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Abstract 

Database technology has been successfully applied to the 

traditional data processing environment where data are represented by 

wel1-formatted records. There is a growing interest in extending this 

database technology to more advanced application environments such as 

VLSI CAD/CAM, cartography, etc., where data are less structured and 

have very complex semantics. In this paper, we describe the data 

interactions in the design and manufacturing phases which are 

necessary to integrate the two phases automatically. These data 

requirements are part of an integrated information support system 

geared towards the "make to order" design and manufacturing process. 

An expert system translator to carry out the integration is described 

and demonstrated in an example. An overall goal of our research is to 

develop a completely integrated information support system for generic 

design and manufacturing processes. 



1.  Introduction 

One of the current trends in database research involves 

supporting more advanced engineering environments such as VLSI design. 

Considerable effort has been expended in developing specific data 

models to support the VLSI CAD process [BAT085], [MCLE83]. There is a 

growing interest in expanding the use of database technology to 

support the generic product design and manufacturing process. One very 

important benefit of this support is the potential for reduction in 

errors. In particular, automation of component counts, physical 

dimension measurements, and routine calculations could lead to 

reduction of errors in cost estimates, raw material requirements, and 

ordering of components and raw materials. Another benefit is the 

ability to automatically maintain logical relationships between 

objects as a design is manipulated. For example, automated support 

could automatically adjust connecting walls, windows, and doors if a 

wall is moved. This type of support frees a designer from 

responsibility for detailed adjustments of a design to maintain 

consistency, producing significant reductions in design errors and 

inconsistencies. Significant advances have been made in the Individual 

aspects of Computer-Aided Design XCAD) CBAT0853, CMCLE83], CSU86a] and 

Computer-Aided Manufacturing (CAM) CSU86bl, however, the integration 

of design information into the manufacturing phase of the product life 

cycle has been largely ignored because of a lack of standards for data 

integration between the two functions. 

A major contribution of this paper is the description of the data 

requirements necessary for a fully integrated design and manufacturing 

system. The key to integrating the design and manufacturing phases 

lies in converting attribute data which is developed during the design 

process into information about the quantities and types of raw 

materials required In the manufacturing process. The portion of the 

manufacturing process which first uses this information about raw 

materials is the material requirements planning (MRP) phase, where raw 

materials are ordered and component parts production Is planned. An 

expert system translator will be proposed which provides for the 



integration of design information into the MRP phase of product 

manufacturing. 

This paper is organized as follows: the product design and 

manufacturing process will be described followed by the data 

representation and integration requirements for MRP. The paper will 

conclude with a description of our proposed MRP translator and some 

directions for further research. 

2. The Role of CAD/CAM in the Product Life Cycle 

The role of CAD/CAM in the operations of a manufacturing company 

can be best portrayed by describing the various functions and 

activities involved in the design and manufacturing of a product. 

These functions and activities are known as the product   life  cycle. 

Figure 1 depicts the product life cycle as a series of activities, 

each interacting with one or more other activities in the cycle. 

initial 
design > engineering ) drafting 

customer 
order 
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quality 
control 

process 
planning 
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Input to the cycle consists of information about prospective markets 

and customers' desires, also known as the demand  for the product. It 

is this demand which drives the decision-making process to determine 

in what ways the product life cycle will be activated and controlled. 

The extent of customer involvement in the design process will vary 

from product to product. In the case of house design, for example, 



customers quite frequently supply specifications for a house, right 

down to the placement of wiring and plumbing runs within the walls. 

Other products, for example electronic products such as televisions, 

are designed by engineers working for the company manufacturing the 

product. Regardless of who actually does the design, the process 

begins with a concept or idea for a product. This concept is refined, 

analyzed, and improved by the design engineering process. The result 

of this process is a set of engineer drawings and specifications which 

detail how the product is to be made. At this point, the product moves 

from the design phase to the manufacturing phase of the life cycle. 

The first activity in the manufacturing phase is the 

specification of the sequence of production operations necessary to 

make the product, known as the proCBes  o]an     .. . process plan,    if new equipment and/or 

tools are required to make the product, they are purchased at this 

point in time. The process plan is used as input to the scheduling 

function, which attempts to satisfy the company's need to produce 

specific quantities of different products by specified dates. After 

the schedule is altered to include the new product, the product is put 

into production. Production and quality control perform their 

respective functions cyclically until the quality control standards 

are met or exceeded. At that point, the product is ready for delivery 
to the customer. 

Recent advances in CAD/CAM have increased its use in the 

activities in the product life cycle. Computer-aided design, computer- 

aided drafting, and engineering documentation storage systems support 

the design phase, while most process planning and scheduling functions 

are automated to increase efficiency. Computers are used directly and 

indirectly to monitor and control the production operations and 

quality control functions in the manufacturing phase. CAD/CAM has 

traditionally supported the design and production activities as 

separate and distinct functions, and is now moving towards integration 

of the two using a technology known as Computer   Integrated 

Manufacturing   (CIM). 



3. Data Requirements for Computer Integrated Manufacturing 

Webster's Dictionary defines "integrated" as unified  or united. 

We maintain, therefore, that the "integrated" in Computer Integrated 

Manufacturing refers to the unification of the processes in the 

product life cycle through automation of the data interactions between 

these processes. Our use of the term Computer Integrated Manufacturing 

or CIM uses the word manufacturing in the broadest sense to mean the 

use of automation to support the entire product life cycle, not just 

the manufacturing phase of that cycle. Figure 2 depicts the data 

Interactions in the life cycle from product design to the point where 

scheduling data is produced. Since our main objective in this paper is 

to provide an interface between the design data and the material 

requirements planning process, we will not concern ourselves with data 

requirements beyond the scheduling process. 
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The design phase is represented by the box labelled CAD  which takes 

the conceptual schema as input and outputs schema and design data 

using the data model as a guiding mechanism. The expert   system  shell 

translator  uses the schema and design data as input and produces 

material requirements planning data, which is used in the 

manufacturing phase, eventually being converted to scheduling data. We 

will discuss each of the data pools shown in figure 2 Individually and 

tie them together by describing the interactions which occur. 

3.1 Conceptual Schema 

The conceptual schema will show the allowable type/subtype 

aggregations, component relationships, and the acceptable combinations 

of primitives to produce designs. Here, primitives for a particular 

product are defined. Primitives can be defined to any level of 

abstraction, and can be composite objects themselves. These primitives 

are the building blocks which the data model manipulates in the design 

process, therefore, the conceptual schema is product specific. A 

separate schema is produced for each different product line to be 

designed. 

Each type and subtype shown in the conceptual schema will have a 

prototype  associated with it. These prototypes will contain slots   for 

attribute values, allow default values to be specified, and provide 

inheritance   information. When instances are created, extensions  of 

these prototypes are created, allowing for attribute values to be 

defined which are unique to that instance. 

Figure 3 provides an example of a conceptual schema. This schema 

represents the hierarchy of type aggregations for a generic house. An 

instance of this schema would contain data for a specific house being 

des 1gned. 
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House is the aggregation of a floor plan, a shell, a roof, and an 

interior. Each of shell, roof, and interior are further defined as 

aggregations of objects, some of which are shared. For example, both 

roof and shell have a component called "insulation". 

The bubble notation in figure 3 represents an exclusive-or 

relationship among the types involved. A particular instance of 

insulation is either of type shell or roof, but not both. The 

insulation associated with the shell would be a separate instance and 

version from the insulation associated with the roof. The double 

rectangle notation represents types which have named subtypes. For 

example, room has subtypes named kitchen, den, bathroom, bedroom, 

etc., which can be instantiated to produce a specific configuration. 

In summary, the conceptual schema provides the medium through 

which the data model captures the design data for a particular 

product. Together, the data model and conceptual schema determine the 

full range of design alternatives for a product. 



3.2 The Role of the Data Model 

In the traditional manual design process, data describing a 

design is placed on paper in the form of drawings and specifications. 

Both are revised and developed to higher levels of detail, potentially 

producing redundant and sometimes incomplete data. The redundant data 

leads to maintenance and consistency problems. The data which is 

produced In one design has little chance of being used in subsequent 

designs due to its manual nature. These problems and lack of reusable 

data prompted CAD developers to establish increased productivity as 

their major objective in the transition to an automated system for 

design functions. This objective is particularly important in 

developing countries, where shortages of technically skilled engineers 

can not keep pace with construction demands. In this case, CAD can 

achieve optimal use of scarce labor resources. The automation of 

routine calculations, data processing, word processing, and drafting 

functions leads to substantial productivity increases as technically 

skilled engineers are able to devote more of their time to technical 

duties and less time to administrative functions. Additionally, the 

declining cost of computer support makes the investment for 

integration of design and production functions attractive. This 

integration starts with the definition of a data model which supports 

the design process and provides a framework that facilitates use of 

design data in the manufacturing process. 

Traditional hierarchical, relational, and network data models are 

oriented toward manipulation of logical records and do not support the 

CIM design environment. These traditional models lack facilities for 

handling the semantics which are a component of the design process. 

There is considerable interest in expanding the use of database 

technology to support data which is less structured, less formatted, 

with more complex data types, which would permit modeling of 

application semantics. Semantic data models attempt to provide high- 

level data structuring features to improve the expressiveness of 

database conceptual Schemas. This is done by embedding the semantics 

of a particular application in the database schema. The overall 

8 



objective of the semantic models is to increase database accessibility 

by end users, many of whom are not trained in computer science. 

In addition to providing for the representation of these 

semantics, the ideal CIM data model would provide other features which 

are not found in the traditional models. One of these features is the 

representation of design objects as primitives in the model, with 

prescribed "rules" for associating objects with one another. These 

objects could be the building blocks from which more complex objects 

could be built. Operations defined for the data model would include 

those for manipulating objects. These operations would include 

provisions for adding new objects and modifying existing ones. In this 

paper we will develop a data model which includes these desirable 

features. 

Much of the application emphasis of CIM work done to date has 

been in the VLSI design process [BAT085], CLEE83], CMCLE83]. We 

believe that the integrated Information System concept can be extended 

to more generic applications, Including integrated product design and 

manufactur ing. 

We will identify the abstraction concepts supported by our data 

model which are necessary for the design and manufacturing processes, 

and the types of support that a truly integrated system should 

provide. 

Current semantic models include the Entity-Relationship (ER) 

Model, Functional Model, SHM+, SDM/Event Model, TAXIS, SAM«, and RM/T. 

All of these models use primitives such as entities, events, or simply 

objects. They also include provisions for composite objects and 

attribute specification among the supported features. Extended 

semantic models integrate a number of programming language concepts 

with database concepts. They also make use of advanced data type 

concepts such as abstract data types and strong typing. These extended 

models include SHM+, TAXIS, and the SDM/Event Model. Semantic modeling 

theory is now being applied to particular application areas such as 

office automation, VLSI, and cartography, as well as for traditional 



data processing applications (inventory, insurance, banking). We will 

make use of many of the concepts from current semantic models in the 

description of our model. 

The abstraction concepts supported by our model include molecular 

aggregation, generalization/specialization, version generalization, 

version hierarchy, instantiation, and instance hierarchy. We believe 

these abstraction concepts are necessary to support the design 

process, and therefore are useful for other advanced application areas 

as well. Each concept will be described in the remainder of this 

sect ion. 

Molecular aggregation is the abstraction of a set of objects and 

their relationships into a higher-level object CSMIT77]. This 

abstraction allows a view of objects from different levels of 

generality, each with its own level of detailed definition. A user 

interested in the overall design could use the topmost level of 

abstraction, which would hide the implementation details. This 

implements the "Information Hiding" principle commonly found in 

programming language design. The idea is to give the user only the 

amount of implementation detail he needs for a particular application. 

Figure 4 depicts a bathroom as a molecular aggregation of objects 

called floor, wall, ceiling, sink, toilet, and bathtub. All of these 

except toilet are molecular objects. Note that several levels of 

molecular aggregation abstraction are present in the figure. 

10 
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The objects whose name appears in upper case are molecular 

aggregations. Those in lower case represent primitive objects in this 

example. 

Molecular objects have two description components, an interface, 

and an implementation [BAT085]. The interface specifies the general 

function of the object and the Implementation provides the details of 

the use of the object for a particular application. Attributes and 

relationships can be specified in either or both the interface and 

implementation. 

The generalization/specialization concept of Smith and Smith 

CSMIT773 will be used in the model to provide the relationship between 

types and their subtypes. Types will be defined either as 

generalizations of a set of named subtypes, or as primitives from 

which versions and instances can be made directly. An example of 

generalization would be the creation of a type house from the subtypes 

colonial, duplex, ranch, tri-level, and rambling. The notion of 

subtype Is important to the model because different subtypes will be 

permitted to have different sets of attributes. 

11 



Version generalization [BAT0853 is used as the mechanism for 

specifying the relationship each object type has with its versions. A 

version is created by specifying implementation details for the object 

type. The difference between a version and an instance of a 

type/suhtype is that a version is created at an intermediate point in 

a design, permitting future designs to begin at that point, with 

implementation details partially specified. A type/subtype is 

considered a starting point for a design, with no implementation 

details specified. The concept of parameterized versions CBAT085] 

arises from the need for allowing freedom in specifying the 

implementation details for a particular object. If an instance of an 

object type is defined instead of an instance of one of its versions, 

a parameterized version is created. Choosing an instance of an object 

type T creates a socket which will accommodate any version of type T. 

Using the terminology defined in [BAT085], the different versions are 

plugged into the socket, creating unique implementations. 

The generalization concept of Smith and Smith CSMIT77] differs 

from version generalization in that the former takes two or more 

object sets and forms a higher level object set by taking their union, 

and in the latter, an object type (or subtype) is an abstraction of 

the common features of its versions, which is clearly not a union of 

object sets. 

In our model, a version of a type (or subtype) will be defined to 

be a molecular object with interface details completely specified, but 

with implementation details in some stage of completion. This 

definition allows a version to be plugged, partially plugged, or 

unplugged. Figure 5 shows an object of type A with an object version 

VI of type A. The object of type A has its interface defined, which Is 

denoted by the shading of the interface block. The implementation 

details for this object are not specified, denoted by the unshaded 

implementation block. 

12 



figure 5 

Object VI has the same interface details as its object type, and also 

has some implementation details specified, denoted by the partially 

shaded implementation block. Examples of this definition of version 

are the two, three, and four bedroom versions of a ranch house. In 

each of these examples, the interface (function) of the object is 

specified, but the Implementation.details (e.g. what are the sizes of 

the bedrooms?) are not specified completely. 

Versions can have two distinct forms of attributes, those 

inherited from the object type, and those defined to be unique for 

each version. Attributes inherited from the object type reproduce the 

interface characteristics of the object type. Attributes defined to be 

version specific are the attributes which distinguish one version of a 

particular type from another version of the same type. Another way of 

describing version generalization is that it is a form of abstraction 

in which similar objects are related to a higher level object. 

Instantiation CBAT085] occurs when an object is copied. Creating 

multiple instances of an object provides for distinction between the 

various copies. Both object types and object versions can be 

instantiated. The purpose of instantiating will be extended to provide 

meanings for instances of type and version. A version will be 

13 



instantiated to provide a local working copy of a previous design, 

which may be plugged to any level of detail. Types (or subtypes) will 

be instantiated to produce a working copy for design work from 

scratch, in cases where no existing design can be used. Figure 5 shows 

an object 01 which is an instance of type A. 01 would be produced to 

provide a working copy of type A as a starting point in this 

particular design. The fact that 01 is instantiated from its parent 

type tells us that the implementation specifications for the final 

product are not available and will be developed from scratch. If 01 

were instantiated from VI instead, the design would begin from the 

point in VI where implementation details left off, indicating that 

some similarity exists between the Implementation of 01 and VI. 

A hierarchy is formed for the set of designs for a particular 

type/subtype, and is called a version hierarchy. In this hierarchy, 

going from a higher level to the next lower level, we find that more 

implementation details are specified. The difference between the 

type/subtype generalization and the version hierarchy is that 

different versions of an object have the same set of attributes, and 

not necessarily the same values, while different types (or subtypes) 

will have different sets of attributes from each other. Figure 6 

depicts two version hierarchies. In this case, ranch and colonial are 

subtypes of type house. Each subtype can have its own version 

hierarchy. The blocks labelled two bedroom, three bedroom, and four 

bedroom are on the same level in the diagram because they represent 

mutually exclusive versions.  Each block in the diagram Is a potential 

starting point for future designs. 

„COLONIAL/I 
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An extension of the instantiation abstraction is the instance 

hierarchy. The purpose of this hierarchy is to record different design 

alternatives which are produced in the design process. Figure 7 is an 

example of an instance hierarchy for a house being designed for John 

Jones. Since Mr Jones is building this house from scratch, the design 

starting point was an instantiation from subtype ranch. In the course 

of designing his house, Mr Jones wasn't sure whether he wanted an 

attached or detached garage, two alternatives represented in the 

hierarchy. The reason for saving the hierarchy is that Mr Jones may 

decide on an attached garage, finish the design, and then change his 

mind. The hierarchy would permit him to go back to the point of the 

detached garage and re-complete the design. All of the information 

provided in the original design would be usable in the second design 

except for information about the garage itself. 

RANCH 
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Family rooM 
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Figure 8 summarizes tho relationships between type, subtypes, 

versions, version hierarchies, and instances. 
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The   role   of   the   data   model    in   the   design   process   will   be   to 

provide   a   standard   which   different   product   designs   can   use   to   ensure 

compatibility   in   the   later   stages   of   production.    In   particular,    this 

standard   will    facilitate;   the   integration   of   design   data   in   the 

material    requirements   planning   and   scheduling   phases. 

Schema   Data 

The schema data consists of semantic network-type relationship 

information from the conceptual schema for a particular product. This 

schema data will be used by the expert system translator to associate 

design data according to the conceptual schema relationships. The 

relationships supported by our system are the IS-A and PART-OF 

[WINS843. The IS-A relationship provides an attribute inheritance 

mechanism whereby the system can infer attribute values in cases where 

16 



those   values   were   incompletely   specified   by   the   designer.    Inheritance 

begins   at   the   closest   ancestor   and   continues   up   the   ancestral 

hierarchy  until   a   value   is   found.   The   relationships   in   the   conceptual 

schema  are   stated   in   the   form   of   facts,   as   shown   in   figure  9. 

part_of(house,floorplan). part_of(house,interior). 
part_of(house,shell). part_of(house,roof). 
part_of(interior,story). part_of(story,rooH). 
part_of(story,space). part_of(rooM,face). 
part_of(space,face). part_of(face,sub_cover). 

figure   9 

Our system  distinguishes between schema data and the conceptual 

schema because the separation of these allows a user to modify the 

original conceptual schema in the design process without having to 

change the schema itself. This adds flexibility to the system and 

permits the conceptual schema to be implemented independently (i.e. 

can be represented in a form most appropriate for processing by CAD) 

of the schema data which will be used by the expert system translator, 

if no modification is made to the conceptual schema during the design 

process, the schema data does not have to be re-generated for each 

product. 

3.A Design Data 

The design data consists of the instances of the prototypes 

created during the design process. All slots are filled in, either 

with default, inherited, or specified attribute values. As prototypes 

are instantiated, IS-A facts are asserted which associate the instance 

with the type from which it was created. At this point in the process, 

the design is considered to be complete. Any revision work would have 

been done prior to the design data being prepared for processing by 

the translator. 
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3.5   Translator    Meta   Rules 

The   translator   meta   rules,    combined   with   the   standards   data, 

assembly   data,   and   schema   data   will   determine   how   the   design   data   for 

a   particular   product   will   be   transformed   into   material   requirements 

planning   data.   These   rules   will   enforce   the   standards   given   in   the 

standards   data,   and   provide   the   actual   translation   mechanism  which 

produces   the   material    requirements   planning   data.   Figure   10   provides   a 

sample   of   meta   rules   for   the   house   design   and   construction   example. 

raw_*aterials_needed :- 
is_a(Extens,Intens), 
property*Extens,finish_type,Material), 
property*Extens,finish_color,Fcolor), 
liquid(Material,Ltype,Covers,Cunits,Lunits, Cost), 
dinensionlExtens, height, Ht.Htunits), 
dimension(Extens,width,Ud,Udunits), 
convert(Ht.Htunits,Height,Cunits), 
convert(Wd.Udunits,Width,Cunits), 
Area = Height * Width * 2, 
Ant.needed = Area / Covers, 
Tot_cost = Ant.needed * Cost, 
assertz(liquid_list(Material,Ltype,Fcolor,Ant_needed, 

Lunits,Tot_cost)),fail. 

figure    lO 

These meta rules will assert new facts which represent requirements 

for specific raw materials. Note that the materials list is refined 

for items such as paint, nails, caulking, etc., whose requirements are 

expressible as a function of the dimension of the object. 

3.6 _ Standards Data 

Design and manufacturing systems have to take into account a 

wide variety of Federal, State, local, Occupational Safety and Health 

(OSHA), quality assurance, and other standards prior to manufacturing 

a product. For example, a design could call for a 1/4" Inside diameter 

pipe in a specific location, but a local building code may specify a 

3/8" minimum inside diameter. In this case, the design specification 

must be changed to reflect the regulatory requirement. For a given 
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product,    thousands   of   interactions   are   possible   between   existing 

standards   and   specifications   generated   from   the   design   process. 

These   standards   are   represented   in   the   system   by  Prolog-style 

rules   to   facilitate   their   enforcement   by   the   expert   system   translator. 

Figure   11   gives   an   example   of   the   implementation  of   a   regulatory 

requi rement. 

maximum(pipe,plasticl2,diameter,3,inches). 
minimum(pipe,plasticl2,diameter,1,inches). 
passed(pipe,Type,DiMension.Z,Units)  :- 

miniHum(pipe,Type,Dimension,X,Unitx), 
maximumCpipe,Type,Dimension,V, Unity), 
convert<X,Unitx,Nin,Units), 
convert(V,Unity,Max,Units), 
check_standards(pipe,Type,Dimension,Z,Units,Min,Max). 

figure 11 

The maximum and minimum facts shown on the first two lines provide the 

limits for a particular type of pipe. The passed predicate indicates 

that the minimum and maximum values with their respective units will 

be checked against the design values, indicated by the variable Z and 

units variable Units. The convert predicate converts the standards 

units of measure to the units in which the design object is measured. 

The check_standards predicate would compare all three measurements to 

a common unit of measurement and verify that the standard was met. 

3.7 Assembly Data 

Assembly data includes sequencing information for assembly of 

composite objects, or subassemblies, according to the relationships 

shown in the conceptual schema. This assembly data covers all 

conceptual schemata for a given application domain. In addition, 

information on standard material types and acceptable substitutes is 

included, with their costs. The system could take advantage of 

fluctuating costs with the substitution information to produce an 

optimal cost product. 
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The sequencing information will be represented in Prolog-style 

rules. Figure 12 provides an example of a portion of a conceptual 

schema with the sequencing rule to be Included in the assembly data 

for the given product. 

wheel 

tire rut 

valve steit 

asseMi>le(U, wheel) :- property(U,wheel,Vtype), 
part_of(W,T>. part_of(U,R), part_of(R,ll), 
property(T,tire,Ttype), propertyOt.riMtype), 
property(U,valve_steM,Utype), 
assertz(operation(Rtype,assemble,valve_ste*,Utype)), 
assertz(operaUon(Ttype, assemble, rin,Rtype)),f ail. 

figure    12 

The first operation fact to be asserted provides for inserting the 

valve stem into the rim. The second operation inserts the rim into the 

appropriate tire. Note that operation information includes details of 

specific tires, rims, and valve stems. The assembly rule will produce 

a set of operation facts for each wheel defined in the design. Each 

wheel will be separately identifiable. 

In the object-oriented approach, the assembly rules would be 

considered part of the operations encapsulated with each data type. We 

choose to separate these rules for the following reasons. First, the 

separation allows us to abstract out the implementation details so 

that the conceptual schema isn't tied to the rule-based implementation 

imposed by the assembly data. The separation also functionally aligns 

the conceptual schema and assembly data with the people responsible 

for maintaining them. The conceptual schema can be developed by users 

vith little technical expertise or familiarity with the implementation 

considerations necessary to manufacture a product. The assembly data 

can be maintained by the manufacturing experts who are familiar with 
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implementation details, material properties that may lead to more cost 

effective substitutions of components, and the sequences of operations 

used in the manufacturing process. Another reason we separate them is 

that they serve different functions. The conceptual schema is used by 

designers, while the assembly rules are part of the expert system 

translator. The conceptual schema represents one product, but the 

assembly data represents all the conceptual schemata in the 

application domain. The assembly data could also contain information 

about the way the factory chooses to do assembly, which is independent 

of any particular product. 

3.8 Material Requirements Planning Data 

The main output of the translator will be a bill of materials 

containing information on the assembly of components into 

subassemblies and quantities of raw materials required for manufacture 

of component parts. This is known as material requirements planning 

data. It provides all the necessary information for the production of 

a product. 

3.9 Scheduling Data 

After the requirements for a new product have been determined, 

the new requirements data can be combined with existing production 

requirements in the scheduling phase. At this point, priority 

information is used by the system to determine how to integrate the 

new requirements into the existing workload. The scheduling data 

includes assembly data which will be used to coordinate construction 

of subassembIies with production of components and ordering of raw 

materials and purchased parts. 
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4 -Expert System ShelJ Trans 1 ator 

The basic task of the expert system shell translator Is to 

automatically conclude the quantities, types, and assembly sequences 

of raw materials needed to manufacture a product from design data. 

•Before we examine this translator in detail, we will present some 

background information on expert systems. 

Expert systems belong to a class of artificial intelligence 

applications known as knowledge-based Systems.      The thing that makes 

expert systems unique is that their performance depends on utilizing 

facts and heuristics used by human experts in similar situations. One 

of the characteristics of these systems is their large solution space 

wherein the number of reasonable solutions is usually a small 

percentage of the number of possible solutions. Figure 13 depicts the 

components of a knowledge-based system. 

USER 

I Graswtar and 
(^Dictionary 

Database 

i Typical KMtfledge-llased Systen 

figure 13 

ce 

Conceptually, these systems employ a representation scheme and some 

reasoning method. The representation scheme, determined by the 

language   handler,    permits expression of generalizations in the absen 

of complete Information. Early systems used formal logic as the 

representation scheme and deductive reasoning, but abandoned logic in 

pursuit of more efficient representations. These efforts led to the 

development of knowledge-based and expert systems characterized by the 
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use of production rules and knowledge representation, i.e., object- 

oriented techniques. The reasoning method used by the knowledge-based 

system is determined by the inference rules manipulated by the 

Inference  engine. 

Several benefits can be obtained by using a knowledge-based 

system to enhance data management. First, the inference engine is able 

to produce information that is not explicitly stored, but can be 

inferred from the known facts. The inference engine also permits users 

to work with the system without considering file structure and other 

implementation details. The ability of an inference engine to generate 

an audit trail or line  of  reasoning  is invaluable in debugging a 

system. The inference engine can also act on fuzzy  data, or data which 

is not completely specified, and produce results with the same degree 

of accuracy. 

The translator we propose as the interface mechanism between the 

design and manufacturing processes will make use of the aforementioned 

benefits. In addition, the translator will provide for resolution in 

the event that it receives conflicting data. An example would be the 

preference of standards data over design data, in situations where 

standards would otherwise not be met. The translator will be 

opportunistic, that is, it will use substitution criteria whenever 

possible to lower cost without sacrificing quality. The translator 

will use the schema and assembly data as guidance to control the 

deduction process and limit the space of possible solutions. 

The fact that this translator and most of the data used by it are 

rule-based introduces a variety of issues which should be addressed. 

Among these issues are inconsistencies, redundancies, and 

incompleteness in the rule base. Inconsistency is the predominant 

worry in rule-based systems because conflicting consequents inferred 

from the same set of facts (evidence) can result in faulty performance 

of the system. Remedies for inconsistency range from altering or 

removing part of a rule to major reorganization of the rule base. Our 

system will prevent inconsistency by checking new rules against the 

existing rule base using forward-chaining inference to derive possible 
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consequents. Users can be immediately informed if inconsistencies 

exist, and the new rule can be redefined. 

Redundancies arise when different rules acting on the same set of 

facts arrive at the same conclusion. Incompleteness results from a 

failure of a rule base to derive a consequent from a given set of 

facts. Redundancy can be avoided by using a check similar to the 

consistency check. Incompleteness will be avoided by performing a test 

of the system in which conceptual schema data is passed through the 

trans Iator. 

Other major issues include possible difficulties in entering the 

rules into the system. Users should not have to concern themselves 

with the exact syntax of these rules and should be provided with an 

interface to facilitate the management of rules In the system. 

i^I_M iüilElt. 

The expert system translator we propose can be Illustrated by use 

of a scaled-down example. A Prolog program for this example is 

presented as an appendix to the paper. We will limit our example by 

following the data from one prototype Instantiated during the design 

process through the translator, producing a bi11-of-materia1s. To 

begin, we will use the type door  depicted in the conceptual schema in 

figure 3. The following figure is a prototype as it would appear after 

the data values are entered. When the prototype is first instantiated, 

the rightmost columns are either blank or contain default values. The 

leftmost columns are filled in as part of the conceptual schema 

definition process. 
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1 p. ;       imzma 
nai»      T doorl 

properties: 

Material type wood 
finish type paintK 
finish color brown 
knob type round32 
hinge type square3in 
height 78 inches 
width 28 inches 
depth 2.5 inches 

figure 14 

When the design process is complete, the following design data facts 

are created to represent the object doorl to the expert system 

translator : 

is_a(doorl,door). 

property(doorl,naterial_type,wood). 
pro(>erty(doorl,finish_type,paintl6). 
property(doorl,finish_color,brown). 
property(doorl,knob_type,round32). 
property<doorl,hinge_type,square3in). 

diHension(doorl,height,78,inches). 
dinension(doorl, width,28,inches), 
dim nsion(doorl, depth, 2.5, inches). 

figure 15 

The is_a fact relates the instantiated object doorl to the type door. 

The property facts correspond directly to the property entries in the 

prototype and the dimension facts correspond to the dimension 

information. In the case of dimension attributes, both the value of 

the dimension and the unit of measure are variable data to be supplied 

during the design process. 
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A   portion   of   the   schema   data   to   be   used   by   the   translator   for   the 

example   conceptual    schema   includes   the   following   facts   and   rules: 

part_of(house,floorplan). 
pait_of(house,interior). 
part_of(house,shell). 
pait_of(house,roof). 
part_of(interior,story). 
pait_of(story,roon). 
part_of(TOOK,face). 
part_of(face,door). 
trans_partof(X,V)  :- part of(X.V). 
trans_partof(X,V)  :- part_of(X,Z), 

trans_partof(Z,V). 

flgure   16 

The last two rules provide the recursion necessary for expressing 

transitive hierarchical relationships between two objects as defined 

in the conceptual schema. 

Standards data, to be used by the translator, would include the 

following rules which would enforce fire, safety, and architectural 

standards' 

*ininu(«(dooi,doorl, width, 32, inches). 
MaxiHun(door,doQrl,width,4,feet). 
niniMuw(dooi,doorl,height,6,feet). 
*axinuM(dooi,doorl,height,7,feet). 

begin_stds_check  :-    is_a(Entens,Intens), 
diHension(Extens,Dimension,Z, Units), 
mnii4UM(Irtens,Extens,Dinension,X,Unitx), 
«axiwjMdrtens, Extens, Dimension, V, Unity), 
converts, Unitx.Hin, Units), 
convert(V;Unity,Max,Units), 
check_stds(Extens,Intens,Dimension,Z.Units,Min,Max). 

figure    17 

The format for maximum ami minimum standards allows flexibility in 

specifying that different versions of a type could have different 

standards. For example, casement windows could have a minimum width of 

18 Inches, while bay windows could have a 36 inch minimum width. The 

begin_stds_check rule works on one dimension of an object at a time. 
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but   is   general   enough   to  apply   to   any   dimension   of   any   object, 

avoiding   redundant   rules. 

Assembly   data,   pertinent   to   this   example,   would   consist   of   the 

fo1 lowing   rules: 

finish(Extens)  :-   property(Extens,finish_type,Ftype), 
property<Extens,finish_color,Fcolor), 
assertz(operation(Extens,finish,Ftype.Fcolor)). 

asse*ble(Extens,knob) :- 
property*Extens,knob_type,Ktype), 
assertz(operation(Extens,assemble,knob,Ktype)). 

(Mterial(doorl,wood,7,feet,3,feet,2.5,inches, 
8,feet,i,feet,15.75). 

liquid(paint16,paint,128§,feet,gallon,7.50). 

figure   18 

The order of invocation of these rules will determine the order of 

operations to be performed. The material fact provides the dimensions 

for a standard piece of material of the given type, in this case wood 

for door type doorl, and the cost of one piece of this material with 

the standard dimensions. Information on the density of fasteners can 

also be provided (note the zeros for the 9th and lith parameters) in 

the event that this material needs nails, screws, etc, for piecing it 

together. The density information allows for different materials of 

the same size to be fastened appropriately. For example, board lumber 

which comes in 8 feet by 1 foot planks could have a height density of 

.5 per foot and width density of 1 per foot, which means that 

fasteners would be placed every 2 feet along the height dimension and 

every foot along the width dimension. Particle board planks with the 

same dimensions could have a different density for fasteners due to 

the binding properties of the material, i.e. height density of .75 per 

foot and width density of 2 per foot. The rules invoked to determine 
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the number of fasteners required for a piece of material would use the 

following formula: 

number required = 

((height X height density) + 1) X ((width X width density) + 1) 

Similarly, the liquid fact says that one gallon of part number paintlö 

will cover 1200 square feet and costs $7.50. 

The following report is produced by the expert system translator, 

and represents the results of standards verification plus the material 

requirements planning data for the object doorl of type door used in 

this examp1e. 

Standards check for door doorl 

door doorl passed - height 
door doorl failed minimum - width 

Production Sequence P?eport 

doorl     finish    paintlS 
doorl     assemble  knob 
doorl     assemble  hinge 

brown 
round32 
square3in 

Raw Materials Report 

wood 78 Inches 28 Inches 
knob round32 1 
hinge square3in 3 

2.5 inches »15.75 
$3.20 
$.75 

1iqulds 

paint     paintie   brown 0.03 gal Ion $. 19 
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5. Cone I us ion 

The successful integration of product design and manufacturing 

functions requires a complete understanding of the relationships of 

data produced and used throughout the product life cycle and some 

mechanism to translate product design data into a form which is useful 

in the manufacturing process. In this paper, we have described this 

data and demonstrated an expert system translator which integrates the 

design and manufacturing functions. The data was classified according 

to its role in the integration process, and consists of a data model, 

conceptual schema, standards data, assembly data, schema data, design 

data, and translator meta rules. 

The role of the data model is to provide a standard for 

compatibility across product design boundaries which will facilitate 

the material requirements planning process for a multitude of 

products. A conceptual schema will be required for each different 

product design, and will characterize the structure of the design data 

for a product at any point in time. The standards data should be 

viewed as constraints that design data must obey to be acceptable for 

production. Assembly data includes sequencing information for assembly 

of composite objects and equivalence data to increase cost 

effectiveness of a design without violating the standards constraints. 

The schema data is just the conceptual schema in rule form, with the 

added flexibility of temporarily modifying the conceptual schema for a 

specific product. The design data consists of instantiated prototypes 

for each object used in the design, and includes attribute inheritance 

features when necessary. The translator meta rules are used to produce 

the MRP data from the available design, schema, standards, and 

assembly data. 

The expert system translator is a rule-based reasoning machine 

which produces information about the quantities and types of raw 

materials required to produce a product. The translator also provides 

assembly sequence Information for use in later stages of production. 
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Directions for further research include the design of a user 

interface for managing the rules in the system and the development of 

a graphics interface for defining the conceptual schema to the system. 

An additional research area deals with possible internal 

representations of design objects using syntax directed editors with 

context-free CRABI85] or context-sensitive [LEE83] grammar rules. The 

use of such an editor will ensure that the design satisfies integrity 

constraints (which will keep a window from being placed in a floor). 

The translator we have proposed is currently under development at 

the Laboratory for Database Management at the Naval Postgraduate 

School. The Appendix contains a listing of the Prolog code for the 

example given in this paper. We expect this integrated system project 

to spawn several other projects including user-interfaces for data 

modeling, database management support for rule-based systems, and 

multi-media data models. 

30 



References 

CBAT085] BATORY, D.S. and KIM, W. Modeling Concepts for VLSI CAD 
Objects. ACM  Trans.   Database  Syst.   10,3  (Sep. 1985), 322-346. 

CBR0D82] BRODY, M.L. On the Development of Data Models. On  Conceptual 
Modeling,   Springer-Verlag, 1982, 19-47. 

CCHEN76] CHEN, P.P.S. The Entity-Relationship Model-Toward a Unified 
View of Data. ACM  Trans.   Database  Syst.   1,1   (Mar. 1976),9-36. 

CLEE83]  LEE, Y.C. and FU, K.S. A CSG Based DBMS for CAD/CAM and its 
Supporting Query Language. Databases   for   Engineering 
Applications,    1983, 123-130. 

[MCLE83] MCLEOD, D., NARAYANASWAMY, K., BAPA RAO, K. V. An Approach to 
Information Management for CAD/VLSI Applications. Databases 
for  Engineering Applications,    1983, 39-50. 

CRABI85] RABITTI, F. A Model for Multimedia Documents. Office 
Automation,   Springer-Verlag, 1985, 227-250. 

CSMIT77] SMITH, J.M. and SMITH, D.C.P Database Abstractions: 
Aggregation and Generalization. ACM  Trans.   Database  Syst.   2,2 
(Jun 1977), 105-133 

[SU86a]  SU, S.Y.W., Modeling Integrated Manufacturing Data with SAM», 
IEEE Computer,   Jan 86, 34-49 

CSU86bJ  SU, S.Y.W., et al, The Architecture and Prototype 
Implementation of an Integrated Manufacturing Database 
Administration System, IEEE Computer  Society   International 
Conference,    1986, 287-296 

CUINS84] WINSTON, P.H., Artificial   Intel 1igence,   Addison-Wes1ey, 1984 

31 



Append 1x 

/» Expert System Translator «/ 

start : 
writedevlce(printer), 
not(begin_stds_check), 
not(begin_operations), 
not(operations_report) , 
not(raw_materials needed), 
not(materials_report), 
writedevice(screen). 

begin_stds_check :- is_a(Extens,Intens), 
write("Standards check for ",Intens,Extens),nl,n1, 
dimension(Extens,Dimens,Z,Units), 
checkUntens,Extens,DimenstZ,Units),faiI. 

check(door,Type,Dimension,Z,Units) : - 
minimum(door,Type,Dimension,X,Unitx), 
maximum(door,Type,Dimension,Y,Unity), 
convert(X,Unitx,Min,Units), 
convert(Y,Unity,Max,Units), 
check, standards(door,Type,Dimension,Z,Units,Min, Max). 

check_standards(Intens,Ex tens,Dimension,Value,Units,Min, Max) :- 
not(Min > Value), not(Value > Max), 
write(Intens," ",Extens," passed - ",Dimension),n1,!. 

check__standards(Intens,Extens,Dimension,Value,Units,Min,Max) : - 
Min > Value, 
write(Intens," ".Extens," failed minimum - ",Dimension),n1,!. 

eheck_standards(Intens,Extens,Dimension,Value,Units,Min, Max) :- 
Va1ue > Max, 
write(Intens," ",Extens," failed maximum - ",Dimension),n1,!. 

begin_pperations :- is_a(Extens , Intens), 
not(do_finish(Extens)), 
not(do_assembly(Extens)),fai1. 

do_finish(Extens) :- finish(Extens),fai1. 

do__assemb 1 y (Extens) :- as semb 1 e (Extens , Notused ), fai 1 . 

operations_report :- nl,nl.nl, 
write("Production Sequence Report"),n1,n1, 
operation(Extens,Function,Attributel,Attribute2), 
write(Extens,"   ".Function,"   ",Attributel, 

",Attribute2),nl,fai1. 
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.» _» _» _» _» Hdens, Hduni ts, 

raw_mater ial s_needed '•- 
is_a(Extens,door) , 
material(Extens,Material,, 

Wdens,Wdunits,Cost), 
dimension(Extens,height,Ht,Htunits), 
dimension(Extens,width,Wd,Widunits), 
dimension(Extens,depth,Dp,Dpunits), 
assertz(material_listCMaterial ,Ht,Htunits,Wd, 

Widun its,Dp,Dpunits,Cost)),fai1. 

raw_raateria1s_needed :- 
is_a(Extens, Intens), 
property(Extens,f inish_type, Materia1), 
property(Extens,f inish_co1 or, Fco 1 or), 
liquid(Material,Ltype,Covers,Cunits,Lunits,Cost), 
dimension(Extens,hei ght,Ht,Htunits), 
dimension(Extens,width,Wd,Wdunits), 
convert(Ht,Htunits,Height,Cunits), 
convert(Wd,Wdunits,Width,Cunits), 
Area = Height » Width » 2, 
Amt_needed = Area / Covers, 
Tot_cost = Amt_needed « Cost, 
assertz(1iquid_list(Material , Ltype, Fco lor,Amt_needed, Lunits, 

Tot_cost)),fai1. 

materials_report :- nl,n1,n1,write("Raw Materials Report"),nl,nl, 
material_list(Material , Ht,Htunits,Wd,Widunits,Dp, 

Dpuni ts,Cost), 
write(Material ,"  ",Ht,"  M,Htunits,rt  ",Wd,"  ".Widunits, 

"  ",Dp,"  ".Dpunits,"  *",Cost),nl,fail. 

materia1s_report :- nl,nl,write("1iquids"),nl,nl, 
1iquid_list(Material, Ltype, Fcolor,Amt_needed,Luni ts, Tot_cost), 
write(Material,"  n,Ltype,"  ",Fcolor,"  "), 
writef("X3.2",Amt_needed), 
write("  ".Lunits,"  $"), 
writef<"X3.2",Tot_cost),nl,fai1. 

converts(A,feet,B,feet) :- B = A. 
converts(A,inches,B,inches) :- B = A. 
converts(A,feet,B,inches) :- B = A « 12. 
converts (A, inches, B, feet) '• -   B = A / 12. 
converts(A,feet,B,yards) :- B = A / 3. 
converts(A,yards,B,feet) s- B = A » 3. 

convert(A,Dimensionl,B,Dimension2) :- 
converts(A,Dimensionl,B,Dimenslon2),!. 

convert(A,Dimensionl,B,Dimension2) s- 
converts(A,Dimensionl,X,Dimensionx), 
not(equa1(Dimensionl,Dimensionx)), 
convert(X,Dimensionx,B,Dimension2). 

equa1(A,B) B = A. 
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Des i gri Data 

is__a(doori,door) . 

property(doorl,material_type,wood). 
property(doorl,finlsh_type,paintl6). 
property(doorl, flni sh_co1 or,brown). 
property(doorl,knob_type,round32) . 
propertyCdoorl, hinge_type,square3in) 
dimension(doorl,hei ght,78,inches). 
dirnension(doorl,width, 28, inches ) . 
dimensionCdoorl,depth,2.5,inches). 

Schema Data 

part_of(house,f1oorp1 an). 
part_of(house,interior), 
par t_of(house,shel1). 
part___of (house, roof ) . 
part_of(interior,story). 
part__of (story, room) . 
part___of (story, space) . 
part_ of(room,face). 
part_of(space, face) . 
part_of(face,door). 

trans _par t o f(X,Y) 
transjar tof ( X, Y) 

part_of(X,Y). 
part_of(X,2), 
trans_partof(Z,Y) 

Standards Data 

minimum(door,door 1,width,32,inches) 
minimum(door,doorl,height,6,feet). 
maximum(door,doorl,width,4,feet). 
maximum(door,doorl,height,7,feet). 
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