
BALLISTIC MISSILE
DEFENSE ORGANIZATION
7100 Defense Pentagon
Washington, D.C. 20301-7100

GT-EP: A HIGH PERFORMANCE—
REAL-TIME PROCESSOR

SPECIAL TECHNICAL REPORT

REPORT NO. STR-0142-90-0011

September 12.1990

GUIDANCE, NAVIGATION AND CONTROL

DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142

Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology
A.I ♦ r • -in™ n*m D'STR,BUT'ON STATEMENT A
Atlanta, Georgia 30332 - 0540 Approved for Public Release

Distribution Unlimited

Contract Data Requirements List Item A004

Period Covered: Not Applicable

Type Report: As Required

20010829 007 UjUWa

GT-EP: A HIGH PERFORMANCE
REAL-TIME PROCESSOR

September 12.1990

Authors

W. S. Tan, C. O. Afford and Sam H. Russ

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540

Eugene L. Sanders

USASDC

Contract Monitor

Cecil O. Afford

Georgia Tech

Project Director

Copyright 1990

Georgia Tech Research Corporation

Centennial Research Building

Atlanta, Georgia 30332

Computer Engineering donVOlft Torh
Research Laboratory KJVUt gIII ICtM

GT-EP : A High Performance
Real-Time Processor

Dr. W. S. Tan, Dr. C. O. Alford, and S. H. Russ

Computer Engineering Research Laboratory

400 Tenth Street

Atlanta, GA 30332-0540

Tel. (404)894-2533

Fax. (404) 894-3120

Special Technical Report CERL008-0170.1, August 1990

TABLE OF CONTENTS

1. Background Information 1

2. Architectural Highlights 1

3. Instruction Set 4

3.1 IAG 4

3.2 DAG 7

3.3 ALU 8

3.4 I/O 9

4. Programming Examples 9

4.1 Program Loading 9

4.2 Vector Multiply. 11

4.3 Mullti-tasking 17

5. References 4

GEORGIA TECH GT-EP
HIGH PERFORMANCE REAL-TIME PROCESSOR

1. Background Information

The GT-EP is the result of a research effort at Georgia Tech to overcome several problems asso-

ciated with existing conventional complex instruction set computer (CISC) and reduced instruction set com-

puter (RISC) architectures.

Most of these CISC and RISC architectures are derivations of the von Neumann architecture model
[Patt82, Gupt83]. Although the technologies that produced the von Neumann computer architecture have
changed dramatically, the notion of today "computer" is still identified with the concept of the 1940's. The
two major parts of a von Neumann computer are the central processing unit and the central memory unit.
Operations are carried out by moving data back and forth between these two central units. With the advance-
ment of device technology, the link between the central processing unit and the central memory unit has
become a performance bottleneck (identified as the von Neumann bottleneck in [Back78]).

Secondly, because of the increasing complexity of today modern applications, most software is

written in high level languages. Significant amount of performance can be potentially lost in the compilation
process from a high level language to a target machine code. This loss of performance is referred as the se-

mantic gap and is due to a mismatch between the expression of software algorithms and the underlying hard-

ware processor architecture that executes them [Myer78].

The von Neumann bottleneck and the semantic gap account for a significantly low utilization of
the processing capabilities of conventional computer architectures. Quite often, peak performance is quoted
for a particular processor, whereas in reality 10% of the peak is difficult to attain for typical applications.

The GT-EP processor is designed to overcome the von Neumann bottleneck and to close the archi-
tectural semantic gap that exists in today generation of CISC and RISC architectures. The architecture was
systematically derived from a set of optimality criteria extracted from language constructs commonly used
in many high level languages. The result is an architecture that yields high processor utilization across a wide
spectrum of applications.

2. Architectural Highlights

The primary functional modules of the GT-EP processor are shown in Figure 1. The Instruction
Address Generation (IAG) Module is responsible for calculating the addresses for instruction fetches, speci-
fying ALU operations, and directing I/O traffic. The Data Address Generation (DAG) Module calculates
two addresss fields for data fetches and one address field for data stores.

The GT-EP handles I/O data significantly different from conventional processor bus access. All
input data flows into the GT-EP processor through the ALU and all output data from the GT-EP processor
flows out of the ALU. An analogy of the way the GT-EP processor handles I/O data can be made to that

Instruction

Memory

Instruction

Address

Generation

Data

Address

Generation

N
E
T
W-
O
R
K

Network

Interface

Data

Memory

I

Figure 1. GT-EP Functional Modules

of a dataflow architecture. In the GT-EP processor, the ALU is the central core (data node). Data (tokens)
flows into the ALU, is operated on, and produces new data (new token). Up to 16 peripheral devices (arrows
directed to the node) can be supported by the GT-EP. The Data Memory and the Network Interface Modules
depicted in Figure 1 are two such peripheral devices. This aspect of the architecutre makes the GT-EP very

efficient in handling numerically intensive, and I/O intensive problems.

The GT-EP supports 16 flexible peripheral devices. The 16 I/O peripheral devices are divided into
4 fast synchronous (FS) devices, 8 slow synchronous (SS) devices, and 4 slow asynchronous (SS) devices.
The FS devices drive separate device status signals into the GT-EP for maximum input and output opera-
tions. The SS devices use a set of generic handshake signals to interface with the GT-EP. The SA devices
allow the GT-EP to interface with peripheral devices that operate from a different clocking scheme which

differs from the GT-EP.

The GT-EP provides hardware support to process instructions at the kernel and user levels. Several
instructions are limited to execution at the kernel level. An attempt to execute privileged kernel instructions
at the user level will cause a hardware trap. Multi-tasking is inherently supported at the hardware level.

The user level program space is relocatable at run-time.

Hardware implementation of an automatic operand dependency check, allows the GT-EP to pro-
cess instructions as though the processor is operating in a flow through, non pipelining fashion. B ranch look-
ahead circuitry allows a conditional branch to proceed either assumming the branch will or will not take
place. This feature significantly reduces compiler complexity and avoids unnecessary nops associated with

pipeline architectures.

Interactions with external devices can be effectively handled by the GT-EP processor through in-
terrupts. The GT-EP has a very low interrupt latency. It responds to an external interrupt request in a maxi-
mum of 5 cycles. Its I/O dataflow structure significantly reduces the software overhead required for context
switching. Nine external interrupt sources can be directly connected to the GT-EP processor.

The GT-EP can also interface efficiently with external I/O devices on a polling basis. Three exter-
nal signals can be connected to the GT-EP processor to poll the status of external peripheral devices. Based
on these signals, the GT-EP can perform a single cycle conditional branch instruction.

Two, 26-bit counters are available for general usage. These timers can be used to schedule time slic-
ing between tasks and to execute tasks that require periodic services. A third timer is a dedicated monitoring
timer to prevent the processor from being hung up in a freeze condition while accessing peripheral devices
and intruction memory that do not respond appropriately to an I/O or infraction fetch request.

The GT-EP is designed with built-in testability circuitry. In operation, the processor can be stopped
and test instructions can be inserted into its instruction stream. The GT-EP internal states can then be ex-
amined. Once the test condition is lifted, the GT-EP proceeds as though the intervening test instructions did

not take place.

The GT-EP supports a large instruction and data space. The GT-EP supports 1GB of instruction
memory and 256 MB of data memory. It has built-in circuitry to support data and instruction caches.

The GT-EP achieves 80-99% utilization of peak performance across a wide variety of applications

as compared to 2-9% on conventional RISC and CISC architectures. A Whetstone benchmark performance

of 32 million is achieved on the GT-EP when operating at 10 Mhz [Tan89].

3. Instruction Set

The GT-EP instructions are separated into four categories each of which can be specified indepen-

dently. The four instruction categories are IAG, DAG, ALU, and I/O.

3.1. IAG

The IAG instructions are primarily used to control the generation of the program counter for fetch-
ing the next instruction from the instruction memory. The generation of the program counter is either direct

or relative to a task pointer. In kernel mode, the generation of the program counter is direct. In user mode,
the generation of the program counter is relative to a task pointer. The relative addressing scheme allows
a user program to be dynamically relocated at run-time. Table 1 shows a summary of the IAG instructions.
AdetaileddescriptionoftheIAGinstructionscanbefoundin[Tan90-l]. "Load"in Table 1 means loading
a value from 1 of the 16 peripheral devices to the IAG module. "Store" in Table 1 means storing a value
from the IAG module to 1 of the 16 peripheral devices.

Table 1. IAG Instruction Set Summary

Mneumonic Description Comments
Kernel

Restriction

INV Invalid Operation Causes interrupt, useful for soft-
ware trap

No

BALU condition
branch address

Branch based on ALU status (zero,
carray, sign, generic)

May specify branch prediction
scheme and branch if true or false

No

BI branch address Conditional branch based on exter-
nal status and internal IAG status

No branch prediction is necessary No

BP procedure ad-
dress

Begin procedure May specify to use software stack
or hardware stack

No

BT task offset Begin task Begin execution at the user level Yes

BL loop count Begin loop Setting up a loop between the BL
and EL instructions

No

EL branch address End loop Branch if loop count is zero No

EP End procedure No

CONT Continue Move to the next instruction No

ET End task No

ECS End context Switch Return program control to the user Yes

BX Branch external Branch address specified in the
program counter register

No

BLX Begin loop external Loop count is specified in the loop
counter register

No

ELX End loop external Loop branch address is specified in
the program counter register

No

BPP Begin privileged procedure Used by the user to perform kernel
service routine

No

EPP End privileged procedure No

El End Interrupt Return from interrupt Yes

BTX Begin task external Task offset is specified in the pro-
gram counter register

Yes

HLT Halt program execution Yes

RST Reset Yes

ld_im load interrupt mask select a set of interrupts to monitor Yes

ld_ndim load non-disabled interrupt mask select a set of interrupts that cannot
be automatically disabled

Yes

ld_intr_v load interrupt vectors set the address of the interrupt ser-
vice routines

Yes

en-intr Enable interrupt Enable the interrupt server Yes

dis_intr Disable interrupt Disable the interrupt server Yes

ld_tp Load task pointer Yes

ld_tpc_ul Load task pointer upper limit set the limit of the user instruction
space

Yes

en_tp Enable task pointer Turn on the user mode Yes

Dis_tp Disable task pointer Turn off the user Yes

ld_ita_sv Load interrupt timer A starting
value

Yes

rst_ita rest timer A Yes

rst_itb Reset timer B Yes

ld_pc_reg Load program counter register The pc register is used by BPX,
BTX, ELX, and Bx instructions

No

ps_pc_stk Push pc stack Push a value to the hardware stuck Yes

en_stk_ovfli Enable stack overflow indicator Used to set the stack underflow
flag when context switch

Yes

dis_stk_ovfli Disable stack overflow indicator Yes

ldjcntr Loan loop counter The loop counter is used by the
BLX instruction

Yes

ld_inst_reg 0 Load instruction register 0 Yes

ld_inst_reg_l Load instruction register 1 Yes

wr_inst_pha Write phase A instruction Instruction memory consists of
Phase A bank bank and phase B
bank

Yes

wr_inst_phb Write phase B instruction Yes

rd_inst_pha Read the instruction from phase A
memory bank to the instruction reg-
ister

The memory location is designated
int he pc register

Yes

rd_inst_phb Read the instruction from phase B
memory bank to the instruction reg-
ister

Yes

ld_iag_flag Load internal IAG flags to the status
register

No

clr_iag_ef Clear iag error flags Clear iag error conditions Yes

ld_io_t Load io timer io timer is used to monitor the
freeze condition

Yes

rst_io_t reset io timer Yes

start_io_t Start io timer Yes

ld_bpp_reg Load privileged procedure address The privileged procedure address
is used by the BPP instruction

Yes

set_bpp_stat Set the privileged procedure status It is useful when context switching Yes

rst_bpp_stat Reset the privileged procedure sta-
tus

Yes

st_im Store interrupt mask No

st-ndim Store non-disable interrupt mask No

st_iv Store interrupt vectors No

st_tp Store task pointer No

st_tpc_nl Store task pointer upper limit No

st_ita Store interrupt timer A No

st_itb Store interrupt timer B No

st_ta Store timer A Store the current value of the timer No

st_tb Store timer B No

st_pc_reg Store pc register No

pop_pc_stk Store and pop pc stack No
st_lentr Store loop counter No

st_inst_reg_0 Store instruction register 0 No

st_inst_reg_l Store instruction register 1 No

st_iag_flag Store IAG flag IAG flag is stored in the status reg-
ister

No

st_io_t_sv Store io timer starting value No
st_io_t store io timer No

st_bpp_reg Store privileged procedure address No

32. DAG

The DAG instructions are primarily used to control the generation of three address fields for fetch-
ing and storing data to and from the peripheral devices. The three address fields are denoted as F_adr[25:0],

R_adr[25:0], and S_adr[25:0]. The F_adr[25:0] selects an address location for the output device desig-
nated by the ods[3:0] I/O instruction field. The R_adr[25:0] selects an address location for the input device
designated by the ids[3:0] I/O instruction field. The S_adr[25:0] always selects an address location for the
data memory, independent of the selection of ids[3:0]. The data memory is designated as device 1.

The generation of the address fields can be direct or relative. There are two levels of relative ad-

dressing. The first level of relative adressing is used to dynamically relocate user data space. The second
level of relative addressing is used to allocate the run-time stack. The first level only applies to execution

in user mode.

The following syntax summarizes the various addressing modes available for address calculations,

addr ♦off I #off[] I ♦off[]~ | %off | %off[] |

%off[]~ I #A I #A[]~ I [] []~

The # sign is used to indicate that the address is relative to a task pointer (used to dynamically reallocate
user space). The % sign is used to indicate that the address is relative to an address pointer (used to access
data stack). The A sign indicates that the address is calculated with a base offset stored in the base register.
The oj^indicates that the base offset used is fetched directly from the instruction memory. The [] sign indi-
cates that the address is calculated with an index offset stored in the index register. The ~ sign indicates that
a post operation is to be performed on the index value at the end of the instruction execution. The post index

operations are add or subtract and bit reversal.

Table 2 summarizes the instructions that control the registers that are used to generate the data ad-
dresses. "Load" in Table 2 means loading a value from 1 of the 16 peripheral devices to the DAG module.
"Store" in Table 2 means storing a value from the DAG module to 1 of the 16 peripheral devices.

Table 2. DAG Load and Store Instructions

Mneumonic Description Comments
Kernel

Restriction

lp_dtp Load data task pointer set the user data address offset Yes

ld_tda_ul Load task data address upper limit set the user data address limit Yes

ld_ap Load address pointer set the stack pointer Yes

ld_apl Load address pointer limit Set the stack limit Yes

incr_ap Increment address pointer No

decr_ap Decrement address pointer No

ld_idx Load index register No

ld_pidx Load post index register Specify the value to subtract or add
for post index operation

No

ld_pidxm Load post index mode register Specify the post index operator No

ld_base Load base register No

ld_inst Load instruction register Yes

ld_dag_flag Load DAG status flags to the status
register

No

clr_err_flag Clear DAG error flags Clear error conditions Yes

ovr_odc Override operand dependency
check

No

st_dtp Store data task pointer No

st_dta_ul Store data address upper limit No

st_ap Store address pointer No

st_apl Store address pointer limit No

st_idx Store index register No

st_pidx Store post index register No

st_pidxm Store post index register mode No

st_base Store base register No

st_inst_reg Store instruction register No

st_dag_flag Store DAG flags in the status regis-
ter

Flags are loaded to the status regis-
ter through ld_dag_flag instruc-
tion

No

33. ALU

The ALU supports three data types: real (R), integer (I), and bitfield (B). The real data type is repre-
sented by a 32-bit number in IEEE single precision format. The integer data type is represented by 24-bit
sign magnitude numbers. The bitfield data type is represented by 32-bit unsigned numbers. Table 3 summa-

rizes the ALU instructions that are supported by the GT-EP.

Table 3. ALU Instructions

Mueumonic
Data
Types Description Comments

ADD R,I Addition

SUB R,I Subtract first operand minus
second operand

RSVB R,I Reverse Subtract second operand minus
first operand

MULT R,I Multiply

SHL B Shift left

SHR B Shift right

AND B Logical and

OR B logical or

XOR B logical xor

NOT B logical not bit inverse

PEXP R Pack exponent Place operand in the real number
exponent field

INVS R Inverse seed Provide a first order division ap-
proximation

ROUND I Round to nearest

PASS R,I,B Pass operand No change is done on the operand

FLOAT I Convert integer to real

UEXP R Unpack exponent

UMAN R Unpack mantissa Effectively zeros out the exponent
field

REXP R Square root approximation for the
exponent

RMAN R Square root approximation for the
mantissa

SSDSf 1* Sign of SINE function Accepts an integer operand and a
real operand

ODN I,R Odd negative If the integer operand is odd, set the
real operand to negative

SSWAP I.R Swap the sign of the two operands

STAN I,R Sign of tan function

3.4.1/0

The I/O category consists of two instruction fields: ods[3:0] and ids[3:0]. The ods[3:0] selects 1

of 16 output device for the output of the ALU. The ids[3:0] selects 1 of 16 input device forthe input to the

ALU.

4. Programming Examples

Two examples will be used to illustrate the steps involved in programming the GT-VIAG chip. The

first example shows the steps involved in loading a program into the instruction memory. The second exam-

ple illustrates running multiple tasks on the GT-VIAG chip. Both programs assume a reset condition as a

starting point. On a reset, all interrupts are automatically disabled.

4.1. Program Loading

The GT-VIAG chip has a simple built-in loader. When the chip is reset, the GT-VIAG will begin

program execution in kernel mode at instruction address 0. It will first look for a pattern of 0110 (MISC in-

struction) on the pc_maj_op[3:0] instruction field and a pattern of xx-xxxx-xxxx-xxxx-QOOO-0101-1010

on the pc_min_op[11:0] instruction field. If the instruction patterns are found at instruction location 0, the

GT-VIAG chip will proceed to fetch and execute the next instruction.

If the patterns do not exist (a most likely situation on a power up), the GT-VIAG will invoke the
internal loader to begin fetching instructions from ids[3:0] channel 4. The internal loader program is as fol-

lows:

{loading instruction memory }

0: ld_pc_reg(receive(4,#0));

1: ld_pc_reg(receive(4,#0));

2:BLX

3: ld_inst_reg(3,receive(4,#0));

4: ld_inst_reg(2,receive(4,#0));

5: ld_inst_reg(l,receive(4,#0))

6: ld_inst_reg(0,receive(4,#0))

7: ld_inst_reg(2,receive(4,#0))

8: wr_inst_pha;

9: wr_inst_phb;

a: EL(3)

{load loop counter}

{load starting address for instruction writes }

{ begin loop external}

{load instruction register 3 at GT-VDAG chip }

{load instruction register 2 at GT-VDAG chip for PHASE_A

write }

{load instruction register 1 at GT-VIAG chip }

{load instruction register 0 at GT-VIAG chip }

{load instruction register 2 at GT-VDAG chip forPHASE_B

write }

{ write the data in instruction registers 1,2,3, and 4 to the in-
struction memory that is accessed on PHASE_A at the loca-
tion specified by the program counter register }

{ write the data in instruction register 2 to the instruction
memory that is accessed on PH ASE_B at the location speci-
fied by the program counter register and increment the con-

tents of the program counter register by one }

{ check the contents of the loop counter, If the contents of the
loop counter are not one, decrement the loop counter by 1
and branch to location 3; load instruction register 3 at GT-
VDAG chip }

{loading data memory }

b: BALU(Z,F,e,receive(4,#0)) II ld_base(F,receive(4,#0))

c: CONT;

d: BI(b) II #A := receive(4,#0);

{load F base register and branch to address e if the received
value is zero and assume branch is false }

{ waiting for ld_base instruction to take effect}

{assign the received value to the data memory location speci-
fied by the F base register and branch to address b }

10

e: #0 := receive(4,#0); { assign the received value to data memory location 0 }

f: rst; { reset the processor}

With the exception of the wrjnst and rd_inst instructions, all of the GT-VIAG instructions take
1 cycle to execute. The wrjnst and rd_inst instructions take two cycles to execute. The body of the loop
for loading an instruction field consists of 5 load instructions, 1 nop (continue), 2 write instructions, and 1
end of loop instruction for a total of 9 cycles. If a 100-ns cycle time is used (the speed of an existing proto-
type), it will take 58.98 ms to load 64k of instruction words. On the other hand, if a 30O-ns data transmission
cycle time is assumed on channel 2, it will take 98.304 ms to load 64k of instruction words because 5 trans-

fers are required per instruction word.

42. Vector Multiply

An axample will be used to illustrate the various addressing modes of the GT-VDAG chip. A hand

translation of a simple Pascal program will be presented.

The Pascal program to be considered is as follows:

Program Test;
const
max_dim = 100;

type
vector : array[1..max_dim] of real;

var
i,N : integer;
x,y,z : vector;

procedure vector_multiply(var c:vector;a,b:vector;dimension:integer) ;

var i : integer;
procedure display_vector;
var i : integer;
begin

writeln(i);
writeln(a[i]);
writeln(b[i]);
writeln(c[i]);

end; { of display_vector }
begin

for i := 1 to dimension do
c[i] := a[i] + b[i];

for i := 1 to dimension do
display_vector;

end; { of vector_multiply }

begin
readln(N);
if N <= max dim then

11

begin
for i := 1 to N do
begin

readln(x[i]);
readln(y[i]);

end;
vector_multiply(z,x,y,N);

end;
end.

The global variables are assigned with absolute addressing mode as shown in Table 4.

Table 4. Global Variable Assignment

Variable/
Constant

Absolute Location

Max_dim 0

i 1

N 2

X 3.. 102

y 103..202

z 203..302

1 303

203 304

202 305

101 306

vector_multiply_ap 307

The variable vector_multiply_ap is used to store the address pointer of the procedure vector jnulti-

ply. It is needed because procedure vector jnultiply contains a nested procedure, display_vector,

and the nested procedure requires access to the local variables of procedure display_yector. The

integer constant 203 is used to pass the starting address of array z as a call-by-reference parameter.

Integer constants 202 and 101 is used to access the local array a and b of procedure vector jnultiply

from the procedure display_yector.

The local variables of procedure vector jnultiply are assigned with relative addressing

mode as indicated in Table 5.

12

Table 5. Local Variable Assignment of Procedure Vectormultiply

Variable/
Constant

Relative Location
%

cA 0

a 1..100

b 101. .200

dimension 201

i 202

temporary 203

The variable cA is used to store the pointer to the starting address of the call-by-reference array

c.

The main body of the program is translated to the GT-VIC instructions as follows:

{ readln(N)}

0: #2 := receive(3);

{if N <= max_dim then }

l:BALU(S,F,19,#0-#2);

{fori:=ltoNdo}

2:%0:=#2-#0;

3: ld_pc_reg(%0);

4: ld_idx(f,0);

5: ld_pidxm(frs,+);

6: ld_pidx(frs,l);

7: BLX;

{ readln(x[i])}

8: #3[] := receive(3);

{ readln(y[i] }

receive N from channel 3; readln statement is translated as
a receive instruction from channel 3 }

{ subtract #2 from #0, branch to location 19 if the sign flag is
1, assume branch is not taken }

{ set temporary variable at relative location 0 and assigned it
to the loop count}

{load the program counter register with the loop count}

{load the f index register with a constant 0 }

{ set the f, r, and s post index operators to perform addition }

{load the f, r, and s post index registers with a constant 1 }

{begin loop with a count value in the program counter register

}

receive x[i] from channel 3 by using a constant address offset
of 3 and the indexing mode }

13

9: EL(8) II #103[]~ := receive(3); {receive y[i] from channel 3 by using a constant address offset
of 103 and the indexing mode. The ~ operator is used to acti-
vate the post index operation which has been setup to add 1
to the content of the index register. The EL(8) instruction
will branch to instruction 8 and decrement the loop counter

by 1 if the loop counter is not a 1 }

{vector_multiply(z,x,y,N) }

10: ld_pc_reg(%l);

ll:ld_idx(fr,0)

12: incr_ap(204);

13: %0 := #203

14: BLX;

15:%1[]:=#3[];

16: EL(15) II %101[]~ :=#103[]-

{load program counter register with loop count of N-l }

{load f and r index registers with a constant 0 }

{increment the address pointer by 204, which is the amount
of local and temporary data space required to execute proce-

dure vector_multiply }

{ pass the starting address of array z to local variable cA }

{ begin loop with the loop counter from the program counter

register}

{ copy array x into local array a of procedure vector_multiply

}

{copy array x into local array b of procedure vector_multiply;
post increment the fand r index registers; If the content of the
loopcounteris l.goto 15 and decrement the loop counter by

1}

{ passing the value of N to the parameter dimension; begin
procedure vector_multiply at location 19 }

17: BP(19) II %201 := #2;

{end.}

18: ET;

The procedure vector jnultiply is translated into the GT-VIC instructions as follows:

{ end of task and return program control to the kernel}

19: #307 := st_ap;

{ for i := 1 to dimension do }

20:%203:=%201-#303;

21:ld_pc_reg(%203);

[store the address pointer of procedure vectorjnultiply. This
is necessary because procedure vectorjnultiply contains a
nested procedure and the nested procedure requires access to
the local variables of procedure vectorjnultiply }

{temporary variable := dimension - 1 }

{load program counter register with the loop count}

14

22: ld_idx_reg(frs,0); {load f, r, and s index registers with a contant 0 }

{ c[i] := a[i] + b[i] }

23: ld_base(f,%0); {load f base register with the starting address of array c }

24: BLX; {begin loop with a count value stored in the program counter

register}

25: EL[25] II #*[]- := %1[]~ + %101[]~;
{ c[i] := a[i] + b[i]; repeat until the content of loop counter

isl }

{ for i := 1 to dimension do }

26: %202 := #303; {i := 1 }

27: BALU(NS,F,29,%201-%202); {if dimension > i then goto 27; assume branch is not taken }

{display_vector}

27: BP(32) II incr_ap(l); {begin procedure; incrementthe address pointer by 1 to allow
1 temporary variable for procedure display_yector }

{ end; { of for } }

28: BI(27) II %202 := %202 + #303;
{i:=i-l}

{ end; { of procedure vectorjmultiply } }

30: decr_ap(204); { decrement address pointer by 204 to release the local and
temporary work space of procedure vector jnultiply }

31: EPII #307 := st_ap; {end of procedure and restore the address pointer of procedure
vector_multiply; The later is needed only if a procedure is re-
cursively called.}

The procedure display_vector is translated into the GT-VIC instruction as follows:

{ writeln(i) }

31: % 1 := #307 + #305; {calculate the address for accessing i: address pointer of vec-
tor_multiply + constant offset of variable i}

32: ld_base(r,%l); {load r base register }

33: ld_idx(r,%l); {load index register with the calculated address of i for later
use }

34: send(3,A); { send i to channel 3 using indirect addressing mode }

15

{ writeln(a[i])}

35: %1 := #307 + #306;

36:ld_base(r,%l);

37: cont;

38: send(3 A[]);

{ writeln(b[i])}

39: %1 := #307+ #303;

40:ld_base(r,%l);

41: cont;

42: send(3 A[]);

{ writeln(c[i])}

43: ld_base(r,#307);

44: cont;

45: send(3,A[]);

{ end {of displayjvector} }

46: EPII decr_ap(l);

{ calculate base address of vector a }

{load r base register}

{ wait for load base instruction to take effect}

{send a[i]}

{ calculate base address of vector b }

{load r base register }

{ wait for load base instruction to take effect}

{send b[i]}

{load cA base address; note cA is at relative address 0 }

{ wait for load base instruction to take effect}

{ send c[i] }

{ end of procedure and decrement address pointer by 1 }

The kernel that invokes the execution of the program is as follows:

0: ld_tp(1000);

1: ld_tpl(1046);

2: ld_dtp(2000);

3: ld_apl(2308);

4: ld_ap(2607);

5: ld_tda_ul(2067);

{load task pointer, allocate instruction execution beginning at

location 1000 }

{load task pointer limit; the last valid instruction address of

program test is at location 46 }

{load data task pointer, allocate data space for program test

beginning at location 2000 }

{load address pointer limit; the last global variable is at loca-

tion 207 }

{load address pointer, provide 300 locations for data stack }

{load task data address upper limit; allow 1 temporary vari-

able for the main program }

load program into the instruction memory

16

- load constants into the data memory

n+1: BT(0); { begin execution of program test at relative instruction ad-

dress 0 }

n+2: hit; { halt the processor, mission accomplished }

The above example illustrates the use of the various addressing modes on the GT-VDAG module.

43. Multi-tasking

The following example illustrates the creation of two tasks and the setting up of an interrupt service
routine for context switching between two tasks. When the two tasks are completed, the processor is halted.

The following constants are assumed to be available from the data memory :

tp_a : task A task pointer,
tp_b : task B task pointer;
tb_adr : timer B interrupt address;
cs_adr : context switch instruction address;
tb_sv : timer b starting value;
tb_im = 00008000 : constant for enabling timer B;

zero = 00000000.

The following constants are used as a part of the instruction field :

A_adr : task A instruction address;
B_adr : task B instruction address.

{ The following instructions are executed when the processor is reset} 0:

CONT; { first instruction executed after a reset}

- setup task table

ld_intr_v(15,tb_adr); { setup the interrupt address for timer B}

ld_itb_sv(tb_sv); {load timer B starting value }

ld_im(tb_im); { enable timer B for context switch }

ld_tpa(tp_a); { setup the task pointer for task A }

rst_itb; { reset timer B and turn on the timer}

- mark that task A is completed has been started and was last executed

BT(A_adr); {begin task A and turn on the task pointer mode (user mode)}

- mark that task A has been started and was last executed

17

BI(cs_adr); { branch to the context switch routine }

{ The following instructions are executed when timer B generates an interrupt (when a carry out is gen-
erated). }

tb_adr:

CONT, { always needed as the first instruction in a service routine }

dis_tp; { disable the task pointer mode/user mode }

push_jjc(cs_adr); {push context switch address onto the program counter stack;
forcing the return interrupt address }

end_intr { end interrupt}

{ The following instructions are executed on a return from timer B interrupt}

cs_adr:

- check the information on the task table

case 1: task A is active and task B is active

case 1.1: task A was last executed and task B has not been started

- save task A processing state

BT(B_adr) { begin task B at location B_adr, turn on the task pointer
mode } - mark task B as complete

BI(cs_adr) { branch to context switch handling routine }

case 1.2: task A was last executed and task B has been started

- save task A processing state

- restore task B processing state

ECS; { end of context switch; turn on the user mode and begin ex-
ecution as though task B has just been returned from the tim-

er interrupt}

case 1.3: task B was last executed and task A is active

- save task B processing state

- restore task A processing state

ECS; { end of context switch; return to task A }

case 2: task A is complete and task B is active

18

case 2.1: task A was last executed

- restore task B processing state

ECS; { end of context switch; return to task B }

case 2.2: task B was last executed

ECS; { end of context switch; return to task B }

case 3: task A is active and task B is complete

case 3.1: task B was last executed

- restore task A processing state

ECS; { end of context switch; return to task A }

case 3.2: task A was last executed

ECS; { end of context switch; return to task A }

case 4: task A and B are complete,

hit; { halt the processor, mission accomplished }

{ The following instruction is executed when BT(A_adr) is executed } A_adr:

- task A program body

ET; { return control to the kernel section that creates Task A }

{ The following instruction is executed when BT(B_adr) is executed }

B_adr:

- task B program body

ET; { return control to the kernel section that creates Task B }

The program illustrated above provides a brief overview of how to program the GT-VIAG chip to
perform multi-tasking. The key instructions for the context switch are BT, dis_tp, push_pc, ECS, and ET.
The BT instruction is used create a task to transfer control from the kernel mode to the user mode. The dis_tp
instruction is used to explicitly set the kernel execution mode in the timer interrupt handling routine. The
push_pc instruction is used to force the context switch address as the interrupt return address. The ECS in-
struction is used to return program control from the kernel to the user mode as though it is returned from
the timer interrupt service routine. Finally, the ET instruction is used by the user to complete the execution

of the task.

19

5. References

[Back78] Backus, J., "Can Programming be Liberated from the von Neumann Style ? A Function-
al Style and its Algebra of Programs," Communications of the ACM, Vol. 21, No. 8, pp.
613-41.

[Tan89] Tan, W. S., A VLSI Parallel Processor Structure for Scientific Computing, Ph.D. disser-
tation, Georgia Institute of Technology, May 1989.

[Myer78] Myers J. G., Advances in Computer Architecture, New York, N.Y.: John Wiley & Sons,
1978.

[Patt82] Patterson D. A. and Sequin C. H., "A VLSI RISC," Computer, Sept. 1982, pp. 8-20.

[Gupt83] Gupta, A. and Toong, H. D., "An Architectural Comparison of 32-bit Microproces-
sors," EEEE Micro, Feb. 1983, pp. 9-22.

[Tan90-1] Tan, W. S. and S. H. Russ, Instruction Address Generation: A Programming Model,
CERL008-O061.1, Georgia Tech, June 1990.

[Tan90-2] Tan, W. S. and S. H. Russ, Data Address Generation: A Programming Model,
CERL008-0062.1, Georgia Tech, June 1990.

20

