
[wVliSTiC'MiSSIir
i.■■■;:;>; ORGANIZATION
/U^O---Person

■<i .-, .. •.- r-, n 9nTni 7inrj

M
NPS52-86-015

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Reproduced From
Best Available Copy

An Expert System Interface and Data Requirements
for the

Integrated Product Design and Manufacturing Process

MAJ Dana E. Madison

and

C. Thomas Wu

June 9, 1986

Approved for public release; distribution unlimited

Prepared for:

Chief of Naval Research
Arlington, VA 22217

20010829 000

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral R. H. Shumaker
Superintendent

D. A. Schrady
Provost

UJ
<n
z
111
Q.

X
UJ

t-
z
hi

2
2

UJ
>
C
O

a
hi
U
D
a
o
c
a.
in

The work reported herein was supported in part by the Foundation Research
Program of the Naval Postgraduate School with funds provided by the Chief of

Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

[NCENT Y.
Chairman
Department of Computer Science

C. Thomas Wu
Associate Professor
Computer Science

Released by:

KNEALE T. MARSHALL
Dean of Information and
Policy Science

L)

z
LI
Q.
X
LI

r-
z
tu
2
z
<r
Li
>
o
o

<
D
LI
u
D
Q
0
X
a.
LJ

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE (TWian Data Enf.r.dJ

REPORT DOCUMENTATION PAGE
I. REPORT NUMBER

NPS52-86-015

2. GOVT ACCESSION NO

4. TITLE (and Submit)

An Expert System Interface and Data Requirements
for the

Integrated Product Design and Manufacturing Process

7. AUTHORr«;

MAJ Dana E. Madison
C. Thomas Wu

9. PERFORMING ORGANIZATION NAME AND ADDRESS

Naval Postgraduate School
Monterey, CA 93943-5100

II. CONTROLLING OFFICE NAME AND ADDRESS

Chief of Naval Research
Arlington, VA 22217

14. MONITORING AGENCY NAME a ADDRESSf*/ dlllertnt Irom Controlling Ollict)

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. RECIPIENT'S CATALOG NUMBER

5. TYPE OF REPORT a PERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

8. CONTRACT OR GRANT NUMBERS

10.nOROftPAM ELEMENT, PROJECT, TASK
bliSSJNa WORK UNIT NUMBERS

61152N; RR000-01
N0001486WR4E001

12. REPORT DATE

June 1986
13. NUMBER OF PAGES

35
IS. SECURITY CLASS, (ol thlt rtport)

IS«. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (ol thlt Rtport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (ol thm mbttract tnttrod In Block 20, II dllltrtnt Irom Rtport)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Contlnuo on rtvtttt old» II ntctttmry and Idmntlly by block numbtr)

20. ABSTRACT (Contlnut on rtvtrtt tldt It ntctttmry and Idtnttty by b/ock nwnbot)

Database technology has been successfully applied to the traditional data
processing environment where data are represented by well-formatted records.
There is a growing interest in extending this database technology to more
advanced application environments such as VLSI CAD/CAM, cartography, etc., where
data are less structured and have very complex semantics. In this paper, we
describe the data interactions in the design and manufacturing phases which are
necessary to integrate the two phases automatically. These data requirements ar€
part of an integrated information support system geared towards the "make to

DD ,'j
FORM
AN 71 1473 EDITION OF I NOV 6S IS OBSOLETE

S/N 0102-LF-014-6601
UNCLASSIFIED

SECURITY CLASSIFICATION OF TMIt PAOI (Whit Dafa tnttod)

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PACE (Whan Data Btxfrmd)

order" design and manufacturing process. An expert system translator to carry
out the integration is described and demonstrated in an example. An overall
goal of our research is to develop a completely integrated information support
system for generic design and manufacturing processes.

S.N0102-LF-014-6601 UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS RAOEfWian Dal« Bntmfd)

An Expert System Interface and Data Requirements

for the

Integrated Product Design and Manufacturing Process

MAJ Dana E. Madison

and

C. Thomas Wu

DEPARTMENT OF COMPUTER SCIENCE
NAVAL POSTGRADUATE SCHOOL

MONTEREY, CA 93943

June 9, 1986

Abstract

Database technology has been successfully applied to the

traditional data processing environment where data are represented by

wel1-formatted records. There is a growing interest in extending this

database technology to more advanced application environments such as

VLSI CAD/CAM, cartography, etc., where data are less structured and

have very complex semantics. In this paper, we describe the data

interactions in the design and manufacturing phases which are

necessary to integrate the two phases automatically. These data

requirements are part of an integrated information support system

geared towards the "make to order" design and manufacturing process.

An expert system translator to carry out the integration is described

and demonstrated in an example. An overall goal of our research is to

develop a completely integrated information support system for generic

design and manufacturing processes.

1. Introduction

One of the current trends in database research involves

supporting more advanced engineering environments such as VLSI design.

Considerable effort has been expended in developing specific data

models to support the VLSI CAD process [BAT085], [MCLE83]. There is a

growing interest in expanding the use of database technology to

support the generic product design and manufacturing process. One very

important benefit of this support is the potential for reduction in

errors. In particular, automation of component counts, physical

dimension measurements, and routine calculations could lead to

reduction of errors in cost estimates, raw material requirements, and

ordering of components and raw materials. Another benefit is the

ability to automatically maintain logical relationships between

objects as a design is manipulated. For example, automated support

could automatically adjust connecting walls, windows, and doors if a

wall is moved. This type of support frees a designer from

responsibility for detailed adjustments of a design to maintain

consistency, producing significant reductions in design errors and

inconsistencies. Significant advances have been made in the Individual

aspects of Computer-Aided Design XCAD) CBAT0853, CMCLE83], CSU86a] and

Computer-Aided Manufacturing (CAM) CSU86bl, however, the integration

of design information into the manufacturing phase of the product life

cycle has been largely ignored because of a lack of standards for data

integration between the two functions.

A major contribution of this paper is the description of the data

requirements necessary for a fully integrated design and manufacturing

system. The key to integrating the design and manufacturing phases

lies in converting attribute data which is developed during the design

process into information about the quantities and types of raw

materials required In the manufacturing process. The portion of the

manufacturing process which first uses this information about raw

materials is the material requirements planning (MRP) phase, where raw

materials are ordered and component parts production Is planned. An

expert system translator will be proposed which provides for the

integration of design information into the MRP phase of product

manufacturing.

This paper is organized as follows: the product design and

manufacturing process will be described followed by the data

representation and integration requirements for MRP. The paper will

conclude with a description of our proposed MRP translator and some

directions for further research.

2. The Role of CAD/CAM in the Product Life Cycle

The role of CAD/CAM in the operations of a manufacturing company

can be best portrayed by describing the various functions and

activities involved in the design and manufacturing of a product.

These functions and activities are known as the product life cycle.

Figure 1 depicts the product life cycle as a series of activities,

each interacting with one or more other activities in the cycle.

initial
design > engineering) drafting

customer
order

equipnent

quality
control

process
planning

production production
scheduling

Predict Life Cfele

t1gure 1

Input to the cycle consists of information about prospective markets

and customers' desires, also known as the demand for the product. It

is this demand which drives the decision-making process to determine

in what ways the product life cycle will be activated and controlled.

The extent of customer involvement in the design process will vary

from product to product. In the case of house design, for example,

customers quite frequently supply specifications for a house, right

down to the placement of wiring and plumbing runs within the walls.

Other products, for example electronic products such as televisions,

are designed by engineers working for the company manufacturing the

product. Regardless of who actually does the design, the process

begins with a concept or idea for a product. This concept is refined,

analyzed, and improved by the design engineering process. The result

of this process is a set of engineer drawings and specifications which

detail how the product is to be made. At this point, the product moves

from the design phase to the manufacturing phase of the life cycle.

The first activity in the manufacturing phase is the

specification of the sequence of production operations necessary to

make the product, known as the proCBes o]an .. . process plan, if new equipment and/or

tools are required to make the product, they are purchased at this

point in time. The process plan is used as input to the scheduling

function, which attempts to satisfy the company's need to produce

specific quantities of different products by specified dates. After

the schedule is altered to include the new product, the product is put

into production. Production and quality control perform their

respective functions cyclically until the quality control standards

are met or exceeded. At that point, the product is ready for delivery
to the customer.

Recent advances in CAD/CAM have increased its use in the

activities in the product life cycle. Computer-aided design, computer-

aided drafting, and engineering documentation storage systems support

the design phase, while most process planning and scheduling functions

are automated to increase efficiency. Computers are used directly and

indirectly to monitor and control the production operations and

quality control functions in the manufacturing phase. CAD/CAM has

traditionally supported the design and production activities as

separate and distinct functions, and is now moving towards integration

of the two using a technology known as Computer Integrated

Manufacturing (CIM).

3. Data Requirements for Computer Integrated Manufacturing

Webster's Dictionary defines "integrated" as unified or united.

We maintain, therefore, that the "integrated" in Computer Integrated

Manufacturing refers to the unification of the processes in the

product life cycle through automation of the data interactions between

these processes. Our use of the term Computer Integrated Manufacturing

or CIM uses the word manufacturing in the broadest sense to mean the

use of automation to support the entire product life cycle, not just

the manufacturing phase of that cycle. Figure 2 depicts the data

Interactions in the life cycle from product design to the point where

scheduling data is produced. Since our main objective in this paper is

to provide an interface between the design data and the material

requirements planning process, we will not concern ourselves with data

requirements beyond the scheduling process.

(Conceptual SchewaJ

| C*D | (Data Hodel)

Schewa
Data
T

Design
Data

I
Expert Systen Shell

Translator
Meta 1 V
Rules

1

Standards
Data

Assenbly
Data

(Material
Requirements
Planning Data

ri]
Scheduling

Data

Data Iateractiaa
in

Canaater Iatesrated ttaaafactarias

figure 2

The design phase is represented by the box labelled CAD which takes

the conceptual schema as input and outputs schema and design data

using the data model as a guiding mechanism. The expert system shell

translator uses the schema and design data as input and produces

material requirements planning data, which is used in the

manufacturing phase, eventually being converted to scheduling data. We

will discuss each of the data pools shown in figure 2 Individually and

tie them together by describing the interactions which occur.

3.1 Conceptual Schema

The conceptual schema will show the allowable type/subtype

aggregations, component relationships, and the acceptable combinations

of primitives to produce designs. Here, primitives for a particular

product are defined. Primitives can be defined to any level of

abstraction, and can be composite objects themselves. These primitives

are the building blocks which the data model manipulates in the design

process, therefore, the conceptual schema is product specific. A

separate schema is produced for each different product line to be

designed.

Each type and subtype shown in the conceptual schema will have a

prototype associated with it. These prototypes will contain slots for

attribute values, allow default values to be specified, and provide

inheritance information. When instances are created, extensions of

these prototypes are created, allowing for attribute values to be

defined which are unique to that instance.

Figure 3 provides an example of a conceptual schema. This schema

represents the hierarchy of type aggregations for a generic house. An

instance of this schema would contain data for a specific house being

des 1gned.

floorplan

shell

sub
covering

covering opening window door
.r.—h -i

sill case pane
connection

 , . , (
frane pluHbing electric heating

figure 3

House is the aggregation of a floor plan, a shell, a roof, and an

interior. Each of shell, roof, and interior are further defined as

aggregations of objects, some of which are shared. For example, both

roof and shell have a component called "insulation".

The bubble notation in figure 3 represents an exclusive-or

relationship among the types involved. A particular instance of

insulation is either of type shell or roof, but not both. The

insulation associated with the shell would be a separate instance and

version from the insulation associated with the roof. The double

rectangle notation represents types which have named subtypes. For

example, room has subtypes named kitchen, den, bathroom, bedroom,

etc., which can be instantiated to produce a specific configuration.

In summary, the conceptual schema provides the medium through

which the data model captures the design data for a particular

product. Together, the data model and conceptual schema determine the

full range of design alternatives for a product.

3.2 The Role of the Data Model

In the traditional manual design process, data describing a

design is placed on paper in the form of drawings and specifications.

Both are revised and developed to higher levels of detail, potentially

producing redundant and sometimes incomplete data. The redundant data

leads to maintenance and consistency problems. The data which is

produced In one design has little chance of being used in subsequent

designs due to its manual nature. These problems and lack of reusable

data prompted CAD developers to establish increased productivity as

their major objective in the transition to an automated system for

design functions. This objective is particularly important in

developing countries, where shortages of technically skilled engineers

can not keep pace with construction demands. In this case, CAD can

achieve optimal use of scarce labor resources. The automation of

routine calculations, data processing, word processing, and drafting

functions leads to substantial productivity increases as technically

skilled engineers are able to devote more of their time to technical

duties and less time to administrative functions. Additionally, the

declining cost of computer support makes the investment for

integration of design and production functions attractive. This

integration starts with the definition of a data model which supports

the design process and provides a framework that facilitates use of

design data in the manufacturing process.

Traditional hierarchical, relational, and network data models are

oriented toward manipulation of logical records and do not support the

CIM design environment. These traditional models lack facilities for

handling the semantics which are a component of the design process.

There is considerable interest in expanding the use of database

technology to support data which is less structured, less formatted,

with more complex data types, which would permit modeling of

application semantics. Semantic data models attempt to provide high-

level data structuring features to improve the expressiveness of

database conceptual Schemas. This is done by embedding the semantics

of a particular application in the database schema. The overall

8

objective of the semantic models is to increase database accessibility

by end users, many of whom are not trained in computer science.

In addition to providing for the representation of these

semantics, the ideal CIM data model would provide other features which

are not found in the traditional models. One of these features is the

representation of design objects as primitives in the model, with

prescribed "rules" for associating objects with one another. These

objects could be the building blocks from which more complex objects

could be built. Operations defined for the data model would include

those for manipulating objects. These operations would include

provisions for adding new objects and modifying existing ones. In this

paper we will develop a data model which includes these desirable

features.

Much of the application emphasis of CIM work done to date has

been in the VLSI design process [BAT085], CLEE83], CMCLE83]. We

believe that the integrated Information System concept can be extended

to more generic applications, Including integrated product design and

manufactur ing.

We will identify the abstraction concepts supported by our data

model which are necessary for the design and manufacturing processes,

and the types of support that a truly integrated system should

provide.

Current semantic models include the Entity-Relationship (ER)

Model, Functional Model, SHM+, SDM/Event Model, TAXIS, SAM«, and RM/T.

All of these models use primitives such as entities, events, or simply

objects. They also include provisions for composite objects and

attribute specification among the supported features. Extended

semantic models integrate a number of programming language concepts

with database concepts. They also make use of advanced data type

concepts such as abstract data types and strong typing. These extended

models include SHM+, TAXIS, and the SDM/Event Model. Semantic modeling

theory is now being applied to particular application areas such as

office automation, VLSI, and cartography, as well as for traditional

data processing applications (inventory, insurance, banking). We will

make use of many of the concepts from current semantic models in the

description of our model.

The abstraction concepts supported by our model include molecular

aggregation, generalization/specialization, version generalization,

version hierarchy, instantiation, and instance hierarchy. We believe

these abstraction concepts are necessary to support the design

process, and therefore are useful for other advanced application areas

as well. Each concept will be described in the remainder of this

sect ion.

Molecular aggregation is the abstraction of a set of objects and

their relationships into a higher-level object CSMIT77]. This

abstraction allows a view of objects from different levels of

generality, each with its own level of detailed definition. A user

interested in the overall design could use the topmost level of

abstraction, which would hide the implementation details. This

implements the "Information Hiding" principle commonly found in

programming language design. The idea is to give the user only the

amount of implementation detail he needs for a particular application.

Figure 4 depicts a bathroom as a molecular aggregation of objects

called floor, wall, ceiling, sink, toilet, and bathtub. All of these

except toilet are molecular objects. Note that several levels of

molecular aggregation abstraction are present in the figure.

10

FLOOR
■jJtiTel;
FRAME
joist

EÜ2
SÜBFLOOR
[boardl
inalil

heat vent

WALL
; ; DOOR

:•': If raue I
WINDOW
|case|

Isill)

tfrarnl
|pane|

llockl

FRAME
stud

COVERING
|paintj

: hinges (nailsj spackle
.-. .""•".".".■ I«.; i_l
:■: iscrewl IVliCI

:■: |knob|
:■': fcatchl

SUBCOVER INC

plywood

light switchl Inailsl

CEILING

RAHE SUBCÖÜERINC

■•'

COVERING i
joist plywood paint

; inaill [nails] spackle :

.;: light
Lt.«. ■" •,,.,,

:-SINKx:
Ifaucetl
fböwfl

: Idrainl:
legs

MTHTUB
Ifaucetf
jdrain I

ItoiJ.etj j

f1gure 4

The objects whose name appears in upper case are molecular

aggregations. Those in lower case represent primitive objects in this

example.

Molecular objects have two description components, an interface,

and an implementation [BAT085]. The interface specifies the general

function of the object and the Implementation provides the details of

the use of the object for a particular application. Attributes and

relationships can be specified in either or both the interface and

implementation.

The generalization/specialization concept of Smith and Smith

CSMIT773 will be used in the model to provide the relationship between

types and their subtypes. Types will be defined either as

generalizations of a set of named subtypes, or as primitives from

which versions and instances can be made directly. An example of

generalization would be the creation of a type house from the subtypes

colonial, duplex, ranch, tri-level, and rambling. The notion of

subtype Is important to the model because different subtypes will be

permitted to have different sets of attributes.

11

Version generalization [BAT0853 is used as the mechanism for

specifying the relationship each object type has with its versions. A

version is created by specifying implementation details for the object

type. The difference between a version and an instance of a

type/suhtype is that a version is created at an intermediate point in

a design, permitting future designs to begin at that point, with

implementation details partially specified. A type/subtype is

considered a starting point for a design, with no implementation

details specified. The concept of parameterized versions CBAT085]

arises from the need for allowing freedom in specifying the

implementation details for a particular object. If an instance of an

object type is defined instead of an instance of one of its versions,

a parameterized version is created. Choosing an instance of an object

type T creates a socket which will accommodate any version of type T.

Using the terminology defined in [BAT085], the different versions are

plugged into the socket, creating unique implementations.

The generalization concept of Smith and Smith CSMIT77] differs

from version generalization in that the former takes two or more

object sets and forms a higher level object set by taking their union,

and in the latter, an object type (or subtype) is an abstraction of

the common features of its versions, which is clearly not a union of

object sets.

In our model, a version of a type (or subtype) will be defined to

be a molecular object with interface details completely specified, but

with implementation details in some stage of completion. This

definition allows a version to be plugged, partially plugged, or

unplugged. Figure 5 shows an object of type A with an object version

VI of type A. The object of type A has its interface defined, which Is

denoted by the shading of the interface block. The implementation

details for this object are not specified, denoted by the unshaded

implementation block.

12

figure 5

Object VI has the same interface details as its object type, and also

has some implementation details specified, denoted by the partially

shaded implementation block. Examples of this definition of version

are the two, three, and four bedroom versions of a ranch house. In

each of these examples, the interface (function) of the object is

specified, but the Implementation.details (e.g. what are the sizes of

the bedrooms?) are not specified completely.

Versions can have two distinct forms of attributes, those

inherited from the object type, and those defined to be unique for

each version. Attributes inherited from the object type reproduce the

interface characteristics of the object type. Attributes defined to be

version specific are the attributes which distinguish one version of a

particular type from another version of the same type. Another way of

describing version generalization is that it is a form of abstraction

in which similar objects are related to a higher level object.

Instantiation CBAT085] occurs when an object is copied. Creating

multiple instances of an object provides for distinction between the

various copies. Both object types and object versions can be

instantiated. The purpose of instantiating will be extended to provide

meanings for instances of type and version. A version will be

13

instantiated to provide a local working copy of a previous design,

which may be plugged to any level of detail. Types (or subtypes) will

be instantiated to produce a working copy for design work from

scratch, in cases where no existing design can be used. Figure 5 shows

an object 01 which is an instance of type A. 01 would be produced to

provide a working copy of type A as a starting point in this

particular design. The fact that 01 is instantiated from its parent

type tells us that the implementation specifications for the final

product are not available and will be developed from scratch. If 01

were instantiated from VI instead, the design would begin from the

point in VI where implementation details left off, indicating that

some similarity exists between the Implementation of 01 and VI.

A hierarchy is formed for the set of designs for a particular

type/subtype, and is called a version hierarchy. In this hierarchy,

going from a higher level to the next lower level, we find that more

implementation details are specified. The difference between the

type/subtype generalization and the version hierarchy is that

different versions of an object have the same set of attributes, and

not necessarily the same values, while different types (or subtypes)

will have different sets of attributes from each other. Figure 6

depicts two version hierarchies. In this case, ranch and colonial are

subtypes of type house. Each subtype can have its own version

hierarchy. The blocks labelled two bedroom, three bedroom, and four

bedroom are on the same level in the diagram because they represent

mutually exclusive versions. Each block in the diagram Is a potential

starting point for future designs.

„COLONIAL/I
It 4.X.1 Ä J d.M.* A.

f iguri

14

An extension of the instantiation abstraction is the instance

hierarchy. The purpose of this hierarchy is to record different design

alternatives which are produced in the design process. Figure 7 is an

example of an instance hierarchy for a house being designed for John

Jones. Since Mr Jones is building this house from scratch, the design

starting point was an instantiation from subtype ranch. In the course

of designing his house, Mr Jones wasn't sure whether he wanted an

attached or detached garage, two alternatives represented in the

hierarchy. The reason for saving the hierarchy is that Mr Jones may

decide on an attached garage, finish the design, and then change his

mind. The hierarchy would permit him to go back to the point of the

detached garage and re-complete the design. All of the information

provided in the original design would be usable in the second design

except for information about the garage itself.

RANCH

3 bedrooM
Family rooM
living rooH

den
kitchen
2 bath

attached
garage

detached
9arage

f i gure 7

15

Figure 8 summarizes tho relationships between type, subtypes,

versions, version hierarchies, and instances.

sefcerea

[ÄöüJFj

roof interior shell

house
ZUZZ

type/subtype
hierarchy

ranch colonial [duplex] cape cod tri-level rabbling

wersaea
fcierarcfey [dupleKj

instaa&e
sf a

partially
Plagged
vsrsiBR

3BR
version

with
set of

instances

turn
interior

■wa
shell

mm
roof
■czsza
floor
plan

figure 8

The role of the data model in the design process will be to

provide a standard which different product designs can use to ensure

compatibility in the later stages of production. In particular, this

standard will facilitate; the integration of design data in the

material requirements planning and scheduling phases.

Schema Data

The schema data consists of semantic network-type relationship

information from the conceptual schema for a particular product. This

schema data will be used by the expert system translator to associate

design data according to the conceptual schema relationships. The

relationships supported by our system are the IS-A and PART-OF

[WINS843. The IS-A relationship provides an attribute inheritance

mechanism whereby the system can infer attribute values in cases where

16

those values were incompletely specified by the designer. Inheritance

begins at the closest ancestor and continues up the ancestral

hierarchy until a value is found. The relationships in the conceptual

schema are stated in the form of facts, as shown in figure 9.

part_of(house,floorplan). part_of(house,interior).
part_of(house,shell). part_of(house,roof).
part_of(interior,story). part_of(story,rooH).
part_of(story,space). part_of(rooM,face).
part_of(space,face). part_of(face,sub_cover).

figure 9

Our system distinguishes between schema data and the conceptual

schema because the separation of these allows a user to modify the

original conceptual schema in the design process without having to

change the schema itself. This adds flexibility to the system and

permits the conceptual schema to be implemented independently (i.e.

can be represented in a form most appropriate for processing by CAD)

of the schema data which will be used by the expert system translator,

if no modification is made to the conceptual schema during the design

process, the schema data does not have to be re-generated for each

product.

3.A Design Data

The design data consists of the instances of the prototypes

created during the design process. All slots are filled in, either

with default, inherited, or specified attribute values. As prototypes

are instantiated, IS-A facts are asserted which associate the instance

with the type from which it was created. At this point in the process,

the design is considered to be complete. Any revision work would have

been done prior to the design data being prepared for processing by

the translator.

17

3.5 Translator Meta Rules

The translator meta rules, combined with the standards data,

assembly data, and schema data will determine how the design data for

a particular product will be transformed into material requirements

planning data. These rules will enforce the standards given in the

standards data, and provide the actual translation mechanism which

produces the material requirements planning data. Figure 10 provides a

sample of meta rules for the house design and construction example.

raw_*aterials_needed :-
is_a(Extens,Intens),
property*Extens,finish_type,Material),
property*Extens,finish_color,Fcolor),
liquid(Material,Ltype,Covers,Cunits,Lunits, Cost),
dinensionlExtens, height, Ht.Htunits),
dimension(Extens,width,Ud,Udunits),
convert(Ht.Htunits,Height,Cunits),
convert(Wd.Udunits,Width,Cunits),
Area = Height * Width * 2,
Ant.needed = Area / Covers,
Tot_cost = Ant.needed * Cost,
assertz(liquid_list(Material,Ltype,Fcolor,Ant_needed,

Lunits,Tot_cost)),fail.

figure lO

These meta rules will assert new facts which represent requirements

for specific raw materials. Note that the materials list is refined

for items such as paint, nails, caulking, etc., whose requirements are

expressible as a function of the dimension of the object.

3.6 _ Standards Data

Design and manufacturing systems have to take into account a

wide variety of Federal, State, local, Occupational Safety and Health

(OSHA), quality assurance, and other standards prior to manufacturing

a product. For example, a design could call for a 1/4" Inside diameter

pipe in a specific location, but a local building code may specify a

3/8" minimum inside diameter. In this case, the design specification

must be changed to reflect the regulatory requirement. For a given

18

product, thousands of interactions are possible between existing

standards and specifications generated from the design process.

These standards are represented in the system by Prolog-style

rules to facilitate their enforcement by the expert system translator.

Figure 11 gives an example of the implementation of a regulatory

requi rement.

maximum(pipe,plasticl2,diameter,3,inches).
minimum(pipe,plasticl2,diameter,1,inches).
passed(pipe,Type,DiMension.Z,Units) :-

miniHum(pipe,Type,Dimension,X,Unitx),
maximumCpipe,Type,Dimension,V, Unity),
convert<X,Unitx,Nin,Units),
convert(V,Unity,Max,Units),
check_standards(pipe,Type,Dimension,Z,Units,Min,Max).

figure 11

The maximum and minimum facts shown on the first two lines provide the

limits for a particular type of pipe. The passed predicate indicates

that the minimum and maximum values with their respective units will

be checked against the design values, indicated by the variable Z and

units variable Units. The convert predicate converts the standards

units of measure to the units in which the design object is measured.

The check_standards predicate would compare all three measurements to

a common unit of measurement and verify that the standard was met.

3.7 Assembly Data

Assembly data includes sequencing information for assembly of

composite objects, or subassemblies, according to the relationships

shown in the conceptual schema. This assembly data covers all

conceptual schemata for a given application domain. In addition,

information on standard material types and acceptable substitutes is

included, with their costs. The system could take advantage of

fluctuating costs with the substitution information to produce an

optimal cost product.

19

The sequencing information will be represented in Prolog-style

rules. Figure 12 provides an example of a portion of a conceptual

schema with the sequencing rule to be Included in the assembly data

for the given product.

wheel

tire rut

valve steit

asseMi>le(U, wheel) :- property(U,wheel,Vtype),
part_of(W,T>. part_of(U,R), part_of(R,ll),
property(T,tire,Ttype), propertyOt.riMtype),
property(U,valve_steM,Utype),
assertz(operation(Rtype,assemble,valve_ste*,Utype)),
assertz(operaUon(Ttype, assemble, rin,Rtype)),f ail.

figure 12

The first operation fact to be asserted provides for inserting the

valve stem into the rim. The second operation inserts the rim into the

appropriate tire. Note that operation information includes details of

specific tires, rims, and valve stems. The assembly rule will produce

a set of operation facts for each wheel defined in the design. Each

wheel will be separately identifiable.

In the object-oriented approach, the assembly rules would be

considered part of the operations encapsulated with each data type. We

choose to separate these rules for the following reasons. First, the

separation allows us to abstract out the implementation details so

that the conceptual schema isn't tied to the rule-based implementation

imposed by the assembly data. The separation also functionally aligns

the conceptual schema and assembly data with the people responsible

for maintaining them. The conceptual schema can be developed by users

vith little technical expertise or familiarity with the implementation

considerations necessary to manufacture a product. The assembly data

can be maintained by the manufacturing experts who are familiar with

20

implementation details, material properties that may lead to more cost

effective substitutions of components, and the sequences of operations

used in the manufacturing process. Another reason we separate them is

that they serve different functions. The conceptual schema is used by

designers, while the assembly rules are part of the expert system

translator. The conceptual schema represents one product, but the

assembly data represents all the conceptual schemata in the

application domain. The assembly data could also contain information

about the way the factory chooses to do assembly, which is independent

of any particular product.

3.8 Material Requirements Planning Data

The main output of the translator will be a bill of materials

containing information on the assembly of components into

subassemblies and quantities of raw materials required for manufacture

of component parts. This is known as material requirements planning

data. It provides all the necessary information for the production of

a product.

3.9 Scheduling Data

After the requirements for a new product have been determined,

the new requirements data can be combined with existing production

requirements in the scheduling phase. At this point, priority

information is used by the system to determine how to integrate the

new requirements into the existing workload. The scheduling data

includes assembly data which will be used to coordinate construction

of subassembIies with production of components and ordering of raw

materials and purchased parts.

21

4 -Expert System ShelJ Trans 1 ator

The basic task of the expert system shell translator Is to

automatically conclude the quantities, types, and assembly sequences

of raw materials needed to manufacture a product from design data.

•Before we examine this translator in detail, we will present some

background information on expert systems.

Expert systems belong to a class of artificial intelligence

applications known as knowledge-based Systems. The thing that makes

expert systems unique is that their performance depends on utilizing

facts and heuristics used by human experts in similar situations. One

of the characteristics of these systems is their large solution space

wherein the number of reasonable solutions is usually a small

percentage of the number of possible solutions. Figure 13 depicts the

components of a knowledge-based system.

USER

I Graswtar and
(^Dictionary

Database

i Typical KMtfledge-llased Systen

figure 13

ce

Conceptually, these systems employ a representation scheme and some

reasoning method. The representation scheme, determined by the

language handler, permits expression of generalizations in the absen

of complete Information. Early systems used formal logic as the

representation scheme and deductive reasoning, but abandoned logic in

pursuit of more efficient representations. These efforts led to the

development of knowledge-based and expert systems characterized by the

22

use of production rules and knowledge representation, i.e., object-

oriented techniques. The reasoning method used by the knowledge-based

system is determined by the inference rules manipulated by the

Inference engine.

Several benefits can be obtained by using a knowledge-based

system to enhance data management. First, the inference engine is able

to produce information that is not explicitly stored, but can be

inferred from the known facts. The inference engine also permits users

to work with the system without considering file structure and other

implementation details. The ability of an inference engine to generate

an audit trail or line of reasoning is invaluable in debugging a

system. The inference engine can also act on fuzzy data, or data which

is not completely specified, and produce results with the same degree

of accuracy.

The translator we propose as the interface mechanism between the

design and manufacturing processes will make use of the aforementioned

benefits. In addition, the translator will provide for resolution in

the event that it receives conflicting data. An example would be the

preference of standards data over design data, in situations where

standards would otherwise not be met. The translator will be

opportunistic, that is, it will use substitution criteria whenever

possible to lower cost without sacrificing quality. The translator

will use the schema and assembly data as guidance to control the

deduction process and limit the space of possible solutions.

The fact that this translator and most of the data used by it are

rule-based introduces a variety of issues which should be addressed.

Among these issues are inconsistencies, redundancies, and

incompleteness in the rule base. Inconsistency is the predominant

worry in rule-based systems because conflicting consequents inferred

from the same set of facts (evidence) can result in faulty performance

of the system. Remedies for inconsistency range from altering or

removing part of a rule to major reorganization of the rule base. Our

system will prevent inconsistency by checking new rules against the

existing rule base using forward-chaining inference to derive possible

23

consequents. Users can be immediately informed if inconsistencies

exist, and the new rule can be redefined.

Redundancies arise when different rules acting on the same set of

facts arrive at the same conclusion. Incompleteness results from a

failure of a rule base to derive a consequent from a given set of

facts. Redundancy can be avoided by using a check similar to the

consistency check. Incompleteness will be avoided by performing a test

of the system in which conceptual schema data is passed through the

trans Iator.

Other major issues include possible difficulties in entering the

rules into the system. Users should not have to concern themselves

with the exact syntax of these rules and should be provided with an

interface to facilitate the management of rules In the system.

i^I_M iüilElt.

The expert system translator we propose can be Illustrated by use

of a scaled-down example. A Prolog program for this example is

presented as an appendix to the paper. We will limit our example by

following the data from one prototype Instantiated during the design

process through the translator, producing a bi11-of-materia1s. To

begin, we will use the type door depicted in the conceptual schema in

figure 3. The following figure is a prototype as it would appear after

the data values are entered. When the prototype is first instantiated,

the rightmost columns are either blank or contain default values. The

leftmost columns are filled in as part of the conceptual schema

definition process.

24

1 p. ; imzma
nai» T doorl

properties:

Material type wood
finish type paintK
finish color brown
knob type round32
hinge type square3in
height 78 inches
width 28 inches
depth 2.5 inches

figure 14

When the design process is complete, the following design data facts

are created to represent the object doorl to the expert system

translator :

is_a(doorl,door).

property(doorl,naterial_type,wood).
pro(>erty(doorl,finish_type,paintl6).
property(doorl,finish_color,brown).
property(doorl,knob_type,round32).
property<doorl,hinge_type,square3in).

diHension(doorl,height,78,inches).
dinension(doorl, width,28,inches),
dim nsion(doorl, depth, 2.5, inches).

figure 15

The is_a fact relates the instantiated object doorl to the type door.

The property facts correspond directly to the property entries in the

prototype and the dimension facts correspond to the dimension

information. In the case of dimension attributes, both the value of

the dimension and the unit of measure are variable data to be supplied

during the design process.

25

A portion of the schema data to be used by the translator for the

example conceptual schema includes the following facts and rules:

part_of(house,floorplan).
pait_of(house,interior).
part_of(house,shell).
pait_of(house,roof).
part_of(interior,story).
pait_of(story,roon).
part_of(TOOK,face).
part_of(face,door).
trans_partof(X,V) :- part of(X.V).
trans_partof(X,V) :- part_of(X,Z),

trans_partof(Z,V).

flgure 16

The last two rules provide the recursion necessary for expressing

transitive hierarchical relationships between two objects as defined

in the conceptual schema.

Standards data, to be used by the translator, would include the

following rules which would enforce fire, safety, and architectural

standards'

*ininu(«(dooi,doorl, width, 32, inches).
MaxiHun(door,doQrl,width,4,feet).
niniMuw(dooi,doorl,height,6,feet).
*axinuM(dooi,doorl,height,7,feet).

begin_stds_check :- is_a(Entens,Intens),
diHension(Extens,Dimension,Z, Units),
mnii4UM(Irtens,Extens,Dinension,X,Unitx),
«axiwjMdrtens, Extens, Dimension, V, Unity),
converts, Unitx.Hin, Units),
convert(V;Unity,Max,Units),
check_stds(Extens,Intens,Dimension,Z.Units,Min,Max).

figure 17

The format for maximum ami minimum standards allows flexibility in

specifying that different versions of a type could have different

standards. For example, casement windows could have a minimum width of

18 Inches, while bay windows could have a 36 inch minimum width. The

begin_stds_check rule works on one dimension of an object at a time.

26

but is general enough to apply to any dimension of any object,

avoiding redundant rules.

Assembly data, pertinent to this example, would consist of the

fo1 lowing rules:

finish(Extens) :- property(Extens,finish_type,Ftype),
property<Extens,finish_color,Fcolor),
assertz(operation(Extens,finish,Ftype.Fcolor)).

asse*ble(Extens,knob) :-
property*Extens,knob_type,Ktype),
assertz(operation(Extens,assemble,knob,Ktype)).

(Mterial(doorl,wood,7,feet,3,feet,2.5,inches,
8,feet,i,feet,15.75).

liquid(paint16,paint,128§,feet,gallon,7.50).

figure 18

The order of invocation of these rules will determine the order of

operations to be performed. The material fact provides the dimensions

for a standard piece of material of the given type, in this case wood

for door type doorl, and the cost of one piece of this material with

the standard dimensions. Information on the density of fasteners can

also be provided (note the zeros for the 9th and lith parameters) in

the event that this material needs nails, screws, etc, for piecing it

together. The density information allows for different materials of

the same size to be fastened appropriately. For example, board lumber

which comes in 8 feet by 1 foot planks could have a height density of

.5 per foot and width density of 1 per foot, which means that

fasteners would be placed every 2 feet along the height dimension and

every foot along the width dimension. Particle board planks with the

same dimensions could have a different density for fasteners due to

the binding properties of the material, i.e. height density of .75 per

foot and width density of 2 per foot. The rules invoked to determine

27

the number of fasteners required for a piece of material would use the

following formula:

number required =

((height X height density) + 1) X ((width X width density) + 1)

Similarly, the liquid fact says that one gallon of part number paintlö

will cover 1200 square feet and costs $7.50.

The following report is produced by the expert system translator,

and represents the results of standards verification plus the material

requirements planning data for the object doorl of type door used in

this examp1e.

Standards check for door doorl

door doorl passed - height
door doorl failed minimum - width

Production Sequence P?eport

doorl finish paintlS
doorl assemble knob
doorl assemble hinge

brown
round32
square3in

Raw Materials Report

wood 78 Inches 28 Inches
knob round32 1
hinge square3in 3

2.5 inches »15.75
$3.20
$.75

1iqulds

paint paintie brown 0.03 gal Ion $. 19

28

5. Cone I us ion

The successful integration of product design and manufacturing

functions requires a complete understanding of the relationships of

data produced and used throughout the product life cycle and some

mechanism to translate product design data into a form which is useful

in the manufacturing process. In this paper, we have described this

data and demonstrated an expert system translator which integrates the

design and manufacturing functions. The data was classified according

to its role in the integration process, and consists of a data model,

conceptual schema, standards data, assembly data, schema data, design

data, and translator meta rules.

The role of the data model is to provide a standard for

compatibility across product design boundaries which will facilitate

the material requirements planning process for a multitude of

products. A conceptual schema will be required for each different

product design, and will characterize the structure of the design data

for a product at any point in time. The standards data should be

viewed as constraints that design data must obey to be acceptable for

production. Assembly data includes sequencing information for assembly

of composite objects and equivalence data to increase cost

effectiveness of a design without violating the standards constraints.

The schema data is just the conceptual schema in rule form, with the

added flexibility of temporarily modifying the conceptual schema for a

specific product. The design data consists of instantiated prototypes

for each object used in the design, and includes attribute inheritance

features when necessary. The translator meta rules are used to produce

the MRP data from the available design, schema, standards, and

assembly data.

The expert system translator is a rule-based reasoning machine

which produces information about the quantities and types of raw

materials required to produce a product. The translator also provides

assembly sequence Information for use in later stages of production.

29

Directions for further research include the design of a user

interface for managing the rules in the system and the development of

a graphics interface for defining the conceptual schema to the system.

An additional research area deals with possible internal

representations of design objects using syntax directed editors with

context-free CRABI85] or context-sensitive [LEE83] grammar rules. The

use of such an editor will ensure that the design satisfies integrity

constraints (which will keep a window from being placed in a floor).

The translator we have proposed is currently under development at

the Laboratory for Database Management at the Naval Postgraduate

School. The Appendix contains a listing of the Prolog code for the

example given in this paper. We expect this integrated system project

to spawn several other projects including user-interfaces for data

modeling, database management support for rule-based systems, and

multi-media data models.

30

References

CBAT085] BATORY, D.S. and KIM, W. Modeling Concepts for VLSI CAD
Objects. ACM Trans. Database Syst. 10,3 (Sep. 1985), 322-346.

CBR0D82] BRODY, M.L. On the Development of Data Models. On Conceptual
Modeling, Springer-Verlag, 1982, 19-47.

CCHEN76] CHEN, P.P.S. The Entity-Relationship Model-Toward a Unified
View of Data. ACM Trans. Database Syst. 1,1 (Mar. 1976),9-36.

CLEE83] LEE, Y.C. and FU, K.S. A CSG Based DBMS for CAD/CAM and its
Supporting Query Language. Databases for Engineering
Applications, 1983, 123-130.

[MCLE83] MCLEOD, D., NARAYANASWAMY, K., BAPA RAO, K. V. An Approach to
Information Management for CAD/VLSI Applications. Databases
for Engineering Applications, 1983, 39-50.

CRABI85] RABITTI, F. A Model for Multimedia Documents. Office
Automation, Springer-Verlag, 1985, 227-250.

CSMIT77] SMITH, J.M. and SMITH, D.C.P Database Abstractions:
Aggregation and Generalization. ACM Trans. Database Syst. 2,2
(Jun 1977), 105-133

[SU86a] SU, S.Y.W., Modeling Integrated Manufacturing Data with SAM»,
IEEE Computer, Jan 86, 34-49

CSU86bJ SU, S.Y.W., et al, The Architecture and Prototype
Implementation of an Integrated Manufacturing Database
Administration System, IEEE Computer Society International
Conference, 1986, 287-296

CUINS84] WINSTON, P.H., Artificial Intel 1igence, Addison-Wes1ey, 1984

31

Append 1x

/» Expert System Translator «/

start :
writedevlce(printer),
not(begin_stds_check),
not(begin_operations),
not(operations_report) ,
not(raw_materials needed),
not(materials_report),
writedevice(screen).

begin_stds_check :- is_a(Extens,Intens),
write("Standards check for ",Intens,Extens),nl,n1,
dimension(Extens,Dimens,Z,Units),
checkUntens,Extens,DimenstZ,Units),faiI.

check(door,Type,Dimension,Z,Units) : -
minimum(door,Type,Dimension,X,Unitx),
maximum(door,Type,Dimension,Y,Unity),
convert(X,Unitx,Min,Units),
convert(Y,Unity,Max,Units),
check, standards(door,Type,Dimension,Z,Units,Min, Max).

check_standards(Intens,Ex tens,Dimension,Value,Units,Min, Max) :-
not(Min > Value), not(Value > Max),
write(Intens," ",Extens," passed - ",Dimension),n1,!.

check__standards(Intens,Extens,Dimension,Value,Units,Min,Max) : -
Min > Value,
write(Intens," ".Extens," failed minimum - ",Dimension),n1,!.

eheck_standards(Intens,Extens,Dimension,Value,Units,Min, Max) :-
Va1ue > Max,
write(Intens," ",Extens," failed maximum - ",Dimension),n1,!.

begin_pperations :- is_a(Extens , Intens),
not(do_finish(Extens)),
not(do_assembly(Extens)),fai1.

do_finish(Extens) :- finish(Extens),fai1.

do__assemb 1 y (Extens) :- as semb 1 e (Extens , Notused), fai 1 .

operations_report :- nl,nl.nl,
write("Production Sequence Report"),n1,n1,
operation(Extens,Function,Attributel,Attribute2),
write(Extens," ".Function," ",Attributel,

",Attribute2),nl,fai1.

32

.» _» _» _» _» Hdens, Hduni ts,

raw_mater ial s_needed '•-
is_a(Extens,door) ,
material(Extens,Material,,

Wdens,Wdunits,Cost),
dimension(Extens,height,Ht,Htunits),
dimension(Extens,width,Wd,Widunits),
dimension(Extens,depth,Dp,Dpunits),
assertz(material_listCMaterial ,Ht,Htunits,Wd,

Widun its,Dp,Dpunits,Cost)),fai1.

raw_raateria1s_needed :-
is_a(Extens, Intens),
property(Extens,f inish_type, Materia1),
property(Extens,f inish_co1 or, Fco 1 or),
liquid(Material,Ltype,Covers,Cunits,Lunits,Cost),
dimension(Extens,hei ght,Ht,Htunits),
dimension(Extens,width,Wd,Wdunits),
convert(Ht,Htunits,Height,Cunits),
convert(Wd,Wdunits,Width,Cunits),
Area = Height » Width » 2,
Amt_needed = Area / Covers,
Tot_cost = Amt_needed « Cost,
assertz(1iquid_list(Material , Ltype, Fco lor,Amt_needed, Lunits,

Tot_cost)),fai1.

materials_report :- nl,n1,n1,write("Raw Materials Report"),nl,nl,
material_list(Material , Ht,Htunits,Wd,Widunits,Dp,

Dpuni ts,Cost),
write(Material ," ",Ht," M,Htunits,rt ",Wd," ".Widunits,

" ",Dp," ".Dpunits," *",Cost),nl,fail.

materia1s_report :- nl,nl,write("1iquids"),nl,nl,
1iquid_list(Material, Ltype, Fcolor,Amt_needed,Luni ts, Tot_cost),
write(Material," n,Ltype," ",Fcolor," "),
writef("X3.2",Amt_needed),
write(" ".Lunits," $"),
writef<"X3.2",Tot_cost),nl,fai1.

converts(A,feet,B,feet) :- B = A.
converts(A,inches,B,inches) :- B = A.
converts(A,feet,B,inches) :- B = A « 12.
converts (A, inches, B, feet) '• - B = A / 12.
converts(A,feet,B,yards) :- B = A / 3.
converts(A,yards,B,feet) s- B = A » 3.

convert(A,Dimensionl,B,Dimension2) :-
converts(A,Dimensionl,B,Dimenslon2),!.

convert(A,Dimensionl,B,Dimension2) s-
converts(A,Dimensionl,X,Dimensionx),
not(equa1(Dimensionl,Dimensionx)),
convert(X,Dimensionx,B,Dimension2).

equa1(A,B) B = A.

33

Des i gri Data

is__a(doori,door) .

property(doorl,material_type,wood).
property(doorl,finlsh_type,paintl6).
property(doorl, flni sh_co1 or,brown).
property(doorl,knob_type,round32) .
propertyCdoorl, hinge_type,square3in)
dimension(doorl,hei ght,78,inches).
dirnension(doorl,width, 28, inches) .
dimensionCdoorl,depth,2.5,inches).

Schema Data

part_of(house,f1oorp1 an).
part_of(house,interior),
par t_of(house,shel1).
part___of (house, roof) .
part_of(interior,story).
part__of (story, room) .
part___of (story, space) .
part_ of(room,face).
part_of(space, face) .
part_of(face,door).

trans _par t o f(X,Y)
transjar tof (X, Y)

part_of(X,Y).
part_of(X,2),
trans_partof(Z,Y)

Standards Data

minimum(door,door 1,width,32,inches)
minimum(door,doorl,height,6,feet).
maximum(door,doorl,width,4,feet).
maximum(door,doorl,height,7,feet).

34

