
REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any
penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE
ADDRESS.

1. REPORT DATE 2. REPORT TYPE
Professional Paper

3. DATES COVERED

4. TITLE AND SUBTITLE

Legacy Software Testing - A Current Methodology

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Ralph Gibson; Michael Chapman

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Air Warfare Center Aircraft Division
22347 Cedar Point Road, Unit #6
Patuxent River, Maryland 20670-1161

8. PERFORMING ORGANIZATION REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND
ADDRESS(ES)

10. SPONSOR/MONITOR'S ACRONYM(S)

11. SPONSOR/MONITOR'S REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13. SUPPLEMENTARY NOTES

14. ABSTRACT

In the simulation world, software upgrade is more common than new development. Thus it is extremely important to ensure proper operation of
the simulation model as it is enhanced. The big question is how does one keep the current model operating correctly while adding new
capabilities? The Model Development Team at the Air Combat Environment Test and Evaluation Facility, Patuxent River, Maryland, has
developed an approach that is useful in making sure that the current simulation model keeps its current capabilities operating correctly as well
as testing any new capability that is added. The purpose of this paper is to present the approach used by the Model Development Team to
answer the question put forth. This paper discusses the software development and maintenance criteria used as the overarching guide for
testing. The testing process used and how this process ensures that the model meets the criteria is then given. Specific test examples and
expected output are provided as a model testing approach. Finally, the future of development testing for the Model Development Team is
presented.

15. SUBJECT TERMS

Legacy Software
16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

Unclassified

17. LIMITATION
OF ABSTRACT

18. NUMBER
OFPAGES

19a. NAME OF RESPONSIBLE PERSON
Ralph Gibson / Michael Chapman
19b. TELEPHONE NUMBER (include area
code)
(301)342-6901/342-6900

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Sid. Z39-18

20010829 187

Legacy Software Testing - A Current Methodology
Ralph D. Gibson

Science Applications International
Corporation

22299 Exploration Drive Suite 200
Lexington Park, MD 20653 USA

Dr. Michael D. Chapman
U. S. Navy

5.1.6.2 Bldg 2109 Suite S115
48150 Shaw Road

Patuxent River, MD 20670 USA

Abstract. In the simulation world, software
upgrade is more common than new development.
Thus it is extremly important to ensure proper
operation of of the simulation model as it is
enhanced. The big question is how does one keep the
current model operating correctly while adding new
capabilities? The Model Development Team at the
Air Combat Environment Test and Evaluation
Facility, Patuxent River Naval Air Station, Maryland,
has developed an approach that is useful in making
sure that the current simulation model keeps its
current capabilities operating correctly as well as
testing any new capability that is added. The purpose
of this paper is to present the approach used by the
Model Development Team to answer the question put
forth. This paper discusses the software development
and maintenance criteria used as the overarching
guide for testing,. The testing process used and how
this process ensures that the model meets the criteria
is then given. Specific test examples and expected
output are provided as a model testing approach.
Finally, the future of development testing for the
Model Development Team is presented.

INTRODUCTION

The Air Combat Environment Test and
Evaluation Facility (ACETEF) at the Patuxent River
Naval Air Station provides an integrated test and
evaluation environment for the United States
Department of Defense, U.S. Navy and other
government agencies. The backbone of the
environment is the Joint Integrated Mission Model
(JIMM).

JIMM is a general purpose event-driven mission
level conflict simulation model. This allows the
model to simulate a variety of different conflicts
without the need to modify the model itself. The user
directs the simulation through a series of databases
that determine the types and numbers of players in
the simulation, the initial conditions and movement
directives for the players, and how the players will
interact. In order for the outcome of certain actions
to have a weighted outcome (i.e. probability of kill,
damage severity, and random movements), a random
number is used in some of the decisions.

JIMM was initially developed in 1999, but is
based on simulations that have been in use since the
late 1980s. Throughout this time, several changes

have occurred to the software that have enhanced the
capability and increased the reliability of the
simulation. To ensure that the changes added to the
program work within the context of the entire
simulation model, a comprehensive test plan was
devised.

This paper will present the maintenance criteria
that are used to guide the testing approach and ensure
model acceptance within the user community. Next,
the current Acceptance Test Plan is presented with
explanations given for each category of test.
Examples of the testing approach and expected
outcome are provided. Finally, the move to increase
the automated testing and analysis of the test suites is
discussed.

MAINTENANCE CRITERIA

The testing performed on JIMM is used to
determine the functionality and operation of the
software. The reasoning behind the tests are based on
meeting the five maintenance criteria set forth in the
Software Management Plan. These criteria are:

Correctness of operation. This criterion states that
the operations that the program is simulating are done
correctly. Above all else, this is the most important.
If the simulation does not provide correct answers to
the users, then the analysis that is based on the
simulation may result in incorrect decisions that
could cost millions of dollars or cause unnecessary
deaths. For the primary users, this means that radar,
sensors, line of sight calculations, vehicle
movements, and other simulated events are calculated
or performed correctly and are equitable to similar
real-world events.

Backward compatibility. This criterion ensures that
any correctly written simulation that operates using
the current or earlier version of JIMM will operate
using any future version. In addition, any correctly
written interface will follow the same guidelines as
simulations.

Repeatability. The simulation should run exactly the
same independent of graphics use, listing
requirements, monitor status, or shared memory use.
Additionally, stopping and restarting a simulation in
the middle of the run should not alter the results of
the simulation.

Performance. Each subsequent software release will

execute an unaltered simulation at an equal or faster
rate than previous releases.

Ease of maintenance. All changes to JIMM shall
adhere to high software quality practices. When
additions are made to the codes and poorly written
code is found in the affected areas, the writer should
make changes to the poorly written section to bring it
up to standards.

The criteria are presented in operational order, in
that the most important criteria, correctness, takes
precedence over the other criteria and so forth.
Failure to meet these criteria can delay the release of
the current version until it can pass.

TESTING APPROACH

The purpose of the Acceptance Test Plan is to
ensure that JIMM maintains the capability to execute
correctly written scenarios as outlined in the software
standards. The test plan is used to determine that old
capabilities remain functional and new capabilities
are correctly implemented and do not interfere or
alter the operation of old capabilities.

During the course of development, some or all of
the tests contained in the test plan may be run to
provide immediate feedback about the progress of the
integration and highlight any potential problems that
may occur because of the code changes. The results
of these test runs are not formally recorded. Any
problems that are discovered during these runs are
reported to the appropriate developer so they can
provide corrections to their code.

A formal acceptance test occurs at the end of the
current development cycle. The configuration
manager, in conjunction with the software
development manager and the model development
manager, initiates the formal testing process by
freezing the development version and passing a copy
of the code to the test manager. At this time, no
further additions may made to the development
model. If, during the testing process, an error or
incorrect implementation is discovered, the error is

corrected and passed to the configuration manager.
The configuration manager makes the correction to
the model, freezes the model under a different
configuration name, and passes it to the test manager.
The testing process is then repeated from the
beginning.

Installation Test. The installation test is to ensure
that the software compiles and links without warnings
using native and open compiler libraries. Because
ACETEF uses different platforms and operating
system, this test is performed for each of the different
platform/operating system combinations.

Execution Test. This test ensures backward
compatibility with previously written simulations.
The model must execute without any core dumps or
serious warnings. Any changes to the output must be
explainable and correct. This test is performed using
several different simulations.

First, a generic test scenario, Obruty Final Battle,
is run. This scenario has two purposes, to test as
many capabilities as possible in one simulation, and
to provide examples for other users to see how to use
the additional capabilities. The Obruty Final Battle
test is performed in two phases; first, the simulation is
watched using the graphics monitor to observe the
operation of the simulation, and second, the scenario
is run through as series of runs with a different
random number seed. The graphics test enables the
tester to observe the operation of the scenario, check
for graphic anomalies that would not be apparent
during non-graphic operations, and to test different
graphics commands that are provided.

Second, an ACETEF scenario library containing
over 15 previous scenarios designed using previous
versions of the simulation are run using the test
version of the program. The selected scenarios must
run without modifications and produce equivalent
results without errors. If there are changes, they must
be explainable and correct.

Software
Development ^

^ r
Software
Testing

1

1 r i r ^ r 1 r i r i r
Installation Execution Repeatability Repetitions Interface Requirements

1 1 1 1
^ f

Model
N /lana ger

Figure 1: Overview of Acceptance Testing Process

Repeatability Test. Unless stated in the design
document, modifications to the program, which
address capabilities not used by a user in his
scenario, should not affect the outcome of the
simulation. This particular test is used extensively
during integration to provide initial feedback on the
various changes and how they might affect the
program overall.

Repetitions Test. JIMM utilises random numbers
during the simulation to affect the outcome (e.g.
probability of kill, sensing chances, resource
allocation). A series of runs using a different
random number seed for each run allows more in-
depth testing of the software. During the series of
runs, one particular seed could alter the flow
through the software and find the one path that
causes a failure that might not have been found
otherwise. As the model matures under successive
interaction of the test cycle, the more common
errors are weeded out. Thus, the number of
repetitions needed to expose defects increase with
each test cycle. This can cause schedule problems
because of the time required to perform this test.

Interface Test. Aircraft system testing at
ACETEF involves several different internal and
external laboratories and facilities. The JIMM
software is used as the engine for these tests. For
reasons of cost or availability, full-scale integration
tests between JIMM and the test facilities are not
possible. Instead, a series of test surrogates are
used to ensure correct operation. Each surrogate is
specifically designed to exercise the information-
passing algorithms used by a given facility.

Requirements Test. The requirements testing
portion of the acceptance test plan is, by far, the
largest series tests. Requirements testing is
composed of a series of small test vignettes
designed to test various aspects of JIMM
functionality. Each vignette is designed to test a
specific capability.

All current tests in the acceptance test plan are
run against the development version to ensure that
any modifications or additions to the software do
not break currently operating capabilities. In
addition, the current tests check for correct
operation after errors in the code are corrected.

When developers add new capability to JIMM,
they are responsible for designing a test or test
series that ensures that the new capability operates
correctly. The tests are added to the test plan so
they can be used for testing future versions to
ensure the capability still operates after changes are
made to the new version. The test manager is
responsible for determining that a developer's test
series is sufficiently comprehensive.

The requirements tests are currently divided
into eight different categories. Table 1 gives a list

of the different categories and the current number
of tests in each category.

Requirement Tests Number of Tests

Orientation 27

Kinematics 43

Engagement 7

Resource Allocation 10

Nonlethal Engagement 45

Database Error Checks 9

Terrain 24

Features 64

Table 1: Number of Requirements Tests
in Acceptance Test Plan

Orientation. The orientation vignettes provide
a visual verification of entity pointing that is
independent of movement. This series of tests
were originally designed to showcase orientation
bugs present in earlier versions of the program and
were intended to "break" the model in as many
ways as possible to ensure changes to the model
fixed the problems. They have been retained in the
test suite to ensure any future change to the
software does not introduce any new problems.

Kinematics. The kinematics vignettes are
designed to ensure that moving entities move in a
way that makes physical sense. This is particularly
important for three-dimensional movement.
Vehicle behaviour should mirror those that we see;
cars should turn flat, helicopters and missiles
should move from the surface in a vertical manner,
aircraft should have the correct bank angle when in
a turn, etc. The various tests in this series are based
upon the language available to the users to direct
the different movement options.

Engagement. The engagement tests are used
to test the various aspects of lethal engagement
between entities in the simulation. When one
player is trying to "kill" another, certain actions
occur before, during and after the action. The
engagement tests are used to ensure all actions
taken by the attacking player are correct (in the
correct position to attack), the intermediate signs of
engagement appear (missile heat and smoke plume
are present), and that the attacked player is affected
correctly (does the target get hit, and, if so, does it
live or die).

Resource allocation. This is, by far, the largest
group of test vignettes in the test plan. The
resource allocation series of tests are used to test
the various aspects of the player "thinker" logic.
The model contains a set of tactical criteria that is
used to provide the player with logical steps to

follow to determine a course of action. The actions
can be to send a message to another player, move
to a new location, provide intelligence information,
or engage a target. The series of tests are designed
to look at all possible combinations of options
available within each tactical criterion to ensure the
code handles each combination properly.

Non-lethal engagement. Not all engagements
between two players are intended for one to end up
dead. One player may want to degrade another
player's ability to communicate or use radar to find
other players. Non-lethal engagement vignettes
test the ability of one player to disrupt
communications and sensing, and that the signal
strength is correct for the type, orientation, and
position of the players.

Database error checks. When users write the
databases that contain the information for the
scenario, errors are occasionally introduced that
cause the simulation to fail. Required information
may be completely missing, or parts are
accidentally left out. When this occurs, hopefully
the simulation will exit gracefully with an error
message printed that will tell the user what is
needed to correct the error. Unfortunately, with
legacy code of this complexity, such problems are
generally not discovered until the end user makes
such a mistake and the simulation ends abruptly
without warning. When this occurs, the cause is
investigated and, if it is a software problem,
corrected in the code. If the problem is database
related, the developer designs a model message to
inform the user of the problem. This series of
vignettes is the result of the various database errors
that have been discovered. Each test in this series
has specific errors in the appropriate database that
will cause the program to terminate and print the
correct message.

Terrain. Not all scenarios require terrain as
part of the simulation. When they do, the user
would like the players to operate correctly. The
terrain vignettes test a variety of functions.
Foremost in the series is the ability of the model to
connect separate terrain blocks into one complete
grid. Other tests in the series check movement
across the terrain surface, crashing into the surface,
terrain following and terrain avoidance, movement
onto and off of the terrain grid, and line of sight
terrain masking.

Features. This is the "catch all" category.
When a particular vignette cannot be classified in
one of the other categories, it is placed in this area.
Vignettes in this category test such things as
incidental damage (what beside the target is
damaged when the target is hit), radar cross section
changes when the player is looked at from different
angles, and radar and visual signature changes
when the player performs an action (increased
radar size when bomb bay doors open or higher
heat signature when the player lights its

afterburner).

HOW HAS THIS HELPED?

With the advent of the comprehensive
Acceptance Test Plan, the Model Development
Team has been able to improve the software while
ensuring that current capability has not been lost.
The ATP has been performed on all major versions
of JIMM, prior to their approval for use at
ACETEF. Since the test plan requires that no
failures occur, this has resulted in a delay in the
release of each version. This delay has ranged
from a couple of weeks to several months, in one
extreme case. However, the ATP has detected
many defects in the code, which otherwise would
have affected operational use. These defects fall
into three major categories: 1) unanticipated
interactions between new and existing code; 2)
errors in implementation of new capabilities; and 3)
long hidden defects.

Unanticipated Interactions. These defects
usually arise from the unexpected effects of a code
modification. JIMM is legacy code, and was not
very well structured, initially. It is not unusual for
modifications in one section of the code to
adversely impact other unrelated, or distantly
related, sections of the code. By detecting these
errors in test, we prevent key capabilities required
by the facility from being lost. This insures
robustness in the code, and instills confidence in
the users in the viability of a new version.

Errors in Implementation. Errors in the
implementation of new capabilities arise either due
to development error in design or implementation,
or integration error when incorporating a
developer's code into the baseline. Detecting these
errors in test insures that new capabilities will
function properly during operational use, and again
instills confidence in the user that using these new
capabilities poses no significant risk.

Long Hidden Defects. Long hidden defects are
usually errors in the code that manifest themselves
spontaneously. By their very nature, these defects
are random in occurrence. Their occurance can be
due to the legacy nature of the code. With the
continual restructuring of the code and other
changes that result in altering the random number
stream used for object interaction, a change in the
simulation progress that can cause the code to
venture down a seldom used path and with
different values. Thus, they have an equal
likelihood of occurring in test and operational use.
However, the consequences of these defects are far
less severe for test. During operational use, these
defects can result in schedule slippage for a project,
whereas finding them in test will only delay the
release of a new version.

The increased testing has proven beneficial to
the customer. Customer confidence in the software
has increased in two ways; improved reliability and
higher confidence in functionality of the software.

Improved Reliability. During the period prior to
the development of the Acceptance Test Plan
(ATP), the user community reported the majority
of the software errors. During this period, the
software code contained some artifacts from its
previous iterations. As the code was rewritten into
C++, some of the old coding style would not be
compatible. Unfortunately, most of the code
changes would not be immediately known because
the initial unit testing would not use the changed
code. It would be during the repetitions run, with
its changing random number, that would eventually
execute the changed code. Initially, the specific
errors would occur during five of one hundred runs.
With the continued use of the ATP, the number of
errors has dropped to 2 per two thousand runs.
Additionally, errors introduced during code
modifications and enhancements, these changes
appearing to operate correctly, have been
discovered and corrected as a result of the ATP.

Higher Confidence in Functionality. The
original JIMM documentation provided numerous
instances of usable but untested capability. The
user could not be sure if the capability worked at
all, or if it did work, if it would perform as
expected. As part of the continued growth of the
ATP, many of untested capabilities are added to the
test matrices, or have separate test vignettes written
specifically written to test that capability. When
the code does not operate correctly, error reports
are written to initiate the process to correct the
error. If the capability does work as documented,
then the annotation that says that it is untested is
removed.

THE FUTURE: AUTOMATION

As the scale of testing progressed, it became
increasingly more difficult to run a full acceptance
test in a reasonable length of time. To overcome
this problem, the Automated Acceptance Test Plan
(AATP) was created. The AATP consists of a
series of UNIX C-Shell scripts that automatically
process and run the test vignettes. Additional shell
scripts, and a C Language analysis program, then
analyze the test output. The results of the analysis
are reported as Pass or Fail, usually with a failure
code number that indicates the reason for failure.
Automation has reduced the workload from
approximately one and half weeks of manual
testing to one to two hours of examining the test
reports from an overnight automated run.

The automated tests fall into three basic
formats. The first, and simplest, does a straight
comparison of the JIMM output files from the test
version with a standard expected output file. This

standard file is the output file of a previous run,
which has been manually analyzed for correct
behaviour. Any deviation from the standard is
flagged as a failure. In the event of failure, the
changes would have to be analysed manually to
determine if the deviation was the proper result of a
modification to the code. If so, a new standard is
created, otherwise the test version failed.

The second type of test uses JIMM's own
analysis tools to high effect. JIMM allows the user
to define a situation as one or more incidents within
the program, indicating that certain actions or
events have occurred. By careful design, it is
possible to create a test vignette such that a
situation will occur only if a given JIMM function
is operating correctly. The AATP can then run the
vignette, and the scripts will check for the
appropriate situation. If the expected number of
situations does not occur, the AATP fails the
vignette. In this case, no further manually
examination is necessary and the test version fails.

The final form of test is the most complex. It
starts with the definition of JIMM situations, as
above. In this case, however, the mere fact that a
situation occurs is not sufficient evidence that the
JIMM functionality under test is operating
correctly. Additional analysis must be performed
on the auxiliary data of the situation (timing,
distance, P(k), etc.). The JIMM output is
manipulated by a script into a data stream, which is
then used as input for a C Language analysis
program. The program then checks the data for the
expected patterns. If these patterns are not found,
no further manually examination is necessary and
the test version fails.

CONCLUSION

The Acceptance Test Plan used by ACETEF is
an attempt to introduce stability into the JIMM
code, protect current functionality, ensure
backward compatibility is maintained, and test the
correctness of any additional JIMM capability.

The Acceptance Test Plan will continue to
grow. At present, only about 60% of the current
functionality of JIMM is being tested. As more
capability is added, the developers must write tests
to check their work. This will help prevent the test
plan from falling farther behind. Efforts are
underway to add more tests that check existing
capability. The eventual goal is to have all
functionality tested.

Without the development of the test plan, code
modifications could have drastically altered the
functionality of the simulation and made the model
unusable. Continual testing is vital to the
continued growth of the model, and the successful
simulation of the scenarios.

REFERENCES

Joint Interim Mission Model User's Guide, Volume
I, Version 1.2, 1999

Acceptance Test Plan (ATP) For SWEG, briefing
given to the Simulated Warfare Environment
Generator Users Group, May 18, 1999 by Dr.
Michael D. Chapman.

Software Management Plan, Version 2.2.
ACETEF Model Development Team, Patuxent
River NAS, MD. April 27, 1999.

Mission Level Model Acceptance Test Plan for
ACETEF, Version 1.5. ACETEF Warfare
Simulation Team, Patuxent River NAS, MD.
February 15,2000.

BIOGRAPHY

Ralph Gibson is currently a Systems Analyst
for Science Applications International Corporation
working at Air Combat Environment Test and
Evaluation Facility, Naval Air Warfare Center -
Aircraft Division, Patuxent River Naval Air
Station, Maryland. He is also the Configuration
Management Manager for the Model Development
Team. Ralph Gibson is tasked with maintaining
the baseline version and incorporating all changes
the Model Development Team develops for the
mission model. The mission model is used by the
facility for system integration test and evaluation
for Navy aviation. Ralph Gibson is a graduate of
the United States Air Force Academy with a degree
in Astronautical Engineering. He is currently
working on a Master of Software Engineering
degree at the University of Maryland.

Michael Chapman works as a Computer
Scientist, and Test Lead, for the Model
Development Team at Air Combat Environment
Test and Evaluation Facility, Naval Air Warfare
Center - Aircraft Division, Patuxent River Naval
Air Station, Maryland. He received a BS in
physics from Renssalaer Polytechnic Institute in
1984, and a PhD in High Energy Particle Physics
from the College of William & Mary in 1992.

