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Summary 

This document presents a simple analytical method for calculating the strain 

distribution in and around self-assembled (In,Ga)As/GaAs quantum-dot nanostructures. 

The dots are assumed to be buried in an infinite medium so that the effects of free 

surfaces can be neglected. The model—based on classical continuum elasticity—is 

capable of handling dots of arbitrary shapes; here, however, only dots with pyramidal and 

truncated-pyramidal shapes are considered. The approximate shape of the dots is 

extracted from high-resolution transmission electron microscope observations. The 

electronic energy levels in the dots are calculated by solving the three-dimensional 

effective mass Schrödinger equation. The carrier confinement potential in this equation is 

modified by the strain distribution. Because the dots are in a strong confinement regime, 

the effects of Coulomb interactions are neglected. The calculated confined eigen-energies 

agree with our experimental photoluminescence data. The calculations also support 

previous results reported by others. 
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I. INTRODUCTION 

Progress in nanotechnology has resulted in the synthesis of nanometer-scale self- 

assembled quantum dots for potential applications in electronics and optoelectronics. 

Several devices that include quantum dots in their active regions have been proposed in 

the past few years; some of them, such as lasers, infrared detectors, and memory elements 

have been  demonstrated.  Since millions of dots  are  generally required to yield 

macroscopic  effects,  a narrow-size  distribution  is  important  for optimum  device 

performance. The synthesis of uniform-sized dots is still a research problem and much 

remains to be learned in understanding the growth processes that lead to pristine and 

uniform-sized quantum dots. The most studied quantum-dot system today is based on the 

spontaneous formation of (In,Ga)As islands on a GaAs substrate during heteroepitaxy. 

This process is a consequence of the strain which results from the in-plane lattice- 

mismatch between the (In,Ga)As and the GaAs. The specific shape of the dots is usually 

a function of the growth parameters and the general environment of the dots. Some 

researchers have observed dots with hemispherical shapes; others have observed dot- 

shapes that are multifaceted domes; and yet several other groups have reported dots with 

pyramidal shapes.1 It is generally difficult to determine the shape of the dots in-situ 

during growth; the lateral extent and height of the dots, however, can often be determined 

approximately for surface quantum dots from atomic force microscope studies. Accurate 

measurements of buried dot-sizes can usually be obtained from transmission electron 

microscope studies; these studies can generally provide valuable information about the 

shape of the dots.2 Central to understanding many properties of the dot, is a need to 

determine the elastic strain distribution in and around the dots. The strain distribution 



profoundly affects the electronic structure, and hence the optical properties of the dots by 

modifying the energies and wavefunctions for confined carriers. The principal aim of this 

paper is to quantitatively determine the stress fields and hence the strain distribution in 

and around a dot. This information is then used to calculate the electronic structure of the 

dots. 

Strain drives the Stranski-Krastanow growth process that leads to the formation of 

dots; residual strain, in general, can have interesting effects on the electronic and optical 

properties of semiconductor structures. The effects of strain on semiconductors have 

therefore motivated a significant interest in calculating its magnitudes in a broad range of 

devices.3 The hydrostatic (eh) component of strain, for example, usually shifts the 

conduction and valence band-edges of semiconductors; biaxial (sb) strain, on the other 

hand, modifies the valence bands by splitting the degeneracy of the light- and heavy-hole 

bands. These effects have a profound impact on the electronic and optical properties of 

the structures out of which devices might be fabricated. 

The two general classes of techniques used in the calculation of strain include the 

finite difference4'5 and atomistic calculation methods.6 Both of these methods require 

considerable computational resources. In the atomistic approach, there is an implicit 

reliance on the validity of the valence force field model with a Keating interatomic 

potential. This method, however, has recently been shown to be questionable for small 

islands whose base dimensions are smaller than 10 nm;7 for these islands, the Stillinger- 

Weber potential has been suggested as an alternative potential. The finite element and 

finite difference methods have been used by several groups.4,8"11 One advantage of the 

finite element and finite difference methods is that they can be used to treat problems 



with complex geometries. This advantage, however, is offset by the demand on 

computational resources. Another variant of these methods is the boundary element 

approach; this, however, can be mathematically complex.12 A simple and elegant method 

for calculating strain fields around a single, isotropic, cubic dot has been presented by 

Downes et a/..13 This method is based on a simplification of Eshelby's classic inclusion 

theory.14 The method first identifies a set of vectors such that the divergence of each 

gives the Green's function for the stress components o#. By invoking Gauss' theorem, the 

stress field is determined by performing an integral over the surface of the dot. 

In this paper, we extend the method to more complex and practical geometries. 

We particularly focus on regular pyramids and those with truncated tops. In the model, 

we make the basic assumption that the elastic properties of the materials are isotropic. 

This assumption does not seriously affect any qualitative conclusions drawn from the 

calculations. In any event, it has been shown in a recent paper that as long as the 

symmetry of the shape of the structure is less than or equal to the cubic symmetry of the 

crystal, both anisotropic and isotropic models give similar results.16 We caution however 

that even though this is true for quantum-dot nanostructures, it is not so for quantum-well 

heterostructures. 

Our calculations here are for the (In,Ga)As/GaAs materials system. The model, 

however, is general enough that it can be used for similar other materials systems. For the 

InAs/GaAs    system,    the    initial    strain    or    lattice-mismatch    is    defined    as 

e  = aGaAs ~ alnAs _ _Q.O67 . This is the fractional change of the difference between the 
aInAs 

in-plane lattice constant of the GaAs substrate and the InAs epilayer with respect to the 

InAs lattice constant; when Ga is included in the composition of the epilayer, the 



mismatch (strain) becomes s0 = -^ lnxGax_xAs   Thg Poisson ratios for the binary 

ainxGax_xAs 

materials are taken to be 0.316 for the GaAs and 0.354 for the InAs. As is usual in 

continuum elasticity, we assume that the materials are continuous, linear, isotropic, and 

obey Hooke's law. The use of continuum elasticity methods has been experimentally 

verified to be valid for layers as thin as 3 atomic monolayers;17 furthermore, it is 

estimated theoretically that the method remains valid for layers whose thicknesses are on 

the order of 5 atoms.18   We want to point out that the sensitivity of some physical 

properties to strain could make anisotropic effects important; the isotropic approximation 

should therefore be treated with caution, particularly for layers oriented in certain 

crystallographic directions. For most cases, however, the anisotropy only modifies the 

strain distributions slightly.16'19 

Classical and atomistic elasticity methods have been shown to give similar results 

for small strains.20 Differences become apparent for strains larger than 5%, particularly in 

the case of semiconductor quantum dots. Even though atomistic elasticity is expected to 

continue to give reliable results for large strains, the number of atoms involved in the 

computations makes the method unwieldy for rapid, order-of-magnitude calculations. 

The advantage of the approach based on Eshelby's inclusion theory is that it is simple 

and allows one to find approximate analytical expressions for the strain tensor 

components. As we will show later, for quantum dots with lateral dimensions in the range 

of 10-20 nm, the strain profiles calculated within the modified Eshelby framework are in 

good agreement with those obtained by the methods of atomistic elasticity. 

This paper is organized as follows: in the next section (Part II), we give a detailed 

description of the basic model for calculating the strain tensor for pyramidal and 



truncated pyramidal quantum dots. The strain fields are presented and discussed in Part 

III. The method discussed here is a suitable precursor for the calculation of electronic 

structure based on the envelope function method within the plane-wave expansion 

technique. One can determine, for example, the strain-dependent matrix element linking 

any pair of plane waves. We present and discuss the strain-dependent confining potentials 

for electrons and holes, as well as the electronic energy levels in Part IV. A summary of 

our results is given in Part V. 

In our calculations, we consider a single isolated dot to facilitate comparison with 

published results. The dot is assumed to be buried deep within a matrix material. Figures 

1(a) and (b) show the schematic cross-sections of the pyramidal and truncated pyramidal 

quantum-dot structures under consideration. They are assumed to be on top of a semi- 

infinite (001) GaAs substrate on which is grown a thin InAs wetting layer first. 

II. MODEL DESCRIPTION 

Most theoretical calculations of the properties of InAs dots assume a square-based 

pyramidal shape.4,6'21 Here, for purposes of comparison with previously published work, 

we also consider this geometry. However, we extend our calculations to include the 

truncated pyramidal case. When a capping layer—for example GaAs—is grown on top of 

a layer of dots, the morphology of the overlayer is affected by the interaction of the 

inhomogeneous strain around the dots and in the wetting layer. This affects the apex of 

the dots. There is then a thermodynamically favored tendency for the adatoms to migrate 

to the side of the dots,22 resulting in a reduction of the dot height and formation of a flat 

(001) top surface. 



Following Downes et a/.,13 the Lame potential u during relaxation can be 

described by a scalar potential 

u=—VO, (1) 
2G 

where G is the shear modulus, defined as 2G = E/{\ + v) P The displacement potential 

obeys the Poisson equation 

V2®(r) = —£0(r)2G. (2) 
1-v 

From Eq. (2), a solution can be reached by integration, using Green's function, thus: 

2G   W       (l-v)JJJ4dr-r0| 

In the equation above, the function -. r can be written as -—V •-: r. The point r0 
\r-rQ\ 2      \r-r0\ 

is within the volume of the dot. The volume integral in Eq. (3) can be converted to a 

surface integral by applying the divergence theorem to it, with the point r0 now being on 

the surface of the dot, as shown in Fig. 1(c). Thus 

J_o(r)s±|Lt4jfro(^.fcz!birf3 
2G 8;r(l-v)^J      u       |r-r0| 

= —T: (JJ^o(n))7 rdS(r0). 

(4) 



The initial lattice-mismatch, so, can be considered constant within the volume of the dot. 

With the appropriate substitutions, Eq. (1) becomes 

2G 4;r(l-vHJ|r-r0| 

The stress components can therefore be written as 

SQE     f f (I - i0 X + (j-Jo)j 
8ar(l-v)s ,r_ro| ^-^rT*«™ 

(6) 

1    V V 

\i = x,y,z 
where / and / are unit vectors in the z'-th and/-th directions, resectively, for < . 

[j=x,y,z 

and r2 = x2 + y2 + z2. The parameter s0 is the isotropic misfit strain, E is the Young's 

modulus, vis Poisson's ratio, and <% is the Kronecker delta function. The last part of Eq. 

(6) comes from evaluating the limit of the surface integral, as a field point r approaches 

the boundary point r0 on the surface of the dot. The misfit strain is taken as negative for a 

material under compression. The volume of a square-based, truncated pyramid is defined 

by: 

2H 2H 

.BVLz*zy*BVL£, (7) 
2H       y 2H 

0<z<Ht 



where H is the height of the pyramid in the absence of truncation, B is the base of the 

pyramid, and 0 < t < 1, where t represents the truncation factor. The z-axis is the [001] 

growth direction, and the origin of the coordinates is at the center of the square base of 

the pyramid (the z = 0 plane). 

After converting to Cartesian coordinates, the integrations indicated in Eq. (6) can 

be easily carried out. The in-plane stress components have cumbersome mathematical 

expressions; however, for some particular directions, they can be simplified. For 

example, for a square-based pyramidal dot, with a contrast ratio (defined as the ratio of 

the height to the base) of 1:2, where B = 2a and H = a, one obtains the following 

expressions as functions of z: 

°'xx = V'yy =     2 tan 
z-a 

K\Z~a\J 

+ tan 
4 2aL +zd 

1 
+ — 

2 
Ln 

V2a2 +z2 -a 

4. 2a   +z   +a 
Ln 4 2cT+zz +a 

4la2 +z2 -a 
(8) 

+ 
V3 

Ln ■(z-fl) 

V3 
+ \z-a ■Ln\ 

-2a -z     I    2 ,    2 ■ + y2a   +z 
^ 

and 

10 



a'zz=   ATT-A tan 
z-a 

,z — a 
+ tan 

vV2a2+z2y 

+ Ln 
■\]2a2 +z2 -a 

ila2 +z2 +a 
-Ln 

ila2 +z2 +a 

V2a2 +z2 -a 

+ 
>/3 

Ln 
-(z-a) + \z-a\ -Ln 

(9) 

■2a-z- + S^? 
VI 

Note that au = —T^-^cr'u, where s0, v, and E are as defined before. The more 
J     4^r(l - v)   J 

general analytical expressions for calculating stress distributions in structures with 

arbitrary degrees of truncation are given in the Appendix. The expressions for the strain 

components follow by substitution of the stress components into Hooke's law. The 

generalized stress-strain relations are: 

and 

Gkl * ^klmn£mn» 

£kl — ^klmn&mn» 

(10) 

(11) 

where the Ckimn are the compliance and the Skimn the stiffness coefficients. For materials 

with cubic symmetry, only three of the 81 components are independent. So Cu = Cnu = 

C2222 = C3333, Cu = C1122 = C2233, etc., and C44 = Q212 = C2323, etc.; similar relations 

hold for Sa, S12 and S44. The stress-strain relations can then be written in terms of 

Young's modulus E and Poisson ratio v. Since 

11 



and 

then 

and 

r_   1   _(Cil-C'l2XC'll+2C'l2) (12) 
Sn Q1+Q2 

cll+c12 

lJ    l + v  lJ    (l + v)(l-2v)   lJ kk 

£ü = P [ft+vH- - ^vo"^ ]• (15) 

In this paper we define the hydrostatic and the biaxial strains as 

£h ~ £xx "*" £ yy "*" £ zz » ^    ' 

and 

« V£xx+f>yJ' *■    ' £Z> ~ £zz     j \£xx + £yy 

respectively. These relations are introduced here because they represent important 

quantities used in the analysis of the electronic energy levels in a later section. 

III. STRAIN DISTRIBUTION 

We have calculated the strain distributions for a number of structures whose dimensions 

are given in Table I. Calculations for pyramidal QDs—labeled PQD in Table I—as well 

as truncated pyramidal dots—labeled TPQD in Table I—have been carried out. We 

12 



consider first structure PQD3 in Table I; this type of structure has been extensively 

studied and reported on in the literature. Figure 2 shows the strain tensor components s^ 

and Sa for structure PQD3, plotted as functions of position along the z-axis. The shear 

strain components, %, SyZ and sxz are negligible in the dot and barrier materials; they 

could, however, be appreciable at the interfaces.4 By symmetry, the component s^ = £yy. 

In a thin substrate region below the dot, the GaAs lattice experiences a tensile (positive 

fe) strain in the x-y plane and a compressive (negative szz) strain in the z direction. In this 

case, the dot is forcing the substrate lattice constant to be that of InAs (ainAs = 6.05 Ä). In 

the base region of the dot, the situation is reversed. Here, £zz is positive and Sn negative 

because the substrate now attempts to force the dot lattice constant to be that of GaAs 

(aoaAs = 5.65 Ä). With increasing height within the dot, ezz changes its sign, becoming 

negative at the top of the pyramid. At the top of the pyramid, the dominant forces acting 

on the dot originate from the GaAs matrix at the sides, causing a compressive strain 

(negative ezz) along the z direction and a tensile strain (positive e^) in the x-y plane. 

Figure 3 is a plot of the e^ and szz components along the x-axis for structure PQD3. 

Within the dot, both e^ and ^ are negative, implying the existence of a region of 

hydrostatic compression. The s^, Syy and Sa components of the strain tensor are plotted in 

Figs. 4(a), (b), and (c) in the x-z plane. 

The hydrostatic and biaxial components of the strain for structure PQD3 are 

plotted as functions of position along the z-axis in Fig. 5. The hydrostatic strain is 

compressive within the dot and in the surrounding barrier material. The interior of the 

quantum dot exhibits a nearly homogeneous hydrostatic strain, while the barrier 

experiences a small hydrostatic strain. This is because GaAs is stiffer than InAs. The 

13 



biaxial strain tends to be negative in the barrier and positive in the dot, and it is zero near 

the center of the dot. In this region, the strain is entirely hydrostatic in character. Figure 5 

suggests that a significant transfer of biaxial strain to the barrier takes place. 

We have studied strain relaxation in the pyramidal InAs/GaAs QDs for the 

different structures labeled PQD(l-5) in Table I. We compare the strain distributions in 

the x-z plane for dots of different base lengths (Bi = 12 nm for PQD3, B2 = 16 nm for 

PQD4, and B3 = 20 nm for PQD5) but the same height (H = 6 nm) in Fig. 6. We note that 

for dots with small base widths, the strain components change sign from the base region 

of the dot to the apex more rapidly than for dots with large base widths. For example, in 

structure PQD5, the strain components e^ and % are negative inside the dot, while in 

structure PQD3, they change sign from negative at the base of the dot to positive at the 

apex of the dot. The strain component ezz changes rapidly from positive to negative 

values along the z-axis in structure PQD3, but is mostly tensile inside structure PQD5. 

The electronic structure of the dots is also expected to have such a strong dependence on 

the base lengths, as we will discuss in Part IV. 

Figure 7 illustrates the strain relaxation pattern for InAs dots of the same base 

length (B = 12 nm) but different heights (Hi = 3 nm for PQD1, H2 = 4 nm for PQD2, and 

Hi = 6 nm for PQD3). This comparison suggests that the strain-modified electronic 

energy structure is likely not to be as sensitive to variations in the height of the dot as it is 

to changes in the base length of the dot. Extraordinarily tall dots have large hydrostatic 

strains near their centers. This increases the bandgap inside the islands, partially 

compensating for the change in confinement potential. 

14 



Calculations indicate that when InAs self-assembled pyramidal dots are buried 

under a GaAs overlayer, significant tensile stress is induced at the top of the dot; the 

stress at the edges of the dot, on the other hand, is weak and compressive. This is in 

contrast to surface dots, where stress relaxation occurs at the island tops but is 

concentrated at the edges.10 It should be noted that the stress component azl (at the x = 0 

plane) is compressive (negative) in embedded dots whereas it is tensile (positive) in 

uncovered ones. 

The strain distribution maps calculated here for pyramidal InAs dots are in 

reasonably good agreement with published results obtained by calculations based on 

atomistic methods.4'24 The agreement is surprisingly good considering the computational 

simplifications introduced in the present work. 

We have extended the analytical procedure to calculating strain distributions of 

truncated InAs pyramidal dots such as that shown in the transmission electron 

microscope (TEM) image of Fig. 8. The structure in this figure was grown by molecular 

beam epitaxy on a (001) GaAs substrate. From the substrate up, the structure consists 

nominally of a 250-nm-GaAs buffer layer; this is followed by five periods of InAs/GaAs 

quantum dots. The entire structure is caped with 27 nm of GaAs. The dot density, as 

determined by atomic force microscope, was about 4 x 1010 cm"2. The shape of the dots 

was determined from cross-sectional TEM studies. The TEM image clearly shows that 

the dots are coherent, with no observable dislocations. The dots could be discerned from 

their darker appearance due to the presence of Indium. The buried dots appear to be 

pyramids with truncated tops; their base and height were found to be B = 13.8 nm, and h 

= 3.4 nm, respectively. This corresponds to a truncation factor of t = 0.75 (structure 
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TPQD3 in Table I). This observation is consistent with previous reports. We have 

calculated the strain tensor components, as well as the hydrostatic and the biaxial strain 

profiles for this structure. The results are shown in solid lines in Fig. 9. 

For pyramidal dots of arbitrary truncation, general expressions for the stress 

tensor components can be derived. These expressions are given in the Appendix for a 

uniformly lattice-mismatched InAs/GaAs dot. Calculations based on these expressions 

for truncated InAs/GaAs dots have been performed for structures TPQD(l-3) in Table I. 

The specific truncation factors used are t = 0.25, 0.50, and 0.75, respectively. For / = 1 

we obtain the whole pyramidal geometry, while for t = 0, we merely reproduce results for 

the two-dimensional wetting layer alone. 

There are several features that are common to all strain distributions for the 

structures studied. First, the magnitudes of the strain components are largest at the 

dot/matrix interface, particularly at the vertices. The strain is rapidly attenuated within the 

dot and in the matrix material immediately below the square base of the dot. It remains of 

similar form for each truncation since the base of the dot is unchanged. The hydrostatic 

strain is zero in the matrix material and proportional to s0 in the quantum dot, consistent 

with standard inclusion theory. The conduction band shift depends on the hydrostatic 

strain, so the conduction band shift is relatively constant within a dot of constant 

composition. Figures 9(a) and (b) illustrate the e^ and ezz strain tensor components 

plotted along the z-axis for structures TPQD(l-3) of Table I. 

Our results, and those of others, indicate that the magnitudes of the strain 

components depend on the geometries of the dots. This is as it should be for both 

qualitative and quantitative reasons. Consider, for example, that the biaxial strain is very 

16 



sensitive to truncation (see Fig. 9(c)); at the apex of the pyramid, the biaxial strain is 

negative, but becomes increasingly positive as the degree of truncation increases. 

For structure TPQD4 we consider the case where the dot material is a ternary 

compound; in particular, we consider the case where the Indium composition is 23%, as 

determined from X-ray diffraction experiments. And as before, the shape and size of the 

dots are determined from cross-sectional high-resolution TEM observations. We have 

performed calculations to determine the strain tensor components for Ino.23Gao.77As/GaAs 

dots. The strain distributions are depicted in Fig. 10 for structure TPQD4. The strain 

tensor components obtained here are used as input for the electronic band structure 

calculations discussed in the next section. 

IV. ELECTRONIC STRUCTURE AND OPTICAL TRANSITIONS 

The band structure of semiconductors is generally altered by the presence of 

strain, which changes the lattice constant and reduces the symmetry of the crystal. Strain 

modifies energy gaps and removes degeneracy. Here, we take account of the strain 

distributions discussed in the previous sections in calculating the electronic structure of 

dots in the envelope function approximation using an eight-band strain-dependent k- p 

Hamiltonian.26 The eight-band k- p method represents an extension of the Luttinger-Kohn 

formalism, which describes coupling among the light-hole, heavy-hole and split-off 

valence bands to second order in k, but is modified to include the linear coupling between 

the conduction and valence band states. This is necessary in order to correctly model 

conduction band non-parabolicity. A product of strain components and a deformation 

potential describes the general form of the strain-induced modification of the band 

17 



structure. Typical values of deformation potentials range from 1 to 10 eV. These 

determine the amount of band structure modification and enter the calculations as 

material parameters given in Table II. In our calculations, we neglect the lack of 

inversion symmetry in the zincblende structure and consequently ignore the small 

coupling of the conduction band to shear deformations. In the strain-dependent 

Hamiltonian, the non-diagonal terms containing shear components of the strain are non- 

zero in our geometries, except far away from the dot axis. However, since the diagonal 

shear strain term of the Hamiltonian decouples the heavy- and light-hole bands by 

approximately 100 meV, the correction of the non-diagonal terms in the Hamiltonian is 

small near the band-edge. The resultant Hamiltonian is a matrix that is diagonalized using 

the Lanczos algorithm developed in Refs. 27 and 28. 

Some insight can be gleaned by examining the strain-induced modification to the 

band structure corresponding to structure PQD3 in Table I. In the absence of strain, the 

confining potential for an electron (hole) is a square well formed by the difference in the 

absolute energy of the conduction (valence) band-edges in InAs and GaAs. In the 

conduction band, the depth of the confining potential in this case is about 840 meV. For 

holes, the potential well is about 263 meV deep. However, because of strain, the 

confining potential for each carrier type is shifted. Since the strain varies with position, 

the confining potentials will also vary with position. The material parameters used in our 

computations are given in Table II. Under these considerations, the conduction band can 

be given as 

Ec(e) = E°+SEc(£), (18) 

where Ec° is the offset of the unstrained conduction band, which is 
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*?=<„+!*+*,. <19> 

and SEC is the strain-induced shift of the conduction band which is expressed as 

SEC (s) = ac (Sxx +£yy+szz). (20) 

In Eq. (19), A0 is the spin-orbit splitting, Eg is the unstrained bandgap, and Ev,av° is the 

unstrained average valence band-edge. The parameter ac in Eq. (20) is the deformation 

potential for the conduction band. 

The effect of strain on the valence band depends largely on the symmetry of the 

strain. The heavy- and light-hole energy bands, Ev
hh and Ev

lh, couple to the individual 

•JA 

strain components via the relations: 

Eth=Elv+^- + SEv,h-±SEv,b, (21) 

and 

4k =E°v,aV -^- + SEVth +±SEVtb +^A2
0+A0SEVtb+^bf,       (22) 

where SEvh = avsh, and 8Evh = bsb. The deformation potentials av and b are given in 

Table II. 

The dominant effect of the strain is that the dot experiences a large increase in its 

bandgap due to the considerable hydrostatic pressure. The conduction band for structure 

PQD3 in Table I has a potential well that is 0.4 eV deep at the base of the dot, tapering 
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off to a depth of about 0.27 eV at the apex. The valence band has a more complicated 

structure. If we could somehow turn off the strain, the holes would be confined to the 

InAs by a well that is only 85 meV deep. However, the presence of strain alters this 

considerably, and it, in fact, makes the dominant contribution to the hole confinement 

potential. A remarkable feature of the valence band is that it is peaked at the apex of the 

dot and near the base. This is clearly evident in the energy band diagram presented along 

the z-axis for structure PQD3 in Fig. 11. 

The confining potentials, inclusive of the effects of strain, are piecewise 

continuous functions of position. These potentials are shown in Fig. 11 for both electrons 

and holes. The split-off valence band is sufficiently far off in energy from the heavy- and 

light-hole band-edges that it plays no role in the calculations. Note that the heavy- and 

light-hole confining potential wells are shown inverted. In the absence of strain, the 

heavy- and light-hole confining potentials should be the same. However, the anisotropic 

(biaxial) components of the strain in the dot and barrier reduce the symmetry of the 

conventional cubic unit cells, lifting the heavy- and light-hole degeneracy. The 

compressive strain in the barrier shifts the GaAs conduction band-edge slightly above the 

unstrained level of 1.52 eV. Note that in Fig. 11, the light-hole band-edge is higher in 

energy than the heavy-hole band-edge in the barrier, and at the apex of the pyramid. The 

heavy-hole band is the uppermost band at the base of the pyramid. The direction and 

magnitude of the splitting of the light- and heavy-hole bands—in the absence of 

appreciable shear strain components—is dependent solely on the magnitude and sign of 

the biaxial strain, sb. In those regions of the structure where the biaxial strain is negative, 

the light-hole band will be shifted upwards in energy and the heavy-hole band 
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downwards; in those regions where the biaxial strain is positive, the heavy-hole band will 

be uppermost. When the biaxial strain is zero, the light- and heavy-hole bands are 

degenerate. 

We show the electron confining potential in the x-z plane in Fig. 12(a) for 

structure PQD3. Here, the zero of energy is fixed at the GaAs level. The potential well 

for electrons has a depth of about 400 meV over much of the pyramid, deepening to 

about 450 meV at the base. In the wetting layer, the potential is taken to be identical to 

the potential near to the base of the pyramid. The potential in the barrier is close to zero 

since the material here is GaAs. Figure 12(b) shows the contour plot of the confining 

potential experienced by heavy-hole carriers. In the regions attractive to heavy-holes, the 

potential is negative. The potential inside the well has a positive gradient from the base 

towards the apex. Over this distance, the potential changes by several hundred meV. 

Because of this and the large effective mass for heavy-holes, one would expect charge 

localization near the base of the pyramid. The contour plot for the light-hole confining 

potential is shown in Fig. 12(c). This plot shows a slowly varying attractive potential in 

the barrier region above and below the pyramid. It reaches a minimum at the apex of the 

pyramid. 

Several methods have been developed to calculate the electronic structure of the 

square-based pyramidal InAs dots.4,6,11 Among these is the pseudopotential plane-wave 

approach used by Williamson et a/..31 To calculate the energy levels and electron (or 

hole) wave functions we use an eight-band effective mass approach. The strain effect is 

included via deformation potential theory.32 The bound energy levels are computed as 

functions of quantum-dot size. The bound states of the dot are found by numerically 
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solving the Schrödinger equation, which in the effective mass approximation, can be 

written as 

L- V(-^—)V¥W (r) + V(ry¥n (r) = EVB (r) • 
2       w,- (r) 

(23) 

In this expression, mt(r) must be replaced by mInGaAs(j) inside the dot, and by 

m*GaAs{r) in the matrix material; V(r) is the three-dimensional confining potential. In the 

framework of the eight-band model, the wavefunction can be expanded as a linear 

combination of the basis functions, thus 

y=i J,JZ 

(24) 

where u/r) has the periodicity of the crystal lattice and; is the band index. At the band- 

edges, these functions are characterized by symmetry arguments as eigenstates \J,JZ) of 

the Bloch angular momentum J. The states \J,JZ) are the band-edge functions of the 

Bloch state space.33 These wave functions are, for the s-like rr(ri) conduction band, 

IT 
2'2y 

5)| t)   and 
2'   2; *>> 

(25) 

while for thep-like r8
+(r8), r7

+(r7) valence bands, they can be written as: 
33 
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2'   2, 

2'   2, 
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vV6y 

/^ 

M-WW- VT \*n 
v-3; 

r^)*>-^>H>. 

2'2/v    ^V3 ̂H^ + fjD^^ 

2'   2/ i>-wit>-(^> 
(26) 

We want to point out that it is generally known that the k' p method has some 

problems associated with it when applied to calculations involving nanostructures. 

These difficulties include (i) the fixed number of Bloch functions (eight in the formalism 

used here), (ii) the restriction of the validity of the method to the Brillouin zone center, 

(iii) the use of the same Bloch functions, regardless of material and strain variations, and 

(iv) the difficulty of choosing appropriate boundary conditions with associated matching 

criteria for the envelope functions across the heterointerfaces. In our calculations, we take 

into account the variation of mass parameters from their bulk values due to the strain- 

induced band deformations. The details of the guidelines used have been discussed by 

Burt 34 
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The eigenvalues and eigenfunctions of Eq. (23) are obtained by invoking periodic 

boundary conditions, expanding W„(r) in terms of normalized plane-wave states, and 

diagonalizing the resulting matrix. This approach, which has also been used by Cusack et 

al.,6 does not require matching of the wavefunctions across the boundary between the dot 

and the matrix materials. This makes the method applicable to arbitrary (position 

dependent) confining potentials. The only requirement on the boundary conditions is that 

the states do not significantly overlap for dots adjacent to each other. 

In general, the number of confined states in a quantum dot depends on the size of 

the dot and on the thickness of the wetting layer. For the conduction band, there are 

usually only a few bound states. The energy spacing between the ground state and the 

first excited state in the conduction band typically ranges from about 60 to 95 meV for 

the dot-sizes considered in our work (see Fig. 13). We find that the valence-band states 

are more tightly confined because of the large hole effective mass. The energy spacing 

here ranges from a few meV to 30 meV. 

In our calculations, we have neglected the Coulomb interaction energy. This 

energy largely depends on the value of the dielectric constant. As a result, dots of the 

same size can belong to different confinement regimes in materials with different 

dielectric constants. In III-V compounds, with a typical relative dielectric constant of 

-13, the bulk exciton radius is >10 nm, causing a structural quantum dot of similar 

dimension and sufficiently deep potential to be in the strong confinement regime.22 

Because of this, additional binding energy from the Coulomb effect is negligible since the 

dots are already in the strong confinement regime. In any case, the Coulomb interaction 
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energy is small compared to the separation of the ground state from the first excited state 

for both electrons and holes. 

In Fig. 13, we show the calculated electron and hole energy level dependence on 

pyramid base length. The electron (hole) levels are plotted relative to the unstrained 

GaAs conduction (valence) band-edge. For dot base dimensions smaller than ~6 nm, no 

bound electron states are predicted. Beyond 6 nm, a few states are predicted in the 

conduction band. And as stated earlier, many states are predicted in the valence band. 

This is due to the large effective mass associated with the holes and to the nature of the 

light-hole confining potential whose smoothly varying form leads to a quasi-continuum 

of tenuously bound states. 

We have also determined the envelope functions for the first few confined states 

in the dot. Figure 14(a), for example, shows the modulus-squared envelope function for 

the Eeo state for structure PQD3; this function is plotted in the y-z plane, cutting through 

the pyramid and the wetting layer. The relatively isotropic character of the confining 

potential for electrons, coupled with the small effective mass, results in a state that 

permeates throughout the dot and penetrates into the sides of the pyramid. Figure 14(b) is 

the hole envelope function in the y-z plane for the state Eho- Unlike the ground state in the 

conduction band, the hole ground state is confined to the base of the dot. In Fig. 14(c) and 

(d), we show the envelope functions for the hole excited states EM and £7,2. 

The calculated transition energies for the ground state, Ee0 Eho, and for the first 

Eei Ehi and second Ee2 Eh2 excited states for pyramids of various base dimensions 

are shown in Fig. 15(a). For a pyramid with a base length of 12 nm (structure PQD3 in 

Table I), the calculated fundamental transition is 1.12 eV; this is in good agreement with 
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the measured photoluminescence emission energy of 1.1 eV for a structure of similar 

dimensions.4 From Fig. 15(a), the calculated fundamental transition energy for a pyramid 

with a base length of 16 nm is 1.10 eV. This value is in good agreement with the 

experimentally determined transition peak at 1.098 eV shown in Fig. 15(b). The same 

good agreement is found between the calculated and measured peak luminescence energy 

values for a 20-nm-base pyramidal quantum dot; the measured experimental data is 

shown in Fig. 15(c). 

The energy splitting between the ground state and first excited hole state of 30 

meV in Fig. 15(b) is in good agreement with a recent experimental study of the sub-level 

structure which measured a difference of approximately 27 meV. The Eeo Eho 

transition is the dominant excitation in all of the structures studied. 

We now consider the computation of the electronic energy levels in truncated 

pyramidal quantum dots. The basic approach is similar to what has already been 

discussed in this paper. For truncation factors ranging from 0.25 to 0.75, we show the 

confining potentials for electrons and holes in Fig. 16. The bound states are determined 

by numerically solving the Schrödinger equation within the context of approximations 

similar to those used in the ideal pyramid case. The calculated energy levels for the 

ground state and two excited states in the conduction, as well as the valence bands are 

shown in Fig. 17 for a range of truncation factors. As a specific example, we calculated 

the energy levels for structure TPQD3, whose dimensions are given in Table I; the TEM 

micrograph of this structure was shown in Fig. 8. The first three confined electron energy 

levels, measured with respect to the unstrained GaAs conduction band-edge, are Ee0 - 

1.404 eV, Eei = 1.426 eV and Ee2 = 1.428 eV. In the valence band, the corresponding 
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heavy-hole levels—again measured with respect to the unstrained GaAs valence band- 

edge—are Eh0 = 328.79 meV, EhJ = 343.88 meV, and Eh2 = 345.74 meV. The transition 

energies, for the allowed transitions, are shown in Fig. 18(a); the fundamental transition, 

Eeo Eho, is at 1.076 eV. This energy is in good agreement with the experimentally 

determined peak of 1.08 eV for the photoluminescence emission spectrum shown in Fig. 

18(b) for structure TPQD3. The photoluminescence measurements were carried out using 

an Ar+ ion laser (A = 488 nm) as an excitation source. The emitted radiation was detected 

with a liquid-N2-cooled Ge detector. 

In devices such as near infrared lasers and mid-infrared detectors, the preferred 

medium in the active region is often an (In,Ga)As/GaAs, rather than an InAs/GaAs 

quantum-dot superlattice. In this case, it becomes necessary to perform the energy level 

calculations for (In,Ga)As dots. We have performed such calculations for truncated 

pyramidal Ino.23Gao.77As dots. The parameters used in the calculations are given in Table 

II. For illustrative purposes, we have used the truncated structure TPQD4 in Table I. The 

fundamental transition energy, Ee0 Eh0, for such a structure is calculated to be 1.126 

eV. In the conduction band, the electron ground state of such a dot is separated by about 

107 meV from the first excited state. These computed values are in good agreement with 

the photoluminescence and infrared absorption data obtained at 300 K. 

V. SUMMARY 

The relaxation of strain and its residual component in lattice-mismatched epitaxy is 

responsible for the self-organization of quantum dots in the Stranski-Krastanow crystal 

growth mode. Beginning from this premise, we have calculated the strain distributions in 
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pyramidal and truncated pyramidal (In,Ga)As/GaAs quantum dots using a method based 

on Eshelby's inclusion theory of continuum elasticity. It is found that the hydrostatic 

component of the strain is mostly confined within the dots, while the biaxial strain is 

transferred from the dot to the barrier material. By taking into account the influence of 

the strain on the bandgap of the dots, we have solved the three-dimensional, effective 

mass, single-particle Schrödinger equation for the electronic energy levels in the dot. We 

find that strain plays a major role in the energy structure of the quantum dots. For the 

pyramidal geometry considered here, the electronic energy levels are also a sensitive 

function of the base length. 

The results of our calculations are in good agreement with those reported in the 

literature, even though our method is considerably simpler that those used by others.' 

For the fundamental transition of a ground state electron in the conduction band 

recombining with a hole in its ground state in the valence band, we find that our 

experimental results also agree with calculations. 

In summary, we have developed a simple method for rapidly calculating strain in 

embedded quantum dots. The method allows one to determine the interdependence of 

strain on shape, and by extension, the effects of strain on confined energy levels in 

quantum dots. 
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APPENDIX 

This section gives the more general mathematical expressions for the stress distributions 

inside pyramidal InAs quantum dots of different degrees of truncation. The expressions 

are obtained by integrating Eq. (6). They are given as functions of the space coordinate z, 

in the growth direction. The strain components follow immediately from Hooke's law, as 

given in Eq. (15). The following definitions are used in the expressions: the pyramid base 

length is B = 2a; the height, in the absence of truncation, is H; the parameter t is the 

degree of truncation; and h is the height of a truncated pyramid. The stress component 

Gxx, for example, is written as a summation over three terms: 

'XX 
a2+h2 4x(l-v) 

E£0     \ t i t      1 
-7, rl°"jcc(l) + CTxx(2) + 0"JCC(3) J» (Al) 

where the terms cr'xx(i), cr'xxp), and a^) are given as: 

4a' 
rxc(l) 

42a2+h2 

Ln 
■2a2(l-t)-h(Z-ht) + J2a2{l_t)2+{z_ht)2 

ha2+h2 

-Ln 
2 

•2a   -hz      [7~2      2 

ha2+h2 

\,    (A2) 
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rxc(2) =   2h- 

tan -1 -(z-ht) 

^2a2{l-t)2
+{z-htf 

tan -1 (z-ht) 

J2a2{l-t)2
+(z-ht)\ 

+ tan -1 

^2a2+z2 
tan -1 

V 2a2 +z2 

(A3) 

and 

a xx(3) 

= aLn 

a(l-t)+^2a2{l-tf +(z-htf 2a' ■a+ 4 2a2+z2 

x2a' 1 — 
V     hj v 

-a + 42a2 +z2 

-aLn 

-a{\-t)+42a2(\-tf +(z-htf 2a1 1--1   +a + 42a2+z2 

x2ax 1--1 (a + ha2+z2] 

Similarly, for «% we derive the following relations along the z-axis: 

044) 

<J,„, = 
h ESQ 

yy     „2,. 2 a2+A2 4^(1 -v) PW)+(Jk2)+(Tk3)l' 0*5) 

with o-J^/;, a'yyp), and o^; given as: 
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4aA 

rxv(l) I 2a2 +h2 

Ln 2a2(l-t)-h(z-ht) + ^2a2{l_t)2+{z_ht)2 

^2a2+h2 

- Ln 
-la   -hz      /_  2      2 + ila   +zL 

ha2+h2 

,   (A6) 

a'yyV)=   2h 

tan -1 \z-ht) 

^2a2{l-t)2+(z-ht)2 
-tan 

(z-ht) 

J2a2(l-t)2
+{z-ht)2_ 

+ tan 
^2a2+z2 

tan 
-z 

V 2a2+z2 

(,47) 

ryy(?) 

aLn- 

a(l-t)+^2a2(l-t)2 +(z-htf 2a' 
l    h) 

-a + V2a2+z2 

x2a2 1-- 
l     h 

-a + V2a2 +z2 

■aLn 

a{l-t)+^2a2(l-tf +{z-htf 2a
2[l--|   +a + V2a2+z2 

x2a2 \\-Z- a + V: 2a2+z2 

U8) 

The other stress component, o-22, follows from: 

2Ee0    ( \ 
(A9) 
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FIGURE CAPTION: 

Fig. 1. Schematic models for the pyramidal (a) and truncated pyramidal (b) quantum-dot 

structures; B = base width, H = pyramid height, t = truncation factor, h = truncated 

pyramid height, d = thickness of wetting layer; (c) Three-dimensional model of a 

quantum dot in the Cartesian coordinate system. 

Fig. 2. Strain tensor components ^and £2Zfor structure PQD3 plotted along the z-axis. 

Fig. 3. Strain tensor components £« and £zz for structure PQD3 plotted along the x-axis. 

Fig. 4. Strain tensor components for structure PQD3 in the x-z plane: (a) Sxx, (b) %, (c) S& 

(strain expressed in %). 

Fig. 5. The hydrostatic Sh, and biaxial Sb components of the strain for structure PQD3 

plotted along the z-axis. 

Fig. 6. Comparison of strain components for structures PQD(3-5), characterized by 

height H= 6 nm, but different base widths: Bi = 12 nm (PQD3), B2= 16 nm (PQD4), and 

B3 = 20 nm (PQD5): (a) e^, (b) %,, (c) ^ (strain expressed in %). 

Fig. 7. Comparison of strain components for structures PQD(l-3), characterized by base 

width B = 12 nm, but different heghts: Hi = 3 nm (PQD1), H2= 4 nm (PQD2), and H3 = 6 

nm (PQD3): (a) Sxx, (b) %, (c) szz (strain expressed in %). 

Fig. 8. Cross-sectional high-resolution transmission electron microscope image of InAs 

quantum dots in a GaAs matrix. 
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Fig. 9. Strain tensor components e^ and ezz along the z-axis for t =0.25 (TPQD1), f=0.50 

(TPQD2), and f=0.75 (TPQD3): (a) sM, (b) ^z, (c) eb, and(d) £•/,. 

Fig. 10. Strain tensor components in the x-z plane for structure TPQD4: (a) Sxx, (b) %, (c) 

szz, and (d) £& (strain expressed in %). 

Fig. 11. Electron (Ve), heavy-hole {Vhh), and light-hole (Vih) potential profiles for 

structure PQD3, plotted along the z-axis. 

Fig. 12. Confining potential experienced by charge carriers in the x-z plane for structure 

PQD3 (negative values represent an attractive potential); (a) electrons, (b) heavy-holes, 

and (c) light-holes (potential expressed in eV). 

Fig. 13. (a) Electron and (b) hole quantum-dot energy levels (ground state and first two 

excited states), displayed as a function of dot base size. 

Fig. 14. The squared absolute magnitude of the envelope function for structure PQD3 

across the^-z plane for energy levels: (a) Eeo, (b) Eho, (c) £/,/, (d) Eh2- 

Fig. 15. (a) Calculated transition energies for pyramidal QDs: Eeo- Eho, Eej - EM, and Ee2- 

Eh2, as functions of QD base width; (b) Fundamental (Ee0 - Eho) transition energy 

measured by PL for a dot of base 5=16 nm; and (c) for a dot of base width B = 20 nm. 

Fig. 16. Confining potentials for electrons and heavy-holes, along z-axis, for structures 

TPQD(l-3) with truncation factors: /=0.25 (TPQD1), /=0.50 (TPQD2), and t=0J5 

(TPQD3). 
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Fig. 17. Ground state and first two excited states for electrons and heavy-holes for 

structures TPQD(l-3) with truncation factors: t = 0.25-0.75. 

Fig. 18. Ground state and first excited state transition energies for structures TPQD(l-3) 

with truncation factors: t = 0.25-0.75: (a) calculated, (b) measured. 
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Table I 

Dimensions of single (In,Ga)As/GaAs quantum-dot structures used for computations. 

Structure     Base width    Pyramid height       Truncation Truncated pyramid 

B (nm) H (nm) factor t height h (nm) 

PQD1 12 3 

PQD2 12 4 

PQD3 12 6 

PQD4 16 6 

PQD5 20 6 

TPQD1 13.8 4.6 0.25 1.25 

TPQD2 13.8 4.6 0.50 2.30 

TPQD3 13.8 4.6 0.75 3.45 

TPQD4 19.7 4.7 0.64 3.00 
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Table II 

Material parameters used in calculations. 

Parameter GaAs InAs InxGai_xAs 

a (A) 5.6503 6.0553 (5.6503+0.405*)31'38'39 

Eg(eV) 1.518 0.413 (1.518-1.580x+0.475x2) 29'32>38>39   [T=6.4 K] 

Eg(eV) 1.424 0.324 [0.324+0.7(1-JC)+0.4(1-X)
2
] 

38'39   [T= 300 K] 

Ao(eV) 0.340 0.380 (0.340-0.093x+0.133x2)29,37,38 

Cn (N/m2) 11.88 8.33 (ll.88-3.55x)31,32'38,39 

C,2 (N/m2) 5.38 4.53 (5.38-0.85*)3I-32-38-39 

ac(eV) -8.013 -5.08 (-8.013+2.933*)29'32,38 

av(eV) 1.16 1.00 29,32,38 

b(eV) -1.7 -1.8 29,32,38 

EV)av°(eV) -6.92 -6.747 (-6.92+0.23 lx-0.058x2)29,32'38 

rrie* 0.0667 m0 0.02226 m0 (0.0667-0.0419x-0.00254 x2)32'38 

Ep (eV) 25.7 22.2 
(1.238-0.2095*) ^^g^ 

me      3Eg + 2Ao 
32,37 
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