
 REPORT DOCUMENTATION PAGE 
Public reporting buroen lor this collection ot information is estimated to average 1 hour per response, including me time 

maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burd 
suggestions lor reducing this burden to Washington Headquarters Services, Directorate lor Information Cperatijhi *nd Repor 
to the Office of Management and Budget. Paperwork Reduction Proiect (0704-0188). Washington. DC 20503 

AFRL-SR-BL-TR-OI- 

32. and 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 
February  2001 

3. REPORT TYPE AND DATES COVEHtu 
Final  Technical  Report, 4/15/98-11/14/00 

4. TITLE AND SUBTITLE 
New World Vistas:   Planning and Scheduling 
Planning and Scheduling with Contingencies 

6. AUTHOR(S) 
Michael Curry 
Prof. David A. Castanon 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

ALPHATECH. Inc. 
50 Mall Rd. 
Burünaton, MA 01803 

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Dr. Neal Glassman 
Air Force Office of Scientific Research 

1 10 Duncan Avenue. Room B 115 
Boiling Air Force Base, DC 20332-8080 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
Approved for Public Release; Distribution Unlimited 

5. FUNDING NUMBERS 
F49620-98-C-0023 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

TR-1005 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

20010905 129 

13. ABSTRACT (Maximum 200 Words) v 

Planning and scheduling have bjen identified as one of several critical technology areas required 
to achieve information superiority . In order to exploit future information systems that provide 
information in real-time, commanders must have fast real-time techniques to modify plans in the 
presence of uncertainty, and which anticipate future replanning so that the original plans can be 
modified with minimal impact. 

The proposed research was to develop mathematical techniques for fast mission replanning in a 
class of risky multiplatform assignment and scheduling problems. The mathematical models represented 
multiple platforms evolving on graphs, with risky transitions where platforms can be destroyed, and 
task nodes that platforms can perform. The resulting Markov decision problem can be solved exactly 
for small problems using stochastic dynamic programming.  To extend these algorithms to larger 
dynamic decision problems, we developed different approximations to the stochastic dynamic 
programming algorithm, and explored their relative performance on classes of test problems.  The 
results identified advantages and potential shortcomings of several techniques, and identified 
promising techniques for application to Air Force planning and scheduling problems.  These 
techniques will have the capability of generating plans and schedules which anticipate 
contingencies, and which provide for efficient replanning in cases of failures. 

14. SUBJECT TERMS 
Approximate Dynamic Programming, Rollout Algorithms, Neural Networks, 

Multi-vehicle Routing with Risk, Planning with Contingencies, Monte Carlo 
Evaluation, Markov Decision Problem  

15. NUMBER OF PAGES 

16. PRICE CODE 
y%% 

17. SECURITY CLASSIFICATION 
OF REPORT 
UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



TR-1005 

Rev. 1.0 

FINAL TECHNICAL REPORT 

NEW WORLD VISTAS: PLANNING AND SCHEDULING 

DYNAMIC ASSIGNMENT AND SCHEDULING WITH CONTINGENCIES 

Contract F49620-98-0023 

CDRL Item 0002AA 

14 Februar.. 2001 

Subrt.itt^.d by: 

ALPHATECH, Inc. 

50 Mall Road, 

Burlington, MA 01803-4562 

Submitted to: 

Dr. Neal Glassman 

Air Force Office of Scientific Research 

110 Duncan Avenue. Room B115 

Boiling Air Force Base. DC 20332-8080 



:.J 

ALPHATECH, INC. 

Table of Contents 

1 ACKNOWLEDGEMENTS 4 

2 INTRODUCTION AND MOTIVATION 4 

3 RESEARCH APPROACH 5 

4 RESEARCH RESULTS - <> 

5 TECHNOLOGY TRANSITION AND FUTURE RESEARCH 11 

6 SUMMARY 12 

REFERENCES 14 

APPENDICES AND ATTACHMENTS 15 

AFOSR Planning and Scheduling 3 Final Report 

u 



ALPHATECH, INC. 

1 ACKNOWLEDGEMENTS 

Contributors to this program were Prof. David Castanon, Prof. Dimitri Bertsekas, Prof. Stephen Patek. 
David Logan (PM), Michael Curry (PL), and Dr. Cynara Wu. 

2 INTRODUCTION AND MOTIVATION 

In Joint Vision 2010 [1], the Chairman of the Joint Chiefs of Staff. General John Shalikashvili, 
outlined a vision of effective, efficient armed services for the next century. In this document. General 
Shalikashvili stressed the importance of "information superiority" which he defined as "The capability to 
collect, process, and disseminate an uninterrupted flow of information while exploiting or denying an 
adversary's ability to do the same." Enhanced command, control, and intelligence provided by information 
superiority will transform the traditional functions of maneuver, strike, protection and logistics into a new 
conceptual framework for operations. The new operational concepts are called dominant maneuver, 
precision engagement, full dimensional protection, and focused logistics. These concepts will exploit 
information superiority and other technological advances to out-maneuver any adversary, attack with 
precision, defend friendly forces, and maintain supplies to widely distributed assets. 

In a subsequent report, entitled New World Vistas [2], the Air Force Scientific Advisory Board 
identified specific technology areas that must be developed to achieve information superiority and to 
maintain the Air Force as the preeminent air force of the twenty-first century. One of the critical 
technology areas was Scheduling and Planning, focusing on the development of efficient methodologies for 
distributed planning and scheduling it exploits information superiority provided by new Air Force systems. 

Planning and scheduling problems arise in many important Air Force applications such as Intelligence. 
Surveillance and Reconnaissance (ISR), sensor management, and strike planning and replanning. Such 
applications provided the motivation and focus for our research. In these applications, limited surveillance, 
logistics and combat resources are carefully scheduled to best achieve a set of missions. However, 
information regarding the battle space contains uncertainty, is incomplete, is not always correct, and 
evolves continuously; furthermore, many of these problems involve potential actions by adversaries which 
affect mission success. A major advantage of future information systems is that they will provide the 
capability forclose monitoring of mission progress and the evolution of the battle space, and thus provide 
the opportunity for effective, timely replanning to increase mission success. 

In order to illustrate the nature of the problems addressed in the research, we summarize three 
motivating Air Force applications below. 

2.1     ISR 

ISR problems involve the planning and adaptive replanning of surveillance platform trajectories (e.g. 
U2, Global Hawk, etc.) and scheduling of mission assignments to examine and monitor important areas in 
the battle space. The diversity of available platforms and sensors that is envisioned in future combat 
systems would provide commanders with a greater capability and flexibility in selecting and scheduling 
their intelligence, surveillance, and reconnaissance missions. The objective of ISR mission plan is to 
generate coordinated multiplatform collection schedules, which combine synergistically the sensor 
capabilities of the different platforms to detect, track and identify the enemy components in the battle 
space. The outputs of the mission plans include specification of the routes of each platform (e.g., its 
ground track and altitude), the targets/areas that each platform must examine along its route, and the 
schedule of data collection activities for each platform. 

In the event that a platform is destroyed, or new objects are detected in the battle space, the missions of 
the individual platforms must be modified to maintain coverage of the important events, while 
accommodating new tasks. Algorithms, which can perform such real-time replanning in anticipation and 
response to unpredictable events, were the focus of our research. 

AFOSR Planning and Scheduling 4 Final Report 



ALPHATECH, INC. 
2.2 S ENSOR MANAGEMENT 

Sensor management consists of scheduling the activities of diverse, geographically located mobile 
sensors in order to obtain an accurate classification of objects in the battle space. This class of problems is 
very similar to the ISR problem; the difference is that sensor management occurs at a faster time scale. ISR 
is concerned about platform trajectories, and responds to events such as new target detections and platform 
destruction. In contrast, sensor management is focused on sensor mode selection, and responds to real-time 
tracking and classification information. From a planning perspective, sensor management focuses on the 
concept of managing the information dynamics provided by the sensors. As information is acquired, 
targets that have a higher likelihood of being a threat should be examined more closely in order to 
accurately determine their type, whereas objects which pose little expected threat should not be viewed. 
This feedback management of information provides the type of information superiority envisioned in Join: 
Vision 2010. 

2.3 STRIKE PLANNING AND REPLANNING 

The last class of motivating applications is the planning, scheduling and subsequent replanning of air 
combat missions in offensive strike operations. In the simplest variation of these planning and scheduling 
problems, individual platforms are assigned routes and missions for each route, and dynamically adapt both 
routes and missions in response to observed contingency events such as the discovery of new enemy threats 
or targets, or the destruction of some platforms. More complex versions of these problems involve 
planning a set of integrated missions, together with logistic, surveillance, and electronic support assets; 
such planning must anticipate future contingencies which may change mission assignments, and be able to 
respond with real-time replanning. Events such as detection of new threats, failure to destroy intended 
targets, and loss of platforms require modifying the existing set of missions in order to accomplish the 
intended objectives. 

In the remainder of this report, we describe the progress we made towards the development of planning 
and scheduling algorithms, which anticipate the need for future replanning and thus generate robust 
missions which are readily modified when unpredicted contingencies arise. 

3   RESEARCH APPROACH 

The planning and scheduling problems outlined above have the following characteristics in common: 

1. A series of decisions must be made over time (the original plan plus revisions due to replanning). 

2. Each decision has an immediate cost or payoff that must be considered and has consequences thnf 
affect future decisions and hence future costs or payoffs. 

3. Information about the effects of decisions is observed (by monitoring the progress of the plans and 
contingencies), and can be used to modify future decisions. 

4. The immediate and long-term consequences of a decision may be influenced by random 
(uncertainty) and deliberate (antagonist) factors beyond the control of the decision maker. 

Thus, the above problems are a class of dynamic decision problems under uncertainty. One of the first 
results of our research was the development of a mathematical paradigm to represent the important aspects 
of the applications discussed previously. This led to a class of problems denoted as multi-vehicle routing 
problems on risky graphs. The modeling paradigm is described in greater detail in Section 3 below and in 
the papers in the appendix. The resulting optimization was a Markov decision problem, which could be 
solved in principle by the mathematics of stochastic dynamic programming (SDP) [3]. However, the 
required state space representation of the problem grew exponentiallywith the size of the problem 
description, making direct application of the SDP algorithm impossible except for very simple problem 
instances. 

Our research objectives were to develop algorithms, which approximated the performance of the SDP 
algorithm, while maintaining feasible computation requirements for large problems. In order to do this; we 
abandoned the control-theoretic model of computing a priori an optimal feedback strategy for every 

AFOSR Planning and Scheduling 5 Final Report 



ALPHATECH, INC. 
possible future state of the system. Instead, we adopted the philosophy of receding horizon control and 
model-predictive control, whereby a set of control decisions is computed in real-time, by solving a 
replanning problem starting from the current state. In this manner, we considered states that could be 
reached from the current state, instead of all possible states. In order to compute the decisions made at the 
current state; a receding horizon decision problem was formulated starting at the current state, and was 
solved in real-time, using techniques which approximated the SDP algorithm. 

Our research explored a number of variations of this approach, focusing on promising techniques that 
have been used for computing highly effective, if not provably optimal, solutions to stochastic, dynamic 
optimization problems. These techniques are based on a combination of ideas from operations research, 
control, and artificial intelligence. The common elements of these techniques were: 

• Efficient approximation of the cost-to-go function from dynamic programming. 

• Local Search for approximate minimization of current cost plus expected cost-to-go. 

Specifically, our research investigated how to develop effective cost-to-go approximations for 
problems with large state and decision spaces. We explored the use of neural network approximations (as in 
neurodynamic programming [4]), simulation-based methods (the temporal rollout techniques of [5-7]), 
plus decomposition techniques and other approximations. The various techniques are described in the 
papers enclosed in the Appendices, along with the results of the different evaluation experiments we 
performed. 

In the next section, we summarize the results of our research effort, much of which has been published 
and included as attachments. 

4   RESEARCH RESULTS 

4.1    MODEL PROBLEM 

In this section, we describe a mathematical formulation that represents the important aspects of multi- 
platform scheduling under risk. This formulation served as the basic focus for our research. The paradigm 
used in the formulation is that platforms are scheduled to perform spatially distributed tasks. 

Our model starts with a finite set of discrete nodes N, which represent potential locations of tasks or 
intermediate waypoints enroute to task locations. Each node n is characterized by a value V(n) of the task 
•associated with that node. This value can vary dynamically, and is reduced to zero if the task at that node 
has already been performed, or if there is no task at the node. 

We assume that there is a set of directed arcs A connecting the nodes N. Associated with each of arc a 
is a risk p(a), which represents the probability that a platform traversing that arc will not be destroyed on 
that arc, and thus will reach the end node of the arc. 

Platforms travel on the associated graph G(N,A). There are M identical platforms that are present in 
the graph. We describe the evolution of each platform in terms of a discrete time index k. We assume that 
each platform can traverse a single arc in a unit of time. Although this assumption implies that each arc can 
be traveled in unit time, this assumption is not restrictive because additional nodes can be introduced to 
represent waypoints, which are equally spaced. Associated with each platform m at time k is a platform 
state sk(m), which is either -1 to indicate the platform has been destroyed, or indicates the node which 
contains the platform at time k. 

The state of the system at time k is defined as xk, and is composed of the collection of individual 
platform states and node value states. Let vk(n) denote a binary state for node n at time k, which is 1 if no 
platform has reached the node before or at time k, and 0 otherwise. Then, the system state is defined by the 
vector: 

xk
T = [vk(l) vk(N).sk(I) sk(M)]T 

AFOSR Planning and Scheduling 6 Final Report 



ALPHATECH, INC. 
The admissible decisions at time k, denoted by U(xk), depend on the current state xk. Each platform m 

which is not destroyed at time k (so srfm) > 0) must select an arc in A to traverse which starts at node sk(m)\ 
staying at the current node is not allowed unless there is an arc in A which starts and ends at that node. 
When platform m traverses an arc a= (sk(m),e) at time k, its state changes as follows: 

Sk+i(m) = e with probability p(a)\ otherwise, sk+,(m) = -/. 

We assume that the stochastic events associated with each platform traversing an arc are independent 
across platforms, arcs and time. Thus, each arc traversal represents an independent Bernoulli event that 
affects the state of an individual platform. 

The node value dynamics are deterministic; and represented as follows: If a platform reaches a node, 
its node value is automatically reduced to 0. With this notation, the state dynamics can be represented as 

where xk is the state, Uk is the control to be selected from a finite set Uk (*k). and (Ok represents the 

random events associated with the arc transitions by platforms. 

The final aspect of the model is the objective function. We formulate the decision problem as a finite 
horizon problem, with maximum time T. We assume that, at time k=0, all platforms start at a base node 
n=0. We are interested in all platforms returning to base by time T. Associated with each platform is a 
platform value Vm, which is lost if the platform does not safely return to base. With this notation, the net 
value at the final time T when the system reaches state .tris given by the sum of task value accumulated 
minus platform value lost, as 

M 

J(xT)= JJV(n)I(vT(n) = 0)+ J,VmI(sT(m) = 0) 
neN m=\ 

We can regroup the above performance in terms of the incremental value accumulated at each time, as 
follows: 

T M T-\ 
J=Y, {TV(fi)I(Vk_l(n) = lvk(n) = 0)}+JjVmI(sT(m) = 0)=Jjgk(xk,uk,COk) + G(xT) 

k = \    ne,V m=l k=0 

where /() is the indicator function. The objective J is random since it depends on the outcomes of the 
random arc traversal ,vents. We assume that, at each state k, the state xk is observed, and the choice of 
control action uk dep^.ids on the current state xk- 

Although the above formulation assumes that all platforms are identical, it is straightforward to include 
multiple types of platforms, by making the arc transition probabilities depend on platform type j, asp(a.j). 
It is also straightforward to make the value of a node depend on the time at which a platform reaches the 
node, as V(n,k), thereby incorporating constraints such as windows of time during which tasks are available 
at nodes. A third straightforward extension is to restrict the type of platform that can perform the task at a 
specific node. Although we do not explicitly treat such examples in this paper, the methodology presented 
below extends naturally to those cases. 

The above model is a Markov decision problem, with observed state xk. Note, however, that the 
number of possible different states is 2V(V+1 )M, where V is the number of nodes in the graph. Thus, the 
number of states explodes rapidly with the number of nodes. This makes infeasible the computation of a 
full feedback strategy, which selects an action for every possible state and time. 

In the remaining subsections, we summarize the results in our major publications. These are included 
in the Appendices. 

AFOSR Planning and Scheduling 7 Final Report 



ALPHATECH, INC. 

i 

::J 

4.2 ROLLOUT ALGORITHMS FOR STOCHASTIC SCHEDULING PROBLEMS 

The first set of investigations focused on the special case in the previous model where there is a single 
platform present in the problem. For this case, when the network graph is fully connected and the arc risks 
depend only on the terminal node, the problem reduces to a well-known stochastic scheduling problem 
known as a quiz problem [7]. This class of problems has a known optimal solution, which consists of an 
index policy, which ranks nodes in order of desirability. The optimal policy for fully connected graphs is 
to visit the nodes in the order provided by the index policy. 

We focused on extensions of the problem to cases with sparse graphs, limited time horizons, 
precedence constraints and additional uncertainty   For this class of problems, determination of optimal 
decision rules required the solution of large-scale stochastic dynamic programming problems. In our 
research, we developed a new class of algorithms, based on approximate dynamic programming principles, 
which achieved near optimal performance while requiring far less computation. 

The main idea behind our approximate dynamic programming algorithm was to avoid computation of 
an optimal control for every possible state. The premise of dynamic programming is to precompute such 
an optimal policy, thereby requiring complete exploration of all of the possible state realizations and events 
which may happen. The concepts we explored adopted the philosophy of model-predictive control, where 
computation of a decision waits until the current state is observed. In this manner, one can restrict the 
future states considered to those states, which are likely to be reached from the current state. This greatly 
reduces the complexity of determining a decision. 

The second key ingredient of our algorithmic approach was the use of rollout strategies to obtain 
approximations to the future costs associated with a current decision. Rollout strategies were proposed, by 
Tesauro [5] and others, for evaluating surrogate future consequences associated with current decisions. 
The key to rollout strategies is to use a suboptimal strategy to model how future decisions arc made as a 
consequence of current outcomes. Given this suboptimal strategy, future performance can be evaluated 
either through analytical means or simulation. The expected future performance is combined with the 
benefits of current actions to select the desired control. 

From a theoretical perspective, rollout strategies correspond to a policy improvement step in the policy 
iteration algorithm for solution of stochastic dynamic programming problems [3]. Starting from the 
suboptimal strategy, the algorithm computes an improved decision, which takes into account the future 
consequences. In our work, we investigated the sensitivity of performance to the choice of suboptimal 
strategy, and established that we recovered close to 90% of the optimal performance from a single policy 
improvement step using rollout strategies. These results are documented in the paper in Appendix A. 

4.3 APPROXLMATE DYNAMIC PROGRAMMING FOR THE SOLUTION OF MULTIPLATFORM 

PATH PLANNING PROBLEMS 

As an extension of our previous work, we consider approximate dynamic programming techniques for 
the general multi-platform path planning problem described in section 3.1. A specific test problem was 
selected for which the optimal policy could be computed using dynamic programming. For this problem, 
we consider sub-optimal policies that are based on the solution of a deterministic auxiliary problem, as well 
as an exact rollout policy. 

The deterministic auxiliary problem is formulated as presented in section 3.1, except that the 
probabilities associated with each arc are set to one, thus making the state transition dynamics 
deterministic. This simplifies the original stochastic problem, but the integer programming problem that 
remains is a vehicle routing problem where the vehicles are constrained to travel along arcs of a graph, 
which is very difficult to solve computationally. Dynamic programming is used to solve the auxiliary 
problem in this case, more efficient heuristics are considered in subsequent sections. 

Using the solution to the dynamic programming problem, we considered the use of two heuristic 
policies. The first heuristic policy computes the optimal policy for the deterministic auxiliary problem, 
starting from a specific state, and implements the actions in the stochastic problem that would be optimal 
for the same state in the auxiliary problem. The second heuristic policy uses the cost-to-go value computed 

AFOSR Planning and Scheduling 8 Final Report 



ALPHATECH, INC. 
for the deterministic auxiliary problem as an approximate cost-to-go in the stochastic problem. In this case, 
actions are implemented to maximize the sum of the actual incremental cost and an expected cost-to-go. 

In addition to the previous two policies, we investigated the use of a "rollout" heuristic in which an 
arbitrary policy is used to compute the expected cost-to-go for every state under that policy. Although the 
expected cost-to-go is typically estimated on-line using Monte Carlo simulation of the base policy, we 
evaluated the cost-to-go exactly using dynamic programming. Such exact evaluations are impractical for 
larger problems, but we were able to compute it for our example. 

The results obtained using the first heuristic policy indicate that naively applying the optimal control 
action from the deterministic auxiliary problem often does significantly worse than the optimal policy, 
especially in the risky cases. However, the second heuristic policy, which approximates the optimal cost-to- 
go using the cost-to-go from the auxiliary problem, can perform significantly worse than the first heuristic 
policy. Rollout based on the exact evaluation of the heuristic cost recovers some (but not all) of the optimal 
expected value. These negative results were surprising, in as much as we expected that a representative 
approximation to the cost-to-go would be sufficient for near-optimal decisionmaking. As it turns out, the 
deterministic evaluation of a cost-to-go led to poor performance. 

In conclusion, the experimental results show that the introduction of random vehicle destruction has a 
big effect on the qualitative nature of optimal routing solutions. The results of this investigation are 
documented in the paper in Appendix B. 

4.4    ADAPTIVE MULTI-PLATFORM SCHEDULING IN A RISKY ENVIRONMENT 

As a result of our prior investigations, we focused our attention on approximate dynamic programming 
algorithms which use stochastic evaluations of the cost-to-go functions. We focused our research on the 
use of rollout algorithms, which use a suboptimal strategy to generate future decisions as a function of 
future states. Rollout algorithms evaluate the cost-to-go for a given state by simulating the future state 
trajectories using the suboptimal strategy, and using Monte Carlo statistical methods to estimate the cost-to- 
go from a given state. An alternative approach is to use off-line simulation to learn a nonlinear function 
estimator (e.g. a neural net) which would generate an estimate of the cost-to go from specific states. 

Our investigations focused on the tradeoff between on-line Monte Carlo evaluation versus off-line 
estimation of the cost-to-go. A larger test problem was considered for this case, for which an optimal policy 
was not available, so performance was evaluated with respect the baseline suboptimal policy, which was a 
greedy policy. Monte Carlo simulation was used for both on-line and off-line estimation, and variance 
reduction was employed to reduce sensitivity to the random events (i.e., platform loss). 

The greedy strategy selected the action that maximized the expected val>" cfthe current incremental 
cost without considering the future (i.e., the cost-to-go was approximated by zero). The computational 
overhead was further reduced by consider the platforms sequentially, and the feasible control set was 
constrained to account for the finite horizon and the return home requirement. 

On-line methods estimated the greedy cost-to-go for a given state and control option by executing the 
control option, simulating the outcome (i.e., loss of platforms), and than executing and simulating greedy 
control options throughout the remainder of the time horizon. By averaging over many trajectories, we 
were able to estimate the cost-to-go of the greedy policy. The control actions are selected such that the sum 
of the actual incremental cost and the greedy cost-to-go estimate is maximized. In this effort, we considered 
the sensitivity of the on-line methods to the number of Monte Carlo runs used to estimate the cost-to-go 
and to the length of the simulation horizon. 

The off-line methods trained a parametric approximation of the cost-to-go that is based on features of 
the current state. The features correspond to the deterministic certainty equivalent problems similar to those 
used in section 3.2. As an example of the features used, one feature was the value achieved in a 
deterministic problem where the probability of successfully traversing arcs whose probability is greater 
than some specified threshold was set to one. while the remaining arcs had probabilities set to zero. Using 
different threshold values generates a variety of such features. Approximations based on 2 and 4 weighted 
features were considered. In addition, for the 2-feature approximation, the parametric weightings were 
optimized. 

AFOSR Planning and Scheduling 9 Final Report 



ALPHATECH, INC. 
The results of our on-line experiment show that rollout performed significantly better than the 

underlying heuristic policies, using only a modest number of Monte Carlo trajectories. We also 
demonstrated sensitivity to both the length of the horizon and the number of Monte Carlo runs used to 
estimate the eost-to-go. For the test case considered, good performance was achieved using 20 Monte Carlo 
simulations and a horizon of no less than 6 out of the 10 steps. The results of our off-line experiments have 
shown surprisingly, that training the parametric weights seldom approached the performance of the 
optimized weights. We also observe that rollout algorithms based on parametric approximations and off- 
line training failed to achieve the level of performance of similar rollout algorithms using on-line Monte 
Carlo simulations. Exploration of alternative approximations using different features is an area for future 
investigations. These results are documented in the paper in Appendix C. 

4.5    DYNAMIC PROGRAMMING METHODS FOR ADAPTIVE MULTI-PLATFORM SCHEDULING 

IN A RISKY ENVIRONMENT 

In the previous section, we observed that using on-line Monte Carlo simulations to evaluate the 
reference base heuristic policies performed significantly better than the base policies as well as off-line 
training methods. However, even using a modest number of Monte Carlo simulations resulted in large 
computation times. Here we consider alternatives to using on-line simulation. In particular, we consider 
approaches that use analytic approximations of the value function. 

We first consider a class of approximation techniques, termed limited-Iookahead, in which control 
actions are implemented at the current state such that the cumulative cost over several stages (the 
lookahead) plus an approximation of the cost-to-go from the resulting state is maximized. The previously 
discussed rollout algorithms are a special case in which a single-stage policy is employed and on-line 
simulation is used in combination with a base heuristic to approximate the cost-to-go. We focus here on 
limited lookahead policies that solve optimally for a limited horizon while approximating the value of the 
remaining stages with a simple heuristic. A special case of such policies in which the value-to-go is 
approximated with zero is referred to in the literature as rolling or receding horizon procedures [10]. 
Generally, the effectiveness of limited lookahead policies depends on two factors: 

1) The quality of the value-to-go approximation—performance of the policy typically improves with 
approximation quality. 

2) The length of the lookahead horizon—performance of a policy typically improves as the horizon 
becomes longer (at least for small horizon lengths, e.g., 1-4). 

However, as the size of the lookahead increases, the number of possible states that can be visited 
increases exponentially. To keep the overall computation practical, the complexity of the cost-to-go 
approximation should be reduced for larger lookahead sizes. Balancing such tradeoffs is therefore a crkical 
element in determining the size of the lookahead and the method for approximating the cost-to-go. To 
reduce computation requirements in this work, we investigated incremental pruning techniques, in which 
all but the B best one-step lookahead values are pruned. Where trial and error are typically used to 
determine B, the branching factor. 

Our second approach exploits the structure of the problem by decomposing the problem into sub- 
problems associated with each platform. These sub-problem are solved sequentially, taking into account the 
solutions of the previous sub-problems. Each sub-problem determines the optimal sequence of nodes to 
visit assuming that the associated platform was the only one available. The optimal sequence may be 
computed analytically. In subsequent sub-problems, each node is updated to reflect the probability that that 
node was not previously visited. This allows each platform to account for previously scheduled platforms. 
Since the order of the platforms (sub-problems) will impact the overall performance, we considered a fixed 
ordering according to platform value, enumerating all orderings, and a combinatorial rollout [9] in which 
the order is determined one vehicle at a time. In addition, we also consider several different ways in which 
to apply the platform decomposition heuristic to our problem: applied once to obtain a policy for all stages, 
reapplied at every stage to obtain an updated policy based on new information, and as a heuristic for the 
limited lookahead policies. 

AFOSR Planning and Scheduling 10 Final Report 



ALPHATECH, INC. 

:.J 

Limited lookahead policies were evaluated for lookahead horizons from 1 to 3, and several simple 
cost-to-go approximations were considered. These results were relatively insensitive to the cost-to-go 
approximations, but generated slightly better performance than obtained by rollout algorithms with on-line 
simulation (section 3.4) and with similar computation requirements. Pruning significantly reduced 
computation time without loss in performance. 

The decomposition approach produced results that were extremely close to the optimal values and 
required small computation times. The simplest application, in which the heuristic was applied once to 
obtain a policy for all stages, performed comparably to 2-stage lookahead policies, and the other variations 
were able to obtain strategies that yielded results that were less than one percent from the optimal expected 
results. However, this method is limited to problems with suitable problem structure, whereas the limited 
lookahead methods may easily be generalized to other problems. 

These results are documented in the paper in Appendix D. 

4.6   APPROXIMATE DYNAMIC PROGRAMMING FOR Mum-VEHICLE SCHEDULING IN A 

RISKY ENVIRONMENT 

In these investigations, we extended our prior model (section 3.1) to include precedence constraints 
among platform types such that coordination is required to complete the task at specific nodes. 
Mathematically, we assume that there are two types of platforms in the problem, and that nodes with 
precedence constraints require a visit from a platform of type 1 before or concurrent with a visit from a 
platform of type 2 before the task value at the node is collected. Let ;V, denote the nodes with precedence 
constraints, and let N2 denote the rest of the nodes. For nodes n in .V;, we modify the definition of node 
state as follows: 

vk(n) = 
2 if no platform has visited node n before or up to stage k 
1 if a platform of type 1 has visited node «before or up to stage A', but not one of type 2 
0 if both platform types visited the node in the right order 

The state dynamics for nodes with precedence constraints are straightforward to define. If a platform 
of type 1 reaches the node at stage k, and its state is vt./(«) = 2, its state switches to vk(n) =1. If a platform 
of type 2 reaches the node at stage k, and its state is vk.,(n) = 2, there is no state transition; if vk./(n) = 1, 
then vk(n) = 0. If platforms of both types reach the node at stage k, then vk(n) = 0. 

The coupling required for platforms to accomplish a task greatly increased the number of combinations 
of actions, which must be considered for determining an optimal or near-optimal control. Furthermore, it 
limited the applicability of platform decomposition approaches. In order to obtain an approximation to the 
cost-to-go, we formulated the coupled scheduling problem as a bundled assignment problem [11-13], where 
platform-times are matched with tasks. Specifically, bundles of platform-time combinations are assigned to 
a given task, and achieve a desired value, depending on the nature of the bundle. 

It is well known that such bundle assignment problems are NP-hard. We developed a new approach 
for the approximate solution of these bundle assignment problems, based on the use of combinatorial 
rollout ideas [9] and approximations using standard assignment problems. The results show improved 
performance with very small computation cost. These results are also documented in the paper in 
Appendix D. 

5   TECHNOLOGY TRANSITION AND FUTURE RESEARCH 

ALPHATECH has transition the technology developed under this contract to DARPA"s Agile Control 
of Military Operations (JFACC) program. In this program, ALPHATECH's technology development is 
focused on providing the military commander with real-time, optimal control of military air operations via 
near-optimal mission assignments which anticipate possible mission modifications due to uncertain future 
events over a 24-hour segment of a JAO campaign. The primary benefit of this technology is agile and 
stable control of distributed and dynamic military operations conducted in inherently uncertain, hostile, and 
rapidly changing environments. Key features of the JAO environment of interest include risk and reward 
that are dependent on package composition and weaponeering. 

AFOSR Planning and Scheduling 11 Final Report 



ALPHATECH, INC.  
Like the problem considered under this contract, the JFACC problem includes combinatorial, 

stochastic, and temporal complexity that must be efficiently managed; however, the JFACC program has 
the additional complexity of heterogeneous assets which must make multiple turns in order to achieve 
mission objectives. Accordingly, much of the technology developed under this contract was transferred to 
the JFACC program. The results to date have demonstrated the benefits of feedback control and near- 
optimal control for the JAO problem. Through experimentation, it was shown that feedback control was 
able to desensitize the controller performance to environmental uncertainty. In other word, feedback 
control provides agility. Additionally, the optimal control framework demonstrates the ability to produce 
operationally consistent behavior by anticipating key uncertainties and positioning assets for opportunities 
of recourse. 

Given these promis;ng results obtained from the JFACC program and those from New World Vistas, 
ALPHATECH pla..s on expanding this work to DARPA/ITO's Man and Machine Command and Control 
(M2C2) program. The M2C2 program is currently under development and is expected as a follow-on to the 
current JFACC program. The focus of the M2C2 program is to provide agile, autonomous control of a 
tactical air and ground campaign. This problem has similar complexities to that of the JFACC problem with 
the additional complexity that the sensors and shooters are both ground and air based. 

ALPHATECH is also actively marketing the research developed under this AFOSR contract to solve 
the problem of distributed, cooperative control for a team of autonomous, tactical UAVs. To realize the 
potential of autonomous assets in a tactical operational setting, the complex problem of cooperative, 
autonomous control must be solved. Since multiple assets must operate in a common battlespace, 
cooperative control is required to maximize operational efficiency. In cooperative control problems, 
distributed assets develop and pursue a common strategy, and each vehicle conducts its part of the strategy 
through local control actions. Thus, decisions that are currently made by human operators—tactical routing, 
coordinated attack, store release, etc.—will need to be generated by an intelligent cooperative control 
system. This cooperative control system will have to solve the large-scale, complex dynamic optimization 
problems associated with mission planning and control, in an unstructured and uncertain environment, in 
near real time, and without human intervention. ALPHATECH intends on transitioning many of the 
techniques developed under this contract to this problem. 

6   SUMMARY 

Our objective at the beginning of our research was the development of a new paradigm and the 
required algorithms for real-time planning and scheduling in the presence of uncertainties. This paradigm 
would not simply repLn in the presence of contingencies, but would anticipate the possible occurrence of 
these contingencies, ar.i would therefore generate robust plans that can readily accommodate contingencies 
whenever they occurred. 

The core algorithmic idea in our approach was the use of approximate stochastic dynamic 
programming (SDP). In contrast with standard SDP approaches, which considered every possible future 
state a priori, and developed an optimal decision for each state, we proposed a real-time control strategy, 
which was based on just-in-time computation of control actions. That is, the control for the current state 
was not determined by an a priori off-line strategy, but rather by an on-line optimization problem, in the 
manner of model-predictive control [14]. The advantage of this just-in-time strategy is that the only states 
which needed to be considered were the states which actually happened in the problem realization, plus 
nearby states which were likely to be reached from actual states. 

The key issues that we needed to investigate were alternative approaches at defining this on-line 
optimization problem to trade off computation complexity and near-optimal performance. The papers in 
the appendices document the different investigations. The major lessons learned were: 

1.    The use of neural networks and other nonlinear approximations for estimating future costs, when 
trained using simulation data led to unsatisfactory performance for stochastic scheduling. The basic 
reason was that, when performing off-line training, one needs to train the network over a range of 
possible problem instances. The approximations investigated had difficulty generating accurate 
estimates across different problem instances. 

AFOSR Planning and Scheduling 12 Final Report 



ALPHATECH, INC. 
2. Using a surrogate control policy, together with real-time Monte Carlo evaluation of the performance of 

this policy in a rollout approach provided near-optimal performance. However, the Monte Carlo 
evaluation required extensive computation, making it ill-suited for the just-in-time optimization 
paradigm. 

3. One of the key problems not addressed by approximate SDP is the required enumeration of 
combinatorially large numbers of possible control decisions at a specific time. A key requirement for 
computation efficiency is to develop techniques that accelerate this combinatorial optimization, 
particularly for problems with large numbers of platforms. 

4. The approach that worked best was based on using decompositions and local optimization problems, 
which were matched to the problem structure, but not the problem instance. 

5. The strategy of approximate dynamic progiamming can yield near-optimal performance at a fraction of 
the computation complexity, but requires careful selection of the approximation technique. 

Some important directions for future investigation include addressing problems with partial 
observations of the state, and developing approaches that scale to problems with larger numbers of 
platforms. 

AFOSR Planning and Scheduling 13 Final Report 



ALPHATECH, INC. 

REFERENCES 

1. Chairman of the Joint Chiefs of Staff, "Joint Vision 2010," 5126 Joint Staff. Pentagon, Washington, 
D.C. 20318-5126. 1999. 

2. USAF Scientific Advisory Board, "New World Vistas: Air and Space Power for the 21s' Century," 
AF/SB, December 1995. 

3. Bertsekas, D.P.. Dynamic Programming and Optimal Control. Vol. /, 2nd Edition, Athena Scientific, 
2000. 

4. Bertsekas, D.P., and Tsitsiklis, J.N.. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA, 
1996. 

5. Tesauro, G., and Galperin, G.R.. "On-Line Policy Improvement Using Monte Carlo Search," presented 
at the 1996 Neural Information Processing Systems Conference. Denver, CO, 1996. 

6. Barto, A.G., Bradtke. S.J., and Singh. S.P., "Learning to Act Using Real-Time Dynamic 
Programming," Artificial Intelligence, vol. 72, 1995, pp. 81-138. 

7. Bertsekas, D.P., Castafion, D.A.. "Rollout Algorithms for Stochastic Scheduling Problems," Journal of 
Heuristics, vol. 5, 1999. 

8. Bertsekas, D.P., "A Note on the Robust Calculation of Rollout Policies." Lab. for Information and 
Decision Systems Report LIDS-P-2392, Mass. Institute of Technology, 1997. 

9. Bersekas, D.P., Tsitsiklis. J.N., Wu. C, "Rollout Algorithms for Combinatorial Optimization," Journal 
of Heuristics, vol. 3, 1997, pp. 245-262. 

10. Alden, J.M., Smith, R.L., "Rolling Horizon Procedures in Nonhomogeneous Markov Decision 
Processes," Operations Research, vol. 40, 1992. 

11. Parkes, DC, Un*»ar, L.H., "Iterative Combinatorial Auctions: Theory and Practice," Proc. 17' ■lh 

National Conference on Artificial Intelligence, 2000. 

12. Rothkopf, M.H., Pekec, A., Harstad, R.M., "Computationally Manageable Combinatorial Auctions," 
Management Science, vol. 44, 1998. 

13. Sandholm, T., "An Algorithm for Optimal Winner Determination in Combinatorial Auctions," Proc. 
ll'h National Conference on Artificial Intelligence, 1993. 

14. Mayne, D.Q, Rawlings, J.B., Rao, C.V., and Scokaert P.O.M., "Con^t^iiied Model Predictive Control: 
Stability and Optimally," Automatica, Vol. 36, 2000, pp. 789-814. 

AFOSR Planning and Scheduling 14 Final Report 



ALPHATECH, INC. 

APPENDICES AND ATTACHMENTS 

Bertsekas, D.P., Castaiion, D.A., "Rollout Algorithms for Stochastic Scheduling Problems," Journal of 
Heuristics, vol. 5, 1999. 

Patek, S.D., Logan, D.A., Castaiion, D.A., "Approximate Dynamic Programming for the Solution of 
Multiplatform Path Planning Problems," Proc. 1999 IEEE International Conference on Systems, Man, and 
Cybernetics, 1999. 

Bertsekas, D.P., Castaiion, D.A., Curry, M.L., Logan, D.A., "Adaptive Multi-platform Scheduling in a 
Risky Environment," 7999 Proceedings from Advances in Enterprise Control Symposium, 1999. 

Bertsekas, D.P., Castaiion, D.A., Curry, M.L., Logan, D.A., Cynara, W., "Dynamic Programming Methods 
for Adaptive Multi-platform Scheduling in a Risky Environment," 2000 Proceedings from Advances in 
Enterprise Control Symposium, 2000. 

Cynara, W., Bertsekas, D.P., Castaiion, D.A., Curry, M.L., Logan, D.A., "Approximate Dynamic 
Programming for Multi-vehicle Scheduling in a Risky Environment," to be submitted to the IEEE 
Transactions on Systems, Man, and Cybernetics. 

AFOSR Planning and Scheduling 15 Final Report 



ROLLOUT ALGORITHMS FOR STOCHASTIC 

SCHEDULING PROBLEMS 1 

Dimitri P. Bertsekas David A. Castanon 
Dept. of Electrical Engineering and Computer Science Dept. of Electrical and Computer Engineering 

\I. I. T. Boston University 
Cambridge, Mass.; 02139 Boston, MA 02215 

Abstract 

Stochastic scheduling problems are difficult stochastic control problems with combinatorial decision 
spaces. In this paper we focus on a class of stochastic scheduling problems, the quiz problem and its 
variations. We discuss the use of heuristics for their solution, and we propose rollout algorithms based on 
these heuristics which approximate the stochastic dynamic programming algorithm. We show how the rollout 
algorithms can be implemented efficiently, and we delineate circumstances under which they are guaranteed 
to perform better than the heuristics on which they are based. We also show computational results which 
suggest that the performance of the rollout policies is near-optimal, and is substantially better than the 
performance of their underlying heuristics. 

Journal of Heuristics, V. 5, pp. 93-112, (1999). 

'Tins work was supported in part by the Air Force Office of Scientific Research under grant no. F49G20-97-C-0013 and the 
Air Force Research Laboratory under grant F33615-96-C-1930 



1. Introduction 

1. INTRODUCTION 

Consider the following variation of a planning problem: There is a finite set of locations which 

contain tasks of interest, of differing value. There is a single processor on which the tasks are to 

be scheduled. Associated with each task is a task-dependent risk that, while executing that task, 

the processor will be damaged and no further tasks will be processed. The objective is to find 

the optimal task schedule in order to maximize the expected value of the completed tasks. 

The above is an example of a class of stochastic scheduling problems known in the literature 

as quiz problems (see Bertsekas [1995], Ross [1983], or Whittle [19821). The simplest form of this 

problem involves a quiz contest where a person is given a list of .V questions and can answer these 

questions in any order he or she chooses. Question i will be answered correctly with probability p,. 

and the person will then receive a reward i\. At the first incorrect answer, the quiz terminates 

and the person is allowed to keep his or her previous rewards. The problem is to choose the 

ordering of questions so as to maximize expected rewards. 

The problem can be viewed in terms of dynamic programming (DP for short), but can 

more simply be viewed as a deterministic combinatorial problem, whereby we are seeking an 

optimal sequence in which to answer the questions. It is well-known that the optimal sequence is 

deterministic, and can be obtained using an interchange argument; questions should be answered 

in decreasing order of p,u,/(l p,). This will be referred to as the index policy. An answer order 

is optimal if and only if it corresponds to an index policy. Another interesting simple policy 

for the quiz problem is the greedy policy, which answers questions in decreasing order of their 

expected reward p,v,. A greedy policy is si'boptimal, essentially because it does not consider the 

future opportunity loss resulting from an incorrect answer. 

Unfortunately, with only minor changes in the structure of the problem, the optimal solution 

becomes much more complicated (although DP and interchange arguments are still relevant). 

Examples of interesting and difficult variations of the problem involve one or more of the following 

~J characteristics: 

(a) A limit on the maximum number of questions that can be answered, which is smaller than 

the number of questions N. To see that the index policy is not optimal anymore, consider 

the case where there are two questions, only one of which may be answered. Then it is 

optimal to use the greedy policy rather than the index policy. 

(b) A time window for each question, which constrains the set of time slots when each question 

mav be answered. Time windows may also be combined with the option to refuse answering 

i£j 



1. Introduction 

a question at a given period, when either no question is available during the period, or 

answering any one of the available questions involves excessive risk. 

(c) Precedence constraints, whereby the set of questions that can be answered in a given time 

slot depends on the immediately preceding question, and possibly on some earlier answered 

questions. 

(d) Sequence-dependent rewards, whereby the reward from answering correctly a given question 

depends on the immediately preceding question, and possibiy on some questions answered 

earlier. 

It is clear that the quiz problem variants listed above encompass a very large collection of 

practical scheduling problems. The version of the problem with time windows and precedence 

constraints relates to vehicle routing problems (involving a single vehicle). The version of the 

problem with sequence-dependent rewards, and a number of questions that is equal to the max- 

imum number of answers relates to the traveling salesman problem. Thus, in general, it is very 

difficult to solve the variants described above exactly. 

An important feature of the quiz problem, which is absent in the classical versions of vehicle 

routing and traveling salesman problems is that there is a random mechanism for termination 

of the quiz. Despite the randomness in the problem, however, in all of the preceding variants, 

there is an optimal open-loop policy, i.e., an optimal order for the questions that does not depend 

on the random outcome of the earlier questions. The reason is that we do not need to plan the 

answer sequence following the event of an incorrect answer, because the quiz terminates when 

this event occurs. Thus, we refer to the above variations of the quiz problem as deterministic 

quiz problems. 

There are variants of the quiz problem where the optimal order to answer questions depends 

on random events. Examples of these are: 

(e) There is a random mechanism by which the quiz taker may miss a turn, i.e., be denied the 

opportunity to answer a question at a given period, but may continue answering questions 

at future time periods. 

(f) New questions can appear and/or old questions can disappear in the course of the quiz 

according to some random mechanism. A similar case arises when the start and end of the 

time windows can change randomly during the quiz. 

(g) There may be multiple quiz takers that answer questions individually, and drop out of the 

quiz upon their own first error, while the remaining quiz takers continue to answer questions. 



1. Introduction 

(h) The quiz taker may be allowed multiple chances, i.e., may continue answering questions up 

to a given number of errors. 

(i) The reward for answering a given question may be random and may be revealed to the quiz 

taker at various points during the course of the quiz. 

The variants (e)-(i) of the quiz problem described above require a genuinely stochastic for- 

mulation as Markovian decision problems. We refer to these variations in the paper as stochastic 

quiz problems. They can be solved exactly only with DP, but their optimal solution is pro- 

hibitively difficult. This is because the states over which DP must be executed are subsets of 

questions, and the number of these subsets increases exponentially with the number of questions. 

In this paper, we develop suboptimal solution approaches that are computationally tractable 

for both deterministic and stochastic quiz problems. In particular, we focus on rollout algorithms. 

a class of suboptimal solution methods inspired from the policy iteration methodology of DP and 

the approximate policy iteration methodology of neuro-dynamic programming (XDP for short). 

One may view a rollout algorithm as a single step of the classical policy iteration method, starting 

from some given easily implementable policy. Algorithms of this type have been sporadically 

suggested in several DP application contexts. They have also been proposed by Tesauro [1996] 

in the context of simulation-based computer backgammon (the name ''rollout" was introduced 

by Tesauro as a synonym for repeatedly playing out a given backgammon position to calculate 

by Monte Carlo averaging the expected game score starting from that position). 

Rollout algorithms were first proposed for the approximate solution of discrete optimization 

problems by Bertsekas and Tsitsiklis [1996], and by Bertsekas, Tsitsiklis, and Wu [1997], and the 

methodology developed here for the quiz problem strongly relates to the ideas in these sources. 

Generally, rollout algorithms are capable of magnifying the effectiveness of any given heuristic 

algorithm through sequential application. This is due to the policy improvement mechanism of 

the underlying policy iteration process. 

In the next section, we introduce rollout algorithms for deterministic quiz problems, where 

the optimal order for the questions from a given period onward does not depend on earlier 

random events. In Section 3, we provide computational results indicating that rollout algorithms 

can improve impressively on the performance of their underlying heuristics. In Sections 4 and 

5, we extend the rollout methodology to stochastic quiz problems [cf. variants (e)-(i) above], 

that require the use of stochastic DP for their optimal solution.. Here we introduce the idea 

of multiple scenaria for the future uncertainty starting from a given state, and we show how 

these scenaria can be used to construct an approximation to the optimal value function of the 



2. Rollout Algorithms for Deterministic Quiz Problems 

problem using NDP techniques and a process of scenario aggregation. In Section 6, we provide 

computational results using rollout algorithms for stochastic quiz problems. Finally, in Section 7, 

we provide computational results using rollout algorithms for quiz problems that involve graph- 

based precedence constraints. Our results indicate consistent and substantial . 

2. ROLLOUT ALGORITHMS FOR DETERMINISTIC QUIZ PROBLEMS 

Consider a variation of a quiz problem of the type described in (a)-(c) above. Let N denote the 

number of questions available, and let M denote the maximum number of questions which may 

be attempted. Associated with each question i is a value i-,. and a probability of successfully 

answering that question p,. Assume that there are constraints such as time windows or precedence 

constraints which restrict the possible question orders. Denote by V{ii....,i\i) the expected 

reward of a feasible question order (i\...., i.\/): 

V{il....J.\r)=Pn vn+p,2 v,.2 + p,3(- ■ ■ + PKuvKU) ■ ■ ■)). (2.1) 

For an infeasible question order (n , i\r), we use the convention 

V(iu...,iu) = DC   . 

The classical quiz problem is the case where M = N, and all question orders are feasible. 

In this case, the optimal solution is simply obtained by using an interchange argument. Let i 

and j be the Jfcth and (k + l)st questions in an optimally ordered list 

L = {ii,...,ik  i,i,J!»'fc+2:---,i.v). 

Consider the list 

V = (ii,...,ik  i,M *fc+2.----i;v) 

obtained from L by interchanging the order of questions i and j. We compare the expected 

rewards of L and V. We have 

£{reward of L) = ^{reward of  {i\,....ik  i}} 

+ PH ■■•P'k i(P'v' +P'PJ
L

';) 

+ Pn '■■P'k  ,p.Pj£{reward of {ik+i- ■ ■ ■ ,iv}} 

£{reward of L'} = £{reward of {ii .u-   i}} 

+ Pn ■■■P'k  i(PjrJ +PJP'
V

') 

+ Pn ■■■P'k  xPjPtE {reward of {u+2. •.., i/v}}. 



i:.i 

2. Rollout Algorithms for Deterministic Quiz Problems 

Since L is optimally ordered, we have 

£{reward of L} > £{reward of I'}. 

so it follows from these equations that 

P. Vi + PiPj Vj  > Pj Vj +PjPi i\ 

or equivalently" 
PiVi     >    PjVj 

1     p.       1     Pj' 

It follows that to maximize expected rewards, questions should be answered in decreasing order 

of pii;/(l    p.). which yields the index policy. 

Unfortunately, the above argument breaks down when either M < N. or there are con- 

straints on the admissibility of sequences due to time windows, sequence-dependent constraints, 

or precedence constraints. For these cases, we can still use heuristics such as the index policy or 

the greedy policy, but they will not provide optimal performance. 

Consider a heuristic algorithm, which given a partial schedule P = (n,.. .,ik) of distinct 

questions constructs a complementary scheduleT = {ik+u ■ ■ -,i.\r) of distinct questions such that 

p n -p _ 0 The heuristic algorithm is referred to as the base heuristic. We define the heuristic 

reward of the partial schedule P as 

H{P) = V{h,...,ik,ik+i---,i.\i)- (2-2) 

If p - (ix -;_u) is a complete solution, by convention the heuristic reward of P is the true 

expected rewrv. J V(zi,... ,iw). 

Given a base heuristic, the corresponding rollout algorithm constructs a complete schedule 

in M stages, one question per stage. The rollout algorithm can be described as follows: 

At the 1st stage it selects question n according to 

ii = arg   max   H{i). (2-3) 
i=l N 

and at the fcth stage (k > 1) it selects ik according to 

ifc = arg        max        H{ii,...,ik  ui),        k = 2....,M. (2.4) 
{i\ijiil,...,ik   [} 

Thus a rollout policy involves N + {N 1) + • • • + (,V M) = O(MN) applications of the 

base heuristic and corresponding calculations of expected reward of the form (2.1).  While this 



f. 

.d 

2. Rollout Algorithms for Deterministic Quiz Problems 

is a significant increase over the calculations required to apply the base heuristic and compute 

its expected reward, the rollout policy is still computationally tractable. In particular, if the 

running time of the base heuristic is polynomial, so is the running time of the corresponding 

rollout algorithm. On the other hand, it will be shown shortly that the expected reward of the 

rollout policy is at least as large as the one of the base heuristic. 

As an example of a rollout algorithm, consider the special variant (a) of the quiz problem 

in the preceding section, where at most M out of N questions may be answered and there are no 

time windows or other complications. Let us use as base heuristic the index heuristic, which given 

a partial schedule (n , ik). attempts the remaining questions according to the index policy, in 

decreasing order of p,r,/(l pt). The calculation of H(h:... .jk) is done using Eq. (2.1), once the 

questions have been sorted in decreasing order of index.  The corresponding rollout algorithm. 

given (J'I n-   i) selects i. calculates H(ii ik  i-i) for all i^h.....ik  i, using Eq. (2.1). 

and then optimizes this expression over i to select ik. 

Note that one may use a different heuristic, such as the greedy heuristic, in place of the 

index heuristic. There are also other possibilities for base heuristics. For example, one may 

first construct a complementary schedule using the index heuristic, and then try to improve this 

schedule by using a 2-OPT local search heuristic, that involves exchanges of positions of pairs of 

questions. One may also use multiple heuristics, which produce heuristic values Hj{i\ . ik)- j = 

1,.. ..J. of a generic partial schedule (zi,. ..,ik), and then combine them into a "superheuristic" 

that gives the maximal value 

H(h,...,ik) =   max   Hj{ii.... Ak). 
>=i J 

An important question is whetbei ehe rollout algorithm performs at least as well as its 

base heuristic when started from the initial partial schedule. This can be guaranteed if the base 

heuristic is sequentially consistent. By this we mean that the heuristic has the following property: 

Suppose that starting from a partial schedule 

P=(ii,...,*'fc  i). 

the heuristic produces the complementary schedule 

P=(ifc....!i.u). 

Then starting from the partial schedule 

P-r = ((1.....U-   i.ik). 



2. Rollout Algorithms for Deterministic Quiz Problems 

the heuristic produces the complementary schedule 

P   = (u-+i----,z.u)- 

As an example, it can be seen that the index and the greedy heuristics, discussed earlier, 

are sequentially consistent. This is a manifestation of a more general property: many common 

base heuristics of the greedy type are by nature sequentially consistent. It may be verified, based 

on Eq. (2.4). that a sequentially consistent rollout algorithm keeps generating the same schedule 

PuP, up to the point where by examining the alternatives in Eq. (2.4) and by calculating their 

heuristic rewards, it discovers a better schedule. As a result, sequential consistency guarantees 

that the reward of the schedules P U P produced by the rollout algorithm is monotonically 

nonincreasing: that is. we have 

H{P^) < H{P) 

at every stage. For further elaboration of the sequential consistency property, we refer to the 

paper by Bertsekas. Tsitsiklis. and Wu [1997]. which also discusses some underlying connections 

with the policy iteration method of dynamic programming. 

A condition that is more general than sequential consistency is that the algorithm be se- 

quentially improving, in the sense that at each stage there holds 

H{P+) < H{P). 

This property also guarantees that the rewards of the schedules produced by the rollout algorithm 

are monotonically nonincreasing. The paper by Bertsekas. Tsitsiklis. and Wu [1997] discusses 

situations where this property holds, and shows that with fairly simr'e modification, a rollout 

algorithm can be made sequentially improving. 

There are a number of variations of the basic rollout algorithm described above. In par- 

ticular, we may incorporate multistep lookahead or selective depth lookahead into the rollout 

framework. An example of a rollout algorithm with m-step lookahead operates as follows: at the 

klh stage we augment the current partial schedule P = (i\,... ,ik l) with all possible sequences 

of m questions i ^ i\,..., ik i- We run the base heuristic from each of the corresponding aug- 

mented partial schedules, we select the m-question sequence with maximum heuristic reward, 

and then augment the current partial schedule P with the first question in this sequence. An 

example of a rollout algorithm with selective two-step lookahead operates as follows: at the kth 

stage we start with the current partial schedule P = (i\ , u-  i). and we run the base heuristic 

starting from each partial schedule (ii,...,ik i-0 with i' r h- •••,U- i- We then form the subset 

7 consisting of the n questions i ^ ii..... i\- that correspond to the n best complete schedules thus 



3. Computational Experiments with Deterministic Quiz Problems 

obtained. We run the base heuristic starting from each of the partial schedules (ii....,ik  uhj) 

with i e 7 and j ^ i\ .ik  i,i, 
ar>d obtain a corresponding complete schedule. We then select 

as next question ik of the rollout schedule the question i € 7 that corresponds to a maximal 

reward schedule. Note that by choosing the number n to be smaller than the maximum possible. 

N   k+1, we can reduce substantially the computational requirements of the two-step lookahead. 

3. COMPUTATIONAL EXPERIMENTS WITH DETERMINISTIC QUIZ PROBLEMS 

In order to explore the performance of rollout algorithms for deterministic scheduling, we con- 

ducted a series of computational experiments involving the following seven algorithms: 

(1) The optimal stochastic dynamic programming algorithm. 

(2) The greedy heuristic, where questions are ranked in order of decreasing p,t'i, and. for each 

stage k, the feasible unanswered question with the highest ranking is selected. 

(3) The index heuristic, where questions are ranked in order of decreasing p,f,/(l p.i'.), and 

for each stage k. the feasible unanswered question with the highest ranking is selected. 

(4) The one-step rollout policy based on the greedy heuristic, where, at each stage k. for 

every feasible unanswered question ik and prior sequence ii,...,ik lt the question is chosen 

according to the rollout rule (2.4), where the function H uses the greedy heuristic as the 

base policy. 

(5) The one-step rollout policy based on the index heuristic, where the function H in (2.4) us:;. 

the index heuristic as the base policy, 

(6) The selective two-step lookahead rollout policy based on the greedy heuristic. At the fc-th 

stage, the base heuristic is used in a one-step rollout to select the best four choices for the 

current question among the admissible choices. For each of these choices at stage A:, the 

feasible continuations at stage k + 1 are evaluated using the greedy heuristic to complete 

the schedule. The choice at stage k is then selected from the sequence with the highest 

evaluation. 

(7) The selective two-step lookahead rollout policy based on the index heuristic. 

The problems selected for evaluation involve 20 possible questions and 20 stages, which are 

small enough so that exact solution using dynamic programming is possible. Associated with each 



3. Computational Experiments with Deterministic Quiz Problems 

question is a sequence of times, determined randomly for each experiment, when that question 

can be attempted. Floating point values were assigned randomly to each question from 1 to 10 in 

each problem instance. The probabilities of successfully answering each question were also chosen 

randomly, between a specified lower bound and 1.0. In order to evaluate the performance of the 

last six algorithms, each suboptimal algorithm was simulated 10,000 times, using independent 

event sequences determining which questions were answered correctly. 

Our experiments focused on the effects of two factors on the relative performance of the 

different algorithms: 

(a) The lower bound on the probability of successfully answering a question, which varied from 

0.2 to 0.S 

(b) The average percent of questions that are admissible (i.e.. that can be answered) at any one 

stage, which ranged from 10% to 509c. 

The first set of experiments fixed the average percentage of questions which can be answered 

at a single stage to 10%. and varied the lower bound on the probability of successfully answering 

a question across four conditions: 0.2. 0.4. 0.6 and 0.8. For each experimental condition, we gen- 

erated 30 independent problems and solved them, and evaluated the corresponding performance 

usini 10.000 Monte Carlo runs. We computed the average performance across the 30 problems, 

and compared this performance with the performance obtained using the stochastic dynamic 

programming algorithm. 

Table 1 shows the results of our experiments. The average performance of the greedy and 

index heuristics in each condition are expressed in terms of the percentage of the optimal perfor- 

mance. For low probability of success, both heuristics obtain less than half of the performance 

of the optimal algorithm. The table also illustrates the improvement in performance obtained by 

both the one-step rollout and the selective two-step rollout algorithms, expressed in terms of per- 

centage of the optimal performance. As an example, the first column of Table 1 gives the average 

performance across 30 problems with lower bound on the probability of successfully answering a 

question 0.2. The performance achieved by the greedy heuristic was 41% of optimal, whereas the 

average performance of the one-step rollout with the greedy heuristic as a base policy achieved 

on average 75% of the optimal performance, which was a 34% improvement. Furthermore, the 

two-step selective rollout achieved on average 81% of the optimal performance. 

The results in Table 1 show that one-step rollouts significantly improve the performance of 

both the greedy and the index heuristics in these dillicult stochastic combinatorial problems. In 

particular, the rollout algorithms recovered in all cases at least 50% of the loss of value due to 

10 



3. Computational Experiments with Deterministic Quiz Problems 

Minimum 
Probability of 0.2 0.4 0.6 0.8 

Success 

Greedy Heuristic 41% 50% 61% 76% 

Improvement by 
One-step Rollout 34% 32% 27% 14% 

Improvement by 
Two-step Rollout 40% 34% 27% 14% 

Index Heuristic 43% 53% 66% 80% 

Improvement by 
One-step Rollout 34% 30% 23% 10% 

Improvement by 
Two-step Rollout 38% 33% 24% 11% 

Table 1: Performance of the different algorithms as the minimum probability 

of success of answering a question varies. The average percentage of questions 

which can be answered at a single stage is fixed at 107:. The numbers reported 

are percentage of the performance of the optimal dynamic programming solution 

achieved, averaged across 30 independent problem*. As an example, the first 

column gives the average performance across 30 problems with lower bound on 

the probability of successfully answering a question 0.2. The performance achieved 

by the greedy heuristic was 41% of optimal, whereas the average performance of 

the one-step rollout with the greedy heuristic as a base policy achieved on average 

75% of the optimal performance, which was a 34% improvement. 

the use of the b juristic. Loss recovery of this order or better was typical in all of the experiments 

with rollout algorithms in this paper. The results also illustrate that the performance of the 

simple heuristics improves as the average probability of success increases, thereby reducing the 

potential advantage of rollout strategies. Even in these unfavorable cases, the rollout strategies 

improved performance levels by at least 10% of the optimal policy, and recovered a substantial 

portion of the loss due to the suboptimality of the heuristic. 

For the size of problems tested in these experiments, the advantages of using a two-step 

selective lookahead rollout were small. In many cases, the performances of the one-step rollout 

and the two-step selective lookahead rollout were identical. Nevertheless, for selected difficult 

individual problems, the two-step selective lookahead rollout improved performance by as much 

as 40% of the optimal strategy over the level achieved by the one-step rollout with the same base 

heuristic. 

The second set of experiments fixed the lower bound on the probability of successfully 

11 



3. Computational Experiments with Deterministic Quiz Problems 

answering a question to 0.2. and varied the average percent of admissible questions at any one 

stage across 3 levels: 10%. 30% and 50%. As before, we generated 30 independent problems 

and evaluated the performance of each algorithm on each problem instance. The results of these 

experiments are summarized in Table 2. As before, the performance of the greedy and index 

heuristics improves as the experimental condition approaches the standard conditions of the quiz 

problem, where 100% of the questions can be answered at any time. The results confirm the trend 

seen in Table 1: even in cases where the heuristics achieve good performance, rollout strategies 

offer significant performance gains. 

Problem Density 0.1 0.3 0.5 

Greedy Heuristic 41% 58% 76% 

Improvement by 
One-step Rollout 34% 28% 15% 

Improvement by 
Two-step Rollout 40% 32% 16% 

Index Heuristic 43% 68% 85% 

Improvement by 
One-step Rollout 34% 22% 8% 

Improvement by 
Two-step Rollout 38% 24% 9% 

Table 2: Performance of the offerent algorithms as the average number of 

questions per period increases. The lower bound on the probability of successfully 

answering a question is fixed at 0.2. The numbers reported are percentage of the 

performance of the optimal dynamic programming solution achieved, averaged 

across 30 independent problems. 

The results in Tables 1 and 2 suggest that the advantage of rollout strategies over the 

greedy and index heuristics increases with the risk involved in the problem. This advantage 

stems from the forward-looking character of rollout strategies. In particular, by constructing 

a feasible strategy for the entire horizon for evaluating the current decision, rollout strategies 

account for the limited future accessibility of questions, and compute tradeoffs between future 

accessibility and the risk of the current choice. In contrast, myopic strategies such as the greedy 

and index heuristics do not account for future access to questions, and thus are forced to make 

risky choices when no other alternatives are present.   Thus, as the risk of missing a question 

12 



4. Rollout Algorithms for Stochastic Quiz Problems 

increases and the average accessibility of questions decreases, rollout strategies achieve nearly 

double the performance of the corresponding myopic heuristics. 

4. ROLLOUT ALGORITHMS FOR STOCHASTIC QUIZ PROBLEMS 

We now consider variants of the quiz problem where there is no optimal policy that is open-loop. 

The situations (e)-(i) given in Section 1 provide examples of quiz problems of this type. We can 

view such problems as stochastic DP problems. Their exact solution, however, is prohibitively 

expensive. 

Let us state a quiz problem in the basic form of a dynamic programming problem (see e.g.. 

Bertsekas [19951). where we have the stationary discrete-time dynamic system 

xk^=fk(xk.uk.wk).        k = 0.L....T. (-1.1) 

that evolves over T time periods. Here xfc is the state taking values in some set. uk is the 

control to be selected from a finite set Uk(xk). wk is a random disturbance, and fk is a given 

function. We assume that the disturbance ivk. /c = 0,1,..., has a given probability distribution 

that depends explicitly only on the current state and control. The one-stage cost function is 

denoted by gk{x. u. w). In this general framework, we assume that costs are minimized, but the 

following discussion can be easily adapted to the case where rewards are maximized. 

To apply the rollout framework, we need to have a base policy for making a decision 

at each state-time pair (xk,k). We view this policy as a sequence of feedback functions 7r = 

{/i0. Mi- • • •. PT), which at time k maps a state xk to a control pk{xk\ '. Uk{xk). The cost-to-go 

of - starting from a state-time pair {xk. k) will be denoted by 

Jfc(xfc) = El^2gtx„ M.(x,): w) > • (4-2) 

The cost-to-go functions Jk satisfy the following recursion of dynamic programming (DP for 

short) 

Jk{x)=E{gx,Hk{x),vi)+Jk+ifx,iik(x).w))}.        * = 0.1,... (4.3) 

with the initial condition 

JT(x) = 0. 

The rollout policy based on IT is denoted by rr = {JiQ,]lv :■..}. and is defined through the 

operation 

^.(x)=arg  min   E{g{x. u, w) + Jk+i f(x, u. w))}.        Vi,t = 0.1  (4.4) 
u€?/(x) 

13 



4. Rollout Algorithms for Stochastic Quiz Problems 

Thus the rollout policy is a one step-lookahead policy, with the optimal cost-to-go approximated 

by the cost-to-go of the base policy. This amounts essentially to a single step of the method of 

policy iteration. Indeed using standard policy iteration arguments, one can show that the rollout 

policy n is an improved policy over the base policy x. 

In practice, one typically has a method or algorithm to compute the control ßk(x) of the 

base policy, given the state x, but the corresponding cost-to-go functions Jk may not be known 

in closed form. Then the exact or approximate computation of the rollout control Jik(x) using 

Eq. (4.4) becomes an important and nontrivial issue, since we need for all u € U{x) the value of 

Qk{x,u)=E{g(x,u,w) + Jk+i f{x;u,w))}. (4.5) 

known as the Q-factor at time k. Alternatively, for the computation of Jik(x) we need the value 

of the cost-to-go 

Jk+i f(x.u.w)) 

at all possible next states f{x.u. w). 

In favorable cases, it is possible to compute the cost-to-go Jk(x) of the base policy - for 

any time it and state i. An example is the variant of the quiz problem discussed in Sections 2 

and 3. where the base policy is an open-loop policy that consists of the schedule generated by 

the index policy or the greedy policy. The corresponding cost-to-go can then be computed using 

Eq. (2.1). In general, however, the computation of the cost-to-go of the base policy may be much 

more difficult. In particular, when the number of states is very large, the DP recursion (4.3) may- 

be infeasible. 

A conceptually straightforward approach for computing the rollout control at a given sta; t 

x and time Jfc is to use Monte Carlo simulation. This was proposed by Tesauro [TeG96] in the 

context of backgammon. In particular, for a given backgammon position and a given roll of 

the dice, Tesauro suggested looking at all possible ways to play the given roll, and do a Monte- 

Carlo evaluation of the expected score starting from the resulting position and using some base 

computer program to play out the game (for both sides). To implement this approach in the 

context of a general DP problem, we consider all possible controls u € U{x) and we generate 

a 'large*' number of simulated trajectories of the system starting from x, using u as the first 

control, and using the policy IT thereafter. Thus a simulated trajectory has the form 

il+i =/ xl.ß,{xt),wl).        i = k + l..,.,T    1, 

where the first generated state is 

Xk+l   =  f(X.U.U.-k): 

11 



4. Rollout Algorithms for Stochastic Quiz Problems 

and each of the disturbances wk,...,wT 1 is an independent random sample from the given distri- 

bution. The costs corresponding to these trajectories are averaged to compute an approximation 

Qfc(x.u) to the Q-factor Qk(x,u) of Eq. (4.5). The approximation becomes increasingly accu- 

rate as the number of simulated trajectories increases. Once the approximate Q-factor Qk{x. u) 

corresponding to each control u 6 U{x) is computed, we can obtain the (approximate) rollout 

control pk(x) by the minimization 

p.k(x) = arg min  Qk(x,u). 

Unfortunately, this method suffers from the excessive computational overhead of the Monte 

Carlo simulation. We are thus motivated to consider approximations that involve reduced over- 

head, and yet capture the essense of the basic rollout idea. We describe next an approximation 

approach of this type, and in the following section, we discuss its application to stochastic schedul- 

ing problems. 

Approximation Using Scenario. 

Let us suppose that we approximate the cost-to-goof the base policy rr using certainty equivalence. 

In particular, given a state xk at time fc. we fix the remaining disturbances at some nominal values 

jrj.,Wk-^ TTT  i- and we generate the associated state and control trajectory of the system 

using the base policy TT starting from xk and time k. The corresponding cost is denoted by Jk{xk). 

and is used as an approximation to the true cost Jk{xk). The approximate rollout control based 

on TT is given by 

ßk(x) = arg   min   E{g(xk,u,iv) + Jk+\ f{xk.u,w))}. 
u6t/(i) 

We thus need to run TT from all possible next states j{xk,u, w) and evaluate the corresponding ap- 

proximate cost-to-go Jfc+i f{xk, u, w)) using a single state-control trajectory calculation based on 

the nominal values of the uncertainty. The nominal disturbance sequence {Wk. TCk+1,... ,wT 1} 

may be state-dependent, and in a practical setting, its choice is intended to capture "interesting 

and representative" aspects of the problem's uncertainty. This is hard to characterize precisely 

in general, but it may be meaningful in specific contexts. 

The certainty equivalent approximation involves a single nominal trajectory of the remaining 

uncertainty. To strengthen this approach, it is natural to consider multiple trajectories of the 

uncertainty, called scenaria, and to construct an approximation to the relevant Q-factors that 

involves, for every one of the scenaria, the cost of the base policy TT. Mathematically, we assume 

that we have a method, which at each state xk. generates M uncertainty sequences 

u-(xfc) = (<.<+P--->«!••? !)■ m = l....,M. 

15 



4. Rollout Algorithms for Stochastic Quiz Problems 

The sequences wm(xk) are the scenaria at state xk. The cost Jk(xk) of the base policy is 

approximated bv 
M 

Jk(xk,r) = r0 + Y^ r™Cm{ik): (4-6) 
m=l 

where r = (ro,n ,r\i) is a vector of parameters to be determined, and Cm(xk) is the cost 

corresponding to an occurence of the scenario wm(xk), when starting at state xk and using 

the base policy. We may interpret the parameter rm as an "aggregate weight" that encodes 

the aCTCTreCTate effect on the cost-to-go function of uncertainty sequences that are similar to the 

scenario wm(xk). We will assume for simplicity that r does not depend on the time index k or 

the state xk. However, there are interesting possibilities for allowing a dependence of r on k 

and/or xk. with straightforward changes in the following methodology. Note that, if ro = 0. the 

approximation (4.6) may be also be viewed as limited simulation approach, based on just the M 

scenaria wm{xk). and using the weights rm as "aggregate probabilities." 

Given the parameter vector r, and the corresponding approximation Jk(xk.r) to the cost 

of the base policy, as defined above, a corresponding approximate rollout policy is determined by 

ßk(x) = arg   min   Qk(x.u,r). (4.7) 

where 

Qk(x, u, r) = E{g(x, a. w) -r JfcTl f(x. u, w). r) } (4.8) 

is the approximate Q-factor. We envision here that the parameter r will be determined by an 

off-line "training "process and it will then be used for calculating on-line the approximate rollout 

policy as above. 

One ma*- .use standard methods of XDP to train the parameter vector r. In particular, we 

may view the approximating function Jk{xk,r) of Eq. (4.6) as a linear feature-based architecture 

where the scenaria costs Cm(xk) are the features at state xk. One possibility is to use a straight- 

forward least squares fit of Jk(xk,r) to random sample values of the cost-to-go Jk{xk). These 

sample values may be obtained by Monte-Carlo simulation, starting from a representative subset 

of states. Another possibility is to use Sutton's TD(A). We refer to the books by Bertsekas and 

Tsitsiklis [BeT96] and Barto and Sutton [BaS98], and the survey by Barto et. al. [BBS95] for 

extensive accounts of training methods and relating techniques. 

We finally mention a variation of the scenario-based approximation method, whereby partial 

scenaria are used. In particular, only a portion of the future uncertain quantities are fixed at 

nominal scenario values, while the remaining uncertain quantities are explicitly viewed as random. 

The cost of scenario m at state xk 
;s now a random variable, and the quantity C,n(xk) used in 

Eq. (4.6) should be the expected cost of this random variable. This variation is appropriate and 

16 

L-> 



6. Computational Experiments with Stochastic Quiz Problems 

makes practical sense as long as the computation of the corresponding expected scenaria costs 

Cm{ik) is convenient. 

5. ROLLOUT ALGORITHMS FOR STOCHASTIC QUIZ PROBLEMS 

We now apply the rollout approach based on certainty equivalence and scenaria to variants of 

the quiz problem where there is no optimal policy that is open-loop, such as the situations (e)-(i) 

given in Section 1.  The state after questions i\ ,ik have been successfully answered, is the 

current partial schedule (n , u), and possibly the list of surviving quiz takers [in the case 

where there are multiple quiz takers, as in variant (g) of Section 1]. A (partial) scenario at 

this state corresponds to a (deterministic) sequence of realizations of some of the future random 

quantities, such as: 

(1) The list of turns that will be missed in answer attempts from time k onward; this is for the 

case of variant (e) in Section 1. 

(2) The list of new questions that will appear and old questions that will disappear from time 

k onward; this is for the case of variant (f) in Section 1. 

(3) The specific future times at which the surviving quiz takers will drop out of the quiz; this 

is for the case of variant (g) in Section 1. 

Given any scenario of this type ^t 9. given state, and a base heuristic such as an index or 

a greedy policy, the corresponding value of the heuristic [cf. the cost Cm(x^) in Eq. (4.6)] can 

be easily calculated. The approximate value of the heuristic at the given state can be computed 

by weighing the values of all the scenaria using a weight vector r. as in Eq. (4.6). In the case of 

a single scenario, a form of certainty equivalence is used, whereby the value of the scenario at a 

given state is used as the (approximate) value of the heuristic starting from that state. In the 

next section we present computational results for the case of a problem, which is identical to the 

one tested in Section 3, but a turn may be missed with a certain probability. 

6. COMPUTATIONAL EXPERIMENTS WITH STOCHASTIC QUIZ PROBLEMS 

17 



6. Computational Experiments with Stochastic Quiz Problems 

The class of quiz problems which we used in our computational experiments are similar to the 

problems used in Section 3, with the additional feature that an attempt to answer a question 

can be blocked with a prespecified probability, corresponding to the case of variant (e) in Section 

1. The problems involve"20 questions and 20 time periods, where each question has a prescribed 

set of times where it can be attempted. The result of a blocking event is a loss of opportunity 

to answer any question at that stage. Unanswered questions can b" attempted in future stages, 

until a wrong answer is obtained. 

In order to evaluate the performance of the base policy for rollout algorithms, we use a 

single partial scenario version of the approach described in the preceding section. Assume that 

the blocking probability is denoted by Pb. For an A/-stage problem, at any stage k. we compute 

an "equivalent" scenario duration Te as the smallest integer greater than or equal to the expected 

number of remaining stages where there will be no blocking. The number of remaining stages is 

M    k. and the probability of no blocking in each one of them is 1     P&. so we have 

Te = \(l     Pb)*(M     k)- 

At a given state and stage k, the expected reward of a base heuristic for the stochastic quiz 

problem is approximated, using Eq. (2.1), as the expected reward obtained using the heuristic in 

a deterministic quiz problem starting with the given state, with remaining duration Te (rather 

than M     k). 

As in Section 4, we used seven algorithms in our experiments: 

(1) The optimal stochastic dynamic programming algorithm. 

(2) The greedy heuristic, where questions are ranked in decreashtg p,u,. and, for each stage A;, 

the feasible unanswered question with the highest ranking is selected. 

(3) The index heuristic, where questions are ranked by decreasing PiV,/(l pn'i). and for each 

stage k, the feasible unanswered question with the highest ranking is selected. 

(4) The one-step rollout policy based on the greedy heuristic and certainty equivalence policy 

evaluation, where, at each stage k, for every feasible unanswered question ifc and prior 

sequence zi,.. -, i*.- i, the question is chosen according to the rollout rule (2.4). The function 

H uses the greedy heuristic as the base policy, and its performance is approximated by the 

performance of an equivalent non-blocking quiz problem as described above. 

(5) The one-step rollout policy based on the index heuristic and certainty equivalence policy 

evaluation, where the function H in (2.4) uses the index heuristic as the base policy, and is 

apprcxin.aU".! using the certainty equivalence approach described previously. 

18 



6. Computational Experiments with Stochastic Quiz Problems 

(6) The selective two-step lookahead rollout policy based on the greedy heuristic, with certainty 

equivalence policy evaluation corresponding to an equivalent non-blocking quiz problem with 

horizon described as above. 

(7) The selective two-step lookahead rollout policy based on the index heuristic, with certainty 

equivalence policy evaluation corresponding to an equivalent non-blocking quiz problem 

with horizon described as above. 

The problems selected for evaluation involve 20 possible questions and 20 stages, which are 

small enough so that exact solution using dynamic programming is possible. Associated with each 

question is a sequence of times, determined randomly for each experiment, when that question 

can be attempted. Floating point values were assigned randomly to each question from 1 to 10 in 

each problem instance. The probabilities of successfully answering each question were also chosen 

randomly, between a specified lower bound and 1.0. In order to evaluate the performance of the 

last six algorithms, each suboptimal algorithm was simulated 10,000 times, using independent 

event sequences determining which question attempts were blocked and which questions were 

answered correctly. 

Our experiments focused on the effects of three factors on the relative performance of the 

different algorithms: 

(a) The lower bound on the probability of successfully answering a question, which varied from 

0.2 to 0.8 

(b) The average percent of admissible questions at any one stage, which ranged from 10% to 

50%. 

(c) The probability 1 Pj, that individual question attempts will not be blocked, ranging from 

0.3 to 1.0. 

As in Section 4, for each experimental condition, we generated 30 independent problems 

and solved them with each of the 7 algorithms, and evaluate the corresponding performance using 

10,000 Monte Carlo runs. The average performance is reported for each condition. 

The first set of experiments fixed the average percentage of admissible questions at a single 

stage to 10%. the probability that question attempts will not be blocked to 0.6. and varied the 

lower bound on the probability of successfully answering a question across four conditions: 0.2. 

0.4, 0.6 and 0.8. Table 3 shows the results of our experiments. The average performance of the 

greedy and index heuristics in each condition are expressed in terms of the percentage of the 

optimal performance. The results for this experiment are very similar to the results we obtained 

19 



6. Computational Experiments with Stochastic Quiz Problems 

Minimum 
Probability of 0.2 0.4 0.6 0.8 

Success 

Greedy Heuristic 54% 63% 73% 82% 

Improvement by 
One-step Rollout 31% 26% 17% 6% 

Improvement by 
Two-step Rollout 33% 26% 17% 6% 

Index Heuristic 56% 67% 78% 84% 

Improvement by 
One-step Rollout 30% 22% 12% 4% 

Improvement by 
Two-step Rollout 31% 23% 12% 4% 

Table 3: Performance of the different algorithms for stochastic quiz problems 

as the minimum probability of success of answering a question varies. The av- 

erage percentage of admissible questions at a single stage and the probability 

that question attempts will not be blocked are fixed at 10% and 0.6, respectively. 

The numbers reported are percentage of the performance of the optimal dynamic 

programming solution achieved, averaged across 30 independent problems. 

earlier for deterministic quiz problems. Without rollouts, the performance of either heuristic is 

poor, whereas the use of one-step rollouts can recover a significant percentage of the optimal 

performance. As the risk associated with answering questions decreases, the performance of the 

heuristics improves, and the resulting improvement offered by the use of rollouts decreases. On 

average, the advantage of using selective two-step rollouts is small, but this advantage can be 

large for selected difficult problems. 

The second set of experiments fixed the lower bound on the probability of successfully 

answering a question to 0.2, and varied the average percent of admissible questions at any one 

stage across 3 levels: 10%, 30% and 50%. The results of these experiments are summarized 

in Table 4. As in the deterministic quiz problems, the performance of the greedy and index 

heuristics improves as the number of admissible questions at any one stage approaches 100%. 

The results also show that, even in cases where the heuristics achieve good performance, rollout 

strategies offer significant performance gains. 

The last set of experiments fixed the lower bound on the probability of successfully answering 

20 



7. Quiz Problems with Graph Precedence Constraints 

Problem Density 0.1 0.3 0.5 

Greedy Heuristic 
54% 65% 78% 

Improvement by 
One-step Rollout 31% 23% 13% 

Improvement by 
Two-step Rollout 33% 24% 13% 

Index Heuristic 
56% 74% 87% 

Improvement by 
One-step Rollout 30% 15% 5% 

Improvement by 
Two-step Rollout 31% 16% 5% 

Z-J 

Table 4: Performance of the different algorithms on stochastic quiz problems 

as the average number of questions per period increases. The lower bound on the 

probability of successfully answering a question and the probability that question 

attempts will not be blocked are fixed at 0.2 and 0.6. respectively. The numbers 

reported are percentage of the performance of the optimal dynamic programming 

solution achieved, averaged across 30 independent problems. 

a question to 0.2. focused on varying the probability 1 Pb that an attempt to answer a question 

at any one time is not blocked over 3 conditions: 0.3. 0.6 and 1.0. The last condition corresponds 

to the deterministic quiz problems of Section 3. Table 5 contains the results of these experiments. 

As the blocking probability increases, there is increased randomness as to whether questions may 

be availaK..L in the future. This increased randomness leads to improved performance of myopic 

strategies, as shown in Table 5. Again, the advantages of the rollout strategies are evident even 

in this favorable case. 

The results in Tables 3, 4 and 5 provide ample evidence that rollout strategies enhance 

substantially the performance of heuristics for stochastic quiz problems, while maintaining poly- 

nomial solution complexity. 

7. QUIZ PROBLEMS WITH GRAPH PRECEDENCE CONSTRAINTS 

The previous set of experiments focused on quiz problems where questions could be attemptec 

21 



7. Quiz Problems with Graph Precedence Constraints 

Probability of 
Non-Blocking 0.3 0.6 1 

Greedy Heuristic 73% 54% 41% 

Improvement by 
One-step Rollout 17% 31% 34% 

Improvement by 
Two-step Rollout 18% 33% 40% 

Index Heuristic 75% 56% 43% 

Improvement by 
One-step Rollout 16% 30% 34% 

Improvement by 
Two-step Rollout 16% 31% 38% 

Table 5: Performance of the different algorithms on stochastic quiz problems 

as the probability of non-blocking increases. The average percentage of admissible 

questions at a single stage and the lower bound on the probability of successfully 

answering a question are fixed 10% and 0.2, respectively. The numbers reported 

are percentage of the performance of the optimal dynamic programming solution 

achieved, averaged across 30 independent problems. 

during specific time periods, with no constraints imposed on the questions which had been at- 

tempted previously. In order to study the effectiveness of rollout strategies for stochastic schedul- 

ing problems with precedence constraints, we defined a class of quiz problems where the sequence 

of questions to be attempted must forra a connected path in a graph. In these problems, a 

question cannot be blocked as in the r.oblems of Section 6, so there exists an optimal open-loop 

policy. 

Let Q = {ßf.A) be a directed graph where the nodes M represent questions in a quiz 

problem. Associated with each node n is a value for answering the question correctly, vn, and a 

probability of correctly answering the question, pn. Once a question has been answered correctly 

at node n, the value of subsequent visits to node n is reduced to zero, and there is no risk of 

failure on subsequent visits to node n. 

The graph constrains the quiz problem as follows: a question ni may be attempted at stage 

k only if there is an arc (n, n\) € A. where n is the question attempted at stage k 1. The 

graph-constrained quiz problem of duration .V consists of finding a path no, nj..... , n^v in the 

graph Q such that ;i0 is the fixed starting node, (nt, nk_i) € A for all k = 0,.... N 1, and the 

path maximizes the expected value of the questions answered correctly before the first erroneous 

22 



7. Quiz Problems with Graph Precedence Constraints 

answer. 

The previous heuristic algorithms can be extended to the graph-constrained case. The 

greedy heuristic can be described as follows: Given that the current attempted question was n, 

determine the feasible questions i such that (n, i) € A. Select the feasible question which has the 

highest expected value for the next attempt piVt. In the graph-constrained problem, it is possible 

that there are no feasible questions with positive value, and the path is forced to revisit a question 

already answered. If no feasible question has positive value, the greedy heuristic is modified to 

select a feasible node which has been visited the least number of times among the feasible nodes 

from node n. The index heuristic is defined similarly, except that the index p,Vi/(l p,r,) is 

used to rank the feasible questions. 

One-step rollout policies can be based on the greedy or index heuristics, as before. Since 

the class of problems is similar to the deterministic quiz problems discussed earlier, it is straight- 

forward to determine the expected value associated with a given policy. The rollout policies are 

based on exact evaluation of these expected values. 

In the experiments below, we compare the following five algorithms: 

(1) The optimal dynamic programming algorithm. 

(2) The greedy policy. 

(3) The index policy. 

(4) The one-step rollout policy based on the gTeedy heuristic. 

(5) The one-step rollout policy based on the index heuristic. 

The first set of experiments involves problems with 16 questions and 16 stages. This problem 

size is small enough to permit exact solution using the dynamic programming algorithm. The 

questions were valued from 1 to 10, selected randomly. On average, each node was connected to 5 

other nodes, corresponding to 30% density. In these experiments, the probability of successfully 

answering a question was randomly selected between a lower bound and 1.0. and the lower bound 

was varied from 0.2 to 0.8, thereby varying the average risk associated with a problem. 

Table 6 summarizes the results of these experiments. The first observation is that the 

performance of the heuristics in graph-constrained problems is relatively superior to the perfor- 

mance obtained in the experiments in Section 4. This is due in part to the lack of structure 

concerning when questions could be attempted in the problems tested in Section 4. In contrast, 

the graph structure in this section provides a time-invariant set of constraints, leading to better 

performance. In spite of this improved performance, the results show that rollout algorithms can 

23 



7. Quiz Problems with Graph Precedence Constraints 

improve the performance of the heuristics, to levels where the achieved performance is roughly 

95% of the performance of the optimal dynamic programming algorithm, with a significant re- 

duction in computation cost compared with the optimal algorithm. 

Minimum 
Probability of 0.2 0.4 0.6 0.8 

Success 

Greedy Heuristic 74% 77% 77% 84% 

Improvement by 
One-step Rollout 20% 17% 14% 10% 

Index Heuristic 84% 87% 89% 90% 

Improvement by 
One-step Rollout 11% 9% 7% 5% 

Table 6: Performance of the different algorithms on graph-constrained quiz 

problems as the minimum probability of success of answering a question increases. 

The probability of successfully answering a question was randomly selected be- 

tween a lower bound and 1.0. and the lower bound was varied from 0.2 to O.S. 

The numbers reported are percentage of the performance of the optimal dynamic 

programming solution achieved, averaged across 30 independent problems. 

To illustrate the performance of rollout algorithms on larger problems, we ran experiments 

on graphs involving 100 questions and 100 stages. For problems of this size, exact solution via 

dynamic programming is computationally infeasible. The problems involved graphs with r0% 

density and varying risks as before. The results are summarized in Table 7. Since there is no 

optimal solution for reference, the results include the average improvement by the rollout strate- 

gies over the corresponding heuristics, expressed as a percentage of the performance achieved by 

the rollout strategies. The average improvement achieved by the rollout algorithms, as shown in 

Table 7, is consistent with the corresponding improvement shown in Table 6. The results indicate 

that rollout strategies continue to offer significant performance advantages over the corresponding 

heuristics. In contrast with the optimal dynamic programming algorithm, the average compu- 

tation time for these problems when using rollout algorithms is a fraction of a second on a Sun 

HyperSparc workstation. 

24 



8. Conclusion 

Minimum 
Probability of 

Success 
0.2 0.4 0.6 0.8 

Improvement 
over Greedy by 

One-step 
Rollout 

28% 29% 31% 24% 

Improvement 
over Index by 

One-step 
Rollout 

13% 12% 10% 6% 

Table 7: Performance improvement achieved by rollout algorithms over the 

corresponding heuristics on 100 question graph-constrained quiz problems as the 

minimum probability of success of answering a question increases. The numbers 

reported are percentage of the performance of the rollout algorithms, averaged 

across 30 independent problems. 

8. CONCLUSION 

In this paper, we studied stochastic scheduling problems arising from variations of a classical 

search problem known as a quiz problem. We grouped these variations into two classes: the 

deterministic quiz problems, for which optimal strategies can be expressed as deterministic se- 

quences, and the stochastic quiz problems, for which optimal strategies are feedback functions 

of the problem state. For either of these classes, the computational complexity of obtaining ex- 

act optimal solutions grows exponentially with the size of the scheduling problem, limiting the 

applicability of exact techniques such as stochastic dynamic programming. 

In this paper, we develop near-optimal solution approaches for deterministic and stochastic 

quiz problems that are computationally tractable based on the use of rollout algorithms. For 

stochastic quiz problems, we introduced a novel approach to policy evaluation, based on the 

use of scenaria, which resulted in polynomial complexity algorithms for obtaining near-optimal 

strategies. Our computational experiments show that these rollout algorithms can substan- 

tially improve the performance of index-based and greedy algorithms for both deterministic and 

stochastic quiz problems. 

25 



References 

REFERENCES 

[BBS95] Barto, A. G., Bradtke; S. J., and Singh, S. P., 1995. "Learning to Act Using Real-Time 

Dynamic Programming," Artificial Intelligence, Vol. 72. pp. 81-138. 

[BTW97] Bertsekas, D. R, Tsitsiklis, J. N., and Wu, C, 1997. "Rollout Algorithms for Combi- 

natorial Optimization," Heuristics, Vol. 3, pp. 245-262. 

[BaS98] Barto, A. G., and Sutton, R, 1998. Reinforcement Learning. MIT Press. Cambridge, 

MA. 

[BeT96j Bertsekas. D. P., and Tsitsiklis, J. N., 1996. Neuro-Dynamic Programming. Athena 

Scientific. Belmont. MA. 

[Ros83] Ross. S. M., 1983. Introduction to Stochastic Dynamic Programming. Academic Press. 

N. Y. 

[TeG96] Tesauro, G., and Galperin. G. R., 1996. "On-Line Policy Improvement Using Monte Carlo 

Search," presented at the 1996 Neural Information Processing Systems Conference, Denver. CO. 

[WhiS2j Whittle. P., 1982. Optimization over Time, Vol. I, Wiley. X. Y. 

[Whi83] Whittle, P., 1983. Optimization over Time.. Vol. II, Wiley. N. Y. 

26 



Approximate Dynamic Programming for the Solution of Multiplatform Path 
Planning Problems 

Stephen D. Patek", David A. Logan" 

"Systems Engineering, U. Virginia 
Chariottesville, VA. 22903-2442, USA 
patek@virginia.edu 

+ Electrical and Computer Eng., Boston U. 
Boston, MA. 02215, USA 
dac@bu.edu 

", & David A. Castanon"1" 

"ALPHATECH, INC., 
Burlington, MA. 01803, USA 
david.logan@alphatech.com 

ABSTRACT 

We consider the problem of planning the paths of mul- 
tiple vehicles in observing a battle space with the pos- 
sibility of vehicle destruction. We illustrate the signifi- 
cant complexities that arise when stochastic effects (i.e. 
random vehicle destruction) are introduced into the 
model. Dynamic programming is the classical frame- 
work that characterizes solutions to our problem and 
drives the algorithmic development. While computa- 
tionally expensive, the dynamic programming recur- 
sion can be employed to solve the stochastic prob- 
lem directly. Similarly, dynamic programming can be 
used to solve various deterministic auxiliai-y problems 
whose solutions provide heuristic solutions to the origi- 
nal stochastic problem. We describe our approach and 
illustrate preliminary results. 

1     Introduction 

We consider the situation faced by a commander in 
the battlefield who seeks information about enemy 
strength at specific points on a map in order to make 
tactical decisions. The model for this that we develop 
in Section 2 takes the form of a large scale stochastic 
optimal control problem to which the classical frame- 
work of dynamic programming applies. Even if we re- 
move the stochastic elements of the model, we have a 
very difficult optimization problem to solve. Indeed, 
deterministic vehicle routing problems are recognized 
as being among the most difficult of optimization prob- 
lems to solve computationally. Stochastic effects such 
as random vehicle destruction severely complicate mat- 
ters, and. since the methods of dynamic programming 
are feasible for only very small problems, we are faced 
with the necessity of using approximations. The ap- 
proach we take in this paper is one of Neuro-Dynamic 
Programming [1] and. more specifically, rollout algo- 
rithms [2. 3]. 

In Section 2 we formally pose the stochastic mul- 
tiplatform path planning problem. In Section 3. we 
describe the various solution methodologies that we 
apply in Section 4 to a specific instance of the prob- 
lem.   Our results indicate that, as would one expect. 

the qualitative nature of the optimal routing policy- 
depends on the probabilities of vehicle destruction. In 
Section -5 we offer brief conclusions and provide point- 
ers to future research. 

2    Model 

We now present a model that captures the inherent 
difficulty of multiplatform path planning with stochas- 
tic uncertainty. We suppose that there is a finite set of 
regions of interest, along with a finite set of geographi- 
cally significant waypoints. The regions of interest and 
the waypoints are the positions (nodes in a graph) to 
which various reconnaissance platforms can be sent. 
We assume that the regions-of-interest and waypoints 
are connected by a finite number of arcs which are the 
relatively-safe conduits through which reconnaissance 
vehicles may travel, forming a graph. The commander 
has access to a finite number of reconnaissance vehi- 
cles which can be routed to the various nodes on the 
graph in order to gain as much information as possible 
on a finite time horizon. To keep the model simple, we 
assume tha the reconnaissance vehicles are indistin- 
guishable i" d.at: 

1. they respond to routing commands from the com- 
mander on a per-stage basis. 

2. they are able to transmit intelligence data immedi- 
ately upon encountering a region of interest. 

3. they each require one unit of (discrete) time to tra- 
verse any arc on the graph. 

4. they each experience independently the same risk 
of being shot down each time they traverse a given 
arc, and 

5. they are all initially located at a "home base" (node 
of the graph) to which they must return by the end 
of the mission. 

We assume that when a region of interest is first visited 
the desired information about that region is gained de- 
terministically. regardless of which vehicle arrives. The 
value of the reconnaissance does not increase with the 



number of vehicles that arrive, if two or more arrive 
simultaneously. We leave open the possibility that fu- 
ture revisits will also be worthwhile. The number of 
worthwhile visits will not be known to the comman- 
der ahead of time but will be revealed as a the mission 
progresses. 

We now represent the model on amore formal level. 
Let .V" = {0.1 . A'.v} be the set of nodes of the graph 
that correspond to regions of interest and geographi- 
cally significant waypoints. Let node 0 represent the 
"home base." from which the vehicles depart and to 
which they should try to return (if possible). Gener- 
ically. we may treat all nodes as regions of interest, 
some of which might always offer zero value for visits 
(thus representing waypoints). For each node t € A . 
let x,(t) € A", represent the value-state of the node at 
time t (directly observed by the commander), which 
serves as an index determining the immediate value 
v,(x,(t)) of the next visit to node i. Because the ve- 
hicle transmits it's findings without delay, the reward 
is accrued immediately. We assume that each node's 
value-state can take on only a finite set of values, and 
the value-state changes stochastically according to an 
acyclic Markov chain every time a vehicle arrives. Let 
P, be the transition probability matrix for node i's 
value-state transition process. Let A(i) C A' be the 
subset of nodes j for which there is an arc from node i 
to j. This corresponds to the set of movement-options 
available to a vehicle located at node i. Let B(i) C A 
be the subset of nodes j for which there is an arc from 
j to node i. Note that we do not prohibit self-loops. 
That is. we may have i S A(i) (in which case it must 
also be true that i £ B{i)). Let NA be the number of 
directed arcs in this graph representation of the prob- 
lem. Given i and j G A(i). pv represents the probabil- 
ity of surviving the transition from i to j. Destruction 
is the only other possible outcome of the decision to 
move toward j. If the vehicle does not survive the 
transition, then it is lost at a cost of Co- Otherwise, if 
a vehicle survives to the end of the mission, but only 
manages to make it back to node i € Af. then a cost 
of c, > 0 is incurred, where CQ — 0. The commander is 
charged with controlling the movement of the vehicles 
on a time horizon of T stages and seeks to maximize 
the expected net value of the reconnaissance. We as- 
sume that AV vehicles are available initially. 

3     Solution Methodologies 

Dynamic programming is the classical framework that 
characterizes solutions to the model of Section 2. One 
nice feature of the model is the fact that one can "build 
up" a solution for the case of n vehicles by first solving 
the (easier) problems involving 1.2.... .n — 1 vehicles, 
respectively. The reason for this is that the underly- 
ing controlled Markov chain is acyclic in the sense that 
once a vehicle is destroyed it cannot come back to life. 
This opens up the possibility of using exact solutions to 

endgames in a more general methodology involving ap- 
proximate dynamic programming. Another interesting 
feature of the model is that there exist optimal poli- 
cies which are "quasi-open loop*' in the sense that the 
feedback is only important when vehicles are destroyed. 
Given a fixed number of remaining vehicles, the vehi- 
cles can be optimally routed by making a schedule of 
future transitions, and this plan would apply until the 
next vehicle is destroyed. Unfortunately, the formula- 
tion of such a plan will always involve accounting for 
the stochastic perturbations which can take place in 
every time period, so the inherent difficulty of com- 
puting optimal solutions remains. Still, at some point 
in the future, it may be possible to take advantage of 
this special structure in quickly computing nearly op- 
timal solutions. 

3.1     Dynamic Programming 

To interpret the path planning problem as a dynamic 
program, we identify as the system to be controlled 
(1) the number and locations of all of the vehicles and 
(2) the value-states of all of the regions of interest. As 
a result, the number of possible system-states is large 
but finite, equal to A"; •n^'IA'J. where |A",| is the 
number of value states for node i. Knowing the amount 
of time remaining in the mission and having access-to 
the state of the system, the commander must choose 
from a finite number of routing commands for each of 
the remaining vehicles. We assume that it is feasible- 
for the commander to consider all possible combina- 
tions of routing commands for the vehicles; however, 
in practice it is sometimes necessary to reduce the size 
of the control space by making decisions for the ve- 
hicles in sequence according to a prespecified order of 
vehicle importance. Once a routing command has been 
issued, the system transitions to a new state subject to 
the random perturbations that are possible (e.g. vehi- 
cle destruction and value-state transitic-.jj. The com- 
mander desires a routing policy which maximizes the 
expected reward over the finite time horizon of the re- 
connaissance mission. 

In theory, a backwards dynamic programming re- 
cursion may be used to compute the optimal cost-to-go 
function for this problem. The recursion first computes 
the optimal expected cost-to-go with one stage of the 
mission remaining and then uses this in a recursive 
fashion to compute the optimal expected cost-to-go 
with two stages remaining. Each step of the recursion 
proceeds similarly: 

j; [£(*)]    =       min    E{.9K(A-).e(fc + l)] + 
u£U{Hk)\ 

./;Tifc(* + i)]i"} (i) 
jmn -- = mn (2) 

where 

1. £(k) is the state of the system at stage k. 



2. u is a profile of routing command to the remaining 
vehicles at stage k. 

3. U[£(k)} is the set of combinations of routing com- 
mands available at state £{k). 

4- 9lZ{k): (.(k + 1)] is the cost of vehicles destroyed in 
transitioning from £{k) to £(k'+ 1). offset by the 
value of the intelligence data gained. 

5. h[£,(T)\ is the cost associated with the locations of 
all surviving vehicles at the terminal state £{T), 
and 

6. the conditional expectation is over all possible state 
transitions (i.e. to £(k + 1)) from £(k) under the 
control profile u. 

The result of this recursion is a large lookup table 
which contains the optimal expected long term cost 
from every possible state of the system. Knowing the 
current state of the system £(k) and having access to 
the optimal cost-to-go function allows us to pick opti- 
mal actions as the minimizers of the right hand side of 
Equation (1). 
Optimal Policy /-" = {^ ^T-I)J Having ac- 
cess to the optirnal cost-to-go functions J£ for k = 
0.. ■ ■ .T —1. an optimal action ß'k[£,(k)\ from state £{k) 
at stage k is one that minimizes the right hand side of 
Bellman's equation: 

fk[Z(k))    e    arg    min    E { g[Z(k), £(fc + 1)] + 

J;+1K(A + I)]|U}. (3) 

(The minimum in this equation may not be unique.) 
While theoretically sound, the dynamic program- 

ming recursion is too expensive computationally to 
be used in real-world scheduling problems with sig- 
nificant random uncertainty. This is due to the fact 
that large numbers of outcomes (transitions) are pos- 
sible for each profile of routing commands and. even 
worse, the space of routing profiles grows combinato- 
rially with the number of vehicles. Even a single step 
of the backwards recursion may be prohibitively ex- 
pensive. Consequently, exact dynamic programming 
solutions are possible only for very small problems, as 
in the testbed problem of Section 4. 

3.2    Heuristics    via    Deterministic    Auxiliary 
Problems 

Given the intractability of the path planning problem, 
we are obliged (in practice) to accept reasonable sub- 
optimal routing policies for the vehicles. We begin in 
this section a discussion of several potentially useful 
heuristics for path planning. Perhaps the simplest type 
of heuristic to consider is one based on the solution to 
a deterministic auxiliary problem: 

Auxiliary Problem 1 Set the pivbabilities of de- 
struction to zero and make the value-state transi- 
tion dynamics deterministic, but otherwise keep the 
path planning problem identical to the original model. 
Choose a schedule for the vehicles to minimize the (de- 
terministic) cost over the finite planning horizon. 

Notice that the resulting problem, being determin- 
istic, is considerably easier than the original stochas- 
tic problem of Section 2. Unfortunately, the integer 
scheduling problem that remains is a vehicle routing 
problem where the vehicles are constrained to traveling 
along arcs of a graph (very difficult to solve computa- 
tionally.) In this paper, we use dynamic programming 
to solve Auxiliary Problem 1. although more generally 
we may consider of any reasonable heuristic. 

Supposing that Auxiliary Problem 1 is easy to 
solve, a reasonable heuristic for the original stochastic 
problem is to implement actions that would be optimal 
from the same state in the corresponding deterministic 
auxiliary problem. 
Policy 1 [-1 = {pi: •••;A£T-i}/ Compute the optimal 
policy T" = {/]£.... :ßx-i} for Auxiliary Problem 1. 
Set nl=ßlforallk = 0....,T-l. 

Another possibility is to think of the optimal cost- 
to-go functions in the dynamic programming solution 
to Auxiliary Problem 1 as heuristic value-function ap- 
proximations for the original stochastic model. 
Policy 2 [IT

2
 = {^jj:----:A*T-I}/ Having access to the 

optimal cost-to-go functions Jl for Auxiliary Prob- 
lem I, generated by a recursion analogous to that 
of Equations (1) and (2), choose each ßj. such that 
HJ.[£{k)] is an action from state £(k) at stage k which 
minimizes the right hand side of Bellman's equation, 
replacing the optimal cost to go function J^+1   with 

/*&(*)]    G    arg    min    E{ ^(A)^(A +1)] + 

J;+1m + i)]\u}.       (4) 

(The minimum in this equation may not be unique.) 

3.3    Rollouts Based  on  Exact   Evaluation  of 
Heuristic Cost 

Given an arbitrary (possibly suboptimal) policy n = 
{/Jo;... ,/ir-i}: it is possible (in theory) to use the dy- 
namic programming recursion to compute the expected 
cost-to-go for every state of the system under that pol- 
icy. By eliminating the min operation in Equation (1) 
and replacing u(k) with t*k[Z{k)]: we obtain the ex- 
pected cost to go functions associated with n. denoted 
Jj!. k = 0. .:r.T. We obtain the effect of a policy 
iteration by "'rolling it out" as follows. 
Policy 3 "(Exact Rollout) /TT

3
 = {/u3,: • • • ,/'T-I}/ 

Clwose each p? such that ßl[£(k)} is an action from 
state £(k) at stage k which minimizes the right hand 
side of Bellman's equation, replacing the optimal cost 



to go function J^{ with J£. 

tiim € g[S(k),Z(k + l)] + 

Jk+im+i))\u}.       (i 

arg    min    E 

(The minimum in this equation may not be unique.) 
This policy derives its name from the fact that, in prac- 
tice, the evaluations •/£[£(£), k] often are not computed 
precisely but are estimated through online Monte Carlo 
simulation of the original policy IT. (Cf. [2] and [3].) 
Thus, the evaluations are made by "rolling-out" the 
die. Whenever we refer to Policy 3 in this paper, we 
imply that the evaluations of the base policy are exact. 
Of course, exact evaluations are impractical for most 
real-world problems, so this technique only applies for 
very small problems. Results of this type are presented 
in Section 4. 

4    Experimental Results 

We present in this section some computational results 
for the path planning problem of Section 2. We first 
give a precise description of the path planning scenario 
under consideration. We follow that with a brief sum- 
mary of our experimental findings. The code that we 
have developed for this study implements the dynamic 
programming recursion for both the stochastic problem 
as well as Auxiliary Problem 1. It also computes (ex- 
actly) the expected cost-to-go function associated with 
Policy 1 and uses this to compute the (exact) cost-to- 
go associated with the rollout scheme of Policy 3. 

4.1    An Instance of the Model 

We consider an instance of the path planning model 
that involves two vehicles who must traverse the graph 
shown in Figure 1. Arcs in the graph are bidirectional. 
with thick lines rer esenting risk-free transitions and 
thin lines representing transitions that are successful 
with the indicated probabilities. Nodes 5. 8. 9. 11. 12. 
and 13 are regions of interest, and the remaining nodes 
are simply geographic waypoints. Note that node 5 
is the "big win" in this scenario, offering a minimum 
of 500 and up to 1000 points, to be determined im- 
mediately after the first visit. We impose a relatively 
short time horizon, between 8 and 20 stages, with a 200 
point penalty for each vehicle that fails to return home. 
Notice that the circuits {0,1.2,3,4.5,4,3,2,1,0} and 
{0,6, 7,10,11,12,13,10,7,6,0} each involve 10 transi- 
tions. Thus, it is not clear a priori whether 

1. to send the vehicles on separate tracks (a naive at- 
tempt to "mop up" most of the value), 

2. to send vehicles along redundant tracks (to maxi- 
mize the probability of making it to the big win), 
cr 

3. to send vehicles out with some other routing phi- 
losophy in mind. 

Notice that we allow self-loops only at nodes 0 and 5. 
In our experimental results we adjust the values of the 
parameters (pi,p>,P3,p, and T) to see the qualitative 
nature of the various solutions. In defining Auxiliary 
Problem 1 for this scenario, we set pt = p_> = pj = 0 
and p = 1. 

Figure 1: A scenario for the path planning problem. 
Note that all arcs are bidirectional. The thick arcs are 
risk-free, whereas the narrow arcs are traversed safely 
with the indicated probabilities (pi < p_> < pa). First 
visits to nodes 8 and 9 are worth 50 points; subsequent 
visits are worth zero. First visits to nodes 11 and 13 
are worth 75 points; subsequent visits are worth zero. 
The first visit to node 12 is worth 150 points, and sub- 
sequent visits are worth zero. The first visit to node 
5 is worth 500 points. The second visit to node 5 is 
worth 500 points with probability p or 0 points with 
probability 1 — p, and all subsequent visits are worth 
0 points. Vehicles that are shot down or don't return 
home cost 200 points each. 

4.2    Results 

Table 1 illustrates the relative performance of policies 
7r", 7T1, 7r2. and T3 for a number of different settings 
of the parameters p, pi, p>. p3, and T. We consider 
values of T equal to 8, 12, 15. and 20, and for each 
value of T we consider 

1. a "risky" case with p\ 
.975 and 

.65, p-2 = .875, and pz = 

2. a relatively "risk-free" case with pi = .9,p:> = .95, 
and p-i = .98. 

We keep the probability of a fruitful second visit to 
node 5 set to one half throughout (i.e. p = .5). The 
table shows the exact expected cost to go from the 



TT" TT1 ■i 
7T- L *a 

r = 8 
"Riskv" -161.6 -148.0 -148.0 -155.7 
r = 8 

"Risk-free" -895.7 -867.2 -624.7 -867.3 
T = 12 
"Risky" -332.2 -284.4 -206.1 -304.1 
T= 12 

"Risk-free" -840.6 -836.7 -824.7 -839.6 
T=15 
"Risky" -378.3 -301.3 -201.4 -öl5.3 
T= 15 

"Risk-free" -895.7 -867.2 -624.7 -867.3 
T = 20 
"Riskv" -391.5 -301.3 -201.4 -315.3 
T = 20 

"Risk-free" -926.3 -867.2 -624.7 -867.3 

Table 1: Table of expected costs-to-go for various time 
horizons T. risk levels, and policies. 

initial state (all vehicles at home at time zero with all 
regions unvisited). We notice the following trends. 

1. The naive policy TT
1
. which always implements an 

optimal action in the Auxiliary Problem 1. often 
does significantly worse than the optimal policy, es- 
pecially in the risky cases. 

2. The value-based policy ~-, which uses the optimal 
cost of Auxiliary Problem 1 as an approximation of 
the optimal cost-to-go function always does worse 
than TT

1
. often significantly worse. Perhaps the 

reason for this is that the approximation is state- 
insensitive. That is, if there is enough time left 
in the deterministic approximation, all of the value 
to be gained in the graph can be picke<" up with 
certainty. 

3. The (exact) rollout policy n3 recovers some (but 
not all of the) expected value achieved by n'. The 
relative amount of recovery seems to diminish as 
the time horizon T increases. 

In Figure 2 we show the nominal optimal and TT
1 

vehicle trajectories for the "risky", T = 12 case. (A 
nominal trajectory is the sequence of pairs of nodes 
visited by the vehicles given that neither of the ve- 
hicles are shot down. Our view is that these ideal 
trajectories indicate the character of the various poli- 
cies under consideration.) We point out that the ideal 
trajectory of TT

1
 can be characterized by the "divide 

and conquer" philosophy, whereas n" involves some re- 
dundancy (with vehicles following each other to ensure 
that at least some intelligence data is obtained). This 
^I.;V..-T>T.:,..,J ,'.;,•;.,■•.■ •;■•- ;s :-.Vm, more pronounced in 

the other "risky"' cases. 
Generally speaking, there is insight to be gained in 

studying the ideal trajectories for each of the policies. 

0    A 0   V ©$ 

o 

o 

Vehicle 1 

•», 

G 

!    -c 
o 

o 
\     / / 
• — 

Vehicle 2 

o 

Nominal Optimal Trajectory 

•   • 

Q 

©CD 

I Vehicle I 

•   • C 

Yv- 

Vehicle 
_£) 

I 

I 
i ©<2> 

oo 
Nominal \pi" I Trajectory 

Figure 2: Nominal trajectories for ir~ and TT
1
 for the 

"risky" case with T = 12 (Case 3). 

For example, although it isn't apparent in Table 1, the 
total cost of the ideal trajectory of n' for Case 1 is 
-900, whereas the corresponding total cost for n1 is - 
950 (apparently better than optimal). The reason for 
this discrepancy, of course, is that the TT

1
 policy fails 

to account for the risk of being shot down along some 
of the arcs in its nominal trajectory. 

5    Discussion and Conclusions 

Unfortunately, even though the Auxiliary Problem 1 is 
less involved than the original stochastic problem, the 
computational requirements of brute-force dynamic 
programming for its solution are roughly equivalent. 
For truly large scale problems it is essential to de- 
fine alternative auxiliary problems (and corresponding 
heuristic policies) that admit efficient computational 
solutions. 

5.1    A Revised Model 

By eliminating some of the generality in the model of 
Section 2. one can develop alternative auxiliary prob- 
lems that are essentially large-scale network-flow prob- 
lems for which rapid computational solutions are pos- 
sible.   For example, if value accrues deterministically 



-_J 

at most once for each node, then each node has at 
most two value-states, resulting in finite state space 
with NyNv ■ 2'v"v elements, where .\*,v is the number 
of nodes offering reconnaissance value. Consider now 
a network-flow model of the scheduling problem whose 
optimal value approximates the expected cost-to-go for 
the original stochastic problem for any given state at 
any given stage. Such a'model is possible 

1. by splitting each physical node into two distinct 
nodes (one which offers value but whose input arcs 
are capacity constrained and the other which offers 
no value but can be revisited often) 

2. by making as many copies of the new graph as there 
are time periods remaining in the problem, so that 
each arc of the resulting network corresponds to 
either value-flow or valueless-flow for a particular 
vehicle at a particular time, and 

3. by •'siphoning-ofF flow proportional to the proba- 
bility of vehicle destruction. 

Since efficient LP solvers are available for integer- 
relaxations of such problems, there is the hope that 
fast heuristic policies can be derived based on such ap- 
proximations, analogous to Policy 2. (Such policies 
may then serve as base-policies in a rollout scheme, 
analogous to Policy 3.) 

In implementing the scheme of the preceding 
paragraph, we get a new auxiliary problem with 
2NvN,\NAT variables and NVT{NA + Ny) + Ny con- 
straints. Because the resulting model has extra side 
constraints (coupling the flows of all of the remaining 
vehicles) and gains (that account for the probability of 
vehicle destruction), we are compelled to use a generic 
LP solver, such as CPLEX. One nice feature of CPLEX 
is that it allows the user to input an initial basis for 
the primal simplex algorithm it implements. Since we 
will be solving many slightly different problems in the 
context of rollouts, we will be able to use the optimal 
solution of one problem as the initial basis for the next 
problem. (These "hotstarts" have the potential to re- 
ally speed up our heuristics.) 

Numerical experimentation with rollout policies 
based on this type of auxiliary problem are underway, 
and we offer only very preliminary insights. First, be- 
cause our network flow model has gains and involves 
multicommodity side constraints, we generally get frac- 
tional solutions to the auxiliary problem. Moreover, 
the fractional solutions often correspond to vehicles 
visiting nodes for value more than once, making the 
approximations very optimistic (with an adverse affect 
on the quality of the corresponding rollout policies). It 
turns out to be very difficult to express side constraints 
that completely capture the restriction that only one 
vehicle can pick up value at a region of interest. 

5.2    Conclusions 

The multiplatform path planning problem of Section 2 
is clearly very difficult to solve, despite its special struc- 
ture. This is due to the fact that the cardinality of 
both the state and control spaces grow very rapidly 
with the numbers vehicles and regions of interest. In 
the experimental results of Section 4. we saw that the 
introduction of random vehicle destruction has a big 
effect on the qualitative nature of optimal routing so- 
lutions. Unfortunately, we were able to obtain these re- 
sults only for a. very small instance of the path planning 
problem. Our ?/tempts to implement a reasonable and 
fast heurisac that will scale well with the size of the 
problem are currently best characterized as "work in 
progress." There are definitely some interesting possi- 
bilities. 

Acknowledgments 

The authors would like to thank D. P. Bertsekas for 
many helpful insights in performing this work. 

REFERENCES 

[1] D. P. Bertsekas and J. N. Tsitsiklis. Neuro- 
Dynamic Programming. Athena Scientific. Bel- 
mont, MA: 1996. 

[2] D. P. Bertsekas, J. N. Tsitsiklis. and C. Wu, "Roll- 
out Algorithms for Combinatorial Optimization." 
J. of Heuristics, Vol. 3, 1997, pp. 245-262. 

[3] D. P. Bertsekas and D. A. Castanon, "Rollout 
Algorithms for Stochastic Scheduling Problems," 
Report LIDS-P-2413, Lab. for Info, and Decision 
Systems. M.I.T., May 1998. To appear in J. of 
Heuristics. 



Adaptive Multi-platform Scheduling in a Risky Environment 

Dimitri P. Bertsekas 
Dept. of Electrical Engineering and 

Computer Science, M.I.T., 
Cambridge, MA 02139 

Michael L. Curry 
ALPHATECH, Inc. 

50 Mall Road 
Burlington, MA 01803 

David A. Castanon 
Dept. of Electrical and Computer 
Engineering,Boston University, 

Boston, MA 02215 

David Logan 
ALPHATECH Inc. 

50 Mall Road 
Burlington, MA 01803 

Abstract 
In this paper, we investigate the use of rollout 

algorithms for adaptive multi-platform scheduling in a 
risky environment. The underlying decision problem is 
motivated by several Air Force applications: data 
collection, sensor management, and air operations 
planning. These problems may be solved optimally with 
stochastic dynamic programming (SDP), but have 
overwhelming computational requirements. Rollout 
algorithms reduce computational requirements by using 
on-line learning and simulation to approximate SDP 
with a base heuristic. While they do not aspire to 
optimal performance, rollout algorithms typically result 
in a consistent and substantial improvement over the 
underlying heuristics. A multi-platform planning and 
scheduling problem is used to demonstrate rollout 
performance. 

1    Introduction 

The planning and execution of multiple missions in 
the presence of risk is a problem which arises in many 
important military contexts. In data collection 
applications, multiple UAV platforms may be tasked to 
interrogate different areas, with the risk of platform 
destruction as each platform pursues its collection 
mission. In attack air operations, multiple platforms 
follow risky trajectories to attack enemy targets. For 
both applications, sensors and communication 
equipment can provide up-to-date information 
concerning individual mission and platform status, and 
thus provide notification of platform losses. This creates 
opportunities for retasking surviving platforms in order 
to best achieve mission objectives. 

In mathematical terms, the above class of problems 
can be viewed as a sequential decision problem, where 
each decision is based on the observation of certain 
discrete events. These decisions affect the evolution of 
a system state (mission), which is also influenced by 
random discrete events (e.g. platform destruction). The 
goal is to select the current decisions as a function of 
the current system state, in a manner that optimizes 
mission performance. 

The above class of problems can be formulated as 
Markov decision problems [3],[5]. The principal 
approach for solving such problems is dynamic 
programming (DP), which selects feedback rules to 
determine optimal controls for each possible state. 
These optimal controls are determined by evaluating at 
each stage the immediate expected cost of the current 
decision, plus the future optimal cost-to-go over future 
decisions. However, it is well known that computation 
of the optimal cost-to-go for each future state is 
computationally intractable for all but the simplest of 
problems, making direct application of DP an 
impossible task for multi-platform control. 

In recent years, there has been a gTeat deal of 
research on approximate DP methods based on 
computing suitable approximations to the optimal cost- 
to-go. These methods are collectively known as neuro- 
dynamic programming (NDP) [1]. In NDP, the optimal 
cost-to-go is approximated by a parametric function; 
critical issues for NDP include the selection of the 
parametric class of approximating functions, and 
selection of the approximating parameters. 

In this paper, we apply a particular class of NDP 
algorithms, known as rollout algorithms [2], to risky 
multi-platform planning and scheduling problems. 
Rollout algorithms are a form of NDP which exploits 

This work was supported by the Air Force Office of Scientific Research under contract #F49620-98-C-0023. 



'■?4 

knowledge of subopiimal heuristic decision rules to 
obtain approximations to the optima! cost-to-go for use 
in NDP. We develop different rollout algorithms for 
risky multi-platform scheduling, and illustrate the 
relative performance of the rollout algorithms and the 
original suboptimal decision rules in the context of a 
specific example. The results illustrate that significant 
performance improvements can be obtained using 
rollout algorithms, with a modest increase in 
computation complexity. 

2   Illustrative Overview 

To illustrate the types of problems of interest and 
results developed in this paper, consider the data 
collection problem illustrated in Figure 1. There are 
several data collection assets, which may travel to 
examine targets. There is a value associated with 
collecting the information on each target. Platforms 
also run the risk of destruction while performing 
collection on a asset, due to the presence of local 
defenses. 

Figure 1 Illustration of Data Collection Problem 

Ideally, eac' data collection asset will be provided a 
schedule of trr^eis for information collection, which is 
coordinated among assets to ensure maximal value 
collected. However, due to the risk inherent in the 
collection process, platforms can be destroyed, and thus 
the original schedules should be adapted whenever a 
destruction event occurs in order to recover the most 
collection value. If these abrupt events are not 
anticipated in the original schedules, the possible 
modifications to the schedules may be so constrained 
that highly sub-optimal performance results. 

The basic theory of dynamic programming provides 
a framework for developing schedules which anticipate 
the future occurrence of contingencies such as platform 
destruction, and hedge the selected schedules in 
anticipation of needed retasking. Thus, the resulting 
schedules can be adapted to contingencies with minimal 
performance degradation, resulting in robust, stable 
control. 

The computational requirements of DP depend on 
the number of future states required to describe the 
system. To illustrate the number of states required, 
assume that there are N targets, M collection assets, and 
that we simplify physical position descriptions to 
describe only the N positions of the targets. Then, the 
number of possible combinations of positions is M , 
and the number of possible uncollected target sets at a 
given time is 2'\ resulting in numbers of states (2M)' . 
For modest numbers of assets and targets, the number of 
states far exceeds our capability for computing and/or 
storing the resulting optimal decision rules. 

Using NDP principles such as rollout strategies 
greatly reduces the resulting computational complexity. 
DP considers all of the possible states and computes a 
tentative decision for each possible state, whereas NDP 
only computes decisions for states that actually occur in 
the scenario. Thus, the number of states considered by 
NDP considered is much smaller, but can only be 
determined in real-time. In the rollout methodology, 
once the scenario reaches a given state where a 
contingency has been observed, new plan options are 
evaluated in real-time to select the future actions. The 
result is a practical algorithm for feedback control in 
complex multi-platform planning and scheduling 
applications. The fundamental questions about this 
approach are how good is the performance achieved, 
and how much real time computation is required. These 
questions are explored in greater detail in the 
subsequent sections. 

3   Rollout Algorithms 

Consider a discrete-time version of a dynamic 
decision problem, 

where xk is the state, « is the control to be selected 

from a finite set U[xk), and cok is a random 

disturbance. Denote the single-stage cost of control u 
from state .r and disturbance ßjby g(x,u,co). 

A control policy n = {p0,fil,---} maps, for each 

stage k, a state x to a control value fik (.v)e U(x) ■ In the 

N-stage horizon problems considered herein, k takes 
values 0,l,--,/V-l, and there is also terminal cost 

C(.rv) that depends on the terminal state Xf/ ■ The cost- 

to-go of policy n starting from a state xk at time k can 

be computed using the following DP recursion 

j;(x)= E{g(x.Mt(x\a>)+ JlMix.fi,(x\co))} ( I ) 

for all k and with the initial condition 



J's(x)=C{x) 

The  rollout  policy  based   on   jc   is   denoted   by 

J = {/70,//",,■• •}. ar|d is defined by the operation 

/71(.t) = arg min E{g{x,u,w)+ J^ifix.u,^))} ( 2 ) 
«M-0 

for all .T and it. Thus the rollout policy selects decisions 
by balancing the current cost with future costs-to-go, 
where the optimal costs-to-go are approximated by the 
performance of the base policy K ■ 

A straightforward approach for computing the 
rollout control at a given state x and time k is to use 
Monte Carlo simulations of the base policy. To 
implement this approach, we consider all possible 
controls ueU(x) and generate a "large" number of 

simulation trajectories of the system starting from x, 
using u as the first control, and using the policy K 

thereafter. Thus the simulated trajectory has the form 

.r_, =f{x,,ß,{xi).coi)   i = k + l, — N-l 

where the first generated state is 

The costs corresponding to these trajectories are 
averaged to obtain the ß-factor 

Q(x,u)=E{g{x,u,Cü)+J"M{f(x,u,co))} 

In reality, only an approximation Q(x.u) is obtained 

because of the associated simulation error. The 
approximation becomes increasingly accurate as the 
number of simulation trajectories increases. Once the 
approximate Q-faclor Q(.x.u) corresponding to each 

control ueU(x) is computed, we obtain the 

approximate rollout control pk(x) by the minimization 

pk(x) = arg min Qk{x,u) 

4   Example: Data Collection Problem 

The graph in Figure 2 corresponds to an example 
data collection problem. Each node represents a 
geographical area of interest with a one-time value (i.e., 
data may only be collected once from each location). 
The arcs represent connectivity among the geographical 
regions and may be successfully traversed with a known 
probability. Platforms traverse the graph and collect 
data (value) at each node, or else they are destroyed 
while traversing specific arcs. If a platform is destroyed 
on an arc, the value of the destination node is not 
collected, which can result in retasking other platforms. 

,/' 
•Jfl.   , 

- -                    ', ».NO ^"  - ....                   ^ 
'°-f»i ';' v.. ^   -'-■-■■Cm \   "j:- .S& 

.-        X                   «.«3 •M 
..-»••■   v /. 

I.U4               ^ •Jl»   '"" 
•it*               \ 

/             ■    «11 

'(IT \   MJ '     '■-                          A N 
•.7*0                                          ■ 

\ 
•.«3 7 ' v                 ,<'        / •>•»-« N                \    / V   ■'           / 

9*3/  • ,          i • \       /   ■ ,».♦7         *W, 

Ä. /\       \ -"■   /'M-,< 
*"           'V™ 

/        ,''    " /    ».Ml «» \ ■ 

'0- -&: 

Figure 2 Graph Representation of the Data 
Collection Problem 

The objective is to control the platforms in order to 
maximize the expected total value collected after N 
stages (,V= 10 will be used). Each platform begins at a 

base node (in this case, node 0 for all platforms) and 
may traverse one arc during each stage. If a platform 
does not return to its base node within N stages, there is 
a penalty associated corresponding to platform loss. 

4.1 The Base Policy: Greedy 

As a base policy for rollout, we use the greedy policy 
;r = {u0,//,,-••}, which is defined by the operation 

//. (.r) = arg max E{g{x,u,co)} 
«el/W 

for all JC and k. The control u is a vector of locations 
corresponding to the next destination of each platform. 
Similarly, each element of  Hk{x) = \p°k{x\n\{x),---\ 

corresponds to a specific platform. 
To reduce the computational overhead, we consider 

the platforms sequentially. The control for the first 
platform, //"(*), is selected independent of the other 

platforms' controls as: 

M°t(x)= max E{g{x,u,0))} 
ueU°U) 

where U°(x) are feasible controls for platform 0. The 

control, ///(.r), for subsequent platforms is conditioned 

on all the previously selected controls 

Mk(x)< Ml ix )>"•. UT'(X) anc* defined by the operation 

Miix)= max E{g{x,u.ojh:i4-^r(4 



L'J 

I .1 

i_J 

This allows the greedy policy to anticipate the arrival 
of platforms at specific nodes based on previously 
selected controls. 

The greedy policy also forces platforms to return 
within N stages by constraining  the  set   Uk(x)  of 

feasible controls to those for which a return within N 
stages is possible 

The performance of the greedy policy corresponds to 
the cost-to-go from the initial state x0 ■ 

yTo(-r0)=£Jc(JC.v)+X^.^U1).®1-) 

where   the   expectation   is   taken   over   simulation 
trajectories of the form 

The performance of the greedy policy provides a 
baseline for evaluating the rollout policy. 

4.2 Rollout Algorithm 

The rollout policy is computed using the greedy 
policy as its base policy, as indicated in equations (1-2). 
The performance of the rollout policy is evaluated in a 
manner similar to the greedy policy, by using the cost- 
to-go from the initial state x0. 

f ,V-I 

7To(.rJ=£<1C(.vv)+Xg(.r,/i,(.r,),ft>, 

with the simulation trajectories 

Jc,.tl=/(-V#M*0   i = 0,-N-\ 
To reduce the relative variance of performance 

values, we use the same simulation trajectories in the 
evaluations of all policies. 

One drawback of this approach is that many on-line 
Monte Carlo simulations may be required to compute 
the rollout decision at a state. As an alternative, we can 
use approximations trained with off-line simulations, as 
discussed in the next subsection. 

4.3 Rollouts and Neural Approximations 
To reduce the on-line computational overhead of the 

rollout policies, we propose to train off-line a 
parametric approximation of the greedy policy 
performance based on features which characterize the 
current state. In particular, the features that we use 
correspond to the values achieved by the greedy policy 
under a small number of certainty-equivalence 
scenarios, which capture the graphical dependence of 
the scheduling problem. This approach was initially 
proposed in [2]. 

To compute a feature at a given state xk at time k, 

we fix the remaining disturbances at some nominal 
values 5J.,<w. ,,-•■,51,. ,, and generate a state and 

control trajectory of the system using the base policy K 

starting from xk and time k. The corresponding cost is 

denoted by J* (xk), and is a feature which is used to 

estimate the true cost J*(xt)- We use a small number 

of disturbance trajectories corresponding to different 
scenarios. The feature values computed for each of 
these scenarios ' are combined parametrically to 
approximate the cost of the base policy using the 
functional form: 

(3) 

where r = (/;,.r,,---.rw ) is a vector of parameters to be 

determined, and Cm(xt) is the cost corresponding to the 

mth scenario. The parameters r are determined by an off- 
line training process using simulations of the base 
policy. Equation (3) can then be used on-line, 
computing the costs C {xt), to evaluate the base policy 

cost from state xk at time k. 

5    Experimental Results 

A series of experiments were performed on the 
example problem presented in section 4.1, evaluating 
the performance of the base greedy policy and different 
variations of rollout algorithms. 

The greedy heuristic used for the baseline policy is 
based on a" objective function with two terms, one 
associated w'th the achievable value of data collected 
and the other associated with the potential loss of the 
vehicle. These values depend on probability ratios 
associated with risk. The objective function for vehicle 
k at state JC is given by 

f        ,A       P"        (   \   (l~p*) gt(u„xl,co) = T \n (x,) vt 
v-pj P., 

where n (x) is the achievable value of option j given 

the current state, v4 is the value of vehicle k, and p.  is 

the transition probability associated with option j ( pt 

characterizes the disturbance co). This objective 
function is a risk neutral strategy that computes the 
marginal difference between the largest acceptable loss 
and the smallest acceptable gain associated with option 

j- 
The greedy heuristic is evaluated by determining the 

cost-to-go from the initial state .v„. 

Ü 



rollout algorithms using on-line Monte Carlo 
simulations. The parametric approximations suffered 
from two limitations: First, the training techniques 
often failed to identify the best weight combinations. 
Second, the parametric approximations were unable to 
generalize accurately across the broad class of states 
which occurred in the problem. Our experiments were 
limited to simple classes of parametric approximations 
using the concept of certainty equivalence scenarios. 
Exploration of alternative approximations using 
different features is an area for future investigations. 

The main limitation of the Monte Carlo rollout 
algorithms is the amount of on-line computation 
required to evaluate the different options at each state. 
We are currently investigating techniques based on 
discrete-event systems and perturbation analysis [4] to 
reduce the number of simulations required to evaluate 
multiple alternatives. 

7    References 

[ 1 ]   Bertsekas. D.P.. Tsitsikis. J.N., Neuro-Dynamic 
Programming, Athena Scientific, 1996. 

[2]   Bertsekas. D.P.. Castafion. D.A., "Rollout Algorithms 
for Stochastic Scheduling Problems." Journal of 
Heuristics, V. 5, 1999. 

[3]   Bertsekas. D.P.. Dynamic Programming and Optimal 
Control, Athena Scientific, 1995 

[4]   Ho, Y.C., Cassandras. CG., Chen, C.H., Dai, L., 
"Ordinal Optimization and Simulation," submitted to 
special issue on simulation to be published by 
INFORMS 1999. 

[5]   Ross, S. M., Introduction to Stochastic Dynamic 
Programming, Academic Press, N.Y., 1983. 



Dynamic Programming Methods for Adaptive Multi-platform 
Scheduling in a Risky Environment1 

Dimitri P. Bertsekas 
Dept. of Electrical Engineering and Computer Science, 

M.I.T., Cambridge, Mass., 02139 

David A. Castafion 
Dept. of Electrical and Computer Engineering, 

Boston University, Boston, Mass., 02215 

Michael L. Curry, David Logan, Cynara Wu2 

ALPHATECH, Inc., 50 Mall Road, Burlington, MA 01803 

Abstract 

In this paper, we investigate alternatives to simulation- 
based approximate dynamic programming methods for 
adaptive multi-platform scheduling in a risky- 
environment. In a recent effort, we considered rollout 
algorithms, in which on-line simulation was found to be 
more reliable than off-line training. Unfortunately, a 
large amount of computational resources was required to 
run even a modest number of Monte Carlo simulations. 
In this paper, we consider alternatives to using 
simulation. The first approach consists of using limited 
lookahead policies, which reduce computational 
requirements by considering value explicitly over a 
limited horizon and approximating the value of the 
remaining stages, ^he second approach decomposes the 
problem into sub-r oblems corresponding to platforms. 
In our computational experiments, we found that many of 
the variations of these approaches required significantly 
less computation time than rollout algorithms and also 
obtained results that were substantially superior. 

1. Introduction 

The planning and execution of multiple missions in the 
presence of risk is a problem that arises in many important 
military contexts. In data collection applications, multiple 
UAV platforms may be tasked to interrogate different 
areas, with the risk of platform destruction as each 
platform pursues its collection mission. In attack air 
operations, multiple platforms follow risky trajectories to 

attack enemy targets. For both applications, sensors and 
communication equipment can provide up-to-date 
information concerning individual mission and platform 
status, and thus provide notification of platform losses. 
This creates opportunities for replanning. using feedback 
to retask surviving platforms in order to best achieve 
mission objectives. 

In mathematical terms, the above class of problems 
can be formulated as Markov decision processes. At each 
stage of the process, decisions are made that affect the 
evolution of a system state, which is also influenced by 
random discrete events. The goal is to select the current 
decision as a function of the current state in order to 
optimize mission performance. 

The principal approach for solving Markov decision 
problems is dynamic programming (DP). In comparing 
the available controls at a given state i, DP considers the 
current stage value, but also takes into account the 
desirability of the next state j. It "ranks" different states; 
by using, in addition to the current stage value, the 
optimal value (over all remaining stages) starting from j. 

This optimal value is denoted J'{j) and referred to as the 

optimal value-to-go of/ Unfortunately, it is well known 

that the computation of J' is overwhelming for many 
important problems. 

There has been a great deal of research on DP methods 

that replace the optimal value-to-go J'{j) with a suitable 

approximation for the purpose of comparing the available 
controls at each state. These methods are collectively 
known as" neuro-dynamic programming (NDP). 
Previously,   we   applied   a   particular   class   of   NDP 

This work was supported by the Air Force Office of Scientific Research under contract #F49620-98-C-0023. 
Corresponding Author: phone (781 )273-3388. fax (781)273-9345, e-mail cynara.wu@alphatech.com 



algorithms, known as rollout algorithms, to risky multi- 
platform planning and scheduling problems. Rollout 
algorithms are a form of NDP that exploit knowledge of 
suboptima! heuristic decision rules to obtain 
approximations to the optimal value-to-go. We developed 
several rollout algorithms for risky multi-platform 
scheduling, using on-line Monte "Carlo simulations to 
evaluate the reference base heuristic policies, and found 
that they performed significantly better than the base 
policies as well as off-line training methods However, 
even using a modest number of Monte Carlo simulations 
resulted in large computation times. 

In this paper, we consider alternatives to using on-line 
simulations. In particular, we consider two approaches 
that use analytic approximations of the value function. We 
first consider a class of approximation techniques in 
which the control exercised at a state i is determined by 
considering the costs accumulated over several stages, and 
then applying an approximation to the value-to-go from 
the resulting states. The rollout algorithms considered in 
our previous effort are a special case in which a single- 
stage policy is employed and on-line simulation is used in 
combination with a base heuristic to approximate the 
value-to-go. 

Our second approach involves exploiting the structure 
of the problem and decomposing the problem into sub- 
problems, each of which is associated with a 
corresponding platform. Each sub-problem is solved 
independently but takes into account the results of 
previously solved sub-problems. 

The paper is organized as follows. In Section 2, we 
describe the data collection problem which we are 
addressing. In Section 3, we present the framework for 
limited lookahead policies. In Section 4, we describe our 
decomposition approach to the problem. In Section 5, we 
present some computational results. 

2. Example Data Collection Problem 

The graph in Figure 1 is an example corresponding to 
a data collection problem. Each node represents a 
geographical area of interest with a one-time value (i.e., 
data may only be collected once from each location). The 
arcs represent connectivity among the geographical 
regions and may be successfully traversed with a known 
probability. Platforms traverse the graph and collect data 
(value) at each node, or else they are destroyed while 
traversing specific arcs. If a platform is destroyed on an 
arc, the value of the destination node is not collected, 
which can result in retasking other platforms. 

■ Ml    ' 

(Sjj—-.-: ««/- ::=(S5 

V?,»w 

*& 

-©" 

M12T" 
U2i 

^"! 

•-40V 

\   \ 

%yni 

Ml* 

/ 
. MJ 

x t.TM 
■y 

V 

t 
'■Ml 

y \ 
\ 

'.#_, 
/ 

,$>■■ 

W1—*«■—*©* 

Figure 1 Graph Representation of the data 
collection problem. 

The objective is to control the platforms in order to 
maximize the expected total value collected after N stages. 
Each platform begins at a base node (in this case, node 0 
for all platforms) and may traverse one arc during each 
stage. There is a reward for each platform that has safely 
returned to its base node at the end of the Mh stage. 

3. Limited Lookahead Policies 

Consider a discrete-time dynamic system, 
Xk+}=fk(Xk,Uk,COk) , 

where Xk is the state, ut is the control to be selected from 
a finite set Uk(xk), and C0k is a random disturbance. 

Denote the single-stage reward of control u from state X 
and disturbance co by gk(x,u,co). A control policy 

n={ßo,H\,...,fi^-\] maps, for each stage k, a state Xk to 

a control value /i* (.r* )e £/*(**). There is a terminal 

reward G(XN) that depends on the terminal state XN ■ The 

value-to-go of an optimal policy   7t%-]flo,IJ\,...,^'tj-ij 

starting from a state Xk at stage k can be computed using 
the following DP recursion 

J'k {xk )=  max   E\gk {xk ,uk ,cok )+J'k+\ {fk (-V/t ,«* ,(Ok))}, 
u.eUAx,) 

for all k and with the initial condition 

J'V(X,V)=G(XN). 

For our problem, the state can be represented by a 
vector indicating for each node whether or not its value 
has been collected and by another vector indicating for 
each platform whether or not it is alive and if so, the node 



at which the platform is located. The control at a 
particular stage provides for each platform that is alive a 
node that the platform is to attempt to visit during the 
current stage. If the platform successfully traverses the 
arc connecting its current node to the next node and the 
value of the node has not yet been collected, the current 
stage reward includes the value of the node. If the 
platform successfully reaches its base node during the last 
stage, there is a terminal reward associated with the 
platform. 

Under a one-step lookahead policy, the control 
selected at stage k and state Xk is that which maximizes 
the following expression: 

max   E\gk{xk,"t.cok )+7w(/*(.r*Mk ,cok))}, 
U,€U, U,) 

where Jk~\ is some approximation of the value-to-go 

function Jl~\ ■ Under a two-step lookahead policy, the 

control selected at stage k and state Xk is that which 

maximizes the above expression when Jt+\ is itself a one- 
step lookahead approximation; i.e., for all possible states 
Xk-\ =fk (xk Mk ,(Ok), we have 

T      I \ Jgk+\{xk,Uk,COk}+- 
Jk*\{XM)=    max    E\~     ,      , ^ 

u,.,eU, (t,.,)     [Jk+2 (fk+\ [Xk*\ ,Uk+l ,COk+\ )) 

Other multi-stage lookahead policies are similarly defined. 
Note that the number of lookahead stages, M, should be 
less than or equal to N-k-\. Essentially, the A/-stage 
lookahead policy selects at stage k its decision by 
determining the optimal policy if there were only M stages 
remaining and the terminal cost was given by 

E[fk+M+i{xM)}, where  x»   is the state resulting from 

applying the policy for the M decisions. A decision is 
selected, and the process is repeated at the next stage. 
The lookahead horizon is limited to the number of 
remaining stages, and so if the number of remaining stages 
is less than M, the A/-stage lookahead policy determines 
the optimal strategy. A special case of such policies in 
which the value-to-go is approximated with zero is 
referred to in the literature as rolling or receding horizon 
procedures. 

Generally, the effectiveness of limited lookahead 
policies depends on two factors: 

1. The quality of the value-to-go approximation - 
performance of the policy typically improves with 
approximation quality. 

2. The length of the lookahead horizon - performance 
of a policy typically improves as the horizon 
becomes longer (at least for smali horizon lengths, 
e.g.. 1-4). 

Koucer. as the size of the lookahead increases, the 
number of possible states that can be visited increases 
exponentially. To keep the overall computation practical, 

the complexity of the value-to-go approximation should 
be reduced for larger lookahead sizes. Balancing such 
tradeoffs is therefore a critical element in determining the 
size of the lookahead and the method for approximating 
the value-to-go. This paper explores several possibilities 
and tries to quantify the associated tradeoffs. One of the 
advantages of using limited lookahead policies for our 
particular problem is that the number of controls at a 
particular stage is fairly small and as a result, the 
computation required to explore all states that can be 
visited over the next M stages is manageable for small M. 

3.1. Pruned Limited Lookahead Policies 

Since the number of states that can be visited over M 
stages grows exponentially in M and also in the number of 
platforms, limited lookahead policies for M>\ are 
impractical for problems with many platforms. One 
approach to reducing the computation required for limited 
lookahead policies is to limit the number of states that can 
be visited. This can be accomplished by "pruning" 
controls that yield inferior intermediate values. 

A pruned version of a limited lookahead policy 
depends on an integer parameter ß that is typically 
selected through trial and error. In particular, we 
determine the one-step lookahead values for all controls 
available from our initial state. Controls that are not 
among those with one of the B best one-step lookahead 
values are pruned. We then repeat this process for each 
state that can be reached from a control that was not 
pruned and determine the one-step lookahead values for 
all controls available from these states. For each of these 
states, controls that are not among those with one of the B 
best one-siep lookahead values are pruned. The number 
of times 'Sis process takes place is equal to the size of the 
lookanead. 

Since the number of controls that are expanded from 
every state at every stage is limited, the computation 
required to find pruned policies is not exponential in the 
number of platforms. However, the computation is still 
exponential in the size of the lookahead. 

4. Platform Decomposition 

We now present an approach that involves exploiting 
the structure of our specific problem and decomposing it 
into a set of simpler problems. In particular, we 
decompose the problem into a separate sub-problem for 
each platform. This sub-problem consists of determining 
the optimal sequence of nodes, or path, to visit assuming 
that platform was the only one available. The optimal 
solution to each sub-problem can be found analytically. 
After a sub-problem is solved for a particular platform and 
before the next sub-problem is solved, the value of each 



"1 

node in the associated path is updated to the value of the 
node multiplied by the probability that the node was not 
visited by the platform. This allows platforms to take into 
account paths assigned to previously scheduled platforms. 
When all of the sub-problems have been solved, a set of 
paths for each platform results. An outline of the platform 
decomposition approach is given below. 

1. Assume that the platforms are ordered  1,2 V, 
and start with platform i= 1. 

2. Solve the single-platform problem optimally by 
finding     a     path     or     sequence     of     nodes 
(n,].n,2 n,-.v) that the platform should attempt to 

visit in order to maximize its expected value (which 
consists of collected node values plus the reward 
for the platform returning to the base station if n;V 

is the base node). 
3. For every node in the path obtained in (2), scale the 

value of the node to 1 minus the probability that the 
node will be visited by platform i. This allows 
platforms that are scheduled later to take into 
account the path assigned to the current platform. 

4. If i is less than the number of platforms, then let 
i=/+l and go to (2). Otherwise, we are done. 

The single-platform problem in step 2 can be solved 
using dynamic programming or by exhaustively 
considering all possible paths with N nodes. The 

computation required in either case is 0(D'V), where N is 

the number of stages and D is the average degree of a 
node. For sparsely connected graphs, the computation 
required is minimal. 

The set of sub-problems can be solved once for a 
particular ordering of platforms or multiple times for 
various platform orderings. We will discuss several 
possibilities in the next section. 

The platform decomposition heuristic yields for each 
platform i a path (/i,;,/i,-(/'+i) •••••''«) • where j is the stage at 
which the heuristic is applied. This heuristic can be 
applied once before the mission begins to obtain a policy 

in which platform i attempts to visit node rt,y during the 

jlh stage if it has not yet been destroyed. The heuristic 
can also be applied at every stage (for platforms that are 
still alive) using up-to-date state information, obtaining a 

policy in which platform i attempts to visit node fly 

during the 7th stage. Finally, the heuristic can also be used 
to compute a value-to-go approximation for limited 
lookahead policies. 

One of the main advantages to the platform 
decomposition approach is that the computation required 
is considerably smaller than limited lookahead policies. 
A-:;::m:r.r- th.-: 'ho r.'.'.^.ber of platform orderings 
considered remains fixed, the computation grows linearly 
in the number of platforms. In addition, as will be seen 
below, the method obtains solutions that are very close to 

the optimal. Unfortunately, while limited lookahead 
policies generalize easily to other problems, other 
problems may not have structures that easily decompose 
into sub-problems. 

5. Computational Results 

We now present some computational results from 
applying the above approaches to the problem described 
in Section 2. We consider a probl-vn with /V=10 stages, 
and either three or four platforms. Th^ return rewards for 
the platforms were set to 12.7, 17.5, 19.2, and 55.0, and 
the most valuable platform was not included in the three- 
platform problems. 

5.1. Limited Lookahead Policies 

A limited lookahead policy consists of two main 
elements: the lookahead horizon, and the approximation 
of the value-to-go. We vary the size of the horizon from 
one to three and consider a number of approximations to 
the value-to-go. While there is some difference in the 
complexity of the value-to-go approximations, each one is 
straightforward to compute. 

In many of our approaches, the value-to-go 
approximation for a particular state x after the first k 

stages, Jk (x), involves heuristically generating for each 

platform /', a path or sequence of nodes 
(/!<u-H),rt,(*-2)....,rt,,v) to attempt to visit during the 

remaining N-k stages. We denote this collection of paths 
P(x,k). Assuming each platform attempts to visit the 
nodes in its path, we can determine the expected collected 
value resulting from visiting nodes no. visited during the 
first k stages: 

f \ 
C[P(x,k)]=     x 

nodes n not 
yet visited 

1-     I~[(l-Pm) |£T« . 
platforms i 

In the above equation, c„ is the one-time value associated 

with node n, and /?,-„ is the probability that platform i 

visits node n: 

Pin'- 

/-1 
Y\ p("ij >rti(;+i)).   if 'hi =n for some /, 

0, otherwise, 

where p(njj.nuj+\))is the probability of successfully 

traversing the arc connecting nodes n,s and rinj+\). To 

understand the expression for C[P(.v,&)], note that the 

term     J~[(l-pm) provides the probability that none of 
platforms f 

the  platforms  successfully  visits  node  n.     The   term 



<?<•=■ 

1-   J|(l-p,n) c„ then provides the expected collected 
platforms i 

value at node n (the probability that at least one platform 
successfully visits the node multiplied by the node value). 

We can also determine the expected reward resulting 
from platforms returning to the base node: 

R[P(x,k)]=    5>v,-, 
platforms ;' 

where 

',v"' T\p(nijMiyj+u),      if n,w is the base node, 

0, otherwise, 

is the probability that platform i returns to the base node 

and V, is the platform return reward. 
The approximations to the value-to-go that we 

consider are given below. As can be seen in the 
descriptions, many of the approximations involve a 
combination of the expected collected node value. 
C[p(.r./t)].  and  the  expected  platform  return  reward, 

/?[p(.r,/t)], assuming each platform attempts to visit the 

nodes in the paths specified in P(.x,k). 

1. The first approach approximates the value-to-go 
with zero: 

7*(.t)=0. 

2. The second approach approximates the value-to-go 
with the sum of the expected collected node value 
and the expected platform return reward collected 
over a set of greedy paths: 

Jk(x)=C[Pg{x,k)]i-R[Pg{x,k)]. 

The nodes along the greedy path for platform /', 
("i(jui),.-.,rti,v), are determined as follows: 

/!,•(;+!) =arg max {p{riij,n}c„}, 
i*n["v) 

where T}{n-,j) is the set of nodes that can be reached 

from node   n,j, and   nlk   is the node at which 

platform / is located after k stages. 
3. The third approach approximates the value-to-go 

with the expected platform return reward collected 
over the set of "safest" paths: 

Jax)=R[ps{x,k)). 

The safest path is that which yields the highest 
probability of a platform returning successfully to 
its base node. These paths can be computed apriori 
using dynamic programming. (Essentially, the 
computation is equivalent to solving a set of 
shcr:;st path problems.) 

4. The fourth approach approximates the value-to-go 
with the sum of the expected collected node value 

and the expected platform return reward collected 
over the set of safest paths: 

Jk{x) = C[Ps{x.k)}m[Pi{x.k)\. 

5. The fifth approach approximates the value-to-go 
with the sum of the expected collected node value 
and the expected platform return reward collected 
over the set of "most valuable" paths: 

Jk{x)=c[Pm{x.k)\+R[Pm[x.k)}. 

The most valuable path is that which yields the 
highest expected total value that could be attained 
by a single vehicle during the remaining stages 
assuming none of the values at any of the nodes 
have yet been collected. These paths can also be 
computed apriori using dynamic programming. 

6. The sixth approach combines (4) and (5). The 
value-to-go is approximated with the maximum of 
the values determined by those approaches. 

Table 1 provides the expected optimal values for the 
problem illustrated in Figure 1 for a three-platform 
problem and a four-platform problem. We have computed 
these values using dynamic programming, and the 
computation required for the four-platform problem was 
approximately one week on a Sun Ultra 60 workstation. 
Table 1 also provides the results of applying a greedy 
algorithm, in which each platform selects as its next node 
that which maximizes its expected collected value for that 
stage, to one thousand sample trajectories. The 
performance achieved in our earlier efforts of applying 
rollout strategies using 20 or more Monte Carlo 
simulations ranged on average from 600 to 610 for the 
four-platform problem. 

Table 1 The expected optimal values and the 
results of applying the greedy algorithm for the 

three and four platform problems. 
# Platforms 

Three 
Four 

Expected 
Optimal 

574.5 
641.0 

Greedy 

475.72 
533.89 

Tables 2 and 3 provide the values averaged over one 
thousand sample trajectories by applying the limited 
lookahead polices for lookahead sizes of one to three, 
using the six value-to-go approximations described above. 
The particular approximation approach used is given in 
the leftmost column. As can be seen, while the 2-stage 
policies generally provided results that improved 
significantly upon those of the l-stage policies, those of 
the 3-stage policies were not substantially better and in a 
few cases were worse than those of the 2-stage policies. 



The sixth value-to-go approximation seemed to yield 
slightly better results than the other approximations. 
However, the third through sixth approximations were 
basically comparable. Overall, these approaches 
improved significantly upon the greedy algorithm and 
were able to obtain values close to the optimal for 
lookahead sizes greater than one." For lookahead sizes 
greater than one, these approaches were also able to 
obtain results slightly better than those obtained using 
rollout Strategie* with Monte Carlo simulations. 

Table 2 The results of applying the limited 
lookahead policy to the three-platform problem. 

Value-to-go 
Approximation 

1-stage 2-stage 3-stage 

1 491.09 539.58 543.40 
2 520.57 543.95 553.74 
3 506.55 550.82 553.76 
4 500.69 529.98 559.46 
5 554.10 557.94 561.75 
6 555.97 563.45 561.09 

Table 3 The results of applying the limited 
lookahaead policy to the four-platform problem. 

Value-to-go 
Approximation 

1-stage 2-stage 3-stage 

1 543.32 574.24 582.75 
2 589.56 607.31 593.08 
3 581.48 613.29 615.63 
4 574.06 618.55 619.45 
5 582.84 594.09 606.96 
6 595.44 615.10 624.16 

Tables 4 and 5 provide the average values obtained 
over the same thousand sample trajectories by applying 
the pruned limited lookahead polices for lookahead sizes 
of two and three, using the value-to-go approximations 
described above. (Note that a pruned one-step lookahead 
policy is equivalent to the fully expanded one-step 
lookahead policy.) As can be seen, the results of these 
approaches do not vary significantly from the fully 
expanded lookahead policies. In some cases, the pruned 
policies performed one or two percent worse and in other 
cases, they performed one or two percent better. 

Table 4 The results of applying the pruned 
limited lookahead policy to the three-platform 

problem. 
Value-to-go 

Approximation 
2-stage 3-stage 

1 538.56 523.48 
2 532.70 551.10 
3 550.82 553.56 
4 552.47 559.46 
5 556.38 555.47 
6 561.22 563.82 

Table 5 The results of applying the pruned 
limited lookahead policy to the four-platform 

problem. 
Value-to-go 

Approximation 
2-stage 3-stage 

1 573.19 575.21 
2 605.57 607.21 
3    • 608.98 616.21 
4 613.23 615.38 
5 595.55 592.50 
6 613.49 617.04 

5.2. Platform Decomposition Results 

In applying platform decomposition to our problem, 
we considered the following approaches to ordering the 
platforms: 

1. A single ordering in ascending order of the 
platform return reward. 

2. All possible orderings. 
3. A "rollout" of the ordering in (1) as described by 

Bertsekas, Tsitsiklis and Wu ([4]). I.e., assuming 
that the first i-l platforms have been selected, the 
i'th platform is determined as follows: 
i. Consider each remaining platform in turn as the 

next platform and leave the other vehicles in 
their original order, 

ii. Solve the set of single-platform problems in the 
given order, 

iii. Select as the /'th platform that which yields the 
best result. 

As mentioned in Section 4, there are several ways to 
apply the heuristic: 

• The heuristic can be applied once to obtain a policy 
for all stages. 

• The heuristic can be applied at every stage to 
obtain a control for the current stage using current 
state information. 

• The heuristic can be used to generate a value-to-go 
approximation for a limited lookahead policy. 



Table 6 provides the average values obtained over the 
same thousand sample trajectories by the platform 
decomposition approach. The result of applying the 
heuristic for all possible orderings and following the paths 
obtained for all stages is provided in the first row. The 
next three rows provide the results when the heuristic 
using the three orderings described above (least expensive 
to most expensive, all possible orderings, and a rollout of 
the orderings i is reapplied at every stage to obtain the 
current contH. The remaining rows provide the results 
when the heuristic is used to provide a value-to-go 
approximation for a one-stage limited 'ookahead policy 
using the orderings described above is used. As can be 
seen, these approaches performed extremely well. The 
heuristic alone performed comparably to 2-stage 
lookahead policies, and the other variations were able to 
obtain strategies that yielded results that were less than 
one percent from the optimal expected results. 

Table 6 The results of applying platform 
decomposition approaches. The first row 
provides the result of applying the heuristic for 
all possible platform orderings before the start of 
the mission and following the resulting paths. 
The next three rows provide the results of 
reapplying the heuristic at every stage using 
various platform orderings (1: least expensive to 
most expensive; 2: all possible orderings; 3: a 
rollout of the orderings). The last three rows 
provide the results of applying one-stage limited 
lookahead policies using the values obtained 
from the platform decomposition heuristic 
(under the various platform  orderings) as an 
pproximation to the value-to-go. 

3 platforms 4 platforms 
Heuristic alone 550.85 608.89 

Heuristic reapplied-1 568.81 634.97 
Heuristic reapplied-2 573.83 637.81 
Heuristic reapplied-3 573.83 637.81 

l-staae LL-1 570.97 633.04 
1 -stase LL-2 571.29 635.65 
1-stase LL-3 571.29 635.65 

5.3 Computation Times 

The following table provides the average on-line 
computation time (in seconds) to apply the approaches 
described above to one hundred sample trajectories of the 
four-platform problem. The off-line computation time for 
the limited lookahead policies was negligible. We have 
n:.\..-;t..-'J '.;'.-• time required to compute the controls. In 
practice, this time is critical since it must be within the 
real-time constraints of the problem.   The table gives the 

total time to compute these controls for the ten stages. 
Since these times depend on the state trajectory of the 
system, which is random, we averaged over 100 
trajectories and recorded the results in Table 7. The times 
for the one-stage lookahead have not been included as the 
time required was negligible. The experimental results 
were conducted on a Sun Ultra 60 workstation. As can be 
seen from the table, the pruned lookahead policies were 
significantly faster than the fully expanded lookahead 
policies. Considering this in combination with the fact that 
the performances of the two versions are comparable 
suggests that that pruned lookahead policies may be more 
useful in practice. The pruned lookahead policies were 
also generally much faster than the rollout algorithms 
using Monte Carlo simulations, whose computation times 
varied from 5 to over 300 seconds per sample trajectory. 
The decomposition approaches were extremely fast, and 
also provided the best results. Reapplying the 
decomposition heuristic at every time step appears to be 
the best option. However, it is not clear how easily such 
approaches can be applied to variations of the problem. 

Table 7 Time to compute the controls for ten 
stages under the various approaches averaged 
over 100 sample trajectories of the four-platform 
problem. The first six lines provide the times 
corresponding to the fully expanded and pruned 
limited lookahead results given in Tables 3 and 
5. The next six lines provide the times 
corresponding to the last six platform 
decomposition results given in Table 6. 

2-staae lookahead 3-stase lookahead 
Full Pruned Full Pruned 

LL-1 0.77 0.12 120.4 1.8 
LL-2 9.41 1.04 1358 16.4 
LL-3 1.35 0.22 134.7 3.4 

LL-4 6.16 0.71 716.5 9.4 
LL-5 9.16 0.91 796.5 8.2 
LL-6 14.85 1.73 1258 14.5 
PD-Heuristic reapplied-1 0.41 
PD-Heuristic reapplied-2 9.42 
PD-Heuristic reapplied-3 1.62 

PD-l-staaeLL-l 51.50 
PD-l-sta2eLL-2 396.52 
PD-I-staeeLL-3 138.04 

6. Summary 

In this paper, we have considered alternatives to using 
on-line simulations for approximating the value-to-go for 
adaptive multi-platform scheduling in a risky 
environment. The main limitation to using rollout 
algorithms with on-line simulations that was determined in 



our previous effort was the amount of computation 
required to evaluate control options at every stage. We 
instead considered two alternatives. 

The first approach involved examining control options 
over a limited horizon. In our experimental results, this 
method produced results that were slightly better than 
those obtained through rollout algorithms with on-line 
simulations with similar computation time. Computation 
time was reduced significantly by introducing a pruning 
technique without loss in performance. 

The second approach involved decomposing the 
problem into sub-problems associated with each platform. 
This method produced results that were extremely close to 
the optimal values and required small computation times. 
However, while limited Iookahead methods generalize 
well to other problems, the decomposition method 
requires a suitable problem structure. Furthermore, this 
method may not perform well for problems with an 
appropriate structure if the decomposed elements require 
significant coordination. 

7. References 

[1] Alden. J.M., Smith. R.L., "Rolling Horizon 
Procedures in Nonhomogeneous Markov Decision 
Processes," Operations Research, V. 40, 1992. 

[2] Bertsekas. D.P., Castanon, D.A., "Rollout 
Algorithms for Stochastic Scheduling Problems," 
Journal of Heuristics, V. 5, 1999. 

[3] Bertsekas, D.P., Castanon, D.A., Curry, M.L., 
Logan, D., "Adaptive Multi-platform Scheduling in 
a Risky Environment," 1999 Proceedings from 
Advances in Enterprise Control Symposium, Nov 
1999. 

[4] Bersekas, D.P., Tsitsiklis, J.N., Wu, C, "Rollout 
Algorithms for Combinatorial Optimization," 
Journal of Heuristics, V. 3, 1997. 



Approximate Dynamic Programming for Multi-Vehicle 
Scheduling in a Risky Environment1 

Cynara Wu2, Dimitri P. Bertsekas3, David A. Castanon4, Michael L. Curry2, David Logan" 

Abstract 

In this paper, we investigate the use of approximate dynamic programming methods for adaptive multi-vehicle 
scheduling in a risky environment. We develop a mathematical formulation as a Markov decision problem, which can be 
solved optimally using dynamic programming, but the computational requirements are overwhelming. In this paper, we 
develop two approaches for generating approximate solutions. The first approach consists of using limited lookahead 
policies, which reduce computational requirements by considering value explicitly over a limited horizon and 
approximating the value of the remaining stages. This approximation can consist of analytic methods as well as 
simulation based methods. The second approach decomposes the problem into sub-problems corresponding to individual 
vehicles. We apply these approaches to two example problems to demonstrate the advantages of the various techniques. 
Our results indicate that the second obtains superior solutions using less computation, whereas the first approach 
generalizes readily to other stochastic scheduling problems. 

1.   Introduction 

There are many important applications, such as data collection, sensor management, and vehicle- 
routing, which require the scheduling of a limited number of vehicles to best achieve a set of mission 
objectives in the presence of uncertainty. Often, the information available for determining the 
schedule is incomplete, is not always correct, and evolves dynamically. In these situations, it is 
important to exploit any available real-time information to modify the planned actions in order to 
achieve the best performance. 

In this paper, we consider the problem of scheduling multiple vehicles to perform a distributed set of 
tasks in a risky environment, where vehicles can be destroyed in the process of performing a task. 
This creates uncertainty as to which tasks will be completed. Furthermore, after losing one of the 
vehicles, other vehicles should be rescheduled to compensate for the missing vehicle. We formulate 
the above problem as a Markov decision process with full state observation. The principal approach 
for solving Markov decision problems is stochastic dynamic programming (DP) [2]. Unfortunately, it 
is well known that the computation requirements for DP are overwhelming for many important 
problems. 

Risky multi-vehicle scheduling arises in many military applications. The work of [3,4] formulates 
the dynamic routing of unmanned air vehicles as a vehicle routing problem with time windows. In a 
similar problem, [5] optimizes the coordinated maneuver of unmanned air vehicles using a wavelet- 
based optimization technique that combines evolutionary computing (e.g., neural networks) with 

1 This work was supported by the Air Force Office of Scientific Research under contract #F49620-98-C-0023. 
2 ALPHATECH, Inc.. 50 Mall Road, Burlington. MA 01803. 
3 Dept of Electrical Engineering and Computer Science, M.I.T., Cambridge, MA 02139. 
4 Dept of Electrical and Computer Engineering, Boston University, Boston, MA 02215. 



interior point optimization methods. These models fail to account for the inherent risk of trajectories 
in their planning, and do not replan trajectories when vehicles are lost. 

;:..: In recent years, there has been a great deal of research on approximate DP methods [1,6-12]: these 
methods are collectively known as neurodynamic programming (NDP). In [9], NDP is used for 
vehicle routing problems with stochastic demands. In this formulation, there is no risk of losing 

'-5 vehicles; uncertainty arises because of unknown demand at specific centers. 

In our prior work [6], we considered a class of risky scheduling problems involving a single vehicle 
and developed approximate DP algorithms. We extended those results to multiple vehicles [7], using 
approximate DP techniques based on simulation and rollout [8]. Although the results of [8] were 
encouraging, the computation requirements of the approximate DP algorithms were large, and 
unsuited for real-time rescheduling. 

In this paper, we investigate classes of approximate DP algorithms for the solution of risky multi- 
vehicle scheduling problems where individual vehicles can be destroyed while performing tasks. In 
particular, we are interested in algorithms which have reduced computation requirements, while still 
achieving near-optimal performance. We present a model for risky multi-vehicle scheduling as a 
stochastic Markov decision problem with individual states evolving on a risky graph. The resulting - 
decision problem is a Markov decision problem with a combinatorially large control space, and with 
temporal dynamics. We explore different approaches for approximating the future cost-to-go, as well 
as for searching efficiently through the combinatorial control options to determine an approximate 
optimal control. We evaluate the relative advantages of the different algorithms using two simulated 
examples. 

The paper is organized as follows. In Section 2, we describe a mathematical model for risky multi- 
vehicle scheduling, which provides the framework for the remainder of the paper. In Section 3, we 
develop approximate DP algorithms based for limited lookahead policies. In Section 4, we describe a 
vehicle decomposition approach to obtain a different class of approximate DP algorithms. In Section 
5, we discuss an important variation of the basic mathematical framework, whereby specific tasks 
require collaboration between multiple vehicle types. We develop new approximate DP algorithms 
for this class of problems. In Section 6, we present the results of our computation experiments. 

2. Mathematical Formulation 

In this section, we describe a mathematical formulation that represents the important aspects of multi- 
vehicle scheduling problem under risk. The basic paradigm we use is that vehicles are scheduled to 
perform spatially distributed tasks. While traveling between tasks, vehicles may be destroyed, and 
thus fail to reach and perform some of their assigned tasks. 

Our model starts with a finite set of discrete nodes N, which represent potential locations of tasks or 
intermediate waypoints in routes to task locations. Each node n is characterized by a value V(n) of the 
task associated with that node. This value can vary dynamically, and is reduced to zero if the task at 
that node has already been performed, or if there is no task at the node. 



We assume that there is a set of directed arcs A connecting the nodes N. Associated with each of arc a 
is a risk p(a). which represents the probability that a vehicle traversing that arc will not be destroyed 
on that arc, and thus will reach the end node of the arc. 

Vehicles travel on the associated graph (N,A)- There are M identical vehicles that are present in the 
graph. We describe the evolution of each vehicle in terms of a discrete time index k. We assume that 
each vehicle can traverse a single arc in a unit of time. Although this assumption implies that each arc 
can be traveled in unit time, this assumption is not restrictive because additional nodes can be 
introduced to represent waypoints wnich are equally spaced. Associated with each vehicle m at time k 
is a vehicle state sk(m), which is either -1 to indicate the vehicle has been destroyed, or indicates the 
node which contains the vehicle at time k. 

The state of the system at time k is defined as xk, and is composed of the collection of individual 
vehicle states and node value states. Let vk(n) denote a binary state for node n at time k, which is 1 if 
no vehicle has reached the node before or at time k, and 0 otherwise. Then, the state of the system is 
defined bv the vector 

xk
T = [vk(l) vk(N), sk(l),...,sk(M)f 

The admissible decisions at time k, denoted by U(xk), depend on the current state xk. Each vehicle m 
which is not destroyed at time k (so sk(m) > 0) must select an arc in A to traverse which starts at node 
sk(m); staying at the current node is not allowed unless there is an arc in A which starts and ends at 
that node. When vehicle m traverses an arc a= (sk(m),e) at time k, its state changes as follows: 

sk+i(m) = e with probability p(a); otherwise, sk+/(m) = -1. 

We assume that the stochastic events associated with each vehicle traversing an arc are independent 
across vehicles, arcs and time. Thus, each arc traversal represents an independent Bernoulli event that 
affects the state of an individual vehicle. 

The node value dynamics are deterministic, and represented as follows: If a vehicle reaches a node, 
its node value is automatically reduced to 0. With this notation, the state dynamics can be represented 
as 

xk+\ = fk(xk-uk'®k) 

where.u is the state, uk is the control to be selected from a finite set Uk(xk), and cok represents the 

random events associated with the arc transitions by vehicles. 

The final aspect of the model is the objective function. We formulate the decision problem as a finite 
horizon problem, with maximum time T. We assume that, at time k=0, all vehicles start at a base 
node n-0. We are interested in all vehicles returning to base by time T. Associated with each vehicle 
is a vehicle value Vm, which is lost if the vehicle does not safely return to base. With this notation, the 
net value at the final time T when the system reaches state xT\s given by the sum of task value 
accumulated minus vehicle value lost, as 



M 

J(xT)= JJV(n)I(vT(n) = 0)+ JjVmI(sT(m) = 0) 
neN m=\ 

We can regroup the above performance in terms of the incremental value accumulated at each time, as 
follows: 

T M 7-1 
•/ = ! iJJV(n)I(vk_l(n) = l,vk(n) = 0)}+JjVmI(sT{m) = 0)=Jjgk(xk,uk,Cuk) + G(xT) 

k = \    nsN m=\ k=0 

where /() is the indicator function. The objective J is random, as it depends on the outcomes of the 
random arc traversal events. We assume that, at each state k, the state Xk is observed, and the choice 
of control action uk depends on the current state .r*. 

Although the above formulation assumes that all vehicles are identical, it is straightforward to include 
multiple types of vehicles, by making the arc transition probabilities depend on vehicle typey, as 
p(a,j). It is also straightforward to make the value of a node depend on the time at which a vehicle 
reaches the node, as V(n,k), thereby incorporating constraints such as windows of time during which 
tasks are available at nodes. A third straightforward extension is to restrict the type of vehicle which 
can perform the task at a specific node. Although we do not explicitly treat such examples in this 
paper, the methodology presented below extends naturally to those cases. 

The above model is a Markov decision problem, with observed state .t*. Note, however, that the 
number of possible different states is 2V(V+1)M, where Vis the number of nodes in the graph. Thus, 
the number of states explodes rapidly with the number of nodes. This makes infeasible computation 
of a full feedback strategy, which selects an action for every possible state and time. In this paper, we 
investigate approximation techniques which do not require such extensive computations. 

2.1  Example Data Collection Problem 

The graph in Figure 1 is an example of the above model corresponding to a data collection problem. 
Each node represents a geographical area of interest with a one-time value denoted next to the node. 
The arcs represent connectivity among the geographical regions and may be successfully traversed 
with a known probability, indicated on each arc. Vehicles traverse the graph and collect data (value) 
at each node, or else they are destroyed while traversing specific arcs. If a vehicle is destroyed on an 
arc, the value of the destination node is not collected, which can result in retasking other vehicles 



37 4_ ^ \       *"* 

0L«3T. ; \ ff.731/ 

io.:,<j\-'   /                 '••              >   ,.,, M»*1 
®,"»!!T       -        "\               :     "•'"'                           ,.„, 

/\  \.                        «.653        0Ä4                             =-                      \ 
'       .'      \         •-                        \                  ....            OMt. 

0.1.4»     ■                             --,N                   \      :^J>J1* \       . «.7»7 

'■   :                  \     J><^'-i                                        '■■    / \ \ '• 

S NS'                                 OJ»                 \      -. 

\             \■   \  \?"    \ 
°":            K  \ / \.,^; B.V3» 

/   • 
-•Mf"-^ \           / 

\    /     .                ,-'07         *-M' 

&., 
«3"    *V-»J>77/                               /   ,,''\     '.                     /»;M3 

0.5».               '    ,      .*'                                     ,     .' 
'■±sA.K-'                       <-w' 
T2?r     o-j/i       ►f?Y v^y     "•**'      *^y 
«J                                                 -«   50 3 

Figure 1 Graph representation of an example data collection problem. 

The objective is to control the vehicles in order to maximize the expected total value collected after T 
stages. Each vehicle begins at a base or hub node (in this case, node 0 for all vehicles) and may  • 
traverse one arc during each stage. There is a reward for each vehicle that has safely returned to its 
base node at the end of the Tth stage. 

3. Limited Lookahead Policies 

Consider the discrete-time dynamic system model described in Section 2, as 

xk+\ = fk(xk>uk'®k) 

A control policy ;T={//O,//I,...,//AM} maps, for each stage k, a state ** to a control value 

fit [xk )eUk {xk). Denote the single stage reward as g{xhUk,wk) and the terminal reward as G(xT). The 

value-to-go of an optimal policy /r*=j//o,//",..../^-i} starting from a state xk at stage k can be 
computed using the following DP recursion 

Jl{xk)= max  E[gk{xk,Uk,(Ok)+J'k+\{fk{xk,Uk,ci}k))\, 

for all k and with the initial condition Jj (xj) = G{xj). 

A one-step lookahead policy selects the control at stage k and state xk to maximize the following 
expression: 

max   E\gk {xk ,uk ,cok )+7*+i (/;• {xk ,uk ,cok))}, 
ut elM.tt) 



where 7w is some approximation of the value-to-go function J'k^. A two-step lookahead policy 
selects the control at stage k and state xk to maximize the above expression when Jt+i is itself a one- 
step lookahead approximation; i.e., for all possible states xk+\ = fk(xk,uk,COk), we have 

h+\[xk+l) = max Ewk+l(xk+l'uk+\^k+l)+h+2{fk+l{^+l^uk+l'ak+l))t 
"k+leUk+\(xk+0 

Other multi-stage lookahead policies are similarly defined. Note that the number of lookahead stages, 
L, should be less than or equal to T-k-l. Essentially, the L-stage lookahead policy selects at stage k its 
decision by determining the optimal policy if there were only L stages remaining and the terminal cost 

was given by E)Jk+L+\ (xL)}, where xL is the state resulting from applying the policy for the L 
XL 

decisions. 

The main advantage of lookahead policies is that the control action can be selected by only 
considering those future states which can be reached in during the limited lookahead period. In terms 
of the model in Section 2, this limits the number of nodes that can be reached, and thus the number of 
states which must be considered. 

When using a lookahead policy at stage k and state xk, a decision is selected, and the process is 
repeated at the next stage. The lookahead horizon is limited to the number of remaining stages, and 
so if the number of remaining stages is less than L, the L-stage lookahead policy determines the 
optimal strategy. A special case of such policies in which the value-to-go is approximated with zero 
is referred to in the literature as rolling or receding horizon procedures [1,14] 

The effectiveness of limited lookahead policies depends on two factors: 

• The quality of the value-to-go approximation - performance of the policy typically improves with 
approximation quality. 

• The length of the lookahead horizon - performance of the policy typically improves with the 
length of the horizon. 'el 

However, as the length of the lookahead horizon increases, the number of possible states which must 
be considered increases exponentially. To keep the overall computation practical, the complexity of 
the value-to-go approximation should be reduced for larger lookahead sizes. Balancing such tradeoffs 
is therefore a critical element in determining the size of the lookahead and the method for 
approximating the value-to-go. This paper explores several possibilities and tries to quantify the 
associated tradeoffs. One of the advantages of using limited lookahead policies for our particular 
problem is that the number of controls at a particular stage is fairly small. As a result, the 
computation required to explore all states that can be visited over the next L stages is manageable for 
small L. 

Since the number of states that can be visited over L stages grows exponentially in L and also in the 
number of vehicles, limited lookahead policies for L>\ are impractical for problems with many 



vehicles. One approach to reducing the computation required for limited lookahead policies is to limit 
the number of states that can be visited. This can be accomplished by removing from consideration 
controls that yield inferior intermediate values. 

A selective version of a limited lookahead policy depends on an integer parameter B. We determine 
the one-step lookahead values for all controls available from our initial state. Controls that are among 
those with one of the B best one-step lookahead values are selected for further exploration. We then 
repeat this process for each state that can be reached from a control that was selected and determine 
the one-siep lookahead values for all controls available from these states. For each of these states, 
control? that are among those with one of the B best one-step lookahead values are selected for further 
exploration. The number of times this process takes place is equal to the size of the lookahead. 

Since the number of controls that are expanded from every state at every stage is limited, the 
computation required to find selective policies is not exponential in the number of vehicles. 
However, the computation is still exponential in the size of the lookahead. 

4. Vehicle Decomposition Algorithms for Multi-vehicle Scheduling 

We now present an alternative approximate DP approach that involves exploiting the structure of our- 
specific model, by decomposing it into a set of simpler problems. In particular, we decompose the 
problem into a sequence of subproblems, each involving a single vehicle. The advantage of this 
decomposition is that the single vehicle problem reduces to a version of the quiz problem studied 
previously in [6]. The results in [6] establish that the optimal feedback strategy can be parameterized 
in terms of a deterministic sequence of nodes to visit, greatly reducing the search required for an 
optimal strategy. 

The subproblem for a single vehicle consists of determining the optimal sequence of nodes, or path, to 
visit assuming that vehicle was the only one available. After a subproblem is solved for a particular 
vehicle t.id before the next subproblem is solved, the value of each node in the associated path is 
updated io the value of the node multiplied by the probability that the node was not visited by the 
vehicle. This allows vehicles to take into account paths assigned to previously scheduled vehicles. 
When all of the subproblems have been solved, a set of paths for each vehicle results. An outline of 
the vehicle decomposition approach is given below. 

1 Assume that the vehicles are ordered 1,2,...,M, and start with vehicle /=1. 
2 Solve the single-vehicle problem optimally by finding a path or sequence of nodes 

("/l'"(2'•••'"/?) mat me vehicle should attempt to visit in order to maximize its expected value. 
3 For every node in the path obtained in (2), scale the value of the node to 1 minus the probability 

that the node will be visited by vehicle /. This allows vehicles that are scheduled later to take into 
account the path assigned to the current vehicle. 

4 If / is less than the number of vehicles, then let /=/+l and go to (2). Otherwise, stop. 

The single-vehicle problem in step 2 can be solved using dynamic programming or by exhaustively 
considering all possible paths with N nodes. The computation required in either case is 0{DS), 
where N is the number of stages and D is the average degree of a node. For sparsely connected 



uJ 

graphs, the computation required is minimal. The set of subproblems can be solved once for a 
particular ordering of vehicles or multiple times for various vehicle orderings. We will investigate 
several possibilities in the numerical experiments in Section 6. 

The vehicle decomposition heuristic may be applied either once, before the mission begins, but also at 
multiple times at different stages of the mission, taking into account only vehicles that are still alive 
and nodes whose value has not yet been collected. The heuristic can also be used to compute a value- 
to-go approximation for limited lookahead policies. 

One of the main advantages to the vehicle decomposition approach is that the computation required is 
considerably smaller than limited lookahead policies. Assuming that the number of vehicle orderings 
considered remains fixed, the computation grows linearly in the number of vehicles. In addition, as 
will be seen below, the method obtains solutions that are very close to the optimal. Note, however, 
that the limited lookahead approach generalizes readily to other problems that may not have easily 
decomposable structures. 

5. Model Extensions 

In this section, we extend the basic model of Section 2 to represent additional classes of risky multi- 
vehicle scheduling problems. In particular, we consider extensions that require coordinated action by 
multiple vehicles to accomplish the required task at a node, and problems with large decision spaces. 

As an example, consider the problem illustrated in Figure 2. In this problem, the three nodes at the 
bottom are hub nodes where vehicles are based and the eleven nodes at the top are task nodes to be 
visited by vehicles. There is a vehicle of Type 1 and a vehicle of Type 2 located at each of the hub 
nodes. At each stage, vehicles have the option of remaining at their hub node or of attempting to visit 
and return from one of its connected target nodes. The control at a particular stage is the set of 
options for all of the vehicles. Here, each vehicle has a larger number of nodes that it can visit than in 
the previous example. As a result, ihe size of the control space makes enumerating all of the controls 
for a single-step lookahead method impractical, let alone for multi-step lookahead methods.   For the 
example in Figure 2, the number of possible controls at every stage if all of the vehicles are still alive 
is 44,100. 

In this example, nodes 6 and 7 require a visit by a vehicle of Type 1 followed by a visit by a vehicle of 
Type 2 for its value to be collected. This precedence constraint requires an extension to our previous 
model. Furthermore, good performance will require a control strategy that coordinates movements 
among the vehicles. As a result, the vehicle decomposition methods may not be applicable to this 
problem. 



94.3   49.6    82.7    26.5    78.9   50.8   95.9   49.5   34.7    10.2   37.4 

Target Nodes  ( Q 

Hub Nodes 

12.7, 17.5 

Platform Values 

Figure 2 Example with precedence constraints. At each of the hub nodes at the bottom are based a 
vehicle of Type 1 and a vehicle of Type 2. The values for the two vehicles are indicated below the 
corresponding hub node. The values available to be collected at each of the target nodes at the top are 
provided above the corresponding node. Values at shaded nodes are collected when a visit by a Type 
1 vehicle is followed by a visit from a Type 2 vehicle. 

We address the two issues introduced above, that of an extremely large control space and that of 
vehicle coordination constraints, in the following subsections. 

5.1 Mathematical Model of Precedence Constraints 

We extend our prior model to include precedence constraints on vehicle types in order to complete the 
task at that node. Mathematically, we assume that there are two types of vehicles in the problem, and 
we assume that nodes with precedence constraints require a visit from a vehicle of type 1 before or 
concurrent with a visit from a vehicle of type 2 to perform the node task. Let Nj denote the nodes 
with precedence constraints, and let N2 denote the rest of the nodes. For nodes n in Nj, we modify the 
definition of node state as follows: 

V* (n) 

2 if no platform has visited node n before or up to stage k 

1 if a platform of type 1 has visited node n before or up to stage k, but not one of type 2 

0 if both platform types visited the node in the right order 

The state dynamics for nodes with precedence constraints are straightforward to define. If a vehicle of 
type 1 reaches the node at stage k, and its state is vk.t(n) = 2, its state switches to vk(n) = 1. If a vehicle 
of type 2 reaches the node at stage k, and its state is vk.](n) = 2, there is no state transition; if vk-i(n) = 
1, then vk(n) = 0. If vehicles of both types reach the node at stage k, then vk(n) = 0. 

With this definition of node state, the overall problem state and objective functions remain the same 
as described in Section 2. 



5.2. Pruned Control Space Algorithms 

We now describe strategies for solution of problems with large control spaces, without enumerating 
all of the control options. Our approach is to consider only a limited or "pruned" set of controls. 
Mathematically, under a one-step lookahead pruned policy, the control selected at stage k and state 
Xf. is selected to maximize thefollowing expression: 

max  E\gk {xk ,iik ,ü)k)+ Jk~i (/* {xk ,uk ,(Ok))}, 

where Uk{xk)cUk{xk) is some subset of all of the possible controls at state jr* and Jk+\ is some 

approximation of the optimal value-to-go function J'k+\ ■ The key is determining the subset of possible 
controls which will be evaluated. Note that this method differs from the selective lookahead approach 
because we remove controls from consideration without receiving any direct evaluation using 
approximate dynamic programming. 

We propose two methods for pruning the control space, based on the solution of approximate one-step 
problems: a greedy approach, and an assignment approach. In the greedy approach, each vehicle 
independently determines the value of each of its individual options using some heuristic and selects a 
small number of options with the best values. The set of candidate controls Uk(xk) at state xk 

consists of all combinations of the individual best options selected for each vehicle. Although this 
approach eliminates a large number of controls, the number of controls remaining grows 
exponentially in the number of vehicles. 

An alternative approach is to solve approximately an associated assignment problem. Under such an 
approach, we heuristically obtain values for each vehicle's options as in the greedy approach. For 
each vehicle, we select one candidate control corresponding to each of its individual possible options 
as follows. The given vehicle is assigned to one of its options and the options for the remaining 
vehicles are determined by solving an auxiliary assignment problem, as described borow. 

In the classic assignment problem, persons and objects are to be assigned to each other in a one-to-one 
map. Each object carries a given value to each person, and the goal is to assign the objects to persons 
so as to maximize the total collected value. In our assignment problem, vehicles can be viewed as 
persons. The objects are the nodes that a vehicle can visit in one step. Since there is one candidate 
control corresponding to each eligible next node for every vehicle, the number of controls which must 
be evaluated by approximate dynamic programming at every stage grows linearly with the number of 
vehicles. 

In both of the approaches, the key is to associate values with each individual vehicle control option at 
stage k, in order to formulate single stage assignment problems. We discuss the value assignment 
techniques in the experimental results in Section 6. 

5.3. Algorithms for Problems with Precedence Constraints 

10 



The pruning methods discussed above can be extended to problems with precedence constraints, by 
heuristically providing partial values for controls that satisfy in part the precedence constraints of the 
visited node. However, the use of one-to-one assignment models cannot incorporate the needed 
coupling that results when two vehicles of different types visit the same node, particularly at different 
times. 

In this section, we propose an alternative approach for determining controls for problems with 
precedence constraints. The approach is based on principles from model-predictive control [14], 
where an optimal sequence of control actions is determined based on solving an approximate 
deterministic, finite-horizon problem defined from the current state. The subset of controls that 
correspond to actions at the current state is implemented, leading to a change in state. The process is 
repeated at each stage. 

The key to this approach is defining a multistage deterministic scheduling problem that considers the 
coupling between the controls over multiple stages. We formulate this problem as follows. Consider 
the nodes as persons, and vehicle visits during a particular stage as objects, we want to formulate the 
multistage scheduling problem as a "bundling assignment" problem ([15-17]). In such a problem, 
persons are to be assigned to bundles consisting of subsets of objects. That is, we want to assign a set 
of vehicle visits over the specified time interval (i.e. a bundle) to each node. Each node has a value   . 
assigned for each bundle. Furthermore, each object (vehicle-visit time) has constraints on which 
bundles it can belong to, given the reachability constraints implicit in the scheduling graph. The - 
objective is to find the feasible persons to bundles assignment that maximizes the total value. Such 
problems are known to be NP hard and have been the subject of considerable recent research ([15- 
17]). Both exact and approximate solution methods have been considered for cases without vehicle- 
to-bundle assignment constraints. Here we present a new approximate solution which extends to our 
case with vehicle-to-bundle assignment constraints, based on the rollout approach of [8].. 

The bundle "rollout" algorithm allocates bundles to persons one at a time. It is an iterative technique, 
which loops once over the set of persons. We describe an iteration below: 
• Start with a subset of persons with already assigned bundles. Select the next person without an 

assigned bundle. 
• For this person, determine all remaining feasible bundle assignments. For each feasible bundle 

assignment, do: 
• Solve an auxiliary one-to-one assignment problem to allocate the remaining objects to the 

other unassigned persons, where individual values have been assigned to each possible one-to- 
one assignment. This auxiliary problem simplifies the bundle constraints, making it easy to 
solve. 

• Combine the auxiliary assignment solution with the feasible bundle assignment to the current 
person and evaluate the outcome. 

• Select the feasible bundle assignment for the current person with the largest overall value, and 
assign it permanently to this person. 

This iteration is repeated for the remaining persons and objects. As this rollout algorithm progresses, 
bundles are assigned one by one until all bundles are exhausted. 

11 



The bundle assignment problem is used to calculate multi-vehicle controls over a multi-stage horizon. 
We illustrate the algorithm for a two-stage rolling horizon. Assume that we are at state xk at stage k. 
We formulate a bundle assignment problem that determines the nodes that vehicles will visit over the 
next two stages, k and /t+1. In this problem, each node may be assigned to a bundle of at most two 
vehicles. Each vehicle can be assigned twice, once for stage k, and once for stage k+\. However, a 
vehicle at stage k can only be assigned to bundles for nodes that can be reached by the vehicle in one 
transition, and at stage k+1 to nodes which can be reached in two transitions. Thus, a bundle will 
consist of a pair of vehicle-stage assignments which are feasible for a node, where we allow empty 
vehicle-stase assignments to nodes which do not receive complete bundles. The value of that bundle 
is determined based on the node's state at k, its value, the vehicles' values, the stage of the assignment 
and the probabilities of survival of the vehicles on the arcs to reach the node. We delay the discussion 
of the assignment of bundle values until Section 6. 

Suppose now that we have obtained an approximate solution of the lah stage bundle assignment 
problem. During the kxh stage, our rolling horizon algorithm uses the target-to-vehicle assignment 
specified by the Jfcth stage portion of this approximate solution (which covers stages k and k+\ as 
discussed above). At the next [(£+l)st] stage, the process is repeated using the new state xk+i. 
Extending the above procedure to arbitrary horizon lengths is straightforward. However, a longer 
horizon also results in a larger number of possible bundles and an attendant increase in computation . 
needed to solve approximately the bundle assignment problem. 

6. Computational Results 

We now present some computational results from applying the above approaches to the problems 
illustrated in Figures 1 and 2. 

6.1. Example 1 Experiments 

We first cr.iisider the problem illustrated in Figure 1. For this problem, we consider an instance with 
iV=10 stages and four vehicles. The return rewards for the individual vehicles were set to 12.7, 17.5, 
19.2, and 55.0. In this problem, there are few vehicle control options from any node, so the total 
number of control combinations was small, and pruning was not required. We therefore only consider 
the limited lookahead policies and the vehicle decomposition approaches. 

6.1.1 Limited Lookahead Policies 

A limited lookahead policy consists of two main elements: the lookahead horizon, and the 
approximation of the value-to-go. In the experiments below, we vary the size of the horizon from one 
to three and consider several different straightforward approximations to the value-to-go. 
In many of our approaches, the value-to-go approximation for a particular state x after the first k 
stages, Jk(x), involves heuristically generating for each vehicle f, a path or sequence of nodes 

(n<<*+i)./iiu-2) n,\) to attempt to visit during the remaining T-k stages. We denote this collection of 

paths P{x,k). Assuming each vehicle attempts to visit the nodes in its path, we can determine the 
expected collected value resulting from visiting nodes not visited during the first k stages: 

12 



platforms; 
Vk (") ■ 

( 

C[P(x,k)}=       X 
nodes n not 
yet visited 

In the above equation, vk (n) is the value associated with node n at stage k and pm is the probability 

that vehicle / visits node n after stage k: 

Pin = i 

M 
Yl p("ij, «i(y+D).   if nil = n for some /, 
j=k 

0, otherwise, 

where pin.j.nnj+i)) is the probability of successfully traversing the arc connecting nodes n,y and /i,0+n . 
The term    n^-/7"1) provides the probability that none of the vehicles successfully visits node n. 

platforms i 

( 

The term vj. (n) then provides the expected collected value at node n (the 
platforms /' 

\ s 

probability that at least one vehicle successfully visits the node multiplied by the node value). 

We can also determine the expected reward resulting from vehicles returning to the base node: 

platforms i 

where 
N-\ 

-   IT P\lij'ni{j+\) \      ^ nN }S fhe base node, 
q' = | j=k 

0, otherwise, 

is the probability that vehicle / returns to the base node and V, is the vehicle return reward. 
The approximations to the value-te-go that we consider are given below. As can be seen in the 
descriptions, many of the approximations involve a combination of the expected collected node value, 
C[P(X,*)], and the expected vehicle return reward, R[p(x,k)], assuming each vehicle attempts to visit 
the nodes in the paths specified in P{x,k). 

1 The first approach approximates the value-to-go with zero: 
J*(JC)=0. 

2 The second approach approximates the value-to-go with the sum of the expected collected node 
value and the expected vehicle return reward collected over a set of greedy paths: 

Jk(x)=C[PAx,k)]+R[Pg{x,k)]. 

The nodes along the greedy path for vehicle /, (/i,u+n,...,/i,.v), are determined as follows: 

n/U+l) = arg  max. jp(nij,n)-vk(n) }, 
nen[njj) 

13 



where q{n,j) is the set of nodes that can be reached from node n,,, and n,k is the node at which 

vehicle / is located after k stages. 
3 The third approach approximates the value-to-go with the expected vehicle return reward 

collected over the set of "safest" paths: 
Jk(x)=R[P1{x.k)]. 

The safest path is that which yields the highest probability of a vehicle returning successfully to its 
base node. These paths can be computed apriori using dynamic programming. (Essentially, the 
computation is equivalent to solving a set of shortest path problems.) 

4 The fourth approach approximates the value-to-go with the sum of the expected collected node 
value and the expected vehicle return reward collecied over the set of safest paths: 

Jk(.x)=c[p{x,k)]+R[p(x,k)]. 

5 The fifth approach approximates the value-to-go with the sum of the expected collected node 
value and the expected vehicle return reward collected over the set of "most valuable" paths: 

Jk(x)=c[P,„{x,k)]+R[Pm{.x.k)}. 

The most valuable path is that which yields the highest expected total value that could be attained 
by a single vehicle during the remaining stages assuming none of the values at any of the nodes 
have yet been collected. These paths can also be computed apriori using dynamic programming. 

6 The sixth approach combines (4) and (5). The value-to-go is approximated with the maximum of _ 
the values determined by those approaches. 

7 The seventh approach approximates the value-to-go using the performance of a base policy on 
Monte Carlo simulations. The single-stage version of this approach is also referred to as a rollout 
algorithm. Rollout algorithms are discussed extensively in the recent textbook [10]. In our 
implementation, we use the greedy policy as the base policy for the rollout. Under a greedy 
policy, the next node visited by each vehicle at any particular stage is that which maximizes its 
expected reward for that stage. The value-to-go is approximated using the average value attained 
during the Monte Carlo simulations. The number of simulated stages (length of the simulated 
planning horizon) varied from 1 to 10, and the number of Monte Carlo simulations per 
approximation varied from 5 to 40. This method requr cs significantly more computation than the 
preceding approximations and it is impractical to use th:s approximation for lookahead horizons 
greater than one. 

Table 1 provides the optimal values for the problem illustrated in Figure 1. We have computed these 
values using dynamic programming, and the computation required was approximately one week on a 
Sun Ultra 60 workstation. Table 1 also provides the results of applying a greedy algorithm, in which 
each vehicle selects as its next node that which maximizes its expected collected value for that stage, 
to one thousand sample trajectories. 

14 



Table 1 Optimal and Greedy Performance for Figure 1 Problem, 

Optimal 
641.0 

Greedy 
533.89 

Table 2 provides the values averaged over one thousand sample trajectories by applying the limited 
lookahead polices for lookahead sizes of one to three, using the first six value-to-go approximations 
described above. The particular approximation approach used is given in the leftmost column. The 
table also provides the range of values obtained by applying a one-stage lookahead policy using the 
seventh approximation when the number of Monte Carlo simulations used to evaluate the 
performance of the greedy policy was at least 20 and the length of the planning horhon was at least 6. 
These values are averages over one hundred trajectories. 

As can be seen, while the 2-stage policies generally provided results that improved significantly upon 
those of the 1-stage policies, those of the 3-stage policies were not substantially better and in a few 
cases were worse than those of the 2-stage policies. The sixth value-to-go approximation seemed to 
yield slightly better results than the other non-simulation based approximations. However, the third 
through sixth approximations were basically comparable. Overall, these approaches improved 
significantly upon the greedy algorithm and were able to obtain values close to the optimal for 
lookahead sizes greater than one. The rollout policy performed significantly better than the other one- 
stage policies but generally under-performed the 2- and 3-stage policies combined with the third 
through sixth approximations. Unfortunately, it was not computationally feasible to implement a 2- 
or 3-stage rollout policy (the seventh approximation approach). 

Table 2 Limited Lookahead Policy Results for Different Approximations, Figure 1 

Value-to-go 
Approximation 

1-stage 2-stage 3-stage 

1 543.32 574.24 582.75 
2 589.56 607.31 593.08 
3 581.48 613.29 615.63 
4 574.06 618.55 619.45 
5 582.84 594.09 606.96 
6 595.44 615.10 624.16 
7 600-610 - - 

Table 3 provides the average values obtained over the same thousand sample trajectories by applying 
the selective limited lookahead polices for lookahead sizes of two and three, using the first six value- 
to-go approximations described above. (Note that a selective one-step lookahead policy is equivalent 
to the fully expanded one-step lookahead policy.) As can be seen, the results of these approaches do 
not vary significantly from the fully expanded lookahead policies. In some cases, the selective 
policies performed one or two percent worse and in other cases, they performed one or two percent 
better. 

15 



Table 3 Selective Limited Lookahead Policy Results, Figure 1 

Value-to-go 
Approximation 

2-stage 3-stage 

1 573.19 575.21 
2 605.57 607.21 
3 608.98 616.21 
4 613.23 615.38 
5 595.55 592.50 
6 613.49 617.04 

The following table provides the average on-line computation time (in seconds) to apply the limited 
lookahead approaches to one hundred sample trajectories of the example problem. The off-line 
computation time for the limited lookahead policies was negligible. We have measured the time 
required to compute the controls. In practice, this time is critical since it must be within the real-time 
constraints of the problem. The table gives the total time to compute these controls for the ten stages. 
Since these times depend on the state trajectory of the system, which is random, we averaged over 100 
trajectories and recorded the results in Table 7. The times for the one-stage lookahead have not been 
included as the time required was negligible for the first six value-to-go approximations. The average 
on-line computation time for the one-stage lookahead using Monte Carlo simulations varied from 100 
to over 300 seconds per sample trajectory depending on the number of simulations used per 
approximation (20 to 40) and the length of horizon of the simulation (6 to 10). The experimental 
results were conducted on a Sun Ultra 60 workstation. As can be seen from the table, using on-line 
simulations to approximate the value-to-go for a 1-stage lookahead method requires significantly 
more computation than the 2-stage lookahead methods or 3-stage selective methods using analytic 
approximations. In addition, the selective lookahead policies were significantly faster than the fully 
expanded lookahead policies. Considering this in combination with the fact that the performances of 
the two versions are comparable suggests that that the selective lookahead policies may be the most 
useful in practice. 

Table 4 Average Computation Time for Different Lookahead Algorithms 

2-stage lookahead 3-stage lookahead 
Full Selective Full Selective 

LL-1 0.77 0.12 120.4 1.8 
LL-2 9.41 1.04 1358 16.4 
LL-3 1.35 0.22 134.7 3.4 
LL-4 6.16 0.71 716.5 9.4 
LL-5 9.16 0.91 796.5 8.2 
LL-6 14.85 1.73 1258 14.5 

6.1.2 Vehicle Decomposition Results 

In applying vehicle decomposition to our problem, we ordered the vehicles to determine the sequence 
in which the corresponding subproblems were to be solved. In cases where there are multiple 
orderings, the subproblems are solved according to each ordering, and the control corresponding to 

16 



the ordering with the best resulting value is selected. We considered the following approaches to 
ordering the vehicles: 

• A single ordering in ascending order of the vehicle return reward. 
• All possible V! orderings, where Vis the number of vehicles. 

A "rollout" of the ordering in (1) as described by Bertsekas, TsitsikJis and Wu ([8]). I.e., assuming 
that the first M vehicles have been selected, the ith vehicle is determined as follows: 
• Consider each remaining vehicle in turn as the next vehicle and leave the other vehicles in their 

orginal order. 
• Solve the set of single-vehicle problems in the given order. 
• Select as the /th vehicle that which yields the best result. 

This results in 1 + 2 + • • • + V orderings. 

As mentioned in Section 4, there are several ways to apply the vehicle decomposition heuristic: 
• The heuristic can be applied once to obtain a policy for all stages. 
• The heuristic can be applied at every stage to obtain a control for the current stage using current 

state information. 
• The heuristic can be used to generate a value-to-go approximation for a limited lookahead policy. 

Table 5 provides the average values obtained over the same thousand sample trajectories by the 
vehicle decomposition approach. The result of applying the heuristic for all possible orderings and 
following the paths obtained for all stages corresponding to the ordering with the best result is 
provided in the first row. The next three rows provide the results when the heuristic using the three 
orderings described above (least expensive to most expensive, all possible orderings, and a rollout of 
the orderings) is reapplied at every stage to obtain the current control, that is using a rolling horizon 
approach. The remaining rows provide the results when the heuristic is used to provide a value-to-go 
approximation for a one-stage limited lookahead policy using the orderings described above. As can 
be seen, these approaches performed extremely well. The heuristic alone performed comparably to 2- 
stage lookahead policies, and the other variations were able to obtain strategies that yielded results 
that were less than one percent from the optimal expected results. 

Table 5 Vehicle Decomposition Results, Fig ure 1 
Avg Value 

Heuristic alone-best of all vehicle orderings 608.89 
Rollins horizon-1 634.97 
Rolling horizon-2 637.81 
Rolling horizon-3 637.81 
1-stage LL-1 633.04 
1-stage LL-2 635.65 
1-stage LL-3 635.65 

17 



Table 6 provides the average on-line computation time (in seconds) to apply the vehicle 
decomposition approaches to one hundred sample trajectories of the example problem. As can be 
seen, not only did such approaches provide the best results, they were also extremely fast. The rolling 
horizon approach where the decomposition heuristic is reapplied at every time step appears to be the 
best option. However, it is not clear how easily such approaches can be applied to variations of the 
problem. 

Table 6 Computation Time for Vehicle Decomposition Algorithms, Figure 1 

Approach Avg Time(s) 
PD-Rolling horizon-1 0.41 
PD-Rolling horizon-2 9.42 
PD-Rolling horizon-3 1.62 
PD-1-stage LL-1 51.50 
PD-1-stage LL-2 396.52 
PD-1-stage LL-3 138.04 

6.2. Example 2 Experiments 

We now consider the problem illustrated in Figure 2.   For this problem, we let N=5 stages and 
assume that there is a vehicle of Type 1 and another of Type 2 at each of the three hub nodes. The 
return rewards are indicated in the figure. As discussed previously, there are precedence constraints 
which require coordination between vehicles to collect values at nodes 6 and 7. In this example, we 
have large numbers of control options, so limited lookahead methods are only practical if the control 
space is pruned to a more moderate number of candidate controls at every stage. 

6.2.1 Pruned Control Space Algorithms 

We applied the two approaches lor pruning the control space described in Section 5.2, the greedy 
approach and an approach based on an auxiliary assignment problem. Under the greedy approach, we 
determined for each vehicle-node pair, the expected value collected during the next stage if the given 
vehicle attempted to visit the given node. The two nodes with the highest expected single-stage 
values for each vehicle were selected as candidate targets. The option in which the vehicle remained 
at its hub node was also selected as a candidate option. The set of all candidate controls was the set of 
all combinations of these three options per vehicle. 

Under the approach based on an auxiliary assignment problem, we obtained values for each vehicle- 
node pair and solve a number of assignment problems as described in Section 5.1. We considered the 
following methods for evaluating a vehicle-node pair. 

1    The value of a vehicle-node pair is the expected value collected during the next stage if vehicle / 
attempted to visit nodey. This is given by 

Value(/,y)=/7,;/iy, 

where p,, is the probability that vehicle / successfully visits nodey and nt] is the value obtained if 
vehicle / visits node/ 

18 



...J 

2 The second method adjusts the first method by subtracting the expected value due to vehicle loss. 
This value is then divided by the probability that the vehicle does not successfully return to its hub 
node: 

Value(;,;)= , 
1-PijPji 

where P]l is the probability that vehicle / successfully returns from visiting node; and v, is the 
value of vehicle i. We refer to the numerator as the expected one-stage vehicle and node value for 
the vehicle-node pair (i,f). Dividing by the probability that the vehicle does not successfully return 
has the effect of given preference to assignments with higher probabilities of success. 

3 The third method adjusts the one-stage vehicle and node value by providing one-third of the node 
value if the node has precedence constraints and the vehicle is of Type 1: 

Val\ie(i,j)=pijx{nij+V3n2j)-{\-pijPji)vi, 

where m, is the value collected if node; is later visited by a vehicle of Type 2. 
4 The fourth method adjusts the one-stage vehicle and node value by a numerical value proportional 

to the probability that the vehicle successfully returns to its hub node and to the number of 
remaining stages: 

Va\ue(iJ)=pijXnlj-(\-p,jPji)v,+p,JpJlsC, 

where 5 is the number of remaining stages and C is some constant. This additional term makes it 
less likely for vehicles to take risky paths in early stages. The idea is that it may be better to visit a 
risky node that has high reward after first visiting less risky nodes with less reward. 

We used the above value estimates in combination with the pruning techniques based on greedy and 
assignment methods to prune the control space for the problem illustrated in Figure 2, and used 
limited lookahead methods to evaluate each of the candidate controls. We considered four value-to- 
go approximations, identified below: 

1 Ovalue: approximates the value-to-go with 0. 
2 Plat value: approximates the value-to-go with the exacted collected node value and vehicle 

value at the end of the stage. 
3 Greedy: approximates the value-to-go with the expected collected node value resulting from 

current control plus the expected collected node value resulting from an additional stage assuming 
all vehicles visit the node with the highest expected reward. 

4 MC: approximates the value-to-go with the average total value obtained by applying greedy 
policy to 20 Monte Carlo simulations starting from resulting state. 

Table 7 contains the results of the one-stage lookahead methods, and Table 8 contains the results of 
the two-stage lookahead methods. With the control space fully expanded, there are up to 44,100 
possible first stage controls at any state. Under a greedy pruning method, there are up to 729 possible 
first stage controls, and under the pruning methods based on solving auxiliary assignment problems, 
there are up to 36 possible first stage controls. Under a one-stage lookahead method, the number of 
value-to-go approximations is equal to the number of first stage controls. Under a two-stage 
lookahead method, controls for all possible outcomes for each first stage control are considered, and 
so the number of value-to-go approximations increases significantly more than the square of the 

19 

Ü 



number of first stage controls. By pruning the control space using the approach based on auxiliary 
assignment problems, it was possible to apply a two-stage lookahead method, even when Monte Carlo 
simulations were used to evaluate the value-to-go. 

The results indicate that pruning controls using solutions to auxiliary assignment problems generate 
candidate controls that are all promising, and therefore, even limited lookahead methods with the 
simplest value-to-go approximations are very effective.   Pruning controls using a greedy approach, 
however, did not perform well. As was seen in our results of applying limited lookahead methods to 
the problem in Figure 1, using Monte Carlo simulations to approximate the vali'c-to-go outperformed 
other approximations. In addition, the two-stage lookahead methods generally significantly 
outperformed the one-stage lookahead methods. 

Table 7 One-stage Lookahead with Pruned Controls Results, Figure 2. 

1-Stage 
Lookahead 

Fully- 
Expanded 

Greedy Aux Assign: 
Plat/Node Val 1 

Aux Assign: 
Plat/Node Val 2 

Aux Assign: 
Plat/Node Val 3 

Aux Assign: 
Plat/Node Val 4 

0 value 403.6 361.0 408.9 433.6 461.0 463.5 

Plat value 458.3 458.3 458.3 458.4 466.3 472.7 

Greedy 488.1 444.1 462.5 477.2 476.4 486.3 

20 M.C. 496.4 476.8 482.0 489.7 478.2 498.3 

Table 8 Two-stage Lookahead with Pruned Controls Results, Figure 2. 

2-Stage 
Lookahead 

Aux Assign: 
Plat/Node Val 1 

Aux Assign: 
Plat/Node Val 2 

Aux Assign: 
Plat/Node Val 3 

Aux Assign: 
Plat/Node Val 4 

0 value 458.5 465.6 457.0 492.9 
Plat value 491.1 493.4 493.1 513.9 
Greedy 467.6 483.0 484.7 509.3 
20 M.C. 495.8 497.9 490.5 520.1 

Tables 9 and 10 provide the average on-line computation time (in seconds) to apply the one- and two- 
stage lookahead approaches with pruned controls to one hundred sample trajectories of the example 
problem. As can be seen, pruning using an auxiliary assignment problem allows the computation 
times for two-stage lookahead approaches to be manageable, even with a complex value-to-go 
approximation. 

Table 8 Computation Time for One-stage Lookahead Policies with Pruned Controls, Figure 2 

1-Stage 
Lookahead 

Fully 
Expanded 

Greedy Aux Assign: 
Plat/Node Val 1 

Aux Assign: 
Plat/Node Val 2 

Aux Assign: 
Plat/Node Val 3 

Aux Assign: 
Plat/Node Val 4 

0 value 179.8 1.38 .26 .14 .23 .011 

Plat value 253.2 1.96 .28 .15 .25 .012 

Greedy 293.0 2.85 .43 .24 .39 .037 

20 M.C. 110.5 2.14 .18 .15 .14 .173 

20 



Table 10 Computation Time for Two-stage Lookahead Policies with Pruned Controls. Figure 2 

2-Stage 
Lookahead 

Aux Assign: 
Plat/Node Val 1 

Aux Assign: 
Plat/Node Val 2 

Aux Assign: 
Plat/Node Val 3 

Aux Assign: 
Plat/Node Val 4 

0 value 43.7 25.2 41.6 4.38 

Plat 
value 

45.2 26.4 44.3 4.59 

Greedy 60.5 36.0 60.1 7.99 
20M.C. 340.2 229.8 337.2 74.66 

6.2.2 Vehicle Bundling Methods 

We considered a simplified version of the rolling horizon bundle method described in Section 5.2. 
We implemented the two-stage rolling horizon approach described, but with a variation of the 
"rollout" solution to the bundle assignment problem. At the typical stage in our implementation, we 
allocate an appropriate bundle of vehicles to each node with a precedence constraint one at a time. 
For each of these allocations, the remaining nodes and vehicles are assigned according to the solution 
of an auxiliary assignment problem. The allocation yielding the best overall solution is used as the 
approximate solution to the current stage bundle assignment problem. Note that this approach only 
allows a single bundle to be allocated during any particular stage. The values assigned to each 
bundle/node assignment as well as to each individual vehicle/node pair can be tailored as above. We 
evaluated these assignments using approaches similar to those used to evaluate vehicle/node pairs for 
control pruning methods based on an auxiliary assignment problem. In particular, we used the 
following methods: 

U 1 The first approach uses the expected collected node value upon an attempted visit by the given 
vehicle(s). 

2 The second approach uses the expected collected node value upon an attempted visit by the given 
vehicle(s) plus the expected vehicle value if the vehicle did not attempt any further visits. 

3 The third approach uses the value from the second approach divided by the probability that the 
vehicle/s does/do not successfully return to its/their hub nodes. 

4 The fourth approach uses the value from the second approach and adds a term proportional to the 
number of remaining stages. 

Table 11 contains the results of the vehicle bundling methods using the valuations above. The 
average on-line computation time per sample trajectory was negligible for all valuation methods. The 
bundling method slightly outperformed the two-stage lookahead approaches using the most effective 
value-to-go approximations, while requiring significantly less computation time. As was seen from 
the vehicle decomposition results, rolling horizon methods that exploit problem structures perform 
better than limited lookahead methods and require less computation time. 

21 



Table 9 Bundle Method Results, Figure 2 

Valuation 
Approach 

Avg Collected 
Value 

1 484.7 
2 519.0 
3 524.0 
4 503.0 

7. Summary 

In this paper, we have considered applying a number of approximate dynamic programming methods 
to adaptive multi-vehicle scheduling in a risky environment. These methods fall in two main 
categories: limited lookahead approaches and problem decomposition. Limited lookahead methods 
generalize easily to other stochastic scheduling problems but the computation required limits the 
number of lookahead stages and the complexity of the value-to-go approximations. Fortunately, it 
seems that two lookahead stages may be sufficient to obtain good solutions even with simple value- 
to-go approximations. In addition, pruning the control space using auxiliary assignment problems     - 
makes using two lookahead stages practical even for problems with extremely large control spaces. 

For problems with suitable structures, decomposing the problem into sub-problems and then solving 
the sub-problems can reduce the computation required even more significantly than pruning. For our 
problems, the resulting solutions were also near optimal when a rolling horizon approach was applied. 
For problems requiring coordination so that decomposition is not feasible, other methods may be 
found that exploit the problem structure in other ways. When this is possible, a rolling horizon 
approach again appears to obtain good solutions with reasonable computational requirements. 

Reference 

1. Alden, J.M., Smith, R.L., "Rolling Horizon Procedures in Nonhomogeneous Markov Decision 
Processes," Operations Research, V. 40, 1992. 

2. Bertsekas, D.P., Dynamic Programming and Optimal Control, Vol. I, 2nd Edition, Athena 
Scientific, 2000. 

3. Ryan, J.L.; Bailey, T.G.; Moore, J.T.; Carlton, W.B., "Reactive Tabu Search in unmanned aerial 
reconnaissance simulations," Simulation Conference Proceedings, 1998. 

4. O'Rourke, K.P., Bailey, T.G., Hill, R., Carlton, W.B., "Dynamic Routing of Unmanned Aerial 
Vehicles Using Reative Tabu Search," 67lh MORS Symposium, 1999 

5. Godbole, D., Samad, T., and Gopal, V., "Active Multi-Model Control for Dynamic Manuever 
Optimization of Unmanned Air Vehicles, " IEEE International Conference on Robotics and 
Automation, San Francisco, CA, 2000. 

6. Bertsekas, D.P., Castanon, D.A., "Rollout Algorithms for Stochastic Scheduling Problems," 
Journal of Heuristics, V. 5, 1999. 

99 



7. Bertsekas, D.P., Castanon, D.A., Curry, M.L., Logan, D., "Adaptive Multi-platform Scheduling in 
a Risky Environment," 1999 Proceedings from Advances in Enterprise Control Symposium, Nov 
1999. 

8. Bersekas, D.P., Tsitsiklis, J.N., Wu, C, "Rollout Algorithms for Combinatorial Optimization," 
Journal of Heuristics, V. 3, 1997. 

9. Secomandi, N., "Comparing Neuro-Dynamic Programming Algorithms for the Vehicle Routing 
Problem with Stochastic Demands," Computers & Operations Research, V27, 2000. 

10. Bertsekas, D. P. and J. Tsitsiklis, Neuro Dynamic Programming, Athena-Scientific, Belmont, 
MA, 1996. 

11. Sutton, R.S., "Learning to predict by the methods of temporal differences," Machine Learning, 
Vol. 3, pp. 9-44, 1988. 

12. Tesauro, G., and Galperin, G. R.," On-Line Policy Improvement Using Monte Carlo Search," 
unpublished report, presented at the 1996 Neural Information Processing Systems Conference, 
Denver, CO. 

13. Barto, A. G., Bradtke, S. J., and Singh, S. P, "Learning to Act Using Real-Time Dynamic 
Programming," Artificial Intelligence, Vol. 72, pp. 81-138, 1995. 

14. Mayne, D.Q, Rawlings, J.B., Rao, C.V., and Scokaert P.O.M., "Constrained Model Predictive 
Control: Stability and Optimality," Automatica, Vol. 36, 2000, pp. 789-814. 

15. Parkes, DC, Ungar, L.H., "Iterative Combinatorial Auctions: Theory and Practice," Proc. I7h 

National Conference on Artificial Intelligence, 2000. 

16. Rothkopf, M.H., Pekec, A., Harstad, R.M., "Computationally Manageable Combinatorial 
Auctions," Management Science, V. 44, 1998. 

17. Sandholm, T., "An Algorithm for Optimal Winner Determination in Combinatorial Auctions," 
Proc. Il'h National Conference on Artificial Intelligence, 1993. 

23 


