 + B.2
C2.B6 B.2
C2.B7 A.4
C2.B8 C.3 + A.3
C2.B9 A. I + A.2 + A.3 + B.2
C3.B1 C. 1
C3.B2 B. I + B.2
C3.B3 C.2

By substituting the user interface calls into the roles matrix, we get an objective function for optimizing the system

shown in Table 8. All other method calls will be ignored.

Table 8. Roles to server calls.

ROLE Methods Called in Role
Role 1 50 * (A.1) + 1 * (A.2 + B.1) + 1 * (C.1 + C.2) + I * (B.2)
Role 2 10 * (A.1) + 40 * (A.2 + B.1) + 24 * (B.1 + B.2)
Role3 50 * (A.1 + B.2) + 10 *(A.1 + A.2 + A.3 +B.2) + 30 * (C.2) + 1* (C.3) + 1

* (B. I + B.2)

118

4.6.1 Filling in the Equation for Role 1
Role 1 consists of 50 Cl1.13l calls, one C 1.132 call, one C2.B13 call, and one C2.B36 call. The first step is to convert all of
the button calls into method calls by substituting the values for the calls from Table 4.
50 [A.lI]+l[A.2 +B.lI] +1[C.lI+ C.2]+1I [B. 2]=
50 (A.1I + 1 [A.2 + B.lI] + 1 [C.lI + C.2] + 1 [B.2 + C.l I
50 A.1 + A.2 +B.1 + CA + C.2 +B.2 +CAl
50 A.1 + A.2 +B.1 + B.2 +2 CA + C.2
This leads to the following values for the array R for the optimization equation.
"R (A) = 50 [A. 1 values for CPU] + 1 [A.2 value for CPU]

= 50 [579.61 + 1 [2620.3]
= 31600.3

"R (B) = I [B.1I values for CPU] + 1 [B.2 value for CPU]
= 1 [1766.55] + 1 [3700.85]
= 5467.4

"R (C) = 2 [C. 1 values for CPU] + I [C.2 value for CPU]
=2 [3004.3] + 1 [4804.0]

= 10812.6
There is only one italicized method call prior to substitution, so there is only one network value to deal with.
BITS[B,C] =1 [B.2 message in bits]

=320000

4.6.2 Filling in the Equation for Role 2
Using the same approach as in 4.6. 1, we get the following for Role 2:
"R(A)= 110608

" B)201879.6
"R (C) -72103.2
There is only one italicized method call prior to substitution; so there is only one network value to deal with. However,
it is called 24 times.
BITS[B,C] =24 [B.2 message in bits]

=24 [320000]
=7680000

4.6.3 Filling in the Equation for Role 3
"R (A) = 72796.5
"R (B) = 227518.4
"R (C) = 327870.45
BITS[B,C] = 19520000

4.7 Model Solutions
All of the information above is run through a LINGO model that varies the location of the object servers on the different
machines to find the a solution set that minimizes the value of the objective function. The model prompts the user for
inputs bandwidth, RAM percentage and computational time limitations. Changing any of these variables will lead to
different model outputs [10].

4.8 Model outputs
This method outputs the following deployment strategies for the different roles when setting different RAM limits and
keeping all other variables the same as in the last example. Solving the optimization problem defined in section 4.1 with
the parameter values determined in section 4.6 derives these results.

Table 9. Single user deployment strategies for different roles. RAM limit set to 1.5.

Machine IRole 1 (user) IRole 2 (1 user) IRole 3 (1 user)
six None None None
BR733 None INone INone
GIGA A, B, C A, B, C A, B, C

119

Table 10. Single user deployment strategies for different roles. RAM limit set to 1.0.

Machine 1 Role 1 (1 user) Role 2 (1 user) Role 3 (1 user)
SIX None None None
BR733 B C A
GIGA A, C A, B B, C

Table 11. Multiple concurrent users deployment strategies for different roles. RAM limit set to 1.0.

Machine Role 1 (28 user) Role 2 (4 user) Role 3 (3 user)
SIX None A A
BR733 B, C C B
GIGA A B C

From the model output, we can see that when a single user is present and RAM is not a limiting factor, the result is that
all the servers migrate to the fastest machine. However, when we start to limit RAM, the servers start to spread out. The
first server to leave the fastest machine turns out to be different in each role. Multiple concurrent users also tend to
spread the servers across the available machines. The significance of the model is that different roles and different
numbers of concurrent users lead to different optimal configurations in most cases for this example. No single static
configuration can outperform the ability to change configurations based on perceived changes in the usage of the system.

4.8 Experimentation
We tested the validity of the model by experimental measurement. A testbed was created with Windows 2000 machines
that match the characteristics of the machines in the above example. Servers were created using JDK 1.3 and RMI as the
middleware. Software to simulate the three different users was also created. The user was simulated with a random
choice for button selection that has a uniform distribution similar to the roles. This simulation software was
instrumented to measure the actual time the software was blocked waiting for an object server method call to response
[10]. All 27 different configurations were established and the average response time for each configuration was
measured and recorded. Between each simulation, the testbed machines were reboot~d.

All 27 configurations were tested twice. One tested the configuration with the object servers using much less than the
stated memory needs. Another tested the configuration with the object servers using all of the stated memory needs.
Some configurations strained the machines memory limits. These configurations resulted in system failures in the test
with the object servers using all of the stated memory needs. These system failures are listed as error in the tables of
results. It should be noted that Windows 2000 did a much better job of swapping when memory utilization exceeded
100% than a previously tested operating system, Windows NT.

4.8.1 Experimentation Results

The below table is a tabulation of experimental results obtained from measuring the outputs of a test system.

Table 12: Measured Response Times

PAT A B C ROLE I ROLE2 ROLE3 R1MEM R2MEM R3MEM

1 GIGA GIGA GIGA 976.331 5150.362 6741.948 977.343 5120.184 6776.846
2 GIGA GIGA BR733 899.344 5530.329 8266.516 942.984 5580.438 8213.157

3 GIGA BR733 GIGA 960.811 6417.171 7802.172 887.031 6349.859 7900.562

4 GIGA BR733 BR733 1079.641 6686.376 9124.938 1041.391 6696.141 9217.953
5 BR733 GIGA GIGA 1140.796 5953.015 7413.343 1144.672 5874.642 7267.639

6 BR733 GIGA BR733 1218.875 6233.064 8508.343 1282.643 6204.922 8519.844

7 BR733 BR733 GIGA 1119.092 6877.968 8142.719 1228.031 6838.001 8232.064

8 BR733 BR733 BR733 1186.861 7238.876 9428.658 1409.515 7215.576 9373.861

9 GIGA GIGA SIX 991.531 5958.547 9259.221 1039.298 5916.187 9463.079

10 GIGA SIX GIGA 878.782 7176.861 8627.407 962.609 7288.954 8532.983

11 GIGA SIX SIX 1157.765 7852.795 10712.984 error error error

120

12] SIX GIGA GIGA 1274.376 6375.549 7332.718 1348.828 6424.484 7346.219
13 SIX GIGA SIX 1402.687 6969.187 9838.221 error error error

14 SIX SIX GIGA 1413.983 8211.857 8972.002 error error error
15 SIX SIX SIX 1642.232 8644.362 12131.091 error error error

16 BR733 BR7331 SIX 1197.423: 7342.092 10387.125 1262.703 7322.595 10529.611

17 BR733 SIX BR733 1306.374 7862.331 10360.985 1439.251 8148.969 10123.563
18 BR733 SIX SIX 1305.296 8514.078 11067.388 error error error

19 SIX BR733 BR733 1291.719 7601.829 9591.424 1535.657 7742.921 9770.578

20 SIX BR733 SIX 1467.437 8033.173 10590.126 error error error-
21 SIX SIX BR733 1441.421 8222.031 10185.453 error error error

22 GIGA BR733 SIX 1114.344 6987.719 10259.391 982.687 6967.624 10193.641
23 GIGA SIX BR733 1068.765 7423.048 9834.875 1131.969 7343.782 9804.983
24 BR733 GIGA SIX 1246.361 6515.812 9563.001 1311.905 6613.031 9617.297

25 BR7331 SIX GIGA 1304.703 7783.171 8743.235 1189.655 7548.561 8865.811
26 SIX IGIGA BR733 1355.594 6752.499 8625.439 1390.297 6772.453 8860.094j
27 SIX IBR7331 GIGA 11306.6871 7380.8281 8259.0471 1344.611 7457.968 8328.064

4.8.2 Role I
The models chose a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern 3
when RAMv was limited to 100% utilization. Pattern 3 was the third fastest average response time in the minimal
memory run and the fastest average response time in the stated memory run. The fact that pattern 10 was the fastest
average response time in the minimal memory run is a result of the variability of the simulation [10]. Pattern I was the
fourth fastest on both runs even though it was the predicted configuration when RAM usage was set to 150% of physical
RAM in the model. More interesting from a software engineering standpoint was the fact that the model proposed a
configuration that outperformed most configurations from 10 to 44 percent and that the recommended patterns were free
from failures.

4.8.4 Role 2
The models predicted a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern
2 when RAM was limited to 100% utilization. In the two runs, the models predicted configuration of pattern 2 was the
second fastest average response time in both runs. Pattern I was the fastest average response mn both runs, which is the
predicted configuration when RAM usage is 150% of physical RAM. Again, the configuration chosen by the model
outperformed most configurations from 10 to 38 percent.

4.8.5 Role 3
The models predicted a configuration of pattern 1 when RAM was set at 150% utilization and a configuration of pattern
5 when RAM was limited to 100% utilization. In the two runs, the models predicted configuration of pattern 5 was the
third fastest average response time in the minimal memory run and the second fastest average response time in the stated
memory run. Pattern 1, the fastest average response time in both runs, was the predicted configuration when RAM usage
was set to 150% of physical RAM. The fact that pattern 12 was the second fastest time in the minimal memory run is a
result of the variability of the simulation [10]. Again, the model proposed configuration outperformed most
configurations from 10 to 44 percent.

5. CONCLUSION
The approach seems to have merit and produce useful results. The system responds in a reasonable way with changes is
the environment, constraints placed on the system, and different roles that a user might want. Since all of these changes
take place on a given network of computers, static deployment strategies will never utilize the assets available to better
support the end user. The strategies chosen by our model were robust in the sense that performance was good even when
actual loads departed from predicted loads.

Predicting exactly how a user will interact with a system that supports multiple roles will always be an inexact science.
This system provides an adaptive software engineering approach to a real world problem that currently does not have a
better solution. No solution can be exact because of the limitations inherent in modeling users, software, hardware, etc.

121

Perhaps the most significant capability added by our model is the ability to automatically grow to the point where
machine limits are exceeded and hard failures occur.

6. FUTURE WORK
The system needs to be refined to more precisely reflect the workings of the network of computers. These refinements
include allowances for asymmetric communications, more precise models for computers, operating systems, middleware,
and queuing delays. Aggregated tuples of these models will be necessary to better evaluate the impact of RAM utility on
processing speed.

Tools will also need to be produced to ease the collection of data for the profiles. The initial prototype uses a manual
process involving LINGO 6 using data from previously collected metrics. The ability to easily collect the necessary
metrics and automatically solve the problem is desirable. A tool that maintained roles and could start the servers on the
given machines for that role would also be helpful. In a mature system, the tools should also automate the server code
generation and reconfiguration processes.

The approach could also be used to optimize other kinds of systems involving servers, such as web sites and relational
databases by modeling each server as an object. This would enable better deployment strategies, especially since many
of these non-object servers could be tightly coupled to object servers. Of course, combinatorial explosion is also an
issue. Larger systems can cause significant delays in computing deployment strategies. More realistic models as
mentioned above could also significantly impact the processing time.

REFERENCES

[1] Adler, R., "Distributed Coordination Models for Client/Server Computing," IEEE Transactions on Computers,
pp. 14-22, April 1995.
[2] Berzins, V. and Luqi, "Software Engineering with Abstractions", chapter 6, Addison-Wesley, ISBN 0-201-
08004-4, 1991
[3] Kim, J., Lee, H. and Lee, S., "Replicated Process Allocation for Load Distribution in Fault-Tolerant
Multicomputers," IEEE Transactions on Computers, vol. 46, no. 4; pp. 499-505, April 1997.
[4] Loh, P., Hsu, W., Wentong, C. and Sriskanthan, N., "How Network Topology Affects Dynamic Load
Balancing," IEEE Transactions on Parallel and Distributed Technology, vol. 4, no. 3, pp. 25-35, Fall 1996.
[5] Luckham, D. and Frasca, B., "Complex Event Processing in Distributed Systems," Computer Systems
Laboratory Technical Report CSL-TR-98-754. Stanford University, Stanford, 1998.
[6] Luckham, D. and Vera, J., "An Event-Based Architecture Definition Language," IEEE Transactions on
Software Engineering, Vol 21, No 9, pp. 7 17 -7 34 . Sep. 1995.
[7] Lui, J., Muntz, R. and Towsley, D., "Bounding the Mean Response Time of the Minimum Expected Delay
Routing Policy: An Algorithmic Approach," IEEE Transactions on Computers. Vol 44, No. 12, December 1995, pp.
1371-1382.
[8] Mehra, P. and Wah, B., "Synthetic Workload Generation for Load-Balancing Experiments," IEEE Transactions
on Parallel and'Distributed Technology, vol. 3, no. 3, pp. 4-19, Fall 1995.
[9] Perrochon, L., Mann, W., Kasriel, S. and Luckham, D., "Event Mining with Event Processing Networks," The
Third Pacific-Asia Conference on Knowledge Discovery and Data Mining. April 26-28, 1999. Beijing, China, 5 pages.
[10] Ray, W., "Optimization of Distributed, Object-Oriented Systems," PhD Dissertation in Software Engineering,
Naval Postgraduate School, September 2001.
[11] Ray, W., Berzins, V. and Luqi, "Adaptive Distributed Object Architectures," AFCEA Federal Database
Colloquium 2000 Proceedings, pp. 313-330, September 2000.
[12] Ray, W. and Farrar, A., "Object Model Driven Code Generation for the Enterprise," IEEE RSP 2001, June
2001.

122

Use of Object Oriented Model For Interoperability in Wrapper-
Based Translator for Resolving Representational Differences

between Heterogeneous Systems+

Paul Young, Valdis Berzins, Jun Ge, Luqi

Department of Computer Science
Naval Postgraduate School

Monterey, California 93943, USA

Email: {young, berzins, gejun, luqi}@cs.nps~navyamil

ABSTRACT majority of these object-oriented developments is that a
development team that shared common objectives and

One of the major concerns in the study of software had a common view of the real-world entities being
interoperability is the inconsistent representation of the modeled produced them. Often, the developments also
same real world entity in various legacy software involved a common -architecture implemented on a
products. This paper proposes an object-oriented model common target platform, using the same implementation
to provide the architecture to consolidate two legacy language and operating system. As a result a single
schemas in order that corresponding systems may share method of representation of an entity's name, attributes,
attributes and methods through use of an automated and operations is the norm. Even on heterogeneous
translator. A Federation Interoperability Object Model implementations by the same development team,
(FIOM) is built to capture the information and operations consistency in the names, attributes and operations used
shared between different systems. An automatic for the same real-world entity is likely across the various
translator generator is discussed that utilizes the model to elements of the architecture. Therefore, capturing the
resolve data representation and operation implementation representation of these properties has not been an issue.
differences between heterogeneous distributed systems. The software representation of the real-world entity

should have the same name, attributes, and operations
Key words: interoperability, object-oriented model, across all elements of the architecture if the development
federation interoperability object model, wrapper team enforces consistency.

1. INTRODUCTION This is not necessarily the case when independently
developed, heterogeneous systems are targeted for

In contemporary object-oriented modeling, an object is a integration and interoperation. The different perspectives
software representation of some real-world entity in the of the real-world entity being modeled by independent
problem domain. An object has identity (i.e., it can be development teams will most likely result in the use of
distinguished from other objects by a unique identifier of different class names as well as differences in the number,
some kind), state (data associated with it), and behavior definition, and representation of attributes and operations
(things you can do to the object or that it can do to other for the same real-world entity implemented on two or
objects). In the Unified Modeling Language (UML) these more different systems. It is the same situation for non-
characteristics are captured in the name, attributes, and object-oriented fashioned systems. These differences in
operations of the object, respectively. UML distinguishes representation of the same real-world entity on different
an individual object from a set of objects that share the systems must be reconciled if the systems are to
same attributes, operations, relationships, and semantics- interoperate.
termed a class in the UML. [BRJ99]

This paper proposes an object-oriented model for defining
This view of objects and classes has proven valuable in the information and operations shared between systems.
the development of countless systems in various problem The initial use of the model is targeted for integration of
domains encompassing all degrees of size and legacy systems, which generally have not been developed
complexity. However, one common characteristic of the using the object-oriented paradigm. Defining the

+ This research was supported in part by the U. S. Army Research Office under contract/grant number 35037-MA and

40473-MA.

123

interoperation between systems in terms of an object translation.
model however, provides benefits in terms of the
visibility and understandability of the shared information For each attribute representation, the interoperability
and provides a foundation for easy extension as new object nmdel class diagram will contain information used
systems are added to an existing federation. The object in establishing that the different representations refer to a
model defined in this paper can be easily constructed common characteristic of the real-world entity being
from the external interfaces defined for most legacy described. This includes information about both the
systems (whether object-oriented or not). syntax of the attribute (attribute type, structure, size, etc.)

and the semantics of the attribute (attribute role,
Section 2 will introduce the object-oriented model for description, etc.). This information is depicted for
interoperability (OOMI) and its structure. In Section 3, attribute ct representation I in Figure 2 as atRl Syntax and
an interoperability object model is defined for a specified aRi Semantics, respectively.
federation of systems. Section 4 presents a overview of
the use of the Federation Interoperability Object Model In addition, the model will contain one or more
(FIOM) by a wrapper-based translator for enabling translations required to convert between different
general solution to construct the wrapper architecture representations of that attribute. These translations can be

interoperability among legacy systems. defined on a pair-wise basis for all possible
representations- requiring n(n-1) translations for n

2. OBJECT-ORIENTED MODEL FOR different representations. Alternatively, they can be

INTEROPERABUI1TY defined using the standard representation as an
intermediate representation and translation performed in

An extension of the contemporary object model class two steps (representation 1 to standard to representation
diagram, depicted in Figure 1, is proposed to model the 2), requiring 2n translations. The two-step translation
different possible ways an object might be represented in method is depicted in Figure 2, with translation
a federation of independently developed heterogeneous aR, ToSTDO defined to translate an instance of attribute a
systems. The proposed extension includes information from representation 1 to the standard representation, and
about the different representations that an object's translation STDTocCRIO defined to translate an instance of
attributes and operations may take in different systems in the standard representation of attribute ca to representation
the federation. 2.

Similarly, the interoperability object model class diagram
Class Name extends the contemporary object model class diagram to

include information about different possible
Attributes: a, 1, , 6, •,y ... implementations for each operation. Implementation

differences may include differences in operation and
Operations: A, B, X, A, • parameter naming, differences in the number and type of

efor Each System parameters invoked by the operations, and differences in
Figure 1. Contemporary Object Model rthe internal algorithms used by each operation. As long

This alternative object model includes the following as the dynamic behavior of the two implementations is

extensions to the contemporary object model. First, as equivalent for the same input and output conditions, they

depicted in Figure 2, the object oriented model for can be used interchangeably. Thus, the OOMI class

interoperability (OOMI) class diagram will contain a diagram includes information necessary to determine if
different implementations of an operation are inter-

representative of all attributes included in any defined

representation of the real-world entity modeled by that accessible. This includes information about both the
syntax of the operation (naming, parameters, etc.) and the

class.h In FigurEa2cthes r attributes aay havesemantics of the operation (operation role, behavior,

through 0 Each attribute may have multiple description, etc.). In addition, for each operation, the
representations, resulting from differences in model will contain one or more translations required to
interpretation by the component system design teams. account for operation name and parameter variations

From Figure 2, each of attributes a through 0 has n found in different operation implementations. Figure 3
representations, labeled aRl through at for attribute c4 illustrates the operation extension provided in the OOMI
and similarly for each of the other attributes. A standard class diagram.
representation for each attribute is also included, labeled

StrD for attribute a in Figure 2. The standard
representation is chosen by the interoperability designer
as an intermediate representation to be used during

124

S ATTRIBUE

aR a' aST 6I Oto S
tRI Syntax a. Syntax ams Syntax 40a, Syntax Oto Syntax 4i-m Syntax

XR I Semantics ... a• . Semantics asm Semantics OR, Semantics OR. Semantics ¢sm Semantics

a.,ToSTD () a,,oToSTD () €•ToSTD () 4¢,.ToSTD ()
STDToaRI) SrDToCaR () STDToi () STDToOR, ()

Figure 2. OOMI Class Diagram Attribute Extension

[OPERTOS

F- F

An(parml.. A=(parmI,.... As-m(parmI... 2p.(parm1 zi(parml 2sm(parmi-..

parmj) parmj) parmk) parmp) parmq) parmr)

An Syntax AL. Syntax Asm Syntax Z7 Syntax Z., Syntax ZTm Syntax
An Semantics A,. Semantics Asm Semantics Z, Semantics Z Semantics 7--m Semantics

AzIToSTD () AToSTD () ZToSTD 7b) Z_ ToSTD ()
STDToAu (J) STDTOAi, () STDToZT () STDToZ6 ()

Figure 3. OOMI Class Diagram Operation Extension

each operation, the interoperability designer defines a
standard implementation for that operation which is used

CLASS STRUCTURE as an intermediate representation during translation. For

each implementation syntactic and semantic information
is provided in order to establish a correspondence with

J C I 'other operation implementations that are equivalent- for
example ZIn Syntax and Z1• Semantics for operation Z

System = ABC Sysuem =ass implementation n. Finally, translations Z1, ToSTDO and
Aattnr = CnXattnr = [STDToZinO are used to translate operation and parameter

names from operation Z implementation n to the standard

Aattrý = t Xattr, = -- representation for operation Z's name and parameters, and

Aopi = B Xop, = A vice versa.

Aop,. = M XOpk = In addition to having different representations for the
same attribute or different implementations for an

Figure 4. OOMI Class Diagram Class Structure operation, heterogeneous object designers may provide

different numbers and types of attributes and operations
From Figure 3, it can be seen that the depicted class for the same real-world entity. One representation of that
diagram contains operations A through Z and that each real-world entity might include attributes and operations
operation has a number of different implementations. For that another representation omits. Because of this

example, operation Z has implementations Zil through ZI, difference, a mechanism must be provided to capture the
each with a potentially different set of parameters. For

125

attributes and operations present in the various
representations of the entity. This is provided through the <<Interoperability Class>>
addition of a Class Structure property to the Name
interoperability object model class diagram.

Class Structure (Figure 4)
Figure 4 depicts the OOMI class structure property for an Extended Attributes (Figure 2)
example class. A representation of this class is found in
the external interface of a number of systems; as specified Extended Operations (Figure 3)

by the ClassA through ClassX class diagrams that
comprise the aggregate Class Structure property. For Figure 5. OOMI Class Diagram
each representation, a list of the attributes and operations
included in that representation is included. In addition, 3. CONSTRUCTING INTEROPERABILTY
the system of origin of the class and whether the class is OBJECT MODEL FOR FEDERATION OF
exported CroducerClass) or imported (ConsumerClass) HETEROGENEOUS SYSTEMS
by the system is also included in the class's attribute
property. As indicated in Figure 4, ClassA contains The previously introduced Object Oriented Model for
attributes Aattrl through Aattrn and operations Aop, Interoperability enables information sharing and
through Aopm. Attribute and operation names for Aattri cooperative task execution among a federation of
through Aattrn and Aop1 through Aopm are the names used autonomously developed heterogeneous systems. Using
by system ABC as contained in ABC's external interface. the information contained in the OOMI class diagrams
In addition to listing the attributes and operations included computer aid can be applied to the resolution of data
for each representation, the attributes and operations are representational differences between heterogeneous
identified in terms of the standard names provided in the systems. In order to apply computer aid, a model of the
attribute and operation properties of the class. These real-world entities involved in the interoperation, termed a
standard names are used together with the local names to Federation Interoperability Object Model (FIOM), is
locate thetranslations used to convert the attributes and constructed for the specified system federation.
operations to a different representation (to or from a Construction of the FIOM is done prior to rmn-time by a
standard representation). system designer with the assistance of a specialized

toolset, called the Object Ohiented Model for
In summary, the Object-Oriented Model for Interoperability Integrated Development Environment
Interoperability is an extension of the contemporary (OOMI IDE).
object model, augmenting the contemporary model class
diagram with a Class Structure property and extending the The process of constructing a FIOM for a specified
Attribute and Operation properties to capture the different system federation essentially consists of identifying the
representations possible for those properties in a real-world entities that reflect the shared information and
federation of autonomous heterogeneous systems. The tasks and capturing the different representations used by
model is extensible in that adding new representations for systems in the federation for that entity. Each real-world
an attribute or operation or for a class merely adds a class entity is represented in the FIOM as a class, termed a
to the existing properties while preserving the existing Federation Interoperability Class (FIC), constructed from
representations. The model increases the level of the classes contained in the component systems' external
abstraction dealt with by the interoperability engineer by interface.
enabling him to think in terms of the real-world entities
participating in the interoperation between systems and Determination of the real-world entities that define the
not in terms of the different representations used. And interoperation of a federation is not merely a matter of
finally, by capturing the information needed to represent identifying the classes involved in the external interfaces
the relationships between entity representations and the of the systems in the federation. Because of the
translators necessary to convert between representations, independently developed, heterogeneous nature of the
the OOMI supports automated conversion between object systems in the federation, each system may have a
representations. Figure 5 provides a top-level summary different representation for the real-world entities
of the proposed OOMI Class Diagram. involved. Thus, the classes and objects that realize the

external interfaces of the component systems must be
correlated to determine which representations reflect the
same real-world entity. Correlation software is included
as part of the OOMI IDE in order to assist the system
designer by providing a small set of selected
correspondences to be reviewed by domain experts.

126

4. AUTOMATIC WRIAPPER GENERATION without modifying the underlying component code.
Figure 6 presents an overview of the use of software

System interoperability involves both the capability to wrappers and the involvement of the Federation
exchange information between systems and the ability for Interoperability Object Model in the translation process.
joint task execution among different systems. [PIT97]
Both capabilities involve one or more of the following The translations required by the wrapper-resident
kinds of actions: translator for both information exchange and joint task

execution are similar. For information exchange, the
"* Send One system transmits a piece of source system provides the exported information in the

information to another form of a set of attributes or objects of a producer class in

"* Call One system invokes an operation on the native format of the producer. In order to be utilized
another by a consumer system, the exported information must be

"* Return Returns a value to the caller converted into the format expected by the destination

"* Create Creates an object on the called system system. For joint task execution, a client system provides

"* Destroy Destroys an object on the called system an operation name and a set of parameter values to a

[BRJ99] server system in the native format of the producer. The
parameters may be attributes, operations, or objects of a

Information exchange is accomplished through means of client class. Again, this information must be provided to

aSend operation, where one system, the producer, exports the destination system in a format recognized by that

information that another system, the consumer, imports. system. Thus the operation name, operations, and

Information transmitted by the producer system can be in parameter values must be converted to the server

the form of an object of some class defined for the representation.
producer, or it can consist of one or more attributes of an Asidctdaoethtrnlormtbeaplef

objet ,defied or he poduer.converting instances of a class's attributes and operations

Joint task execution is accomplished through the use of a (or both attributes and operations in the form of an object

Call operation where one system, a client, invokes an of the class) from one representation to another. The

operation on another, acting as a server for the requested information required to effect these translations is

action. In invoking an operation on a server, a client captured as part of the Interoperability Object Model for a

system must provide the name of the operation requested specified system federation during federation design. As

as well as any parameters required by the server to presented in Figures 3 and 4, each attribute and operation

perform the operation. Required parameters can be in the of a class representing a real-world entity defining the

form of one or more attributes, operations, or objects. In interoperation includes methods to enable the translation

addition, in response to a client Call operation, a server between attribute and operation representations. Then, at

may retumn a set of attributes, operations, or objects to a run time, the translator accesses the information contained

client via a Return operation. Create and Destroy actions in the model to effect the translation between

are special instances of a system call. representations.

When information exchange or joint task execution is The first action the translator must perform is to

performed between heterogeneous systems, the determine the class defining the real-world entity

participating systems must account for differences in corresponding to a transmitted object, attribute, or

representation of the transnitted information. The operation. This can be accomplished through the use of a

Interoperability Object Model constructed during the pre - mapping developed from the MIOM that maps attribute,

runtime phase for a specified federation of component operation, or object representations to the class

systems is used to resolve differences in representation representing the corresponding real-word entity in the

between interoperating; systems. A translator that serves model. For instance, from the example provided in the

as an intermediary between component systems previous section, objects of class ClassA and ConszumerX

accomplishes representational difference reconciliation at as well as the attributes and operations for these classes

runtime. would map to a real-world entity represented by
prototypical class instance RealWorldEntityA. Once the

The translation function is anticipated to be implemented class corresponding to the transmitted object, attribute, or

as part of a software wrapper enveloping a producer or operation is determined, the methods defined for each

consumer system (or both) in a message-based attribute and operation can be used to effect the

architecture, or alternatively as part of the data store translation between representations.

(actual or virtual) in a publish/subscribe architecture. A
software wrapper is a piece of software used to alter the
view provided by a component's extemnal interface

127

Datatype_A Intermediate Type Datatype-X
Representation Representation Representation

S Sstem

zkyx

Federation Interoperability Object Model
<<Interoperability Class>> <<Interoperability Class>>

RealWorldObjectA RealWorldObjectZ

Class Structure Class Structure

Extended Attributes Extended Attributes

Extended Operations Extended Operations

Figure 6. FIOM in Automatic Wrapper Generation

If the transmitted entity were set of attributes, such as the translation performed in two steps using an
would be the case during information exchange, then for intermediate representation of the real-world entity's
each attribute in the set the appropriate translation method attributes.
must be selected. The appropriate translation method is
located by using the Class Structure property to determine As depicted in Figure 7 below, the System ABC wrapper
the standard representation for each attribute and then would intercept the transmitted attributes from System
finding the translations for that attribute in the Attributes ABC. Then, using the mapping outlined above, the
property for the class representing the real-world entity. wrapper-based translator would first determine that the
The translation provided would either be in terms of a intercepted attributes were of class ClassA that
source-to-destination or a source-to-intermediate corresponds to class Real WorldEntityA representing the
representation conversion depending on the approach real-world entity participating in the interoperation.
used by the system designer for the federation. In this Then, for each attribute, the appropriate translation
manner the translator invokes the appropriate translation method must be determined. This translation method can
method for each attribute to convert the attribute from the be determined from the Attributes property, given the
source system representation to either the destination standard representation for the attribute. From
system or intermediate representation. The translated Real WorldEntityA's Class Structure property (see Figure
attribute set is then forwarded to the destination system 4), it is determined that ClassA attribute Aattrn
for appropriate disposition. If an intermediate corresponds to Real WorldEntityA's type Attributea and
representation is used in the translation process, this Aattr2 corresponds to type Attributefl. The appropriate
process is repeated by the destination system to convert translation method is then selectedAttribute._-atranslation
from the intermediate to destination system 1 (AattrToSTDO) for ProducerA attribute Aattrl and
representation. AttributeJ3 translation 1 (Aattr2 ToSTDO) for ProducerA

attribute Aattr2. The translator would apply these
For instance, continuing our example from the previous translation methods to each attribute as appropriate and
section, suppose System ABC were to transmit the forward the resultant intermediate representation to
attributes Aattrj and .Aattr2 from class ClassA to System SystemXTZ.
XYZ. Then presuming that the representation used for
System ABC is not useable by System XYZ, Aattrl and The System XYZ wrapper would intercept the incoming
Aattr2 must be translated to a form useable by System transmission and repeat the process outlined above to
XYZ. For our example a wrapper-based translator on convert the attributes from their intermediate
Systems ABC and XYZ will conduct the translation with representation to the ConsumerX representation as

128

depicted in Figure 7. The resultant translated attributes As an example of operation translation, suppose System
would then be forwarded to System XTZ for disposition. ABC wanted to invoke an operation on System XIZ that

corresponded to System ABC operation Aop,. Such a

If the transmitted entity is an operation with a set of situation might arise if operation Aopp involved a query of
parameters, such as would be the case during joint task system ABC's database and an equivalent operation to
execution, then the translator must enable conversion of find the same information in System XYZ's database was
both the operation name and parameters and translation desired. In order for System ABC to perform such a task,
methods for both operation name and parameter set must an equivalent implementation of operation Aopj must
be selected. The appropriate translation method for exist on System XYZ and any differences in representation
converting the operation name is located by using the between Aopl's name and parameters must be resolved
Class Structure property to determine the standard for System XYZ to be able to execute the operation call.
representation for the operation name and then finding the Resolution of representational differences, is
translations for that operation name in the Operations accomplished by wrapper-based translators on Systems
property for the class representing the real-world entity. ABC and XYZ using an intermediate representation of the
The translation provided would either be in terms of a real-world entity's operations and parameters in a similar
source-to-destination or a source-to-intermediate manner as was previously done for attributes.
representation conversion depending on the approach
used by the system designer for the federation. The As depicted in Figure 8 below, the System ABC wrapper
translator would then invoke the appropriate translation would intercept the transmitted operation from System
method for the operation to convert the operation name ABC. Then, using the mapping outlined above, the
from the source system representation to either the wrapper-based translator would first determine that the
destination system or intermediate representation. intercepted operations were of class ClassA that

corresponds to class Real WorldEntityA representing the
Operation parameters can either be attributes, objects, real-world entity participating in the interoperation.
operations, or their combinations. For attribute Then, for each operation name and parameter, the
parameters, translation of each attribute is conducted as appropriate translation method must be determined. For
described in the attribute translation process above, the operation name, the translation method can be
Translation of object parameters will be discussed in the determined from the Operations property, given the
next paragraph. Operation parameter translation would standard representation for the operation name. From.
involve both operation name and parameter translation as RealWorldEntityA's Class Structure property (see Figure
described above. The translated operation name and 3), it is determined that ClassA operation Aopi
parameter list is then forwarded to the destination system corresponds to RealWorldEntityA OperationB and
for appropriate disposition. As described above for operation Aop 2 corresponds to OperationA. The
attribute translation, if an intermediate representation is appropriate translation method is then selected-
used in the translation process, this process is repeated by OperationB translation 1 (Aop1ToSTDO) for ProducerA
the destination system to convert from the intermediate to operation Aopj and OperationA translation 1
destination system representation. (Aop2 _ToSTDO) for ProducerA operation Aop2.

:ProducerA < RealWorldEntityA < ConsumerX<<_______ become»> <<become>>

Aattr1 * Attribute_a 0 Xattri
Aattr2 Attribute_ Xattrz

Xattr3

Wrapper Wrapper

Figure 7. Mapping Translation to Wrapper Architecture

129

:ProducerA RealWorddObiectA ConsumerX

<<become>> <<become>>
Aop1 (Aattri, Aattrz) --

op(AattrOperationA(Attribute_3) Xop1(Xattr 3)
OperationB (Attribute_(X, Xop2(Xattr2,Xattz)

Attributeo)

V v
SystemABCstemXYZ

eWrapper

Figure 8. Wrapper-based Translator

In addition to translating the operation name, differences between systems are captured in a number of Federation
in representation of the operation's parameters must also Interoperability Classes (FICs) used to define the
be resolved. For our example, converting parameter interoperation between legacy systems. Software
representations would be accomplished in the same wrappers are generated according to the FIOM that enable
manner, as done previously for converting attribute automated translation between different data
representations. The translator would apply these representations and operation implementations..
translation methods to each operation name and parameter
as appropriate and forward the resultant intermediate At this stage, XML-based message translation is being
representation for the operation to System XYZ. studied for implementation of the proposed model. The

capability provided by the XML family of tools coincides
The System XYZ wrapper would intercept the incoming nicely with the requirement for data and operation
transmission and repeat the process outlined above to representation capture and translation.
convert the operation names and parameters from their
intermediate representation to the ConsumerX Some important issues, such as security, real-time, etc.,
representation as depicted in Figure 8. The resultant are not discussed in this paper. However, the structure of
translated operations would then be forwarded to System the semantic and/or syntactic information integrated in the
XYZ for disposition. OOMI preserves the capability of being extended to

address such concerns.
Translation of object representations involves a
combination of the procedures for attribute and operation REFERENCES
conversion outlined above. First though, a
correspondence between the source and destination [BRJ99] Booch,G., Rumbaugh, J., Jacobson, I., The
object's class attributes and operations must be Unified Modeling Language User Guide,
determined from the Class Structure property. If an Addison-Wesley Longman, Inc., Redding, MA,
intermediate representation is used to effect the 1998.
translation, the correspondence between the source and [Pit97] Pitoura, E., "Providing Database Interoperability
intermediate representation of the object's class must be through Object-Oriented Language Constructs",
determined. Once the attribute and operation Journal of Systems Integration, Volume 7, No. 2,
correspondence is established between representations, August 1997, pp. 99-126.
the methods for attribute and operation translation
outlined above are used to convert between
representations. Again, for translations involving an
intermediate representation, the process must be repeated
by the destination system to convert from the intermediate
to destination system representations.

5. CONCLUSIONS

An Object-Oriented Model for Interoperability (OOMI) is
proposed in this paper to solve the data and operation
inconsistency problem in legacy systems. A Federation
Interoperability Object Model (FIOM) is defined for a
specific federation of systems designated for
interoperation. The data and operations to be shared

130

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5100

3. Research Office, Code 09
Naval Postgraduate School
Monterey, CA 93943-5000

4. Dr. David Hislop
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709-2211

5. Dr. Man-Tak Shing, CS/Sh
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

6. Dr. Valdis Berzins, CS/Be
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

7. Dr. Luqi, CS/Lq 7
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

131

