
| BALLISTIC MISSILE "~"~ n

J DEFENSE ORGANIZATION
j 7100 Defense Pentepn
' Washington, D,f„ 2((fc7*$9

'■■W*--TV'-T,^>i';1.-

PARALLEL FUNCTION PROCESSOR

PROGRAMMER'S MANUAL

SPECIAL TECHNICAL REPORT

REPORT NO. STR-0142-90-006.1

May 14.1990

GUIDANCE, NAVIGATION AND CONTROL

DIGITAL EMULATION TECHNOLOGY LABORATORY

Contract No. DASG60-89-C-0142

Sponsored By

The United States Army Strategic Defense Command

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology

Atlanta, Georgia 30332 - 0540 DISTRIBUTION STATEMENT A

Approved for Public Release
 Disiribution Unlimited

Contract Data Requirements List Item A004
Period Covered: Not Applicable

Type Report: As Required

20010829 015 t^il^t

DISCLAIMER

DISCLAIMER STATEMENT - The views, opinions, and /or findings contained in
this report are those of the author(s) and should not be construed as an official
Department of the Army position, policy, or decision, unless so designated by other
official documentation.

DISTRIBUTION CONTROL

(1) DISTRIBUTION STATEMENT - Approved for public release; distribution is
unlimited.

(2) This material may be reproduced by or for the U.S. Government pursuant to
the copyright license under the clause at DFARS 252.227 - 7013, October 1988.

PARALLEL FUNCTION PROCESSOR

PROGRAMMER'S MANUAL

Mav 14. 1990

Author

Richard M. Pitts

COMPUTER ENGINEERING RESEARCH LABORATORY

Georgia Institute of Technology
Atlanta, Georgia 30332-0540

Eugene L. Sanders

USASDC

Contract Monitor

Cecil O. Alford

Georgia Tech

Project Director

Copyright 1990
Georgia Tech Research Corporation

Centennial Research Building
Atlanta, Georgia 30332

Preface

This document is Revision 1 to an earlier document report No. STR-0142-90-006. Since the
first document was submitted, there have been changes in the software environment to
speed up the learning curve. In order to simplify the process of compiling, binding,
building, and executing programs several of the commands have been changed. Section 3.3
describes the steps required to complete the process of compiling, binding, building, and
executing programs. Appendix G describes these new programming tools. Another
change was to combine the two different target processor naming schemes used in the
crossbar input file and in the download input file into one. Now labels of the form PI
through P63 are used in the crossbar input file and the download input file.

Table of Contents

1. Scope 1

1.1 Identification 1

1.2 System Overview 1

1.3 Document Overview 2

2. Referenced documents 3

3. Software Programming Environment 4

3.1 Equipment Configuration 4
3.1.1 Intel 310 Host Computer 4
3.1.2 PFP Target Computer 4

3.2 Operational Information 4
3.2.1 Intel 310 Host Computer 4
3.2.2 PFP Target Computer 5

3.2.2.1 Intel Single Board Computer 5
3.2.2.2 Sequencer and Crossbar 5

3.3 Compiling, Binding and Building 5
3.3.1 Intel 310 Host Computer 7

3.3.1.1 Compiling 7
3.3.1.2 Binding 8
3.3.1.3 Running 8

3.3.2 PFP Target Computer 8
3.3.2.1 Target Processor 8

3.3.2.1.1 Compiling 8
3.3.2.1.2 Binding and Building 9
3.3.2.1.3 Downloading 9
3.3.2.1.4 Running 9
3.3.2.1.5 INPUT/OUTPUT 10

3.3.2.2 Crossbar and Sequencer 10
3.3.2.2.1 Compiling 10

ii

3.3.2.2.2 Binding and Building 11
3.3.2.2.3 Downloading 11
3.3.2.2.4 Running 11

4. Programming Information 12

4.1 Host Computer 12
4.1.1 Programming Features 12
4.1.2 Programming Instructions 12
4.1.3 Input and Output Control Programming 12
4.1.4 Additional or Special Techniques 12
4.1.5 Programming Examples 13
4.1.6 Error Detection and Diagnostic Features 13

4.2 Target Computer 13
4.2.1 Target Processors 13

4.2.1.1 Programming Features 14
4.2.1.2 Programming Instructions 14
4.2.1.3 Input and Output Control Programming 14
4.2.1.4 Additional or Special Techniques 14
4.2.1.5 Programming Examples 15

4.2.2 Crossbar and Sequencer 15
4.2.2.1 Programming Features 15
4.2.2.2 Programming Instructions 16
4.2.2.3 Input and Output Control Programming 16
4.2.2.4 Additional or Special Techniques 16
4.2.2.5 Programming Examples 16
4.2.2.6 Error Detection and Diagnostic Features 17

5. Notes 18

6. Appendices 19

6.1 Appendix A - Summary of iRMXII Commands 20

6.2 Appendix B - Compiling, Binding, and Building 25

6.3 Appendix C - C I/O Routines 32

6.4 Appendix D - FORTRAN I/O Routines 40

6.3 Appendix E - Pascal I/O Routines 47

6.5 Appendix F - PLM I/O Routines 55

6.5 Appendix G - Programming Tools 64

m

List of Tables

Table B-l Filename Conventions 26
Table C-l Supported I/O variable types for C. 33
Table D-l Supported I/O variable types for FORTRAN. 41
Table E-l Supported I/O variable types for Pascal 48
Table F-l Supported I/O variable types for PLM. 56

IV

List of Figures

Program Listing B-l. Binding for Host C - CNDBL.CSD 26

Program Listing B-2. Building for Target C - CBLDL.CSD 27

Program Listing B-3. Binding for Host FORTRAN - FORBNDL.CSD 27

Program Listing B-4. Building for Target FORTRAN - FORBLDL.CSD 28

Program Listing B-5. Binding for Host Pascal - PASBNDL.CSD 28

Program Listing B-6. Building for Target Pascal - PASBLDL.CSD 29

Program Listing B-7. Binding for Host PLM - PLMBNDL 29

Program Listing B-8. Building for Target PLM - PLMBLDL.CSD 30

Program Listing C-l. C Target Processor -MAKEFILE 34

Program Listing C-2. C Target Processor -TARGET.H 34

Program Listing C-3. C Target Processor Model - INPUT.C 36

Program Listing C-4. C Target Processor Model - OUTPUT.C 36

Program Listing C-5. C Target Processor - NETWORK.TXT 38

Program Listing C-6. CTargetProcessor-PROCESS.TXT 38

Program Listing C-7. CTargetProcessor-INPUT.TXT 38

Program Listing C-8. CTargetProcessor-OUTPUT.TXT 39

Program Listing D-l. FORTRAN Target - MAKEFILE 42

Program Listing D-2. FORTRAN Target - TARGET.FOR 42

Program Listing D-3. FORTRAN Target Processor Model - INPUT.FOR 43

Program Listing D-4. FORTRAN Target Processor Model - OUTPUT.FOR 44

Program Listing D-5. FORTRAN Target - NETWORK.TXT 45

Program Listing D-6. FORTRANTarget-PROCESS.TXT 45

Program Listing D-7. FORTRANTarget-INPUT.TXT 46

Program Listing D-8. FORTRANTarget-OUTPUT.TXT 46

Program Listing E-l. Pascal Target - MAKEFILE 49

Program Listing E-2. Pascal Target - TARGET.PAS 49

Program Listing E-3. Pascal Target Processor Model - INPUT.PAS 50

Program Listing E-4. Pascal Target Processor Model - OUTPUT.PAS 51

Program Listing E-5. Pascal Target - NETWORK.TXT 53

Program Listing E-6. PascalTarget-PROCESS.TXT 53
Program Listing E-7. PascalTarget-INPUT.TXT 53
Program Listing E-8. PascalTarget-OUTPUT.TXT 54
Program Listing F-l. PLM Target - MAKEFILE 57

Program Listing F-2. PLM Target -TARGET.PLM 57
Program Listing F-3. PLM Target Processor Model - INPUT.PLM 59

Program Listing F-4. PLM Target Processor Model - OUTPUT.PLM 60

Program Listing F-5. PLM Target - NETWORK.TXT 61
Program Listing F-6. PLMTarget-PROCESS.TXT 62
Program Listing F-7. PLMTarget-INPUT.TXT 62
Program Listing F-8. PLMTarget-OUTPUT.TXT 63

VI

1. Scope

1.1 Identification

This Software Programmer's manual applies to the Georgia Tech Parallel Function
Processor (PFP), Georgia Tech part number CERL002-0757-000.0. The ParaUel Function
Processor (PFP) hardware and software are partitioned into the following two categories;
host and target.

The host computer hardware consists of an Intel 310, terminal, and printer. The target
computer hardware is the main PFP system unit consisting of thirty-two processing
elements, a 16x16 crossbar, the crossbar sequencer, and associated interconnections. The
processing elements are generally single board computers (SBC), and are referred to as
target processors. The PFP can be upgraded to two clusters of thirty-two processing
elements, two crossbars, and two crossbar sequencers.

The system software is divided into two sections; host software and target software.
Software which executes on the host and communicates with the PFP during a simulation is
referred to as a host server program. Target software, which is executed on the PFP, is
divided into three sections. Programs executed on target processors are called processor
code. The microcode loaded into the sequencer memory is called sequencer code. The
microcode loaded into the crossbar memory is called crossbar code. All target software is
written and compiled at the host, then downloaded to the PFP for execution.

1.2 System Overview

The purpose of the Parallel Function Processor is to solve systems of differential equations
in real-time via the parallel architecture of the machine. The crossbar communication
structure between processors facilitates this by allowing a sequence of flexible and dynamic
communication events to occur. Each processor can be assigned one or more differential
equations (states) to solve. Using the crossbar, state information can be communicated
between the processors simultaneously so that the solution is calculated fast and accurately.
Not only is the PFP well suited for solving systems of differential equations it is also
appropriate for many other programs that can be partitioned into modules, where all
communication paths and data transfer lengths are known in advance.

1.3 Document Overview

This document contains the information for a programmer to understand and program the
Parallel Function Processor. Information on languages, syntax, and memory limits will be
presented. Additional information on how to use existing system software is discussed.

2. Referenced documents

The following documents contain information which is useful in unerstanding the PFP
hardware and software. These documents should be consulted for additional details on
specific issues.

Intel iRMXII Reference Manuals Volume 1-7
Intel 80286 SBC Hardware Reference Manual
Intel 80386 SBC Hardware Reference Manual
Intel 214 Disk Controller Hardware Reference Manual
Intel iRMXII C Software Reference Manual
Intel iRMXII FORTRAN Software Reference Manual
Intel iRMXII PASCAL Software Reference Manual
Intel iRMXII PLM Software Reference Manual
Georgia Tech PFP Technical Data Package
PFP Hardware Operation Manual
Georgia Tech GT-FPP/3 Hardware and Software Manuals

3. Software Programming Environment

3.1 Equipment Configuration

3.1.1 Intel 310 Host Computer

The host computer consists of an Intel 310, Multibus I based computer, a 40 Mbyte fixed
disk drive, a 360K floppy disk drive, and a terminal. The Intel 310 computer is a 80286
based computer with 2MB memory running the iRMXII operating system. The host serves
as the platform for software development and as the interface to the PFP. A Multibus I
repeater system is used to interconnect the host to the PFP and all communication between
the host and each processing element is accomplished via the Multibus repeater system.

3.1.2 PFP Target Computer

The PFP consists of 32 processing elements, one crossbar, and one sequencer and can be
upgraded to 64 processing elements, two crossbars, and two sequencers. The host can
access all of these through the Multibus I repeater system. The processing elements are
usually single board computers but can be other items such as an array interconnect board
or an analog I/O board. The crossbar is the dynamic switch that allows flexible data
communications between the processing elements. The sequencer is the device that
controls the crossbar switching based on an apriori sequence of instructions describing the
set of communication patterns to be performed between the processing elements during a
simulation. Each processing element has a Multibus I interface and a sequencer/crossbar
interface. Interfacing to the PFP can be done either through the Multibus I port and/or a
crossbar/sequencer port.

3.2 Operational Information

3.2.1 Intel 310 Host Computer

For more in depth coverage of the features of the host refer to the Intel iSBC286/12
Hardware Reference Manual and the Parallel Function Processor Operation Manual.

3.2.2 PFP Target Computer

The PFP configuration vises several types of processing elements. The Intel 286/12 and
386/12 are commercially available single board computers. Other processing elements
have been developed by Georgia Tech as special purpose, high performance processors.

3.2.2.1 Intel Single Board Computer

The 80286 single board computer contains 1 Megabyte of memory which is accessible via
the Multibus repeater system. The 286/12 uses an 80287 co-processor. Clock frequency is
8MHz. Refer to the Intel iSBC286/12 Hardware Reference Manual for detailed information.

The 80386 single board computer contains 1 Megabyte of memory which is accessible via
the Multibus repeater system. The 386/12 uses an 80387 co-processor. Clock frequency is
20MHz. Refer to the Intel iSBC386/12 Hardware Reference Manual for detailed
information.

The GT-FPP/3 single board computer contains 4K of 96 bit wide instruction memory and
2K of 32 bit wide data memory. All instruction memory is accessible via the Multibus
repeater system. The FPP uses an AMD 29C325 processor. Clock frequency is 10MHz. The
GT-FPP/3 has a throughput of 8 MFlops. Refer to the Georgia Tech GT-FPP/3 Hardware
and Software Reference Manuals for detailed information.

3.2.2.2 Sequencer and Crossbar

The sequencer and crossbar work in conjunction with the processing elements to yield
inter-processor communication. A sequence of communication patterns described in a
crossbar input file is used to generate microcode for the crossbar and sequencer. The
crossbar microcode defines which paths on the crossbar are connected and the sequencer
microcode selects which processing elements will be involved during a particular
communication cycle, waits for the appropriate status flags, generates the data transfer
signals, and then advances to the next communication cycle. Refer to the Georgia Tech GT-
SEQ/2 Sequencer Design section and to the GT-XB/2 Crossbar Design section of the
Georgia Tech PFP Technical Data Package.

3.3 Compiling, Binding and Building

The PFP has up to two clusters of thirty-two processing elements (usually processors). The
thirty-two processing elements in a single cluster communicate with each other over one
16x16 crossbar. The Multibus I bus repeater system is used by the host to communicate
with the PFP. The host computer is used to generate the object code for the processing

elements. At run-time the host computer performs downloading and starts the target
processors.

The basic concepts are:

i) During a simulation each active processing element performs a function (a computer
program) and, when necessary, sends data to or receives data from other processing
elements over the crossbar.

ii) All processors are downloaded with a program using an input file containing a list of the
processors and the programs to be loaded into the processors. Some processing elements
like the GT-ADDA/2 analog I/O board do not 'run a program' but have the ability to
perform any required communcation and processing.

iii) During a simulation the majority of the communication between processing elements
takes place across the crossbar, although inter-processor communication can occur via the
host computer.

iv) The desired direction for communication between processing elements must be allowed
by all the involved elements. Processors request this through a program statement which
controls communication direction (e.g., send, receive). All processing elements involved in
a given communication cycle must allow the requested transfer.

v) The crossbar/sequencer combination must know and allow the desired communication;
(this control is handled through the network definition file, i.e. NETWORKTXT.)

After the required programs are written, the following items must be done before 'run
time':

1) Compile target program
ic286 example.c large
ftn286 examplcfor large
pas286 example.pas large
plm286 example.plm large

2) Bind and Build target program
submit :PFP:csd/CBLDL(example, example.obj)
submit :PFP:csd/FORBLDL(example, example.obj)
submit :PFP:csd/PASBLDL(example, example.obj)
submit :PFP:csd/PLMBLDL(example, example.obj)

3) Compile network code in the file network.txt (if using the crossbar and sequencer)
submit :PFP:csd/XBC(network.txt)

Note: Binding and Building the target program code requires several long commands.
These commands have been placed in command files for the different languages. The
commands used to invoke these command files are listed above. The listings for these
command files can be found in Appendix B.

At run time the following must be performed:

1) reset the PFP system

-reset

2) load the target processors (and network if used)

-download process.txt

3) start the target processors (and network if used)

-start process, txt

4) start the host io server program

-ioserve process.txt <timeout in second(s)>

Note: The above items 1-4 will generally be contained in a command file or makefile. A
discussion of these utilities can be found in Appendix G.

3.3.1 Intel 310 Host Computer

3.3.1.1 Compiling

For a comprehensive approach to compiling a program refer to the appropriate Intel
language manual listed in section 2 of this document. Some brief examples are:

C:
- ic286 filejtiame.c debug large

FORTRAN:
- f tn286 f ile_name.f or debug large

PASCAL:
- pas286 f ile_name.pas debug large

PLM:
- plm286 filejname.plm debug large

Note: No extensions are assumed for the compilers (i.e., if a FORTRAN file was named
•test.for', *ftn286 test.for' NOT 'ftn286 test' is required. However the output file for the
compiler always replaces the ext(ension) of the input file name with '.obj' (e.g., 'ftn286
test.for' outputs 'test.obj'). The compilers also generate a compiled listing with the
extension '.1st'. See the appropriate compiler manual for controls that affect the list file and
object file generation.

3.3.1.2 Binding

For a comprehensive look at binding refer to the iAPX 286 Utilities Users' Guide. The
following is a brief summary of the items that need to be addressed.

In the iRMXII environment all references to routines that are not defined within the code
written by the user have to be resolved at bind time. Although this is not uncommon, in
addition to any user defined external references there are multiple language dependent and
independent libraries that have to be identified and bound into the program such as co-
processor libraries. Another area to be addressed is that of making the bound code into a
host executable image. This is accomplished by the RC option of the bind command.
Example:

- bnd286 testobj, fortran.lib object(test) re

This binds test.obj and library fortran.lib to an output file named 'test' and the RC option
makes it a host executable image file.

3.3.1.3 Running

To run a file that has been compiled and linked simply type the executable image file name

-test

and the program will run. Refer to Appendices A and B for a brief overview of I/O control
at the iRMXII level.

3.3.2 PFP Target Computer

3.3.2.1 Target Processor

3.3.2.1.1 Compiling

See as section 3.3.1.1

3.3.2.1.2 Binding and Building

For a comprehensive look at binding refer to the iAPX 286 Utilities Users' Guide. For a
comprehensive look at building refer to the iAPX 286 System Builder Users' Guide. The
following will give a brief summary of the items that need to be addressed.

In the iRMXII environment all references to routines that are not defined within the code
written by the user have to be resolved at link time. Although this is not uncommon, in
addition to any user defined external references there are multiple language dependent and
independent libraries that have to be identified and bound into the program such as co-
processor libraries. Example:

- bnd286 test.obj, fortran.lib object(test.lnk) noload

This binds test.obj and library fortran.lib to an output file named 'test.lnk'.

The binder output file 'test.lnk' now needs to be built with the bld286 utility. The builder
utility assigns absolute addresses for run time.

Appendix B contains listings of several command files that can be used to bind and build
programs as well as examples on how to use these command files.

3.3.2.1.3 Downloading

To download a boot loadable program, the utility download is used and is invoked by:

-download PROCESS.TXT

where PROCESS.TXT contains lines which consist of four fields separated by blanks: (1)
name {p00-p31, p32-p63, crossbar-crossbar2, sequencer-sequencer2}, (2) program filename,
(3) input filename (or <NULL> if input not required) and (4) output filename (or <NULL>
of output not required). A line with '#' in column 1 is considered a comment and will be
ignored. Excluding comments, every line must include each field.

network definition
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

3.3.2.1.4 Running

To start the target processors, the utility start is invoked by:

- start PROCESS.TXT

3.3.2.1.5 INPUT/OUTPUT

A host program may be executed in order to serve as the interface to host I/O facilities.
The host program must read in the PROCESS.TXT file.

Note: The language for the host needs to be able to support a structured type of memory
access. The preferred language for the host is currently C.

The host program must also handle any input or output needed from target processors
during the simulation.

3.3.2.2 Crossbar and Sequencer

The crossbar and sequencer microcode are both generated by the crossbar compiler. The
input to the crossbar compiler is a crossbar definition file (usually named NETWORK.TXT),
which describes the network communication definition statements.

3.3.2.2.1 Compiling

Assume a file named NETWORK.TXT has been created and contains network
communication definition statements. The file would be compiled by entering 'xbc' at the
iRMXII prompt and then responding with NETWORK.TXT for the input file name and then
'n' for the two follow up questions.

-xbc

Enter the communication file name - NETWORK.TXT

Do you want setup maps - n (generates SETUP.DAT)

Do you want address maps - n (generates ADDRESS.DAT)

If an 'n' is given in response to the latter two questions, the crossbar compiler (xbc)
generates two files named sequencer.bl and crossbar.bl. The former is the microcode for
the sequencer and the latter is the microcode for the crossbar in boot loadable format. If a
y is given in response to the latter two questions the files setup.dat and address.dat are
generated and can be used for debugging.

The normal output to the terminal for the crossbar compiler is to list a sequence denoting
which cycle is being processed. Errors are written to an 'error.dat' file.

Note: A command file has been provided which will execute the crossbar compiler and
answer both of the questions with a 'n'. This command file is executed by:

10

- submit :PFP:/csd/XBC(networktxt)

3.3.2.2.2 Binding and Building

No binding and building is required after compiling crossbar and sequencer code. The file
is ready to download.

3.3.2.2.3 Downloading

To download a boot loadable program, the utility download is used and is invoked by:

-download PROCESS.TXT

where PROCESS.TXT contains lines which consist of four fields separated by blanks: (1)
name {p00-p31, p32-p63, crossbar-crossbar2/ sequencer-sequencer2}, (2) program filename,
(3) input filename (or <NULL> if input not required) and (4) output filename (or <NULL>
of output not required). A line with '#' in column 1 is considered a comment and will be
ignored. Excluding comments, every line must include each field.

network 1 definition
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

3.3.2.2.4 Running

To start the crossbar and sequencer, the utility start is invoked by:

- start PROCESS.TXT

11

4. Programming Information

4.1 Host Computer

The Intel 310 host is a commercially available computer with special functions and
procedures written by Georgia Tech to enable it to communicate with the PFP. Refer to the
iRMXn manual set, the iSBC286/12 hardware reference manual, and the appropriate
language manual for comprehensive information. Appendices C, D, and E list the special
functions and procedures available to communicate with the PFP. The following
paragraphs give a general discussion of the more important topics.

4.1.1 Programming Features

Refer to the appropriate Intel language reference manual listed in Section 2 of this
document for the data types supported by a particular language.

4.1.2 Programming Instructions

See the appropriate Intel language manual(s) listed in Section 2 of this document.

4.1.3 Input and Output Control Programming

Two serial ports and one parallel I/O port are available on the single board computer
module in the Intel 310. The terminal is connected to one serial port and a printer may be
connected to the parallel port. Additionally, an iSBX expansion port is available on the
single board computer. The host computer is interfaced to the PFP through the Multibus.
This interfacing is accomplished via a repeater scheme where the host computer utilizes a
'host repeater' board and the PFP's Multibus card cages use 'slave repeater' boards. Low-
level program routines access this repeater system in order to pass data between the host
and target computers. All standard I/O routines such as reads, writes, and file
manipulation utilities are available and can be utilized.

4.1.4 Additional or Special Techniques

The low-level utilities for communicating between the host and the PFP are addressed in
this section.

The repeater system that is used to communicate between the host and the PFP is based on
a memory window scheme. In order to access more than the 16 Megabyte address space of

12

the Multibus I specification, a paging scheme was developed and implemented on the PFP.
The paging scheme has a window size of 1MB. The use of a window is accessed at a
specific 1MB boundary, but all of the window need not be filled. After the repeater is
'turned on', the memory of the target processor at that window appears and is accessed as
such via the input/output routines listed in Appendices C, D, E and F. Low level routines
input_buffer/output_buffer are used on both the target and the host in order to achieve a
data transfer. After the required transfer is completed the repeater is 'turned off.

This procedure of turning the repeater on, communicating, and then turning the repeater
off is much like the process of making a telephone call, trading the required information,
and then hanging up. Each window represents one target processor. Before starting the
next communication sequence with another target processor it is required to complete the
above sequence by turning the repeater off.

Listings of special I/O functions and procedures are given in Appendix C.

4.1.5 Programming Examples

All communication between the host and the target processors can be accomplished with
the IOSERVE utility eliminating the need for development of communication software for
the host. For examples of programming the host to perform other tasks such as data
analysis, refer to the appropriate intel language reference manual(s) listed in section 2 of
this document.

4.1.6 Error Detection and Diagnostic Features

Compilation and binding errors are written to the terminal and to the appropriate list file
(.1st for compile or .mpl for bind). Run time errors are displayed on the terminal. Refer to
the Intel iRMXII manuals and Intel language manuals for explanations of the errors.

4.2 Target Computer

4.2.1 Target Processors

The Intel iSBC286/12 is a commercially available single board computer. Refer to the
iRMXII manual set, the iSBC286/12 hardware reference manual, and the appropriate
language manual for comprehensive information. The following paragraphs give a general
discussion of the more prominent information.

13

4.2.1.1 Programming Features

Refer to the appropriate Intel language reference manual listed in Section 2 of this
document for the data types supported by a particular language. See Appendices C, D, E
and F for the I/O routines supported for C, FORTRAN, PASCAL and PLM, respectively.

4.2.1.2 Programming Instructions

See the appropriate Intel language manual(s) listed in Section 2 of this document.

4.2.1.3 Input and Output Control Programming

Two serial ports and one parallel port are available on each processor for connection to
external devices. One of the serial ports can be utilized by a set of instructions given in
Appendices C, D, E and F for C, FORTRAN, PASCAL and PLM, respectively.
Additionally, an iSBX expansion port is available on the board. The target processors have
an interface with both the host computer via the Multibus and with the crossbar network
through the iSBX port. No standard I/O routines such as reads, writes, and file
manipulation are available on the target processors. Only the low-level routines to
communicate to the host via the Multibus and the crossbar via the iSBX port are supported.

4.2.1.4 Additional or Special Techniques

The low-level utilities for communicating between the host and the PFP are addressed in
this section. See section 4.1.4 for more background on the repeater system for Multibus
communications between the target processors and the host.

The target processors can communicate to either the host or to another target processor.
Communication with the host is accomplished through the multibus repeater system.
Communication to the host across the Multibus can only be performed when the host has
accessed a specific processing element (i.e., when the host has turned on the memory page
to the element.) In order to transfer data the target processor issues a send for every receive
issued by the host, and a receive for every send issued by the host.

The target processors communicate with each other by issuing sends and receives via the
iSBX port to the crossbar. The other processors involved in a crossbar communication cycle
are required to accept or generate data appropriately. Additionally, as covered in section
4.2.2, the crossbar and sequencer will need to be programmed to accommodate these
communication patterns.

14

4.2.1.5 Programming Examples

Refer to Appendix C, D, E and F for a complete example for each language.

4.2.1.6 Error Detection and Diagnostic Features

Compilation, binding, and building errors are written to the terminal and to the
appropriate listing file (.1st for compile, .mpl for bind, or .mp2 for build). Refer to the Intel
iRMXII language manuals for explanations. Run time errors will be determined by the
correctness and the completeness of an execution sequence.

4.2.2 Crossbar and Sequencer

The crossbar and sequencer work as a unified system. The crossbar compiler (xbc)
generates microcode for the crossbar and the sequencer from an input file that describes the
communication cycles and patterns to be implemented during the execution of a multi-
processor program. The sequencer controls or as the name implies, sequences the crossbar
through the defined data path connections described by the input file. Each crossbar and
sequencer combination supports 32 processing elements and allows for multiple sets of
communications to occur at the same time. A communication cycle is one processing
element transferring data to one or more processing elements.

4.2.2.1 Programming Features

The communication paths for the crossbar are 16 bits wide. Thus all communication
between processors is performed as sets of 16 bit transfers (e.g., a 16 bit integer is
transferred in one transfer cycle, a 32 bit floating point number is transferred in two cycles.)

Single instructions allow the transfer of data from one processing element to one or more
processing elements. The sequencer and compiler combination supports two constructs or
flow control statements: (i) CYCLE and (ii) LOOP. The CYCLE construct allows for the
grouping of one or more single instructions into one simultaneous communication. The
CYCLE construct allows for parallel communications to occur. The LOOP construct is used
to define a set of CYCLEs that are to be repeated indefinitely.

An example of this would be a simulation that requires some initial data transfer to
initialize all the state variables and then to begin an integration routine where a set of
variables needs to be communicated during each integration step. The initial data transfer
requires a CYCLE construct which is executed once. The integration requires a CYCLE
construct which is executed repeatedly using the LOOP construct.

Comments are opened by a '[' and closed by a ']' and cannot be nested. The CYCLE
construct groups the single instructions between the current CYCLE statement and the next

15

CYCLE statement. By definition the CYCLE constructs cannot be nested. The LOOP
construct can only be used once per input file. LOOP lumps all the CYCLE statements that
follow it into one big loop (i.e. all statements between the LOOP statement and the end of
the file are grouped together and are repeated indefinitely.)

4.2.2.2 Programming Instructions

The only one instruction is the transfer instruction which has the following syntax:

pi'V"'p
j
:=pi[n][;]

where processor P is transferring data to the set of processors P. ,P ," * ,P.. The number

of 16 bit transfers is controlled by the .n option where n is an integer. The ';' is an optional
line terminator. If the .n option is omitted the default is n=l. If a 32 bit value is to be
transferred, the n is replaced by a 2 (e.g., := P .2). The set of processors P. ,P ," " ,P. does

not have to be monotonically increasing or decreasing, but for clarity it is helpful if the
sequence is mono tonic. All subscripts for the P(rocessor) numbers are in the set [0,63]. The
processor id appearing on the right side of the transfer equation cannot appear on the left.
It also follows that a processor id cannot appear more than once during a cycle.

4.2.2.3 Input and Output Control Programming

The communication between the sequencer and the host is accomplished with the same
repeater scheme used for the target processors. All work is done by the host and the
sequencer is used as a bank of memory until the I/O start command is issued. At this time
the sequencer begins sequencing the communication activities. The crossbar is accessed
through the sequencer and is controlled as a memory bank, similar to the sequencer, via the
repeater system.

4.2.2.4 Additional or Special Techniques

Since the communication patterns have to be determined apriori, all possible data transfers
between processing elements must be described in the crossbar input file. This requires
that the processing elements generate and accept transfers during each loop of the LOOP
code. The processing elements will know or determine which datums are valid and which
are not valid.

4.2.2.5 Programming Examples

The following is an example crossbar definition file.

16

Figure 1. Example Crossbar File
[Example Cros sbar]

CYCLE
P4,
P2 :

PS.
= p3.

P9
2;

:= pl5.2;
[initialize]

LOOP
CYCLE

Pi. p2. p3 := pO;

[main loop]

CYCLE
P4.
pO,

P5,
p2.

P9
P3

:= pl5.2;
:= pi;

CYCLE
pO, Pi. P3 := p2;

CYCLE
pO, Pi. P2 := P3;

4.2.2.6 Error Detection and Diagnostic Features

The normal output to the terminal for the crossbar compiler is a numerical sequence
denoting each cycle as it is being processed. Compilation errors are written to an 'error.dat'
file as they are encountered during compilation and are self-explanatory. Some common
errors are: (i) using periods instead of commas, (ii) use of the same processor id on both
sides of the ':=', and (iii) the same processor id used more than once during a CYCLE. Run
time errors will be determined by the correctness and the completeness of an execution
sequence.

17

5. Notes

Programming in a parallel environment requires considerations not encountered in a serial
environment. Since there are multiple processes occurring simultaneously, coordination of
communication and computation for each process is required. Data dependencies between
processes have to be such that one processor is not expecting data from another processor
which in turn is expecting data from the former. This state is referred to as deadlock.
Deadlock can also happen between more than two processes.

Data to be transferred from one process to another requires a communication path. When
the programmer is scheduling the inter-processor communication (i.e., writing the crossbar
code) attention has to be given to determine if the desired number of transfers can be
performed during one cycle. Depending on the number of transfers already scheduled in a
specific cycle, the addition of another data transfer may need to be delayed until the next
available cycle, unless one of the currently scheduled data exchanges can be moved.

Communication between multiple target processors, or between target processors and the
host, have to be coordinated so that each process sending information has a process to
correctly receive each datum being sent (and vice versa). These communications are
matched according to data type (real, integer, etc.). Inter-processor communications also
requires matching sequencer and crossbar code (the inter-processor communication file) in
order for target processors to communicate, in addition to the sends and receives on the
processors.

Sending control information to processes, and debugging in a parallel environment,
involves the receiving and sometimes the sending of messages to the individual processes
during a simulation. Each of these messages must be tagged or labeled appropriately so a
thorough understanding of the information is easily achieved. On the PFP, all interaction
with the processes by the operator is accomplished via the host. Interaction implies
sending a (data) message to the processor or receiving a (data) message from the processor.
As an example, if a process needs to send out a message to the operator, the process sends
the message to the host and then the host either displays it at the terminal or stores it in a
file. Other forms of displaying information by the processes can be through analog I/O or
through the control of status LEDs on the individual processors. This process is analogous
to having to perform all I/O for a standard program in the main program, with information
being generated in or transmitted to subprograms, as opposed to being able to do at will
the desired reads and writes in the subprograms.

Appendices C, D, E and F contain the message passing information for both processor to
host communication and processor to processor communication for C, FORTRAN,
PASCAL and PLM respectively.

18

6. Appendices

19

Appendix A - Summary of iRMXII commands

6.1 Appendix A

Summary of iRMXII Commands

20

Appendix A - Summary of iRMXII commands

Operating system: iRMXII

Intel iRMXII is not case sensitive, except in the case of the account password.

Some useful commands:

- submit filename

runs a command file with name filename.csd

A command file is a text file with a series of iRMXII commands that are to be
executed together repetitively. The .csd file is very similar to the .bat file in DOS and the
.com file in VAX/VMS.

- submit :PFP:csd/xbc(filename)

runs command file xbc with parameter 'filename'

- submit filename to :LP:

runs command file filename and sends output to :LP:

- submit filename to filename.out echo

runs command file and sends output to filename.out and echos it to the screen

- attachf ile path (or cd path)

changes directory to path (if it exits)

Examples this and other uses of cd:

cd :HOME:

cd /pf p/test

cd / (moves to root directory)

cd A (moves to parent directory))

cd :sd: (moves to root directory)

cd $ as :a_name: (assigns :a_name: to the

current directory)

21

Appendix A - Summary of iRMXII commands

cd :a_name: (moves to directory specified

by the logical :a_name:)

cd :HOME:SRC/EXOSIM to :EXOSIM:

cd :EXOSIM:

createdir subdir

makes directory as specified by subdir

■ copy f ilename(s)

displays the contents of said file on the screen

■ copy [path]filel to [path]file2

copy filel to file2

■ copy file(s) to :lp:

prints file to printer

- copy file(s) to :$:

copies f ile(s) to current directory

- dir (or dir :$: or dir $)

directory

- dir :PFP:

- dir /system

- dir $ for *.obj

directory of files ending in '.obj' in the current directory :$:

- dir $ to :LP: for *.dat

sends directory of :$: to printer :LP:

- attachdevice wmf 0 as :f:

allows the floppy in the floppy drive to be used as device :f: See detachdevice :f:

22

Appendix A - Summary of iRMXII commands

detachdevice :f:

removes the floppy from use - must be used before removing floppy!

attachdevice wtaO as :tape: physical

allows the tape in the drive to be used as :tape:

■ detachdevice :t:

removes the tape from use

■ delete f ile(s)

delete file(s) and empty directories

■ permit file_name(s) drau user=l

sets common file access privilege to 'file_name'

(e.g., - permit RK4.f or drau user=l

- permit test/* drau user=l

- permit * drau user=l)

■path

displays current directory path (e.g., /user/pfp/test)

.AR

recalls previous commands (can not go forward list)

-AC

cancels current command

.AW

when entered before doing a copy, this command allows paging by typing a AW

- backup :sd: to :tape:

backs up the files on disk :sd: to tape :tape:

- restore : see the iRMXII manuals.

23

Appendix A - Summary of iRMXII commands

- super: prompts for password to be super user

- alias: the alias command allows the user to alias iRMX commands to those more familiar
to the user. Aliases commonly used should be entered into the r'?'logon file in the users
'prog' Oprog:) directory. Examples

alias Is = dir

alias Is = dir $ 1

alias cd = attachfile

These aliases also allow parameters to be entered on the command line. These parameters
will be inserted into the command as it is executed.

An amperstand '&' is used at the end of a line to continue on to the next line.

- aedit filename.ext

invokes the AEDIT fullscreen editor

- use TAB to view command bar at bottom of screen

- ESC completes an input sequence on most commands

- AC aborts a commmand

- use arrow keys

- HOME moves (page, BOL, EOL) w.r.t. the last arrow movement

- i(nsert)

- d(elete) move cursor d(elete): deletes region

- b(uffer) move cursor b(uffer): buffers region

- the current version of the file is saved under the name filename.bak

24

Appendix B - Compiling, Binding, and Building

6.2 Appendix B

Compiling, Binding, and Building

25

Appendix B - Compiling, Binding, and Building

Table B-l Filename Conventions

File Extension File Usage
*.CSD command file
*.INC include file
*.C C source file
*.FOR FORTRAN source file
*.PAS PASCAL source file
*.PLM PLM source file
*.TXT text file
*.LST compiler listing file
*.OBJ compiler object file
*.MP1 binder listing file
*.LNK binder object file
*.MP2 builder listing file
*.BL builder object file
*.BLD builder command file
*.MAP map listing file
*.LIB library object file

The following is a command file (CBNDL.CSD) for binding a Intel iRMXII C program for
the host processor.

Example:
ic286 example.c debug large
submit :PFP:csd/cbndl(example, example.obj, debug)

Figure B-l. Host Processor - CBNDL.CSD

cbndl(<name>, <object>, <bnd option>)

bnd286 &
:LIB:ic286/cstart21.obj, &
%1, &
:PFP:lib/host.lib, &
:LIB:ic286/lib21.1ib, S
:LIB:ndp287/cel287.1xb, &
:LIB:ndp287/80287.1ib,
/rmx286/lib/rmxifl.lib, S
/rmx286/lib/udiifl.lib S
object (%0) ss(stack(+1000h)) S
rc(dm(01000h,fffffh)) fastload %2

26

Appendix B - Compiling, Binding, and Building

The following is a command file (CBLDL.CSD) for binding and building a Intel iRMXII C
program for the target processors.

Example:
ic286 example.c large
submit :PFP:csd/cbldl(example, example.obj)

Figure B-2. Target processor - CBLDL.CSD

cbldl(<name>, <object>, <bnd option>, <bld option>)

bnd286 &
:PFP:lib/cstartl.lnk, £
%1, &
:PFP:lib/interrupt.obj, &
:PFP:lib/target.lib, &
:LIB:ic286/clib21.1ib, &
:LIB:ic286/cfloat21.1ib, &
:LIB:ndp287/cel287.1ib, &
:LIB:ndp287/80287.1ib &
object(%0.Ink) ss(stack(+1000H)) &
name(maintask) noload %2

bld286 &
:PFP:lib/inittask.obj, &
%0.1nk &
object(%0.bl) buildfile(:PFP:lib/target.bid) bootload %3

delete %0.1nk

The following is a command file (FORBNDL.CSD) for binding a Intel iRMXII FORTRAN
program for the host processor.

Example:
ftn286 example.for debug large
submit :PFP:csd/forbndl(example, example.obj, debug)

Figure B-3. Host Processor - FORBNDL.CSD

; forbndl(<name>, <object>, <bnd option>)

bnd286 &
%1, &
:LIB:ftn286/f286r0.1ib, S
:LIB:ftn286/f286rl.lib, &
:LIB:ftn286/f286r2.1ib, &
:LIB:ftn286/f286r3.1ib, S
:LIB:ftn286/f286r4.1ib, S
:LIB:ndp287/cel287.1ib, S
:LIB:ndp287/80287.1ib, &
/rmx286/lib/rmxlfl.lib, &
/rmx286/lib/udilf1.11b S
object(%0) ss(stack(+1000h)) &
rc(dm(01000h,fffffh)) fastload %2

27

Appendix B - Compiling, Binding, and Building

The following is a command file (FORBLDL.CSD) for binding and building a Intel iRMXH
FORTRAN program for the target processors.

Example:
ftn286 example.for large
submit :PFP:csd/forbldl(example, example.obj)

Figure B-4 Target Processor - FORBLDL.CSD

; forbldl(<name>, <object>, <bnd option>, <bld option>)

bnd286 &
%1, &
:PFP:lib/interrupt.obj, &
:PFP:lib/target.lib, &
:LIB:ftn286/f286r0.1ib, &
:LIB:ftn286/f286rl.lib, &
:LIB:ftn286/f286r2.1ib, £
:LIB:ftn286/rtn286.1ib, &
:LIB:ndp287/cel287.1ib, &
:LIB:ndp287/80287.1ib &
object(%0.Ink) ss(stack(+1000H)) &
name(maintask) noload %2

bld286 &
:PFP:lib/inittask.obj, &
%0.1nk &
object(%0.bl) buildfile(:PFP:lib/target.bld) bootload %3

delete %0.1nk

The following is a command file (PASBNDL.CSD) for binding a Intel iRMXII PASCAL
program for the host processor.

Example:
pas286 example.pas debug large
submit :PFP:csd/pasbndl(example, example.obj, debug)

Figure B-5. Host Processor - PASBNDL.CSD

pasbndl(<name>, <object>, <bnd option>)

bnd286 &
%1, s
:LIB:pas286/p286r0.1ib, S
:LIB:pas286/p286rl.lib, &
:LIB:pas286/p286r2.1ib, &
:LIB:pas286/p286r3.1ib, &
:LIB:ndp287/cel287.1ib, &
:LIB:ndp287/80287.1ib, &
/rmx286/lib/rmxifl.lib, &
/rmx286/lib/udiifl.lib &
object(%0) ss(stack(+1000h)) S
rc(dm(01000h,fffffh)) fastload %2

28

Appendix B - Compiling, Binding, and Building

The following is a command file (PASBLDL.CSD) for binding and building a Intel iRMXII
PASCAL program for the target processors.

Example:
pas286 example.pas large
submit :PFP:csd/pasbldl(example, example.obj)

Figure B-6 Target Processor - PASBLDL.CSD

; pasbldl(<name>, <object>, <bnd option>, <bld option>)

bnd286 &
%1, &
:PFP:lib/interrupt.obj, &
:PFP:lib/target.lib, &
:LIB:pas286/p286r0.1ib, S
:LIB:pas286/p286rl.lib, &
:LIB:pas286/rtn286.1ib, &
:LIB:ndp287/cel287.1ib, &
:LIB:ndp287/80287.1ib £
object (%0.Ink) ss(stack(+1000H)) £
name(maintask) noload %2

bld286 £
:PFP:lib/inittask.obj, £
%0.1nk £
object(%0.bl) buildfile(:PFP:lib/target.bid) bootload %3

delete %0.1nk

The following is a command file (PLMBNDL.CSD) for binding a Intel iRMXII PLM
program for the host processor.

Example:
plm286 example.pirn debug large
submit :PFP:csd/plmbndl(example, example.obj, debug)

Figure B-7. Host Processor PLMBNDL.CSD

; plmbndl(<name>, <object>, <bnd option>)

bnd286 £
%1, £
:LIB:plm286/plm286.11b, £
/rmx286/lib/rmxifl.lib, £
/rmx286/lib/udiifl.lib £
object(%0) ss(stack(+1000h)) £
rc(dm(01000h,fffffh)) fastload %2

29

Appendix B - Compiling, Binding, and Building

The following is a command file (PLMBLDL.CSD) for binding and building a Intel iRMXII
PLM program for the target processors.

Example:
plm286 example.plm large
submit :PFP:csd/plmbldl(example, example.obj)

Figure B-8 Target Processor - PLMBLDL.CSD

; plmbldl(<name>, <object>, <bnd option>, <bld option>)

bnd286 £
%1, £
:PFP:lib/interrupt.obj, £
:PFP:lib/target.lib, £
:LIB:plm286/plm286.1ib, &
:LIB:ndp287/cel287.1ib, £
:LIB:ndp287/80287.1ib £
object(%0.Ink) ss(stack(+1000H)) £
name(maintask) noload %2

bld286 £
:PFP:lib/inittask.obj, £
%0.1nk £
object(%0.bl) buildfile(:PFP:lib/target.bld) bootload %3

delete %0.1nk

Figure B-9 Target Build File - TARGET.BLD

BUILDFILE;

SEGMENT
»SEGMENTS (DPL=0),
STARTUP DATA (BASE =001000H),
STARTUP_CODE (BASE =001010H);

TABLE
GDT (LOCATION=GDT_ PTR) ;

GATE
INTERRUPT 00 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 00),
INTERRUPT 01 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 01),
INTERRUPT 02 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 02),
INTERRUPT 03 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 03),
INTERRUPT 04 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 04)',
INTERRUPT 05 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 05),
INTERRUPT 06 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 06),
INTERRUPT 07 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 07),
INTERRUPT 08 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 08),
INTERRUPT 09 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 09),
INTERRUPT 10 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 10),
INTERRUPT 11 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 11),
INTERRUPT 12 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 12),
INTERRUPT 13 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 13),
INTERRUPT 14 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 14),
INTERRUPT 15 GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 15),
INTERRUPT_16_GATE (INTERRUPT,DPL=0,ENTRY=INTERRUPT 16);

TABLE
IDT
V

LOCATION=IDT PTR,
ENTRY=

f

00 INTERRUP T_0 0_GATE,

30

Appendix B - Compiling, Binding, and Building

01:INTERRUPT 01 GATE,
02:INTERRUPT 02 GATE,
03INTERRUPT 03 GATE,
04:INTERRUPT 04 GATE,
05:INTERRUPT 05 GATE,
06INTERRUPT 06 GATE,
07 INTERRUPT 07 GATE,
08INTERRUPT 08 GATE,
09INTERRUPT 09 GATE,
10INTERRUPT 10 GATE,
11 INTERRUPT 11 GATE,
12INTERRUPT 12 GATE,
13:INTERRUPT 13 GATE,
14 INTERRUPT 14 GATE,
15INTERRUPT 15 GATE,

\ ■

16 INTERRUPT 16 GATE
)

);

TASK
INITTASK (OBJECT=INITTASK),
MAINTASK (OBJECT=MAINTASK);

MEMORY

RESERVE =

0000000H. .0000FFFH, — monitor ram
0100000H. .0F7FFFFH, — memory not available
OF80000H.
)

);

END

.0FFFFFFH — monitor rom

31

Appendix C - Target Processor C I/O

6.3 Appendix C

Target Processor C I/O

32

Appendix C - Target Processor C I/O

The C variable types supported by the I/O routines are described in Table C-l

Table C-l Supported I/O variable types for C

data type alternate data_type message_type network
char CHARACTER_08BIT_type CHARACTER_08BIT Pl:=p0.1
struct
{
float r;
float i;

}

COMPLEX_32BIT_type COMPLEX_32BIT pl:=p0.4

struct
{
double r;
double i;

}

COMPLEX_64BIT_type COMPLEX_64BIT pl:=p0.8

char LOGICAL_08BIT_type LOGICAL_08BIT pi: =p0.1
short LOGICAL_16BIT_type LOGICALJ6BIT Pi =p0.1
long LOGICAL_32BIT_type LOGICAL_32BIT P* =p0.2
float REAL_32BlT_type REAL 32BIT P1 =p0.2

double REAL_64BIT_type REAL 64BIT Pi =p0.4
signed char SIGNED_08BIT_type SIGNED08BIT Pi =p0.1
signed short SIGNED_16BIT_type SIGNEDJ6BIT P* =p0.1
signed long SIGNED_32BIT_type SIGNED_32BIT P* =p0.2
unsigned char UNSIGNED_08BIT_type UNSIGNED_08BIT P1 =p0.1
unsigned short UNSIGNED_16BIT_type UNSIGNED_16BIT P* :=p0.1
unsigned long UNSIGNED_32BIT_type UNSIGNED_32BIT P* :=p0.2

The Intel iRMXII C compiler supports including files at compile time. As such we can
include files that have definitions for seperately compiled functions and procedures. These
files usually have the extension '.c' or '.h'.

The procedures used to send and receive data between target processors follow the form:

send_message_type(&message); and

receive_message_type(&message);

where message_type is replaced with an entry from Table C-l and where message is a
scalar variable and is the corresponding datajype or alternate datajype.

The procedures used to send and receive data between the target processors and the host
follow the form:

33

Appendix C - Target Processor C I/O

output_message(message_type,&message,message_size); and

input_message(&message_type/&™essage,&message_size);

where message_type is replaced with an entry from Table C-l, where message is a scalar or
array variable and is the corresponding datajype or alternate data_type, and where
message_size is the number of datums in message.

Figure C-l. Target Processor C Example - MAKEFILE

cflags = code large optimize(3) \
searchinclude(:LIB:ic286/,:PFP:include/)

default: input.bl output.bl crossbar.bl sequencer.bl

input.bl: input.obj
submit :PFP:csd/cbldl(input, input.obj)

input.obj: input.c
ic286 input.c $(cflags)

output.bl: output.obj
submit :PFP:csd/cbldl(output, output.obj)

output. ob j: output. c
ic286 output.c $(cflags)

crossbar.bl sequencer.bl: network.txt
submit :PFP:csd/xbc(network.txt)

clean:
delete ».1st,*.obj,*.mp?,*.bl

run: input.bl output.bl crossbar.bl sequencer.bl
reset
download process.txt
start process.txt
ioserve process.txt 2

Figure C-2. Target Processor C Example - TARGET.H

»define CHARACTER_08BIT 0
»define C0MPLEX_32BIT 1
»define COMPLEX_64BIT 2
»define LOGICAL_08BIT 3
»define L0GICAL_16BIT 4
»define LOGICAL_32BIT 5
»define REAL_32BIT 6
»define REAL_64BIT 1
»define SIGNED_08BIT 8
»define SIGNEDJL6BIT 9
»define SIGNED_32BIT 10
»define UNSIGNED_08BIT 11
»define UNSIGNED_16BIT 12
»define UNSIGNED_32BIT 13

typedef char CHARACTER_08BIT_type;
typedef struct { float r; float i; } COMPLEX_32BIT_type;
typedef struct { double r; double i; } COMPLEX_64BIT_type;
typedef char LOGICAL_08BIT_type;
typedef short LOGICAL_16BIT_type;
typedef long LOGICAL_32BIT_type;
typedef float REAL_32BIT_type;

34

Appendix C - Target Processor C I/O

typedef double REAL_64BIT_type;
typedef signed char SIGNED_08BIT_type;
typedef signed short SIGNED_16BIT_type;
typedef signed long SIGNED_32BIT_type;
typedef unsigned char UNSIGNED_08BIT_type;
typedef unsigned short UNSIGNED_16BIT_type;
typedef unsigned long UNSIGNED_32BIT_type;

extern void output_nl(void) ;

extern void input_buffer(void »buffer, signed short buffer_size);
extern void input_message(signed short *message_type,

void »message, signed short *message_size);
extern unsigned char input_ready(void);

extern void led(signed short state);

extern void output_buffer(void »buffer, signed short buffer_size);
extern void output_message(signed short message_type,

void »message, signed short message_size);
extern unsigned char output_ready(void);

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern
extern

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

void
void
void
void
void
void
void
void
void
void
void
void
void
void
void

receive_buffer(void »buffer, signed short buffer_size]
receive_CHARACTER_08BIT(CHARACTER_08BIT_type »buffer);
receive_COMPLEX_32BIT(COMPLEX_32BIT_type »buffer) ;
receive_COMPLEX_64BIT(COMPLEX_64BIT_type »buffer);
receive LOGICAL_08BIT(LOGICAL_08BIT_type »buffer);
receive_L0GICAL_16BIT(L0GICAL_16BIT_type »buffer '
receive_LOGICAL_32BIT(LOGICAL_32BIT_type »buffer)i
receive_REAL_32BIT(REAL_32BIT_type »buffer);
receive_REAL_64BIT(REAL_64BIT_type »buffer);
receive_SIGNED_08BIT(SIGNED_08BIT_type »buffer);
receive_SIGNED_16BIT(SIGNED_16BIT_type »buffer);
receive_SIGNED_32BIT(SIGNED_32BIT_type »buffer);
receive_UNSIGNED_08BIT(UNSIGNED_08BIT_type »buffer);
receive_UNSIGNED_16BIT< UNSIGNED_16BIT_type »buffer);
receive UNSIGNED 32BIT(UNSIGNED_32BIT_type »buffer);

send_
send]
send]
send
send
send]
send
send]
send]
send]
send]
send
send
send
send

buffer(void »buffer, signed short buffer_size);
CHARACTER_08BIT(CHARACTER_08BIT_type »buffer);
COMPLEX_32BIT(COMPLEX_32BIT_type »buffer);
"COMPLEX_64BIT (COMPLEX_64BIT_type »buffer
"LOGICAL_08BIT(LOGICAL_08BIT_type »buffer
"L0GICAL_16BIT(L0GICAL_16BIT_type »buffer),
"LOGICAL_32BIT(LOGICAL_32BIT_type »buffer);
"REAL_32BIT(REAL_32BIT_type »buffer);
"REAL_64BIT(REAL_64BIT_type »buffer);
"SIGNED_08BIT(SIGNED_08BIT_type »buffer);
"SIGNED_16BIT(SIGNED_16BIT_type »buffer);
"SIGNED_32BIT(SIGNED_32BIT_type »buffer);
"UNSIGNED_08BIT(UNSIGNED_08BIT_type »buffer);
"UNSIGNED_16BIT< UNSIGNED_16BIT_type »buffer);
"UNSIGNED_32BIT(UNSIGNED_32BIT_type »buffer);

»ifndef TRUE
»define TRUE 1
#endif
tifndef FALSE
«define FALSE 0
#endif

Figure C-3. Target Processor C Example - INPUT.C

»include <target.h>

void main(void)
{

SIGNED_16BIT_type message_type;
SIGNED_16BIT_type message_size;

COMPLEX_32BIT_type c32
COMPLEX_64BIT_type c64
LOGICAL_08BIT_type 108
LOGICAL_16BIT_type 116
LOGICAL_32BIT_type 132

35

Appendix C - Target Processor C I/O

REAL_32BIT_type r32;
REAL_64BIT_type r64;

SIGNED_08BIT_type s08;
SIGNED_16BIT_type sl6;
SIGNED_32BIT_type s32;

UNSIGNED_08BIT_type u08;
UNSIGNED_16BIT_type ul6;
ÜNSIGNED_32BIT_type u32;

input_message(Smessage_type, Sc32, Smessage_size
input_message(smessage_type, Sc64, Smessage_size

input_message(Smessage_type, S108, Smessage_size
input_message(smessage_type, S116, smessage_size
input_message(Smessage_type, S132, Smessage_size

input_message(Smessage_type, Sr32, Smessage_size
input_message(Smessage_type, Sr64, Smessage_size

input_message(smessage_type, Ss08, smessage_size
input_message(Smessage_type, Ssl6, Smessage_size
input_message(&message_type, Ss32, smessage_size

input_message(smessage_type, Su08, smessage_size
input_message(Smessage_type, Sul6, Smessage_size
input_message(Smessage_type, Su32, Smessage_size

send_C0MPLEX_32BIT(Sc32);
send_COMPLEX_64BIT(Sc64) ;

send_LOGICAL_08BIT(S108);
send L0GICAL_16BIT(S116);
send_LOGICAL_32BIT(«132);

send_REAL_32BIT(Sr32);
send_REAL_64BIT(Sr64);

send_SIGNED_08BIT(Ss08);
send_SIGNED_16BIT(Ssl6);
send_SIGNED_32BIT(Ss32);

send_UNSIGNED_08BIT(Su08);
send_UNSIGNED_16BIT(Sul6);
send UNSIGNED 32BIT(&u32) ;

} /* main */

Figure C-4. Target Processor C Example - OUTPUT.C

#include <target.h>

void main(void)
{

COMPLEX_32BIT_type c32;
COMPLEX_64BIT_type c64;

LOGICAL_08BIT_type 108;
L0GICAL_16BIT_type 116;
LOGICAL_32BIT_type 132;

REAL_32BIT_type r32;
REAL_64BIT_type r64;

SIGNED_08BIT_type s08;
SIGNED_16BIT_type sl6;
SIGNED_32BIT_type s32;

UNSIGNED_08BIT_type u08;
UNSIGNED_16BIT_type ul6;
UNSIGNED_32BIT_type u32;

receive_COMPLEX_32BIT(Sc32);

36

Appendix C - Target Processor C I/O

receive_COMPLEX_64BIT(Sc64) ;

receive_LOGICAL_08BIT(S108);
receive_L0GICAL_16BIT(&116);
receive_LOGICAL_32BIT{ S132);

receive_REAL_32BIT(Sr32) ;
receive_REAL_64BIT(&r64) ;

receive_SIGNED_08BIT(Ss08);
receive_SIGNED_16BIT(Ssl6);
receive_SIGNED_32BIT(Ss32);

receive_UNSIGNED_08BIT(Su08)
receive_0NSIGNED_16BIT(Sul6)
receive_UNSIGNED_32BIT(Su32)

output_message(CHARACTER_08BIT, "c32= ",
output_message(COMPLEX_32BIT, Sc32, 1);
output_nl();
output_message(CHARACTER_08BIT, "c64= ",
output_message(COMPLEX_64BIT, Sc64, 1) ;
output_nl();

output_message(CHARACTER_08BIT, "108= ",
output_message(LOGICAL_08BIT, &108, 1);
output_nl();
output_message(CHARACTER_08BIT, "116= ",
output_message(LOGICAL_16BIT, S116, 1);
output_nl();
output_message(CHARACTER_08BIT, "132= ",
output_message(LOGICAL_32BIT, &132, 1) ;
output_nl();

output_message(CHARACTER_08BIT, "r32= ",
output_message(REAL_32BIT, Sr32, 1) ;
output_nl();
output_message(CHARACTER_08BIT, "r64= ",
output_message(REAL_64BIT, Sr64, 1);
output_nl();

output_message(CHARACTER_08BIT, "s08= ",
output_message(SIGNED_08BIT, Ss08, 1);
output_nl();
output_message(CHARACTER_08BIT, "sl6= ",
output_message(SIGNED_16BIT, Ssl6, 1);
output_nl();
output_message(CHARACTER_08BIT, "s32= ",
output_message(SIGNED_32BIT, Ss32, 1);
output_nl();

output_message(CHARACTER_08BIT, "u08= ",
output_message(UNSIGNED_08BIT, Su08, 1)
output_nl();
output_message(CHARACTER_08BIT, "ul6= ",
output_message(UNSIGNED_16BIT, Sul6, 1)
output_nl();
output_message(CHARACTER_08BIT, "u32= ",
output_message(UNSIGNED_32BIT, Su32, 1)
output_nl();

) /* main */

5);

5);

5);

5);

5);

5);

5);

5);

5);

5);

5);

5);

5);

Figure C-5. Target Processor C Example - NETWORK.TXT

LOOP;

CYCLE [1]
p31 := pl5.4; [c32]

CYCLE [2]
p31 := pl5.8; [c64]

37

Appendix C - Target Processor C I/O

CYCLE [
p31 : =

3]
plS.l; [108]

CYCLE [
p31 : =

4]
pl5.1; [116]

CYCLE [
p31 : =

5]
pl5.2; [132]

CYCLE [
p31 : =

6]
pl5.2; t r32]

CYCLE [
p31 : =

7]
pl5.4; [r64]

CYCLE [
p31 : =

8]
pl5.1; [s08]

CYCLE [
p31 : =

9]
pl5.1; [sl6]

CYCLE [
p31 : =

10]
pl5.2; [s32]

CYCLE [
p31 : =

11]
plS.l; [u08]

CYCLE [
p31 : =

12]
pl5.1; [ul6]

CYCLE [
1 P31 :=

13]
pl5.2; [u32]

Figure C-6. Target Processor C Example - PROCESS.TXT

p00 input.bl input.txt <null>
p31 output.bl <null> output.txt
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

Figure C-7. Target Processor C Example - INPUT.TXT

c32
complex_32bit
1
1.2 -1.2
c64
complex_64bit
1
12.12 -12.12
108
logical_08bit
1
true
116
logical_16bit
1
false
132
logical_32bit
1
true
r32
real_32bit
1
1.2
r64
real_64bit
1

38

Appendix C - Target Processor C I/O

12.12
s08
signed_08bit
1
-12
sl6
signed_16bit
1
-1234
s32
signed_32bit
1
-12345678
u08
unsigned_08bit
1
12
ul6
unsigned_16bit
1
1234
u32
unsigned_32bit
1
12345678

Figure C-8. Target Processor C Example - OUTPUT.TXT

c32= (1.2, -1.2)
c64= (12.12, -12.12)
108= true
116= false
132= true
r32= 1.2
r64= 12.12
s08= -12
sl6= -1234
s32= -12345678
u08= 0x12
ul6= 0x1234
u32= 0x12345678

39

6.4 Appendix D

Target Processor FORTRAN I/O

40

Appendix D- Target Processor FORTRAN I/O

The FORTRAN variable types supported by the I/O routines are described in Table D-l

Table D-l Supported I/O variable types for FORTRAN.

data_type alternate data_type message_type network
character CHARACTER_08BIT pl:=p0.1
complex*8 COMPLEX 32BIT pl:=p0.4
complex*! 6 COMPLEX_64BIT pl:=p0.8
logical*l LOGICAL_08BIT pl:=p0.1
logical*2 LOGICALJ6BIT pl:=p0.1
logical*4 LOGICAL_32BIT pl:=p0.2
real*4 REAL 32BIT pl:=p0.2
real*8 REAL 64BIT pl:=p0.4
integer*! SIGNED_08BIT pl:=P0.1
integer*2 SIGNEDJ6BIT pl:=p0.1
integer*4 SIGNED 32BIT pl:=p0.2
integer*! UNSIGNED_08BIT pl:=p0.1
integer*2 UNSIGNEDJ6BIT pl:=p0.1
integer*4 UNSIGNED_32BIT pl:=p0.2

The Intel iRMXII FORTRAN compiler supports including files at compile time. As such we
can include files that have definitions for seperately compiled functions and procedures.
These files usually have the extension '.for' or '.inc'.

The procedures used to send and receive data between target processors follow the form:

call send_message_type(message) and

call receive_message_type(message)

where message_type is replaced with an entry from Table D-l and where message is a
scalar variable and is the corresponding data_type or alternate data_type.

The procedures used to send and receive data between the target processors and the host
follow the form:

calloutput_message(%VAL(message_type)/message,%VAL(message_size)) and

callinput_message(message_type,message,message_size)

where message_type is replaced with an entry from Table D-l, where message is a scalar or
array variable and is the corresponding data_type or alternate data_type, and where
message_size is the number of datums in message.

41

Appendix D- Target Processor FORTRAN I/O

Figure D-l. Target Processor FORTRAN Example - MAKEFILE

forflags = code large optimize(3)

default: input.bl output.bl crossbar.bl sequencer.bl

input.bl: input.obj
submit :PFP:csd/forbldl(input, input.obj)

input.obj: input.for
ftn286 input.for $(forflags)

output.bl: output.obj
submit :PFP:csd/forbldl(output, output.obj)

output.obj:output.for
ftn286 output.for $(forflags)

crossbar.bl sequencer.bl: network.txt
submit :PFP:csd/xbc(network.txt)

clean:
delete *. 1st, *.obj,*.mp?,*.bl

run: input.bl output.bl crossbar.bl sequencer.bl
reset
download process.txt
start process.txt
ioserve process.txt 2

Figure D-2. Target Processor FORTRAN Example - TARGET.FOR

$NOLIST

INTEGER*2 CHARACTER_08BIT
PARAMETER (CHARACTER_08BIT = 0)

INTEGER*2 COMPLEX_32BIT
PARAMETER (COMPLEX_32BIT = 1)
INTEGER*2 COMPLEX_64BIT
PARAMETER (COMPLEX_64BIT = 2)

INTEGER*2 LOGICAL_08BIT
PARAMETER (LOGICAL_08BIT = 3)
INTEGER*2 L0GICAL_16BIT
PARAMETER (L0GICAL_16BIT = 4)
INTEGER*2 LOGICAL_32BIT
PARAMETER (LOGICAL_32BIT = 5)

INTEGER*2 REAL_32BIT
PARAMETER (REAL_32BIT = 6)
INTEGER*2 REAL_64BIT
PARAMETER (REAL_64BIT = 1)

INTEGER*2 SIGNED_08BIT
PARAMETER (SIGNED_08BIT = 8)
INTEGER*2 SIGNED_16BIT
PARAMETER (SIGNED_16BIT = 9)
INTEGER*2 SIGNED_32BIT
PARAMETER (SIGNED_32BIT = 10)

INTEGER*2 UNSIGNED_08BIT
PARAMETER (UNSIGNED_08BIT = 11)
INTEGER*2 UNSIGNED_16BIT
PARAMETER (UNSIGNED_16BIT = 12)
INTEGER*2 UNSIGNED_32BIT
PARAMETER (UNSIGNED_32BIT = 13)

LOGICAL*l INPUT_READY
LOGICAL*! OUTPUT READY

L $LIST

42

Appendix D- Target Processor FORTRAN I/O

Figure D-3. Target Processor FORTRAN Example - INPUT.FOR

program mam

$include(':PFP:include/target.for')

INTEGER*2 message type
INTEGER*2 message_size

COMPLEX*8 c32
C0MPLEX*16 c64

L0GICAL*1 108
LOGICAL*2 116
LOGICAL*4 132

REAL*4 r32
REAL*8 r64

INTEGER*1 s08
INTEGER*2 si6
INTEGER*4 s32

INTEGER*1 U08
INTEGER*2 ul6
INTEGER*4 u32

call input message(message_type, c32, message_slze)
call input_message(message_type, c64, message_size)

call input message(message_type, 108, message_size)
call input_message(message_type, 116, message_size)
call input message(message_type, 132, message_size)

call input_message(message_type, r32, message_size)
call input_message(message_type, r64, message_size)

call input_message(message_type, s08, message_size)
call input_message(message_type, sl6, message_size)
call input_message(message_type, s32, message_size)

call input_message(message_type, u08, message_size)
call input message) message_type, ul6, message_size)+
call input message(message_type, u32, message_size)

call send COMPLEX 32BIT(c32)
call send_COMPLEX_64BIT(c64)

call send LOGICAL 08BIT(108)
call send LOGICAL 16BIT(116)
call send_L0GICAL_32BIT(132)

call send REAL 32BIT(r32)
call send_REAL_64BIT(r64)

call send SIGNED 08BIT(s08)
call send SIGNED 16BIT(sl6)
call send_SIGNED_32BIT(s32)

call send UNSIGNED 08BIT(u08)
call send UNSIGNED 16BIT« ul6)
call send_UNSIGNED_32BIT(u32)

end

Figure D-4. Target Processor FORTRAN Example - OUTPUT.FOR

program main

$include(':PFP:include/target.for')

C0MPLEX*8 c32
COMPLEX*!6 c64

43

Appendix D-Target Processor FORTRAN I/O

LOGICAL*1 108
LOGICAL*2 116
LOGICAL*4 132

REAL*4 r32
REAL*8 r64

INTEGER*1 s08
INTEGER*2 sl6
INTEGER*4 s32

INTEGER*1 u08
INTEGER*2 ul6
INTEGER*4 u32

call receive_COMPLEX_32BIT(c32)
call receive_COMPLEX_64BIT(c64)

call receive_LOGICAL_08BIT(108)
call receive_LOGICAL_16BIT(116)
call receive_LOGICAL_32BIT(132)

call receive_REAL_32BIT(r32)
call receive_REAL_64BIT(r64)

call receive_SIGNED_08BIT(s08)
call receive_SIGNED_16BIT(sl6)
call receive_SIGNED_32BIT(s32)

call receive_UNSIGNED_08BIT(u08)
call receive_UNSIGNED_16BIT(ul6)
call receive UNSIGNED 32BIT(u32)

call output_message(
call output_message(
call output_nl
call output_message(
cal1 output_me s s age(
call output_nl

%VAL(CHARACTER_08BIT), 'c32= ')
%VAL(COMPLEX_32BIT), c32, %VAL(1)

%VAL(CHARACTER_08BIT), 'c64= ■)
%VAL(COMPLEX 64BIT), c64, %VAL(1)

call
call
call
call
call
call
call
call
call

output
output
output
output
output'
output
output
output_
output_:

message(
message(
'nl
message(
"message (
nl
"message (
message(
"nl

%VAL(CHARACTER_08BIT), '108= ■)
%VAL(LOGICAL_08BIT), 108, %VAL(1)

%VAL(CHARACTER_08BIT), '116= ■)
%VAL(L0GICAL_16BIT), 116, %VAL(1)

%VAL(CHARACTER_08BIT), "132= ')
%VAL(LOGICAL 32BIT), 132, %VAL(1)

%VAL(CHARACTER_08BIT) , T32= ')
%VAL(REAL_32BIT), r32, %VAL(1))

%VAL(CHARACTER_08BIT), 'r64= ')
%VAL(REAL 64BIT), r64, %VAL(1))

call output_message(
call output_message(
call output_nl
call output_message (
call output_message(
call output_nl

call output_message(%VAL(CHARACTER_08BIT), 's08= ')
call output_message(%VAL(SIGNED_08BIT), s08, %VAL(1))
call output_nl
call output_message(%VAL(CHARACTER_08BIT), 'sl6= ')
call output_message(%VAL(SIGNED_16BIT), sl6, %VAL(1))
call output_nl
call output_message(%VAL(CHARACTER_08BIT), "s32= ■)
call output_message(%VAL(SIGNED_32BIT), s32, %VAL(1))
call output_nl

call output_message(%VAL(CHARACTER_08BIT)
call output_message(%VAL(UNSIGNED_08BIT) ,
call output_nl
call output_message(%VAL(CHARACTER_08BIT)
call output_message(
call output_nl
call output_message(
call output_message(
call output_nl

end

%VAL(UNSIGNED_16BIT) ,

%VAL(CHARACTER_08BIT)
%VAL(UNSIGNED 32BIT),

, "u08= ')
u08, %VAL(1)

, 'Ul6= •)
Ul6, %VAL(1)

, 'u32= ")
U32, %VAL(1)

44

Appendix D-Target Processor FORTRAN I/O

Figure D-5. Target Processor FORTRAN Example - NETWORK.TXT

LOOP;

CYCLE [1]
p31 := pl5.4; [c32]

CYCLE [2]
p31 := pl5.8; [c64]

CYCLE [3]
p31 := pl5.1; [108]

CYCLE [4]
p31 := pl5.1; [116]

CYCLE [5]
p31 := pl5.2; [132]

CYCLE [6]
p31 := pl5.2; [r32]

CYCLE t 7]
p31 := pl5.4; [r64]

CYCLE [8]
p31 := pl5.1; [s08]

CYCLE [9]
p31 := pl5.1; [sl6]

CYCLE [10]
p31 := pl5.2; [s32 1

CYCLE [11]
p31 := pl5.1; [u08]

CYCLE [12]
p31 := plS.l; [ul6]

CYCLE [13]
p31 := pl5.2; [u32]

Figure D-6. Target Processor FORTRAN Example - PROCESS.TXT

p00 input.bl input.txt <null>
p31 output.bl <null> output.txt
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

Figure D-7. Target Processor FORTRAN Example - INPUT.TXT

c32
complex 32bit
1
1.2 -1. 2
c64
complex 64bit
1
12.12 - L2.12
108
logical 08bit
1
true
116
logical _16bit

45

Appendix D- Target Processor FORTRAN I/O

1
false
132
logical_32bit
1
true
r32
real_32bit
1
1.2
r64
real_64bit
1
12.12
s08
signed_08bit
1
-12
sl6
signed_16bit
1
-1234
s32
signed_32bit
1
-12345678
u08
unsigned_08bit
1
12
ul6
unsigned_16bit
1
1234
u32
unsigned_32bit
1
12345678

Figure D-8. Target Processor FORTRAN Example - OUTPUT.TXT

c32= (1.2, -1.2)
c64= (12.12, -12.12)
108= true
116= false
132= true
r32= 1.2
r64= 12.12
s08= -12
sl6= -1234
s32= -12345678
u08= 0x12
ul6= 0x1234
u32= 0x12345678

46

Appendix E - Target Processor Pascal I/O

6.3 Appendix E

Target Processor PASCAL I/O

47

Appendix E - Target Processor Pascal I/O

The PASCAL variable types supported by the I/O routines are described in Table E-l.

Table E-l Supported I/O variable types for PASCAL

data_type alternate data_type message_type network
char CHARACTER_08BIT_type CHARACTER_08BIT pl:=p0.1
record
n real;
i: real;
end

COMPLEX_32BIT_type COMPLEX_32BIT pl:=p0.4

record
r: longreal;
i: longreal;
end

COMPLEX_64BIT_type COMPLEX_64BIT pl:=p0.8

boolean LOGICAL_08BIT_type LOGICAL_08BIT pi =p0.1
integer LOGICAL_16BIT_type LOGICALJ6BIT Pi =p0.1
longint LOGICAL_32BIT_type LOGICAL_32BIT Pi =p0.2
real REAL_32BIT_type REAL 32BIT Pi =p0.2
longreal REAL_64BIT_type REAL_64BIT P1 =p0.4
0..255 SIGNED_08BIT_type SIGNED_08BIT P* =p0.1
integer SIGNED_16BIT_type SIGNED_16BIT pi =p0.1
longint SIGNED_32BIT_type SIGNED_32BIT Pi =p0.2
0..255 UNSIGNED_08BIT_type UNSIGNED_08BIT Pi =p0.1
word UNSIGNED.1 6BIT_type UNSIGNED 16BIT pi =p0.1
longint UNSIGNED_32BIT_type UNSIGNED_32BIT Pi =p0.2

The Intel iRMXII PASCAL compiler supports including files at compile time. As such we
can include files that have definitions for seperately compiled functions and procedures.
These files usually have the extension '.pas' or '.inc'.

The procedures used to send and receive data between target processors follow the form:

send_message_type(message); and

receive_message_type(message);

where message_type is replaced with an entry from Table E-l and where message is a
scalar variable and is the corresponding data_type or alternate data_type.

The procedures used to send and receive data between the target processors and the host
follow the form:

output_message(message_type,message,message_size); and

input_message(message_type,message,message_size);

48

Appendix E - Target Processor Pascal I/O

where message_type is replaced with an entry from Table E-l, where message is a scalar or
array variable and is the corresponding data_type or alternate data_type, and where
message_size is the number of datums in message.

Figure E-l. Target Processor PASCAL Example - MAKEFILE

pasflags = code large optimize(1) symbolspace(64)

default: input.bl output.bl crossbar.bl sequencer.bl

input.bl: input.obj
submit :PFP:csd/pasbldl(input, input.obj)

input.obj: input.pas
pas286 input.pas $(pasflags)

output.bl: output.obj
submit :PFP:csd/pasbldl(output, output.obj)

output. ob j : output. pas
pas286 output.pas $(pasflags)

crossbar.bl sequencer.bl: network.txt
submit :PFP:csd/xbc(network.txt)

clean:
delete *.lst,*.obj,*.mp?,*.bl

run: input.bl output.bl crossbar.bl sequencer.bl
reset
download process.txt
start process.txt
ioserve process.txt 2

Figure E-2. Target Processor PASCAL Example - TARGET.PAS

$NOLIST

public target;

const
CHARACTER_08BIT =
COMPLEX_32BIT = 1
COMPLEX_64BIT = 2
LOGICAL_08BIT = 3
L0GICAL_16BIT = 4
LOGICAL_32BIT - 5
REAL_32BIT = 6;
REAL_64BIT » 7;
SIGNED_08BIT = 8;
SIGNED_16BIT = 9;
SIGNED_32BIT = 10;
UNSIGNED_08BIT = 11
UNSIGNED_16BIT = 12
UNSIGNED_32BIT = 13

type
CHARACTER_08BIT_type = char;
COMPLEX_32BIT_type = record r: real; i: real; end;
COMPLEX_64BIT_type = record r: longreal; i: longreal; end;
LOGICAL_08BIT_type = boolean;
LOGICAL_16BIT_type = integer;
L0GICAL_32BIT_type = longint;
REAL_32BIT_type = real;
REAL_64BIT_type = longreal;
SIGNED_08BIT_type = 0..255;
SIGNED_16BIT_type = integer;
SIGNED_32BIT_type = longint;
UNSIGNED_08BIT_type = 0..255;
UNSIGNED_16BIT_type = word;

49

Appendix E - Target Processor Pascal I/O

UNSIGNED_32BIT_type = longint;

procedure output_nl;

procedure input_buffer(var buffer: bytes; buffer_size: integer);
procedure input_message(var message_type: integer;

var message: bytes; var message_size: integer);
function input_ready: boolean;

procedure led(state: integer);

procedure output_buffer(var buffer: bytes; buffer_size: integer);
procedure output_message(message_type: integer;

var message: bytes; message_size: integer);
function output_ready: boolean;

procedure receive_buffer(var buffer: bytes; buffer_size: integer);
procedure receive_COMPLEX_32BIT(var buffer: COMPLEX_32BIT_type);
procedure receive_COMPLEX_64BIT< var buffer: COMPLEX_64BIT_type);
procedure receive_LOGICAL_08BIT(var buffer: LOGICAL_08BIT_type);
procedure receive_L0GICAL_16BIT(var buffer: L0GICAL_16BIT_type);
procedure receive_LOGICAL_32BIT(var buffer: LOGICAL_32BIT_type);
procedure receive_REAL_32BIT(var buffer: REAL_32BIT_type);
procedure receive_REAL_64BIT(var buffer: REAL_64BIT_type);
procedure receive_SIGNED_08BIT(var buffer: SIGNED_08BIT_type);
procedure receive_SIGNED_16BIT(var buffer: SIGNED_16BIT_type);
procedure receive_SIGNED_32BIT(var buffer: SIGNED_32BIT_type);
procedure receive_UNSIGNED_08BIT(var buffer: UNSIGNED_08BIT_type),
procedure receive_UNSIGNED_16BIT(var buffer: UNSIGNED_16BIT_type),
procedure receive_UNSIGNED_32BIT(var buffer: UNSIGNED_32BIT_type)

procedure send_buffer(var buffer: bytes; buffer_size: integer);
procedure send_C0MPLEX_32BIT(var buffer: C0MPLEX_32BIT_type);
procedure send_COMPLEX_64BIT(var buffer: COMPLEX_64BIT_type);
procedure send_LOGICAL_08BIT(var buffer: LOGICAL_08BIT_type);
procedure send_L0GICAL_16BIT(var buffer: L0GICAL_16BIT_type);
procedure send_LOGICAL_32BIT(var buffer: LOGICAL_32BIT_type);
procedure send_REAL_32BIT(var buffer: REAL_32BIT_type);
procedure send_REAL_64BIT(var buffer: REAL_64BIT_type);
procedure send_SIGNED_08BIT(var buffer: SIGNED_08BIT_type);
procedure send_SIGNED_16BIT(var buffer: SIGNED_16BIT_type);
procedure send_SIGNED_32BIT(var buffer: SIGNED_32BIT_type);
procedure send_UNSIGNED_08BIT(var buffer: UNSIGNED_08BIT_type);
procedure send_UNSIGNED_16BIT(var buffer: UNSIGNED_16BIT_type);
procedure send UNSIGNED 32BIT(var buffer: UNSIGNED_32BIT_type);

$LIST

Figure E-3. Target Processor PASCAL Example - INPUT.PAS

module main;

$include(•:PFP:include/target.pas')

program main;

var
message_type: SIGNED_16BIT_type;
message_size: SIGNED_16BIT_type;

c32: C0MPLEX_32BIT_type;
c64: COMPLEX_64BIT_type;
108: LOGICAL_08BIT_type;
116: LOGICAL_16BIT_type;
132: LOGICAL_32BIT_type;

r32: REAL_32BIT_type;
r64: REAL_64BIT_type;

s08: SIGNED_08BIT_type;
Sl6: SIGNED_16BIT_type;
s32: SIGNED_32BIT_type;

u08: UNSIGNED_08BIT_type;
Ul6: UNSIGNED_16BIT_type;

50

Appendix E - Target Processor Pascal I/O

u32: UNSIGNED_32BIT_type;

begin
input_message(message_type, c32, message_size
input_message(message_type, c64, message_size

input_message(message_type, 108, message_size
input_message(message_type, 116, message_size
input_message(message_type, 132, message_size

input_message(message_type, r32, message_size
input_message(message_type, r64, message_size

input_message(message_type, s08, message_size
input_message(message_type, sl6, message_size
input_message(message_type, s32, message_size

input_message(message_type, u08, message_size
input_message(message_type, ul6, message_size
input_message(message_type, u32, message_slze

send_COMPLEX_32BIT(c32);
send_COMPLEX_64BIT(c64);

send_LOGICAL_08BIT(108);
send_LOGICAL_16BIT(116);
send_LOGICAL_32BIT(132);

send_REAL_32BIT(r32);
send_REAL_64BIT(r64);

send_SIGNED_08BIT(s08);
send_SIGNED_16BIT(sl6);
send_SIGNED_32BIT(s32);

send_UNSIGNED_08BIT(u08);
send_UNSIGNED_16BIT(ul6);
send_UNSIGNED_32BIT(u32);

end { main }

Figure E-4. Target Processor PASCAL Example - OUTPUT.PAS

module main;

$include(':PFP:include/target.pas')

program main;

c32: COMPLEX_32BIT_type;
c64: COMPLEX_64BIT_type;

108: LOGICAL_08BIT_type;
116: L0GICAL_16BIT_type;
132: LOGICAL_32BIT_type;

r32:
r64:

REAL_3 2BI T_type ;
REAL_64BIT_type;

s08: SIGNED_08BIT_type;
Sl6: SIGNED_16BIT_type;
s32: SIGNED_32BIT_type;

u08: UNSIGNED_08BIT_type;
ul6: UNSIGNED_16BIT_type;
u32: UNSIGNED_32BIT_type;

begin
receive_COMPLEX_32BIT(c32);
receive_COMPLEX_64BIT (c64);

receive_LOGICAL_08BIT(108);
receive_L0GICAL_16BIT(116);
receive LOGICAL 32BIT(132);

51

Appendix E - Target Processor Pascal I/O

receive_REAL_32BIT(r32) ;
receive_REAL_64BIT(r64);

receive_SIGNED_08BIT(s08);
receive_SIGNED_16BIT(sl6);
receive_SIGNED_32BIT(s32);

receive_UNSIGNED_08BIT(u08);
receive_UNSIGNED_16BIT(ul6);
receive_UNSIGNED_32BIT(u32);

output_message(CHARACTER_08BIT, 'c32= ', 5);
output_message(COMPLEX_32BIT, c32, 1) ;
output_nl;
output_message(CHARACTER_08BIT, 'c64= ', 5);
output_message(COMPLEX_64BIT, c64, 1) ;
output_nl;

output_message(CHARACTER_08BIT, '108= ', 5);
output_message(LOGICAL_08BIT, 108, 1) ;
output_nl;
output_message(CHARACTER_08BIT, '116= ', 5);
output_message(L0GICAL_16BIT, 116, 1);
output_nl;
output_message(CHARACTER_08BIT, "132= ', 5);
output_message(L0GICAL_32BIT, 132, 1);
output_nl;

output_message(CHARACTER_08BIT, 'r32= ', 5);
output_message(REAL_32BIT, r32, 1) ;
output_nl;
output_message(CHARACTER_08BIT, 'r64= ', 5);
output_message(REAL_64BIT, r64, 1);
output_nl;

output_message(CHARACTER_08BIT, 's08= ', 5) ;
output_message(SIGNED_08BIT, s08, 1);
output_nl;
output_message(CHARACTER_08BIT, 'sl6= ', 5) ;
output_message(SIGNED_16BIT, sl6, 1) ;
output_nl;
output_message(CHARACTER_08BIT, "s32= ', 5);
output_messaget SIGNED_32BIT, s32, 1);
output_nl;

output_message(CHARACTER_08BIT, 'u08= ', 5);
output_message(UNSIGNED_08BIT, u08, 1);
output_nl;
output_message(CHARACTER_08BIT, 'ul6= ', 5);
output_message(ÜNSIGNED_16BIT, ul6, 1) ;
output_nl;
output_message(CHARACTER_08BIT, "u32= ', 5);
output_message(UNSIGNED_32BIT, u32, 1);
output_nl;

end { main)

Figure E-5. Target Processor PASCAL Example - NETWORK.TXT

LOOP;

CYCLE [
p31 : =

1]
pl5.4; [c32]

CYCLE [
p31 : =

2]
pl5.8; [c64]

CYCLE [
p31 : =

3]
pl5.1; [108]

CYCLE [
p31 : =

4]
pl5.1; [116]

52

Appendix E - Target Processor Pascal I/O

CYCLE [5]
p31 := pl5.2; [132]

CYCLE [6]
p31 := pl5.2; [r32]

CYCLE [7]
p31 := pl5.4; [r64]

CYCLE [8]
p31 := pl5.1; [s08]

CYCLE [9]
p31 := pl5.1; [sl6]

CYCLE [10]
p31 := pl5.2; [s32]

CYCLE [11]
p31 := pl5.1; [u08]

CYCLE [12]
p31 := pl5.1; [ul6]

CYCLE [13]
p31 := pl5.2; [u32]

Figure E-6. Target Processor PASCAL Example - PROCESS.TXT

pOO input.bl input.txt <null>
p31 output.bl <null> output.txt
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

Figure E-7. Target Processor PASCAL Example - INPUT.TXT

c32
complex_32bit
1
1.2 -1.2
c64
complex_64bit
1
12.12 -12.12
108
logical_08bit
1
true
116
loglcal_16bit
1
false
132
logical_32bit
1
true
r32
real_32bit
1
1.2
r64
real_64bit
1
12.12
s08
signed_08bit

53

Appendix E - Target Processor Pascal I/O

sl6
signed_16bit
1
-1234
s32
signed_32bit
1
-12345678
u08
unsigned_08bit
1
12
ul6
unsigned_16bit
1
1234
u32
unsigned_32bit
1
12345678

Figure E-8. Target Processor PASCAL Example - OUTPUT.TXT

c32= (1.2, -1.2)
c64= (12.12, -12.12)
108= true
116= false
132= true
r32= 1.2
r64= 12.12
s08= -12
sl6= -1234
s32= -12345678
u08= 0x12
ul6= 0x1234
u32= 0x12345678

54

Appendix F - Target Processor PLM I/O

6.5 Appendix F

Target Processor PLM I/O

55

Appendix F - Target Processor PLM I/O

The PLM variable types supported by the I/O routines are described in Table F-l.

Table F-l Supported I/O variable types for PLM.

data_type alternate data_type message_type network
byte CHARACTER_08BIT_type CHARACTER_08BIT pl:=p0.1
structure
(
r real,
ireal

)

COMPLEX_32BIT_type COMPLEX_32BIT pl:=p0.4

COMPLEX_64BIT
byte LOGICAL_08BIT_type LOGICAL 08BIT pl:=p0.1
word LOGICAL_16BIT_type LOGICALJ6BIT pl:=p0.1
dword LOGICAL_32BIT_type LOGICAL 32BIT pl:=p0.2
real REAL_32BIT_type REAL 32BIT pl:=p0.2

REAL_64BIT
byte SIGNED_08BIT_type SIGNED 08BIT pl:=p0.1
integer SIGNED_16BIT_type SIGNEDJ6BIT pl:=p0.1
dword SIGNED_32BIT_type SIGNED 32BIT pl:=p0.2
byte UNSIGNED_08BIT_type UNSIGNED 08BIT pl:=p0.1
word UNSIGNED_16BIT_type UNSIGNED 16BIT pl:=p0.1
dword UNSIGNED_32BIT_type UNSIGNED_32BIT pl:=p0.2

The Intel iRMXII PLM compiler supports including files at compile time. As such we can
include files that have definitions for seperately compiled functions and procedures. These
files usually have the extension '.plm' or '.inc*.

The procedures used to send and receive data between target processors follow the form:

call send_message_type(@message); and

callreceive_message_type(@message);

where message_type is replaced with an entry from Table F-l and where message is a
scalar variable and is the corresponding data_type or alternate data_type.

The procedures used to send and receive data between the target processors and the host
follow the form:

call output_message(message_type,@message,message_size); and

callinput_message(@message_type/@message/@message_size);

56

Appendix F - Target Processor PLM I/O

where message_type is replaced with an entry from Table F-l, where message is a scalar or
array variable and is the corresponding data_type or alternate data_type, and where
message_size is the number of datums in message.

Figure F-l. Target Processor PLM Example - MAKEFILE

plmflags = code large optimize(3)

default: input.bl output.bl crossbar.bl sequencer.bl

input.bl: input.obj
submit :PFP:csd/plmbldl(input, input.obj)

input.obj: input.pirn
plm286 input.plm $(plmflags)

output.bl: output.obj
submit :PFP:csd/plmbldl(output, output.obj)

output.obj:output.plm
plm286 output.plm $(plmflags)

crossbar.bl sequencer.bl: network.txt
submit :PFP:csd/xbc(network.txt)

clean:
delete ».1st,*.obj,*.mp?,*.bl

run: input.bl output.bl crossbar.bl sequencer.bl
reset
download process.txt
start process.txt
ioserve process.txt 2

Figure F-2. Target Processor PLM Example - TARGET.PLM

$NOLIST

declare CHARACTER_08BIT literally '0'
declare COMPLEX_32BIT literally '1•;
/* declare COMPLEX_64BIT literally '2
declare LOGICAL_08BIT literally '3';
declare L0GICAL_16BIT literally •4';
declare L0GICAL_32BIT literally •5•;
declare REAL_32BIT literally ■6';
/* declare REAL_64BIT literally '!<;
declare SIGNED_08BIT literally '8';
declare SIGNED_16BIT literally '9';
declare SIGNED_32BIT literally '10';
declare UNSIGNED_08BIT literally '11'
declare UNSIGNED_16BIT literally '12'
declare UNSIGNED_32BIT literally '13'

declare CHARACTER_08BIT_type literally 'byte';
declare COMPLEX_32BIT_type literally 'structure
declare LOGICAL_08BIT_type literally 'byte';
declare LOGICAL_16BIT_type literally 'word';
declare LOGICAL_32BIT_type literally 'dword';
declare REAL_32BIT_type literally 'real';
declare SIGNED_08BIT_type literally 'byte';
declare SIGNED_16BIT_type literally 'integer';
declare SIGNED_32BIT_type literally 'dword';
declare UNSIGNED_08BIT_type literally 'byte';
declare UNSIGNED_16BIT_type literally 'word';
declare UNSIGNED_32BIT_type literally 'dword';

output_nl: procedure external;
end output_nl;

input_buffer: procedure! buffer, buffer_size) external;

(r real, i real)

57

Appendix F - Target Processor PLM I/O

declare buffer pointer;
declare buffer_size integer;

end input_buffer;

input_message: procedure(raessage_type, message, message_size) external;
declare message_type pointer;
declare message pointer;
declare message_size pointer;

end lnput_message;

input_ready: procedure byte external;
end input_ready;

led: procedure! state) external;
declare state integer;

end led;

output_buffer: procedure(buffer, buffer_size) external;
declare buffer pointer;
declare buffer_size integer;

end output_buffer;

output_message: procedure) message_type, message, message_size) external;
declare message_type integer;
declare message pointer;
declare message_size integer;

end output_message;

output_ready: procedure byte external;
end output_ready;

receive_buffer: procedure(buffer, buffer_size) external;
declare buffer pointer;
declare buffer_size integer;

end receive_buffer;

receive_CHARACTER_08BIT: procedure) buffer) external;
declare buffer pointer;

end receive_CHARACTER_08BIT;

receive_COMPLEX_32BIT: procedure(buffer) external;
declare buffer pointer;

end receive COMPLEX 32BIT;

receive_LOGICAL_08BIT: procedure) buffer
declare buffer pointer;

end receive LOGICAL 08BIT;

external;

receive_LOGICAL_l6BIT: procedurei
declare buffer pointer;

end receive LOGICAL 16BIT;

buffer) external;

receive_LOGICAL_32BIT: procedure) buffer) external;
declare buffer pointer;

end receive LOGICAL 32BIT;

receive_REAL_32BIT: procedure) buffer
declare buffer pointer;

end receive REAL 32BIT;

external;

receive_SIGNED_08BIT: procedure) buffer) external;
declare buffer pointer;

end receive SIGNED 08BIT;

receive_SIGNED_16BIT: procedure) buffer
declare buffer pointer;

end receive SIGNED 16BIT;

external;

receive_SIGNED_32BIT: procedurei
declare buffer pointer;

end receive SIGNED 32BIT;

buffer) external;

receive_UNSIGNED_08BIT: procedure) buffer) external;
declare buffer pointer;

end receive_UNSIGNED_08BIT;

receive_UNSIGNED_16BIT: procedure) buffer) external;
declare buffer pointer;

58

Appendix F - Target Processor PLM I/O

end receive_UNSIGNED_16BIT;

receive_UNSIGNED_32BIT: procedure(buffer) external;
declare buffer pointer;

end receive_UNSIGNED_32BIT;

send_buffer: procedure! buffer, buffer_size) external;
declare buffer pointer;
declare buffer_size integer;

end send_buffer;

send_CHARACTER_08BIT: procedure) buffer) external;
declare buffer pointer;

end send_CHARACTER_08BIT;

send_COMPLEX_32BIT: procedure(buffer) external;
declare buffer pointer;

end send_COMPLEX_32BIT;

send_LOGICAL_08BIT: procedure(buffer) external;
declare buffer pointer;

end send_LOGICAL_08BIT;

send_L0GICAL_16BIT: procedure) buffer) external;
declare buffer pointer;

end send_L0GICAL_16BIT;

send_LOGICAL_32BIT: procedure) buffer) external;
declare buffer pointer;

end send_L0GICAL_32BIT;

send_REAL_32BIT: procedure) buffer) external;
declare buffer pointer;

end send_REAL_32BIT;

send_SIGNED_08BIT: procedure) buffer) external;
declare buffer pointer;

end send_SIGNED_08BIT;

send_SIGNED_16BIT: procedure) buffer) external;
declare buffer pointer;

end send_SIGNED_16BIT;

send_SIGNED_32BIT: procedure) buffer) external;
declare buffer pointer;

end send_SIGNED_32BIT;

send_UNSIGNED_08BIT: procedure) buffer) external;
declare buffer pointer;

end send_UNSIGNED_08BIT;

send_UNSIGNED_16BIT: procedure) buffer) external;
declare buffer pointer;

end send_UNSIGNED_16BIT;

send_UNSIGNED_32BIT: procedure) buffer) external;
declare buffer pointer;

end send_UNSIGNED_32BIT;

declare FALSE literally '0';
declare TRUE literally •1■;

$LIST

Figure F-3. Target Processor PLM Example - INPUT.PLM

main: do;

$include(': PFP: include/target.plm')

declare
declare

message type
message_size

SIGNED 16BIT
SIGNED_16BIT^

type;
_type;

declare c32 COMPLEX_ 32BIT_type;

59

Appendix F - Target Processor PLM I/O

declare 108 LOGICAL
declare 116 LOGICAL"
declare 132 LOGICAL"

08BIT type;
"16BIT type;
~32BIT_type;

declare r32 REAL_32BIT_type;

declare s08 SIGNED 08BIT type;
declare sl6 SIGNED 16BIT type;
declare s32 SIGNED_32BIT_type;

declare u08 UNSIGNED 08BIT type;
declare ul6 UNSIGNED 16BIT type;
declare u32 UNSIGNED 32BIT type;

call input_message (@message_type, 8c32, 6message_size) ;

call
call
call

input_message(
input_message(
input_message(

8message_type,
@message_type,
@message_type.

8108,
8116,
8132,

8message_size);
8message_size);
6message_size);

call input_message(@message_type, 8r32, Smessage size) ;

call
call
call

input_message(
input_message(
input_message(

@message_type,
8 me s s age_t ype,
@ me s s age_t ype,

8s08,
8sl6,
8s32,

8message_size);
8message_size) ;
8message_size) ;

call
call
call

input_message(
input message(
input_message(

@message_type,
Smessage type,
@ me s s age_t ype,

@u08,
8ul6,
8u32,

8message_size) ;
Smessage size) ;
Smessage_size);

call send_COMPLEX_32BIT(8c32);

call
call
call

send LOGICAL 08BIT(@108);
send LOGICAL 16BIT(@116);
send_LOGICAL_32BIT(8132);

call send_REAL_32BIT(@r32);

call
call
call

send SIGNED 08BIT(@s08);
send SIGNED 16BIT(@sl6);
send SIGNED 32BIT(@s32);

call
call
call

send UNSIGNED
send UNSIGNED
send_UNSIGNED_

08BIT(8u08);
16BIT(8ul6);
32BIT(@u32);

halt
end main •

Figure F-4. Target Processor PLM Example - OUTPUT.PLM

main: do;

$include(': PFP: include/target.plm*)

declare c32 COMPLEX_32BIT_type;

declare
declare
declare

108
116
132

LOGICAL 08BIT type;
LOGICAL 16BIT type;
LOGICAL_3 2BIT_type;

declare r32 REAL_32BIT_type;

declare
declare
declare

s08
sl6
s32

SIGNED 08BIT type;
SIGNED 16BIT type;
SIGNED_32BIT_type;

declare
declare
declare

u08
ul6
u32

UNSIGNED 08BIT type;
UNSIGNED 16BIT type;
UNSIGNED 32BIT type;

call receive_COMPLEX_32BIT(8c32);

call receive LOGICAL 08BIT(8108);
call receive_LOGICAL_16BIT(8116);

60

Appendix F - Target Processor PLM I/O

call receive_LOGICAL_32BIT(0132);

call receive_REAL_32BIT(@r32);

call receive_SIGNED_08BIT(@s08);
call receive_SIGNED_16BIT(8sl6);
call receive_SIGNED_32BIT(@s32) ;

call receive_UNSIGNED_08BIT(@u08);
call receive_UNSIGNED_16BIT(@ul6);
call receive_UNSIGNED_32BIT(@u32) ;

call output_message(CHARACTER_08BIT, @('c32= •
call output_message(COMPLEX_32BIT, 8c32, 1);
call output_nl;

call output_message(CHARACTER_08BIT, 8('108- '
call output_message(LOGICAL_08BIT, @108, 1);
call output_nl;
call output_message(CHARACTER_08BIT, @('116= ■
call output_message(L0GICAL_16BIT, @116, 1);
call output_nl;
call outputjnessaget CHARACTER_08BIT, 8('132= '
call output_message(LOGICAL_32BIT, 8132, 1);
call output_nl;

call output_message(CHARACTER_08BIT, 8('r32= •
call output_message(REAL_32BIT, @r32, 1);
call output_nl;

call outputjnessaget CHARACTER_08BIT, 8('s08= ■
call output_message(SIGNED_08BIT, 8s08, 1);
call output_nl;
call output_message(CHARACTER_08BIT, 8('sl6= '
call output_message(SIGNED_16BIT, 8sl6, 1);
call output_nl;
call output_message(CHARACTER_08BIT, 8('s32= ■
call output_message(SIGNED_32BIT, 8s32, 1);
call output_nl;

call output_message(CHARACTER_08BIT, 8('u08= •
call output_message(UNSIGNED_08BIT, @u08, 1);
call output_nl;
call output_message(CHARACTER_08BIT, @('ul6= '
call output_message(UNSIGNED_16BIT, 8ul6, 1);
call output_nl;
call output_message(CHARACTER_08BIT, 8('u32= '
call output_message(UNSIGNED_32BIT, 8u32, 1);
call output_nl;

halt;
end main;

» 5);

, 5);

, 5);

, 5);

, 5);

. 5);

, 5);

, 5);

. 5)j

, 5);

, 5);

Figure F-5. Target Processor PLM Example - NETWORK.TXT

LOOP;

CYCLE [
p31 : =

1]
pl5.4; [c32]

CYCLE [
p31 : =

2]
pl5.1; [108]

CYCLE [
p31 : =

3]
pl5.1; [116]

CYCLE [
p31 : =

4]
pl5.2; [132]

CYCLE [
p31 : =

5]
pl5.2; [r32]

61

Appendix F - Target Processor PLM I/O

CYCLE [
p31 : =

6]
pl5.1; [s08]

CYCLE [
p31 : =

7]
pl5.1; t sl6]

CYCLE [
p31 : =

8]
pl5.2; [s32]

CYCLE [
p31 : =

9]
P15.1; [u08]

CYCLE [
p31 : =

10]
pl5.1; [ul6]

CYCLE [
p31 : =

11 1
pl5.2; [u32]

Figure F-6. Target Processor PLM Example - PROCESS.TXT

pOO input.bl input.txt <null>
p31 output.bl <null> output.txt
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

Figure F-7. Target Processor PLM Example - INPUT.TXT

c32
complex_32bit
1
1.2 -1.2
108
logical_08bit
1
true
116
logical_16bit
1
false
132
logical_32bit
1
true
r32
real_32bit
1
1.2
s08
signed_08bit
1
-12
sl6
signed_16blt
1
-1234
s32
signed_32bit
1
-12345678
u08
unsigned_08bit
1
12
ul6
unsigned_l6bit
1
1234
u32
unsigned_32bit

62

Appendix F - Target Processor PLM I/O

II
12345678

Figure F-8. Target Processor PLM Example - OUTPUT.TXT

c32= (1.2, -1.2)
108= true
116= false
132= true
r32= 1.2
s08= -12
sl6= -1234
s32= -12345678
u08= 0x12
ul6= 0x1234
u32= 0x12345678

63

Appendix G Programming Tools

6.5 Appendix G

Programming Tools

64

Appendix G Programming Tools

This appendix contains brief explanations of the programming tools that are routinely used
to develop programs for the PFP. The programs: reset, download, start, ioserve, and make
are discussed.

RESET: Hardware Reset

The reset utility is the software implementation of a hardware reset. Reset writes to an
address which is interpreted as a reset to the PFP (the crossbar/sequencer and all
processing elements.)

DOWNLOAD: Software Downloader

The download utility uses an input file, process.txt, to download the appropriate elements
on the PFP. Download uses the first two fields of each line in the input file to determine
which element to download and with which file to download to the element.

The following is an example input file used with download, start, and ioserve:

pOO input.bl input.txt <null>
p31 output.bl <null> output.txt
crossbar crossbar.bl <null> <null>
sequencer sequencer.bl <null> <null>

START: Processing Element Starter

The start utility uses an input file, process.txt, to start the appropriate elements on the PFP.
Start uses only the first field in the input file to determine which elements to start (i.e.,
begin program execution for the processors and begin microcode execution for the
crossbar/sequencer.)

IOSERVE: Input/Output Host Service Routine

The ioserve utility is designed to handle any input or output between the host processor
and any of the target processors. Ioserve uses an input file, process.txt, to determine
whether or not a processing element (a processor) will need any input by examining the
third field in each line of the input file and whether or not a processing element will
generate any output by examining the fourth field in the input file. If the third field
contains a character string other than '<NULL>' the string is assumed to be the name of the
input file associated with that processing element. If the fourth field contains a character
string other than '<NULL>' the string is assumed to be the name of the output file
associated with that processing element. Neither the crossbar nor sequencer support input

65

Appendix G Programming Tools

and output, therefore, the third and fourth fields in the input file for these elements are
'<NULL>\

If the third field of the input file indicates a processing element requires input (i.e., the third
field is a file name), ioserve will open the input file, process the data, and send it to the
processing element at the beginning of the execution session. If the fourth field of the input
file contains a file name, ioserve writes the output from the processing element to that file.
The output is always written to the terminal whether or not an output file is designated.
Ioserve in turn scans the data available port for each of the active processing elements by
opening the memory window to the processor and checking the appropriate flag. When
data is available, ioserve retrieves the data and writes it to the designated output. If no
data is available, ioserve closes the window and proceeds onto the next processing element.
Ioserve retrieves data from a processing element until the source is exhausted.

Each processing element can have unique input and output files or a combination of shared
input and output files. If an input file is shared, each of the processing elements sharing
the file should expect the same data as input (i.e., no distinguishing is made for a specific
processor in the input file - all data in the input file is sent to the indicated processing
elements.) If an output file is shared, the output from all of those processing elements will
be intermixed in the output file as it is processed by ioserve. Since this is a parallel
environment care will need to be taken when generating output as the order of the output
may not be guaranteed.

Single characters, character strings, scalars, and arrays can be sent to the host via the
output_message routines. Output is written to the terminal and to the disk in ASCII. Real
and integer numbers are written out with six (6) significant digits in either decimal or
scientific notation depending on the manitude of the number. The generation of newlines
(<CR> and <LF>) is performed by calling the 'output_nl' routine which sends the
appropriate characters to the host. This is much like doing a Pascal write and writeln.

The runtime parameter timeout has to be used with ioserve. When invoking ioserve, the
second parameter on the command line is the input file and the third parameter would be
an integer timeout count in seconds. Ioserve scans the active processing elements for
output until there has been no output for the specified number of seconds and then ioserve
terminates.

MAKE: Program Maintainer

Make was originally developed as a project control tool for the UNIX operating system. In
UNIX, as in iRMX, most programs are composed of many small source modules that need
to be combined together to produce an executable module. Without a utility such as make,
it would be necessary for the programmer to keep track of all object modules which might
need to be regenerated due to changes in source files. The make program provides an easy

66

Appendix G Programming Tools

way to automate this process. An iRMX enhanced version of the make program, which is
compatible with the UNIX version, is now available to iRMX users.

Make reads commands from a user-defined "makefile" that lists the files to be created, the
commands that create them, and the files from which they are created. When you direct
make to create a program, it makes sure that each file on which the program depends is up
to date, then creates the program by executing the given commands. If a file is not up to
date, make updates it before creating the program by executing explicitly given commands
or one of the many built-in commands.

Creating a Makefile

A makefile contains one or more lines of text called dependency lines. A dependency line
shows how a given file depends on other files and what commands are required to bring a
file up to date. A dependency line has the form:

target... :[dependent...]

[command...]

where 'target' is the name of a file to be updated, 'dependent' is the name of a file on which
the target depends, and 'command' is the iRMX command needed to create the target file.
Each dependency line must have at least one command associated with it.

You may give more than one target name or dependent name if desired. Each name must
be separated from the next by at least one space. The target names must be separated from
the dependent names by a colon (:). File names must be spelled as defined by the iRMX
system. Note that names are case-sensitive within a makefile.

You may give a sequence of commands on lines following the target by beginning each line
with a tab or caret (A) character. Commands must be given exactly as they would appear
on an iRMX command line. The at-sign character (@) may be placed in front of a command
to prevent make from displaying the command before executing it.

You may add a comment to a makefile by starting the comment with a number sign (#) and
ending it with a carriage return. All characters after the number sign are ignored. If a
dependency line is too long, you can continue it by typing a backslash (\) immediately
followed by a carriage return.

The makefile should be kept in the same directory as the given source files. For
convenience, the file name 'makefile' is provided as the default file name used by make if
no explicit name is given at invocation. You may use the default name or choose one of
your own.

To illustrate dependency lines, consider the following example. A program named test is
made by linking three object files, x.obj,y.obj and z.obj. These object files are created by
compiling the C language source files x.c,y.c, and z.c. Furthermore, the files x.c and y.c
contain the line:

67

Appendix G Programming Tools

include "defs"

This means test depends on the three object files, the object files depend on the C source
files, and two of the source files depend on the include file 'defs'. You can represent these
relationships in a make file with the following lines:

test: x.obj y.obj z.obj

BND286 x.obj, y.obj, z.obj, \

/Iib/ic286/clib2c.lib,\

/Iib/ic286/crmx2c.lib, \

/lib/ic286/cnoflt2c.obj, \

/Iib/ic286/clib2c.lib, \

/rmx286/ib/rmxifc.lib $(TYPE) nopack \

segsize(stack(8192)) rc(dm(l 00,50000)) object($@)

x.obj: x.c defs

ic286 x.c debug

y.obj: y.c defs

ic286 y.c debug

z.obj: z.c

ic286 z.c debug

In the first dependency line, test is the target file and x.obj, y.obj, and z.obj are its
dependents. The command sequence "BND286 X.obj, y.obj, z.obj, \ /Iib/ic286/clib2c, \
/Iib/ic286/crmx2c.lib, \ /lib/ic286/cnoflt2c.obj, \ /Iib/ic286/clib2clib, \
/rmx286/lib/rmxifc.lib $(TYPE) nopack \ segsize(stack(8192)) rc(dm(100,50000))
object($@)" on the next line tells how to create test if it is out of date. The program is out of
date if any one of its dependents has been modified since test was last created.

The second third and fourth dependency lines have the same form, with the x.obj, y.obj,
and z.obj files as targets and x.c, y.c, z.c, and 'defs' files as dependents. Each dependency
line has one command sequence that defines how to update the given target file.

Invoking Make

68

Appendix G Programming Tools

Once you have a make file and wish to update and modify one or more target files in the
directory, you can invoke make by typing its name and optional arguments. The
invocation has the form:

make[option}...[macdef]...[target]...

where 'option' is a program option used to modify program operation, 'macdef' is a macro
definition used to give a macro a value or meaning, and 'target' is the name of a file to be
updated, 'target' must correspond to one of the target names in the makefile. All
arguments are optional. If you give more than one argument, you must separate them
with spaces.

You can direct make to update the first target file in the makefile by typing just the
program name "make". In this case, make searches for the file Makefile in the current
directory. For example, assume that the current makefile contains the dependency lines
given in the last section. Then the command make compares the modification dates of the
test program and each of the object files x.obj, y.obj, and z.obj and recreates test if any
changes have been make to any other object files since test was last created. It also
compares the modified dates of the object files with those of the four source files, x.c, y.c,
z.c, and defs, and recreates the object files if the source files have changed. It does this
before recreating test so that the recreated object files can be used to recreate test. If none of
the source or object files have been altered since the last time test was made, make
announces this fact and stops. No files are changed.

You can direct make to update a given target file by giving the file name of the target. For
example,

make x.obj

causes make to recompile, creating the x.obj files if the x.c or defs files have changed since
the object file was last created. Similarly, the command

make x.obj z.obj

causes make to recompile, creating x.obj and z.obj if the corresponding dependents have
been modified. Make processes target names from the command line in a left-to-right
order. You can specify the name of the makefile you wish make to use by giving the -f
option in the invocation. The option has the form

-f filename

where filename is the name of the makefile. You must supply a full path name if the file is
not in the current directory. For example, the command

make -f maketest

reads the dependency lines of the makefile named 'maketest' found in the current directory.

69

Appendix G Programming Tools

If you specify only a target on the command line, and no makefile is present then make will
attempt to create the target using only built-in rules. This is nice for small, single module
programs.

Using Pseudo-Target Names

It is often useful to include dependency lines that have pseudo-target names, i.e., names for
which no files actually exist or are produced. Pseudo-target names allow make to perform
tasks not directly connected with the creation of a program, such as deleting old files or
printing copies of source files. For example, the following dependency line removes old
copies of the given object files when the pseudo-target name "cleanup" is given in the
invocation of make.

cleanup:

delete x.obj

delete y.obj

delete x.obj

Since no file exists for a given pseudo-target name, the target is always assumed to be out
of date. Thus, the associated series of commands are always executed.

Make also has built-in pseudo-target names that modify its operation. The pseudo-target
name ".IGNORE" causes make to continue after an error. This is the same as the -i option,
(make also ignores errors for a given command if the command string begins with a
hyphen (-).)

The pseudo-target name ".PRECIOUS" prevents dependents of the current target from
being deleted when make is terminated by an error condition or user-interruption (Control
C).

Using Macros

An important feature of a makefile is that it can contain macros. A macro is a short name
that represents a file name or command option. The macros can be defined when you
invoke make or in the makefile itself.

A macro definition is line containing an equal sign not preceded by a colon or a tab. The
name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and
tabs are stripped). The following are valid macro definitions:

CFLAGS = optimize(3) debug

LIBS =

70

Appendix G Programming Tools

The last definition assigns "LIBS" the null string. A macro that is never explicitly defined
has the null string as its value. A macro is invoked by preceding the name by a dollar sign;
macro names longer than one character must be placed in parentheses. The name of the
macro is either the single character after the dollar sign or a name inside parentheses. The
following are valid macro invocations:

$(CFLAGS)

$(xy)

$Z

$(Z)

The last two invocations are identical.

You may include a macro definition in a command line. A macro definition argument has
the same form as a macro definition in a makefile. Macros in a command line override
corresponding definitions found in the makefile. For example, the command:

make RELEASE=internal

assigns the option 'internal' to RELEASE.

Make has built-in macros that can be used when writing dependency lines. The following
is a list of these macros:

$* Contains the name of the current target with the suffix removed. Thus, if the
current target is test.obj, $*, contains test. It may be used in dependency lines that redefine
the built-in rules.

$@ Contains the full path name of the current target. It may be used in
dependency lines with user-defined target names.

$< Contains the file name of the dependent that is more recent than the given
target.

Using the Built-in Rules

Make provides a set of built-in dependency lines, called built-in rules, that automatically
check the targets and dependents given in a makefile and create up-to-date versions of
these files if necessary. The built-in rules are identical to user-defined dependency lines
except that they use the suffix of the file name as the target or dependent instead of the file
name itself. For example, make automatically assumes that all files with the suffix .obj
have dependent files with the suffix .C.

When no explicit dependency line is given in a makefile for a given file, make automatically
checks the default dependents of the file, forming the name of the dependents by removing
the suffix of the given file and appending the pre-defined dependent suffixes. If the given

71

Appendix G Programming Tools

file is out of date with respect to these default dependents, make searches for a built-in rule
that defines how to create an up-to-date version of the file and executes it. For example, if
the file x.obj is needed and there is an x.c in the description or directory, x.c is compiled.

The built-in rules are designed to reduce the size of your makefile. They provide the rules
for creating common files from typical dependents. Reconsider the example given in
"Creating a Makefile". In this example, the program 'test' depended on three object files,
x.obj, y.obj, and z.obj. The files x.c and y.c also depended on the include file 'defs'. In the
original example each dependency and corresponding command sequence was explicitly
given. Many of these dependency lines were unnecessary, since the built-in rules could
have been used instead. The following is all that is needed to show the relationships
between these files:

test: x.obj y.obj z.obj

BND286 x.obj, y.obj, z.obj, \

/Iib/ic286/clid2c.lib, \

/Iib/ic286/crmx2c.lib, \

/lib/ic286/cnoflt2c.obj, \

/Iib/ic286/clib2c.lib, \

/rmx286/lib/rmxifc.lib $(TYPE) nopack $(TYPE) nopack \

segsize(stack(8192)) rc(dm(l 00,50000)) object($@)

x.obj y.obj: defs

In this makefile, test depends on three object files, and an explicit command is given
showing how to update test. However, the second line merely shows that two object files
depend on the include file defs. No explicitly command sequence is given on how to
update these files if necessary. Instead, make uses the built-in rules to locate the desired c
source files, compile these files, and create the necessary object files.

72

