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Abstract: 

The problem of selecting good ones compared with a control from k(> 2) positive ex- 

ponential family populations is considered in this paper. A nonparametric empirical Bayes 

approach is used to construct the selection procedures. It has been shown that the risks of 

the empirical Bayes procedures converge to the (minimum) Bayes risk with a rate of 0(l/n), 

where n is the number of accumulated past observations at hand. Simulations were carried 

out to study the performance of the procedures for small to moderate values of n. The 

results of this study are provided in the paper. 
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1. Introduction and Formulation. 

In this paper, we are interested in the problem of simultaneous inference and selection 

from among k(> 2) populations in comparison with a standard or control. The populations 

are denoted by 7Ti, • • •, 7rfc. The random variable X,- associated with -K{ has the density 

f(xi\0i) = c(9i)e-x'/dih(xi) with h{x) > 0 in (0,oo), where the unknown parameter 9{ is the 

characterization of population 7Tj. 

Let 0O denote a standard or a control. In practical situations, we desire to differentiate 

between good and bad populations and select good ones and exclude bad ones. Here a popu- 

lation 7rt- is said to be good if 6t > 0O and bad otherwise. This type of decision problem has 

been considered by many authors. For example, see early papers: Paulson (1952), Dunnett 

(1955), Gupta and Sobel (1958), Lehmann (1961), and later: Gupta and Hsiao (1983), and 

more recently: Gupta, Liang and Rau (1994), Gupta and Liang (1999), among others. 

Let Ü = {9 = {0i, • • •, 0*} : 9t > 0, i = 1,2, • • •, k} be the parameter space. Let A = 

{ä = {ai, ■ ■ ■,ak} : a,- = 0 or 1, i - 1, • • •, k} be the action space, where a{ = 1 means that 

population -K{ is selected as good, a* = 0 means population 7Tj is excluded as bad. 

The loss function we use is 
k 

(1.1) L(M) = £*(ft.°*) 
t=i 

with 

l(0i,ai) = aMOo - 6i)I[9i<0o] + (1 - a^Bi - 0o)^>«o]- 

We also assume that 0j is a realization of a random variable 6*, and 0i, • • •, 6jt are inde- 

pendently distributed with priors Gi, • • •, Gk respectively. Let G = n£=i Gi(9i). 

Let X = (Xi, • ■ •, Xk) and X be the sample space of X. Here X{ may be thought of as a 

sufficient statistic based on several i.i.d. samples. 

The selection procedure 6 = {Su ■ ■ ■, Sk), where 8i(x) is the probability of selecting popu- 

lation 7Ti as good when X = x is observed. To ensure that the Bayes rule exists, we assume 

Jo00 92dG{{9) < oo for % = 1, • • •, k. 

Based on previous assumptions, a straightforward computation shows that 

(1.2) R(G,5) = J2Ri(G,Si) 
t=i 

and 

(1.3) Ri{G, Si) = f Si(x)[]l fjixjüWiixiWxJdx + T{ 
JX i#i 



where 

fi(xi)   =     .   We-vt'hMdGiiO), 
Jo 

IJOi(Xi)   =    r0(0o-0)c(0)e-x</«dG,(0), 

Jo 

Here ^(xO is the marginal density of X{ and Tt is independent of the selection rule 6. Clearly, 

a Bayes selection procedure SG — (6Gi, ■ ■ ■, 6Gk) is given by 

(1.4) SGi 

1    if Wifa) < 0, 

0    ifwi(xi)>0. 

Let ctiixi) = fZ°6c{6)e-Xi/edGi(e) and ^fc) = S~e2c{0)e-Xil9dGi{d).   Denote ^(x4) = 

ipi(xi)/ai(xi). Then <5Gt- can be expressed as 

(1.5) «fa 
1    if <f>i{xi) > 6o, 

0    if ^j(xj) < ö0. 

If d is unknown, the Bayes rule cannot be applied and the selection cannot be made. 

The empirical Bayes approach is a way to help one to make the decision when past data 

are available. Since Robbins (1956, 1964) introduced the empirical Bayes approach, it has 

become a powerful tool in decision-making. Empirical Bayes approach in statistical inferences 

has been used recently by Singh and Wei (1992), van Houwelingen and Stijnen (1993), Pensky 

(1998), Pensky and Singh (1999), and Liang (2000a, 2000b). 

For each i = 1,..., k, let (Xy, &ij),j = 1,2,... be random vectors associated with popu- 

lation ■Ki and stage j, where Xy is observable while 6y is unobservable. It is assumed that 

Qij has a prior distribution Gt-, for all j = 1,2,..., and conditioning on 0y = 0y, X{j follows 

a distribution with density f{xij\Bij) and (Xy,eö),i = 1,..., k, j = 1,2,... are mutually 

independent. At the present stage, say, stage n + 1, we have observed X = x. The past 

accumulated observations are denoted by (Xi,•••,Xn) = Xn, where Xj = (X^,• • •,Xkj) is 

the observation at stage j. Based on Xn and x, we wish to construct an empirical Bayes rule 

to select all good populations and to exclude all bad populations. Such an empirical Bayes 

rule can be expressed as 

5n(x,Xn) = (5ni(x,Xn),---, 5nk(x,Xn)) 

where 8ni(x,Xn) is the probability of selecting 7r{ as good if Xn and x are observed.  Let 



R(G, Sn) denote the overall Bayes risk of 6n. Then 

(1.6) Ä(G,-5nf=i:Äi(G,«Jni), 
i=l 

where 

(1.7) Ri(G,6ni) = / £[*«•(*,*)] • [Ufj(xi)]-v>i(xiM*i)<® + Ti- 
'X j& 

The regret Bayes risk is defined as rn = R(G,6n) - R(G,5G), which is used to measure 

the performance of empirical Bayes rule 6n. If rn = o(l), we say that 6n is asymptotically 

optimal (a.o.). If rn = 0{ßn) for some positive ßn such that limn^^ßn = 0, we say that Sn 

is asymptotically optimal at a rate of 0(ßn). 

The aim of this paper is to construct an empirical Bayes rule 5n for the selection problem 

described above. For most distributions in the family f{xi\9i), under the above general 

setting or, in some cases, with one additional condition /0°° 93dG(9) < oo, we show that 

nrn -* m, where m is a computable constant depending on G. 

It should be pointed out that Gupta and Liang (1999) studied the selection problem 

for gamma(x\6, s) populations, a special case of above problem, firstly through an empirical 

Bayes approach. They constructed an empirical Bayes rule <5£ and established its convergence 

rate 0(n~l) under some regularity conditions. A rate of 0{n~l logn) was obtained there 

under the condition that 0Js are bounded. Gupta and Liese (2000) showed that the limiting 

distribution of nRn is a linear combination of independent x2 random variables, where Rn 

is the conditional regret of a modified version of rule <S*. 

The remaining part of this paper is organized as follows. In Section 2, an empirical Bayes 

selection rule ön is constructed. The asymptotic behavior of Sn is investigated in Section 3. 

In Section 4, we provide a few typical examples as applications of our results. The proofs of 

our results are given in Section 5. 

2. Construction of Empirical Bayes Selection Procedure Sn. 

The construction of 8n can be divided into three steps. First, we construct an estimator 

of Wi(x). Second, we localize the Bayes rule. And then we complete the construction by 

mimicking the Bayes rule using the estimator of Wi(x). 

The construction of an estimator of w{(x) follows the idea of Gupta and Liang (1999). 

For the loss function (1.1), an unbiased and consistent estimator of Wi(x) can be obtained. 



For each i = 1, • • •, k, j = 1, • • •, n, and x > 0, define 

an + X — Ji-ij 
(2.1) V^x) =      ^     W,]- 

Through a standard calculation, we have £?[VJj(a;)] = Wi(x). Based on this nice property, an 

unbiased and consistent estimator of Wi(x) can be constructed as: 

(2.2) Wni{x) = -YJVij{x), 
n j=i 

for each i = 1, • • •, k, and x G (0, oo). 

We call the next step as a localization of the Bayes test. Examining the Bayes selection 

rule 6G, we see that 5Gi depends on x only through x{. Also <f>t(x) is increasing for i = 1, 

• • -, k. If Xi is large so that fafa) > 0O, we have 6Gi = 1; If a;* is small so that ^(x,) < 0O, 

we have <5Gi = 0. Since G is unknown, we do not know at which point we should accept H0 

or reject it. But, one will be more likely to take action a{ — 1 if the observation of X{ = xt 

is quite large and take action a{ = 0 if it is quite small. By knowing this, we want to find 

two numbers Bn and Ln such that we select 7r< as good if we observe x{ > Ln and exclude it 

as bad if x{ < Bn. Here both Bn and Ln depend on n. This could be understood as follows. 

As n increases, we have more information from the accumulated data, and we should adapt 

new Bn and Ln so that our decision can be made more precisely. 

Certainly, the exact form of f(x\8) and the distribution G affect the choice of Bn and Ln. 

Since we have no knowledge about G except that /0°° 6dG{6) < oo, we rely on f(x\9) itself. 

If \imxi0h(x) > 0, let Bn = 1/Ln and Ln = (0ologn/4) V 10. If lim^M*) = °' let Hn 

and Ln be the two sequences of positive numbers such that Hne
Ln/0° = n1/4 and Hn ->• oo, 

Ln -> oo as n -+ oo. For example, Ln = (90\ogn/12) V 10 and Hn = n1'*e-L"'°°. Then 

define Bn = [inf{a; < 1 : h(x) < l/Hn}V(l/Ln)] A0.1. It follows that Bn -»■ 0 since Hn-+oo 

as n —>• oo. 

According to what we mentioned at the beginning of this section, we propose the following 

empirical Bayes procedure: For each i = 1, • • •, k, and xt, 

f 1   if    (x{ > Ln) or {Bn <Xi<Ln and Wni(xi) < 0), 
(2.3) Sni(xi) = < 

{ 0   if    (a < Bn) or {Bn < x{ < Ln and Wni(xi) > 0). 

This empirical Bayes procedure says that, at stage n + 1, if the present observation x{ from 

7Tj is relatively big or small, a decision will be made based on x% only. If it is not too small or 

too big, we have to resort to past data information and use Wni(x), the estimator of Wi(x), 

to make the decision. 



3. Asymptotic Optimality of Sn. 

In this section, the asymptotic behavior of Sn is investigated. We derive the regret Bayes 

risk first. From (1.2) and (1.3), the Bayes risk of 6G is R{G, 6G) = E,-=i Ri(G, 5Gi) with 

TOO 

Ri(G, 6Gi) = /    6Gi(x)wi(xi)h(xi)dxi + T{. 
Jo 

From (1.6) and (1.7), the Bayes risk of 6n(x) is R(G,5n) = Zi=i MG,Sni) with 

roo        _ 
Ri(G, Sni) = /    EfaiixywiixiMxJdxi + Tt. 

JO 

Thus the regret Bayes risk of 5n, the difference between R(G,8n) and R(G,6G), is 

k 

(3.1) rn = Y,rnu 

where 

(3.2) rni= [ " P{Wni(x) < 0)wi(x)I[wi{x)>o]h(x)dx + f    P(Wni(x) > 0)wi(x)I[m{x)<o]h(x)dx. 
JBn JBn 

Under the assumption /0°° 92dGi{6) < oo, we have /0°° \wi(x)\h(x)dx < co from the inequality 

/    \wi(x)\h(x)dx < 90       ai(x)h(x)dx+       i>i{x)h(x)dx < 0o /    BdGi{6)+       82dGi{6). 
Jo Jo Jo Jo Jo 

Since Wn(x) is a consistent estimator of Wi(x), P(Wni(x) < 0) ->■ 0 if Wi(x) > 0, and 

P(Wni(x) > 0) ->• 0 if Wj(a;) < 0. Applying the dominated convergence theorem, we have 

rni = o(l). Thus we have the following theorem. 

Theorem 3.1. Assume that J0°°62dGi(0) < oo for each i = 1,2,••-,£. Then Sn, as 

defined by (2.3), is asymptotically optimal. 

Besides the asymptotic optimality, the convergence rate of an empirical Bayes procedure 

is also an important factor to be considered when the procedure is applied. The following 

discussion shows that the procedure Sn achieves the rate of convergence of order Ofo-1). 

From now on, we consider only those members of the family f(x\0) in which lim^oo h(x) > 

0 and h(x) is bounded from below for any inner closed subset of (0, oo). These members 

belong to one of the following cases: 

Case 1. limltoo ^ > 0 and lim^o h(x) > 0. 

Case 2. limltoo ^ > 0 and lim^o h(x) = 0. 

Case 3. limztoo ^ = 0 and limli0 h(x) > 0. 



Case 4. limltoo ^ = 0 and limxi0 h(x) = 0. 

Before presenting the main results, w» introduce the following definition. If 5Gi = 1 for 

all x G (0, oo) or SGi = 0 for all x G (0, oo), we say that 5Gi is degenerate; otherwise we say 

that Sa is non-degenerate. 

If 5Gi is non-degenerate, i.e., \imxi.Q <j>i(x) < 60 < limltoo</>i(:c), then <j>i{x) is strictly 

increasing. Therefore there exists a point c,- G (0,oo) such that ^(Q) = 0O, <ßi(x) > 90 for 

a; > Ci and ^i(x) < 90 for x < c,. 

Theorem 3.2. Assume that /0°° 62dGi{0) <oo for i = l, ■•■, k. In Case 3 and Case 4, 

we also assume that ff° 64c{6)dGi{6) < oo for i = 1, • • -, k. Then 

k 

(3.3) hm nrn = ^ m4, 

w/iere 

(0 i/^Gi iS degenerate, 

h{Ci)l$(ci)\{Ci}])     if SGi is non-degenerate, 

and Var([Vn{ci)]) is the variance ofVnfe), v/fa) is the derivative ofuii(x) at Cj, W-(CJ) ^ 0 

if SGi is non-degenerate. 

Proof. The proof is given in Section 5. 

In Case 3 and Case 4, the assumptions /0°° 92dGi(9) < oo and f™ 94c{9)dGi(9) < oo can 

be simplified into /0°° 9zdG{{9) < oo. So we have the following corollary. 

Corollary 3.3. In Case 3 and Case 4, if J™ 93dGi(9) < oo for i = 1, • • •, k, then (3.3) 

as well as (3.4) holds. 

Proof. Note that 9c(9) = 0[/o°° exp{-x/9)h(x)dx}-1 and for 9 > 1, 

/•oo /-oo r2 

(3.5) e~l        e-x'6h{x)dx= I     e-yh{y6)dy>e-2 /   h(y0)dy > e~2[mm h(t)]. 
Jo Jo Ji - 

It follows that 9c{9) is bounded for 9 > 1.   Thus from f™9zdGi{0) < oo we have both 

f™92dGi(d) < oo and /* 94c(9)dGi(9) < oo. Then Corollary 3.3 follows Theorem 3.2. 

From Theorem 3.2, one sees a rate of order 0{n"1) is obtained under a (quite) weak 

condition.   We only require /0°° 92dG(9)  < oo in Case 1 and Case 2.   The assumption 



Jo00 Q2dG{6) < oo guarantees the existence of the Bayes rule. This assumption is natural and 

not very stringent. In Case 3 and Case 4, w.e require one moment condition, /0°° 6zdG{9) < oo. 

The applications of our results to a few typical distributions are presented in the following 

section. It includes the construction of 5n and the statement of convergence rate for each 

distribution there. 

4. Examples and Results. 

We select a few distributions as examples. 

Example 4.1 (exp (6)-family). Consider the exponential populations having density 

(4.1) f{xi\6i) = je-Xi,ei, Xi>0,  0i>O,   * = 1, • - -, fc. 

Here h(x) = 1. This family belongs to Case 3. Take Bn = 1/Ln, Ln = (0O logn/4) V 10 and 

construct 8n as 

1   if    (Xi > Ln) or (Bn <Xi<Ln and Wni(xi) < 0), 

0   if    {xt < Bn) or {Bn < x{ < Ln and Wni(xi) > 0). 
(4.2) Sni(xi) = 

Then applying Corollary 3.3, we have the following result 

Result 4.1. IfXi has density f{xi\9i) given in (4.1) and /0°° 6zdGi{6) < 00 for all i = 1, 

■■•, k, then 8n, as constructed in (4.2), has a rate of convergence of order Oin'1). 

Example 4.2 (Gamma (6, s)-family with known s > 1 ). Consider the gamma popula- 

tions having density 

(4.3) f(Xi\di) = fhWe~Xi/6i> *i>0'   öi>0'   i = 1'---'A:- 

Here h(x) = Xs'1. This family belongs to Case 2.  Let Ln = (0ologn/12) V 10 and Bn = 

rn-i/[6(s-i)] v £-1] A 0.1. Construct Sn as: 

(4.4) 8ni(xi) = < 
1   if    (xi > Ln) or (Bn <Xi<Ln and Wni(xi) < 0), 

0   if    (xi < Bn) or (Bn < x{ < Ln and Wni(xi) > 0). 

Then applying Theorem 3.2, we have the following result. 



Result 4.2. IfXi has density f{xi\6i) given in (4.3) and f0°° O2dGi(0) < oo for all i = 1, 

■■-, k, then 5n, as constructed in (44), has a rate of convergence of order 0(n_1). 

Example 4.3 (A population having the density with infinite many discontinuities ). Con- 

sider the exponential populations having density 

oo 

(4.5) f{xi\9i) = c{0i)e-
Xi/eiY,(l + 1)I[K*i<i+i]> Xi>0>   9i > °'   * = 1>•••,*• 

1=0 

Here h(x) = EZo(l + l)I[i<x<i+i}-   This family belongs to Case 1.   Take Bn = 1/Ln, 

Ln — (90 logn/4) V 10 and construct Sn as 

1   if    (x{ > Ln) or (Bn <Xi<Ln and Wni(xi) < 0), 

0   if    (xi < Bn) or (Bn < x{ < Ln and Wni{xi) > 0). 

Then applying Theorem 3.2, we have the following result. 

(4.6) Sni(xi) 

Result 4.3. IfXi has density f{xi\0i) given in (4.5) and JS°02dGi(9) < oo for all i = 1, 

■■■, k, then 8n as constructed in (4.6), has a rate of convergence of order 0{n~l). 

Remark. Gupta and Liang (1999) considered the same selection problem for the gamma 

population (4.3). In that paper, an empirical Bayes rule was constructed as 

f 1   ifWBifo)<0, 
Ki\Xi) = \ 

[ 0   if Wni(xi) > 0. 

The convergence rate of 5*n = {8*nl, ■ ■ ■, 8*nk) is affected by the tail probability of the underlying 

distributions. In our paper, we split the interval (0,00) into three parts (0, Bn), [Bn, Ln] and 

(L„,oo) by localizing the Bayes test. Then we construct the empirical Bayes rule as (4.4). 

So the influence of the tail probability of the underlying distributions is controlled and a 

rate of 0(n~l) is obtained under quite weak conditions as shown in Result 4.2. 

5. Proof of Theorem 3.2. 

The main idea of the proof is to use a classic result about the non-uniform estimation 

of the difference between the normal distribution and the distribution of the sum of i.i.d. 

random variables. We shall prove it in the following two subsections according to whether 

all 5oi are non-degenerate or not. 
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5.1. All 6Gi are non-degenerate. We shall prove Theorem 3.2 assuming that all 

6Gi are non-degenerate in this subsection^ Then there exists a point c, G (0, oo) such that 

<t>i(d) = 0o, <t>i(x) > 0o for x > d and <f>i(x) < 9Q for x < a. Since we consider the asymptotic 

behavior of 6n, we assume c,- G (£„, L„) for all n without loss of generality. 

Lemma 5.1. For each i = I, ■■■, k, luj(cj) < 0 and further there is a neighborhood of 

et, denoted by N((*,€>), such that Nfaei) C (Bi,Lx) and 

(5.1) Ai = x^)Mx)\>0. 

Denote ca = d-eit Ci2 = d + Ci. Then for all x G [Bn, en] U [ci2, Ln], there exists an M{ > 0 

such that 

(5.2) \wi(x)\ > Mie-L»/e°. 

Proof. For x > 0, the derivative of Wi(x) exists and can be expressed as 

/•OO TOO 

w'.{x) = -0O y    e-"ic{ß)dGi{ß) + y   0e-*"c{6)dGi(0). 

From Jensen's inequality, we see that for a; > 0 

fZ°9e-x"c{0)dGi(e)     f™02e-*lec{e)dGi{e) 
f0

ooe-^c(6)dGi(9)  < /0°° ee-*l»c{e)dGi{e) * 

Plugging Cj for a; in the above inequality, we have 

J™9e-^ec(9)dG, 
J0

ooe-^c(9)dGi(9) 
JQ°°9e-^ec(9)dGi(9) 
 <  UQ. 

This implies that tü|(cj) < 0. 

Note that W-(JC) is continuous in (0, oo). So an JV(c,-, e*) can be found such that N(ci, e*) C 

(ßi,Li) and 

At=    min    K(x)| > 0. 
xeN(a,ti) 

Then (5.1) is proved. On the other hand, rewrite Wi{x) as Wi(x) = ai(x)[60 - <f>i(x)}- Noting 

that <j)i(x) is strictly increasing in x and fafe) = Oo, then for x G [£„, c^] U [ci2, L„], 

löo - <M*)I > (0o - &(<*)) A (&M - Oo). 

For x < Ln, 
roo r00 

<*(*) > /   Ome-'/'dGiV) > e-L^e° /    0ci0)dGi(0). 
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Thus 

\Wi (x)\ > [{Bo - Hdi)) A Mca) - öo)}e-Ln/e° I    9c(9)dGi(9). 

This completes the proof of Lemma 5.1. 

Next lemma deals with the bounds of the moments of Wni(x). 

In Case 1 and Case 3, min0<*<oo h(x) > 0. Let Sn = l/[mm0<x<ooh(x)}. In Case 2 and 

Case 4, Let Sn = HnV [l/min1<I<00/i(rc)]. Then h(x) > S"1 for x > Bn in all four cases. 

Recall Ln = 90 logn/4 in Case 1 ans Case 3 and Hne
Ln^° = n1/4 in Case 2 and Case 4. Then 

we have Sne
Ln/e° ~ n1/4. 

In Case 3 and Case 4, we know f™ 94c(9)dGi(9) < oo and let Q = J™ 64c(6)dGi(6). 

Without loss of generality, we assume h(x) > x for x > 1 in Case 1 and Case 2. 

Lemma 5.2. Let cr?{x) = E[{Vij{x) - Wi(x))2] and 7i(z) = E[\Vij{x) - w^x)?). Then 

forx £ [Bn,Ln], 

2 j [2Sn(90 + 1) + l]2 for Case 1 and Case 2 , 
Gi X  ~ *  Sn[(0o + l)2Qi{x) + 2(ö0 + l)Ci]    for Case 3 and Case 4, 

(5.4)        -nix) < < 

and 

' 4[2Sn(0o + 1) + l]3 + 4|tüi(a;)|3 for Case 1 and Case 2 , 

16S£[(0j} + 6)ati(x) + 6Ci] + 4\u>i(x)|3    for Case 3 and Case 4 . 

For x 6 [cji, Cj2], there exist a constants Cj7 > 0 such that 

(5.5) H < Ciy. 

For x G [Bn, Cii] U [Ci2, Ln] and large n , 

(5.6) n^\Wi{x)\l\ai{x)\>l. 

Proof. Consider x € [Bn,Ln]. Note that h(x) > S'1. In Case 1 and Case 2, if x > 1, 

h(x) > x, and 

|^(^)| < I[Xi>*\0olKXj) + /[x,>x](^i - x)/h{Xi) < 90Sn + 1. 

If £„ < a; < 1, it can be shown that \Vij(x)\ < 2Sn(9Q + 1) + 1. Thus 

at
2(x) < £[|^(a:)|2] < [2Sn(0o + 1) + l]2. 



12 

For 7t(x), using \a + b\3 < 4|a|3 + 4|ft|3, we have 

^(x) < ^[l^-Or)!3] + 4|^(x)|3 < 4[2Sn(0o + 1) + l]3 + 4|^(^)|3. 

Then (5.3) and (5.4) are proved for Case 1 and Case 2.   In Case 3 and Case 4, a simple 

calculation shows that 

aKx) < Sniefaix) + 20olM*) + 2 /    Pc{6)e-x<edGi(0)]. 
J 0 

By breaking the interval (0,oo) into (0,1) and [l,co), we have tpi(x) < C,- + oti(x) and 

S^e3c(9)e-xfedGi(k9) < C{+ <*&). Thus 

of (z) < 5n[(öo + l?ai{x) + 2(öo + 1)C,-]. 

Similarly, 

ji(x) < IGSM + 6)ai(x) + 6d] + 4\wi(x)\3. 

Now consider x G [c,i, c^]. It is easy to see that 

7»(s) < { 
' \^£%$ + 4max6il<x<Ci2 Mz)|3 = Ct-7        in Case 1 and Case 2 

16(e"+6)Q'(cf/ffi + 4maxCjl<x<(,2 |Wi(x)|3 = Ci7    in Case 3 and Case 4 

Then (5.5) holds. Next we prove (5.6). From (5.2), \w{{x)\ > Mie'1^60 for x G [Bn,cn] U 

[ci2,Ln]. In Case 1 and Case 2, 

lai(x)l^25n(öo + l) + l        n 

In Case 3 and Case 4 

1 ' ) ' *(*)' - <?y2[(0o + l)Voi(ar) + 2(Öo + W/M*)]2]1/2' 

It is easy to see that |0o-&(aOI > min{|0o-&(ca)|, |0o-&(ca)|}- We know from the proof 

of Lemma 5.1 that a^x) > e~L^e° J%9c(d)dGi(6). Then 

S'J'KOo + l)a/<*(*) + 2(Ö0 + l)C«/[a«(*)]2]1/2 ~ #V»". 

Thus |wi(a:)M(a;)| = 0(S'-1/2e-L"/00) = CKS^n"1/4). This completes the proof of Lemma 

5.2. 

Note that Vij(x) are i.i.d random variables for fixed x. For large n, the central limit 

theorem tells us that £"=1 [V*,-(x) - Wi{x)]/[<Ti(x)y/n\ is close to N(0,1) in distribution. Fur- 

thermore, we have the following non-uniform estimation of the difference between the normal 
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distribution and the distribution of the sum of i.i.d random variables.  This result can be 

found in Petrov (1995, P168). 

Fact.    Let Xu X2,---,Xn be i.i.d random variables, EXX = 0, EX\ = a2 > 0, £7|Xi|3 < 

oo. Then for all x 

(5.8) |F.(«) - *(x)| < ^(/+M)r 

Here §{x) is the c.d.f. of iV(0,1), Fn(x) and p are given by 

1     »   v   ^   x E\X 
F„(x) = P(^= $>,<*), p = 

13 

°Vnti a 

Now, we are ready to prove our main result. 

Proof of Theorem 3.2. Rewrite P{Wni{x) < 0) as 

3 

Then applying (5.8), we have 

Similarly, 

\/n\wi(x)\s A'yAx) 

P(^w > o) < i - *(^i)+^(<riW;^|roi(i)l)!. 

Plugging above two inequalities in (3.2), we obtain 

-   yB„l ffj(i) •M<rl(x) + ^ß\w,(x)\Y 

,*.   _$(^M( + ^M ]M,)|ftW<tc 
4   L <Ti{x) y/n(ffi{x) + y/n\wi(x)\)3 

= I+ 11. 

From (5.3), (5.4), (5.5) and (5.6), we see that wt(x), af(x) and ^(x) have different behavior 

for different x. So we decompose I into four parts. 

(5.9)    , = r H^^^)Wi{x)Hz)dx+ r^-^^)Wi{X)h(X)dx 
v JBn 0-i{X) Jen 0-i{X) 

rai        A7j(x)w,-(g)/i(a;) f«        A7i(rr)wi(a;)^(a:)       ^ 
+  JBn ^(°i(x) + V^\MxW x   L V^Mx) + yß\Wi{X)\y 
=   h + h + h + h- 
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Consider h first. According to (5.6), as n is large, Wi{x)/<Ti(x) > n 3/8 for x G [Bn,cn], It 

follows that y/nwi{x)/ai(x) > n1/8. Then^tpplying it to Iu we have 

(5.10) h < $(-n1/8) f " Wi{x)h(x)dx = o^1). 

For I2, letting h{ and ä{ be the maximum values of h(x) and ai{x) on [cn,ci2\. Thus 

I2<hi       $(-- ^-^(aOdz. 

Using (5.1) and letting y = y/nwi(x)/äi, 

rci o2   r°° ö2 

jcii *(-vW*)M W*)^ < -^ ^   *(-y)ydy = ^. 

Then 

(5.11) limsupn/2< 
n->oo 4A-' 

Next we consider I3. From (5.2), |iui(a:)| > M{e-Lnleo for a: € [B„,Cii]. In Case 1 and Case 

2, applying (5.4), we have 

(5.12) /, <  r^nVlVn^™'W*Wfc v
      ' JBn        >/n(<Ti(x) + y/n\wi{x)\)3 

_        n2M?e-3L"/e°     VBn n2 in» 

=   o^-1). 

In Case 3 and Case 4, using (5.4) again, 

(5.13)        I,   <   p «^^*)W v      7 JBn y/n(<Ti(x) + ^/n\wi(x)\Y 

< "gw+«> r ^Wl¥, + ^f"g/t0 p «,M*M*+ _   n2M?e-2L*/e° JBn n2M/e-3L»/9° JBn 

4   /"c«i 
— /     Wi(x)h(x)dx 
nr JBn 

=   oin-1). 

For x G [ci,Cii], 7i(ar) < Cir. Let ^ be the minimum value of <Ji(x) on [cn,ca]. It is easy 

to see that a^x) > 0 for each x G [CJI.Cö] C [JBI,£I].  Noting that <n(x) is a continuous 

function of x, then ^ > 0. It follows that 

-    rci             wAx)dx ^ ACiyhi  fV^Ha)        y 1 
(5.14)       h < AC^hi /    -= y '      . >lvt <    V2

7,    / ,     ,    v3dy = o(-). 

Combining (5.9) to (5.14), we have limsupn^00 n/ < ^. Note that / is independent of eu 

hi -+ Ha), ä2 -+ VariiVnia)}) and A{ -+ K(Q)| as e{ -» 0. Then 

hmsupnl <  .   ,.   .. = —. 
n-xx> 4|w;(Ci)| 2 
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Similarly lim supn^00 nil < rrii/2. Therefore 

limsupnrnj < m;. 
n—>oo 

Note that 

JCi   
l ai(x) v/n(°'i(a;) + V^Nwl) 

We have proved that ^ ^^M^dx = o(n^), /£ *(-^H(*)M*)<k = 

ofo"1) and j£[l - SC^fgf )]«*(*)*(*)<& = ofo-1). Then 

liminf nrni > liminf n{ fC\^-^M)Wi(x)h(x)dx + f"[l - ^^™f^-)Wi(x)h(x)dx}. 

Using the same idea applied to I2, it is easy to prove the left-hand-side of above inequality 

is not smaller than m,-. So the proof of (3.3) and (3.4) is complete. 

5.2. Some components of 5G are degenerate. We shall prove Theorem 3.2 assuming 

that some of components of 5Q are degenerate. 

For simplicity, we assume that only 8GX is degenerate without loss of generality. We need 

to show rnX = oin'1). If P{9X = 0O) = 1, wx{x) = 0 and rnX = 0. Assume P(9X = 0O) < 1 in 

the following. From the proof in Subsection 5.1, we only need to prove that (5.2)-(5.4) and 

(5.6) hold for all x £ [Bn, Ln). Notice that (5.3) and (5.4) do not depend on the assumption of 

non-degeneracy of 5GX. Then we only need to show (5.2) and (5.6). If Gx is degenerate, then 

(5.2) and (5.6) are obvious. Next we assume that Gx is non-degenerate and limxJ.0 <f>i{x) > #o 

or limxtoo0i(:r) < 90. Denote <f>x{0+) = \imxi0<j>x{x) and ^i(oo-) = limxtoo0i(a;). We shall 

show (5.2) first. 

If M0+) > 0o and Gx(90-) = 0, for x <E [Bn, Ln], \wx(x)\ > e~L^ f£(9-90)9c(9)dGx(9) 

and ai(x) > e-L«l9°S£6c(e)dGx{d). Then (5.2) holds. 

If 0i(0+) > 90 and Gx(60-) > 0, then «i(0) < 00 and ^x(0) < 00. The reason is in the 

following. Since Gx(90-) > 0, we can find e > 0 such that Gx(60 - e) > 0. From (3.3), we 

know 6c(6) is bounded on [0o-e,oo). Then J£le9c(9)dGx(9) < 00. Therefore, if ai(0) = 00, 

then /<f0_e 9c{9)e-xledGx{9) -» 00 as x -> 0. And since 

(9o-e)C-<9c(9)e-*/edGx(9) + J~_J*c(e)e-x/edGx(9) 

-        s!°-tec{9)e-*/0dG1(e) + J£_Jc(6)e-*/°dG1(e) 
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we have <£i(0+) < 60 - e. This contradicts 0i(°+) > 0O- Thus ax(0) < oo and ^i(O) < oo. 

Then we have toi(0+) < 0. Let cu > 0 such that -w[(x) > d± > 0 for rr e (0, en). As n is 

large, Bn < cn- Then for x G [B„,cn]', x > 1/L„ and |u/(:r)| = \w(x) - w{0)\ > x\w{(x*)\ > 

di/Ln, where x* e (0,x).  It is easy to see that (5.2) is true for x e [cn,Ln]. Then (5.2) 

holds for all x e [Bn, Ln] in this case. 

If 0i(oo-) < 0o, we must have Gi(00) = 1- The reason is in the following. If Gi(0o) < 1, 

let e > 0 satisfy G(0O + e) + 1. Then 

/0
flo+e g2

c(fl)e-'[fl~1-<g°+t)~1ldG1(fl) + (ft + e) J^gcWe-'I0"1-^^)-1^!^) 

<Pi(x) >        joöo+^c(ö)e-I[ö--(0„+,)-Mc/G1(ö) + /ö7+fÖc(Ö)e-I[ö-1-(9o+O-']dG1(ö) 

Therefore lim^oo^^x)  > 0O + e.   This contradicts ^i(oo-)  < 0O.   Since Gi(0o) = 1, 

Wl(x) = f 0(0o - 9)c{6)e-^edGl(9) > e~L^e J$° 0(0O - 9)c(6)dGl(e)- for x e [Bn, Ln\. 

Next we shall prove (5.6). It is obvious for Case 1 and Case 2 from (5.2) and (5.3). We 

only prove (5.6) for Case 3 and Case 4. 

If </>i(0+) > 0o and Gi(0o-) = 0, ax{x) < ^ dc[9)dG^B) < oo for all x > 0. Then (5.6) 

follows from (5.2) and (5.3). 

If 0i(O+) > 0o and Gi(8Q-) > 0, ai(0) < oo from previous result. Then (5.6) follows 

from (5.2) and (5.3). 

If & (oo-) < 0o, Gi(0o) = 1 and fa(x) < 0O for all x > 0. We know Bn < 1 for large 

n. Then for x e [l,Ln], ax(i) is bounded. Then (5.6) follows from (5.2) and (5.3). For 

x € [Bn, 1], &i(x) and 0O - 4>\{x) are bounded from below. Then (5.6) follows from (5.7). 

Now the proof of Theorem 3.2 is complete. 

6. Simulation Study. 

A simulation study was carried out to investigate the performance of the proposed em- 

pirical Bayes selection procedure (2.3) for small to moderate values of n. 

We consider exp(0) family in this simulation study, i.e., 

iri~f(xi\9i) = jie-%. 

This is also Example 4.1. We consider the case in which k = 3. That is, there are 3 

exponential populations (treatments) 7rx, 7r2 and 7r3. We shall make a selection using the 

procedure (4.2). Assume that the prior distributions G\, G2 and G3 are i.i.d. having a 

density 

yiV ;     (s-2)!0s 
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where s > 4 so that J63gi(9)d6 < oo and the requirement of Corollary 3.3 is satisfied. It is 

easy to compute that * 

x + 1 
Hx) = v x > ° s — z 

and the marginal density of X 

ft(x) = ,S~\  , x > 0 Jty '   (x + iy 

for z = 1,2,3. As (s - 2)0O > 1, 5G is nondegenerate and q = (s - 2)0O - 1 G (0, oo). Then 

it can be computed that 

' 3(8 - 1)(« - 2)«l 
mEESm'= 2(S-3)        ' 

According Corollary 3.3, the regret of the empirical Bayes selection (4.2) is close to ^ as n 

is large. Note that 

Wj(x) = [6Q(S-2)-{X + 1)]{X + 1) 

/,(*) (s-l)(s-2) 

Following (3.1) and (3.2), the regret of the empirical Bayes selection rule can be expressed 

as 

, * [Oo{s-2)-(Xi + l)](Xi + l)y 
fn = h\ 2^[I[Wni{Xi)<0,Xi<(»-2)Ba-l^n<Xi<Ln] /    _ jw    _ g\ 1/ 

where the expectation is taken over the probability generated by (Xi, X2, • • ■, Xn, X). Denote 

D as 

n     ^rr [0o(s-2)-(Xi + l)](Xi + l), 
U = l_,\.1[Wni{Xi)<Q,Xi<{s-2)90-l,Bn<Xi<Ln] / i\/__o\ J 

t=l 
(s-l)(s-2) 

The scheme of the simulation is described as follows: 

(1) For each i and n, generate independent random variables as follows: 

f    for   j = l,...,n, 

(a) first generate  Q{j  from an inverse gamma distribution with density &(0), 

(b) then generate  X{j  from an exponential   exp(6ij) distribution. 

Likewise, generate 6, from an inverse gamma distribution with density #(0), X{ from 

exp (6i). 
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Table 1 

Performance-of the selection rule 

when s = 6 and #o = 0.6 

Dn SE(Dn) 

10 0.13577026 0.003197456 0.16000000 

20 0.06920616 0.003120035 0.08000000 

30 0.04476671 0.003669832 0.05333333 

40 0.03566289 0.002416336 0.04000000 

50 0.02786863 0.003738685 0.03200000 

60 0.02122455 0.003135153 0.02666667 

70 0.01999013 0.003188093 0.02285714 

80 0.01898793 0.002517613 0.02000000 

90 0.01945126 0.002356803 0.01777777 

100 0.01715247 0.002609822 0.01600000 

150 0.01190080 0.002147165 0.01066667 

200 0.01011384 0.002052432 0.00800000 

Likewise, generate 0j from an inverse gamma distribution with density gi(0), Xi from 

exp (6i). 

(2) Based on the past observations (Xj,j  =  l,...,n) and the present observations 

X — (Xi,..., Xk), we compute D. 

(3) Repeat steps (1) and (2) 10000 times. The average of the D's from the 10000 repetitions, 

denoted by Dn, is used as an estimator of the difference rn. The standard error, denoted by 

SE(Dn), is also computed. 

Table 1 gives the results of this simulation study on the performance of the proposed 

empirical selection procedure. For a specific n, three columns give Dn, SE(Dn) and ^. In 

this case we choose s — 6 and 0Q = 0.4. 

Figure 1 gives the plots of (n, Dn) and (n, ^). The dotted line gives the values of ^; the 

solid line denotes the values of Dn. 
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50 100 150 200 

Figure 1: Graph for Table 1. 

References 

[1] Dunnett, C. W. (1955). A Multiple Comparison Procedure for Comparing Several Treat- 

ments with a Control. J. Amer. Statist. Asso. 50, 1096-1121. 

[2] Gupta, S. S. and Hsiao, P. (1983). Empirical Bayes rules for selecting good populations. 

J. Statist. Plann. Inference. 8, 87-101. 

[3] Gupta, S. S. and Liang, T. (1999).  Selecting good exponential populations compared 

with a control : A nonparametric Bayes approach. Sankhya, Ser. B. 61, 289-304. 

[4] Gupta, S. S., Liang, T. and Rau, R. B. (1994).   Bayes and empirical Bayes rules for 

selecting the best normal population compared with a control. Statistics and Decisions. 12, 

125-147. 

[5] Gupta, S. S. and Liese, F. (2000). Asymptotic distribution of the conditional regret risk 

for selecting good exponential populations. Kybernetika. 36, 571-588. 

[6] Gupta, S. S. and Sobel, M. (1958). On selecting a subset which contains all populations 



20 

better than a standard. Ann. Math. Statist. 29, 235-244. 

[7] Lehmann, E. L. (1961). Some Model I problems of selection. Ann. Math. Statist. 32, 

990-1012. 

[8] Liang, T. (2000a). On empirical Bayes tests in a positive exponential family. J. Statist. 

Plann. Inference 83, 169-181. 

[9] Liang, T. (2000b). On an empirical Bayes test for a normal mean. Ann. Statist. 28, 

648-655. 

[10] Paulson, E. (1952). An Optimum Solution to the k-Sample Slippage Problem for the 

Normal Distribution. Ann. Math. Statist. 23, 610-616. 

[11] Petrov, V. V. (1995). Limit Theorems of Probability Theory. Clarendon Press • Oxford. 

[12] Pensky, M. (1998). Empirical Bayes estimation based on wavelets. Sankhya Ser. A 60, 

214-231. 

[13] Pensky, M. and Singh, R. S. (1999). Empirical Bayes estimation of reliability character- 

istics for an exponential family. Canad. J. Statist. 27, 127-136. 

[14] Robbins, H. (1956). An empirical Bayes approach to statistics. Proc.  Third. Berkeley 

Symp. Math. Statist, Probab. 1, 157-163, Univ. California Press, Berkeley. 

[15] Robbins, H. (1964).   The empirical Bayes approach to statistical decision problems. 

Ann. Math. Statist. 35, 1-20. 

[16] Singh, R. S. and Wei, L. S. (1992). Empirical Bayes with rates and best rates of con- 

vergence in u(x)C{9) exp(-z/0)-family: estimation case. Ann. Inst. Statist. Math. 44, 

435-449. 

[17] van Houwelingen, H. and Stijnen, T. (1993). Monotone empirical Bayes estimators based 

on more informative samples. J. Amer. Statist. Assoc. 88, 1438-1443. 


