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ABSTRACT 

A COMBINATION OF RAO-WILTON-GLISSON AND ASYMPTOTIC PHASE 
BASIS FUNCTIONS TO SOLVE THE ELECTRIC AND MAGNETIC FIELD 

INTEGRAL EQUATIONS 

By 

John Robert Gulick 

Using the method of moments to solve the electric and magnetic field integral equations 

for the currents on a PEC surface requires a large number of unknowns to capture the 

current's rapid spatial variation across the surface. Rao-Wilton-Glisson (RWG) vector 

basis functions [1] have been successfully used for the past twenty years [1, 2, 3,...]. 

Unfortunately, the required number of unknowns is on the order of 100 per square 

wavelength making electrically large problems impractical. For large smooth objects, the 

rapid spatial variation in the current is due to phase variations rather than magnitude 

variations. Thus, using asymptotic phase (AP) basis functions can drastically reduce the 

number of unknowns [3] for large, smooth metallic bodies. The AP basis function 

incorporates the anticipated phase, hence represents a more efficient basis function for a 

large class of problems. However, using RWG basis functions for monostatic calculations 

is more efficient since the matrix entries need not be recomputed for each new incidence 

angle, as is the case for an AP expansion. One can combine the methods; selecting RWG 

or AP basis functions for a given geometry based on an element's location within the 

geometry. This allows the relaxation of mesh density in smooth flat regions not near the 

discontinuities resulting in a significant reduction of unknowns. This research shows that 

combining functions is highly efficient and the effectiveness of this method depends on 

the geometry of application. 
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INTRODUCTION 

This thesis presents the theoretical development and numerical solution results for 

implementing a method of moments solution technique combining Rao-Wilton-Glisson 

(RWG) basis functions [1] and Asymptotic (AP) basis functions [3] over the same 

surface. With the intention of broadening the potential audience beyond just the 

electromagnetics community, included in Appendix A is background material 

commencing from Maxwell's independent equations. The theoretical development in 

chapter one continues where Appendix A leaves off and develops the familiar form of the 

electric and magnetic field integral equations along with a standard method of combining 

the equations. Chapter two discusses the method of moments technique and introduces 

the implementation of combined RWG and AP basis and testing functions to derive the 

impedance matrix for the electric field integral equation (EFIE) and magnetic field 

integral equation (MFIE). In chapter three, the basis functions are incorporated into the 

EFIE matrix equation in a manner that can be solved computationally. Chapter 4 presents 

computational results, comparison, and discussion for implementation of this technique 

on two square plates, a kite geometry, and the Electromagnetic Code Consortium 

(EMCC) mini-arrow. The final chapter summarizes the specific knowledge gained from 

this research. 

The research shows that the technique is a more efficient solution method than existing 

methods for geometries with large, smooth, low curvature regions. 



CHAPTER 1: INTEGRAL EQUATIONS 

The first three chapters develop the theory for the problem this research addresses. After 

discussing the configuration and general problem, chapter one introduces the electric and 

magnetic field integral equations. 

1. Configuration 

The problem is a traditional scattering problem as shown in figure 1. An arbitrary perfect 

electrically conducting (PEC) surface is immersed in free space. A known current source 

creates impressed electric and magnetic fields (E1 and H1). Due to the necessity of 

matching boundary conditions on the PEC surface, the impressed fields excite a surface 

J{(r) 

El(r), Hl(r) 

Es(r), ET(r) 

Free Space 
(£=£ 0,11=1^,0=0) 

Figure 1.1: Configuration 



current Js on the PEC object. The surface current induces scattered electric and magnetic 

fields (Es and Hs), as required to satisfy the boundary conditions. The total fields in the 

free space region (E* and H*) are the sum of the impressed and scattered fields. It is the 

total fields that must satisfy the boundary conditions on the surface of the PEC object. 

The following fundamental equations are derived in Appendix A along with the complex 

transform domain form of Maxwell's equations. Quantities E, H, A, J, and <& have 

suppressed position dependence r. Vector r' denotes the source position while r denotes 

the position vector to the observation point. Note that the first five equations contain a 

suppressed e?m time dependence term. 

V X E = -jCOßU .. .Faraday's Law (1.1) 

VxH = Ji+(ö- + y'6)£)E     ...Ampere's Law (1.2) 

V-E=-J-p(r) ...Gauss'Law (1.3) 

V»H = 0 .. .Gauss's Magnetic Law (1.4) 

V»J = -yö)p(r) ...Continuity Equation (1.5) 

yE*e 
= ~^~ V«A .. .Lorentz gauge conditions (1.6) 

k   = (O fl£ .. .wave number k in free space (1.7) 

//H = V X A ...Hin terms of vector potential A (1.8) 

E = -VOe-y»A ...Ein terms ofvector potential A (1.9) 

h X E  = 0 .. .Boundary Conditions describing the (1.10) 

n X H  = Js                              tangential component of the total field. (1.11) 

V2A + k2A - -fli1 ...scalar Helmholtz equation (1.12) 

S\r I r )~~$nRe ...unbound region Green's function for (1.12) (1.13) 

A = flj J(r')g(r | !•')<&' ...asolutionto(1.12)intermsof(1.13) (1.14) 



Given the impressed current, we know the impressed fields. By enforcing the boundary 

conditions for the total fields, we can solve for the desired scattered fields. If we can 

solve for the surface currents, we can then get A from (1.14) and find the scattered fields, 

from (1.6), (1.8), and (1.9). Due to the uniqueness theorem [4], if we find a solution to 

Maxwell's equations by enforcing all the relevant boundary conditions, the solution is 

unique. 

2. Electric Field Integral Equation 

Enforcing the boundary condition MXE' = 0 at the surface of the PEC object and using 

subscript t to denote the tangential field components, 

E;=E;+E*=O=>E;=-E;. (1.15) 

Writing -E^ using (1.6), and (1.9), 

EJ(r) = -V j® V-A -jmA = -jco\ A + 4-VV.A .  (1.16) 
Jt 

Expanding A with (1.14) and substituting into (1.16), 

Ej(r = r.) = jcoJjs Wtefr | r')*' + ^VV^ J(r')g(rJr')^' (1.17) 

In the second term of the integrand of (1.17), the divergence operator may be taken inside 

the integration since it operates on observation points while the integration is taken over 

source points. The notation denoting tangential field components will be suppressed 

unless required for clarity. 

V-f [J(r')g(r | r')K = f V.[J(r')g(r | r')K (1.18) 
Js Js 



Using the vector identity V»(wV) = wV»V + V«Vw on the integrand of the right hand 

side, V.[J(r')g(r|r')] = g(r|r')V.J(r,) + J(r')•Vg(r|r,). Since J(r') is a function of 

primed coordinates and is a constant with respect to the unprimed coordinates, the 

unprimed derivative of J(r') = 0 => V»J(r') = 0. Due to the symmetry of the Green's 

function, Vg(r | r') = -V 'g(r | r'). Using the same vector identity as above, 

-J(r>V 'g(r | r') = -V '.[J(r')g(r | r')]+g(r | r')V '«J(r'). For closed three-dimensional 

bodies, if we split the volume into two surfaces, si and S2 along a cut c with contours cj 

and C2 respectively and in opposite directions, we can apply a two-dimensional version of 

the divergence theorem as in [20] on pi7. 

fV'.[j(r')g(r|r')]^' 
Js 

= f V'.[J(r')g(r|r')]^»+f V'.[J(r')g(r\r*)]ds' 

= j> B^(r')g(r | r')dl + jc Ä,.J(rf)g(r | r')dl (119) 

= 0. 

For open surfaces, this identity follows by straightforward application of the divergence 

theorem. Therefore, 

V-[ [J(r')g(r | r<)]ds' = I g(r | r')V '.J(r')^». (L20) 

The electric field integral equation (EFIE) is by substitution of (1.20) into (1.17), 

\ 
E; (r = rs) = jiDfi ([ J(r»)g(rs | r*)ds * + pr V[ g(*s I r')V'-J(r')<&' (1.21) 



3. Magnetic Field Integral Equation 

The tangential magnetic field is discontinuous by the amount of current density induced 

on the surface of the PEC; wxH* = Js, 

Js(r') = «x[H'(r») + Hs(r')]. (1.22) 

Hs may be written in terms of A using (1.14), 

Hs(r) = -VxA = Vxf 3s(rr)g(r\rf)ds\ (1.23) 
ji Js 

Due to the physical nature of the problem, we can safely assume uniform convergence of 

the integrand. Thus, we can interchange the order of integration and differentiation. 

Then, rewriting (1.23) using the vector identity V x (Vw) = wV x V - V x Vw, 

W(r) = \Vx[Js(r')g(r\r')]ds' 

= js{g(r I r')Vx J,(rO - J,(f)x Vg(r | r')K- ^ 

However, VxJj.(r') = 0 since the unprimed derivative of a function of primed 

coordinates is zero. From the symmetry of the Green's function, Vg(r | r') = -V'g(r | r'), 

(1.24) becomes, 

H,(r) = JiJ,(rOx[V,g(r|rO]<fc\ (1.25) 

Inserting (1.25) into (1.22), 

nxH\r) = ^Q-lwa\nx\j,(r')xV'g(r\r')ds;\ (1.26) 
2 r->s+ I Js J 

where r —> s+ indicates that s is approached from the outside. Due to the discontinuity at 

the surface, the integral should be taken in the principal value sense [5]. 



nxUi(r)=^—&nxJs(r')xV'g(r\r')ds' (1.27) 
2       J s 

Equation (1.27) is referred to as the magnetic field integral equation (MFIE), valid for 

closed surfaces [9]. 

The EFIE and MFIE are actually integrodifferential equations since the unknown 

quantity is in the integrand of a differential equation. However, they are commonly 

referred to as integral equations. In general, they are both classified as inhomogeneous 

Fredholm equations where the EFIE is of the first kind and the MFIE is of the second 

kind. For more information on classification, see [10]. 

4. Combined Field Integral Equation (CFIE) 

Although either the MFIE or the EFIE is sufficient to finding the scattered fields, a 

combination can also be used. Using only EFIE or MFIE leads to spurious resonances 

for closed scattering bodies [5]. These are resolved using a method that introduces a 

mixing constant oce [0,1] to formulate the CFIE, providing stable, unique solutions for all 

closed scatterers [11,12]. 

a[EFIE]+^-(a-l)[MFIE] (128) 
A 

In this implementation, a = 1 reduces to a pure EFIE formulation while a = 0 reduces to 

a pure MFIE formulation. 



5. Summary 

EFIE:     E[(r) = ja>J £ J(r*)g(r, \r')ds' + ±VJg(rs | r')V'.J(r')^' 

MFIE:    ÄxH'(r) = i^-^ÄxJ1(rOxVg(r|OA' 

CFIE-     a[EFIE]+—(a-l)[MFIE] 
A 

None of these integral equations are easy to solve analytically except for a few special 

circumstances. Numerical techniques such as the method of moments (MoM) can be 

used to find solutions. When implementing the MoM, one chooses an expansion function 

set that can accurately represent the anticipated unknown function while minimizing the 

cost to employ it. The method of moments numerical technique applied to these integral 

equations is the topic of the next chapter. 



CHAPTER 2: METHOD OF MOMENTS 

Numerical techniques, such as the method of moments (MoM), can be used to find 

solutions to the integral equations developed in the previous chapter. When 

implementing the MoM, one chooses an expansion function set that can accurately 

represent the anticipated unknown function while minimizing the cost to employ it. The 

focal point of this research is on evaluating a potentially improved (good representation 

of the solution with minimal employment cost) expansion function set for a particular 

class of problems. This research considers combining two existing sub-domain 

expansion functions, Rao-Wilton-Glisson and Asymptotic Phase, within the same 

problem. Chapter 2 discusses the method of moments formulation using both types of 

expansion functions and develops the impedance matrix for use in a numerical solution. 

1. Method of Moments 

For a surface, subdivided into a mesh of triangle elements, there are N edges. The basis 

functions are associated with the edges of the mesh with support spanning two adjacent 

triangles. The total surface current is formed by the superposition of the various basis 

functions. Using the method of moments, we chose a sub-domain expansion function to 

represent the current across each element. Since there are N edges, each edge has a 

different expansion coefficient. We then choose a testing function. Using Galerkin's 

method, the testing function is selected as the same as the basis function. We expand the 

current with the expansion function, multiply each term in the integral equation by the 

testing function, and integrate over the surface. 



2. Expansion and Testing Functions 

Using the method of moments, we approximate the current by a set of expansion 

(equivalently basis) functions and "test" the integral equation with a testing function. 

Rao, Wilton, and Glisson developed [1] a sub-domain basis function that can be used to 

accurately approximate the current over a surface element and also serves as a testing 

function. Let f(r) represent the RWG sub-domain basis function. Since that phase of the 

incident field is known, we can assume the phase of the surface current should vary 

spatially approximately as the incident phase varies in regions not near location of rapid 

curvature change. This is one critical approximation made in the popular asymptotic 

solution method, the physical optics (PO) method. [6] RWG basis functions, modified by 

the incident phase term, are Asymptotic Phase (AP) basis functions [6] with 

F(r) = f{r)e~ji'T. Thus, including the incident phase in the basis functions should allow 

a reduction in the density of the mesh for regions away from discontinuities. Indeed this 

concept is illustrated in figure 2.1 which compares the variation of the real part of the x- 

component of the current for standard RWG basis functions and AP basis functions for a 

four wavelength square plate. 

#^f'e'%.     ^ 

X "    • -• 
. 

hi 5358! i 

, :v5:.».u,-P.i'o 
" ;■■% 

iS^^'bi*<*^ 

1 

ReR(r)} Re{7,(ry^} 
4Ax4Aplate,0inc =8O°,0inc =0° 

Figure 2.1: Current on a 4x4 Wavelength Square Plate 
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For testing functions, f (r), F*(r), and F(r) were considered. However, the first two lead 

to asymmetric matrices while the third choice yields a symmetric matrix as will be shown 

in the next section. Thus, we will use F(r) for both the testing and expansion functions. 

To allow control over the testing and expansion function for each edge of the mesh 

independently, we introduce a constant ß„ = 0 or ßn = 1 such that the current expansion is 

given by 

m=tjM*)=lm*vj,Jf*-     (2,, 
n=\ n=\ 

The subscript, n, denotes a specific edge of the mesh. In this representation, ßn -1 

means AP function while ßn = 0 reduces to the RWG basis function. For the impedance 

matrix elements where the testing and expansion functions are the same, the 

implementation of the MOM is termed Galerkin's method. The impedance matrix is 

derived by testing the EFIE and expanding the unknown current using our flexible (either 

RWG or AP) basis and testing functions. 

3. Electric Field Integral Equation Method Of Moments 

EFIE:   E\(r) = jap(\Wg(r, I^A' + p-V]^(r, | r')V'• J(r>fe' 

Assume the medium is free space. Let the m indices denote the testing edge and n denote 

the expansion edge. Testing equation (2.2) with Fm(r) requires pre-multiplication by 

Fm(r) and integration over the domain of each testing function. 

\ 
(2.2) 

Jt 

11 



I Fm (r).E! (r)ds = jam], J,. K (r>J(r')s(rs I r>fc Vfc 

■^ 1F- (r>vL ^ ■ r'}v '•J(r,)*'ds- (2'3) 
K 

For notational convenience, define A, B, and C such that (2.3) has the form 

A = j(Oß 

A=\¥m{r>V{r)ds 
Js 

(2.4) 

B = JXF*(r>J(rf)s(r. Ir">ds'ds (2-5) 

C = J Fm (r>V f, g(rs | r') V'•J(r*)ds' dfe (2.6) 

Manipulating C by first switching the order of integration, 

C = IV'.J(r')^Fm(r).Vg(rs | r*)dsds' (2.7) 

then, using the vector id V»(wV) = wV«V + V«Vw as V«Vw = V»Vw-V»(Vw), 

C = ^V'.J(r')[JsV.[Fm(r)^(rs |r')]^-J^V.Fm(r)g(rs |r')fife]^\ (2.8) 

Using the same technique as in (1.19), 

J,V-[Fw(r)g(rs | T*)]ds = jchrFm(r)g(rs | r')<// = 0. (2.9) 

Therefore, C reduces to, 

C = -jy'• J(r')£V-Fw(r)g(r, |r»)M'. 

Then, after switching order of integration, we have 

C = jj V.FTO(r)V'.J(r')g(rs |r'Wds. (2.10) 

12 



Introduce an incident electric field as 

E'(r) = ee J "^   *' where 

k' =-f = -x sin 6i cos 0, - y sin 0, sin 0; - £ cos 6i 

r = xx + yy + zz 

:. k'*r = -x sin 6i cos 0,. - 7 sin #,. sin <pt - z cos 6t and 

e = o,cos«+0,sin«. 

Incorporate asymptotic phase (AP) expansion and testing functions as discussed in 

section 2.2 using coefficient j3m describing the amount of phase. The testing function 

becomes, 

FJH(r) = fM(r)e \ (2.ii) 

Expanding the current as the sum of the currents over all N edges, 

*(*") = ?, JM*")*~ (2,2) 
«=1 

Therefore A, B, and C (redefining C by pulling out a minus sign) can be written so that 

N 

B — — C   where 

A = \im(r).ee-^)e"ds (2,3) 

B = JJ/m(r)f„(r')g(rs | r')e-j£'<ß-'+ß-rWds    (2.14) 

C = I Js,Cintegrand g(rs I r')ds'ds (215) 

where 

13 



c      =v« integrand L(r)e -jßmfi'r) V« f„(r>     v 
(2.16) 

Using the product rule for differentiation, 

v. L(r)e 7->M*''-r) = f.(r>V 
-jßm{k''r) + e     v    V.f (r) 

Then, differentiating, 

y   ~}P-"{k''r) _ y   7i3m(Arsm0,.cos^+^sine,sin<O,+zcose,) 

= y ßm (x sin 0(. cos 0, + y sin 0,. sin 0. + z cos 0;) e -yA»(*' 

which means 

We -jß^'-r) = {V-Ur)-Ur>JßJiyM*'r).     (2.17) 

Thus, by substitution of (2.17) into (2.16), 

(V-f„ (r) - fm (ry-jßj1) (V '.f„ (r') - f„ (r yjßfi) 
C integrand 

For notational simplicity, define 

Jki-(ßmr+ß„r') (2.18) 

£ (r I r') = g(r \ r')e n-j#'(ßmr+ß„r') 
(2.19) 

14 



Multiplying the numerator of Qntegrand yields 

(v.f„(r)-fra(r)v^')(V'.f„(r')-f»(«-')ViSi') 

= V-f„(r)(V'.f„(r'))-(f„(r)v^i)V'.f„(r') 

-V-fm(r)(f„(r>ü3>') + (fm(r)v^')(f„(r>y^') 

= V-fm(r)[V'.f„(r')]-;/}ii.f„(r)[V'.f„(r')] 

-jß„k''Ur')[V.fm(r)]-ßJn[k'-Ur)][kl^(r')]. 

Thus, 

C=ff,g(r|r') 
Js Js 

V.f„(r)[V'.f„ (O] 

-jßnk'WW'W] 
-i3„/3„[Ä'-f„(r)][Ä'.f„(r')] 

•ds'ds. 
(2.20) 

Combining A, B, C back into A = j(Oii^Jn 
n=l 

results in 

N 

n=\ 

EFIE 
ran     '■ 

where 

(2.21) 

15 



z""=jli(rlr') + 1 
(2.22) 

'-V-fw(r)[V'.f„ (r')] 

+7i8i'-f,(r)[V.f„(r')] &.& 

+7A^-f„(r')[V.fm(r)] 

v+t/3„[^.f,(r)][^.f„(r')]^ 

is the EFIE impedance matrix. For future reference, rewrite (2.21) and (2.22) in a form 

convenient for discussion; 

\tm{T)&-^*"ds=]eiitj.\tl&T I r'V«"Eds'ds   (2.23) 
n=\ 

where 

Z-    =*.(«*.(«■■) + 
1 

and from (2.19), 

^-V-f,(r)[V.f„(r')] ^ 

+7^-fw(r)[V'.fw(r')] 

+7Ä#-f,(0[V-fM(r)] 

+P»A[i,.fllI(r)][i
,.f,(rO]^ 

.t\   -Jk'-(ßmr+ßnf) 

(2.24) 

g(r I r') = g(r | r>~ 

Note that if the testing and expansion functions are RWG, then ßm and ßn are zero. In 

this case (2.23) and (2.24) reduce to the familiar [1, 2, 3, 8] expression, 
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jfm(ryee'iKi'-rds 

= yovI>Jsj>(r|r') 
n=\ 

f,(r)fw(r') 
V-f,(r)[V'<(r')] ds'ds-       (2-25) 

If either the testing or the expansion function is AP, one of the middle two terms in the 

brackets of (2.24) are added. For matrix elements where both testing and expansion 

functions are AP, we must compute all the terms in (2.24); the last three of which must be 

computed at each incident angle. It is important to note that in all cases, the impedance 

matrix is symmetric, thus we can use specialized solution methods. 

4. Magnetic Field Integral Equation Method of Moments 

A similar application of the method of moments can be applied to the magnetic field 

integral. Recall the MFIE from equation (1.25), 

hxH\r) = ^^-j> + hxJs(r')xV'g(r\r')ds' .     (2. 26) 

The s+ in equation (2.26) is a reminder that the MFIE is to be evaluated e > 0 distance 

outside the surface, hence should be evaluated in the principal value sense. We test the 

MFIE, as with the EFIE, with 

and expanding the current as the sum of the currents over all N edges, 

J^L/AM« 
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yielding, 

\fm(r)'hxH.t(rf)e~Jßm^ds 
Js 

n=\ 

-lUr).nxj^J„fu(r')x[V'g(r\r')]e-jl'<ß-'^'Wds 
n=\ 

N 
.    rrMFIE       V1    T  7MFIE  ,. 

=>AH -2a
JnLnm       3 

-fm(ryhxjsJn(r')xV'g(r\r')ds' 

«=1 

yMFIE  _   f 
HI» _ J5 

üfr. 

Again, we are using the notation from (2.19). Our first observation is the asymmetry of 

the MFIE impedance matrix. The ZMFIE is more difficult than the EFIE to evaluate due to 

this asymmetry and performing the principal value sense integration. 
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CHAPTER 3: BASIS FUNCTION SPECIFICATION 

To implement the preceding impedance matrix in a numerical solver, we still need to 

specify the spatial distribution of the basis functions, f. Additionally, we need to evaluate 

the singular integrals when the source and observation elements coalesce. This chapter 

uses the Rao-Wilton-Glisson [1] definition for sub-domain vector basis functions to write 

the impedance matrix, in particular the electric field integral equation impedance matrix, 

in a form appropriate for numerical implementation. We then discuss the self-cell 

problem and its resolution for the case of flat triangles. 

/. Sub-domain Vector Basis Functions 

As described in Chapter 2, fn and fm are standard RWG basis functions. Recall that for 

asymptotic basis functions, we multiply the RWG function by the incident phase term. 

The final impedance matrix from Chapter 2 incorporates the combination of basis 

functions using the parameters ßm and ß„. One can see by inspection that if both the 

source and observation edge are RWG (ß„ = ßm = 0), the impedance matrix reduces to the 

familiar RWG MoM symmetric impedance matrix. As intended then, the phase factor is 

separated from the RWG basis function in the impedance matrix equation. For numerical 

implementation, at this point we need only substitute the RWG basis function definition 

forfm(r)andf„(r'). 
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As defined in [1], RWG sub-domain basis 

functions for triangle patches effectively 

model the current on a scatterer. These 

basis functions describe the expanded 

current only over two triangles sharing a 

common edge indicated by the expansion 

and testing indices (n or m) and are zero 

elsewhere, hence the term sub-domain. 

nth edge 

/>n» 

Pn"(r) 

Figure 3.1: Subdomain Parameters [1] 

Figure 3.1 illustrates the nature of these basis functions and the associated parameters for 

the nth interior edge shared by triangles T„+ and T„~. A point in either triangle is described 

by either r from the global origin orp*(r), a local position vector from emanating from 

the free vertex (e.g. the vertex opposite the n* edge) of the triangle on which the point is 

located. Notice the direction of p*(r) from the free vertex of T„+ across the shared edge 

towards the free vertex of T„~. This establishes positive current reference direction from 

the T„+ to T„. As seen in figure 3.1, /„ is the length of the nth edge and A* is the area of 

triangle T*. The basis function f„(r) for the nth edge is then defined as 

7-P+&    forrinr; 

f„(r) = 

24 
->„P~(r) , for r in Tn 

0, elsewhere, 

(3.1) 
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where the surface divergence of f„(r) , proportional to the surface charge density 

associated with the basis element, is given by 

-=-,   forrinr„+ 

A: 

V.f„(r) = -f-,   forrinr; (3 2) 
An 

0,     elsewhere. 

Some properties that make the basis function f„(r) particularly suited to approximating 

the surface current are detailed in [1] and stated here. 

1. The current has no component normal to the boundary of the surface formed by 

the triangle pair Tn
+, Tn". Thus, no line charges exist along this boundary. 

2. The current component normal to the nth edge is constant and continuous across 

the edge. It is therefore implied that all edges of the triangle pair are free of line 

charges. 

3. Due to (3.2), the charge density is constant in each triangle and the total charge 

associated with the pair is zero. 

2. Impedance Matrix 

We then substitute the definition for RWG basis function into the impedance matrix form 

of the EFIE established previously (2.24). Recall 

jtm(ryee-JilMii-rds = Jw£j.Lli<X I r<)ZZ'Eds'ds 
«=1 

where 
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Z-   =f.(r)r.(r-) + 

^-V-f„(r)[V'.f„(r')] 

+//».*'«f-MlvXOO] 

+/flM(0[V«f11(r)] 

and 

n _ _L „-Mg-JP ißmr+ßj')    j? - 
g(r\r')=^Re \R = r-r 

Observe the form of the above equation is [Z]{J}={V}, where [Z] is an NxN system and 

N is the number of edges in the niesh. The tested left hand side of the EFIE becomes 

Here we have introduced the sign carrying parameter 

[l,   forrin7;+ 

(3.4) 
[-l,for r in Ti 

and used + with the top sign for r in T„+ and the bottom sign for r in Tn~. The right hand 

side consists of a constant (joi/i) multiplying the unknown current expansion coefficient 

column vector (JJ times a matrix Z^'E. Matrix elements associated with the nth row 

and mth column are then given by 

^nm J  + I  +        4nR nm (3.5) 
'm  ' ^m      -*n        n 

with 
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zTE = \ f-GWO+p- 

/r-V-f(B(r)[V'.fI,(r')] 

+iW'-fm(r)[V.f„(r')] 

+yW'-f„(r')[V.fm(r)] 

+i3m/3„p<(r)][^.f„(r')] 
f   i /  il mm    n n 

An    A 

. ijmpz(r)i/ i     m mr m \    / "n n 

lmlmP±m(r)hLPn:(r'l + ± 
2At 24- 

+jßmk 
24,     *t 

+jßifirtä(r')ü. 

rmrJn 

( 

24      Am 

. 1 I or (r) 1     m mr m \    ) 

2Al 

ujj^pi(r>f,t{r.)+}ML 
*<A 

I I I I        m m n n 

*.<£ 

KAA 

+M$< (r') + ßmß„ [£< (r)][*'-P* (r1)] 

£F/£ 
In evaluation of Znm    , it is useful to 

recognize that pf(r), ie {m,n} are expressed 

in global coordinates as pj 0") = ± (r _ r,) 

where r, is the global position vector to the 

vertex opposite edge i on if as shown in 

Figure 3.2. 

?h edge 

Pi» 

Figure 3.2: Local Position in Terms of 
Global Position Vectors 
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3. Singularities 

Equation (3.5) may be readily evaluated numerically unless the source and observation 

edges are close. We resolve the singularity as in [7], with & suppressed 

in the integrand of each term, 

, p-JkoR , p-Jk»R  _\ 

jT± r, v   /    ^ jT± ri v   /       ^ 

1     ,  . (3-6) 
+ r (£z£Wp_P/)f 1^. 

where p,p',p, are projections of position vectors r,r',r,. respectively onto triangle 7]*. 

The first integral is bounded, so it can be numerically integrated, while the second two 

can be evaluated analytically. Similarly, the scalar integrals can be written 

r   e'jk°R r   ejk°R-\        c   1 

K-    R Jit      R Jit R {3J) 

4. Coding 

The code used for testing was primarily a modified version of the program, TriMom, by 

Dr. Pamela Haddad [8]* implemented at Michigan State University. The modified code, 

called HotPoppa, is a FORTAN based numerical solver. It allows for solution of the 

EFIE using the basis function development included in the previous chapter. It was 

additionally modified to import .grd mesh files created by SkyMesh2™ as well as SDRC 

IDEAS Universal files (.unv). 

*Dr. Pamela Haddad performed this work while on NSF Graduate Fellowship at the University of 
Michigan. She is now a mentor of the technical staff at MIT's Lincoln Laboratory. 
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CHAPTER 4: RESULTS 

This chapter presents details regarding numerical solutions of the theory presented above. 

Results for two different size square plates, a kite, and the EMCC mini-arrow are 

discussed and compared. We shall analyze the kite in extensive detail as we explore 

several implications of the mixed basis function method. Additionally, convergence 

comparisons between various basis function implementations along with mesh density 

analysis are presented for the kite. Radar cross section (RCS) values are used for 

comparison as they indicate the scattering characteristics of the object. 

1. Square Plate 

Two square plates are initially considered showing the potential for mixed basis function 

implementation to perform accurately as proposed. For a 4x4 wavelength plate, a tenth 

of a wavelength edge length mesh leads to 2240 unknowns while the graded ( or non- 

uniform) mesh reduces the number of unknowns to 1870. Figure 4.1 shows monostatic 

RCS results and the graded 

mesh for the 4x4 

wavelength plate. We 

observe excellent 

agreement. The reference 

line shows results for tenth 

of a wavelength sampling 

over the entire square using 

-H-A, 

— Reference 
o EFIE-AP 
°   EFIE-RWG+AP 

20 40 60 80 

Monostatic RCS o?4lx4A. plate 
VV polarization 

Figure 4.1: Sample results for a AXxAX plate.[3] 
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only RWG basis and testing 

functions. EFIE-AP refers to 

AP basis and testing functions    | 

on the pictured graded mesh 

while EFIE-RWG + AP 

shows the results for using 

RWG functions in the outer 

region of the graded mesh and 

— Reference 

o  EFIE-APtRWG 
---EFIE-RWG 

20 40 60 
Theta (degrees) 

W-polarization 

bU 
— Reference 

45 o  EFIE-AP+RWG 
---EFIE-RWG 

40 ■ 

j35 
«ft 
m 
Sso 

■ 

0) 
0 
H25 

20 

15 
'l'       1 '            Xlllflfli 

in 
»i            v-' 

20 40 60 80 
Thela (degrees) 

HH-polarization 

Figure 4.2: Scattering by a lOfodOA, plate.[3] 

AP functions in the inner region. For a 10x10 wavelength plate, tenth of a wavelength 

sampling results in a mesh of 14,600 edges while a graded mesh has only 4,792 edges 

(67% reduction). Again, the results are very promising as we see in Figure 4.2. 

2. The Kite: Description 

The kite is an infmitesimally 

thin PEC surface in free 

space. (Figure 4.3) Its 

length of 23.495 cm is 

approximately eight 

wavelengths at ten GHz. 

[S.05,3-85) 

{23.495.0} 

45.05,-3.85 

Figure 4.3: The Kite 

The kite is one face of the EMCC mini-arrow, an object studied in Section 4.4. 

Additionally, we wish to define two ways of observing the kite for scattering solution 

discussion. Described using standard spherical coordinate basis, the following "cuts" 

describe the arc of incident and observation angles. 
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1. Waterline cut (WL): Figure 4.4 

0 = 90°, </> = 0° ->180° 

2. Over-the-Top cut (OTT): Figure 4.5 

e = -90° ^90°, 0=0° 
Figure 4.4: WL Figure 4.5: OTT 

Note that these two perspectives use full advantage of the symmetry of the kite. For each 

perspective, we will consider theta and phi polarized incident waves. However, results 

are not presented for the WL cut theta polarization since an incident wave thus oriented 

induces no current. The three remaining cut/polarization combinations, over the top theta 

pol, over the top cut phi pol and waterline cut phi pol, will be abbreviated OTT-T, OTT- 

P, and WL-P respectively. 

The kite presents an interesting geometry for method testing for several reasons. 

1. It has features (relatively large, flat, and PEC) that take advantage of the 

methodology. 

2. It is small enough to achieve numerical results in a reasonable amount of time at 

frequencies in the five to twelve GHz range. 

3. It is the largest facet of the EMCC mini-arrow for which the community 

maintains experimental data. We extend our study to the three-dimensional mini- 

arrow in Section 4.4. 

As with the square above, we break the kite into two regions, a proportional inner kite 

and a border region. Refer again to Figure 4.3. The inner region is formed by taking the 
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intersection of lines parallel to the kite edges and separated by a constant distance d from 

the edges. Due to geometry, and easily observed, the vertex points of the inner and outer 

kites are greater than d apart. One can specify d to determine the inner kite (after 

describing the outer kite). Appendix E contains calculations used to derive the vertices of 

the inner kite from the parameter d. 

In general, we want to make d as small as possible because as we will see, a small d 

results in a smaller number of unknowns. However, to ensure accuracy, it is necessary to 

keep d near half a wavelength to account for edge conditions not incorporated in the AP 

basis functions. This is discussed further when we observe results. 

Using Skymesh2™ to create a triangular mesh, we can 

define the edge elements for use in our numerical solution. 

The division of the kite into inner and outer regions 

provides two essential levels of control. We can 

independently control the mesh density in the two regions. 

This allows us to maintain approximately ten elements per 

wavelength in the border region and much less in the inner 

region. Skymesh2™ accomplishes a gradient transition in 

the inner region. Being able to control the mesh density in 

the two regions enables us to take full advantage of the 

different basis functions. The different regions in the 

mesh allow us to specify which type of basis function Figure 4.6: 10 GHz Kite Mesh 
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(specifically, the value of ß) used for elements in each region. Therefore, as mentioned 

in chapter 2, we can use a fine (ten element per wavelength) mesh with RWG basis 

functions near discontinuities (edges in the case of the kite) and AP basis functions in 

sparsely meshed regions away from the discontinuities. Note that this method differs 

from [3] where the basis function for an edge is determined by its length. 

As we discuss kite results, we will use a mesh density factor for a given region or for the 

kite as a whole. This number is related to the mesh creation and is proportional to the 

number of elements per wavelength, but does not describe it directly. A factor of 12 

roughly equates to a maximum element size of a tenth of a wavelength. Often the mesh 

density factor is presented as a pair specifying the entire kite and is written outer/inner, 

(e.g. A mesh density factor of 12/3 describes a fine outer mesh and a relatively sparse 

inner mesh.) 

3. The Kite: Results 

Several mesh configurations were solved using a variety of basis function combinations 

and slightly varying d-spacing for all three orientations (OTT-P, OTT-T, WL-P). A 

frequency of 5 GHz is used for code validation; 10 GHz is presented for RCS curve 

comparison while 12 GHz is used for a mesh density analysis. These selections are based 

on the element size relative to the kite, relative to a wavelength, and the total number of 

elements as it affects the run time. 
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Table 4.1 illustrates the size of the 

problem for various configurations. 

The problem quickly becomes quite 

large with increasing frequency. 

However, 12 GHz allowed for a larger 

difference and variation control of the 

inner mesh density lending itself to the 

mesh density analysis. 

Code Validation Case: 

Dist Freq Density Nodes Triangles Edges 

a 5 12/12 1447 674 1060 

b 1.5 5 3/12 1267 584 925 

c 10 12/12 5667 2734 4200 

d 1.5 10 3/12 4523 2162 3342 

e 1 10 3/12 3787 1794 2790 

f 1.25 12 16/16 14294 6989 10641 

g 1.25 12 14/14 10957 5340 8148 

h 1.25 12 12/12 8091 3926 6008 

i 1.25 12 12/9 6787 3274 5030 

j 1.25 12 12/6 6027 2894 4460 

k 1.25 12 12/2.8 5807 2784 4295 

Table 4.1: Problem Size 

Initially, 5 GHz results were studied, however, the edge number reduction was minimal 

(1060 vs. 925). It was useful to see that using RWG in both regions, using AP in both 

regions, and using a combination (RWG outer, AP inner) all produced similar RCS 

values. The following results correspond to row (b) in table 4.1. The separation, d, is set 

to 1.5 cm because it becomes impractical to make it any larger from a meshing standpoint 

(the mesh becomes geometrically constricted). Setting d less than half a wavelength is 

not detrimental to the solution in this case. 
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Kite RCS Plol: Waterline, Cut Phi-Pol 

Wie RCS Plol: Over the Top Cut, Cut Phi-Pol 

140       160       180 

Kite RCS Plot: Over the Top Cut, Cut Theta-Pol 

60        60        100 
Phi (degrees) 

0 

-10 

-20 

f"30 

w-40 

or 
-SO 

-60 V 

-70 
      AP 

■         Mixed 
      RWG 

-20 0 20 
Theta (degrees) 

-60       -60       -40 -20 0 20 
Theta (degrees) 

40        60        80 

Figure 4.7: 5 GHz Kite RCS Plot, d = 1.5 cm, Density Factor = 12/3 

RCS Curve Comparison: 

For a frequency of 10 GHz, three different meshes were considered. The first (c in table 

4.1) has a mesh density factor of 12/12, approximately ten edges per wavelength across 

both regions of the kite. RCS curves are shown in Figure 4.8. One can see that the three 

curves in each figure (AP only, RWG only, and mixed with AP inner and RWG outer) 

closely match each other. Some discrepancy (3dB max) is apparent in the OTT curves 

(Figures 4.11 and 4.12) in the -60 to -40 and 40 to 60 degree theta range. However, we 

can see that the mixed basis function method consistently matches AP only results for 

this implementation. 

31 



Kite RCS Plot: Waterline, Cut Phi-Pol 

0 20        40 

Kite RCS Plot: Over the Top Cut, Cut Phi-Pol 

60        60        100       120 
Phi (degrees) 

Kite RCS Plot: Overthe Top Cut. Cut Theta-Pol 

-20 0 20 
Theta (degrees) 

-20 0 20 
Theta (degrees) 

Figure 4.8: 10 GHz Kite RCS Plot, Mesh Density Factor =12/12 

The second 10 GHz experiment has a mesh density factor of 12/3 where the inner kite is 

sampled less. The separation d is 1.5 cm, or half a wavelength. In this case - (d) in table 

4.1 - we observe a 20% reduction in unknowns. Figure 4.9 illustrates the element size 

verses position in the mesh. Figure 10 shows the RCS values for the various 

perspectives. In the waterline cut, we begin to see discrepancies in the 145-160 degree 

phi range where the RWG-only curve does not match the AP and mixed curves. The 

same mismatch is visible in the OTT cuts across a large range of theta angles with almost 

lOdB difference for certain angles. These mismatches are expected since RWG typically 

requires a minimum sampling often elements per wavelength over the entire surface for 

accurate results. Similar discrepancies exist for case (e) in table 4.1 where the border 
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region is shrunk to one cm (see figure 4.11). Notice that in case (e), the number of 

unknowns is reduced 33.5% as compared to (c). 

10GHz 
Kite 

Graded 
Mesh ^1^^- 
Edge 

Length 
Relative to 

a 
Wavelength 

^^^- 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

Figure 4.9: 10 GHz Kite, d = 1.5cm, Mesh Density Factor = 12/3 

Kile RCS Plot: Waterline. Cut Phi-Pol 
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Figure 4.10: lOGhz Kite RCS Plot, d = 1.5 cm, Density Factor = 12/3 
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Kite RCS Plot: Watorline, Cut Phi-Pol 
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Figure 4.11: 10 GHz Kite RCS Plots, d = 1cm, Mesh Density Factor = 12/3 

Particularly visible in Figure 4.11, we see that the mixed basis function RCS curve 

closely matches the AP basis function curve even with d = 1 cm. The RWG curve does 

not match because the sampling rate over most of the kite is less than ten elements per 

wavelength. Remember that the mixed basis function method has a lower 

implementation cost than using all AP basis functions. 

Selection of the RWG Region Thickness: 

If we view the above RCS data plotted differently, we can consider the implications of 

changing d. Figure 4.12 shows RCS curves for mixed basis function implementation 

with d = 1 cm, 1.5 cm, and for a uniform mesh (12/12). This figure is included here 
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because it is the most interesting of the 

orientations. The other eight orientations 

are included in Appendix D. We can see 

that as d is decreased, the RCS values 

deviate from the highest sampling rate 

curve at certain theta angle ranges. Hence, 

we experience the traditional trade-off of 

number of unknowns verses quality of solution. 

Kite Pattern Plot: Mixed Basis, OTT Theta Pol 

0 

-10 

-TO 

I"30 
m 

o 

-50 

-BO 

-70 

-60 

- 
      Straight 

D=1 ■ 

\\: tf 

 D=1.S 

A 
Ik 

■ IF 1 If w 
Wv^r tä$f\     - 

■ >' 
!y 

r \\ 
V* ' 

{• \\ 
-60-60-40-20 0 20 40 B0 80 

Theta (degrees) 

Figure 4.12: 10 GHz Kite RCS, OTT-T 
Mixed Basis Functions 

Convergence: 

In numerical methods, rate of iterative solution convergence is a constant concern. Since 

AP elements in the matrix require computation at every incident angle, we are naturally 

concerned about the convergence of the matrix solution for each angle. Since we wanted 

a convergence measure relative to an all-RWG basis function implementation for a given 

mesh, we chose to observe the matrix condition number, the ratio of largest to smallest 

eigenvalue. Figure 4.13 shows that although the condition number varies with angle, 

there is no apparent correlation and the overall variation relative to RWG-only is 

minimal. Therefore, we can conclude that additional matrix convergence issues do not 

result from using combined basis functions. 
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Kile Condition Number Plot: Waterline Cut, Phi Pol 
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Figure 4.13: 10 GHz Kite, d = 1 cm, Condition Number vs. Incident Angle 

Mesh Density Analysis: 

We completed a mesh analysis to study two particular issues. First, how dense should the 

mesh be to provide a converged RCS value? Second, how sparse can the inner mesh be? 

Using 12 GHz, the number of unknowns necessary increases dramatically (33%) from the 

10GHz case (table 4.1). However, the increased frequency allows more flexibility for 

this particular analysis. Half of a wavelength at 12 Ghz is approximately 1.25 cm so for 

the 12 GHz experiments we use d = 1.25. We considered the phi angle of 63 degrees on 

the OTT-T cut since this was the region of maximum discrepancy among RCS curves. 

Addressing the second question above first, we find that 

due to physical meshing constraints, a 2.8 mesh density 

factor is the lowest possible. Below 2.8, the mesh has 

the same number of unknowns. That is, the kite is 

geometrically constricted below 2.8 mesh density factor. 

[Basis [Density RCS [Cond #| 
;RWG 14,14 -42.14 xxx.xx 

|RWG 12,12 -42.44] 528.47 

RWG 12,2.8 -31.76 [2647.6 
MIX 14,14 -41.401 577.48 

JMIX 12,12 -38.52] 515.26 
|MIX 12,2.8 -31.22 3491.1 

Table 4.2: Density Analysis 
<]> = 63°, 0 = 0°, Freq = 12GHz 
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Kite RCS Plot: Over the Top Cut, Cut Theta-Pol 
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Figure 4.14: 12 GHz Kite RCS, OTT-T, d = 1.25cm 

To answer our first 

question, we again consider 

theta = 0 and phi = 63 since 

this observation angle 

appears to have the largest 

RCS discrepancy. Using 

RWG basis functions with a 

density factor of 12/12, we 

observe from table 4.2 that 

the RCS value appears to 

have converged since at a mesh density factor of 14/14 is very close to the value at 12/12. 

Using mixed basis functions on a uniform mesh, the RCS value does not converge until a 

mesh density of 14/14. RCS values for 12/12 and 12/2.8 are compared for mixed vs. 

RWG basis functions in figure 4.14. Interestingly, the discrepancy in the theta range of 

discussion shows the RWG 12/12 value is most clearly matched by Mix 12/12 while 

Khe Condition #Plot: Overthe Top Cut. Cut Theta-Pol 

RWG 12/2.8 and Mix 12/2.8 match each 

other, but not RWG 12/12. Aside from this 

observation angle range, such discrepancy 

does not arise (Appendix D). It appears 

some other phenomenon may be affecting 

our results in that observation angle range. 
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Figure 4.15:Condition Number vs. Incident Angle 
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One can see in Figure 4.15 that the condition numbers are much larger for 12/12 than for 

12/2.8. This makes sense since the same problem is specified more finely in the 12/12 

case. The angles studied are shown by the dots plotted in the RWG curve in Figure 4.15. 

In the 12/2.8 mixed case, we see that we can maintain relatively accurate results 

(especially for theta angles near 0) for the kite using this methodology to reduce the 

number of unknowns. 

4. Extension to the EMCC Mini-Arrow 

The kite can be extended to similar shape, in particular, the three-dimensional mini- 

arrow. The mini-arrow is formed by adding the point (8.935,0,3.932) to the kite and 

extending a line from each kite vertex to this new point. In figure 4.16 a tenth of a 

90' 

270 

— Reference 
c     CrlE-AP Hn polarization 

ISO      200      ?50      300      350 
Ph:(dog'»5| 

-«0. 
0 50 100      150      200      250      300      S50 

P'4 [degrees! 

Figure 4.16: Mini-arrow scattering at 9 GHz.[3] 
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wavelength sampled RWG only mesh (reference) is compared with a graded mesh using 

the combined basis function methodology at 9 GHz. This demonstrates the method's 

ability to simulate three-dimensional objects using CFIE (alpha = .5) with mixed basis 

functions. CFIE-AP refers to the implementation of RWG and AP basis functions. It 

should be noted that UIUC [3] computed these results and duplication at MSU was 

deemed unnecessary. Next, we consider the mini-arrow at 12 GHz to determine edge 

reduction potential. However,ctue to the small surface area of each surface of the mini- 

arrow, the mesh is geometrically restricted rather than current restricted. We do not 

achieve a significant reduction in edge unknowns. Hence, the combined basis function 

methodology is only beneficial for large smooth sections. 
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CHAPTER 5: CONCLUSION 

We conclude with a summary of the research and the knowledge gained along with 

noting some particular challenges and future work. 

1. Summary 

In the past, people have used Rao-Wilton-Glisson expansion and testing functions to 

solve the PEC scattering integral equation problem. For accurate results, this method 

requires element edge sizes at most a tenth of a wavelength or equivalently, 

approximately one hundred element edges per square wavelength. Thus, increases in 

frequency yield exponentially larger problems. Aberegg and Peterson [6] addressed the 

issue by multiplying the RWG function by the phase term of the incident field (i.e. 

asymptotic phase functions). While AP functions allow for less dense sampling in regions 

where the surface current phase is not rapidly changing, they require computing each 

matrix element at each angle of incidence, a costly disadvantage. Since AP functions still 

require high sampling rates near discontinuities, using RWG functions in those regions 

eliminates some of the added computation. Thus, the combination of RWG and AP basis 

and expansion functions on the same surface has the advantages of both methods. This 

research shows that such a combination of functions, appropriately used, does in fact 

achieve benefits of both, faster computation time from RWG, less unknowns from AP. 

We find that the gain is maximized for surfaces where the majority of the element edges 

(not necessarily the majority of the surface) use RWG functions. We have also shown 

that the advantages of the methodology are highly dependent on the physical 

characteristics of the geometry. Unique contributions from this research include: 
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1. Impedance matrix form shown in equation (2.22). 

2. Use of the traditional singularity extraction technique [21] with asymptotic phase 

basis functions over flat triangles. 

3. Convergence and mesh analysis for the kite geometry. 

4. Investigation of region specific sampling with combined basis functions. 

Summary of Results from Specific Geometries 

The kite and square geometries show approximately 35% and 68% (respectively) 

reduction in unknowns when discretized using a graded mesh and RWG-AP combination 

as compared to a tenth of a wavelength RWG-only meshing. With the number of AP 

elements minimized and their usage location chosen wisely, matrix element computation 

is significantly reduced from an all AP scheme. Therefore, for such geometries, the 

combination of basis and expansion functions is a more effective solution method than 

either AP or RWG used by alone. 

For the mini-arrow geometry, we find that due to the small surface area of its side 

surfaces, the meshing is geometrically constricted. On such a geometry, the reduction of 

unknowns is not significant and the introduction of any AP elements to an RWG-only 

implementation actually increases the solution cost since matrix elements must be 

recomputed at each incident angle. 

In a related effort in conjunctions with UIUC [3], we found that the conesphere geometry 

with C2 continuity across the sphere-cone interface can benefit from an AP only type 

solution. On the conesphere, the number of elements in the mesh away from the 
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discontinuity is kept large due to the curvature of the object. We found that the 

introduction of RWG elements near the discontinuity had minimal affect in reducing the 

design cost since the number of RWG tested and RWG expanded matrix element entries 

was small compared to the AP tested AP expanded entries, as shown in Figure 5.1. An 

AP-only solution method may be better than RWG-only; however, this depends on the 

memory and processor resources available (AP-only is more processor intensive while 

RWG-only requires more memory). Regardless, for the conesphere geometry a mixed 

implementation reduces overall costs some, but the geometry lends itself to an AP only 

mesh. 

Figure 5.1: Graded Mesh on Square Plate vs. Conesphere 

Conclusion 

For all the objects considered, the AP only and RWG-AP combination RCS values we 

observed were accurate relative to the traditional tenth of a wavelength sampled, RWG 

tested, RWG expanded method of moments numerical solution. On large, smooth 

surfaces with low curvature the RWG-AP combined basis and testing function method is 

a more effective solution that solely an RWG or AP implementation. 
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2. Challenges 

• The usual long run times inherent in most numerical methods always have an 

impact on the number of different implementations one can study. Several simple 

and electrically small objects were considered in this research to quickly gain 

some insight into the fundamental characteristics of each methodology. From this 

information, we can begin to estimate how each might work on more numerically 

intensive problems. As computational resources continue to become more 

powerful with time, we can broaden the scope of our studies. 

• Discretizing an object into a consistently "good" mesh is a particularly difficult 

task. It is an art form in itself, but is essential to quality numerical results. Since 

the scattering problem is sensitive to discontinuities, a mesh that accurately 

describes a testing object is crucial to attempting measured comparisons. Both 

high quality meshing programs (e.g. SDRC IDEAS, PRO-ENGINEER, etc.) and a 

highly talented mesh generation engineer are required to obtain high quality 

meshes. 

• The essential difficulty with the method of moments matrix solution is the 

requirement for large amounts of computer RAM. As frequency increases, so 

does the need for memory. 

3. Future Work 

Following this research it would be beneficial to study this method with more objects and 

at higher frequencies to broaden the knowledge base and understanding of the practicality 

of the combined basis function method. Specifically, extended studies with curved 
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surfaces using six-point second order triangles have been presented in [3] and further 

research would be very beneficial. 

From a more general perspective, the possibility for other basis functions with the method 

of moments has the potential to dramatically improve the scattering problem. Further 

application of the fast multipole method [3] can impact the solution cost for large 

matrices. 

It would be of particular interest to consider applying the AP method to radiation studies 

since antenna problems involve only one right hand side of the integral equation. Thus, 

the advantages of AP might be realized without the disadvantage of needing to compute 

the matrix elements for multiple incidence angles. 
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APPENDIX A: FUNDAMENTAL THEORY 

There are three sections to this fundamental electromagnetics theory appendix. We begin 

with the independent large-scale form of Maxwell's equations, the fundamental starting 

point for electromagnetics theory, and almost all electrical physics for that matter. The 

vector potential quantities are then developed and finally a brief discussion of the Green's 

function as implemented in the above research. These are included in an attempt at 

completeness. Since we very well could have started with the results this development 

derives, these basic concepts are included as an appendix. Hopefully their inclusion will 

enable those not familiar with the electromagnetics discipline to understand and critically 

evaluate the fundamental challenges faced when we apply the theory to real situations. 

1. Maxwell's Equations 

Definitions: (All the following quantities are functions of time and a spatial position 

vector r.) 

E = electrical field intensity (Volts) 

B = magnetic flux density 

H = magnetic field intensity 

D = electric flux density 

J = moving charge density (Amperes per square meter) 

p = charge density (Coulomb's per cubic meter) 
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Constants: 

£o = * 10"9 Farads per meter .. .permittivity of free space 
2>6K 

(io = An * 10~7 Henry's per meter .. .permeability of free space 

Parameters of a medium: 

E = £,€0 describes the permittivity in relation to free space and 

|i = [irjio describes the permeability relative to free space while 

G describes the conductivity of a medium. 

In general, S is any open surface bounded by a closed contour C. Therefore, our 

fundamental independent Maxwell's equations include Faraday's (A.l) and Ampere's 

laws (A.2). 

j)E'dl = -j;jsfl»Bds ...Faraday's law (A.l) 

-j- j) B*dl = £0 j; £ W-E ds + js fl*J ds .. .Ampere's law (A.2) 

Conservation of electrical charge requires 

£ n* J ds = - j; jv p dt. (A.3) 

Equations (A.1)-(A.3) are in large-scale form. Assuming that C and S are not functions 

of time, we can pull the time derivative inside the surface integral. Applying Stake's 

Theorem, J Vx \*hds = j) V dl, to the left hand side of (A.l) and moving the right 

hand side of (A. 1) to the left we get j [V X E + ■% B] •« ds = 0 . Since this holds for 

any surface, the bracketed quantity = 0 or equivalently, 
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VxE = -fB (A.4) 

If we apply Stoke's Theorem to the left of (A.2), move the right hand side to the left and 

combine the integrals, we can use the same argument as above (equation is true for any 

S) to get, 

^VxB = J + £0^E (A.5) 

If we apply the Divergence Theorem, J V«V dv = (j) V«« ds , to the left hand side of 

the constraint equation, combine the integrals, and note that it holds for all volumes v, we 

get, 

V-J = -ip (A.6) 

Equations (A.4)-(A.6) are the point form of the independent Maxwell equations. If we 

take the divergence of both sides of (A.4), use the vector identity V« Vx A = 0, and 

invoke causality, we observe 

V'B = 0 (A.7) 

Taking the divergence of both sides of (A.5), and use the same vector identity to get 

i P - £o ~a ^*E =* lh fe^'E - P] = 0 . Time integrate both sides and invoke 

causality to get the point form of Gauss' law. 

V-E = -£- (A.8) 

In general media (not necessarily free space), we define auxiliary equations to include 

non-zero magnetization M and polarization P, also functions of time and space. 
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H = ~JT B - M (Amperes per meter) .. .magnetic field intensity 

J = J ' + o E (Amperes per square meter)      .. .total free current 

D = 80E + P (Coulombs per meter) .. .electric induction, flux density 

In simple (linear, isotropic) media, we then define P and M in terms polarization 

susceptibility %cand magnetization susceptibility %m. P = EoXeE and M = %mH. So by 

substitution 

. .D = EoE + P = £oE + £o%eE = e0(l+Xe)E = e(r)E = £oer(r)E and 

B = Ho(H + M) = Ho(l+Xm)H = u<r)H = Popr(r)H 

The above equations are valid even for inhomogeneous media. By substitution into (A.4) 

and (A.5), V X E = - j; //(r)H  and j; V X /z(r)H  = J + i D . if we assume the 

media is homogeneous (permeability and permittivity are not functions of space), e and p. 

can come out of the derivatives, leaving 

VxE = -£ffH, (A.9) 

VxH = J + fD. (A.10) 

For use in the frequency domain, it is useful to define phaser notation for the vector field 

quantities. We can write E(r,/) = E0 (r) cos (cot + (pE (r)) where a = 2nf. Using Euler's 

equation to expand the cosine function into exponentials and considering the real part, the 

following is equivalent, 

E(r,0 = Eo(r)Rep'^(r))} = Re{E(r)e
fc(V""}.   (A.n) 
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We now make the following key observations: 

1. All the vector field parameters can be written using a similar argument as for the 

electric field. 

2. The operator Re{} commutes with addition, subtraction, integration, and 

differentiation. 

3. Time integration transforms to multiplication by jro in the frequency domain. 

4. Since every parameter contains an e?m term, we can suppress it for notational 

purposes. 

The resulting time harmonic Maxwell Equations and the continuity equation, with vector 

field quantities having spatial dependence and a suppressed e,mt term are: 

VxE = -y'fi)//H (A. 12) 

Vxti. = J + j(opE = Jl+(p + j(De)E (A.13) 

V.E=-p(r) (Ail4) 

V«H = 0 (A.15) 

V»J = y'ft>p(r) (A.16) 

Notes: 

o   To convert to the time domain, unsuppress the e1™' term and take the real part, 

o   The above form of the equations is under the relatively strong assumption of 

linear, homogeneous, isotropic media, 

o   If the medium is free space, e = e0, [i = fV G = 0. If source free, J ' = 0. 
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2. Boundary Conditions 

For a comprehensive explanation of boundary conditions, see [9], page 13. A summary 

is stated here. 

At the interface of two media with differing electrical properties, Maxwell's equations 

dictate the following: 

o   The tangential components of the electric field across an interface between two 

media with no impressed magnetic current densities along the boundary of the 

interface are continuous. 

«X(E2-Ej) = 0 (A.17) 

o   The tangential components of the magnetic field across an interface, along which 

there exists a surface current density Js (A/m) are discontinuous by an amount 

equal to the electric current density. 

«X(H2-Hj) = Js (A.18) 

In a medium with infinite conductivity, the tangential components of E and H = 0. Thus 

on the surface of a perfect electrical conductor (PEC), the tangential component of the 

total electric field equals zero and the tangential component of the total magnetic field is 

equal to the surface current density. 

3. Vector Potentials 

By making a change of variables, we can represent the electric and magnetic fields in 

terms of intermediate variables, the electric and magnetic vector potentials. Using the 

Lorentz gauge condition, we can manipulate the equations into a standard differential 
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equation with solutions. In this section, we will define the vector potentials and derive 

the scalar Helmholtz equation. 

Magnetic Vector Potential: 

Since we know V«jUH = 0 and the vector identity V«( V x V) = 0, define A such that 

ßH = VxA. (A.19) 

By substitution into (A. 12), 

VxE = -y'ö)(VxA)=>Vx(E + 7'ö)A) = 0 (A.20) 

Since we have the vector identity Vx(-W) = 0, define <I>e such that 

E = -V<be-jcoA. 

Substitute (A.19) and (A.21) into (A.13), 

(A.21) 

Vx 
'VxA^ 

1 

■ Ji + (a + ja>e) (-V0>e - jcoA). (A.22) 

By homogeneity, can factor — out of the left hand side and multiply (A.22) by (X. 

Define the wave number k such that k2 - -jcofl (<7 + jcoe). Then (A.22) becomes 

VxVxA = J!-//(c7 + yö>e)VOe+/:2A. 

Using the Lorentz gauge condition, 

•t=^V.A, 

and the vector identity VxVx V = V(V»V)- V2V, we can write (A.23) as 

(A.23) 

(A.24) 
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V2A + k2A = -ßJ\ (A.25) 

(A.26) 

Electric Vector Potential: (source free space.) 

Using similar steps as above, since V«E = 0, define F such that 

E = -VxF. 

Then by substitution into (A. 13), 

VxH = J + yffl5u(-VxF)=>Vx(H+jflieF) = 0. (A.27) 

We can then define -V€>m 3H = - V€>m - j(Ojl¥ . Using the same vector identities 

and substituting into (A. 12), 

Vx VxF = jam (-VOm -jcäfiF). (A.28) 

By choosing the Lorentz gauge condition again, ^m — ~ V«F an(j the same vect0r 

identity as above, we can write (A.28) as 

V2F + £2F = 0. (A.29) 

Recall that A,F,E,H,Oem, and s are all functions of position. 

4. Scalar Green 's Function 

Let us consider the scalar Helmholtz equation from section 2 of this appendix, 

V2y(r) + k2\V(r) = -s(r). (A.30) 
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Recall from above that y is the unknown wave 

function, s (r) is a known volume source density, and 

k is the wave number. For a single point source r' 

observed at r, s(r) = S(r- r!), we define the 

Green's function, g(r|r'), as the field at any r due to Fig«™ A.1: Position Vectors 

r'. Thus the Green's function for the scalar Helmholtz equation is 

V2g(r|r')+£2g(r|r') = -<5(r-r'). (A31) 

(A.31) can be solved using the integral transform technique. 

First, take the Fourier transform. 

- (A2 + A; + X) ) g (l | r») + k2g (I I r») = -e*" (A.32) 

Then solve for g. 

g{W) 
e~Jkr' e-Jkr' 

Then, take the inverse Fourier transform. 

(A.33) 

oo     oo     oo 

To analytically evaluate the above integral (which has poles at ±k = X ), switch to polar 

X,-space, evaluate over a pole excluding contour in the upper and lower half planes 

exploiting Cauchy's Integral Theorem resulting in 

#(r I r') = -^Re~M where R = |r-r'|. (A.35) 
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Since g(r|r') is the point source solution and J(r') includes the magnitude and distribution 

throughout a source region, by superposition, 

A = ^J(r')g(r|r>/K' (A.36) 

is a solution to (A.25). For a surface current density, (A.36) reduces to 

A = fijs J(rf)g(r | r')ds \ (A.37) 

and is valid for open and closed s. 
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APPENDIX B: VECTOR IDENTITIES 

V is a vector function; w is a scalar function. 

V.(VxV) = 0 (B.l) 

Vx(-VV) = 0 (B.2) 

VxVxV-VV-V = V2V (B.3) 

V-(wV) = wV«V + V«Vw (B.4) 

Vx(Vw) = wVxV-VxVw (B.5) 
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APPENDIX C: INNER KITE VERTICES 

The following is the calculation as input to the SkyMesh2™ file. Based on the known 

outer vertices and the desired out region thickness, using geometry, this calculates the 

inner triangle vertices. 

# Kite Definition (x-z plane) 
klx = 0 
kly = 0 
klz = 0 
k2x = 5.05 
k2y = 3.85 
k2z = 0 
k3x = 23.495 
k3y = 0 
k3z = 0 
k4x = 5.05 
k4y = -3.85 
k4z = 0 

kly)A2 + (k2x ■ - klx)A2) 
k2y)*2 + (k3x • - k2x)A2) 
k3y)*2 + (k4x ■ - k3x)*2) 
k4y)*2   + (klx ■ - k4x)A2) 

#Calculation of inner kite based on d and outer kite 
Ml = (k2y-kly)/(k2x-klx) 
M2 = (k3y-k2y)/(k3x-k2x) 
M3 = (k4y-k3y)/(k4x-k3x) 
M4 = (kly-k4y)/(klx-k4x) 

xl = (k2x+klx)/2+d*(k2y-kly)/sqrt((k2y - 
x2 = (k3x+k2x)/2+d*(k3y-k2y)/sqrt((k3y - 
x3 = (k4x+k3x)/2+d*(k4y-k3y)/sqrt((k4y - 
x4 = (klx+k4x)/2+d*(kly-k4y)/sqrt((kly - 

yl = (k2y+kly)/2+(k2x+klx-2*xl)/(2*M1) 
y2 = (k3y+k2y)/2+(k3x+k2x-2*x2)/(2*M2) 
y3 = (k4y+k3y)/2+(k4x+k3x-2*x3)/(2*M3) 
y4 = (kly+k4y)/2+(klx+k4x-2*x4)/(2*M4) 

zl = (M4*x4+yl-Ml*xl-y4)/(M4-M1) 
z2 = (Ml*xl+y2-M2*x2-yl)/(Ml-M2) 
z3 = (M2*x2+y3-M3*x3-y2)/(M2-M3) 

w2 = M2*z2-M2*x2+y2 
w4 = -w2 
# Outer Kite 
1 klx  kly klz 
2 k2x   k2y k2z 
3 k3x  k3y k3z 
4 k4x   k4y k4z 

# Inner ki te 
5 zl 0.0 0. .0 
6 z2 w2 0. .0 
7 z3 0.0 0. .0 
8 z2 w4 0. .0 
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APPENDIX D: ADDITIONAL KITE SEPARATION COMPARISONS 

The following sets of images are in addition to the discussion in Chapter 4.3: RWG 

Region thickness for the kite. 

Figure D.l shows the AP results comparing different thicknesses of the RWG region. 

The AP-WL-P and AP-OTT-P plots show close matching for all three thicknesses. The 

AP-OTT-T plot is comparable to the MIX-OTT-T plot discussed in Chapter 4.3. Figure 

D.2 shows closely matched RCS curves for the MIX-OTT-P and MIX-WL-P cuts. 

Figure D.3 again shows closely matched RCS curves for the RWG only case. Refer to 

Chapter 4.3 for further discussion. 
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Figure D.l: 10 GHz Kite RCS, AP Basis Functions 
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