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1. Introduction

The formation of soot particles in a flame is still a subject that is not well understood.

It is nevertheless a very important subject for soot not only produces visible obscurity in large

fires but it represents a serious pollution emission. Young soot particles that form during the

combustion process, manifest themselves by producing the yellow-orange emission,

characteristic of hydrocarbon flames. They have diameters ranging from a few to tens of

nanometers.

Soot is formed during the combustion of hydrocarbon fuels though if there is sufficient

air present, the soot particles are oxidized and thus destroyed during the combustion process.

If there is insufficient oxygen, the particles will survive passage through the reaction zone of

the flame and be emitted into the surrounding air in the form of visible smoke. This represents

not only an unsightly but a dangerous pollutant emission. Soot particles contain condensed

polycyclic aromatic hydrocarbon (PAH) species, many of which are known carcinogens and

since they can have sub-micron diameters, they can pass through the bronchial canals and

deposit in the lungs of individuals so exposed. From an engineering standpoint, soot also

plays an important role in the radiative transfer of thermal energy and thus its production is

important for the thermal efficiency of engines and boilers

The formation of soot particles begins with the thermal pyrolysis of the fuel to form

radical fragments that react rapidly with oxidant species such as O2 , O and OH and with

hydrocarbon radicals. A chain of radical-molecule reactions ensues that results in the

formation of large soot precursor molecules that act as nucleation sites for the growth of
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particulates via the condensation and surface reaction of  molecules and radicals and via

agglomeration processes where colliding particulates stick together or coalesce. In this phase

of the process, the particles can be solid or liquid in form. As the particles age though, they

lose hydrogen and thus mature soot particles have an almost graphitic structure. The timescale

for the process is of the order of a few milliseconds and this renders its study difficult,

particularly with regard to the early phases prior to nucleation and solid particle formation.

A number of different techniques have been developed to map the presence of soot

particles in a flame, to determine their number density, their size distribution, their geometric

form, and their chemical composition. Non-intrusive techniques include visible light

absorption [1], the Rayleigh scattering of visible light [2], depolarization measurements [2],

laser induced incandescence [3], laser induced emission [4], UV absorption and fluorescence

[5], laser ionization [6] and multiwavelength analysis of soot radiation [7]. Intrusive methods

involve the physical extraction of soot particles from flames by for example, thermophoretic

sampling [8]. The particles are subsequently analyzed by techniques such as particle mobility

analysis [9], scanning electron microscopy [10], transmission electron microscopy [11-13],

laser microprobe mass spectrometry [14], laser desorption mass spectrometry [15] and real

time mass spectrometry [16]. Other techniques such as flame sampling mass spectrometry

[17] and laser induced fluorescence [18] are used to identify soot precursors and primary

reactants in  the soot formation process.  All of these techniques have their individual

strengths and weaknesses and the information gleaned from their use has served to provide a

series of snapshots in the life-span of soot particles in a flame. This has provided us with an

overview of the physical and chemical development of soot.
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This subject of in-situ nanoparticle identification and analysis is not limited to

classical combustion processes but is also important for the analysis of flames that are used

for the formation of nano-particulate forms of compounds such as TiO 2 and SiO2
 [19,20].

Soot-like nanoparticles are believed to exist in the interstellar medium and knowledge of their

formation and interaction with the intense photon and particle fluxes emanating from hot stars

is important for astrophysical modeling [21-26]. Silicon and carbon based nanoparticles are

formed in plasma used for semiconductor and materials processing and for pollutant

destruction.

While the non-intrusive methods listed above have been invaluable for the analysis of

small laboratory scale flames under lightly sooting conditions, they run into serious problems

when the particle density rises to the point where self re-absorption of scattered or emitted

light becomes significant. They are cumbersome to use therefore under heavy particulate

loading conditions or where the size of the combustion system becomes large. In the latter

case, the intrusive methods become equally difficult to apply.

The purpose of this report is to present the first results from an alternative flame

sampling method that uses x-rays to probe soot particles. The method is based upon detecting

the charged species formed from the ionization of soot nanoparticles by x-ray absorption, a

process commonly refered to as photoemission. High energy X-rays are very penetrating due

to their weak interaction with matter and thus the problems associated with absorption or re-

absorption of visible or ultraviolet light can be avoided. This weak interaction makes it

difficult to use scattering or transmission methods for assessing the presence of soot particles

but the high efficiency with which charged particles can be detected renders the technique
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feasible. Indeed in the experiment described below, detection of the ionization currents was

achieved with the use of a simple electrically biased wire probe.

2. Experimental Method

The basic apparatus used for this experiment consists of a cylindrically symmetric

burner (11 mm diameter) through which the fuel gas passes. The burner is surrounded by a

100 mm diameter chimney. Air from a compressor is fed into the base of the chimney and

passes through a series of wire meshes, between which are placed layers of glass beads, 1 mm

in diameter. This allows a laminar curtain of air to surround the burner, thus producing a

stable diffusion flame. (In a diffusion flame, the surrounding air diffuses into the fuel flow in

order to produce the combustion reaction. The actual reacting surface is very thin and conical

in form). Flow rates for the fuel gas and for the air are controlled and metered using

rotameters. In most of the experiments described in this report, a fixed fuel flow rate of 62

ml/min and an air flow rate of 39l/min were used The burner has an overall height of 100 mm

and the chimney, of 500 mm. At the top of the chimney, a cap is placed that can be fitted with

a glass fiber filter to collect soot particles. Combustion gases are drawn through a hole in the

cap by means of an aspirating pump. The position of the cap is variable with respect to the

burner mouth and the pump line can be fitted with a collection trap. In some experiments, this

trap was immersed in water to cool the exhaust gases prior to entering the pump. The overall

assembly is illustrated in figure 1.



7

Figure 1. Schematic of the burner assembly at the University of Rennes

showing the gas feed system.

The burner and chimney assembly are mounted on two plates as shown in figure 2.

The upper plate can be moved with respect to the lower thus allowing the flame to be moved

vertically with respect to a stationary probe or a sampling beam from a laser or from a

synchrotron beamline. The lower plate can be moved horizontally thus allowing the flame to

be moved horizontally with respect to a stationary probe or sampling beam. This assembly

allows Y-Z scans to be made of the flame (X being the direction of the sampling beam) and

thus the position of flame components can be mapped. In this apparatus, the flame is

cylindrically symmetric and this allows the radial profiles of flame components to be

determined by means of tomographic re-construction which is discussed later in the report.
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Figure 2. Schematic of the burner at the University of Rennes showing the Y and Z translation
stages. The reservoir is heated and can be used to inject ferrocene vapor into the fuel stream.
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Three types of experiments have been performed including mapping measurements of

He/Ne laser absorption, of charged species naturally present in the flame and of the absorption

of an x-ray beam from a synchrotron radiation facility. The latter experiment is believed to be

the first of its kind and opens up an entirely new field of research, namely the study of the

interaction of x-rays with nano-particles. Each experiment and the individual experimental

set-ups are discussed in the following sections.

3. Experimental Results

3.1 Laser Absorption Experiments.

Figure 3. Sketch of the arrangement used for the laser absorption experiment.

The basic set-up for this experiment is illustrated in figure 3. The measurement

involves the use of a power meter to detect light from a helium/neon laser that is scanned

across the flame. The amount of absorption by soot particles in the flame is determined as a

function of position in the flame. The ratio of the transmitted intensity I to the initial intensity

I0 of the laser beam yields the soot volume fraction1 fv in the flame via the formula:

                                                                
1 Soot volume fraction is defined as the fractional volume of the flame occupied by soot particles.
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where λ = 632.8 nm is the wavelength of the laser light

K=4.9 is the absorption constant for soot particles at this wavelength [1].

L is the optical depth of the flame at the given height and radius at which the measurement is

taken.

This experiment is very simple in nature and the results thus obtained are shown in

figure 4, where fv is plotted as a function of h, the height above the burner mouth. It can be

seen that low down in the flame, the soot is concentrated mostly in an annular ring while

higher up, the soot particles are concentrated near the center of the flame. This distribution is

illustrated in a false color contour chart in figure 5 and in fact this very much resembles what

one sees with the naked eye while looking at the flame. Soot forms at the edges of the flame

where the reaction between the fuel and air occurs and as one moves up, this region shrinks in

diameter eventually forming a continuous zone. Higher up still, the soot density decreases as

the soot particles become oxidized. In the flame shown here, there was no emission of visible

smoke indicating that the soot density had dropped to a low level. The overall flame height

was 50 mm and the fuel and air flow rates used in this case were 84 ml/min and 39 l/min

respectively.
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Figure 5. False color contour plots of the soot volume fraction (uncorrected)

Figure 4 actually needs correction in order that the true radial distribution of soot

volume fraction can be determined. The data shown is obtained from the transmitted laser

intensity but the laser passes through regions of varying soot density. This can be corrected

for using a tomographic re-construction technique [ 27, 28] and the resulting distribution of

soot volume fraction is shown in figure 6.

Fig. 6. Contour plots of flame following tomographic reconstruction.
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3.2 Natural Flame Charge Distribution Measurement

Most hydrocarbon flames contain ions, electrons and charged particulates that are

formed via a number of processes. The associative ionization reaction:

CH + O → CHO+ + e

has been identified as the origin of ionization in air rich flames while the reaction:

CH + C2H2 → C3H3
+ + e

dominates in fuel rich flames where soot particles are formed. These ions react with other

neutral soot species to form other ions which in turn are eventually neutralized through

dissociative recombination reactions such as:

CxHy
+ + e  → CxHy-1 + H

Extensive mapping of natural flame ions has been performed for pre-mixed flames by

a number of workers using both ion-sampling  mass spectrometers [29-33] and Langmuir

Probes [34] and it is found that densities of most ions fall off rapidly a few millimeters above

the burner mouth although some heavier species can be found at 20 mm above the burner

mouth.

Higher up in the flame, charged soot particles are found and these acquire their charge

either by thermionic emission of electrons or via electron attachment processes. Generally the

former  process seems to be more effective as positive soot charges tend to dominate.

As part of a self consistent measurement program, the charge particle distribution in our

ethylene flame was measured by scanning a 1 mm diameter, 6 cm long cylindrical electrode

radially across the flame for a series of different heights. With the electrode biased positively,
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mainly electrons (with probably some negative ions and soot particles) are detected while a

negatively biased probe will sample positive ions and particles.

The results so obtained are illustrated in figure 7. It is seen that just above the burner

mouth, the distribution of both positive and negative species is structured while further up the

distributions become more uniform.

This data serves as a reference for the measurements described in the next section

Fig. 7a: Charged species measured as a function of height and radial distance
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Fig. 7b. Heights 8  mm, 10 mm, 12 mm.

Fig. 7c. Heights 14 mm, 16 mm, 18 mm
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Fig. 7d. Heights 20 mm, 22 mm, 24 mm.

Fig. 7 e. Heights 26 mm, 28 mm, 30 mm.
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3.3 X-Ray Absorption Measurements

This is the main part of the experimental work that has been carried out concerning the

mapping of soot particles in an ethylene flame. The basic idea behind the experiment was to

pass an x-ray beam from a synchrotron radiation beamline through the ethylene flame and to

detect any ionization produced by absorption by soot particles, using a biased wire probe.

The experiment was carried out on the ID09 white beam undulator beamline at the

European Synchrotron Radiation Facility (ESRF) in Grenoble, France. A 6 GeV electron

beam is magnetically stored in a ring structure and each time it is deviated by a magnet, it

emits electromagnetic radiation over a very wide wavelength range. The ID09 beam line

accepts x-rays generated by an undulator device, located in one of the straight sections of the

electron ring. In the undulator, the electron beam is made to undulate periodically by an array

of oppositely polarized magnets, thus emitting electromagnetic radiation coherently at each

deviation. Much higher photon intensities are made possible by the use of the undulator

though the wavelength range thus obtained is much narrower than emitted by a conventional

bending magnet.  In the front end of the ID09 beamline, a monochromator can be used to

energy select the photons arriving into the line but in the present experiment, a white beam

arriving directly from the undulator was used. The photon flux was 3 x 1011 photons/sec and

the beam dimensions at the flame were 50µm x 50µm. The x-rays in the beam ranges in

energy from 5 to 35 keV. A white beam was used in order to provide a good signal strength in

this proof-of-principal experiment although in fact a much more intense beam could have

been obtained by opening up the collimation slits. It was found that this was not necessary and

so narrow slits were used to avoid ozone production in the experimental hutch, caused by the

passage of the beam through the air. Figure 8 shows a sketch of the beamline.
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Fig. 8 Diagram of the optics section of the ID09 beamline.

At the end of the beamline, the x-rays pass through a cylindrical pipe and on into the

air. The whole assembly is housed in a lead-lined experimental hutch fitted with elaborate

safety interlocks. It is not possible to be present in the hutch when the beam is operational for

safety reasons. The beam can be switched on and off using a beam shutter.
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Fig. 9. This photograph shows the beam pipe (coming from the bottom left) and in front of it
(with the orange cover) is a CCD camera for measuring small angle x-ray scattering. At the
bottom right is the goniometer head that was used in this experiment to provide radial
scanning of the flame (Y direction). The microscope head (black object) was not used.

Fig. 10. This photograph shows another view of the experimental arrangement with the burner
in place and the flame burning. The copper pipes feed fuel and air to the burner which is
pushed and pulled in a horizontal direction by the goniometer head (silver object, left of
center). The CCD camera is on the left (white object). The burner can be moved vertically
manually.
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Fig. 11. This shows a view from the other side with the goniometer (on the left), the
CCD camera (on the right) and the flame and mounting assembly (in the center).

Fig. 12. The spectrum of x-rays coming from the undulators feeding the ID09
beamline. The W70 undulator was used for this experiment.
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The  present measurement represents a proof-of-principle experiment and it has to be

said that the results were very satisfying and exceeded expectations. In the early analysis of

expected signals, it was expected that ionization of soot particles by the x-ray beam would

give rise to charged particle production rates comparable or less than those produced by

natural ionization processes in the flame. Use of a lock-in amplifier was expected to be

required in order to separate out x-ray induced signals from natural ionization signals. In fact

we have found that the ionization rate under the beam conditions used, exceeded the natural

flame ionization rate and so signals could be acquired directly. A simple cylindrical electrode,

1 mm in diameter and 50 mm long was used to collect the positively charged particles (ions,

positive soot particles) when biased negatively or negative particles (electrons, negative ions,

negative soot particles) when biased positively. The signals acquired were also larger than the

background gas ionization which was not minimized in the experiment by reducing the

pressure in the vicinity of the flame nor by shortening the exposure length.

Figure 13 shows the positive and negative ionization currents measured when the x-

ray beam intersected the flame at a height of 32 mm above the burner throat. It can be seen

that the x-ray induced signal is about a factor of ten larger than the background gas ionization

rate. Figure 14 shows a similar plot but taken 2 mm above the burner throat. In this case there

is no signal generated due to x-ray ionization of soot particles and this is to be expected from

other studies. The curve labeled photodetector is a reading taken on a detector, located

upstream in the x-ray beamline. This is normally use to yield a measure of the beam flux but it

was found that when the flame was on, it yielded a much larger current which was due to light

pickup from the flame. This proved to be useful as it provided a measure of the radial extent

of the visible flame. For all the measurements taken at the synchrotron, a fuel flow rate of 62

ml/min of ethylene and 39 l/min of air yielding a flame with a height of 40 mm.
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Fig. 13a Negative current received by probe at a height of 32 mm above burner (HAB)
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Fig. 13b. Positive charges received by the probe at a height of 32 mm above burner.
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Fig. 14a. Negative charges received by the probe at a height of 2 mm above burner.

Fig. 14b. Positive charges received by the probe at a height of 2 mm above burner.
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Fig. 15. Plot of positive and negative currents collected at burner center as a function
of height above burner (HAB)

Figure 15 shows a plot of centerline ionization intensities plotted as a function of

height above the burner. It can be seen that the positive ion current starts out constant up to

around 10 mm whereupon it begins to rise, reaching a maximum at around 35 mm. The

negative current, referred to as the electron current is seen to rise to a maximum at between 15

and 20 mm and then to fall off thereafter.

The cylindrical wire probe used to collect the charges acts somewhat like a

conventional Langmuir probe but at atmospheric pressure, the collected currents never

achieve saturation as occurs for low pressure probes. The reason for this is that while at low

pressures, charges move towards a biased wire probe via diffusion across a sheath region
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where the charge is unipolar, in the case of a high pressure probe, charges are convected

towards the collector and the sheath region is very thin. This condition has been studied

theoretically by Clements and Smy [35] who set down an equation relating the charge density

and the measured current as follows:

lVnver3.5I 2/14/34/3
f

4/34/1
p

4/14/1
0 µε= …..(2)

where ε0 is the permittivity of free space, e, the electronic charge, µ the mobility of the

charged particle, n, the density of charged particles, V the applied probe potential, rp  and l,

the radius and length of the probe. In the current measurement, rp = 0.5 mm, l = 6 cm, and the

potential applied to the probe was ± 22 V. Measurements by Santoro et al. [36] have shown

that in an ethylene flame, the velocity varies from a value close to the initial fuel velocity

(1 cm/s) to about 1.5 m/s at a height of 20 mm above the burner. This rapid acceleration is due

to buoyancy and thermal expansion effects. Inserting these factors into equation (2) along

with the physical constants yields:

n10x1.4I 4/34/112µ= − …..(3)

It is seen that for a given charged particle density, the current is proportional to the

(mobility)1/4. Thus free electrons, released from the soot particles will yield larger measured

currents that the heavy positive species left behind. This explains the larger negative currents

measured in the region between 5 and 35 mm. The fact that the electron current declines

between 20 and 35 mm, eventually reaching a value equal to the positive current, (that has

been constantly rising over this range) suggests that free electrons attach to neutral soot

particles and thus the mobility of the negative charge carriers drops sharply. In a subsequent

experiment, the time structure of the synchrotron beam will be exploited to make actual

measurements of the charged particle mobilities. This will greatly aid in their identification.
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The fact that such large signals arising from x-ray absorption by soot particles were

seen is very significant for it indicates that the physical processes occurring as a result of the

absorption are complex. For high energy x-rays interacting with matter, the absorption cross

section can be taken to be the sum of the photoionization cross sections for all the various

subshells of the target atoms and the atoms constituting the material through which the x-ray

passes are assumed to be independent. Table I lists the cross sections for carbon, oxygen and

nitrogen atoms for energies of 10 and 20 keV.

Element σ(10 keV)

cm2

σ(20 keV)

cm2

Carbon 4.12x 10-23 4.1 x 10-24

Oxygen 1.48 x 10-22 1.57 x 10-23

Nitrogen 7.9 x 10-23 8.27 x 10-24

The cross section for the photoabsorption of air by a 20 keV x-ray photon is therefore

1 x 10-23 cm2. Using Beer’s law, one can calculate the number of photoionization events per

incident photon  (I/I0) thus:

I/I0 = nlσ = 2x 3.2 x 1016  x 760 x 6 x 1x10-23

where n is the number density of target atoms. (3.2 x 1016 molecules per Torr, 1 atm = 760

Torr). Collection length 6 cm.

Thus I = 2.4 x 10-3 I0
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From figure 4 we see that the soot volume fraction is of the order of 4 x 10-6 at 32 mm height,

the density of soot particles is 2.2 gm/cm3 and the molecular weight of carbon is 12. Thus

using Avogadro’s number, the number density of carbon atoms in the target soot  is seen to

be:

12
10x6x10x4x2.2

n
236

carbon

−

=  = 4.4x 1017 cm-3

and so :

I = I0 x 4.4 x 1017  x 1 x 4.1 x 10-24 = 1.8 x 10-6 I0

where the optical depth in the flame is approximately 1 cm. Thus the number of ionization

events due to soot absorption should be of the order of 100 times less than that produced by

the background gas. Despite this, as clearly seen in figure 13, the absorption of x-rays in the

flame yields a signal about ten times greater than that due to background gas ionization. This

is a very interesting and significant result.

The reason for this discrepancy can be explained by considering the photoemission

yield from soot particles as compared with air molecules. When a molecule of oxygen or

nitrogen absorbs a high energy x-ray, an inner shell electron is ejected creating an inner shell

vacancy. An electron from a higher shell may drop down into the vacancy thus emitting a

photon (i.e fluorescence) or the energy thus released may be carried away by the emission of

another electron. This process is known as the Auger effect. Thus more than one electron may

be produced by the photoabsorption event. In a solid particle, the situation is much more

complex for one can have a cascade of auger electrons produced and the energetic electrons

thus released may subsequently ionize other atoms in the material. In this way many electrons

can be produced by a single high energy x-ray photoabsorption event. The loss of a number of

electrons from a small particle leads to the generation of extremely high electric fields that
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can cause field emission of electrons and also disruption and fragmentation of the particle.

Thus the whole photoabsorption process is an extremely violent event.

These processes have been discussed in a number of astrophysical papers [21-26] as

the absorption of x-rays by interstellar dust is an important issue in observational astronomy.

Up to now there has been no experimental data to support or to confront these models. Clearly

a lot more study and experimentation is required before a proper understanding of this

phenomenon is acquired and before the interpretation of the signals can be properly applied in

a combustion or an astrophysical environment. In the next series of experiments, planned for

the synchrotron, it is intended to use a premixed flame as a target and to house the flame in a

cryogenically pumped vacuum chamber. This will allow a cleaner measurement to be

performed. It will also permit longer wavelength photons (VUV) to be used. By exploiting the

time structure of the synchrotron radiation, the mobilities of the collected particles can be

determined and this will provide more information concerning fragmentation and processes as

well as electron attachment processes in the flame. It will also be very instructive to study

absorption at other wavelengths and in particular in the ultra-violet region.
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