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PROPAGATION OF RADAR-RAINFALL UNCERTAINTY IN RUNOFF 

PREDICTIONS 

Hatim Osman Sharif, Ph. D. 

University of Connecticut, 2001 

The primary advantage of radar observations of precipitation compared with 

traditional rain gauge measurements is their high spatial and temporal resolution and 

large areal coverage. Unfortunately, radar data require vigorous quality control before 

being converted into precipitation products that can be used as input to hydrologic 

models. In this study, a physically-based atmospheric model of convective rainfall is 

coupled with an active microwave radiative transfer model to simulate radar observation 

of thunderstorms. Radar observations of these storms are generated and used to evaluate 

the propagation of radar-rainfall errors through distributed hydrologic simulations. This 

physically-based methodology allows one to directly examine the impact of radar-rainfall 

estimation errors on land-surface hydrologic predictions and to avoid the limitations 

imposed by the use of rain gauge data. Results indicate that the geometry of the radar 

beam and coordinate transformations, due to radar-watershed-storm orientation, have an 

effect on radar-rainfall estimation and runoff prediction errors. In addition to uncertainty 

in the radar reflectivity vs. rainfall intensity relationship, there are significant 

range-dependent and orientation-related radar-rainfall estimation errors that should be 
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quantified in terms of their impact on runoff predictions. Rigorous statistical analysis of 

the relationship between estimated rainfall errors and characteristics of the predicted 

hydrograph is conducted for thousands of simulated events. In addition to the influence 

of radar estimation error, the relationship between event magnitude and the prediction 

error and its propagation is studied. Furthermore, Bayesian inference is applied for 

estimating the hydrologic output driven by radar-estimated rainfall based on statistical 

analysis of radar-rainfall error propagation. 
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1       INTRODUCTION 

Beginning in 1992, the U.S. National Weather Service began upgrading the National 

Weather Radar network to improve meteorological and hydrologic forecasting. The system 

of Weather Surveillance Radar-1988 Doppier (WSR-88D) radars was expected to provide 

high-quality, high resolution precipitation data for the United States that meet a wide range of 

hydrometeorological applications {Smith etal, 1996). The WSR-88D network consists of 

about 140 radar systems providing nearly continuous coverage of the United States (Crum 

andAlberty, 1993). The system collects, processes, and displays high-resolution reflectivity, 

mean radial velocity, and spectral width data. One of the primary purposes of the system is to 

provide real-time detection of severe weather phenomena including tornadoes, mesocyclones, 

and downbursts. Another important use of the system is to provide accurate predictions of 

extreme rainfall leading to flash floods and rainfall over large river basins used by National 

Weather Service River Forecast Centers. 

The primary advantage of radar rain products is their high spatial and temporal 

resolution and large areal coverage. Severe flood and flash flood forecasting (Georgakakos, 

1986a,b) and urban storm runoff modeling (Ogden et al., 2000) require high resolution 

precipitation data. Other applications such as water resources planning and management 

(Flach etal., 1991) and long-term water supply forecasting at time scales of weeks to months 

and spatial scales ranging over many orders of magnitudes (Smith et al., 1992) require 

accurate information on the total precipitation amounts over large spatial domains. 



One of the main factors affecting the accuracy of physically-based hydrologic 

simulations is rainfall input uncertainty. Rain gages surfer from undercatchment and a number 

of spatial and temporal sampling deficiencies. Although ground-based weather radars provide 

rainfall rate estimates over large areas at high spatial and temporal resolutions, radar data 

require vigorous quality control before being transformed into precipitation products that can 

be used as input to hydrologic models. The relationship between radar reflectivity and surface 

rainfall is highly complex (Austin, 1987). In addition to the difficulties in estimating the 

parameters of the equation that relate the reflectivity to the rainfall intensity, there are many 

other physical factors that increase the uncertainty of radar-rainfall estimation. The impact of 

radar-rainfall estimation errors on hydrologic predictions from physics-based models is an 

important area of study, with broad implications ranging from study of global climate change 

to watershed ecology and engineering hydrology. 

The main objective of this research is to develop a comprehensive methodology to 

investigate the propagation of radar-rainfall errors through Hortonian runoff predictions. The 

research consists of two parts: 

1) Numerical Simulation of Radar-Rainfall Error Propagation: In this part, a 

simulation methodology is developed to examine the propagation of radar-rainfall estimation 

errors, due to a variety of causes, through Hortonian runoff predictions. An atmospheric 

model is used to generate convective storms and an active microwave radiative transfer model 



is used to simulate the propagation of electromagnetic waves between the radar and the 

storms. Radar-estimated rainfall from simulated storms serve as input to a calibrated (for a 

certain actual basin), physically-based, infiltration-excess, watershed model to study the 

propagation of radar-rainfall estimation errors. In addition to the influence of radar range and 

radar orientation, systematic and random errors are imposed on the radar estimation process 

to study their impact on runoff prediction. 

2) Statistical Analysis of Radar-Rainfall Error Propagation: In this part, a storm that 

covers a large area is simulated and the location of the study watershed is moved within the 

storm domain to obtain different realizations of the storm over the watershed. The rainfall 

field generated by the atmospheric model is assumed to be the ground "truth". The radar 

simulator is then run and radar-estimated rainfall from the simulated storm is used as input to 

a calibrated (for a certain actual basin), physically-based, infiltration-excess, watershed model 

to analyze the propagation of radar-rainfall estimation errors. The spatial and temporal 

structures of the precipitation field, combined with the use of 500 hundred locations within 

the storm domain, help develop a large set of rainfall events with different rainfall volumes 

and vertical reflectivity profiles and analyze statistics of the "true" and estimated hydrologic 

outputs. In addition to the influence of radar range and radar orientation, the relationship 

between the rainfall event magnitude and the prediction error is studied. Furthermore, 

Bayesian inference is applied for estimating the hydrologic output driven by radar-estimated 

rainfall based on statistical analysis of radar-rainfall error propagation. 



2       NUMERICAL SIMULATIONS OF RADAR-RAINFALL 
ERROR PROPAGATION 

ABSTRACT 

The primary advantage of radar observations of precipitation compared with 

traditional rain gauge measurements is their high spatial and temporal resolution and large 

areal coverage. Unfortunately, radar data require vigorous quality control before being 

converted into precipitation products that can be used as input to hydrologic models. In this 

study, we coupled a physically-based atmospheric model of convective rainfall with an active 

microwave radiative transfer model to simulate radar observation of thunderstorms. We used 

the atmospheric model to simulate a well-documented tornadic supercell storm that occurred 

near Del City, Oklahoma on May 20, 1977. We then generated radar observations ofthat 

storm and used them to evaluate the propagation of radar-rainfall errors through distributed 

hydrologic simulations. This physically-based methodology allows us to directly examine the 

impact of radar-rainfall estimation errors on land-surface hydrologic predictions and to avoid 

the limitations imposed by the use of rain gauge data. Results indicate that the geometry of 

the radar beam and coordinate transformations, due to radar-watershed-storm orientation, 

have an effect on radar-rainfall estimation and runoff prediction errors. In addition to 

uncertainty in the radar reflectivity vs. rainfall intensity relationship, there are significant 

range-dependent and orientation-related radar-rainfall estimation errors that should be 

quantified in terms of their impact on runoff predictions. Our methodology provides a tool 

for performing experiments that address some operational issues related to the process of 



radar-rainfall estimation and its uses in hydrologic prediction. 



2.1     Introduction 

The performance of distributed, physically-based hydrologic models depends greatly 

on the quality of the input data. The most important input is rainfall because such models are 

very sensitive to it [Julien andMoglen, 1990], particularly models of Hortonian [Horton, 

1933] runoff. Errors in the space-time description of rainfall are often amplified through 

Hortonian runoff predictions [Ogden and Sharif, 2000]. The shortcomings of rain gauge 

networks are well documented. Rain gauges do not represent areal rainfall at the watershed 

scale well because they are merely point samples, while watersheds are more sensitive to the 

spatial distribution of rainfall. The use of rain gauge data necessitates spatial interpolation of 

the rainfall data. The accuracy of the resultant rainfall fields is limited by the correlation 

structure of rainfall and the network density. 

The primary advantage of radar precipitation products is their high spatial and 

temporal resolution and large areal coverage. Severe flood and flash flood forecasting 

[Georgakakos, 1986a,b] and urban storm runoff modeling [Ogden et a/., 2000] require high- 

resolution precipitation data. Early assessments of the usefulness of radar-rainfall estimation 

errors in flow forecasts [e.g. Barge et al, 1979] were optimistic. However, more recent 

studies have shown that the impact of radar-rainfall estimation errors on runoff predictions 

can be very significant in certain situations. 



The National Weather Service (NWS) has updated its weather radar capabilities with 

the deployment of over 120 WSR-88D (Weather Surveillance Radar, 1988-Doppler) radars. 

The WSR-88D radar network provides the 48 contiguous United States with nearly 

continuous radar coverage below 3000 m above sea level, except where rising terrain 

occludes low elevation angle scans. The WSR-88D system represents a significant advance in 

the field of operational hydrology over older technology. The system provides a large number 

of diverse hydrometeorological products [Fulton et al., 1998]. 

Unfortunately, there are no unique relationships between the radar-measured 

reflectivity and the rainfall rate. The relationship between radar reflectivity and surface 

rainfall is highly complex [Austin, 1987]. In addition to the difficulties in estimating the 

parameters of this relationship, there are many other physical factors that increase the 

uncertainty of radar-rainfall estimation. Radar-rainfall estimates are always at risk of being 

contaminated by a host of random and systematic error sources. Some of the other potential 

sources of errors are: radar hardware calibration, the deflection of the radar beam from its 

path (Anomalous Propagation), the attenuation of the electromagnetic wave by rain and 

atmospheric gases, the presence of frozen hydrometeors and the melting layer, and range 

effects. A discussion of numerous sources of radar-rainfall estimation error is also found in 

Wilson and Brandes [1979], Zawadzki [1982, 1984], Krajewski and Smith [1991]. 

The need to improve hydrologic predictions indicates the increased importance of 



research efforts in the dynamic numerical modeling of quantitative precipitation, either 

through explicit treatment or through parameterization. The dynamic (physically-based) 

models of rainfall are usually based on sets of partial differential equations, which describe 

conservation of mass, momentum, and energy in the atmosphere. Subgrid-scale physics are 

parameterized using grid scale variables. These equations are integrated numerically in time 

in a 3-dimensional model domain to produce predictions of rainfall, in addition to a complete 

set of state variables. The past two decades have seen increased usage of explicit cloud 

models in the simulation and prediction of convective storms [e.g., Klemp et al,. 1981; 

Droegemeier et al, 1996; Xue et al., 1996a; Xue et al, 1996b]. Significant progress has 

been made in the use of radar observations to initialize real storms and produce realistic 

forecasts of intense precipitation systems [e.g., Lin et al., 1993; Shapiro et al., 1996; Gaoet 

al., 1998; Sun and Crook, 1998; Green and Krajewski, 2000a,b]. Numerical, 

physically-based modeling of storms facilitates our understanding of the three-dimensional 

variability of hydrometeor characteristics. When modeled storms are coupled with a scheme 

for simulating the physics of electromagnetic wave propagation, the simulation system 

provides an opportunity to study some aspects of the complex relationship between radar 

observables and the true (although simulated) rainfall fields and the impacts of radar-rainfall 

estimation errors on runoff predictions. 

2.2     Objectives 



In this paper, we use a simulation methodology to examine the propagation of radar- 

rainfall estimation errors, due to a variety of causes, through Hortonian runoff predictions. 

We use an atmospheric model to generate convective storms and an active microwave 

radiative transfer model to simulate the propagation of electromagnetic waves between the 

radar and the storms. This methodology allows us to assume that the rainfall fields generated 

by the atmospheric model are the "truth". We use radar-estimated rainfall from simulated 

storms as input to a calibrated (for a certain actual basin), physically-based, infiltration-excess, 

watershed model to study the propagation of radar-rainfall estimation errors. In addition to 

the influence of radar range and radar orientation, we impose systematic and random errors 

on the radar estimation process to study their impact on runoff prediction. Our simulation 

methodology allows us to avoid the traditional approach of assessing radar estimates accuracy 

by comparisons with rain gauges, which is subject to several fundamental limitations 

[Zawadzki, 1975; Ciach andKrajewski, 2000]. Furthermore, we simulate the radar estimation 

process below the freezing level to avoid the complex ice microphysics and "bright band" 

effects. We also analyze the effect of adjusting radar-rainfall estimates on predicted runoff. 

2.3     The Tools 

2.3.1 The Atmospheric Model 

The  Advanced  Regional   Prediction   System  (ARPS)   is  a  general   purpose, 

nonhydrostatic, compressible model for storm- and meso-scale atmospheric simulation and 
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real-time numerical weather prediction [Xue et.al, 1995; Xue et al, 2000a; Xue et al, 

2000b]. The model was developed at the Center for Analysis and Prediction of Storms 

(CAPS) at the University of Oklahoma, with the support of the National Science Foundation 

Science and Technology Center (STC) program. The model solves equations for momentum, 

temperature, pressure, water substances, and subgrid-scale turbulent kinetic energy, and 

includes comprehensive physical processes. The model serves as an effective tool for both 

basic research and for operational numerical weather prediction [e.g., Droegemeier et al, 

1996; Xue et al., 1996b]. Additional examples of the model applications can be found in Xue 

etal, [2000a,b]. 

2.3.2 The Radar Simulator 

Krajewski etal., [1993] proposed a physically-based simulation of radar observations 

based on a two-dimensional stochastic space-time model of rainfall events and a statistically 

generated drop-size distribution. Anagnostou and Krajewski [1997] made several extensions 

to this simulator. The two-dimensional fields were complemented with a vertical structure of 

hydrometeors by choosing a cloud type model, which resulted in size, shape, and phase 

(mixed or single) distribution at discrete elevations. Recently, Anagnostou et al [2000] used 

the simulator in their study of NEXRAD radar calibration based on a comparison with the 

TRMM satellite [Kummerow et al, 1999]. 

We modify the radar simulator in this study to calculate various radar observables 
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from the three-dimensional output produced by the ARPS atmospheric model. We modify the 

beam geometry to capture the high variability within convective systems. The simulator 

extracts three-dimensional estimates of pressure, temperature, cloud rainwater content, and 

water vapor content from ARPS, and uses these outputs to calculate the mixing ratios of 

rainwater and the gradients of the atmospheric refractive index. We simulate beam 

propagation in a three-dimensional space. The simulated radar measurement process includes 

integrating over the pulse volume using a Gaussian beam power distribution. We use the 

default WSR-88D Z-R relationship of Z=300R'4 [Fulton et al, 1998], to convert reflectivities 

into rainfall rate estimates. The radar wavelength is assumed to be 10 cm, the beam elevation 

angle is 0.5°, and the half-power beam width is 1°, close to WSR-88D's value of .95°. The 

azimuthal resolution of radar observations is 1°. 

2.3.3 The Hydrologie Model 

The hydrologic model used in this study is the physically-based, distributed parameter, 

Hortonian, finite difference model CASC2D (CASCade of planes, two-dimensional) [Julien et 

al., 1995; Ogden, 1998], The model accepts fully spatially-varied rainfall input, uses Green 

and Ampt [1911] infiltration with redistribution [Ogden and Saghafian, 1997], two- 

dimensional diffusive-wave overland flow routing, and one-dimensional diffusive-wave 

channel routing. CASC2D has the capability to model a variety of channel cross-sections 

(Ogden, 1994), and includes continuous soil moisture accounting [Ogden and Senarath, 

1997; Senarath el al, 2000]. The model was also used in a flash flood simulation study in 
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which perennial and ephemeral lakes were modeled [Ogden et al, 2000]. The model uses a 

square grid representation of the watershed at a user-selected grid size. Once ponding 

occurs, surface water is accumulated in each model grid cell until the specified retention depth 

for that cell is exceeded. Thereafter, the overland flow is routed into two orthogonal 

directions. When overland flow reaches a model grid cell that contains a defined channel, the 

flow is passed into the channel and routed using a one-dimensional explicit diffusive-wave 

routine. 

2.4     The Study Watershed 

The watershed used in this study for hydrologic simulations is the 21.2 km2 Goodwin 

Creek experimental watershed located in north-central Mississippi. The USDA-ARS National 

Sedimentation Laboratory has continuously monitored the watershed since 1981. Alonso 

[1996] provides a detailed description of the watershed. The elevation of the watershed 

ranges from 68 to 127 m. The main channel has an average slope of 0.004 [Bingner, 1996]. 

The grid size used in CASC2D to model the watershed is 125 m ><125 m, to minimize 

computing time yet adequately describe the spatial variability of topography, soil texture, and 

land use/land cover. Hortonian runoff is dominant and the contribution of groundwater to 

runoff is insignificant in the watershed. The groundwater table is several meters below 

surface; according to measurements, it varies by only 5-10 cm near channels during significant 

runoff events. The base flow at the outlet of the catchment is typically below 0.05 m3/s. The 
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hydrologic model CASC2D was rigorously calibrated on this watershed by Senaralh et al, 

[2000] and thus we feel the model represents the watershed's runoff processes with 

reasonable accuracy. 

2.5     Numerical Framework 

2.5.1 ARPS Simulations 

Within the framework of this methodology, we simulate a well-documented tornadic 

supercell storm that occurred near Del City, Oklahoma on May 20, 1977, using the ARPS. 

This storm has been studied extensively using both multiple Doppler radar analysis and 

numerical simulation. For details on storm morphology and evolution, the readers are 

referred to Ray et al., [ 1981 ] and Klemp et al., [ 1981 ]. 

We simulate two hours of the storm's total duration. The simulation starts from a 

thermal bubble placed in a horizontally homogeneous base state, specified from the sounding 

used in Klemp et al., [1981]. Like Klemp et al. [1981], we subtract a mean storm speed (U=3 

ms"1, V=14 ms"1) from the sounding, to keep the right-moving storm near the center of the 

model domain. 

The model grid consists of 67x67*35 grid points with a uniform grid interval of 1 km 

in the horizontal and 0.5 km in the vertical direction. The physical domain size is therefore 
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64*64* 16 km3. The initial bubble was centered at x=48 km, y=l 6 km and z=l .5 km and has a 

maximum perturbation of 4 °K. The radius of the bubble is 10 km in both the x and y 

directions and 1.5 km in the vertical. We use the Kessler [1969] warm rain microphysics 

option together with a 1.5-order turbulent kinetic energy sub-grid turbulence 

parameterization. We also use open boundary conditions at the lateral boundaries and an 

upper-level Rayleigh damping layer. 

Between 30 and 60 minutes, the simulated storm underwent a splitting process 

(Figs.la and lb), with the right-moving (relative to the environmental wind shear vector, 

which points in the northeast direction) cell remaining near the center of the domain, and the 

left-moving cell propagating to the northwest corner of the domain. The precipitation rates 

from the simulated storm at 30 minute intervals are shown in Figure 1 (only 3/4 of the 

simulation domain in terms of the length of each side is shown), corresponding to 30, 60, 90, 

and 120 minutes after initiation of the storm. The use of a moving coordinate system 

(through the deduction of a mean wind) makes the simulated storm, especially the 

right-moving cell, appear roughly stationary relative to the grid. Relative to the ground, the 

storm moves at speeds ranging from approximately 3 to 14 m/s. 

The patterns of the surface precipitation rate usually resemble the pattern of radar 

reflectivity fields. The hook-shaped pattern associated with the right moving cell is also 

associated with the so-called hook echoes that demonstrate the strong rotation associated 
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with tornadic supercell thunderstorms. In this simulation, the left-moving cell is actually 

stronger (Fig. 1 c). The evolution of the simulated storm is qualitatively similar to the observed 

storm [Ray et al, 1981], and after two hours, it has attained a structure typical of mature 

supercell storms. 

We show a sample of vertical reflectivity profiles that we compute using the storm 

hydrometeor fields in Figure 2. The solid line represents the mean reflectivity profile. The 

reflectivity profiles, including the mean, are similar to the profiles reported in the literature 

[e.g. Szoke et al, 1986a,b] and the profiles from the WSR-88D data [VignalandKrajewski, 

2000]. The spatial correlation within the storm, and the fractional areal coverage of the storm 

based on rainfall intensity, also shown in Figure 2, are similar to some of those found in the 

literature (e.g. Calheiros, 1984). This similarity also indicates that ARPS output is reasonably 

representation of a convective storm. 

2.5.2 Radar-Storm-Watershed Orientation 

Since radar beams rise and widen with range, the radar-viewing aspect of a storm may 

have an effect on the radar estimates for a highly variable three-dimensional convective cell. 

Different orientations result in different coordinate geometry, and volumetric averaging of 

radar observables. To investigate these effects quantitatively, we place our virtual radar at 24 

equi-spaced orientations (every 15°). We also vary the range along these directions as 

illustrated in Figure 3.    Since the storm domain is significantly larger than the study 
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watershed, we vary the watershed location within the storm. Because of the high variability 

within the convective storm, we move the watershed to ten different locations within the 

storm domain to obtain different cases of the radar estimation process. The ten locations do 

not overlap and are sufficiently far apart from each other to be considered independent storm 

realizations. 

We assume the hydrographs simulated using CASC2D, driven by the "true" ARPS 

rainfall fields, are the "true" runoff hydrographs. We use four measures for comparing these 

"true"-rainfall-based simulations with the ones based on radar-estimates: the watershed total 

rainfall volume ratio, the root mean square error in the simulated hydrograph, the total runoff 

volume ratio, and the peak discharge ratio. 

In addition to the effects of range and orientation, we also studied the effects of both 

systematic and random errors. Random errors resulting from the uncertainty in the 

relationship between the radar reflectivity and the rainwater mixing ratio, or radar system 

noise, and additive calibration drifts, were imposed to study their impact. The simulator 

computes radar observables using either a constant value for the slope of the refractive index 

or a value calculated from atmospheric variables to study the impact on the hydrologic model 

output. We compute the attenuation of electromagnetic waves by rain as a function of the 

radar wavelength (10 cm), rainfall intensity, and the distance between the radar and the 

hydrometeors. The attenuation from atmospheric gases, which is typically larger than rain 
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attenuation for S band, is only a function of radar wavelength and distance [Doviak and 

Zrnic, 1993]. We do not model atmospheric gases attenuation because this effect is taken 

care of in real radar data processing systems. 

Finally, we multiply radar-rainfall estimates by a factor that makes the watershed total rainfall 

volume equal to the "true" rainfall volume, for all ranges and orientations, and compare the 

resulting outputs of the hydrologic model to the "true" hydrologic outputs. This is done to 

assess the quality of the hydrologic outputs driven by adjusted radar-rainfall estimates. 

2.6     The Results 

2.6.1  Simulations With No Imposed Errors 

In the first part of this study, we assume that the simulated radar measurement process 

is error-free to study the pure effects of range and orientation between the radar and study 

watershed. The closest radar position we test is 10 km from the center of the watershed. We 

then gradually increase the range at an increment of 5 km, up to 145 km from the center of 

the watershed. We limit the range to 145 km in order to avoid the influence of the freezing 

level on the radar-measured reflectivity for the storm being studied. 

To quantify the effects of radar orientation, we place the radar at 24 equi-spaced 

orientations (every 15°), and vary the range in these directions, as illustrated in Figure 3. The 

28 range increments are the same for all 24 radar orientations. The orientations are coded 
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with numbers 1 through 24, orientation 1 being exactly east of the watershed center. We 

distribute the orientations over 360° because of the asymmetry of the simulated storm. Radar 

rainfall estimates are entered into the hydrologic model in polar coordinates, and we apply the 

nearest neighbor method to interpolate rainfall rates for each hydrologic model grid. 

The rainfall volume error measure is the ratio between the radar-estimated catchment 

total rainfall volume and the "true" total rainfall volume predicted at the ground level by the 

atmospheric model. The measurements of the influence of radar error on hydrologic model 

response are three of the statistics that are typically used to calibrate hydrologic models and 

evaluate their performance [e.g. Brazil, 1988; Senarath et al., 2000]. Root mean square error 

(RMSE) is computed from: 

RMSE =   l^Yiq?' - q? f (1) 

where qest is the simulated discharge driven by radar-estimated rainfall and qref is the 

corresponding discharge resulting from the reference ARPS modeled rainfall (i.e., we assume 

the hydrograph produced using ARPS rainfall fields to be the reference hydrograph). //refers 

to the total number of hydrograph ordinates used in the analysis, while / is the index denoting 

individual hydrograph ordinates. RMSE is expressed as a percentage of the reference peak 

discharge. 

The error in peak discharge is expressed as the ratio between the estimated peak 
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discharge and the "true" peak discharge. The error in runoff volume is similarly expressed as 

the ratio of the estimated and reference total runoff volumes. 

2.6.2 Effects Of Range/Orientation 

We show the combined effects of range and orientation on the estimated rainfall field 

in Figure 4a. These are the results from a set of simulations with the watershed at one of the 

ten locations tested within the storm domain. Each curve in the graph represents one of the 

radar orientations. The effect of range is clear on all 24 lines, and the scatter resulting from 

orientation effect is significant. The scatter is very small at the 10 km range, and increases 

steadily with range. The largest scatter occurs when the radar is 145 km from the center of 

the watershed, the farthest range we tested. The scatter varies from 2% to about 17% of the 

total rainfall volume. In all the plots of Figure 4, curves adjacent to each other generally 

represent orientations that are close together, for example, in Figure 4a, the line representing 

orientation 7 is adjacent to the line representing orientation 6. Lines representing orientations 

180 degrees apart are generally adjacent to each other for small ranges and start to diverge 

with increasing range. Most of the 24 lines follow a distinct pattern, which is a gradual 

decrease with increasing range to about 100-110 km, followed by a more rapid increase with 

increasing range. This is clear in Figure 5a, which shows the mean for the 24 orientations. 

The maximum average rainfall volume error is 24% at a range of about 100 km. The standard 

deviation of the 24 rainfall volume ratios increases almost linearly with range, as seen in 

Figure 5a. The response to the combined effect of range and orientation is similar for the 
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other nine watershed locations. 

The error in the predicted runoff is somewhat different. Radar-rainfall estimation 

errors are generally amplified through predicted runoff. The variance in predicted runoff 

volume is more than double that for the rainfall volume, as shown in Figure 4b. The average 

value of runoff volume error, shown in Figure 5b, whether from underestimation or 

overestimation, is twice the average rainfall volume error (Figure 5a) even though the curves 

in both graphs follow a similar trend. The standard deviation of the 24 runoff volume ratios, 

shown in Figure 5b, is about twice that of rainfall volume ratios, and the increase with range is 

similar to that of the rainfall volume curve. The runoff simulations show that both range and 

orientation errors are amplified in the predicted runoff. The graphs representing the error in 

peak discharge (Figure 4c) are similar to runoff volume error graphs. Interestingly, for some 

orientations there is no significant change in the peak discharge error after the range of 100- 

110 km (Figure 4c), which suggests that rainfall volume errors are compensated for by other 

errors. The graph of the hydrograph root mean squared error (RMSE), shown in Figure 4d, 

has a linear-convex-concave shape. The linear portion corresponds to the region where the 

rainfall (or runoff) is overestimated. This part shows a small change with range. The convex 

portion of the curve corresponds to the region where overestimation decreases and 

underestimation starts. The curve becomes concave as the underestimation continues with 

range, and the slope changes sign as the underestimation begins to decrease. The scatter due 

to orientation increases with range, but the general pattern is different from other graphs, 
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because the RMSE graph shows whether there is underestimation or overestimation. 

We summarize rainfall and runoff statistics from ARPS simulations for the ten 

watershed locations in Table 1 and the average values of error statistics in Figure 6. The 

mean rainfall volume error curves (Figure 6a) show a different trend, due to the fact that each 

location represents an independent realization of the storm. The curve showing the highest 

error corresponds to the watershed location with the smallest total rainfall accumulation 

(Location 6 in Table 1). The watershed response depends largely on the rainfall error, and 

also on the magnitude of the rainfall volume, and the spatial distribution of the rainfall 

(Figures 6b and 6c). The increase of RMSE with range is drastic for the location with the 

smallest rainfall accumulation (Figure 6d). For two locations, RMSE decreases with range. 

At these two locations, with some of the highest rainfall accumulations, the estimated rainfall 

volume on the watershed is smaller than the "true" rainfall volume and it increases slightly 

with range. Nevertheless, the scatter due to orientation increases with range for these two 

locations as well. 

2.6.3 Effect Of Imposed Errors 

To study the effects of random and systematic radar measurement errors when 

combined with orientation and range effects, we impose noise on reflectivities measured by 

the radar simulator. It is a well-established fact from disdrometer studies, that there is no 

unique relationship between rainwater mixing ratio (M) and radar reflectivity (Z). Steiner and 
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Smith, [2000] conducted an exhaustive study of two-years-worth of disdrometer data at the 

Goodwin Creek, where they reported larger anomalies in the Z-R relationship. They found 

that the uncertainty in Z-R relationship due to 1-minute raindrop spectra variability was 

approximately 40%-50% as characterized by root-mean-square-error. Increasing the time 

averaging from 1 minute to 5 minutes had little effect on the raindrop spectra variability. We 

add a normally distributed random error, N(0,1) (i.e., with a mean of 0 and a standard 

deviation of 1 dBZ), to the radar reflectivity estimates, which are based on a unique 

relationship between Z and M, to account for the randomness in Z-M relationship. The ±3 

dBZ range of this error agrees with the values reported in several studies [e.g., Steiner and 

Smith, 2000]. This N(0,1) noise can also account for random noise in radar system 

measurement, such as from a transmitter, receiver, antenna, wave guide, or signal processing 

error, that corrupts the measurement process. 

The radar equation relates radar-measured power to characteristics of the radar 

and characteristics of the precipitation targets [DoviakandZrnic, 1993;. Smith etal, 1996] 

argue that radar calibration, which is dependent on the value of the constant of the radar 

equation, plays an important role in site-to-site differences in WSR-88D precipitation 

estimates. Hunter, [1996] reports that drifts in absolute radar calibration cause differences of 

more than 17% at the same location from adjacent WSR-88D's. We evaluate the effect of 

radar calibration errors (drifts) in two additional simulations: a calibration error (drift) of 2 

dBZ is added to radar reflectivity measurements in one simulation, and subtracted in another. 
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We select these systematic and random errors as examples of the many errors associated with 

the radar measurement process to determine their impact on hydrologic predictions. 

We show the impact of the imposed errors on estimated predicted rainfall volume 

error and hydrograph RMSE in Figures 7a through 7d. These results are for two different 

orientations at the same location that we presented in Figure 4. Random noise from the M-Z 

relationship, or radar system measurement noise, has a small impact on error statistics; it 

generally decreases the smoothness of individual lines. 

The impact of the calibration error alone on the estimated rainfall can be easily 

quantified by adding the amount of drift (dBZ) to the measured Z value. The effect is 

different when combined with range/orientation. Calibration error effects can either amplify 

or reduce range/orientation error. This is especially clear in hydrograph RMSE curves. In 

some cases, estimates of rainfall volume with imposed calibration errors are better than error- 

free estimates at far ranges. This is a clear example of the difficult task of trying to isolate 

separate radar error sources. Radar calibration errors have large effects on all three simulated 

runoff error statistics. 

2.6.4 Effect Of Non-Uniform Refractive Index 

In all simulated runs, the gradient of refractive index has a constant value of - 

.0000393. In one simulation run we calculated the gradient of the refractive index at each 
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grid of the atmospheric model, using the equation relating the refractive index to atmospheric 

variables [e.g. Bauern, 1983]. We then calculated the effect on the path of the propagated 

radar beam and hence the effect on radar rainfall estimates. When the values of refractive 

index gradient, which were computed at each atmospheric model grid cell, were used, 

hydrologic predictions were not significantly affected. In all simulations, the terrain is 

assumed to be perfectly flat and problems of anomalous propagation are not addressed. 

2.6.5 Adjustment Of Radar Estimates 

We adjust the radar-estimated rainfall accumulations to match the ARPS rainfall 

accumulations on a storm-total basis in order to examine hydrologic model performance using 

the adjusted radar-rainfall fields as input. We multiply radar estimates by a factor such that 

radar estimated rainfall volumes, for all ranges and orientations, equal the ARPS rainfall 

volume, as we did for the radar location analyzed in Figure 4. We find that the predicted 

runoff volume is practically the same as the reference runoff volume, with small scatter, up to 

a range of about 70 km. The error in predicted runoff volume increases steadily with an 

increase in the scatter, as shown in Figure 8b, for ranges beyond 70 km. The runoff volume 

error driven by adjusted radar estimates can reach up to 14% at a 145 km range for some 

orientations. The error in peak discharge is larger than the error in runoff volume, and the 

scatter increases appreciably at ranges beyond about 90 km. The maximum error for some 

simulations is close to 35%, at 125 km. The hydrograph RMSE graph is similar to the peak 

discharge error graph with a maximum of about 11% of the peak discharge. 
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Comparing Figure 4 and Figure 8 shows the effect of radar adjustment. Note that in 

this study we assume that perfect storm total rainfall volume adjustment is possible. In reality, 

this does not occur. For example, multisensor precipitation estimates [Krajewski, 1987; Seo, 

1998] are obtained by adjusting radar estimates using rain gauge data. Consideration of other 

error sources associated with real multi-sensor adjustments is beyond the scope of this paper. 

2.6.6 ARPS Model Resolution Effects 

The atmospheric model grid size, 1.0 km horizontal and 0.5 km vertical, is a factor in 

determining the values of the computed range/orientation errors, but it is not the main cause 

of the errors. We investigate this using output from two additional ARPS simulations of the 

same storm with higher resolution outputs: 0.5 km horizontal and 0.5 km vertical, and 0.25 

km horizontal and 0.25 km vertical. Simulations with these finer resolution three-dimensional 

atmospheric fields showed no reduction in the average radar range/orientation errors. There 

are minor differences between the results of the two higher resolution simulations, which 

demonstrate that for this storm there is no practical accuracy gained for resolutions higher 

than 0.5x0.5x0.5 km. 

Rainwater mixing ratios have discrete values at each ARPS grid. To further assess the 

impact of the discrete nature of the ARPS output, we use simulated radar observations of 

simple, hypothetical rainfall fields.   The variations between rainwater mixing ratios are 
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assumed to be continuous (not discrete) within the simulated domain, which covers a 

rectangle of 7 km by 10 km. The vertical profile of rainwater mixing ratios follows a General 

Extreme Value distribution GEV (1.0,1.0,-0.1), fj(z), where the X-axis variation follows a 

Gumbel distribution G(19.0,3.0), f2(x), and the Y-axis variation follows a Gumbel distribution 

G(15.0,4.5), f3(y). At every point, p(x,y,y), the rainwater mixing ratio is calculated by the 

relationship M= fi(z)*f2(x)*f3(y)*0.625 kg/m3. We admit that these are not realistic rainfall 

fields, since no real storm can be so smooth. They are only meant to serve as illustrative 

examples of the measurement errors under consideration. Note that the vertical profile of 

reflectivity is a function of z only and does not vary horizontally. Radar-rainfall estimates of 

these simulated fields have range/orientation errors, which increase with range. Errors are 

also amplified in the predicted runoff. Real storms, like the Del City storm, show significant 

randomness in horizontal and vertical variability, which also contributes to the 

range/orientation effects. 

A closer look at the geometry of the radar pulse volume, beam propagation path, 

elevation and azimuthal angle reveals some of the aspects of the range/orientation effects. For 

two radars at orientations 180° apart, the sampling volume is almost identical when the beams 

are concentric and the same distance away from the two radars at near ranges, particularly if 

they are on the line that connects the two radars. Sampling volumes that are on the straight 

line between the two radars are still very similar at close ranges but the difference increases 

with increasing range.   At points not on this line and at different distances from the two 
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radars, there can be significant differences in the size, height, and orientation of the sampling 

volumes, resulting in large differences in radar estimates. This can be illustrated by 

considering the differences between radar rainfall estimates at orientation 1 and orientation 

13, as shown in Figure 3. To ensure that grid size does not cause these discrepancies, we 

analyze the case of the hypothetical rainfall fields mentioned above. In Figure 9, we show the 

locations of radar pulse volume centers within the rectangle that encompasses the watershed 

for the two radars at ranges of 10 km and 145 km. We compute the differences between the 

radar estimates at each location. At the smallest practical range we are considering, the 

differences are negligible at the center where the two beams are almost concentric and at 

equal distance from the two radars. On the line perpendicular to the line connecting the two 

radars, where the beams are not exactly concentric but approximately at equal distance from 

the two radars and at the same height, the maximum difference in point estimates of rainfall 

rate is about 1% on the edges of the rectangle. On the line connecting the two radars, the 

maximum difference at the edges of the rectangle is 3%. At the corners of the rectangle, it is 

about 4%. The difference in estimated total rainfall volume is about 1%. 

The picture is quite different at the 120 km range. At the center of the watershed, the 

difference is 3%. This is due to differences in the sampling volume between the two radar 

beams. The differences on the edges of the perpendicular line are 9%. On the line between 

the two radars, the maximum difference is 10% and the difference in total estimated rainfall 

volume on the watershed is 6%. This is an illustration of the range/orientation effect and the 
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numbers are a sample of these errors. Note that in the above analysis, the vertical profile of 

the rainwater mixing ratio does not vary horizontally. 

The azimuthal resolution is one of the factors that control the orientation effect. In a 

test run, where we changed the azimuthal resolution from 1° to .3° by oversampling, and the 

scatter at far ranges was reduced by about 30%. Reducing the radar beam width attains 

similar reduction in orientation effects. 

The choice of the Z-R relationship in this study is arbitrary. Our simulations show 

that small changes to the Z-R relationship parameters have no significant effects on the 

hydrologic outputs, e.g., changing the multiplicative coefficient from 300 to 400, and the 

power coefficient from 1.4 to 1.3, changes the outputs by less than 5%. 

2.7     Discussion 

The propagation of the radar beam is accompanied by an increase in the radar 

sampling volume and an increase of the height of the radar beam center, with range depending 

on elevation angle, earth curvature and gradients of atmospheric refraction index. These two 

factors cause several errors (e.g., smoothing of reflectivity gradient and overshooting of 

precipitation) and also play a role in the presence of the orientation effect, which increases 

with range. 
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All the simulations in this study highlight the range/orientation effects for convective 

storms and their propagation through hydrologic model predictions for a 21 km watershed. 

It is well known that other factors in the radar-rainfall measurement/estimation process can 

cause errors larger than the errors we discuss here. However, pinpointing and quantifying 

these errors provide incentive to study these errors and search for means to adjust them. We 

do not think that these simulations, which demonstrate examples of the impact of high 

variability within convective cells, present worst case scenarios in small sized watersheds. We 

have chosen error statistics at the watershed scale (e.g., we did not considered errors in 

instantaneous values of variables at the pulse volume scale). For larger watersheds, there 

might be similar range/orientation errors, at least at smaller temporal or spatial scales. For 

example, Ogden and Julien, [1994] found that the effect of radar data resolution depended 

upon "storm smearing" and "watershed smearing". Storm smearing occurs when the radar 

rainfall data resolution is coarser than the rainfall spatial correlation length. Storm smearing 

reduces rainfall gradients and is independent from the watershed size. Watershed smearing 

occurs when the radar rainfall data resolution exceeds 40% of the square root of the 

watershed, creating uncertainty with regard to the location of precipitation relative to the 

watershed boundary. Watershed smearing is the main source of hydrologic model error in 

very small subcatchments. However, for the 21 km2 Goodwin Creek watershed used in our 

study, storm smearing is the dominant error source. 
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2.8     Summary And Conclusions 

We developed a simulation framework for the study of the hydrological impacts of 

radar-rainfall estimation errors. The simulation framework is physically-based and consists of 

an atmospheric model, a simulator of radar observations, and a distributed hydrologic model. 

The storm we used in our study is well-documented and is considered a benchmark storm for 

the validation of atmospheric models (see ARPS references). The rainfall fields we simulated 

in this study are adequately realistic and can serve as an example of supercell storms that 

cause flash flooding in small and mid-sized watersheds. Although we use only single- 

polarization radar-reflectivity in this study, the radar data simulator has the capability to 

generate multi-parameter radar observables (e.g., differential reflectivity and differential 

propagation phase shift). Using our approach, it is possible to simulate several sources of 

radar measurement and estimation errors, both systematic and random. 

The distributed physically-based hydrologic model CASC2D [Julien et al., 1995; 

Ogden, 1998] we use in the study is rigorously calibrated [Senarath el al., 2000] on an 

extensively-monitored research watershed. This leads us to believe that the propagated errors 

in predicted runoff provide examples of what to expect in real world hydrologic studies using 

a physically-based, distributed, Hortonian model. 

Range effects are caused primarily by the vertical profile of reflectivity and the size of 

the radar pulse volume.   The differences in radar predictions caused by the orientation 
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between the radar, the storm, and the watershed (see Figure 4a for an example) mainly 

depend on the size of the pulse volume and the sampling resolution. Though it is not 

practically feasible, two identical radars at two different orientations could hypothetically give 

identical measurement of a storm, if there were no vertical variability and the radar pulse 

volume and azimuth resolution were small enough to capture the horizontal variability, and if 

we were to neglect attenuation effects. The actual difference between the two estimates 

depends on the radar pulse volume, the azimuthal resolution, and the vertical and horizontal 

variability within the storm, among other factors. Decreasing the azimuthal resolution can 

remove a large portion of the orientation effects. Measurements by two or more radars of the 

same storms were discussed in several radar-rainfall estimation studies [e.g. Smith et ah, 

1996; Ogden et cd., 2000] and in studies of radar data assimilation [e.g. Sun et o/., 1991; Sun 

and Crook, 1998]. The orientation effects we investigate give rise to many interesting 

questions: Do the radar estimation/measurement errors cancel each other out? Does the 

mosaicing of the multiple radar data help reduce errors? Does a miscalibrated radar always 

give inferior estimates compared to a well calibrated one? 

Hydrologie simulations demonstrate that range orientation errors are typically 

amplified through predicted Hortonian runoff. In many cases, errors in runoff are nearly twice 

the magnitude of rainfall volume errors. Amplification of errors is larger at locations of small 

total rainfall volume. 
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Computing the actual values of the gradient of the atmospheric refractive index (as 

opposed to assuming a constant value) does not affect hydrologic outputs, provided that AP 

does not occur. Random noises that corrupt the radar measurement process, at least those 

considered in this study, have minor hydrologic impacts compared to the systematic range 

effects. Calibration errors can have a significant impact on predicted runoff. 

At far ranges, radar measurements corrupted by calibration errors sometimes produce 

more accurate hydrologic outputs than error-free measurements. This makes identifying radar 

measurement errors more complicated and may lead to erroneous conclusions when radar 

measurements are compared to the measurements of other sensors. 

Adjustment of radar-rainfall estimates by multiplying them by a bias factor to make the 

total rainfall volume match the "true" rainfall volume, as done in multisensor estimates, seems 

to provide acceptable runoff volume and hydrograph predictions at radar ranges below 100 

km. At farther ranges, the predicted runoff and hydrographs have appreciable errors. 

The simulation framework we present in this paper provides a useful tool for studying 

the problems of the hydrologic applications of weather radar data. In particular, we focus on 

the issue of radar-rainfall estimation uncertainty and the propagation of the errors through 

rainfall-runoff models. Our study admittedly has limitations. We only consider a single, 

convective storm and neglect the effect of bright band. We do not address the issues of radar 
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data quality control (such as anomalous echo detection and elimination). We only consider 

single parameter S-band radars. Still, despite these and other limitations, we demonstrate the 

utility of the simulation approach and consider the insight it provides. For example, we study 

the non-negligible effects of radar position (orientation) with respect to the basin, and we are 

able to isolate the quantitative effects of various radar-related sources of uncertainty. The 

significant level of some of these effects clearly indicates the need for more research on these 

issues. Such studies should include both simulation methods, such as the one we describe 

above, as well as real data-based studies. We hope that through collaboration between the 

relevant federal agencies and the research community we will be able to design and conduct 

appropriate field and data experiments. We believe that such experiments will ultimately lead 

to the improved predictive capabilities of hydrologic processes. 
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Location ARPS Rainfall 
Volume (m3) 

Peak Discharge 
(m3) 

Runoff Volume 
(m3) 

Runoff Production 
Efficiency 

1 1287741 104.8 766884 0.60 

2 1230439 103.7 688193 0.56 

3 803040 56.7 363803 0.45 

4 828942 59.2 390689 0.47 

5 689706 45.6 316993 0.46 

6 450961 13.5 124478 0.28 

7 475002 19.8 130138 0.27 

8 789399 38.1 290071 0.37 

9 1170596 93.3 650385 0.56 

10 721109 35.0 287471 0.40 

Table 2.1 



3       STATISTICAL ANALYSIS OF RADAR- 
RAINFALL ERROR PROPAGATION 

ABSTRACT 

The prediction uncertainty of a hydrologic model is closely related to the uncertainty 

of its inputs and parameters. The most important challenges now are not whether we 

understand the theory and physics behind hydrologic processes but it is whether our model 

outputs match observed behavior or not and whether predictions from those models are 

meaningful and useful. In this paper we continue our investigation of the propagation of 

radar-rainfall estimation errors based on the simulation methodology developed by Sharif et 

al. [2001], We investigate the propagation of radar-rainfall estimation errors through runoff 

predictions using a physically-based simulation methodology. The tools we use include a 

physics-based atmospheric model, a radar simulator, and a two-dimensional infiltration-excess 

hydrologic model. The spatial and temporal structure of the simulated three-dimensional 

precipitation field and the size of the study watershed allow us to develop a large set of 

rainfall events with different rainfall volumes and vertical reflectivity profiles and statistically 

analyze the propagation of rainfall error through runoff predictions. Rigorous statistical 

analysis of the relationship between estimated rainfall errors and characteristics of the 

predicted hydrograph is conducted for thousands of simulated events. In addition to the 

influence of radar estimation error, we study the relationship between event magnitude and 

the prediction error and its propagation.   Furthermore, we apply Bayesian inference for 
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estimating the hydrologic output driven by radar-estimated rainfall based on statistical analysis 

of radar-rainfall error propagation. 
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3.1     Introduction 

The scientific and technological advances of the past two decades have led to 

significant enhancements in understanding and modeling of hydrologic processes as well as in 

understanding and quantitative forecasting of precipitation e.g. emplacement of WSR-88D 

radar network and the development of automated algorithms and the deployment of a dual- 

polarization WSR-88D test bed; development of algorithms for computing precipitation 

intensity from satellite microwave reflectance data; development of storm-resolving models 

that use explicit microphysical parameterization and are initialized with fine scale radar and 

other observations; development of distributed hydrological and coupled meteorological- 

hydrological models based on physic and high resolution soil and terrain data [Droegemeier et 

a\, 2000], The focus of hydrologic modeling is shifting from how to solve and model 

mathematical equations and relationships of water flow to whether the predictions obtained 

from hydrologic models are meaningful and useful. The prediction uncertainty of a 

hydrologic model is closely related to the uncertainty of its inputs and parameters. Spear and 

Hornberger [1980] proposed a generalized sensitivity analysis approach (GSA) to identify 

critical uncertainties of a lake system modeled by a lake eutrophication model. The analysis 

starts by drawing a random set of values of the parameter under consideration. Monte-Carlo 

simulations will then follow and statistical analysis of the outputs will indicate the sensitivity 

of the system to that parameter and the uncertainty in the outputs corresponding to the 
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uncertainty of this parameter. Some recent methods addressing the prediction uncertainty of 

hydrologic model are related to GSA. The Generalized Likelihood Uncertainty Estimation 

(GLUE), a general framework for representing model parameter and prediction uncertainty 

within the context of Monte Carlo analysis coupled with Bayesian estimation and propagation 

of uncertainty [Beven and Binley, 1992; Freer et ah, 1996]. Monte Carlo Set Membership 

procedure [Keesman, 1990; van Strafen and Keesman, 1991], the Prediction Uncertainty 

method [Klepper et al, 1991], and the Multi Objective Generalized Sensitivity Analysis 

[Bastidas et al., 1997] are all based on GSA. None of above studies addressed the 

uncertainty of distributed precipitation inputs to a hydrologic model. 

The sources of uncertainty associated with prediction of runoff, both in terms of 

instantaneous discharge and total runoff, can also be decomposed into two sources: (1) input 

uncertainty associated with random inputs to the hydrologic model (2) and hydrologic 

uncertainty arising from all other sources e.g. model, parameter, estimation, and measurement 

errors [Krzysztofowicz, 1999]. Based on this decomposition of uncertainty, Krzysztofowicz 

[1993] developed a Bayesian predictive inference theory. It includes an input uncertainty 

processor, a hydrologic uncertainty processor, and an integrator. In the input uncertainty 

processor, the randomness of the input is represented by a density function. By simulating the 

input variables, and using a hydrologic model, a numerical distribution of the output variable 

(forecast variate e.g. runoff volume) is constructed. The induced density quantifies the 

uncertainty of the forecast variate.   This is, in a broad sense, similar to Monte Carlo 
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simulation in other forecasting studies [e.g. Lardet and Obled, 1994]. 

3.2     Radar-Rainfall Estimation 

One of the main factors affecting the accuracy of physically-based hydrologic 

simulations is rainfall input uncertainty. Rain gages surfer from undercatchment and a number 

of spatial and temporal sampling deficiencies. Although ground-based weather radars provide 

rainfall rate estimates over large areas at high spatial and temporal resolutions, radar data 

require vigorous quality control before being transformed into precipitation products that can 

be used as input to hydrologic models. The impact of radar-rainfall estimation errors on 

hydrologic predictions from physics-based models is an important area of study, with broad 

implications ranging from study of global climate change to watershed ecology and 

engineering hydrology. 

A number of studies have focused on issues related to the applicability of radar- 

estimated rainfall in hydrologic modeling. Kouwen and Garland [1989] applied radar- 

estimated rainfall to a rainfall-runoff model based on hydrologically similar regions derived 

from remotely sensed land classification. In a study conducted by Becchi et al. [1994], 

simulated radar-rainfall maps were employed as input to a distributed hydrologic model to 

highlight the advantages of radar data of high spatial and temporal resolution. In a simulation 

study by Schell el al. [1992], in which several rainfall events were studied, they showed that 
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hydrographs obtained when using radar-estimated precipitation are far closer to the observed 

than those obtained when using precipitation from the single raingage located in the 8.13 km2 

basin of the study. This is similar to the conclusions of Mimikou and Balias [1996]. Fewer 

studies addressed the issue of errors introduced to runoff predictions as a result of errors in 

radar precipitation. Htidlow el al. [ 1983] expected that errors in rainfall input to a nonlinear 

rainfall-runoff model would lead to even larger errors in the runoff predictions. Collier and 

Knowles [1986a, b, c] found that, for a given percent error in the precipitation estimation, an 

equal or lesser error in the predicted stream flow would result for some catchments; but in 

other circumstances the errors were amplified. They suggested that underestimating rainfall 

could be worse than overestimation, especially for large catchments. Wyss et al. [1990] 

concluded that errors in runoff predictions caused by errors of radar-estimated precipitation 

were likely to be less significant than the errors in the transformation from rainfall to runoff. 

Pessoa et al. [1993] showed that different widely accepted reflectivity-rainfall relationships 

resulted in significantly different hydrographs. They suggested that identification of 

appropriate reflectivity-rainfall relationship in real-time is necessary to produce reliable 

hydrologic forecasts. Shah el al. [1996] asserted that the use of spatially distributed 

precipitation was far more important when modeling a "dry" catchment than when modeling a 

"wet" catchment. Using the SHE model on a 10.5 km2 basin, they also concluded that errors 

associated with lumping of the model processes outweighed errors from lumping of the 

rainfall. Winchell et al. [ 1997,1998] found that error in radar-rainfall estimates resulting from 

the use of inappropriate Z-R relationship resulted in equal or larger error in the resulting 
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runoff, regardless of runoff production mechanism. 

3.3     Radar-Rainfall Estimation Error Propagation 

Some researchers used physically-based simulations of the radar measurement process 

to study the radar-rainfall estimation error structure [e.g. Krajewski andGeorgakakos, 1985; 

Chandrasekar andBringi, 1987, }9&&a,b; Chandrasekar et al., 1990; Krajewski et al., 1993; 

Anagnostou and Krajewski, 1997'; and Borga el al.,\997]. Krajewski et al. [1993] proposed 

a physically-based simulator of radar observables based on a two-dimensional stochastic 

space-time model of rainfall events and a statistically generated drop-size distribution. 

Anagnostou and Krajewski [1997] made several extensions to this simulator. The two- 

dimensional fields were complemented with a vertical structure of hydrometeors by choosing 

a cloud type model, which resulted in size, shape, and phase (mixed or single) distribution at 

discrete elevations. They simulated effects such as antenna beam pattern, horizontal and 

vertical gradients, atmospheric gases, and rain attenuation and represented the radar hardware 

noise by introducing random measurement errors. Borga et al. [ 1997] used the same tool to 

validate a bright band correction method. 

Sharif et al. [2001] developed a simulation framework for the study of the 

hydrological impacts of radar-rainfall estimation errors. The simulation framework was 

physically based and consisted of an atmospheric model, a simulator of radar observations, 
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and a distributed hydrologic model. Sharif et al. [2001] coupled a physically-based 

atmospheric model of convective rainfall with an active microwave radiative transfer model to 

simulate radar observation of thunderstorms. They simulated a well-documented tornadic 

supercell storm that occurred near Del City, Oklahoma on 20 May 1977 using the 

atmospheric model ARPS developed at the Center for Analysis and Prediction of Storms 

(CAPS) at the University of Oklahoma [Xue et al, 1995; Xue et al, 2000a; Xue et al, 

2000b]. Radar observations ofthat storm were then simulated and used to evaluate the 

propagation of radar-rainfall errors through distributed hydrologic simulations. A modified 

version of the radar simulator developed by Anagnostou and Krajewski [1997] was used in 

that study. This physically-based methodology allows direct examination of the impacts of 

radar-rainfall estimation errors on land-surface hydrologic predictions and avoids the 

limitations imposed by the use of rain gage data. Results indicated that the geometry of the 

radar beam and coordinate transformations due to radar-watershed-storm orientation had an 

effect on radar-rainfall estimation and runoff prediction errors. In addition to uncertainty in 

the radar reflectivity vs. rainfall intensity relation, Sharif et al. [2001] reported significant 

range-dependent and orientation-related radar-rainfall estimation errors, which should be 

quantified in terms of their impact on runoff predictions. The methodology provides a tool to 

perform experiments to address some operational issues related to the process of 

radar-rainfall estimation and its use in hydrologic prediction. Using that approach, the authors 

were able to simulate several sources of radar measurement and estimation errors, both 

systematic and random and isolate the quantitative effects of various radar-related sources of 
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uncertainty. 

3.4     Objectives 

In this paper we continue our investigation of the propagation of radar-rainfall 

estimation errors based on the simulation methodology developed by Sharif'et al. [2001]. We 

simulate a storm that covers a large area and we move the location of the study watershed 

within the storm domain to obtain different realizations of the storm over the watershed. We 

assume that the rainfall field generated by the atmospheric model, which is a realistic 

representation of a convective rainy atmosphere, is the ground "truth". We then run the radar 

simulator and use radar-estimated rainfall from the simulated storm as input to a calibrated 

(for a certain actual basin), physically-based, infiltration-excess, watershed model to analyze 

the propagation of radar-rainfall estimation errors. The spatial and temporal structures of the 

precipitation field, combined with use of 500 hundred locations within the storm domain, 

allow us to develop a large set of rainfall events with different rainfall volumes and vertical 

reflectivity profiles and analyze statistics of the "true" and estimated hydrologic outputs. In 

addition to the influence of radar range and radar orientation, we study the relationship 

between the rainfall event magnitude and the prediction error. Furthermore, we apply 

Bayesian inference for estimating the hydrologic output driven by radar-estimated rainfall 

based on statistical analysis of radar-rainfall error propagation. 
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3.5     Storm Simulation 

The source of precipitation date in this study is the ARPS forecast at 500 meter spatial 

resolution, in all directions, for the 21-22 January, 1999 Arkansas tornado outbreak. The 

ARPS is a three-dimensional, nonhydrostatic compressible model formulated in generalized 

terrain-following coordinates. It contains a comprehensive physics package and a self- 

contained data analysis, radar data retrieval and assimilation system. The model has been 

subjected to real-time weather prediction testing over several regions since mid-90s. A 

comprehensive description of the formulation, numerical solution methods, physics 

parameterizations, computational implementation, and configuration instructions for the 

ARPS is given in Xve el al. (1995). More recent improvements and model verifications are 

described mXue et al. (2000; 2001a; 2001b). 

During the afternoon and evening of 21 Jan. 1999, a major tornado outbreak occurred 

in the state of Arkansas (AR). Fifty-six tornadoes were reported statewide with the strongest 

tornadoes rated F3 (maximum winds 71 ms"1 to 92 ms"1) on the Fujita scale. Most of the 

tornadoes occurred between 4 and 11 pm CST, or between 2200 UTC Jan. 21 and 0500 UTC 

Jan. 22. Eight people were killed by the tornadoes. It is believed to be the largest tornado 

outbreak in Arkansas. 

The synoptic-scale features and events of this case were documented in Xue [2001a], 

together with the ARPS model prediction results on nested 32-km and 6-km resolution grids. 
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Both grids successfully predicted the general precipitation area that is aligned along the 

southwest-northeast diagonal of the state of Arkansas. The set of precipitation on 6 km grid 

was delayed by as long as 4 hours, however, due primarily to inadequate spatial resolution, 

and because only explicit microphysics was used without cumulus parameterization. 

Prediction results were much improved when a 2 km grid is further nested within the 6 km 

grid. The 2km results were analyzed and compared with radar observations in Xue et al. 

[2001b]. These forecasts started from 1200 UTC, January 21, 8 hours before the first 

convective storms (about 2000) in Arkansas and about 10 hours before the first tornado 

(2200 UTC). For a 10 hour period starting from 8 hours into the model run (2000 UTC), a 

generally good agreement is found with respect to the number of storms in the state of AR, 

the rotational characteristics of storms, the speed and direction of storm-cell movement, the 

organization of initially isolated cells into lines and their subsequent propagation, the 

transition from a straight line into a mesoscale bow-shaped echo pattern, the reasonable 

timing of thunderstorm initiation and cessation of new cell development. 

Specifically, at 2300 UTC Jan. 21, about a dozen storm cells can be identified both in 

radar observations and in the model, and both model and real storms exhibit isolated supercell 

storm characteristics with rotation more readily identifiable in the model (see Xue et al. 

2001b). For the next three hours, from 2300 UTC Jan. 21to 0200 UTC Jan. 22, both 

observation and model showed new cells continually being generated at the south end of the 

convective line while older cells moved along the diagonal axis across the Arkansas state. By 
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the end of this three-hour period, the line in the model has turned more into the SW-NW 

orientation. As more cells were created through splitting process and the low-level cold pool 

spread, the storms became closer to each other and some started to join together, creating 

connected line segments. 

In the two hours following 0200 UTC, the trend for the cells to merge and form a 

continuous line continued both in the model and in the real world. By 0400 UTC, the 

southern end of the primary line is two to three counties away from the southern state border. 

At 0600 UTC January 22, the end time for the 2-km model run, the convective line was 

moving (eastward) across the eastern Arkansas state border. 

In the paper, we choose the period from 0200 UTC to 0430UTC, January 22 when 

the initial supercell storms have evolved into the precipitation line, located at the northeastern 

regional of Arkansas and southeast Missouri. We studied the fine scale features and spatial 

variabilities of precipitation and then further nested a 500-meter resolution grid inside the 2 

km grid, centered over this region of precipitation. The model predicted instantaneous 

precipitation rates at 30-minute intervals are plotted in Figure 1. 

3.6     Radar Estimation Process Simulation 

We simulate the radar beam propagation with consideration of the radar beam 
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curvature relative to the Earth's curvature. The three-dimensional fields of rain computed by 

ARPS are used to compute the volume backscattering and extinction cross sections of 

hydrometeors [Ulaby et ah, 1981]. Although the radar simulator calculates the refractive 

index at each grid, a constant value of the refractive index slope was used because of the 

relatively small impact on the hydrologic model output [Sharif et ah, 2001]. We used the 

default WSR-88D Z-R relationship of Z=300R14 [Fulton et ah, 1998], to covert reflectivities 

into rainfall rate estimates. We computed the attenuation of electromagnetic waves by rain 

from the radar as a function of the radar wavelength (10 cm), rainfall intensity, and distance 

between radar and hydrometeors. Attenuation by atmospheric gases, which is typically larger 

than rain attenuation for S band, is only a function of radar wavelength and distance [Doviak 

and Zrnic, 1993]. We did not model atmospheric gases attenuation assuming that it can be 

easily accounted for in real radar data processing systems. 

We placed our virtual radar at 24 equi-spaced orientations (every 15°) around each 

watershed position tested. We also varied the distance between the radar and the center of 

the catchment along these directions, as illustrated in Figure 2. We placed the watershed in 

500 different locations within the storm domain to obtain different cases of the radar 

estimation process because of the high variability of rainfall within the mesoscale convective 

complex. Justification for this radar-storm-watershed setting can be found in Sharif et ah 

[2001]. 
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We ran the hydrologic model CASC2D [Julien et al, 1995; Ogden 1998], using the 

"true" ARPS generated rainfall fields and radar-estimated rainfall fields. Comparison of 

hydrologic model outputs based the "true" rainfall and the radar-estimates-based ones was 

assessed by calculating four error statistics. These statistics are: the watershed total rainfall 

volume ratio, the root mean square error in simulated hydrograph, the simulated total runoff 

volume ratio, and the hydrograph peak discharge ratio. 

The main simulations focus on the effect of range and orientation to highlight the 

spatial variability vertical rain water (or reflectivity) profile within the same storm and its 

impact on hydrologic model predictions. We did not conduct radar simulations above the 

freezing level although the atmospheric model included ice microphysics in its simulations. 

We computed probability densities of the "true" and radar-estimated hydrologic outputs from 

the sample of events simulated. We then transformed the distributions to normal 

distributions, using a power function, to simplify statistical modeling of the dependence 

between the two distributions. Assuming that the only source of uncertainty is the radar- 

estimated rainfall, we suggested a Bay'esian approach for probabilistic estimation of 

hydrologic outputs derived by "uncertain" radar-estimated rainfall. We discuss ways to 

extend the approach to include more complex situations. 

3.7     Radar-Storm-Watershed Setting 
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The purpose of the majority of the simulation runs is to develop a large sample of 

rainfall-runoff events in which the radar-rainfall errors are only caused by the effects of range 

and orientation between the radar and study watershed. For all watershed locations tested, 

the closest radar position used was 10 km from the center of the watershed. We then 

gradually increased the range at an increment of 5 km, up to 145 km from the center of the 

watershed. We limited the range to 145 km to avoid the influence of the freezing level on 

radar-measured reflectivity for the studied storm. 

The influence of radar watershed orientation is examined by placing the radar at 24 

equi-spaced orientations (every 15°) and varied the range along these directions as illustrated 

in Figure 2. The 28 range increments were the same for all 24 radar orientations in all 

watershed locations. The orientations were coded with numbers 1 through 24, orientation 1 

being exactly east of the watershed center. We distributed the orientations over 360° because 

of the asymmetry of the simulated storm. "True" rainfall fields are input to the hydrologic 

model in grid format whereas radar-rainfall estimates are input to the hydrologic model in 

polar coordinates. We applied Thiessen Polygons to compute rainfall rates for each 

hydrologic model grid. The comparison "error" statistics were computed after each 

hydrologic model run. 

The watershed used in this study for hydrologic simulations is the 21.2 km2 Goodwin 

Creek experimental watershed located in north-central Mississippi. The USDA-ARS National 
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Sedimentation Laboratory has continuously monitored the watershed since 1981. Alonso 

[1996] provides a detailed description of the watershed. The elevation of the watershed 

ranges from 68 to 127 m. The main channel has an average slope of 0.004 [Bmgner, 1996]. 

The grid size used in CASC2D to model the watershed is 125 m ><125 m, to minimize 

computing time yet adequately describe the spatial variability of topography, soil texture, and 

land use/land cover. The watershed characteristics, taken together with the predominance of 

fine soil textures, indicate that Hortonian runoff production mechanism [Senaralh el al. 

2000]. The hydrologic model CASC2D was rigorously calibrated on this watershed by 

Senarath et al. [2000] and thus we feel that the model represents the watershed's runoff 

processes with reasonable accuracy. 

The rainfall volume error measure is the ratio between radar-estimated catchment total 

rainfall volume and the 'true' total rainfall volume predicted at the ground level by the 

atmospheric model. The measures of the influence of radar error on hydrologic model 

response are three of the statistics that are typically used to calibrate hydrologic models and 

evaluate their performance [e.g. Brazil, 1988; Senarath et al., 2000], Root mean square error 

percentage (RMSE%) is computed by: 

%-M^: 
RMSE % = Ji-Y {q? - q? Y I q "    % (1) 

Where qest is the simulated discharge driven by radar-estimated rainfall and qref\s the 

corresponding discharge resulting from the reference ARPS modeled rainfall i.e. we assume 
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the hydrograph produced using ARPS rainfall fields to be the reference hydrograph. Prefers 

to the total number of hydrograph ordinates used in the analysis, while / is the index denoting 

individual hydrograph ordinates.   qpeak is the 'true' peak discharge. 

The error in the peak discharge is expressed as the ratio between the estimated peak 

discharge and the 'true' peak discharge. The error in runoff volume is similarly expressed as 

the ratio of the estimated and reference total runoff volumes. 

3.8     Simulation Results 

We computed rainfall and hydrograph error measures for all 500 rainfall-runoff events. 

For each radar range, errors were computed for 24 radar orientations, a total of 12000 values 

for each radar range. As found by Sharif et al. [2001], errors generally increase with radar 

range and errors in runoff volume and peak discharge are typically larger than the 

corresponding errors in rainfall volume. We show plots of probability density function (pdf) 

and cumulative distribution function (CDF) for the four error measures in Figures 3 and 4. 

We compare pdf and CDF curves for two radar ranges, 100 km and 145 km from the 

watershed center. All histograms of Figure 3 consist of 20 classes and small value on the 

edges of the histogram may not be visible in the plot. Taking this account will make it easier 

to compare different histograms. 
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Rainfall volume ratio pdf histogram, Figures 3a and 3b, appears approximately 

Gaussian and peaks around the value of 1.0 for both radar ranges. The range of storm total 

accumulated rainfall error values is relatively small, between 0.88 and 1.08 for the 100 km 

radar range and increases to .78-1.24 for the 145 km radar range. For both radar ranges, 

there is slightly greater tendency towards underestimation than overestimation. The 145 km 

radar range pdf curve, Figure 3b, is more flat and the difference in the statistical distribution 

of the errors for the two radar ranges can also be noticed in the CDF curves, Figure 4a. 

It is clear from Figure 3 c that rainfall errors are greatly amplified in predicted runoff 

although rainfall and runoff error pdf s are not significantly different. The runoff volume error 

pdf histogram is more flat and has a significantly larger range than the rainfall volume error 

pdf histogram, an indicator of the big difference in variance of the two distributions - 

compare Figures 3a and 3c. The amplification of error is the case for all 28 radar ranges 

considered. The amplification of error can also be seen in Figures 5a and 5c for two radar 

ranges. Comparing the two histograms of Figure 2c and Figure 2d, reveals that rainfall 

volume error variance increases with range - the 145 km radar range histogram is more flat 

with a wider range on both cases of underestimation and overestimation. 

For all radar ranges, the error in hydrograph peak discharge is more pronounced than 

runoff volume error. Peak discharge error pdf and CDF figures are similar to those of runoff 

volume error except for a slight difference in flatness and bigger difference in the ranges of 
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values. The plot of runoff volume error vs. peak discharge error shows increased 

underestimation and overestimation in peak discharge as compared to runoff volume, Figures 

5c and 5d. When the errors are very small, i.e. close to the value of 1 in both axes, the scatter 

of points is less and points are approximately evenly distributed around the 1 to 1 line. This is 

the case for both radar ranges. Figures 3e and 3f show that the range of peak discharge error 

values for the 145 km radar range is more than twice the range of error values for the 100 km 

range and the pdf curve is more flat. The same can be deduced by comparing CDF curves. 

Like the runoff error pdf, the peak discharge pdf shows a slight tendency towards 

underestimation. 

As expected, the pdf histogram of the hydrograph rmse percentage was very skewed 

towards smaller values. This is because rmse percentage distribution is related to the 

distributions of runoff volume and peak discharge errors; both distributions peak near the 

value of 1.0. Figures 3g and 3h show that rmse percentage increases with radar range and the 

tail of the 145 km radar range pdf histogram is a lot more extended than that of the 100 km 

radar range histogram which is clearly demonstrated in the CDF plots of Figure 4d. 

The fact that rainfall volume error is amplified in predicted runoff volume and that 

peak discharge error is typically larger than runoff error can be clearly seen in Figures 6a and 

6b. For each rainfall volume error value, the value of the corresponding error in runoff 

volume is compared to find whether it is greater or less to identify it as amplification or 
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damping of the error. This information was used to construct the probability distribution of 

error amplification shown in Figures 6a and 6b. The same was done to construct Figures 6c 

and 6d using runoff volume and peak discharge error data. For the 100 km radar range in 

Figure 6a and both radar ranges in Figure 5c and 5d, we see that the probability is close to 0.5 

when there are very small errors in rainfall volume, 5 a, or runoff volume, 5 c and 5d. It has to 

be stressed that it is possible that the ratio of the radar-estimated and 'true' total rainfall 

volume can be close to 1.0 and still the radar and actual rainfall fields are not identical. For 

the 145 km radar range, as seen in Figure 5b, it was found that when the error in rainfall 

volume is very small the runoff volume error was less than rainfall volume error in 70% of the 

cases. A detailed discussion on the existences of significant runoff volume errors even when 

radar and actual rainfall volumes are equal can be found in Sharif et al. [2001 ]. The spikes on 

the sides of the probability plots occur when the concentration of points is very sparse as seen 

in the plots of Figure 5. 

An important factor that influences the magnitude of error in radar-estimated rainfall 

volume and its propagation through hydrograph predictions is the magnitude of the rainfall- 

runoff event. The value of radar-estimated rainfall volume and actual rainfall volume ratio is 

plotted against the actual rainfall volume in Figure 7a, which demonstrates that rainfall 

volume errors are generally larger for small rainfall events. This relationship between event 

size and error magnitudes also holds for the three hydrograph errors i.e. runoff volume error, 

peak discharge error, and rmse percentage. All plots in Figure 7 show the average error, from 
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all 24 orientations, for the radar range of 145 km. Plots for other radar ranges show similar 

trends. The plots are similar when we plot the maximum or minimum error value of the 24 

orientations against the event magnitude for all radar ranges. 

3.9     Uncertainty Analysis 

Different methods for processing radar precipitation products have been aimed at 

finding the most appropriate approaches for extracting as much information as possible about 

the rainfall rate and its spatial distribution at the ground level. Many researchers have 

discussed the limitations of different approaches. In this and in a previous study [Sharif et al, 

2000], we highlighted some range-related radar rainfall estimation errors in idealistic 

situations. We attempt here to statistically qualify the limitations of the hydrological 

application of radar rainfall in our experiment. We try to quantify the hydrologic uncertainty 

of radar rainfall in terms of probability distributions. At this moment we assume that our 

virtual radar, atmospheric model, and hydrologic model are perfect. This way we avoid the 

complexity of numerous sources of uncertainty. The only source of uncertainty assumed is 

the errors associated with radar estimation process discussed in this paper. 

First we quantify the uncertainty of the predicted runoff volume and peak 

discharge at a certain radar range. The source of uncertainty is the interaction of radar beam 

geometry and vertical and horizontal variability of radar reflectivity (or rainwater mixing 
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ratio). In this analysis we use the average of all 24 radar orientations, at a given radar range, 

for each of the 500 rainfall runoff events. After normality test [Salas et ah, 1993] of the 

distribution of both radar-estimated and 'true' runoff data, we transformed the data 

distribution to normal distribution using Power Exponent Transformation [Salas el ah, 1993]: 

Y = (X + cy (2) 

X is the original variable, Y is the transformed variable, e and c are parameters. A 

value of c = 0 and a value of e = 0.5 were found appropriate. We treat the normally- 

transformed 'true' and estimated runoff volumes and peak discharges as random variables, E 

and T, where E is the estimated runoff variable, i.e. runoff volume or peak discharge, and T 

being the 'true' variable. The CDF's of the radar-estimated normalized runoff volume and 

peak discharge at the radar range of 145 km are shown in Figure 8. The relationship between 

the random variables E and T is modeled by building a conditional density function f (e|t). For 

simplicity we compute the parameters of a linear function using data from all events: 

E(E\T = t) = at + b 
(3) 

Var(E\T = () = a2 

In the left-hand side of Figures 9a and 9b we show a plot of the conditional mean of E 

for a given value of T. The plot of the conditional density/(e|t) for a value oft equal to the 

mean value calculated from our data is shown on the right-hand side of the figures. The 

normality of the conditional density is confirmed by the apparent linear relationship between E 

and T and by normality test of the residuals of the regression. Under the conditions of our 
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experiment, one can qualitatively characterize the worth of radar data by examining the 

parameters of the conditional density. A value of a close to 1.0 and a small value of b 

indicate that radar estimates are very close to the truth. On the other hand, the value of the 

variance (ö2
) is a measure of the uncertainty of the radar estimates. We remind the reader 

that we are using transformed runoff data so the variance of the original data is much larger 

than that shown in Figure 9. Furthermore, we only considered very few of the radar 

estimation/measurement errors, which is reflected in the values of a and b, 0.9818 and 1.669 

for runoff volume and 0.9801 and -.0008 for peak discharge, respectively. 

The conditional density function / (e|t) can be useful in many situations e.g. in 

modeling studies where accurate information on the actual runoff variables are not available 

or during real time modeling of flash floods. Suppose that in a certain situation we only have 

a probabilistic estimate of the actual runoff variable; in the discussion we will comment on 

how the distribution of T may be obtained. Furthermore, let us assume that the density of T, 

g, is normal, with or without transformation, with a mean value of u and a variance of V2 i.e. 

E(T) = n 
, (4) 

Var(T) = V2 

From Equations 3 and 4, the expected normally distributed density of E will be: 

E(E) -au + b 
,       , (5) 

Var(E) = aV2 + a2 

Under conditions of normality and linearity and using Bayes Theorem, the conditional 
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density of T, when the estimated runoff volume or peak discharge is e, will be h with 

parameters: 

E(T\E = e) = ae + j3 

Var(T \E = e) = U (6) 

Where 

aV 
a - 

a'V- +a 
2        „LT/2 fua-abV 

n2 = 

a2y2+a2 

o2V2 

2 i r ~> ~" aV'+a (7) 

An example of the use of function h is shown in Figure 10. Equation 7 can be applied 

as follows: assumed that we have obtained an estimate of the rainfall data from the radar for a 

certain rainfall event. We run our hydrologic model, assumed to be perfect, to estimate the 

runoff from this event. We also have an assumed density function of the actual runoff for the 

event, Equation 4; an alternative to this suppose we have an estimate of the density of'true' 

rainfall and use the hydrologic model, assumed to be perfect here, to obtain an estimate of the 

'true' runoff volume or peak discharge. We can then apply Equation 7, based on Bayes 

Theorem, to obtain a conditional density of the true runoff volume or peak discharge based on 

information in Equation 4 and updated by information obtained from the conditional density 

function of Equation 3. From Equation 7, it is clear that n2 is always less than V2 and less 

than a2. The conditional mean of T for a given value of E is shown in the left-hand side of 

Figures 10a and 10b. On the right-hand side of the figure, the density g and the conditional 
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density /?(t|e) are plotted. In Figure 10a we assumed a value of u. equal to the mean value of 

the transformed 'true' runoff volume, 656 (m3)0'5, and assumed value of e of 646 (m3)05. 

The values of n and e in Figure 10b are 7.62 (m3/s)0'5 and 7.42 (m3/s)05, respectively. But in 

reality the value of u. depends on the situation and it can or can not be very close to the 

observed value of E. 

3.10   Discussion 

Our simulation study reveals that it is very difficult to obtain an accurate estimate of 

rainfall rate and spatial distribution using radar estimates even if we assume that the radar is 

error free. It is also very difficult to make accurate corrections for radar range errors because 

the vertical profile of reflectivity is not constant within a storm. This is also true in real world 

applications and the relationship between radar estimate and more accurate estimates e.g. 

from a dense rain gauge network varies from event to event. This applies to radar-estimated 

rainfall and other driven hydrologic variables e.g. the estimated peak discharge can be 

significantly different from the actual measurement of peak discharge for the event which 

represents the 'true' peak discharge. This makes the use of conditional densities that relate 

the true and estimated hydrologic variables more realistic. Information from all events for 

which acceptable radar estimates and actual or quasi-actual measurements exist can be used to 

build the conditional density function that can be linear or non-linear. If the hydrologic 

variable is runoff volume or peak discharge, a hydrologic model is used and the output from 
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the hydrologic model using radar data will be compared to actual values of the hydrologic 

variable, e. g. measured values. There might be other sources of error that make it reasonable 

to express information from radar estimates in the form of probabilistic distributions rather 

than taking the estimate as the best available information. This applies to good quality radar 

data only because poor data might produce erroneous correlations. The conditional density 

can also be assessed subjectively by the modeler and does not have to be entirely based on 

real observations. One example of this is to use data from one watershed to modify the values 

of the parameters of Equation 3 based on data from another watershed, or use data from 

simulation studies to complement real data. 

The normal transformation of data is not necessary but will make application of the 

Bayesian approach simpler. The dependant variable in the conditional density can be the 

'true' or estimated hydrologic variable. If information on the actual hydrologic variable is to 

be updated by the observed estimates, the independent variable in the conditional density/has 

to be the 'true' variable. The values of the parameters of Equation 3 are specific to this 

simulation study and do not represent the actual relationship between radar estimates and 

actual observation at the radar range of 145 km. Using actual radar data, one would expect 

that parameter a to be significantly different than 1.0 and the variance to be significantly 

higher than the one computed in this study. In this study the relationship between E and T 

depends on the magnitude of the rainfall event, Figure 5.  This violates the assumption of 
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stationarity of mean and variance in the conditional density. One way to handle this problem 

is to use different conditional densities for different ranges of event size. 

Equation 5 uses information about the relationship between e and t, Equation 3, and 

the expected distributions of the hydrologic variable, Equation 4. The choice of the 

parameters of Equation 4 might depend on the discretion of the modeler and/or the situation. 

It can be computed statistically from previous data for similar events and/or from simulation 

studies of similar storms e.g. in this experiment we calculated parameters using information 

from different locations from the same storm. Applying the judgment of the modeler may be 

necessary for choosing the appropriate value of the variance in Equation 4. If the modeler 

assumes that he has no information about the value u. in Equation 4, by simply using 

/ = a e + ß, the first part of Equation 6 reduces to the first part of Equation 3 with t on the 

left-hand side. In practical situations the value of u can come from radar data assimilation or 

nowcasting using an atmospheric model and the variance V2 may represent the reliability of 

the nowcasting method. In the worst case, construction of the density described in Equation 

4 presents a rational statistical approach to utilize the qualitative knowledge of the modeler. 

Treating the uncertainty of radar data and its hydrologic outputs within a probabilistic 

framework and application of Bayes theorem may not only have potential for practical utility 

at the present time, but it also presents an intellectual exercise for studying the uncertainty and 

reliability of hydrologic applications of weather radar. In some situations, the only available 
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data about a rainfall event is from weather radar. When using this data in modeling studies, it 

will be useful to quantify the associated uncertainty. Extreme events observed by radar only 

can be used for design purposes or in flood frequency analysis if the associated uncertainty is 

well understood. Instead of depicting radar products are reliable or not, it is reasonable to 

explicitly account for their uncertainty and the risks associated with their use. 

In this study we treated the hydrologic uncertainty of radar data in a simplified 

manner. Actually, the same approach can be applied to treat the uncertainty of radar rainfall 

estimates and the uncertainty of the hydrologic model separately and then integrate the two 

uncertainties. The radar-rainfall uncertainty itself can be separated to measurement 

uncertainty and uncertainty stemming from rainfall averaging and grid size. In this experiment 

we could add an uncertainty in the radar estimates coming from sources other than the ones 

we discussed such that the radar estimated E would have a probability distribution. The 

conditional density of Equation 6 would then be integrated with the uncertainty of E to 

produce a distribution of T that integrates all uncertainties. In this study we combine all 

certainties associated with radar data and treated them as one hydrologic uncertainty. The 

approach can be extended to analyze the uncertainty of distributed inputs and outputs e.g. 

spatially variable rainfall uncertainty. The approach can also incorporate multiple interacting 

sources of uncertainties e.g. when output from one system serves as input to another. 
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3.11   Summary And Conclusions 

We presented a simulation framework for studying the propagation of radar rainfall 

estimation errors in predicted runoff. We used a state-of-the-art atmospheric model to 

simulate a storm that covers a large domain. The size of the study watershed made it possible 

to build a large data set of rainfall-runoff events. The variability within the storm allows us to 

treat the data set collected from different locations within the same storm as a surrogate to 

data sets compiled from different storms. We used a hydrologic model that had been 

rigorously calibrated on a well-monitored experimental watershed. The radar simulator used 

was adequate for simulating the errors addressed in this study and the simulated storm serves 

as an appropriate example of convective storms, at least for the purpose of modeling studies. 

We simulated pure radar orientation and range errors although the methodology makes it 

possible to incorporate many other systematic and random errors associated with radar- 

rainfall estimation process. The choice of our simulation tools and the simplicity of the errors 

we addressed allowed us to focus on statistical properties of errors and their propagation 

rather than the uncertainty associated with the modeling tools. 

Frequency analysis of radar-rainfall errors revealed useful information about the 

statistical distributions of these errors and their propagation. The inferred statistical 

distributions represent only the storm analyzed in our experiment and actual distributions 

using real data might be significantly different. We expect the errors to be larger for real 

radar data and the mean values of errors to be significantly different than 1.0, especially at far 
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radar ranges. Our experiment also reveals that rainfall errors were typically magnified in 

predicted Hortonian runoff. Generally, peak discharge errors were larger than runoff volume 

errors. The relationship between rainfall volume error and hydrograph errors depends on the 

size of the rainfall event, which complicates the analysis of this relationship. The findings of 

this study are not restricted to radar-estimated rainfall error propagation, but the shape and 

size of the watershed might have played an important factor in the details of findings of the 

study. 

We tried to quantify the uncertainty of hydrologic applications of weather radar in the 

form of probability densities. The conditional density of a radar-observed hydrologic variable 

for a given 'true' value of the variable, or vice versa, can be very useful in modeling studies 

and have potential for practical applications. Application of Bayes Theorem makes it possible 

to quantify the uncertainty of the 'true' hydrologic variable, based on radar-estimated data, in 

terms of a probability distribution, conditional on all available data and knowledge and 

expertise of the modeler. The approach can be applied to quality-controlled radar data from 

different storms at a certain watershed. Even quality-controlled radar precipitation errors 

might contain errors that are larger than the ones addressed in this study, e.g. effects of 

Anomalous Propagation and presence of'bright bands'. 

We acknowledge the limitations of this study, but the methodology can be extended 

for more rigorous radar data error studies. For example, we treated rainfall and runoff errors 
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at the watershed scale, but choosing a finer spatial scale might be more appropriate in many 

situations, especially for watersheds of larger sizes. The uncertainty associated with the 

modeling tools can also be integrated in the total uncertainty, which we did not include in this 

study. With all these limitations, we only mentioned a very few, we tried to demonstrate the 

utility of our methodology and its potential for practical application. We believe that these 

types of studies will help in understanding the uncertainty of hydrologic applications of 

weather radar and will prove to be very useful in making operational decisions based on radar 

products. 
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4      CONCLUSION AND RECPMMENDATIONS 

A physically-based simulation framework for studying the hydrological impacts of 

radar-rainfall estimation errors was developed in this research. The simulation framework 

consists of an atmospheric model, a simulator of radar observations, and a distributed 

hydrologic model. The simulation framework presented in this research provides a useful tool 

for studying the problems of the hydrologic applications of weather radar data. In particular, 

the research focuses on the issue of radar-rainfall estimation uncertainty and the propagation 

of the errors through rainfall-runoff models. 

The study demonstrates the utility of the simulation approach and considers the insight 

it provides. For example, it highlights the non-negligible effects of radar position (orientation) 

with respect to the basin, and it was able to isolate the quantitative effects of various radar- 

related sources of uncertainty. Results indicate that the geometry of the radar beam and 

coordinate transformations, due to radar-watershed-storm orientation, have an effect on 

radar-rainfall estimation and runoff prediction errors. In addition to uncertainty in the radar 

reflectivity vs. rainfall intensity relationship, there are significant range-dependent and 

orientation-related radar-rainfall estimation errors that should be quantified in terms of their 

impact on runoff predictions. 

Hydrologic simulations demonstrate that radar range and orientation errors are 

typically amplified through predicted Hortonian runoff. In many cases, errors in runoff are 
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nearly twice the magnitude of rainfall volume errors.  Amplification of errors is larger at 

locations of small total rainfall volume. 

The methodology provides a tool to perform experiments to address some operational 

issues related to the process of radar-rainfall estimation and adjustment. Rigorous statistical 

analysis of the relationship between estimated rainfall errors and characteristics of the 

predicted hydrograph is conducted for thousands of simulated events. In addition to the 

influence of radar estimation error, the relationship between event magnitude and the 

prediction error and its propagation was analyzed. Furthermore, Application of Bayes 

Theorem makes it possible to quantify the uncertainty of the 'true' hydrologic variable, based 

on radar-estimated data, in terms of a probability distribution, conditional on all available data 

and knowledge and expertise of the modeler. The approach can be applied to quality- 

controlled radar data from different storms at a certain watershed. 

The methodology developed in this research can be used to address many issues of the 

radar-rainfall estimation to problem that has not been addressed in this study. This study only 

considers convective storms and neglects the effect of bright band. Some issues of radar data 

quality control were not addressed (such as anomalous echo detection and elimination). Only 

single parameter S-band radars were considered. The significant level of some of these effects 

clearly indicates the need for more research on these issues. Such studies should include both 

simulation methods, such as the one described in this study, as well as real data-based studies. 
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Hopefully, through collaboration between the relevant federal agencies and the research 

community, it will be possible to design and conduct appropriate field and data experiments. 

Certainly, such experiments will ultimately lead to the improved predictive capabilities of 

hydrologic processes. 

The methodology can be extended to perform more rigorous radar data error studies. 

For example, this study addressed rainfall and runoff errors at the watershed scale, but 

choosing a finer spatial scale might be more appropriate in many situations, especially for 

watersheds of larger sizes. The uncertainty associated with the modeling tools can also be 

integrated in the total uncertainty, which was not included in this study. These types of 

studies will help in understanding the uncertainty of hydrologic applications of weather radar 

and will prove to be very useful in making operational decisions based on radar products. 
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APPNDIX I 

DEVELOPMENT OF CONDITIONAL DENSITIES 

The relation between the random variables E and T is modeled by building a 

conditional density function/{e|t). The conditional density can be built by obtaining a relation 

between the 'true' hydrologic variable / and the corresponding radar estimate e. Assuming a 

linear relation: 

e = at + b + e n\ 

Where a and b are constants and fis a normal noise with 0 mean and a variance. For 

a given value of/, we can apply the probability rules [Salas et al, 1993} that: 

4*(.v)] = <*(£[*]) 

Var[<P(x)] = 
W 
ax 

n (2) 
l'ar[x] 

In this case, since <7, b, l are all constants, the noise f will be the only variable in <f{e) 

in (2), where tf/^e) = e = at + b +e. So, the conditional density/(e|t) will have parameters: 

E[E\T = t] = at + b (3) 

Var[E\T = t]=a2 

Now let us assume that the prior density of T, g, is normal, with or without 

transformation, with a mean value of u and a variance of V i.e. 

B\A=» (4) 
Var[f]=V2 
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From Equations 3 and 4, the density of E can be obtained from the total probability 

law: 

to 

k(e)=\f(e\t)g(t)dt 
(5) 

Applying the theory of conjugate families of distributions (DeGroot, 1970), the 
i 

parameters of k(e) will be: 

E[E\ = a/i + b 

Var[E] = aV2 + a2 

Under conditions of normality and linearity and using Bayes Theorem, the conditional 

density of T, for a given value of E, will be h, where: 

k{x) (7) 

Applying the theory of conjugate families of distributions (DeGroot, 1970), the 

parameters of h will be: 

E[T\E = eUae + ß 1   ' J H (8) 
Var[r\E = e]=Yl2 

Where 

aV2 

u. — 
a2V2 + a~ 

ß = 
M<72 ■ -abV- 
a2V 

n2 a 2V2 

a2V2+a2 (9) 



APPENDIX n 

SIMULATION OF THE RADAR SAMPLING VOLUME 

The radar sampling volume is simulated by a numbers of points within the geometric 

boundaries ofthat volume. At the location of each of these points the atmospheric variables 

values are read from the output of the atmospheric model. The necessary computations are 

then carried to compute the power returned to the radar and the radar coordinates are 

converted to Cartesian coordinates to prepare the input file for the hydrologic model. The 

following variables are defined: 

phmin: minimum azimuth angle (deg.) 

phmax:        maximum azimuth angle (deg.) 

nQo: azimuthal discretization of the resolution volume along a diagonal 

nd: number of equi-spaced diagonals within the solid angle 

Rj: range discretization of the resolution volume 

A pseudocode of the radar of the radar beam simulation is given below: 

For each of the azimuth angles considered (1 degree) 

(The minimum and maximum azimuth angles are computed in a separate subroutine depending on radar orientation 

and distance of radar from the center of the storm domain) 

do 450 iph = l,ntheta 

For each range dicrelization (lkm) 

(The maximum range is computed in a separate subroutine depending on radar orientation and distance of radar 

from the center of the storm domain) 

do 400 id = l.nrange 

107 



108 

Divide the sample volume in "Rj" range intervals 

(The 1 km range is divided into 4, or more, intervals) 

do350ir=l,Rj 

Compute the elevation of beams center 

Locate nQo point along a diagonal within the sampling volume 

do 200 iQ = 0,nQo 

Set the number of equi-spaced diagonals 

do 100 ia= l.nd 

Find Cartesian coordinates of the infinitesimal sampling volume (point) 

Find the atmospheric model grid corresponding to the infinitesimal sampling volume 

coordinates 

Compute the total attenuated reflectivity of the sampling volume 

A Gaussian weight beam pattern is assumed 

100 continue 

200 continue 

350 continue 

Estimate the total reflectivity of the sampling volume 

Add an N (0,1) white noise to account for the radar sampling and measurement errors 

Find the corresponding (x, y) coordinates 

400 continue 

450 continue 


