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Abstract  

The fifth U.S. Army Conference on Applied Statistics was hosted by the United States 
Military Academy, West Point during 19-21 October 1999. The conference was cosponsored by 
the U.S. Army Research Laboratory (ARL), the U.S. Army Research Office (ARO), the United 
States Military Academy (USMA), the Training and Doctrine Command (TRADOC) Analysis 
Center-White Sands Missile Range, the Walter Reed Army Institute of Research (WRAIR), and 
the National Institute for Standards and Technology (NIST). The U.S. Army Conference on 
Applied Statistics is a forum for technical papers on new developments in statistical science and 
on the application of existing techniques to Army problems. This document is a compilation of 
available papers offered at the conference. 



FOREWORD 

The fifth U.S. Army Conference on Applied Statistics was hosted by the United States Military 
Academy (USMA), West Point during 19-21 October 1999. The conference was cosponsored by 
the U.S. Army Research Laboratory (ARL), the U.S. Army Research Office (ARO), USMA, the 
Training and Doctrine Command (TRADOC) Analysis Center - White Sands Missile Range, the 
Walter Reed Army Institute of Research (WRAIR), and the National Institute for Standards and 
Technology (NIST). The U.S. Army Conference on Applied Statistics is a forum for technical 
papers on new developments in statistical science and on the application of existing techniques to 
Army problems. The purpose of this conference is to promote the practice of statistics in the 
solution of these diverse Army problems. 

The fifth conference was preceded by a short course, "Data Mining with Decision Trees," given 
by Professor Wei-Yin Loh of the University of Wisconsin-Madison. COL David C. Arney, 
Chair, Department of Mathematical Sciences, opened the conference. BG Fletcher M. Larnkin, 
Jr., Dean, Academic Board, offered welcoming remarks. Several distinguished speakers spoke 
during invited general sessions: Edward Wegman (keynote), George Mason University; David 
Banks, Bureau of Transportation Statistics; Daryl Pregibon, AT&T; Jayaram Sethuraman, 
Florida State University; Charles McCulloch, Cornell University; and Ingram Olkin, Stanford 
University. The first three of these talks were related to the data mining theme of the conference. 
An important moment in the conference was the awarding of the Army Wilks Medal to Edward 
Wegman of George Mason University. Professor Wegman was recognized "for fundamental 
work in mathematical and computational statistics, for conceptual innovation which has changed 
the direction and character of statistical research, for innovative problem solving in applied 
settings, and for continuing support of Army statisticians and scientists." 

The Executive Board for the conference recognizes COL David C. Arney, USMA, for hosting 
the conference; LTC Philip Beaver, USMA, for handling all local details; Mr. David Webb, 
ARL, and Mr. Edmund Baur, ARL, for assisting with advertisement; Dr. Jock Grynovicki, ARL, 
for chairing the Army Wilks Award Committee, and Dr. Barry Bodt, ARL, for chairing the 
conference and serving as editor of the proceedings. 

Executive Board 

Barry Bodt (ARL) Robert Bürge (WRAIR) David Cruess (USUHS) 

Paul Deason (TRAC-WSMR) Eugene Dutoit (AIS) Jock Grynovicki (ARL) 

Robert Launer (ARO) LTC Philip Beaver (USMA) LTC David Olwell (NPS) 

Carl Russell (JNTF) Douglas Tang (WRAIR) Deloras Testerman (YPG) 

Mark Vangel (NIST) David Webb (ARL) Edward Wegman (GMU) 
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Visual Data Mining 

Edward J. Wegman 
Center for Computational Statistics 

George Mason University 
Fairfax, VA 22030-4444 

1. Introduction 

This paper is intended to be illustrative of some of the visualization tools we have exploited in a data-mining-like 
framework. Huber (1992, 1994) developed a taxonomy of data set size which characterized data by increasing 
orders of magnitude. In earlier discussions, Wegman (1995), I have pointed out that somewhere around 106 to 107 

bytes appears to be the practical limit for visualization of data while massive data sets easily venture into the range 
of 10 bytes. The human eye has approximately 107 cones implying that visualizing one observation per cone would 
optimistically put the upper limit of visual resolution at about 107 observations. (I refer the reader to Wegman 
(1995) for more details on the limits of visualization and of computational feasibility.) Thus, data mining as such 
cannot successfully exploit visualization for truly massive data sets without some modification of the raw data. In 
Wegman (1999) I have suggested several approaches including binning and thinning to reduce the size of data sets 
making visual analysis more feasible. 

With this caveat made, I would like to illustrate in this paper how several more or less standard statistical tasks can 
be carried out visually. Our basic approach involves a combination of three tools, parallel coordinates 
multidimensional displays, the ^-dimensional grand tour, and saturation brushing. In combination these three tools 
are available in a down-loadable software called ExplorN (available at ftp://www.galaxy.gmu.edu/pub/software/) 
and also a commercial version called CrystalVision soon to be available. 

Parallel Coordinates is a multidimensional visualization tool discussed by Inselberg (1985) and employed for data 
visualization by Wegman (1990). In order to represent a ^-dimensional point, the basic idea is to draw d parallel 
axes labeling them according to the data variables. A point is then represented by locating the value of each variable 
(component) long its respective axis and then joining the resulting points by a broken line segment. Several such 
diagrams are found in this paper. A fuller discussion of the statistical and data analytic interpretations of parallel 
coordinate displays is given in Wegman (1990). In some sense a parallel coordinate display is a generalization of a 
two-dimensional scatterplot. We shall refer to "data clouds" even when strictly speaking the parallel coordinate 
display involves line segments. 

The ^-dimensional Grand Tour is a generalization of the 2-dimensional grand tour introduced by Asimov (1985). 
The basic idea of a grand tour is to look at a data cloud from all possible points of view. As implemented, the d- 
dimensional tour is a continuous geometric transformation of a ^-dimensional coordinate systems such that all 
possible orientations of the coordinate axes are eventually achieved. The algorithm is described in Wegman (1991) 
and also in Wegman and Carr (1993). Coupled with the parallel coordinate display, these two techniques allow for 
an in-depth study of high dimensional data. Partial grand tours can be accomplished by holding one or more 
variables fixed. A grand tour is in some sense a generalization of a two-dimensional rotation although it is not a 
rotation in the conventional sense. 

Saturation Brushing is a generalization of ordinary brushing. Ordinary brushing is accomplished by brushing a 
data cloud with a color for the purpose of visually isolating segments of the data. In data sets where there is 
considerable overplotting, ordinary brushing is potentially confusing in misleading, particularly where there is an 
animation such as rotation or grand tour. This is particularly the case because in many computer graphics 
algorithms, colors are drawn according to the z-depth, lowest z-depth points are drawn last. This can lead to 
apparently arbitrary changes of color and certainly gives no clue as to the amount of overplotting. In saturation 
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brushing, each point is assigned a highly desaturated color (nearly black) and when points are overplotted, then- 
color saturations are added via the so-called a-channel. Thus heavily overplotted pixels have fully saturated colors 
whereas pixels with little overplotting remain nearly black. Saturation brushing is described by Wegman and Luo 
(1997) and is an effective method for dealing with large data sets. Coupled with parallel coordinates and the grand 
tour, these methods allow for an extremely effective visual approach to large, high-dimensional data. 

2. Density Estimation and Rapid Data Editing 

Saturation brushing can be used with either parallel coordinate displays or with ordinary scatterplots. In effect, by 
using saturation brushing with a single color (say white against a black background or gray against a white 
background) the brushed display becomes a density estimate. Local smoothing is not required except to the extent 
that the data is binned by the resolution of the screen. For ordinary high resolution displays this means there are 
approximately 1.3xl06 bins or pixels. With the a-channel, this density estimation is accomplished with the same 
speed as the rendering of an ordinary two-dimensional image. Figure 2.1   shows the so-called Pollen data which 

consists of 3848 points. At first glance this data would simply seem to be 
five-dimensional with  elliptical contours  suggesting an uninteresting 
multivariate normal data set.    However, when a desaturated parallel 
coordinate plot is examined in Figure 2.2 at least two interesting features 
can be observed. First a bright 
feature  in  the  middle  of the 
diagram suggests that there is a 
hidden structure. In addition the 
larger X-features in the display 
suggest that the overall elliptical 

clouds have a five-dimensional 
hole in the middle. The central 
structure can rapidly be isolated 

using a cutting tool. This is best done in the parallel coordinate display. The 
result is shown in Figure 2.3. The central structure shown in Figure 2.2 is 
actually 99 data points spelling the word EUREKA as illustrated in Figure 
2.3. The five-dimensional hole mentioned above can be verified by doing a more conventional density estimate. 

I4BBB 

Figure 2.1 Scatterplot matrix of the 
Pollen data. 

Figure 2.2 Desaturated parallel 
coordinate disDlav of Pollen data. 

3. Inverse Regression and Tree-Structured Decision Aids 

UBBBt 

Figure 2.3 Central feature of the Pollen data, 
the word EUREKA. 

The combination of parallel coordinates,  partial  grand tour and 
saturation brushing can be used in conjunction to achieve a form of 
inverse regression and a sort of tree structured decision aid. The data 
we use here to illustrate is 8-dimensional bank demographic data 
containing approximately 12,000 observations. One of the variables is 
profit, a variable we will treat as the dependent variable. After 
appropriate data editing for unknowns, we brush the profit variable 
with either red or green. Those observations with negative profit 
(loss) are brushed red, those with positive profit are brushed green. In 
an additive color system, red and green together make yellow. Thus regions of the covariates that show up as yellow 
are neutral with respect profit or loss. However, regions that are predominantly red reveal demographics that cause 
the bank to lose money while regions that are predominantly green represent the demographics of desirable 
customers. The partial grand tour is used to animate the demographic variables. Because the J-grand tour as we 
have implemented it forms orthogonal linear combinations of the demographic variables, we can visualize linear 
combinations of the demographic variables as a function of the dependent variable (profit). Thus we have a tool for 
inverse regression. Moreover by isolating linear combinations of demographic variables that are predominantly 
green or red, we can create a tree-structured decision rule for distinguishing desirable customers from undesirable 



customers. Unfortunately full color graphics are not available 
in the printed form of this paper so the full impact of this 
technique cannot be seen here. However, a full version is 
available with the color graphics at our website, URL 
www.galaxy.gmu.edu/papers/datarnining&visualization.html. 
The reader is encouraged to examine the sequence of images 
on our website. 

Figure 3.1 Bank data after editing, brushing profit 
variable with red and green, and a partial grand tour on 

the demographic variables 

4. Variable Selection and Dimensionality 
Reduction 

Figure 4.1 SALAD data in 13 dimensions showing three 
clusters. Parallel coordinate displays coupled with saturation 

brushing can allow us to select variables visually for the purpose of discriminant analysis. This is illustrated with 
the so-called SALAD data, a thirteen-dimensional data set containing spectral response of some 10,000 plus 
chemical samples. The data is shown in Figure 4.1. The thirteen variables are intensity of spectral response in 
thirteen color bands with increasing wavelength. The variable on the bottom axis is a classification variable and is 
brushed with one of three colors red, blue, or green according to the class of chemicals. The idea is to look for one 
or more of the spectral bands which adequately discriminates the three classes of chemicals. Although less apparent 
in the black and white version, the additive color feature can again be exploited. Red + blue = magenta, red + green 
= yellow, and blue + green =cyan. Variable BIO separates blue and red, and in fact shows two distinct red clusters. 
Unfortunately, BIO does not discriminate red from green. However, in parallel coordinate displays, the slope of the 
line segments matters considerably. The slope of the green line segments between B9 and BIO is substantially 
different from the slope of the red line segments between the same axes. Thus the variable B10-B9, a surrogate for 
slope, will distinguish red from green. Thus only two variables, B9 and BIO are adequate to discriminate all three 
classes and in fact also discriminate the two subclasses of the red. This dimensionality reduction allows for real- 
time discrimination of chemical agents. Again we encourage the reader to view the color images at our website. 

5. Clustering and Classification 

Our last example uses a combination of parallel coordinates and 
the grand tour to achieve a combination of clustering and 
classification. The data addressed here is a 12-dimensional dataset 
called the Oronsay sand data. This was treated more fully in 
Wilhelm et al. (1999). The basic idea is that samples of sand from 
various locations is taken and put through a series of sieves. The 
weight of sand isolated by each sieve is measured resulting in a 
distribution of particle sizes for each sand sample. The overall 
goal of the Oronsay sampling experiment was to classify 
Mesolithic sand samples as to whether they resembled 
contemporary beach sand or contemporary dune sand. Samples 

Figure 5.1 Oronsay sand particle distribution 
data for two distinct sites. 



ISBBBHHItB 9BE3      from two different locations in the Scottish Hebrides were taken and 
are illustrated in Figure 5.1. Although not recognized in the original 
analysis done by archeologists, Figure 5.1. shows that the two 
locations have distinctly different particle size distributions. Thus 
only the location with larger sample size (the sample colored black) 
was used in our analysis. Figure 5.2 is the result of following the 
BRUSH-TOUR strategy. The basic idea is to brush all visible clusters 
in the original orientation of the data with distinct colors. Then allow 
a grand tour rotation until new clusters show up. Brush the new 
clusters and repeat the BRUSH-TOUR until no new clusters are 
apparent. One can be confident of having isolated all clusters when 
the clusters identified by this technique move coherently under the 
grand tour rotation. In Figure 5.2, the beach sand is brushed with 

green, the dune sand is brushed with red and the unknown Mesolithic 
sand is brushed with black. The conclusion of our experiment was that 

although the Mesolithic sand more closely resembled contemporary dune sand it was still distinctly different and 
was   really   in  a  cluster  by  itself.   The   complete   Oronsay  sand  analysis   is   available   at  our  website 
http://www.galaxy.gmu.edu/papers/oronsay.html. 

Figure 5.2 Oronsay sand data for so-called 
CC site after BUSH-TOUR strategy. 
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A Methodology for Quantifying Critical Decision Events 
During the Execution Phase of Battle 

Dr. Jock Grynovicki 
Mr. Kragg Kysor 

Mr. Michael Golden 

U.S. Army Research Laboratory 
Human Research & Engineering Directorate 

Introduction 

The U.S. Army Research Laboratory (ARL) has undertaken a 5-year research program aimed 
at better understanding the distributed, non-linear decision-making process at the brigade level 
and above, as it is shaped by time, stress, team structure, staff experience, the environment and 
the introduction of digitization technology. Critical decision events were quantified using 
response data from key battle staff decision makers during the Crusader (howitzer) Concept 
Experimentation Program 3 (CEP 3) based on an ARL structured instrument called the "Decision 
Maker Self Report Profile (DMSRP)" (Golden, Grynovicki, & Kysor, 1999). The DMSRP is a 
data collection instrument designed to facilitate recording key data elements related to decisions 
made by commanders and staff officers during U.S. Army experiments and exercises. The 
DMSRP was not used during the planning phase but focused on the execution phase of battle. 

The DMSRP was designed, in part, as the data collection complement to a cognitive 
engineering model of the decision-making process. This model's framework is based on a model 
known as the "Execution Decision Cycle," which was developed in early 1998 as a major 
component of a project titled "Cognitive Engineering of the Human-Computer interface for 
Army Battle Command Systems (ABCS)." The model incorporates recent theories of cognitive 
science and organizational psychology and presents a process depiction of how the commander 
engages in a variety of cognitive activities associated with executing combat operations. The 
"Execution Decision Cycle" model is described by Leedom, et al. (June 1998). The purpose of 
the present paper is to present a theoretically based approach to the analysis and classification of 
multivariate critical decision cognitive processes as recorded in the DMSRP instrument. Key 
findings from the multivariate analysis of the DMSRP application during the Crusader Concept 
Experimentation Program 3 (CEP 3) will be summarized. 

Method 

Procedures-Experiments to support the CEP 3 were conducted at Fort Hood, Texas, from 14 
September to 16 October 1998. Some of these experiments consisted of a series of soldier-in-the- 
loop, interrelated simulation-supported studies designed to evaluate Crusader operational 
concepts. Participating battle staffs consisted of the Headquarters 3rd Brigade Combat Team (3 
BCT), the battle staff and elements of a Field Artillery FA battalion. The CEP 3 supported battle 
staff training of mission-essential tasks including performance feedback for its after action 



reviews (AARs). The training also helped participating units prepare for advanced collective 
training at the National Training Center (NTC). The participating battle staffs prepared 
operations orders (OPORDs) and the field artillery support plans (FASPs), based on approved 
Training and Doctrine Command (TRADOC) scenarios and division level orders. 

In support of the CEP, the ARL assembled a data collection team from its Cognitive 
Engineering Research Program to systematically assess the battle command decision-making 
process during the execution phase of operations. Using a structured data collection instrument 
named the DMSRP, the ARL team observed and quantified critical elements of this process 
during the execution monitoring and adjustment of combat operations by the battalion command 
group. These observations were supplemented by in-depth interviews conducted with the 
battalion command group during daily "hot wash" AARs. The goals of this data collection were 
to identify (1) the types of information processes used by the command group, (2) the types of 
individual and collective mental activities and structures involved in the command group's "sense 
making" process, (3) the translation of the commander's intent and concept of operation into 
specific directives and battle adjustments, and (4) the methods that the commander used with his 
staff and battlefield operating system (BOS) to maintain proper focus of attention and awareness. 
In addition, an analysis of the insights from observations and the AARs was used to improve the 
DMSRP data collection instrument for future use. 

Materials 

Scenarios 

Tactical scenarios, consisting of three separate phases were conducted three times each week 
for three consecutive weeks. The three phases consisted of (1) brigade movement to contact, (2) 
brigade defense in sector, and (3) division attack with the brigade offensive operations within the 
security zone. The three phases were conducted sequentially with one phase per day for a total 
of nine trials over the 3-week period. 

Survey Questionnaire 

The DMSRP was comprised of 15 major components and one section for providing additional 
comments in narrative form. Four of the major components had subsets which provided 
additional details for the data set. The major components, sub-sets, and the amplifying section 
appear in the DMSRP in the sequence shown in Table 1. 

The purpose of each DMSRP component was to document the cognitive processes and 
associated explicit and tacit knowledge used by the decision maker at critical decision points in 
the mission. Additional goals were to collect critical decision data from decision makers located 
at different echelons (brigade, battalion, company) to develop insights regarding (1) the degree 
of mental model consistency or commonality among the key staff members and (2) the 
variability of the decision maker's information requirements over time, echelon, and battlefield 
situations. 



Table 1 

Outline of data item sequence in the DMSRP 

Item Description 

1. Location of the decision maker (TOC/Echelon) 

2. General critical decision event description 

3. Length of time for decision event 

4. Decision: Significant or Minor COA change 

5. Part or aspect of OPORD changed 

6. If significant COA change 

a.   Principal Causes for COA change 

7. If minor COA change 

a.   Principal Causes for COA change 

8. Process associated with decision making 

a. One immediately obvious response 

b. One option considered, mental simulation 

c. Multiple options considered, mental simulation 

d. Formal Option Generation by Staff (single/multiple) 

e. Manage the situation 

9. Triggering features or patterns in current situation 

10. Source of features or patterns 

11. Type of uncertainty experienced 

12. Uncertainty coping strategies 

13. Patterns of commander-staff interaction 

14. Decision maker's cognitive workload estimate 

15. Information processing activities 
(24 separate activities) 

Analytical Methodology-A major cognitive decision-making program requirement was to 
develop a theoretical approach to the analysis and classification of the DMSRP-based 
multivariate critical decision-related cognitive processes. The data were collected during the 
execution phase of battle in a tactical operation center (TOC) under time pressure, uncertainty, 



and complexity, in a constantly changing environment as depicted in Orasanu and Connolly 
(1993). The variables are subjective as are their units of measure and the values of these units. 
A key to our analysis approach was the use of multidimensional scaling to help visualize the 
cognitive processes associated with the human decision maker as a complex adaptive system. 
Psychologically, one can view the multidimensional space as a graphic depiction of the 
commander's mental model (Converse & Kahler, 1992). The vectors of the information element 
space reflect similarities and dissimilarities in the data. We analyzed the commanders' and battle 
staff members' multivariate critical decision event patterns and preferences using a weighted 
multidimensional scaling (WMDS) method and then confirmed these perceived patterns using 
discriminant analysis. 

Weighted Multidimensional Scaling (WMDS)-ln mapping the ARL cognitive model of 
command decision making, the DMSRP instrument attempts to chart the characteristics and 
concepts representing the cognitive processes associated with execution phase military decision 
making. The challenge of analyzing these complex processes was addressed through the use of 
multidimensional scaling techniques where objective scales of ranked order attributes, as 
reported by the subject decision makers, were constructed. These scales were subsequently 
mapped back to two-dimensional characteristics associated with the decision maker such as 
experience (i.e., "novice" or "expert"). The weighted Euclidean distance Dijk = [£ wka (xia _ 
Xja) ] , was used to account for individual differences in cognitive processes associated with 
critical event decision-making. The S-stress is used as a measure of fit S-stress = [1/m Ek (IIEk II 
/IITkll]1/2 in which IIEII is the sum of all squared elements of the error matrix defined as HEN = II Tk 

- D II. S-stress can assume a value between 0 and 1. Smaller values represent a better 
quantification of the attributes. 

Results 

DMSRP data forms for 24 critical decision events were collected during the experiment. The 
following section provides a general overview of the analysis results for the data items 
comprising the DMSRP (see Table 1). 

Decision Type, Time Window, and OPORD Changes 

Regarding whether the decision was rated a significant or a minor change or adjustment of the 
current implemented course of action, 25% of the critical decisions were considered by the 
decision maker to be significant course of action (COA) changes while 75% were considered 
minor COA changes. The average time to make a decision was 39 minutes with a median time 
of 40 minutes for significant decisions and 12 minutes for minor decisions. The time range for 
significant and minor decisions did overlap. Most of the changes in the COA (54.5%) relative to 
the current operation order (OPORD) were related to "Friendly Scheme of Maneuvers" and "Fire 
Support." Overall, because there were two decision types (significant vs. minor COA change) 
and only a small sample size of data, no clear pattern in the type of change (significant vs. minor) 
could be identified. 
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Principal Causes for Adjustment in COA 

This section of the DMSRP framed the decision by identifying the principal causes for the 
change or adjustment in the current implemented COA. It allowed the analyst to identify which 
elements of information available to the commander were critical in shaping his decision. We 
asked the decision maker to select the three principal causes for the decision to change the 
current COA and then rank order them with respect to each other. Using WMDS and 
discriminant analysis, we found significant differences between the expert decision makers and 
the novice decision makers, in the causes for the decision to change or adjust the course of 
action. The differences in the information elements' vector space reflected which items were 
considered important by each group. Specific clusters of information elements can be seen to 
represent concepts or information categories closely associated with the individual's experience 
level. Figure 1 depicts significant differences in the strategy and concepts used by the experts 
versus the novices (S-stress = 0.17, RSq = 0.92, Wilks' Lambda-0.71, sig.=0.032). The 
experienced decision makers (i.e., commanders) focused first on the change in the enemy's force 
projections, second on the blue force projections, and finally, on the tactics being implemented. 
The novice decision makers (i.e., commanders) focused on the blue force projection, the 
perception of the future plan, and the change in the reading or interpretation of the cues or 
patterns used for situational recognition. 
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Figure 1. Principal causes for adjustments in COAs. 
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Process Associated With Decision Making 

About half the decision-makers (52%), felt that the critical event situation suggested "one 
immediately obvious response, course of action change or adjustment." Forty-three percent of 
the respondents stated that "one response, course of action, or adjustment was not immediately 
obvious." Of these ten decision cases, 70% felt that multiple options were considered and 
evaluated sequentially using explanatory reasoning and storytelling based on a group oriented 
assessment. Finally, in only one case, the staff decided to manage the situation because of 
uncertainty, considered a formal option by directing the staff to generate new options, or used 
explanatory reasoning to consider one option. 

Triggering Features or Patterns in the Current Situation and Principal Sources for 
Monitoring 

The triggering features or patterns used by the commander and his staff to trigger one 
immediately obvious response varied by individual, echelon, and situation, with no quantifiable 
pattern. Triggers were cited such as weapon effectiveness, disposition of enemy and friendly 
forces, terrain, enemy tempo, and combat support. WDMS and discriminant analysis indicated 
that no significant difference was identified between the expert decision makers and novice 
decision makers regarding a difference in the principal sources of information (features or 
patterns) used to comprehend the current situation and trigger the decision event (S-stress=0.36, 
RSq=0.46, Wilks' Lambda=0.75, sig.=0.51). The expert decision makers primarily used 
reconnaissance and paper maps to comprehend the current situation. They also relied on the 
tactical net and information from the modular semi-automated forces simulation computer 
(MODSAF) to monitor the current situation. Other strategies were also used. The novice 
decision makers used numerous sources of information to help see the feature cues, indicators, or 
patterns in the current situation as seen in Figure 2. 
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Types of Uncertainty Experienced and Coping Strategies Used 

The majority (72%) of the staff experienced uncertainty because of incomplete information 
about the situation. Another 20% claimed to have an incomplete understanding of the situation 
even with complete information. Undifferentiated alternatives and confusion because of many 
meanings or interpretations accounted for the remaining reasons for uncertainty. To cope with 
uncertainty, the staff collected more information to reduce uncertainty (32%), made assumptions 
to deal with uncertainty (26%), weighted pros and cons (18%), formed understanding using 
plausible reasoning (11%), and forestalled (10%). No trend differences regarding the types of 
uncertainty experienced and coping strategies used could be determined between novice and 
experienced decision makers. 

Patterns of Commander-Staff Interaction 

The DSMRP results indicate that for this sample, the decision maker did not make decisions 
in isolation. Instead, the decision maker and his staff members performed as a well-formed team 
throughout the entire decision event a little more than a third (39%) of the time. Twenty-six 
percent of the time, the decision maker first set the general decision framework and then allowed 
the staff to complete the details. In the remaining cases (21%), the staff was hierarchically 
directed by the decision maker to provide specific input, and then the decision maker integrated 
his information to make the final decision. 

Cognitive Workload Estimate 

"Mental Demand" versus "Effort" Ratings.    Most of the decision events were rated by the 
decision makers as "low" or "moderate" for mental demand (see Table 2).    One interesting trend 

Table 2 

Mental Demand as a Function of 
Military Experience 

Novice=CPT-MAJ (18)   Expert=LTC-COL (6) 

Mental Demand 

Experience 

Novice  Expert 

Very Low 5%        0% 

Low 40%       0% 

Moderate 30%       25% 

High 25%      50% 

Very High 0%       25% 
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was that the expert decision makers (i.e., colonels) rated the mental demand for the decisions 
they made as being "moderate," "high," or "very high." On the other hand, the novice decision 
makers (i.e., captains-majors) rated their mental demand at lower scale levels. However, while 
the expert commanders felt that their decisions were more mentally demanding, they regarded 
the process as involving less effort than did the novice commanders (see Table 3). 

Table 3 

Effort as a Function of Military Experience 

Novice=CPT-MAJ (18)   Expert=LTC-COL (6) 

Effort 

Experience 

Novice      Expert 

Very Low 10%        25% 

Low 25%        25% 

Moderate 35%        50% 

High 25%         0% 

Very High 5%         0% 

Information Processing Activities 

The utility of WMDS coupled with discriminant analysis was effective in quantifying the 
information processing activities conducted by the expert versus novice decision makers. 
WMDS indicated that a significant difference existed between these two groups in the type of 
information processing activities used (S-stress=0.15, RSq=0.96, Wilks' Lambda=0.64, 
sig.=0.029). The more expert decision makers (i.e., commanders) monitored specific objects or 
events that served as a qualitative indicator of a broader activity or trend within the battle space. 
They developed mission goals and priorities to achieve the desired battlefield end state. They 
interacted with their staff to reaffirm their decisions. In contrast, battlefield visualization, rule 
heuristics, and monitoring were the primary information processing activities used by the novice 
decision makers. As shown in Figure 3, the less experienced commanders focused on clarifying 
or prioritizing operational objectives, critical cue tracking, and relying on battle staff group 
assessment to monitor and collect information for assessment and decision making. They 
mentally applied doctrinal rules to interpret and evaluate a choice or option. 

Summary 

The DMSRP instrument along with the WMDS and discriminant analysis, has proved to be a 
useful tool in providing structured, diagnostic insights into the complex military decision making 
process. 
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ABSTRACT 

Fractional factorial design has sometimes been considered for use in field tests, but it has seldom been 
implemented. Typically, fractional factorials have been regarded as inflexible and fragile. Actually, traditional 2nk 

fractional factorial experimental design can produce implementable and robust field test designs that efficiently 
address multiple goals. This paper updates a paper presented in 19831 to reflect subsequent changes in technology, 
resource availability, and acquisition philosophy. 

INTRODUCTION 

Efficient experimental design offers several advantages in military field tests. The most frequently touted 
advantage of efficient design is resource reduction, which can be substantial. This advantage can be even greater, 
however, if it is viewed as exploiting available resources more efficiently. Experimental design technology 
developed over the past eighty years can be used to spread fixed resources efficiently over a wide variety of test 
conditions subject to complicated constraints. Moreover, modern computer hardware and software can now be used 
not only to visualize, analyze, and effectively portray the results of complicated experimental designs but also to 
assist in their development. 

The designer of a military field test is typically presented with a very large number of factors possibly affecting 
test results and a continually changing test environment. The usual approach to field test design specifies that some 
factors be controlled, some be varied tactically, and the rest be uncontrolled (which frequently means ignored). 
Generally, the design specifies some minimally acceptable sample size for certain combinations of controlled 
conditions and gives quantitative guidance in terms of relative proportions of events for tactically varied factors. The 
test operator, however, must perform detailed test planning one trial at a time. In most instances, detailed test 
planning does not allow much tactical free play, but instead the tactically varied factors are controlled by the test 
operator within each trial. Moreover, the uncontrolled conditions usually end up being relatively constant 
throughout each trial, either through expedience of test conduct or because truly uncontrollable test factors tend to 
remain fairly constant over small regions of time or space. Thus the number of test factors actually controlled is 
frequently much larger than the number specified for control, and truly uncontrolled factors tend to vary from trial to 
trial rather than uniformly over the test. 

This paper illustrates how sequences of fractional factorials can be used to manipulate a large number of test 
factors within a test framework that explicitly recognizes operational constraints and exploits the fact that truly 
uncontrollable test conditions tend to vary only from trial to trial. The author proposed such techniques in actual 
tests almost twenty years ago,2,3 but he has only used them in a relatively simple case exploiting a sequence of 
Graeco-Latin Squares (a special fractional factorial). Floyd Hill's use of Graeco-Latin Squares in the Project 
STALK operational test (1953)4 is another rare example. Three reasons that fractional factorials have not seen 
greater use in field testing are: 

• Sequences of fractional factorials routinely require substantial changes in test conditions between trials. 
Unless those changes are carefully thought out, test conduct becomes extremely difficult and inefficient. 

• Fractional factorials appear on the surface to be fragile—their basically sparse nature suggests that they 
would fall apart if observations are lost or corrupted. Even for designs in a small number of factors, this 
perception of fragility turns out to be incorrect.5,6 For fractional factorial designs in a large number of factors 
the following argument suggests that the perceived fragility is overblown. One seldom looks at more than 
two or three factors together when analyzing data. Except for deliberate confounding, the nature of designs 
based on carefully constructed sequences of fractional factorials ensures that observations in any two or 
three factors are balanced in the remaining factors. Tables comparing two or three factors summarize a large 
number of observations in any cell, and those observations are generally balanced in the other factors. As 
more factors are formally considered in a fractional factorial, loss or corruption in relatively few 
observations becomes less likely to distort comparisons between any two or three factors. 
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• Demands for substantial free-play in field testing makes highly structured statistical design a very hard sell. 
With the current trend to make more use of Field Training Exercises (FTXs), the time may be right to put 
much more formal structure into any combined operational/developmental testing conducted. 

The body of this paper consists of two examples. The first simple example illustrates the benefits obtainable 
from the fundamental ideas of experimental design. The second and primary example shows how those ideas can be 
extended in a systematic manner to field test design. Although this second example is constructed rather than actual, 
the constraints within which the example was developed are representative of those occurring in military field tests. 
The detailed guidance provided in the second example shows that a mathematically challenging experimental design 
can be specified in a practical manner that relieves the test operator of many technical scheduling problems without 
restricting the application of relevant military judgment or unduly reducing operational realism. 

A SIMPLE ILLUSTRATIVE EXAMPLE OF EFFICIENT EXPERIMENTAL DESIGN 

Consider the following situation. The test operator has four objects (A, B, C, D), each weighing 10 to 15 
pounds (true but unknown weights of a, b, c, and d, respectively). The experimental goal is to estimate the weight of 
each object as accurately as possible. Four scales are available for weighings, each inaccurate by some constant 
amount over the range from 10 to 60 pounds. No more than four weighings can be made on any one scale. Thus any 
combination of the four objects can be weighed on each scale, but the weights obtained will vary by constant 
amounts depending on the scales used. 

The simplest experimental approach would be to weigh each object on each scale (16 weighings total) and 
average the results. Table 1 summarizes the calculations and shows that all estimates are biased by an amount equal 
to the average error of scales. This bias cannot be removed. 

TABLE 1. Estimation of Weights Using Simplest Approach 

Obiect True Weight Scale 1 
A a a+si 
B b b + S] 
C c C + Si 
D d d + Si 

Scale 2 
a + s2 

b + s2 

c + s2 

d + s2 

Estimated Weights 
Scale 3 
a + s3 

b + s3 

c + s3 

d + s3 

Scale 4 
a + s4 

b + s4 

c + s4 

d + s4 

Average* 
a +s 
b + s 
c + s 
d + s 

Average denotes the arithmetic mean. In particular, s = (S| + s2 + s3 + s4)/4. 

A more efficient experimental approach makes only two weighings per scale (8 weighings total) but obtains 
better estimates. Not only are a, b, c, and d estimated without scale bias, but each of the four scale errors is also 
estimated. The trick is to weigh combinations of objects on each scale. Table 2 summarizes the weighing scheme 
and the appropriate computations. 

TABLE 2. Estimation of Weights Using Efficient Approach 

Part 1: Measurements 

Weighing Description Scale 1 Scale 2 Scale 3 Scale 4 
First Objects weighed 

True weight 
Estimated weight 

A 
a 
a+si 

B 
b 
b+s2 

C 
c 
c+s3 

D 
d 
d+s4 

Second Objects weighed 
True weight 
Estimated weight 

B,C,D 
b+c+d 
b+c+d+sj 

A,C,D 
a+c+d 
a+c+d+s2 

A,B,D 
a+b+d 
a+b+d+s3 

A,B,C 
a+b+c 
a+b+c+s4 

Combined Difference 
Sum 

Xl=a-b-c-d 
Yl=a+b+c+d+2si 

X2=b-a-c-d 
Yl=a+b+c+d+2s2 

X3=c-a-b-d 
Y3=a+b+c+d+2s3 

X4=d-a-b-c 
Y4=a+b+c+d+2s4 

Part 2: Final Estimates 

a = (Xl-X2-X3-X4)/4 
b = (X2-Xl-X3-X4)/4 
c = (X3-Xl-X2-X4)/4 
d = (X4-Xl-X2-X3)/4 
T = a+b+c+d = -(Xl+X2+X3+X4)/2 

s, = (Yl-T)/2 
s2 = (Y2-T)/2 
s3 = (Y3-T)/2 
s4 = (Y4-T)/2 
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The efficient procedure just discussed gets more useful results with 8 weighings than the simple procedure 
does with 16—the only catch is that there are no "degrees of freedom for error" left to permit standard statistical 
inference. If 16 weighings were really available, eight more weighings could be conducted to provide at least error 
estimates. This efficiency has another side. Within fixed resources, efficient design allows explicit consideration of 
more factors and conditions than a simplistic design. In this illustrative example, if resources had been available for 
only 8 weighings, the simple approach would force a choice between weighing only 2 objects (reducing scope) or 
using only two scales (reducing generality). Or two weighings per scale might be the maximum number possible or 
feasible. Military field tests are typically subject to both constraints: resources are limited, and only a limited 
number of observations (analogous to weighings) can be obtained in any single trial (analogous to scale). By 
carefully specifying combinations of factors to be tested together during any trial and cleverly stringing them 
together, efficient experimental design can be used to produce increases in scope (the number of factors examined) 
and generality (the number of conditions under which selected combinations of factors are tested). Since describing 
the effect of a wide variety of test conditions on total system performance should usually be the primary goal of a 
field test, efficient experimental design can contribute substantially to the attainment of that goal. 

Fortunately, the illustrative example just given generalizes to tests of other sizes. In particular, with 64 scales 
and 8 weighings per scale, it is possible to estimate the weights of 64x7=448 objects as well as to estimate the bias 
for each of the 64 scales—thereby estimating 512 parameters with 512 observations. In practice, such a theoretical 
limit would not typically be attainable and would generally be undesirable if attained since some "degrees of 
freedom for error" are generally desirable in experimentation to permit statistical inference. In the next section, 
however, an example is constructed in which 8 performance observations (weighings) for a hypothetical tactical 
jammer are taken during each of 64 test periods (scales). The effects of 41 factors potentially influencing 
performance are estimated as well as 8 differences between trials and the mean (a few other parameters are also 
considered). This example illustrates both the flexibility inherent in fractional factorial design and the ability of 
fractional factorial design to provide a rich background for test execution. 

AN EXAMPLE OF EFFICIENT EXPERIMENTAL DESIGN IN A HYPOTHETICAL FIELD TEST 

A. UNDERLYING FRAMEWORK AND CONSTRAINTS 

Suppose that a hypothetical ground-based tactical voice communications jammer capable of monitoring two 
frequencies and jamming one at a time is ready for operational/developmental test. This jammer is mounted on a 
vehicle, and the mission profile/operational mode summary calls for the jammer to operate against two tasked 
frequencies for a specified period of time from one position then to move a specified distance over certain types of 
terrain to a new position. Mission length is to vary between 30 and 60 minutes depending on the intensity of combat, 
with shorter missions corresponding to more intense combat. Roughly 50 percent of the missions are to be between 
30 and 40 minutes long, 30 percent between 40 and 50 minutes long, and 20 percent between 50 and 60 minutes 
long. The jammer has software that supposedly prioritizes the two tasked frequencies and is to be tested against 
tactically representative voice communications over a variety of tactically deployed nets using various typical threat 
radios. Overall jammer performance is to be evaluated, and the effects of numerous factors potentially affecting 
jammer performance are to be quantified. In particular, effects of jammer to receiver distance, transmitter to receiver 
distance (link distance), threat radio power, and density of transmissions on each net are to be quantified in some 
operational sense. In addition, effects of net type (command, logistic, fire support, etc.) and echelon as well as 
jammer distance to the Forward Edge of Battle Area (FEBA—the notional boundary between friendly and hostile 
forces) are desired. Several possible synergistic effects are also of interest. Of special interest is possibly varying 
effectiveness of the prioritization software as the relative density of transmissions on the two tasked frequencies 
varies. Survivability of the jammer is to be addressed during testing in terms of the speed and accuracy with which 
jammer positions can be located. Logistic supportability is to be addressed throughout testing, hopefully in terms of 
the varying stresses applied to the jammer under the scenarios tested. Four jammers will be available for test. 

B. USUAL APPROACH 

At this stage, the test designer usually identifies factors and conditions for test, and an analyst is typically 
asked to divine the sample size necessary for "statistical significance." This determines the test length and the 
overall numbers of observations to be obtained. The test designer then writes guidance for the test operator in terms 
of general scenarios and matrices indicating the number of iterations to be conducted under each combination of test 
conditions. Finally, the test operator lays out and conducts the test in as efficient and operationally realistic a manner 
possible. Unfortunately, the testing problem described here is really too complicated for accurate sample sizing. 
Moreover, the illustrative example given earlier shows that method of test conduct can be more important than 
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sample size. Using efficient experimental design to indicate effective test methods, the analyst can clarify how much 
can be accomplished with any particular sample size. The following discussion indicates how this might occur. 

C. DIRECT CONSEQUENCES OF TEST CONSTRAINTS 

Within the underlying framework and constraints for the hypothetical jammer test, many options are available, 
both for test design and for test conduct. However, certain test features follow almost inevitably from the constraints 
described above. 

The test would certainly be conducted as a series of trials with several trials per day. Since there are to be four 
jammers, each tasked against two frequencies, there is no reason to design a test involving more than eight nets. 
Although tasking more than one jammer against one net, examining nets consisting of more than one link each or 
using less than four jammers on some jamming trials are possible options, this example assumes that each jamming 
trial consists of all four jammers operating against 8 distinct nets consisting of one link each (each link/net would 
use a separate frequency throughout each trial). Then on any given trial, 16 individuals1 must be positioned in 16 
locations such that communications are possible between 8 pairs of locations (links) which exhaust the 16 locations. 
In any trial the two individuals on any link constitute a team and would have to use compatible radios. Although it 
might be possible to move radios and individuals to different positions between trials on the same day, such 
movement would make test conduct more difficult and less efficient (due to travel time and necessary rechecking for 
correct communications and configurations). Likewise, reconfiguring the links between trials would be practically 
infeasible, so teams would almost certainly remain on the same links throughout each day. It is reasonable to 
assume, however, that teams could use different frequencies on different trials during the same day and that teams 
and radios could be rotated between links from day to day. Links could be reconfigured from day to day, but it is 
difficult to lay out multiple links over which communication is actually possible, so it is desirable to reconfigure 
links only infrequently. Thus it is assumed that on each day a team consisting of two individuals with radios of one 
type are assigned to each link, that the individuals and radios are rotated between links from day to day, and that 
links are reconfigured only every week or two (if at all). Frequencies are rotated between links from trial to trial. 

The situation involving rotation of jammers is somewhat different. For any trial, four jammer positions are 
necessary, and since each jammer must move between trials, each could move to a different position between trials. 
Since jammer survivability is an issue, surrogate threat direction finding would be necessary on some trials. If 
jammers merely rotated among four positions on a given day, then only one trial per day would be usable for 
survivability assessment. Thus it would be desirable to have sufficient number of jamming positions so that each 
could be used just once per day. Then survivability could be addressed, say, once a week for a whole day, and the 
jammers could rotate through the jamming positions in such a way that each position is used once per day and each 
jammer used each position once during the week.* A new set of jammer positions would then be necessary only 
once per week. 

In reality, a very large variety of link lengths and types is likely to be present on the battlefield. Since only 
eight will be tested at a time, however, selection must be made carefully. For the array of threat links to be realistic, 
it should contain links of different lengths at different distances from the FEBA. These distances represent 
communications at different echelon. If links are classified by echelon (say battalion to company (BC) and company 
to platoon (CP) and by length (short and long) then there are four possibilities: BC-short, BC-long, CP-short, and 
CP-long. If two links of each type are portrayed on each trial then the desired eight links would be present on each 
trial. Although other choices for classification of eight links are possible, the classification described is a likely 
choice. Similarly, a likely classification for jammer position is that a jammer can be located relatively close to the 
FEBA or relatively far from the FEBA, and with four jammers, it is reasonable to assume that on any trial, two 
jammers could be located relatively close to the FEBA and two located relatively far from the FEBA. 

The actual content and density of messages presents a different problem. For each link and each trial a number 
of messages must be generated and given to teams for transmission. These messages must be scheduled so that they 
are sent during periods when jammers are actually operating. On any link during any trial, it would be desirable to 
send messages in each direction, preferably the same number of messages in each direction. During any one trial, it 
is necessary to portray different densities (i.e., different numbers of messages) on different links and to task jammers 

f Throughout this paper, "individuals" refers to persons or automated programmable message generators. Since this paper 
describes a relatively short test with tactical voice (vice data) messages subject to degradation by jamming, it is doubtful that 
replacing persons with automated devices would be practical, but such an option should be considered in any actual test. 
* As developed later, "weeks" are four-day weeks; half of the first "week" is conducted, then the second "week" is conducted, 
finally the other half of the first "week" is conducted. 
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in such a way that some jammers are tested at high priority against denser links and some are tasked at low priority 
against denser links. Moreover, messages cannot be reused by the same teams. If messages were of 30 second 
average length, then an average of 12 messages per link (six minutes of transmission time per link) is a reasonable 
number of messages, but this requires 8x12=96 messages to be generated per trial; if 8 trials were conducted per day 
over, say, an 8-day test, then a total of 6,144 messages would be required. Since an obvious measure of jamming 
effectiveness is the percent of essential message elements (EMEs) received, analysis of each message is necessary to 
identify its EMEs and the number correctly received. The number of messages required for a test like this one, 
combined with processing for each message, suggests that some compromises with operational realism be made to 
permit reuse of messages. A specific version of such a compromise is discussed in the next subsection. 

This subsection has indicated that the outlines of testing follow more or less directly from specified test 
constraints and the realities of test conduct. Each day 8 teams with specified radios are positioned on 8 links, and a 
number of trials are conducted with each of the 4 jammers tasked against 2 links on each trial. Frequency 
assignments rotate among links between trials and jammers change positions between trials so that no jamming 
position is used twice on the same day. Teams rotate among links from day to day and jammer positions are reused 
for several days. The threat array is laid out with links classified simply by length and echelon, and the threat array 
is changed rarely if at all. Some compromise with operational realism is made so that messages can be reused. 

The next subsection indicates further more arbitrary choices dictating the method of test conduct. 

P. FURTHER CHOICES AFFECTING TEST CONDUCT 

Until now, little has been said about the number of trials per day. The specified average trial length is 40-45 
minutes. Allowing an hour or so between trials for the jammers to conduct mobility exercise as well as time for 
administrative matters indicates that four jamming trials per day is reasonable and feasible. However, this choice 
leaves considerable dead time between trials for the threat array. In order to provide a baseline for jamming trials, it 
might be desirable (during a least a portion of the test) to exercise the threat array during these otherwise dead times 
by transmitting messages similar to those in jamming trials but with no jammers present. In what follows, such an 
approach is assumed, so each day consists of eight trials, four with jamming and four unjammed. 

Reuse of messages was left open at the end of the last subsection. Such reuse not only reduces the number of 
distinct messages required (making test conduct and data reduction easier) but also improves overall test precision 
by reducing variation (a trick often used in constructive simulation). One way to solve the problem of message reuse 
is to prepare eight sets of messages each day, two of 6 messages each, four of 12 messages each, and two of 18 
messages each. Each team member would send half the messages assigned to the team during any trial. Message sets 
would be rotated among teams from trial to trial in such a way that if a team transmitted an n-message set during a 
jamming trial, the same team would transmit another n-message set during the corresponding unjammed trial. On 
each jamming trial, jammers would be tasked so that one jammer was tasked against two 12-message sets, one 
jammer was tasked against one 12-message set and one 18-message set, one jammer was tasked against one 6- 
message set and one 12-message set, and one jammer was tasked against one 6-message set and one 18-message set. 
Each jammer would rotate through all four taskings during any day, and each message set would receive first 
priority twice and second priority twice during the jamming trials on any day. In other words, during any trial 
relative message densities in the ratios 1:1, 3:2, 2:1, and 3:1 would appear. Each jammer would see each ratio during 
each day, each ratio would appear twice with each priority assignment during each day, and each jammer would see 
each priority assignment at each ratio the same number of times during the test. 

With the same number of messages transmitted during each trial, the only way to control combat intensity is to 
vary trial length. Fortunately, the correspondence of shorter trials to more intense combat is specified in the mission 
profile. One possible specification of trial lengths is one 30-minute trial, two 40-minute trials, and one 60-minute 
trial per day, which gives a distribution of trial lengths very similar to that specified in the mission profile. To 
conform to realistic scenarios, two possible arrangements of trial lengths are specified for jamming trials: 40-30-40- 
60 and 60-40-30-40. Each arrangement starts and ends with trials of relatively high intensity with lower intensity 
trials in between. Possible effect of trial ordering should be considered, and it would probably be worthwhile 
deliberately to vary starting times from day to day, starting trials on some days in early morning (say 0600) and 
starting trials on other days in early afternoon (say 1200). 

In a truly operational setting, messages transmitted over any one net would be of similar character. That is, 
messages on command nets are different from messages on logistic nets. These in turn are different from messages 
on fire support nets, etc. In real operations, nets would be identified by the character of their messages, and tasking 
would be passed to the jammers based on assessment of each net's criticality at a given stage of battle. For a test of a 
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Jammer divorced from a signal collection system, however, the realism of message traffic during short periods of 
time is much more important than the realism of message flow. Thus messages of several different types could be 
passed over each link during each test period. In particular, a convenient approach is to identify three types of 
messages on any day and generate all 8 message sets for that day in such a way that one third of the messages are of 
each type. If this were done—in particular if messages were scheduled so that each member of each team 
transmitted half the messages of each type during each trial—ultimate analysis could consider possibly varying 
effectiveness of jamming against various message types in addition to the other factors considered. 

Possible distribution of threat radio types has not yet been mentioned. It is assumed that four relatively lower 
powered radios (each of the same type) as well as two each of two types of relatively high powered radios will be 
used during each trial. It is further assumed that each team will have two radios of the same type throughout each 
day but that radios will be rotated among links and teams in such a way that each radio type is used by each team the 
same number of times and each radio type is used on each link the same number of times. 

During the course of the test, each jammer should be subjected to roughly the same stress as every other 
jammer. The design scheme sketched so far spreads tasking evenly over jammers. For a logistic supportability 
evaluation, however, it may be desirable to vary the stress from mobility exercises so that any large variations in 
logistic demand generated by varying test conditions can be assessed. One way to do this is to classify mobility runs 
according to roughness (relatively smooth or relatively rough) and length (relatively short or relatively long), and 
always run mobility trials before jamming trials. There are four combinations of conditions. If on each day each 
jammer ran mobility exercises under only one combination of conditions but if jammers rotated among conditions 
from day to day, then any large and consistent variation in logistic demand as stress varied might show up either in 
reliability   failures   or   in   degraded   jammer 
performance (provided mobility exercises were 
always run before jamming trials). 

The final consideration in the detailed 
design is the assumption that a typical array laid 
out on the ground is similar to that in Figure 1. If 
the array is laid out in such a way that it could be 
jammed from either side (sides I and II in Figure 
1), then switching jammer positions from one side 
of the array to the other essentially creates a new 
array. The number of times a single array could 
be reused is effectively doubled if this approach is 
taken. Unfortunately, some possibly unacceptable 
degradation in operational realism occurs in this 
approach. The simple classification of links by 
length and echelon, if portrayed in a truly 
operationally realistic way, would tend to display 
longer links at higher echelons so that link length 
would be relative to echelon. Switching the array 
side from which jamming is done also switches 
echelon for each link. If long links at high 
echelon were longer than long links at low 
echelon when viewed from side I, long links at 
low echelon would be longer than long links at 
high echelon when viewed from side II. Thus if 
jamming from each side of the array were 
permitted, link length would have to be absolute 
rather than relative. This example assumes that 
the increased efficiency of test conduct obtained 
by switching sides is judged to outweigh the 
resulting degradation in operational realism.* 

The   design   decisions   and   compromises 
discussed in this subsection were more arbitrary 
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Types and density of messages would also vary operationally by echelon, an additional complication. 
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than those in subsection C. The decisions and compromises in both subsections, however, represent solutions to 
typical problems in field test design and conduct that must be solved either explicitly or tacitly in actual field tests. 
In fact, the problems in actual tests tend to be both more numerous and more complicated than those discussed here. 
As described in both subsections, the problems have been formulated and solved more analytically than is typical, 
because it has been assumed that an analyst was deeply involved in detailed planning and that the analyst's 
suggestions have been conscientiously considered when decisions and compromises were reached. Underlying the 
analyst's participation is the implicit promise that the analyst will produce unambiguous guidance which specifies a 
feasible way to perform all the various rotations of teams, jammers, radios, and scenario types outlined previously. 
The primary point of this paper is that solid analytical guidance can be given and that it can be developed 
systematically using the technology of efficient experimental design. When this is done, the analyst can explicitly 
describe any biases inherent in the test procedure and indicate what can be gained by further modification of test 
procedure or by conducting a longer test. The detailed guidance necessary for conducting the test as outlined is 
given in subsection E for an 8-day period (one complete rotation for a fixed threat array). Subsection G gives a 
systematic description of that guidance and indicates how guidance for any subsequent 8-day periods could be 
produced. If the decisions and compromises discussed in subsections C and D had been different, the guidance and 
technical details described in subsections E and G would also be different, but most alternate decisions and 
compromises could also have been incorporated into the design along the lines described. 

E. DETAILED GUIDANCE FOR AN EIGHT DAY TEST 

In order to provide guidance for an 8-day test in accordance with the outline developed in subsections C and D, 
three types of specifications are necessary: 

• For each trial, start time and length must be specified. 

• For each team on each trial, the following must be specified: the location of each team member, the radios 
used, and the message set used (with scheduling, half the messages given to each team member). 

• For each jammer on each jamming trial, the jammer position and prioritized frequencies for jamming must 
be specified, as well as the type and length of course to be traversed before or after each trial. 

Table 3 gives start time and length for eight days of trials conducted at the rate of eight per day (four jamming 
trials and four unjammed trials per day). Table 4 specifies location, radio type, message set, and frequency used by 
each team during each trial in Table 3. Table 5 specifies frequency used by each team during each trial in Table 3. 
Table 5 specifies position and prioritized frequencies used by each jammer during each jamming trial in Table 3 as 
well as the type and length of each course to be traversed before each jamming trial. 

F. TEST REALISM 

Provided the test operator lays out the threat array and jamming positions in an operationally realistic manner 
and provided the messages used are representative of threat communications, the jamming events portrayed in this 
test are operationally realistic even though they would never occur this way on the battlefield. 

• Each message transmitted is presented in an operationally realistic manner to the jammer tasked against it. 

• The variety of message presentations as a whole is representative of what might occur in combat. 

• Each jammer is subjected to realistic combat stress. 

• Jammer activity during any trial is realistic for survivability. 

Such a test could do a very good job of characterizing operational jammer performance against representative threat 
messages. FTXs or live/virtual modeling and simulation must address bigger-picture issues such as tasking against 
multi-link nets, changes in tasking during jamming periods, and overall impact of jamming on threat effectiveness. 

G. CONSTRUCTION OF THE DESIGN 

This is a technical subsection which indicates how the fundamental concepts and notation of fractional factorial 
design were used to manipulate the many factors discussed in subsections B through E. The notation and theory is 
standard and will not be discussed here. Both John7 and Montgomery8 discuss the notation and theory. 

The nature of the constraints in this hypothetical test dictated that it be laid out for the most part in powers of 2. 
This is the easiest possible case with which to work, and some constraints were forced into a power-of-two 
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TABLE 3. Start Time and Length (Minutes) for Each Trial 

Jamming Trials Unjammed Trials 
Day Trial Number Mobility Start Trial Stan Trial Length Trial Number Trial Start Trial Length 

1 1J1 1045 1200 60 1U1 1315 60 
1J2 1315 1430 40 1U2 1530 40 
1J3 1530 1645 30 1U3 1730 30 
1J4 1730 1845 40 1U4 1945 40 

2' 2J1 0600 0715 60 7U1 0600 60 
2J2 0830 0945 40 7U2 0830 40 
2J3 1045 1200 30 7U3 1045 30 
2J4 1245 1400 40 7U4 1245 40 

3' 3J1 0445 0600 40 2U1 0700 40 
3J2 0700 0815 30 2U2 0900 30 
3J3 0900 1015 40 2U3 1115 40 
3J4 1115 1230 60 2U4 1345 60 

4f« 4J1 1145 1300 40 8U1 1200 40 
4J2 1400 1515 30 8U2 1400 30 
4J3 1600 1715 40 8U3 1600 40 
4J4 1815 1930 60 8U4 1815 60 

5' 1J1 1045 1200 60 1U1 1315 60 
U2 1315 1430 40 1U2 1530 40 
1J3 1530 1645 30 1U3 1730 30 
1J4 1730 1845 40 1U4 1945 40 

6" 6J1 0600 0715 60 7U1 0600 60 
6J2 0830 0945 40 7U2 0830 40 
6J3 1045 1200 30 7U3 1045 30 
6J4 1245 1400 40 7U4 1245 40 

7 7J1 0445 0600 40 2U1 0700 40 
7J2 0700 0815 30 2U2 0900 30 
7J3 0900 1015 40 2U3 1115 40 
7J4 1115 1230 60 2U4 1345 60 

8* 8J1 1145 1300 40 8U1 1200 40 
8J2 1400 1515 30 8U2 1400 30 
8J3 1600 1715 40 8U3 1600 40 
8J4 1815 1930 60 8U4 1815 60 

'Threat array jammed from side II on these days, see Table 5. 
'Unjammed trials run first on these days. 

TABLE 4. Team Specifications by Trial (Notes—Main Body of Table Follows) 

* For each team the members are to be numbered as #1 and #2 and that the numbering remains the same throughout the test. On days marked 
with an asterisk, members numbered #1 are to be positioned nearest the FEBA; on the remaining days, members numbered #2 are to be 
positioned nearest the FEBA. 

** Radio type codes are: L = low power radio, HI = type 1 high power radio, H2 = type 2 high power radio. 
Odd numbered links are short links, even numbered links are long links. Links 1, 2. 5, 6 are nearest side I; links 3,4, 7,8 are nearest side II 
(see Figure 1). 
Echelon given for information only, link number determines position: BC = battalion-company, 
CP = company-platoon. 

f    Frequencies are numbered arbitrarily from 1 to 8. It is assumed that the same frequencies are used throughout the test and that the numbering 
remains the same throughout the test. 

"  Message sets are numbered as follows: 
1 = first 12-message set, 2 = second 12-message set, 3 = third 12-message set, 4 = fourth 12-message set, 
5 = first 6-message set, 6 = second 6-message set, 7 = first 18-message set, 8 = second 18-message set. 

A new message set is to be generated each day and used throughout the day. Each message set is to consist of three types of messages, one 
third of each type. For each trial separately, one half of the messages of each type in each set will be marked for transmission by team member 
#1, the other half will be marked for transmission by team member #2, and the marking will be done randomly. For each trial separately, each 
message set will be ordered randomly and randomly scheduled for transmission subject to suitable constraints. The analyst will aid in this 
randomization and scheduling. 

* Only frequencies and message sets for jamming trials are explicitly listed. The same frequency is to be used on the corresponding unjammed 
trail. The message set to be used on the corresponding unjammed trial is determined as follows: if the message set on the jamming trial is 
number 2n (even) then use the message set numbered 2n-1 on the corresponding unjammed trial; if the message set on the jamming trial is 
number 2n-l (odd) then use the message set numbered 2n on the corresponding unjammed trial.  
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TABLE 4. Team Specifications by Trial (Notes Precede Main Body of Table) 

Part I: Radio and Location bv Day 
Team 

Dav       Specification** zL z2z zh ^i :£: ^i i JL 
1* Radio L L L L HI H2 HI H2 

Link 1 2 3 4 5 6 7 8 
Echelon CP CP BC BC CP CP BC BC 

2 Radio HI H2 HI H2 L L L L 
Link 4 3 2 1 8 7 6 5 

Echelon BC BC CP CP BC BC CP CP 
3 Radio L L L L H2 HI H2 HI 

Link 3 4 1 2 7 8 5 6 
Echelon CP CP BC BC CP CP BC BC 

4* Radio H2 HI H2 HI L L L L 
Link 2 1 4 3 6 5 8 7 

Echelon BC BC CP CP BC BC CP CP 
5 Radio L L L L HI H2 HI H2 

Link 6 5 8 7 2 1 4 3 
Echelon BC BC CP CP BC BC CP CP 

6* Radio HI H2 HI H2 L L L L 
Link 7 8 5 6 3 4 1 2 

Echelon CP CP BC BC CP CP BC BC 
7* Radio L L L L H2 HI H2 HI 

Link 8 7 6 5 4 3 2 1 
Echelon BC BC CP CP BC BC CP CP 

8 Radio H2 HI H2 HI L L L L 
Link 5 6 7 8 1 2 3 4 

Echelon CP CP BC BC CP CP BC BC 
Part 2: Freouencv1 and Message Sets11 bv Trial (Freauencv Number/Messate Set Number) 

Team 
Jamming Trial* zL z2z i2r ^ z$z z$z ■L J= 

Ul 1/4 2/1 3/7 4/2 5/6 6/3 IIS 8/8 
1J2 2/2 1/7 4/1 3/4 6/8 5/5 8/3 7/6 
1J3 3/8 4/5 1/3 2/6 111 8/7 5/1 6/4 
1J4 4/6 3/3 2/5 1/8 8/4 7/1 6/7 5/2 
2J1 6/1 5/4 8/2 7/7 2/3 1/6 4/8 3/5 
2J2 5/7 6/2 7/4 8/1 1/5 2/8 3/6 4/3 
2J3 8/5 7/8 6/6 5/3 4/7 3/2 2/4 1/1 
2J4 7/3 8/6 5/8 6/5 3/1 4/4 1/2 2/7 
3J1 5/7 6/2 7/4 8/1 1/5 2/8 3/6 4/3 
3J2 6/1 5/4 8/2 7/7 2/3 1/6 4/8 3/5 
3J3 7/3 8/6 5/8 6/5 3/1 4/4 1/2 2/7 
3J4 8/5 7/8 6/6 5/3 4/7 3/2 2/4 1/1 
4J1 2/2 1/7 4/1 3/4 6/8 5/5 8/3 7/6 
4J2 1/4 2/1 3/7 4/2 5/6 6/3 7/5 8/8 
4J3 4/6 3/3 2/5 1/8 8/4 7/1 6/7 5/2 
4J4 3/8 4/5 1/3 2/6 111 8/7 5/1 6/4 
5J1 2/2 1/7 4/1 3/4 6/8 5/5 8/3 7/6 
5J2 1/4 2/1 3/7 4/2 5/6 6/3 7/5 8/8 
5J3 4/6 3/6 2/5 1/8 8/4 7/1 6/7 5/2 
5J4 3/8 4/5 1/3 2/6 7/2    ■ 8/7 5/1 6/4 
6J1 5/7 6/2 7/4 8/1 1/5 2/8 3/6 4/3 
6J2 6/1 5/4 8/2 7/7 2/3 1/6 4/8 3/5 
6J3 7/3 8/6 5/8 6/5 3/1 4/4 1/2 2/7 
6J4 8/5 7/8 6/6 5/3 4/7 3/2 2/4 1/1 
7J1 6/1 5/4 8/2 7/7 2/3 1/6 4/8 3/5 
7J2 5/7 6/2 7/4 8/1 1/5 2/8 3/6 4/3 
7J3 8/5 7/8 6/6 5/3 4/7 3/2 2/4 1/1 
7J4 7/3 8/6 5/8 6/5 3/1 4/4 1/2 2/7 
8J1 1/4 2/1 3/7 4/2 5/6 6/3 7/5 8/8 
8J2 2/2 1/7 4/1 3/4 6/8 5/5 8/3 7/6 
8J3 3/8 4/5 1/3 2/6 7/2 8/7 5/1 6/4 
8J4 4/6 3/6 2/5 1/8 8/4 7/1 6/7 5/2 

Notes to TABLE 4 appear on the previous page. 
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TABLE 5. Jammer Specifications by Trial 

Part 1: Position and Freauencv Jammed bv Priority (UF1/F2)* 
Jammer Number 

Trial -±L -2- i ■Ai 
IJ1 13/4/6 14/5/3 15/1/7 16/8/2 
U2 6/1/7 5/8/2 8/4/6 7/5/3 
1J3 4/3/5 3/6/4 2/2/8 1/7/1 
1J4 11/2/8 12/7/1 9/3/5 10/6/4 
2J1 7/2/8 8/7/1 5/3/5 6/6/4 
2J2 16/3/5 15/6/4 14/2/8 13/7/1 
2J3 10/1/7 9/8/2 12/4/6 11/5/3 
2J4 1/4/6 2/5/3 3/1/7 4/8/2 
3J1 25/8/2 26/1/7 27/5/3 28/4/6 
3J2 18/5/3 17/4/6 20/8/2 19/1/7 
3J3 24/7/1 23/2/8 22/6/4 21/3/5 
3J4 31/6/4 32/3/5 29/7/1 30/2/8 
4J1 19/6/4 20/3/5 17/7/1 18/2/8 
4J2 28/7/1 27/2/8 26/6/4 25/3/5 
4J3 30/5/3 29/4/6 32/8/2 31/1/7 
4J4 21/8/2 22/1/7 23/5/3 24/4/6 
5J1 29/5/3 30/4/6 31/8/2 32/1/7 
5J2 22/8/2 21/1/7 24/5/3 23/4/6 
5J3 20/6/4 19/3/5 18/7/1 17/2/8 
5J4 27/7/1 28/2/8 25/6/4 26/3/5 
6J1 23/7/1 24/2/8 21/6/4 22/3/5 
6J2 32/6/4 31/3/5 30/7/1 29/2/8 
6J3 26/8/2 25/1/7 28/5/3 27/4/6 
6J4 17/5/3 18/4/6 19/8/2 20/1/7 
7J1 9/1/7 10/8/2 11/4/6 12/5/3 
7J2 2/4/6 1/5/3 4/1/7 3/8/2 
7J3 8/2/8 7/7/1 6/3/5 5/6/4 
7J4 15/3/5 16/6/4 13/2/8 14/7/1 
8J1 3/3/5 4/6/4 1/2/8 2/7/1 
8J2 12/2/8 11/7/1 10/3/5 9/6/4 
8J3 14/4/6 13/5/3 16/1/7 15/8/2 
8J4 5/1/7 6/8/2 7/4/6 8/5/3 

Part 2: Type and Length of Course to be Traversed Before Each Jamming Trial 
ammer Number } 

Day iL zh. i2r -4- 

I short, smooth short, rough long, smooth long, rough 
2 long, rough long, smooth short, rough short, smooth 
3 short, smooth short, rough long, smooth long, rough 
4 long, rough long, smooth short, rough short, smooth 
5 long, smooth long, rough short, smooth short, rough 
6 short, rough short, smooth long, rough long, smooth 
7 long, smooth long, rough short, smooth short, rough 
8 short, rough short, smooth long, rough long, smooth 

* Position numbers are given in Figure 1, and frequencies are numbered as in Table 4. Fl is the first priority frequency, F2 is the second priority 
frequency. 

framework to make the problem more tractable. The application of Graeco-Latin squares to the real jammer test 
mentioned in the Introduction was based on powers of 3, which was harder to do in a systematic manner.9 On the 
other hand, designing in powers of two can be quite flexible, as this example has shown. Experiments with n factors, 
each at 2 levels are 2" designs, and they can be run (or partially run) in sequences of 2n"k fractional factorials 
constructed using the notation and theory of finite abelian groups. 

The factors and levels used in this example are tabulated in Tables 6 and 7. The overall design was constructed 
by starting with a 23 full factorial in factors A-C, adding factor D by confounding it with the ABC interaction to give 
the 24"1 design defined by I = +ABCD, then adding factors E, F, and G by confounding them with the two-factor 
interactions AB, AC, and BC, to give the 27-4 fractional factorial design consisting of the points efg, abe, acf, beg, 
adg, bdf, cde, and abedefg.1 The defining contrast for this fraction is I = ABFG - ACEG = ABCD = EFG, and the 

+ This fraction is closely related to the simple example which uses I=-ABCD and blocking factors AB, AC, and AD. Now A-D 
characterize physical conditions relevant to effect of jamming on the link while E-G characterize jammer tasking conditions. 
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design is a saturated design of resolution III (see John7 section 8.4 or Montgomery8 section 11-5; John7 gives a 
method due to Margolin10 for deriving defining contrasts from a basic set of letters). By repeating the design in 16 
trials (blocks) generated by the defining contrasts I = ±ABFG = ±ACEG = +ABCD = ±EFG, all 128 effects in the 
full factorial design become estimable, except that the effects in the defining contrast subgroup are confounded with 
blocks. Two new factors corresponding to"Side II" and unjammed trials (A, and F0 in Table 6) were added by 
quadrupling the number of trials (running the 16 trials already discussed at each of the four combinations of ±A„ and 
±F0). Table 8 gives the relationship of defining contrast signs to trial numbers. Formally, the blocks actually used 
have defining contrasts generated by: 

I = ±F0 = ±Ao = ±ABFG = ±ACEG = ±ABCD = ±EFG. 

In this example, the seven two-factor interactions AB, AC, AD, BD, CD, and EF and the four three-factor 
interactions ABC, ABD, ACD, and BCD were thought likely to be relatively important but all other interactions 
were thought likely to be relatively unimportant. Thus (apart from block effects) of the 512 estimable effects 
obtainable from running 64 trials, only 21 (mean, 9 main effects, 7 two-factor interactions, and 4 three-factor 
interactions) appeared likely to be important. New factors were added by confounding them with what were 
anticipated to be relatively unimportant interactions between the nine factors A-G, Ao, and F0. In total 32 factors 
were examined. Including various interpretable interactions of interest, 62 distinct effects were explicitly considered. 
(Some of the 31 effects which characterized the 32 jammer positions were not fully examined and are not included 
in this total; many of those were partially confounded with other effects of possible interest.) Exactly how new 
factors were added is indicated in Table 9, which gives the alias chains in factors A-G with the new factors set 
equal to appropriate interactions. The horizontal lines in Table 9 divide the table into the effects aliased in trials 
with the mean, A, B, E, C, F, G, and D, respectively. The top block is the defining contrast subgroup for the 
entire 27'3 fraction, the other blocks are cosets. The individual rows of the table indicate how those alias chains 
break for trials within a day (each row represents an alias chain once four jamming or unjammed trials in a day 
are complete). The columns indicate breaks in alias chains once an entire four-day week of trials is complete.' 
The full table of alias chains with A, and F0 incorporated is too large to include, but it can be obtained from Table 9 
by writing after each row of Table 9 the same row multiplied by F0 and writing to the right of this new table the 
same table multiplied by A,. A partial table of the alias chains for the mean (I) with all 9 factors is given for 
illustration in Table 10 (this is the defining contrast subgroup for the entire design). The following equation 
summarizes how new factors were added: 

I = CFGH = BDEJ = AJEGK = AoACEFL = BCDEGM = A.BN = BEFO = ABCEFP = CEFQ 
= AEGR = AEFGS = ABDEFT = AoABCFGU = BFV = CDFW = A<,CDFGX = BDFY 
= A„ACEGZ = A0B„ABFG = C„ABCD = DJSFG = AJEoBCEF = GoACEG. 

Since this hypothetical example is formally constructed, it is easy to discuss test expansions or reductions. 
Eight days of testing were explicitly considered using 8 trials per day with 8 separate links per trial, so essentially* 
29 = 512 observations were planned, and the overall design represents a 232"23 (1/8,388,608) fraction of a 232 design 
(4,294,967,296 points) run in 64 blocks of size eight. If another eight days of testing were desired, the design could 
simply be repeated (preferably with a physically modified target array and new jammer positions). A more desirable 
approach would not only modify link and jammer positions but also change the signs of some of the added factors. 
Ignoring changes in sign for the special contrasts involving the pure position indicators N, O, X, and Y (used as a 
device to rotate jammer positions within a day but having no general meaning outside a particular physical set up) 
and L and M (which specify message rotation), sign changes could generate a test 217 = 131,072 times as long as the 
present one (and lasting almost 3,000 years). Thus, the design given here can easily be extended to a test of any 
desired length. However, even the hypothetical eight-day test discussed here would likely allow quite detailed and 
accurate examination of most performance factors of interest. In earlier days of extensive stand-alone operational 
and developmental testing, logistics considerations would probably have driven a longer test, in which case the 
eight-day extension in which the signs of BFV and CDFW are changed might be particularly appropriate. 
Continuation of unjammed trials beyond the first 4 days of test could be hard to justify. Then unjammed trials could 
be discontinued after the first four days and messages could be used for two days by assigning message sets as 

+ The breaks by row and column occur because EFG and ABCD change sign within day but ACEG and ABFG only change sign 
from day-to-day, see Table 8. 
* Actually, since the 2 ends of each link could be considered separately in analysis and an average of 6 messages would be sent to 
each receiver during each trial, there are 512x12 = 6,144 observations total for analysis. 
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TABLE 6. Factors and Levels Used in This Example 

Factor Description 
A Link length 
B Echelon 
C Radio power 
D Jammer distance from FEBA 
E Jamming priority 
F Relative message density 
G Jammer position indicator 

H,J Jammer number 
K Radio power refinement 

L,M Message set number 

Levels 

N,0 Physical link location 

P.Q.R Teams 
S,T,U Frequencies 

V Roughness of mobility 
W Length of mobility 

X,Y Jammer position indicator 
Z Team member position 
Ac Side of threat array jammed 
Bo Scenario intensity order 

Co,D0 Trial order within day 
E„ Start time on day 
F„ Jammer use in trial 
Go Jammed trial order 

(l)=short; a=long. See N, O below. 
(1)=CP (company-platoon); b=BC (battalion-company) 
(l)=low; c=high 
(l)=short; J=long. See Table 7. 
(l)=priority 2; e=priority 1 
(l)=low;/=high 
Relative left/right indicator, used with D to ensure 4 positions 
used per trial. See Table 7. 
(l)=#l;/i=#2;;=#3;/y=#4 
(l)=low; £=low; c=high type 1; c£=high type 2 
(1)=#2; l=#l;fm=#4;fl=#3; m=#6; lm=#5;f=#8;flm=#7;f0=#\; 
fJ=n;f<M=#3-,fJl=U-J0m=#5-fJm=#6;f<f=#7-,faflm=n. 
See note t+ to Table 4. 
(1)=#1; a=#2; /i=#3; an=#4; o=#5; ao=#6; rco=#7; ano=n. 
See Figure 1 and note * to Table 4. 
(l)=#l;p=#2; q=#3; pq=U\ r=#5; pr=#6; qr=#T, pqr=n 
(1)=#1; s=#2; f=#3; .«=#4; w=#5; su=#6; m=#7; stu=#8 
(l)=smooth; v=rough 
(l)=short; w=long 
Used with G and D to ensure 16 positions per day. See Table 7. 
(l)=no asterisk; z=asterisk. See note * to Table 4. 
(l)=Side II; a„=Side I. See Table 7. 
(l)=40/30/40/60; bo=60/40/30/40 
(l)=fourth trial; c0=second trial; c?0=third trial; cX,=first trial 
(l)=0600;c„=1200 
(1 )=unjammed; /,=jamming 
(l)=unjammed trial first; ff0=jamming trial first  

TABLE 7. Coding of Levels for Jammer Position (Involves Factors D, F, X, Y, and A> from Table 6) 

Position Number from Figure 1 * 
Side II Level 

(1) 
d 
8 

dg 
x 
dx 
gx 
dgx 
y 
dy 
gy 

dgy 
xy 
dxy 
gxy 

 4MI  

Side II 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

Side I 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 

Side I Level 
aa 

a4 
a„g 

a<4g 
a„x 

dodx 
a0gx 

a<4gx 
a0y 
ajiy 
a0gy 

dodgy 
doxy 

a^dxy 
CLogxy 

aqdgxy 
*Odd numbers denote jammer positions nearest the FEBA (low level of Factor D). 
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TABLE 8. Relationship of Defining Contrast Signs to Trial Numbers 

Sign of Defining Contrasts Excluding F„ 
Ao ABFG ACEG ABCD 
+ + + + 
+ + + + 
+ + + - 
+ + + - 
+ + - + 
+ + - + 
+ + - - 
+ + - - 
- + + + 
- + + + 
- + + - 
- + + - 
- + - + 
- + - + 
- + - - 
- + - - 
- - + + 
- . + + 

EFG 
+ 

+ - + + 
+ - + + 
+ - + - 
+ - + - 
+ - - + 
+ - - + 
+ - - - 
+ - - - 

Trial Number 
With +F„ With -F„ 

1J1 1U1 
U2 1U2 
1J3 1U3 
1J4 1U4 
2J1 2U1 
2J2 2U2 
2J3 2U3 
2J4 2U4 
3J1 3U1 
3J2 3U2 
3J3 3U3 
3J4 3U4 
4J1 4U1 
4J2 4U2 
4J3 4U3 
4J4 4U4 
5J1 5U1 
5J2 5U2 
5J3 5U3 
5J4 5U4 
6J1 6U1 
6J2 6U2 
6J3 6U3 
6J4 6U4 
7J1 7U1 
7J2 7U2 
7J3 7U3 
7J4 7U4 
8J1 8U1 
8J2 8U2 
8J3 8U3 
8J4 8U4 

specified in Table 4 for jamming trials on odd-numbered days beyond 4 (days with number 2k+l, k>l) and 
relabeling message sets (by interchanging message sets 2n-l and 2n for n = 1, 2, 3, 4) on even numbered days 
beyond 5. Reduction of test days from eight to four would prohibit rotating all jammers through all positions and all 
teams through all links and would reduce the ratio of observations to effects from about 16:1 to less than 10:1 (some 
additional confounding would also result). Reductions in test length below four days would introduce substantial 
confounding of effects. 

The display in Table 9 proved to be very useful as a working tool for constructing this design. It is a group 
multiplication table indicating by its rows and columns how the alias chains (corresponding to elements in various 
quotient groups) decompose as trials (blocks) are conducted. For instance, physical location (effects A, N, O) and 
team numbers (effects P, Q, R) must stay with the same link lengths, echelons, and radios throughout each day. Thus 
P and A, Q and N and B, and C and O and R, respectively, must be on the same rows of Table 9. Similarly, V and W 
(which define stress on the jammers due to mobility exercises) must be on the same rows as H and J (which 
determine jammer number) to ensure that each jammer is repeatedly subjected to the same stress throughout any one 
day. On the other hand, H and J must be in the same alias chains as D and G (which determine relative short/long 
and left/right jammer position) on any trial, but H and J must be on different rows from D and G to ensure that 
jammers rotate from trial to trial within each day; X and Y (aliased with I and therefore fixed for any trial) further 
define jammer rotation by ensuring that four different jammer positions are used in each trial throughout any day. 
Similar considerations influence confounding of other effects. Some fiddling is required to insert effects in this 
way, since even with Table 9 as a guide to enable the analyst to keep track of previous work as modifications are 
made, each modification must be checked to make sure it has the intended impact. Insertion of X and Y so that 
they rotated jammers from trial-to-trial in such a way that jammers saw teams, links, frequencies, and density 
ratios—as well as jamming positions—proved especially difficult. Luckily, improvements in computer software 
since the original paper1 was written make such checks quite easy. In fact, without such software, attempting 
construction of designs as elaborate as the one in this example is extremely error prone. The original paper is rife 
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TABLE 9. Alias Chains for Main Effects A-G Showing How New Effects Were Added (See Text) 
(Bold Effects Considered Relatively Important) 

I ABFG=A„B0 ACEG=G0=A0Z BCEF=A0E0 

ABCD=C0 CDFG=AoX BDEG=B„C„ ADEF 
EFG=D0 ABE ACF BCG=A„XY 

ABCDEFG=CJD„ CDE BDF=Y ADG 
A BFG CEG=CK ABCEF=P 

BCD=VW ACDFG=HJ ABDEG DEF 
AEFG=S BE CF ABCG 

BCDEFG=A0FM ACDE ABDF DG 
B=A0N AFG ABCEG CEF=Q 
ACD BCDFG DEG ABDEF=T 
BEFG AE ABCF CG 

ACDEFG BCDE DF ABDG=A0FLM 
AB=A0AN FG BCEG=PQ ACEF=AoL 

CD ABCDFG ADEG BDEF 
ABEFG E BCF ACG 
CDEFG ABCDE ADF BDG=ST 

C ABCFG=A0U AEG=R BEF=0 
ABD DFG BCDEG=M ACDEF 
CEFG ABCE AF BG 

ABDEFG DE BCDF ACDG 
AC BCFG=PR EG=A0K ABEF=AO 
BD ADFG ABCDEG CDEF 

ACEFG BCE=A„SU F ABG 
BDEFG ADE ABCDF CDG 

BC ACFG=QR ABEG EF=NO 
AD BDFG CDEG=A„TU ABCDEF 

BCEFG ACE=AoFL ABF G 
ADEFG BDE=J CDF=W ABCDG 

ABC CFG BEG=PQR AEF=A„ANO 
D ABDFG=AJLM ACDEG BCDEF 

ABCEFG=H CE BF=V AG 
DEFG ABDE ACDF=A0STU BCDG 

Rows show breaks in alias chains once trials on a day are complete. 
Columns show breaks in alias chains once four days of trials are complete. 

TABLE 10. Alias Chain for I with Factors A-G, A<„ and F0 Considered (Defining Contrast Subgroup) 

I ABFG ACEG=G„ BCEF A» AoABFG=B0 A„ACEG=Z A3CEF=E„ 

F„ F„ABFG FoACEG FJBCEF Aor"o A„F„ABFG AoFcACEG AoF^CEF 

ABCD=Co CDFG BDEG=B0C„ ADEF AoABCD A„CDFG=X A3DEG AoADEF 

F„ABCD F„CDFG FJ3DEG FoADEF AfoABCD AJFoCDFG A„F<3DEG AoFoADEF 

EFG=D0 ABE ACF BCG A£FG A„ABE AcACF A„BCG=XY 

FoEFG F„ABE FcACF FJBCG AfoEFG AoF„ABE AoF„ACF AoF„BCG 

ABCDEFG=C„D„ CDE BDF=Y ADG AABCDEFG A„CDE A.3DF A„ADG 

FoABCDEFG F„CDE F<£DF F„ADG AoFoABCDEFG AoFoCDE AJvBDF AJF.ADG 

with errors, and initial manual attempts to correct the errors introduced as many new errors as it corrected. 
Fortunately it is easy to automate calculation of the entire design using existing statistical software. A spreadsheet 
can also be used but not so conveniently. JMP was used to implement the calculations in Figure 2 using indicator 
functions, ceiling functions, and modulo arithmetic. Automation reduces the time needed to insert and check a new 
factor from hours to minutes and substantially reduces errors. 
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This subsection has sketched many of 
the detailed technical considerations that can 
be used to design efficient field tests. The 
methods are not elementary, but they are 
within  the  capabilities   of a   well-trained   f 
analyst  equipped   with   suitable  statistical j q 

software.  Moreover,   the  design   resulting  U— 
from such a process suggests a multitude of 
possible  analyses  that  are  feasible  using 
readily available statistical software. On the 
other hand, these methods are well beyond 
the capabilities of a typical test operator, FiSure Z MP^ Formulas for C, Q, and Teams 
which   implies   that   much   more   active 
participation by analysts in detailed test planning is necessary to apply these methods in practice. 

SUMMARY 

This paper has shown through one illustrative example and one hypothetical example how formal experimental 
design techniques could be used to design executable, robust, and realistic field tests. It shows that a sequence of 
fractional factorials can be used to spread fixed resources efficiently over a wide variety of test conditions subject to 
complicated constraints, yielding a resulting design that can be described by a few test matrices. It exploits the fact 
that many compromises with reality are necessary in order to conduct a field test and that the test operator typically 
specifies many conditions that would be uncontrolled in actual combat. When compromises with reality must be 
made or normally uncontrolled factors must be specified in order to have an executable field test, an analyst using 
techniques of efficient experimental design can suggest methods for specifying test conditions likely to yield marked 
improvement in the scope, generality, and clarity of test results without making the test impractical to conduct. 

Until recently, demands for free play in operational testing have made formal statistical design of field tests a 
very hard sell. Now the trend is away from performing lots of formal developmental and operational testing and 
towards more use of FTXs in materiel acquisition—together with modeling and simulation in the simulation based 
acquisition paradigm. This trend presents an opportunity to add more structure to the formal combined 
developmental and operational testing part of the materiel acquisition process, relying on training exercises to make 
up for any lost free play. It may not be possible in most real test planning to push formal statistical design as far as it 
was pushed in the hypothetical example of this paper. However, the potential for improved efficiency, precision, and 
accuracy from a conscientious formal experimental design effort certainly makes such increased formal design 
efforts worthwhile. 
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STATISTICS IN THE MILITARY OPERATIONS IN URBAN TERRAIN (MOUT) ADVANCED 
CONCEPTS TECHNOLOGY DEMONSTRATION (ACTD) 

Eugene Dutoit 
Dismounted Battlespace Battle Lab 

Fort Benning, GA 31907 

ABSTRACT 

This paper will present an overview of the MOUT ACTD to include the purpose and scope. This is a joint 
effort involving the Army and Marines with experimentation taking place at both Fort Benning GA and 
Camp Lejeune NC. About forty technical MOUT deficiencies were identified and technical solutions were 
proposed to meet these deficiencies. Field experiments had to be designed to examine each of the proposed 
technical solutions. In several cases, simulation experiments were also conducted to evaluate the proposed 
solution in a force-on-force context The Army Dismounted Battlespace Battle Lab, the Marine 
Warfighting Lab, AMSAA, TRAC, OPTEC, TEXCOM, HRED and ARI were all involved in the total 
evaluation effort This paper will show, for a/ew selected technologies, examples of the experimental 
design and statistical analysis procedure for both the ground and simulation experiments. 

INTRODUCTION 

Many military analysts regard military operations in urban terrain (MOUT) as the most likely battlefield 
in the twenty-first century. It will be a complex and resource intensive scenario were potential adversaries 
may have military parity with US forces. The Russian way of conducting MOUT, as seen in Chechnya, is 
to fight without regard for collateral damage or non-combatants. Essentially, this is a rubble and then clean 
up philosophy. This is not an optional policy for the United States. One of the purposes of the MOUT 
ACTD is to provide technological dominance in MOUT for both Soldiers and Marines. This is to be done 
by examining technological candidates that will improve command/control/communication and computers, 
engagement capability, force mobility and overall force protection. 

GENERAL EXPERIMENTAL OVERVIEW 

As of the first quarter of FY00, there were twelve field experiments conducted in support of the MOUT 
ACTD. The Army conducted six separate experiments at Fort Benning and the Marines conducted four 
separate experiments at Camp Lejeune. In addition to these separate service experiments, there were two 
joint service experiments conducted at Camp Lejeune and Fort Benning respectively. Experimentation 
started in the second quarter of FY98 (Army experiment 1) and was completed at the end of the fourth 
quarter FY99 (the'second joint experiment at Fort Benning). Both Camp Lejeune and Fort Benning have 
MOUT villages constructed on post complete with one, two and three story buildings, streets, and 
underground sewer systems. These villages are used for MOUT training and experimentation. The Fort 
Benning village (the McKenna MOUT site) is instrumented with video capture, playback, and storage and 
retrieval capabilities. SIMLAS and separate sensor arrays working together can send data to the 
operational test-visualization system (OT-VIS) in the form of a two dimensional array. An after action 
review theater has been constructed so that simulated combat operations data can be sent for reviewing the 
operations in real time. This facility can also record important information that is available for playback 
and analysis. 

The general scheme of data collection included measures of system / technology performance (MOP) 
which were obtained through side experiments conducted on each technology. Qualitative data were 
obtained through the use of questionnaires. Subject matter experts were also asked to provide information 
to scoring conferences. Combat measures of effectiveness (MOE) were obtained primarily from 
experiment controller assessments and video capture and replay. A data authentication group was formed 
to screen 

Approved for public release; distribution unlimited. 

33 



for logical errors or missing data. The data authentication group (DAG) was made up of representatives 
from the Army, Marines, the Technical Project Office and the Army Systems Analysis Activity (AMSAA). 

A comprehensive listing of the MOUT technology types that were investigated in the overall ACTD are 
presented in the tables below. 

Table 1 (Requirements investigated in the four Marine experiments). 

Man portable shield. Non explosive breach. 
Clearly identify friendly forces. Get on top of buildings. 
Stun grenade. Powered optics. 

See through wall sensor. Countersniper detection. 
Lightweight common target designator See in building at all times. 

Table 2 (Requirements investigated in the six Army experiments). 

Remote marking. Joint protection. 
Protective mask. Improved obscurants. 
Blunt training munition. Non line of sight radio. 
Medical evacuation. Improved intelligence collection system. 
Improved sling. Blow man-sized hole. 
Point munitions. Personnel protection kit 
Hearing protection. Frangible ammunition. 
Personnel restraints. Rapid mapping and virtual mission planner. 

GENERAL SCHEME FOR EACH LIVE EXPERIMENT 

1. Perform new equipment training (NET). This will insure that the Soldiers and Marines can use the 
new experimental technologies so that they get a fair evaluation in all of the experiments. 

2. Design / verify the design of the technology side experiment. Consideration is given to insure that 
all users (subject Soldiers and Marines) see all technologies (including the base case) in some 
random order. 

4. 

Execute the side experiment for each requirement This is a technology / user experiment with a 
focus on measures of effectiveness (MOP). The base case technologies are included. 

Analysis of these data result in the selection of the best technologies to be used in other experiments 
and in force-on-force simulations. Sometimes the base case is best. 

5. Execute the tactical experiments for each requirement technology (base case too). This is a 
technology / user experiment with a focus on the measures of effectiveness (MOE). 

6. Execute collective tactical experiments where several technologies are used together as a suite. The 
base case force is also considered. 
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AN EXAMPLE OF THE RESULTS OF A LIVE FIELD EXPERIMENT 

This section will present an example overview of the live field experiment that evaluated the 
performance of four technical candidates to fill the requirements of the medical evacuation device (see 
Table 2 above). It is important to point out that this was not the only live field experiment performed to 
evaluate the four candidates. 

MEDICAL EVACUATION REQUIREMENT 

Experiment: To determine the average time required for unpacking each alternative stretcher. 

Method: 
a. Eight teams were formed by randomly assigning two people per team (thus forming teams of equal 

ability). 
b. Each of the eight teams used each of the four alternative stretchers, but not in the same order. 
c. Each team "unpacked" each alternative four times. Times (in seconds) for unpacking the stretchers 

were recorded. 
d. Consistent start and stop criteria were established for all trials. 

Results: 

1.     Analysis across all four unpackings. 

Stretcher Alternative Average time to unpack 
Alternative 1 13.71 sec 
Alternative 2 66.87 sec 
Alternative 3 92.53 sec 
Alternative 4 43.06 sec 

P-.000 

Post Hoc (Tukey/LSD) indicated that the unpacking times for Alternative 1 < Alternatives 2,3,4. 
2.     Analysis considering unpacking trials (1,2,3,4). This was done to determine if there was any practice 

effect. 

Stretcher alt Unpack 1 Unpack 2 Unpack 3 Unpack 4 Comments 
Altl 18.4 12.7 12.1 11.6 Sig linear 

contrast 
(.038) 

Alt 2 97.2 60.9 56.1 53.2 Sig linear & 
quad contrast 
(.000) 

Alt 3 164.1 77.7 62.3 66.0 Sig linear & 
quad contrast 
(.002 & .036) 

Alt 4 52.6 44.3 40.2 35.2 Sig linear 
contrast (.000) 

Comment: All four stretcher alternatives showed a significant negative trend (indicating learning across 
trials) in the time required to "unpack." 
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3.     Analysis considering the fourth trial. 
Stretcher alternative Average unpacking time for the fourth trial 
Alternative 1 11.6 sec 
Alternative 2 53.2 sec 
Alternative 3 66.0 sec 
Alternative 4 35.2 sec 

P-.000 

Post hoc analysis still indicated that for the 4th trial, the unpacking time for Alternative 1 < Alternatives 2, 
3,4. 
Note: This was also confirmed by the nonparametric Kruskal-Wallis test. 

4.     Operational Insights. 

Overall, alternative 1 requires less time to unpack. This is true across all four trials and for the fourth trial 
itself. All four alternatives showed significant learning effects across trials. However, the results obtained 
from the first analysis (averaged across all four trials) is probably more representative of the expected 
unpacking times under operational conditions when multiple practice trials would not take place. 

GENERAL SCHEME FOR EACH SIMULATION 

1. Determine the base case technology and the alternative(s) based on the results of a live fire field 
experiment. 

2. Establish the force-on-force combat scenario (with guidance from the proponent). 

3. Start the input data authentication process with oversight from AMSAA. 

4. Select the appropriate force-on-force model: JCATS for inside of the city and buildings 
JANUS for outside of the city 

5. Both the independent evaluators (TRADOC Analysis Center.TRAC-White Sands Missile Range) and 
the AMSAA are present during the gaming development, the simulation experimental design, and for 
the "production" simulations. 

6. Perform data analysis of the simulation results. This is a joint effort between the (Dismounted 
Battlespace Battle Lab, AMSAA and TRAC. 

7. The independent evaluators (TRAC and AMSAA) write the final simulation report 

AN EXAMPLE OF THE RESULTS OF A COMBAT SIMULATION 

This section will present the results of a live field experiment to determine which optic alternative(s) 
provides the best probability of hit and the quickest engagement time (Table 1). The best optical 
alternative data are then used in the JCATS combat model to determine if the better alternative optics 
provide the small unit force with increased lethality and survivability in a simulated combat environment 
As pointed out in the previous example, this is only one of several experiments that were conducted to 
evaluate the optical alternatives. 
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OPTICS REQUIREMENT 

Experiment To determine which optic alternative(s) provides the best probability of hit and the quickest engagement time. 

Method (A Special Shoot House was constructed at Camp Lejeune, NC): 

a. Twenty Marine riflemen were assigned to the experiment Each rifleman (Rifle = Ml 6) used each of 
three optic/sighting alternatives. The order of use of optic alternative was "randomized." 
b. Each Marine was given six rounds, one round to engage each target twice. There were three targets 
placed at 26 feet, 39 feet, 68 feet respectively. 
c. Each rifleman placed on the same ready position line. 
d. An electronic timer "beeped" to start the engagement of the first target The timer recorded time from 
the beep to the report of the rifle. The shooter did this twice for each target at each range. 
e. The engagement times and number of hits was recorded. 
f. This was done in day and night conditions. 

Results: 

1. Average probabilities of hit (across both lighting conditions and three target distances) are given below: 
a. Alternative 1; the base case (iron sights in the day/PAQ4 laser pointer for the night) - .88. 
b. Alternative 2 - .85 
c. Alternative 3 - .87 

There was no statistically significant difference between these probabilities of hit 

2. Probability of hit (finer detail) 
Target at 26 ft Target at 39 ft Target at 68 ft 

Alt 1 (Base) Day .85 .88 .73 
Alt 1 (Base) Night .98 .93 .93 
Alt 2 Day .98 1.00 .90 
Alt 2 Night .73 .80 .70 
Alt 3 Day 1.00 .98 .90 
Alt 3 Night .71 .82 .76 

NOTE: Alternatives 2 and 3 provided significantly better probabilities of hit in the daytime but the 
significantly better probability of hit associated with alternative 1 (base case) used with the PAQ4 at night 
offsets the daytime advantage of alternatives 1 and 2. The base case is preferred at night 

3. Average Engagement Times (Seconds) 
a. Day firings. 
(1) Alt l(base) - 1.51 sec 
(2) Alt 2-1.47 sec 
(3) Alt 3-1.86 sec 
Bom Alt 1 and Alt 2 are significantly less (.05) than Alt 3. 

b. Night firings. 
(1) Alt 1 (base with PAQ4) - 1.83 sec 
(2) Alt 2-2.80 sec 
(3) Alt 3-2.83 sec 
Alt 1 is significantly less (.05) than Alt 2 and Alt 3. The base case is preferred at night 
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APPLYING THESE RESULTS IN FORCE ON FORCE SIMULATION (FOR INSIGHTS). 

1. This was a joint effort between the Army Battle Lab, USMC, TRAC-WSMR and AMSAA. 

2. Purpose: Examine the contribution of the alternative optics to small unit lethality and survivability in a 
simulated combat environment 

3. Model: Joint Conflict and Tactical Simulation (JCATS). This combat model provides high-resolution 
in urban terrain (in buildings, rooms, and halls) and detailed modeling of small unit tactics. 

4. Data authenticity: 
a. The Data Authentication Group examined the data from the experiment described above and 

determined they were sound enough to be used for analysis. 
b. AMSAA examined the data from the experiment and determined that the data were suitable for 

the intended simulation. 

5. Case Descriptions 
a. Daytime 

Base case - M16 with base case (iron sights) 
Alternative - Average of Alt 2 and Alt 3 in probability of hit and engagement times. 

b. Night 
Base case - Ml 6 with PAQ4 laser pointer and Night Vision Goggles. 
Alternative - Average of Alt 2 and Alt 3 in probability of hit and engagement times. 

6. Abbreviated Scenario Description. 

A Marine infantry squad (13-man squad) has to enter and secure a building. The mission ends 
when 7 Marines or the entire enemy force is killed (This criterion is based on Marine input). 

7. Measures of Effectiveness (MOE). 
a. Total Threat Losses. 
b. Total Friendly Losses. 
c. Loss Exchange Ratio (LER). Red losses / Blue Losses 

8. The Average Results For Five Iterations of Each Case 
Optic/Light conditions Red Losses Blue Losses LER 
Base, Day 4.0 4.8 .85 
Alt, Day 3.0 6.4 .57 
Base, Night 4.0 4.4 .96 
Alt, Night 3.6 7.0 .54 

9. Wilcoxon Signed Ranks Test Results: 

a. Blue Losses between Base and Alternative at Night (results are in favor of the base case); P-.031 
b. Resultant LER between Base and Alternative at Night (results are in favor of the base case); P-.031 

10. Bottom line 
For no MOE did the alternative case force perform better (numerically and statistically) than the base case. 
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OTHER STATISTICAL WORK IN THE MOUT ACTD 

HUMAN RESEARCH AND ENGINEERING DIRECTORATE (HRED) 

HRED used statistical design and analyses procedures extensively in the evaluation of human factors 
implications of all the technologies that were examined in the MOUT ACTD. HRED constructed all of the 
questionnaires and rating scales. These questionnaires were instrumental in the selection of the 
technologies that were used in the tactical and collective field experiments. 

ARMY EVALUATION COMMAND (AEC) 

The AEC conducted a separate and independent analysis and evaluation of the experiments conducted in 
the ACTD. Of particular note was the application of correspondence analysis that combined the results of 
the Soldiers and Marines rating profiles of the technical candidates (obtained from the questionnaires 
developed by HRED cited above) into clusters that indicated similarity of ratings. 

A FINAL WORD 

This paper represents the tip of the statistical and evaluation iceberg associated with the MOUT ACTD. 
At the present time a comprehensive database is being developed to catalog all of the data generated during 
the twelve experiments. If any reader of this report would like to know some of the details about these 
experiments and the resultant data, I will be available to discuss their questions. I can be reached as 
follows: 

Gene Dutoit 
(706) 545-5844/7000 
DSN: 835-5844/7000 
dutoite@benning.armv.mil 
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Methods to Analyze the Effect of Decreasing Digital Image 
Resolution on Teledermatology Diagnosis 

Paul B. Hshieh, Ph. D. 
David Cruess, Ph.D. 

Dennis A. Vidmar, MD. 
Uniformed Services University of the Health Sciences 

ABSTRACT 

Teledermatologists concern what level of digital image resolution is good enough to interpret a well taken clinical 
image. The purpose of this paper is to use different statistical methods to analyze the data and compare their 
advantages and disadvantages. A total 180 different dermatology slides were divided equally into 3 logical 
competitor sets (LCSs). Four specific diagnoses (include " other") were in each LCS with three difficult levels. In 
each slide, 3 digital images of different resolutions were created. The diagnosis with its associate confidence 
response were obtained from eight staff dermatologists' decision to each LCS. Four statistical methods were used to 
analyze this data. There are multiple-choice Receiver Operating Characteristic (ROC) curves, logistic regression 
model (binary response, ignore the level of confidence), cumulative logistic regression (ordinal responses) and 
baseline-category logits model (nominal response). We consider that the regression model approach has better 
interpretation than the ROC curve when fits the data appropriately. 

INTRODUCTION 

Teledermatology consultation is most valuable when applied over great distances under the best of 
circumstances. Several investigators' have shown that good quality digital images can usually substitute for 
conventional film based clinical photography. Images are transmitted more slowly because the image is not 
compressed that much (2:1 or 3:1). This requires using a very high-bandwidth line to send the image, which is 
expensive and not available everywhere. What level of digital image resolution is good enough for a dermatologist 
to interpret a well taken clinical image? A study to compare the fidelity characteristics of three levels of digital 
image resolution, Low (600 dpi, 720X500 pixels), Medium (1200 dpi, 950X650 pixels) and High (2000 dpi, 
1490X1000 pixels) have been performed by Vidmar & others2. The purpose of this paper is to analysis the same 
data with different statistical methods and comparing their results. We will present four statistical methods (include 
ROC) to analyze this data, interpret the results, and state the advantages and disadvantages of those methods. First 
method, compare the level of digital image resolutions with multiple-choice Receiver Operating Characteristic 
(ROC) curves. Second, fit the logistic regression model when only consider the readers diagnosis responses and 
disregard their confidences. Third, consider the levels of multiple-choice, described as above, as ordinal responses 
and fit the cumulative logistic regression models. Fourth, consider the levels of multiple-choice as nominal 
responses and fit the baseline-category logits model. We consider that the regression model approach has better 
interpretation than the ROC curve when fits the data appropriately. 

DESIGN 

A total 180 different dermatology slides were obtained from Dr. Douglas Perednia3 of Oregon Health Science 
University. These slides were divided equally into 3 logical competitor sets, (LCSs) pigmented lesions (LCS-A), tan 
or flesh-colored papules (LCS-B), and papulosquamous lesions (LCS-C) each with 60 slides. Within each LCS, 
there were three specific diagnoses and one non-specific "other" diagnosis. There were 15 distinct slides of each the 
four possible diagnoses in each LCS. These 15 slides were divided into 3 "easy', 5 "moderately difficult", and 7 
"difficult" cases. From each one of the 180 original slides, 3 digital images of different resolutions were created: 
Low (600 dpi, 720X500 pixels), Medium (1200 dpi, 950X650 pixels) and High (2000 dpi, 1490X1000 pixels). A 
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white cardboard frame was placed around the edge of the centrally placed image before each session. As a result, 
the viewer had no cues to determine the resolution of the desktop. Eight staff dermatologists were asked to decide 
which one of the four diagnoses of each LCS was the correct diagnosis, along with their level of confidence in that 
diagnosis (very certain, fairly certain, just guessing). 

STATISTICAL METHODS 

RECEIVER OPERATING CHARACTER (ROC) CURVE TESTING METHOD: 
A ROC curve for binary response is a graph that plots the sensitivity verse 1 -specificity at different cut-off 

points. The sensitivity is defined as the probability of a test result is positive when the disease is present, and the 
specificity is the probability that a test result is negative when the disease is not present. For the ROC curve testing 
method to multiple-Choice, previous articles by Swets and others have shown that diagnostic subgroups and test 
images with varying degrees of diagnostic difficulty can be used to tailor ROC analyses to more complex situations. 
A standard ROC curve to multiple-choice outcomes simply plots the true-positive and false-positive fractions that 
result from six decision thresholds. The six decision thresholds were defined by the combination of the reader 
diagnoses (correct or incorrect), any P and N, and confidences (very certain, fairly certain and just guessing), say C, 
F, and G; that is PC, PF, PG, NG, NF, NC. We also consider six decision thresholds are in ranking order as 
NC<NF<NG<PG<PF<PC.   ROC curves correspond to three level of resolutions were generated by level of 
difficulties, level of Logical Competitor Sets (LCSs) and combination of them. The area under the ROC curve and 
Standard error of area are calculated by using a statistical software, MedCalc. The formation of ROC curve for low 
resolution with easy level for LCS-A, is explained as follow (the other ROC curves will be created by the same 
way). 

Step 1. For each viewer, we create the viewer decision table with a specific diagnosis, MM (row) by decision 
levels (column ) then fill the frequencies in the cells. And the other specific diagnoses (NV,SK, OP) will do the 
same way as well. 

Step 2. Sum all specific diagnoses for each viewer. 
Step 3, Sum all viewers, all specific diagnoses, for Low resolution, Easy level of Difficulty, Pigmented lesions 

(LCS-A). 
Step 4. Create a normalized version table as below, and use it to form the ROC curve. 

Table: Easy level of difficult. Pigmented lesions (LCS-A), Low resolution 
Cumulative Version 
T-DX Viewer Decision 

PC PF PG NG NF NC 
ALL DD+ 47 75 79 85 93 96 
ALL DD- 3 1 11 17 41 141 288 

Normalized Version 
T-DX Viewer Decision 

PC PF PG NG NF NC 
ALL DD+ 0.49 0.781 0.823 0.885 0.969 1 
ALL DD- 0.01 0.038 0.059 0.142 0.490 1 

Finally, the results indicated that that there is no significant difference among the level of resolutions. 

LOGISTIC REGRESSION (LOGIT) MODEL: 
Ignore the levels of certainty, and consider the correct and incorrect diagnostic as a binary outcome, then fit the 

regression model by using SAS " PROC LOGISTIC ". The logistic regression model is 

log 
7t: 

\-K 
= CC + ßiXu +ß2X2! + + ßkXkl:, where  / = 1, 2, ,n individuals, 1ti probability of 

' J 
correct diagnostic, and Xx, X k are corresponding to covariates, level of difficulties, level of digital image 

resolutions, readers, and level of LCSs and possible interaction terms. 
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The deviance, Pearson chi-square and Hosmer and Lemeshow Goodness-of-Fit test all indicate the model fit the 
data reasonable well and the result also indicate that there is no significant difference among the level of resolutions. 

MULTINOMINAL LOGISTIC REGRESSION (MLR) MODEL: 
Consider the levels of multiple outcomes as nominal and fit the baseline-category logit model use the j=6 as the 

baseline. The model can be written as log = aj + ßßX] + ßj2X2+.... + ßJkXk. 

where j=l,2...5. In this model there are two restrictions must be imposed to estimate the equations. One, the 
probabilities are nonnegative; the other, sum of probabilities must equals to 1. 

Under two restrictions, the probabilities can be solved as 

a,+ßuXi+ßl2X2+.... + ßlkXk        „ _    a2+ß2UXl+ß22X2+.... + ß2lkX 
*.= 5        ". ,      ^2 = 5 

k 

l + Y.aJ+ßjlXl+ßJ2X2+....+ ßJkXk l + l.aJ+ßJlXl+ßJ1X2+.... + ßJkXi 

1 
^6= s  

l + HaJ+ßflXl+ßJ2X2+.... + ßjkXk 

To estimate the parameters, we obtain the log likelihood equation, then maximize it with numerical method. The 
SAS procedure, PROC CATMOD, will be employed to fit the model. The interpretation will be similar to logistic 
regression model but modified. The likelihood ratio test is a goodness of fit test, the p-value is 0.1196 indicates the 
MLR model fits data reasonable well, and there is no significant difference among the level of resolutions. 

CUMULATIVE LOGISTIC REGRESSIONCCLR") MODEL: 
In the MLR model, we consider the multiple-choice responses are unordered categories. When the categories 

are ordered, it would not be incorrect to simply ignore the ordering and estimate a MLR model. For this experiment, 
consider the levels of multiple-choice as an order categories, that is NC<NF<NG<PG<PF<PC. 
The cumulative logistic regression models is written as 

log 
i-p(y<y) 

-aj + AXt +....+ßkxk 

where, there are k independent variables and j =1,2..5 are correspond to order level of (NC<NF<NG<PG<PF) with 
p(y < 1) < p(y < 2) < p(y < 3) < p(y < 4) < p(y < 5), and p(y < 6) = 1, the PC level is correspond to 

6. The CLR model imposes restriction, proportional odd assumption, on the data. The assumption must be tested 
before accept the model. The interpretation of CLR model is similar to the logistic regression model. The SAS 
procedure, PROC LOGISTIC, is widely used to fit the CLR model. The p-value of the Score test for the 
proportional odds assumption is less than 0.0001, which indicate the proportion assumption does not hold. 
Therefore no further discussion is need. 

CONCLUSION 

Except Cumulative Logistic Regression (CLR) model does not fit the data, all methods have the same conclusion. 
For large data set like this, the process to construct the ROC curve is time consuming and should be handled with 
carefully. It is good and easy for a clinician to see the ROC curve and judge the difference through the eye vision, 
however, it is impossible to control the confounding when more explanatory variables are involved. We consider 
that the regression model approach has better interpretation than the ROC curve when the model fits the data 
appropriately. 
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Testing for a Difference Between Two Variance 

Components Obtained from Dependent Data Sets 

(Clinical Paper) 

David W. Webb 

U.S. Army Research Laboratory 

Aberdeen Proving Ground, MD 

Statement of Problem 

Over the last 15 years, the U.S. Army research community has tested several proposals (some 

implemented, some not) intended to reduce the component of total system error attributable to gun tubes. 

This error component, also known as tube-to-tube dispersion and denoted by of , has been shown to play 

an important role in the delivery accuracy of the Ml series main battle tank. Most of the proposals have 

been evaluated through live-fire testing, making use of principles of experimental design to control 

extraneous error sources and statistical inference to draw scientifically valid conclusions. 

The most common experimental design used to evaluate treatment effects on of is a nested 

design (hereafter denoted Design I; see Table 1) whereby 2a gun tubes are divided evenly into a control 

group and a treatment group. Each gun tube fires two or more "occasions"1 of rounds. To ease 

computations required of the analysis, Design I is balanced, with each tube firing the same number of 

occasions and each occasion comprised of the same number of rounds. The response for each round fired 

is an ordered pair (x,y) representing the horizontal and vertical coordinates of the point of impact on a 

target. Although the response is bivariate, it has been historically shown that for direct-fire ammunition, 

An occasion is loosely defined as a group of rounds fired consecutively and under as near identical conditions as 
possible. The need for this definition arose over the years as test engineers discovered, for example, that a group of 
10 rounds fired consecutively in the morning and a second group of 10 rounds fired from the same vehicle that 
afternoon often have distinctly different centers of impact. 
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the horizontal and vertical coordinates are independent.   As a result, typical analyses treat the data as 

independent univariate responses. 

Control Tubes Treatment Tubes 

Tube Occasion Rounds Tube Occasion Rounds 

1 

1 (x,y),.,,, A (x,y),,,.„ 

a+1 

ab+1 (X,y)a+l.ab+l.l A (X,y)a+i,ab+|,n 

2 (x,y)i.2.i A (x,y)i.2.„ ab+2 (x-y)a+l.ab+2.1 A (X,y)a+i.ab+2.n 

M M M M 

b (x,y)i,b,i A (x,y),,b.„ ab+b (X,y)a+l,ab+b.l A (X,y)a+i,ab+b.n 

2 

b+1 (x,y)2.b+i.i A (x,y)2.b+1.„ 

a+2 

ab+b+1 (X,y)a+2.ab+b+l.l A (X,y)a+2,ab+b+|.n 

b+2 (X,y)2.b+2.1 A (X,y)2.l><.2.n ab+b+2 (x,y)a+2.ab+b+2.[ A (X,y)a+2,ab+b+2.n 

M M M M 

2b (X,y)2.2b.l A (X,y)2.2b.n ab+2b (X,y)a+2.ab+2b.l A (X,y)a+2,ab+2b.n 

M M M M M M 

a 

(a-l)b+l (X,y)a.(a-l)b+l.l A (X,y)a,(a.1)b+|,n 

2a 

(2a-l)b+l (X,y)2a.(2a-l)b+l,l A (X,y)2a.(2a-l)b+l.n 

(a-l)b+2 (X,y)a,(a-!)b+2,l A (X,y)a,(a-1 )b+2.n (2a-l)b+2 (x.y)2a.(2a-l)b+2.1 A (x,y)2a,(2a-l)b+2.n 

M M M M 

ab (X,y)a.ab.l A (X,y)a.ab.n 2ab (X,y)2a.2ab.l A (X,y)2a,2ab.n 

TABLE 1. Design I frequently used in live-fire testing of gun tubes, using two independent groups of a 

gun tubes. 

Because the control and treatment groups are disjoint, their data are independent. For a given 

group of tubes, a mathematical model for either coordinate of the impact location is given by the 

equation: 

Yjkm -FZ + Tj + Ok(j) + Rm( jk), 

where 

Yjkm = the impact for the m'h projectile fired during the k'h occasion from the /* tube; 

FZ = the fleet zero, or the overall population mean; 

Tj = the effect of the jm tube for j = 1, 2,..., a; 
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Ok(j) = the effect of the k'h occasion for k = 1, 2, ..., b; and 

Rm(jk) = the experimental error, for k = 1, 2, ..., n. 

The terms Tt, Oja), and fi^are assumed to have normal distributions with mean zero and 

variances OJ,OQ, ando\, respectively. 

Although several hypotheses may be tested from the data collected under Design I, the one of 

primary concern to the research engineers is H0:a\c < o^  versus HA:a\c >o\ , where the subscripts 

refer to either the control (C) or treatment (7) group. An exact test of this hypothesis using generalized p- 

values was originally derived by Zhou and Mathew (1994). The generalized P-value for this hypothesis is 

given by P = Pr(t > l) where x = —ul   a~ c/   a . In this expression, the SS terms are sums of 
«7c/Xa-I+«Ok//Xa<fr-l) 

squares taken from the independent analyses of variance for each tube type and the %2 terms are chi- 

square random variables with degrees of freedom indicated by the subscript. The generalized P-value is 

estimated by repeatedly generating random values of T . 

Now suppose a another design, denoted hereafter as Design II, calls for a single set of gun tubes 

to fire before treatment and then again after treatment (see Table 2). The independence that existed 

between the two halves of Design I is therefore lost in Design II. In addition, Design II is in part 

characteristic of a factorial design because of the fact that each tube is used in the before- and after- 

treatment phases of the study. 

Similar to  Design I,  the primary hypotheses  of interest are   H0:ci       < al       versus 
'before 'after 

HA:a~       >oT     , however it is unclear to me how to properly perform this test.  I have considered 
'before 'after L r 

several strategies, none of which seem to test the desired hypothesis. For example, a mathematical model 

for either coordinate of the impact location may be given by the equation: 

Yijian =FZ + Pi + Tj + PTtj + Ok{ij) + R, m(ijk) •■ 

where 
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Yjjion = the impact for the m'hprojectile fired during the k'h occasion from the j'h tube under the 

i'h treatment; 

Pi =the effect of the ith treatment for ; = 1 (pre-), 2 (post-); and 

PTjj = the interaction of the i'h treatment and the j'h tube; 

Before Treatment After Treatment 

Tube Occasion Rounds Tube Occasion Rounds 

1 

1 (x,y)i.i.i A (x,y)i,,,„ 

1 

ab+1 (x,y)i.ab+i,i A (x,y)i,ab+i.n 

2 (X,y)l.2.1 A(x,y)l,2.n ab+2 (X,y)l.abH-2.1 A (x,y),.ab+2.n 

M M M M 

b (x.y)i.b.i A(x,y)i,b.n ab+b (X.y)l.ab+b.l A (X,y)i,ab+b.n 

2 

b+1 (X,y)2.b+l.l A (X,y)2,b+l.n 

2 

ab+b+1 (X,y)2,ab+b+l.l A (X,y)2,ab+b+l.n 

b+2 (X,y)2.b+2.1 A (X,y)2.b+2.n ab+b+2 (X,y)2,ab+b+2,l A (X,y)2,ab+b+2,n 

M M M M 

2b (X,y)2.2b.l A (X,y)2.2b.n ab+2b (X,y)2.ab+2b.l A (X,y)2,ab+2b.n 

M M M M M M 

a 

(a-l)b+l (X,y)a.(a-l)b+l.l A (X,y)a,(a.1)b+!.n 

a 

(2a-l)b+l (X,y)a.(2a-l)b+l,l A (X,y)a,(2a.|)b+I.n 

(a-l)b+2 (X,y)a.(a-l)b+2.1 A (x,y)a,(a-l)b+2.n (2a-l)b+2 (X,y)a,(2a-l)b+2.1 A (X,y)a.(2a-l)b+2.n 

M M M M 

ab (X,y)a.ab.l A (X,y)a.ab.n 2ab (X,y)a.2ab.l A (X,y)a,2ab.n 

TABLE 2.   Design II proposed for live-fire testing of gun tubes, using the same group of a gun tubes 

before and after treatment. 

The term Pt is a fixed effect so that Pl = -P2, while PTy is assumed to have normal distribution 

with mean zero and variance o2
PT.   All others terms are as defined in Design I.   However, the usual 

prescribed F-tests for each source of variation, including the interaction PT, do not test the desired 

hypothesis. 
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Another possible strategy is a multivariate analysis offered by Mathew (1999). In this analysis a 

bivariate model is used to capture the dependent structure of the test design. The model is given by the 

equation 

fa jkm 

2 jkm 

(FZA 

JZ-2 , V* 
1*0") 

2k(j) 

K\m(jk) 

R2m(jk) 

where a "1" in the subscripts signifies "pre-treatment", and "2" signifies "post-treatment". Each term is 

the multivariate analog of the terms in the univariate model of Design I.   If we assume that is 

V "' ) 

distributed bivariate normal with variance 
f .2 

P     o7 

, then perhaps a direct test of the desired hypothesis 

exists. Although I think this may be a viable strategy, I have yet to investigate it in more detail. 

In the absence of a better, proven methodology, I continue to use generalized P-values under the 

mistaken assumption of independent groups of gun tubes to offer preliminary sample size 

recommendations and power estimates for the engineers involved in this study. I would appreciate 

comments and/or suggestions from the panel on the aforementioned or other analytical approaches. 
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Abstract 

For any two random variables X and Y with distributions F and G defined on 
[0, oo), X is said to stochastically precede Y if P(X <Y)> 1/2. The applicability 
of stochastic precedence in reliability modeling and in life and stress testing is dis- 
cussed. The problem of estimating the underlying distribution(s) of experimental 
data under the assumption that they obey a stochastic precedence (sp) constraint 
is examined in detail. Two estimation approaches are used to construct estimators 
that conform to the sp constraint, and each is noted to lead to a consistent estimator 
of the underlying distribution. The asymptotic behavior of each of the estimators 
is described. Evidence is presented, both analytically and via simulation, which 
demonstrates that the new estimators outperform the corresponding empirical dis- 
tribution functions (edfs). An application involving life testing experiments in the 
context of developmental and operational testing in the DoD acquisitions process is 
treated in the final section. All theoretical results are stated without proof; proofs 
will be published elsewhere. 

*Approved for public release; distribution is unlimited. 
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1    Introduction 

The notion that one random variable tends to be larger than another is one that can 

be quantified in many different ways. Among the best known stochastic relationships 

in the literature are stochastic ordering, uniform stochastic (or hazard rate) ordering 

and likelihood ratio ordering, denoted here by X<stY, X<hTY and X<lTY, respectively. 

(When X ~ F and Y ~ G, we will use the inequality F < G as interchangeable with 

X <Y.) Definitions and a comprehensive discussion of these and other orderings can be 

found in the recent monograph by Shaked and Shanthikumar (1994). 

The weakest of the orderings mentioned above, namely, X<stY, is still too strong an 

assumption in many problems in which one is inclined to believe that the X population 

is somehow smaller than the Y population. If F and G are the cumulative distribution 

functions (cdfs) of X and Y respectively, the stochastic ordering assumption prescribes 

uniform domination (i.e. F(t) > G(t) for all t) of one distribution by the other. While 

that domination may well hold over an important part of the range of the relevant vari- 

ables, it may be known to fail over another part of the range (due to infant mortality or 

planned obsolescence, for example), or may simply be unknown or unknowable over the 

entire range. Furthermore, stochastic ordering often fails when comparing distributions 

from different parametric families, and may be quite an unmanageable concept when the 

two cdfs of interest are not available in closed form. For these reasons, one might wish 

to entertain the possibility of alternative formulations of the relationship between two 

random variables. 

With this motivation, we introduce the following stochastic relationship as a way of 

comparing distributions: 

Definition: Let X and Y be independent random variables with distributions F and 

G, respectively. Then the variable X is said to stochastically precede the variable Y 

if P(X < Y) > 1/2. This relationship will be denoted by X<gpY or, equivalently, by 

F<spG. 

Suppose X and Y are independent, continuous random variables, with X ~ F and 

Y ~ G. It is then easily seen that stochastic ordering implies stochastic precedence. If 

X<3tY, then P{X <Y) = fx(l - G{x))dF{x) > JX{1 - F(x))dF(x) = 1/2. It is thus 

apparent that stochastic precedence is a less restrictive assumption on the relationship 

between two random variables than stochastic ordering. 

The assumption X<3pY is equivalent to the assertion that the median of the variable 

Y — X is greater than or equal to zero. The relationship is thus seen to be different from, 
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but of the same ilk as, the more familiar restriction E(Y — X) > 0. Statistical inference 

under the latter restriction and its natural generalizations has been studied extensively, 

and constitutes an important part of the field of order-restricted inference (see Robertson, 

Wright and Dykstra (1988)). 

Interest in the probability P(X < Y), where X and Y are independent random vari- 

ables, has a fairly long history. Birnbaum (1956), for example, considered the problem of 

the estimating P(X < Y) on the basis of two independent samples, advocating a scalar 

multiple of the Mann-Whitney statistic for this purpose and deriving one-sided confidence 

intervals based on his estimator. Church and Harris (1970) studied a particular parametric 

version of this problem arising in reliability, pointing out the relevance of this probability 

. in the modeling of stress-strength relationships. When Y represents the stress placed on 

a component under test and X represents its (breaking) strength, then P(X < Y) is sim- 

ply the probability that the component fails. Johnson (1988) provides a comprehensive 

review of work on modeling and inference related to stress-strength testing. While the 

probability P(X < Y) has received a good deal of attention, its utility in ordering the 

variables X and Y, as in the relationship X<3pY defined above, has not heretofore been 

carefully explored. 

Our main interest here is in nonparametric estimation of the underlying distribution 

function F when it is known that F obeys a stochastic precedence constraint. Specifically, 

under the assumption that F<spG, we will consider both one and two-sample estimation 

problems. In the one sample case, the dominating distribution G is treated as known. 

Our goal is to develop estimators of F (and of G, when appropriate) which obey the 

postulated sp constraint. If the edf satisfies the sp constraint, then it will serve as a 

suitable estimator. The real challenge, of course, is to develop a good estimator in the 

more typical circumstance in which the edf violates the constraint. 

In section 2, we construct an estimator of F that satisfies the stochastic precedence 

constraint by shrinking the sample (generated from F) until the constraint holds. An 

alternative estimator for F, based on shifting the data rather than shrinking it is treated 

in section 3. Both estimators can be shown to be consistent; their asymptotic behavior will 

be identified. No proofs are provided here. For proofs, the interested reader is referred 

to Arcones, M.A., Kvam, P.H. and Samaniego, F.J. (1999). Antecedents for the work 

presented here include Grenander's (1956) and Marshall and Proschan's (1965) studies 

on estimating a distribution with monotone failure rate, Boyles and Samaniego's (1984) 

study on estimating a survival curve under the "new better than used" constraint, Brunk 

et al. (1966) and Dykstra (1982) on estimation under a stochastic ordering constraint, and 

Rojo and Samaniego (1991, 1993), Mukerjee (1996) and Arcones and Samaniego (1999) 
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on estimation under a uniform stochastic ordering constraint. In the final section, the 

two proposed estimators are applied to simulated data typical of the data available from 

developmental and operational testing in the context of DoD acquisitions programs. 

2    Estimation via Data Rescaling 

Let F and G be two continuous distributions on the positive real line, and assume that 

F<spG. If the empirical distribution functions (edfs) based on respective samples from 

F and G fail to meet the sp constraint, we seek to modify one or both edfs until the 

constraint is achieved. In this section, we do this by minimally rescaling the observations 

to achieve the sp constraint. We'll assume that F and G are continuous with support in 

(0, oo). Here, we treat both the one-sample case, where G is assumed known, and the 

two-sample case, where samples are available from both populations, using the "rescaling" 

strategy. 

We consider the one-sample sase first. Let us assume that G is known and that a 

random sample X\, ...,Xn is available from F. The results we derive here hold somewhat 

more generally than for estimation under a stochastic precedence constraint. We will 

obtain a consistent estimator of F under the assumption that F satisfies the constraint 

E[(f>(X)] < 0, where <f>(.) is an arbitrary non-decreasing function on [0, oo). When <j)(x) = 

G(x-) - 1/2, the inequality F<spG is equivalent to E[<j>(X)) < 0. Define 

n 

6n = sup{i > 0 : n-1 ]T (ß(tXj) < 0}. (2.1) 

i=i 

We have that n~l £J=1 0(0nX,—) < 0 < n~l £"=1 <f)(dnXj+).  Let An = min(0„, 1), and 

define our estimator of F as a function of An: 
n 

Fx{x) = n~l ^/(AnX,- < x). (2.2) 

J=I 

By construction, F\ stochastically precedes G. The statistic An is the scale factor used 

to shrink the data. That is, when f (ß(x)dFn(x) > 0, we multiply the set X\, ...,Xn by An, 

withO < A„ < 1, so that f (ß(x)dFi(x) = 0. It is well known that {nl/2(Fn(x)-F(x)) : x € 

M} converges weakly to {W(F(x)) : x G M}, where {W(u) : 0 < u < 1} is a Brownian 

bridge. If E[<ß{X)] < 0, then by the law of large numbers Pr{n-J £?=1 <f>(Xj) < 0} -► 1, 

which implies Pr{Fi(x) = F(x), for each x) —* 1. This fact implies that when the 

stochastic precedence is strict, (that is, P(X < Y) > 1/2), Fi has the same asymptotic 

limit as Fn. We record this result as 
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Theorem 1. If E[<ß(X)] < 0, then 

{n1/2(Fi(z) - F{x)) :xeM}^ {W(F(x)) : x € R}.l 

If P{X <Y) = 1/2, the sp-constraint can more strongly affect the asymptotic variance 

of F\. The difference is seen in part (ii) and (iii) of the theorem below. 

Theorem 2. Let Un = n"1/2 Y^=MX^ ~ E\.^Xo)\)- If EWi.X)] < °°> then Vn 

converges in distribution to U ~ N(Q,Vai(<ß(X))). In addition, {n1/2(Fn(x) - F(x)) : 

x e R} and Un converge jointly to {W(F(x)) : x € M} and U with covariance function 

Cov{W(F(x)),U) = Cov(I{X < x),cj)(X)). Define C(t) = £[#(**)]• If E[<f>{X)] = 0 and 

C'(l) exists and is positive, then 

(i) nW(6n - 1) + (C'(l))-1^ - 0 and n^{Xn - 1) + (CU))"1^ * 0. 

(ii) If Um^1+(|F(/ix) - F{x) - x(/i - l)F'{x)\)/{h - 1) = 0, then 

^(Fite) - F(x)) A W(F(x)) +xF'{x){C(l))-1U+. 

(iii) If lim^1+ suP;r>0(|F(/ix) - F(x) - x(h - l)F'(x)\)/(h - 1) = 0, and 

supx>0xF'(x) < oo, then 

{n1/2^) - F(x)) : x > 0} A {W(F(x)) + xF'(x)(C(l))-1l7+ : a; > 0}.    ■ 

Let's consider the difference in performance of Fi and Fn in two specific examples. If 

X and Y have a Uniform(0,1) distribution, then MSE(Fi(x)) = x{l - x) + x\x - 5/6). 

It follows that this MSE is smaller than MSE(Fn(x)) for x < 5/6. The integrated mean 

squared error of F1; defined as MSE(A)=/MSE(Fi(aO)<*F(x) = 5/36, is slightly smaller 

than that of Fn, 1/6. If X and Y are distributed as exponential with mean ß = 1, then 

MSE(Fi) = (1 - e~x)e-x + 2xe~2x(x/3 - 1 + e~x). In this case, MSE{FX) < MSE{Fn) 

for all x < 2.8214, which is approximately x0.94, the 0.94 quantile of F. The integrated 

mean squared error of Fi is 77/648=0.1183, again less than that of Fn. These examples 

show that the available improvement with Fi depend on the underlying distributions of F 

and G. While uniform improvement over Fn cannot be guaranteed, we see from the above 

that A can offer improvement upon the MSE of Fn over a large portion of the effective 

support set of the distribution F as well as according to the global measure IMSE. 
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The two-sample case is, as might be expected, somewhat more complex. Let us now 

consider the estimation of F in the case in which G is also unknown. We assume that 

an independent random sample Yi,...,Ym from G is available, along with the original 

sample Xi,...,Xn from F. In this case, we have to estimate two distribution functions 

simultaneously. Let Fn and let Gm be the empirical distributions based onX],...,^ and 

on Yi,...,Ym, respectively. 

Let H(t) = P(Y < tX), and define Hn(t) = (nm)'1 £"=1 £™i Wi < tX5). Analo- 

gous to (2.1), define 

0„ = sup{*>O :£„(*)< 1/2}, (2.3) 

and let An = rnin(0n,l). Given 0 < t < 1, we define the two-sample estimators of F 

and G to be Fltt(x) = n~l ^=i HK~% < *) and Gljt(x) = m"1 ££, KK% < *), 

respectively. Observe that Hn(t) = H'TLEH^V^ < Xi~tXj)- Hence. for 

each 0 < t < 1, Fitt(x)<spGi,t(x)- At t = 0, we achieve the sp constraint by rescaling 

only the sample from F. At t = 1, only the sample from G is rescaled, and for values 

t € (0,1), both samples are simultaneously rescaled. 

When the stochastic precedence between F and G is strict, the large sample behavior 

of these two estimators is described in the following result, stated without proof. 

Theorem 3. If H(l) < 1/2 and m, n -»■ oo, then, for each 0 < t < 1, 

(na/2(FM(*) " F(x)) :xeM}^ W(F(z)) : x € M} 

and 

{m1/2(Gw(aO - G(x)) : x € M} A {W2(G(x)) :xeM}. 

The behavior of FM and G1)twhen F =sp G must be described by considering a 

collection of subcases. In general, the limiting distribution is non Gaussian, but can be 

identified explicitly. The theorem below is an example of results of this type. Detailed 

statements and proofs may be found in Arcones, Kvam and Samaniego (1999). 

Theorem 4. Suppose that H(l) = 1/2, H'(l) > 0, m,n -> oo, Vtx(G(X-)) > 0 and 

Var(F(y)) > 0. If 

lim \F(hx) - F(x) - x{h - l)F'(x)\/(h - 1) = 0, 
h—»1+ 

lim \G{hx) - G(x) - x(h - l)G'(x)\/{h - 1) = 0 
/i—+i+ 
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and n/m —»■ c for some 0 < c < oo, then 

nW(F1Jt(x) - F(x)) 

-i Wi(F(*)) + (1 - t)(Var(G(JC-)) + cVa^F^)))1/2^'^)^^!))-1^ 

and 

nVa(Glit(x) - G(*)) 

-i ^WaCGC*)) - t(Var(G(*-)) + cVar(F(y)))1/2xG'(x)(iJ'(l))-1[/+. 

3    Estimation via Data Translation 

In this section, we present an alternative estimator for F (denoted by F2) based on 

transforming the data with a location rather than a scale change to achieve stochastic 

precedence. If needed, the data Xi,...,Xnaxe minimally shifted by some constant amount 

to the left until the edf based on the shifted data stochastically precedes G. In the two 

sample case where G is also unknown, we simultaneously shift the data Yi,...,Ym (from 

G) by a constant to the right until the sp-constraint holds. 

While the methods employed in the present section can be applied to problems involv- 

ing positive random variables (on which we focused in Section 3), they also apply more 

broadly. Here, we assume only that F<3pG, with F and G being continuous cdfs on the 

real line. We treat one- and two-sample problems below. 

Focusing first on the one-sample case, let us assume that G is known and that a 

random sample X1, ...,Xn is available from F. As before, the results we derive here hold 

somewhat more generally than for estimation under a stochastic precedence constraint. 

We will obtain a consistent estimator of F under the assumption that F satisfies the 

constraint E[<f>(X)] < 0, where </>(.) is an arbitrary non-decreasing function on [0,oo). As 

previously mentioned, when <f>(x) = G{x~) - 1/2, the inequality F<spG is equivalent to 

E[<ß(X)] < 0. Define 

9n = snp{teM:n-1Y/(j>(t + Xj)<0}. (3.4) 
3=1 

We have that n'1 £"=i (j>{dn + Xf) < 0 < n'1 J2%i 4>{0n + Xj+). Let An = min(0n, 0), 

and define our estimator of F as a function of An: 

n 

F^x) = n-^I(Xn + Xj<x). (3.5) 
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By shifting the data an amount An, we have F2 stochastically preceding G. The 

location-shift statistic An is analogous to the scale-shift statistic An from Section 3.1. The 

properties of the estimators are similar, as well, but they are not identical in any case of 

interest. This fact is made clear in the theorems below. 

Theorem 5 below states that if stochastic precedence is strict, F2 has the same asymp- 

totic limit as Fn. Theorem 6 examines the asymptotic limit of F2 in the case that stochastic 

precedence is not strict. 

Theorem 5. If E[<j)(X)] < 0, then 

{n1/2(F2(x) - F(x)) : x € M} A {W(F(x)) : x E M}. 

Theorem 6. Define £(i) = E[<f>{t + X)]. If E[<fi(X)] = 0 and <'(0) > 0, then 

(i) nV*0n + (C'(O))-1^ * 0 and n^Xn + (CCO))"1^ - 0. 

(ii) If KmÄ-i+GFfc + h)- F(x) - hF'(x)\)/h = 0, then 

n"\F2{x) - F{x)) - W(F(x)) + ^(xJ^Cl))"1^. 

(iii) If limh_i+ supx>0(\F(x + h)- F(x) - hF'{x)\)/h = 0, and suPl>0 F'{x) < oo, then 

{n^2(F2(x) - Fn(x)) :x>0}^ {W(F(x)) + F'(x)(C'(l))-1f/+ : x € M}. 

The difference between Fx and F2 is best appreciated through an example. The two 

estimators, and the edf Fn, all based on samples of size ten, are graphed in Figure 1 against 

the true Weibull distribution with shape parameter a=2 and scale parameter ß=l, so that 

F(x) = 1 - exp(-x2), x > 0. For illustration, we chose G = F. The edf, graphed as a 

solid-line step function in Figure 1, clearly violates the constraint of stochastic precedence 

for this sample. The scale transformation estimator, jFi, is graphed as a dashed-line step 

function while F2, is graphed as a dotted-line step function. Fx is shifted left of Fn by 

multiplying all the observed data by 0.8253 to ensure A stochastically precedes G. F2 is 

shifted to the left by subtracting 0.1732 from each observation. The disagreement between 

Fi and F2 is most dramatic at values of x for which F(x) is close to 1. 

The asymptotic MSE of the estimator F2 neither dominates or is dominated by the 

asymptotic MSE for the scale-translation estimator.   For example, if X and Y have a 
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Uniform(0,1) distribution, we have from Section 2 that MSE(Fi(a;)) = x(l - x) + x2(x - 

(5/6)). For the location-translation estimator, MSE(F2(x)) = x(l - x)/2 + 1/24. The 

integrated MSE for F2 = 1/8, which is slightly smaller than the IMSE for A- On the 

other hand, when X and Y have identical exponential distributions, the IMSE for F2 is 

slightly larger than that of Fv In the case // = 1, then MSE(Fx(z)) = e~x(l - e~x) + 

xe-2x(2e-x-2 + x/6) and MSE(F2(x)) = e-
x(l-e-x) + e-2x{e-x-5/6). Here, IMSE (A) 

= 0.1183 < IMSE(Fi) = 0.1389. 

Turning to the two-sample case, let us assume that an independent random sample 

Yi,...,Fm from G is available, along with the original sample Xi,...,Xn from F. We 

proceed similarly to Section 2, but, in this case, we need not assume that the r.v.s are 

nonnegative. Let H(t) = P(Y < t + X), and define H(t) = (rim)'1 £?=! £™ x I{Yj < 

t + Xj). Analogous to (2.3), define 

§n,m = sup{£ G R : H(t) < 1/2}, (3.6) 

and again define An,m = min(ö„,m, 0). We define the two-sample estimator of F and G to 

be F2,t(x) = n-1 EILi I{.0--t)*n,m+Xi < x) and Gu(x) = m~l E7=i iH^m+Yj < x). 

Note that, by definition, F2,t(x)<SpG2,t(x). At t = 0; only data from F are shifted (to the 

left), and at t = 1, only data from G are shifted (to the right). For values of t G (0,1), 

both samples are shifted. Examples of the large sample behavior of F2,t are given in the 

two results below. 

Theorem 7. If H(0) < 1/2, and m, n —> oo, then 

{n1/2{F2tt{x) - F(x)) :xeM}^ {W(F(x)) :xeM}. 

Theorem 8.  Suppose that H(0) = 1/2, H'(0) > 0, m,n -> oo, Vai(G(X-)) > 0 and 

Var(F(F)) > 0. 

If 

lim sup \F{x + h)- F{x) - hF'{x)\/h = 0, 
h-+0+x£lR 

lim sup \G(x + h)- G(x) - xG'(x)\/h = 0, 
h-*0+xe]R 

supxelRF'(x) < oo, supxeIRG'(x) < oo, and n/m -> oo, then 

{m^(F1>t(x) - F(x)) :xeR}^{(l- t)(Var(F(y)))1/2xF'(a;)(Ä'(l))-1ü+ : x e M} 

and 

{m}l\Gu{x) - G(x)) -i W2(G(x)) +t(Vav(F(Y)))^2xG'(x)(H'(l))-1U+ : x 6 M}. 
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4    Discussion 

The approach we have taken to the estimation of F, given F<spG, is unabashedly ad hoc. 

It is an approach that has considerable intuitive appeal when F and G are continuous. 

Both estimation methods we have considered can be applied to failure time (i.e., non- 

negative) data, though we consider this to be the natural domain of applicability of F\. 

For measurement (i.e., real-valued) data, F2, based on a change in location, is clearly the 

more suitable. Since most applications in reliability involve positive random variables, 

both approaches constitute new and useful techniques for analyzing reliability data when 

stochastic precedence is a reasonable assumption. Because there is no universally accepted 

approach to constrained nonparametric estimation, it is common to seek to exploit the 

specific structure of the constrained class one is working with. Our approach has been to 

transform the data in a minimal way so that the empirical distribution of the transformed 

data will satisfy the sp constraint. Our theoretical results show that this approach is 

efficacious, yielding estimators which satisfy the assumed constraint for any sample size 

and which inherit many of the good properties of Fn (and Gm) asymptotically. 

We devote the remainder of this section to a discussion of an application that arises 

in typical military acquisitions programs. Specifically, let us consider an estimation prob- 

lem involving data from developmental and operational testing. The standard protocols 

leading to the production and development of a new military system involve two separate 

testing phases. While system prototypes are under development, testing is carried out for 

the purpose of studying the system as well as to allow for defect detection and possible 

system improvement. Data from the later stages of the DT phase might be viewed as con- 

trolled performance testing to determine if the system is ready for independent inspection 

and ultimate procurement. The second testing phase is carried out by an independent 

agent whose role it is to estimate system performance under anticipated use conditions 

and to make recommendations regarding system production. It is often found that DT 

data, which is typically obtained under carefully controlled conditions, presents a some- 

what more optimistic picture of system quality than does the OT data. This suggests 

that a natural ordering relationship exists between DT and OT data. Simulated samples 

of size m = 20 and n = 10 from DT and OT experiments are displayed in the table below. 

These data were generated independently from distributions For an<i GDT which satisfy 

the constraint For <sP GDT- 
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DT DATA OT DATA 

28.9377 89.8388 44.6414 

14.0814 3.4894 25.5603 

14.7829 12.4447 14.0053 

1.1059 31.5321 25.2872 

0.6971 16.8332 4.5816 

1.7558 10.3292 16.9442 

44.1989 0.9279 5.2248 

30.9623 38.9988 21.9833 

14.3511 34.8822 5.5573 

4.3106 19.0173 34.1653 

Table 1. Simulated DT and OT Data 

Under the assumption that For <SP GDT> and given the data 

X\, ...,-Xio ~ For 

and 

Yi,...,Y2o ~ GOT 

as displayed in Table 1, we have computed the estimators JF\ and F2 of For using the 

two-sample versions of the data rescaling and the data translation strategies with the 

parameter t set equal to zero.   Specifically, the two estimators we have computed are 

specified in the equations below 

If 

±Y.Y.I(Xj<Yi)<l 
ran 

%        3 

let 

A(x) = -£/(AiX;<*), 
n 

i 

where 

{. i       j 



If 

mn 
l        3 

let 

h{x) = lY,I^-x^x)^ n 

where 

^=inf{«:^EE^-'^,)>i}. 
Figure 2 displays the estimator F\, plotted against the empirical distributions Fn and 

Gm. Figure 3 shows F2 plotted against Fn and Gm- In both instances, it can be seen 

that the constrained estimators F\ and F2 are adjusted to conform with the sp constraint, 

each being situated to the left of Fn. Since the actual data were generated from two 

exponential distributions which actually satisfy the sp constraint, it is both natural and, 

as our theoretical results show, efficatious, to "correct" the empirical distribution Fn of 

the OT data so that it (minimally) satisfies the sp constraint relative to Gm. 
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Figure 1: Weibull Distribution Function (gray line) with estimators Fn (solid line), Fx 

(dashed line), and F% (Dotted line) under the constraint of stochastic precedence. 
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Figure 2: The sp estimator and the edfs Fn and Gn based on shrunken data. 
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Figure 3:   The sp estimator and the edfs Fn and Gn based on translated data. 
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ABSTRACT 

Previous work at IDA showed that major counter-cocaine interdiction operations in the South 
American source zone preceded significant price increases of cocaine on U.S. streets. This paper presents 
an Autoregressive Integrated Moving Average (ARIMA) model of this relationship. The U.S. Drug 
Enforcement Agency (DEA) has collected and maintained extensive data on the domestic narcotics market, 
including price, purity, and weight of cocaine purchases by undercover agents, via its System to Retrieve 
Information from Drug Evidence (STRIDE). We present time series intervention analyses of cocaine price 
series derived from the STRIDE database and characterize the effects of specific source-zone interdiction 
operations occurring in South America since 1991. Specifically, we obtain analytical representations of 
times between interdiction events and associated increases in the price series, the corresponding 
magnitudes of increase, and the follow-on relaxation times for the market to return to lower prices. 

INTRODUCTION 

Previous work at IDA established that the street prices of cocaine increase by the month-to-month 
fluctuations following each major source-zone interdiction operation in the Andean growing countries of 
South America.1 Additionally, street purity and all available indicators of usage were demonstrated to be 
anticorrelated with the street price increases, i.e. as price increases usage decreases. This paper extends 
that earlier effort to model the effects of major source-zone interdiction operations on street prices. It 
shows that every significant price increase excursion above a stable floor price can be associated with such 
an operation. 

For nearly 20 years, the U.S. DEA has utilized undercover agents to make cocaine purchases. The 
DEA determines the price, purity, and weight of the purchased cocaine, and maintain these data and other 
related information in its STRIDE database. While these purchases by DEA agents were not designed to be 
a random sample, they have been performed in a consistent enough fashion to extract a meaningful time 
series of relative changes in street price.1 As before, our analysis begins by normalizing the STRIDE 
transaction price for cocaine with adjustments for both purity and weight to produce a unit price: 

100 x price ($) 
normalized unit price = : . (1) 

purity {%) x weight (grams) 

Because the distribution of normalized unit prices exhibits an extraordinarily heavy right tail, we 
create a stable street price index that is the median of many successive transactions. Whereas IDA 
formerly took medians of each successive 100 transactions, we take medians for each successive month to 
accommodate standard time series analyses. There are more than 100 transactions in nearly every month. 
Hereafter, we use the shorthand "street price" to denote "monthly median normalized unit price." 

As shown in Figure 1, cocaine street prices in the U.S. were highest in the early-to-mid 1980s when 
the cocaine epidemic peaked. Prices declined dramatically as additional illicit businesses competed to 
supply this drug of choice, finally leveling off at roughly $65 per pure gram in 1989. That year, as part of 
the Bush "War on Drugs," (WOD) the U.S. military and other government agencies, in conjunction with 
several Central and South American governments, initiated a complex combination of interdiction 
operations to curb the production and flow of cocaine. Interdiction activities included eradication of crops, 
arrests of cartel leaders, counter transport across the Caribbean, and heavy seizures; all contributed to the 
1989-90 upward surge in cocaine prices.   For several years thereafter, interdictions were executed in the 
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transit zone (Central America and the Caribbean) and in the source zone (the Andean nations of South 
America). 

U.S. Street Price CO Labs     Go-Fast Boats 
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Figure 1. U.S. Street Prices and Interdiction Operations over the Time-Series Analysis Interval 

Our analysis focuses on source-zone interdiction operations beyond early 1991 after prices stabilized 
from the War on Drugs. We selected major operations that logically could have disrupted the flow of 
cocaine by inflicting significant damage on a large portion of the cocaine supply. These interdictions were 
identified from an exhaustive search and examination of several sources including the U.S. Southern 
Command, the U.S. embassy in Peru, and other organizations in the Andean countries.2 We came to focus 
on the essential elements of the transportation chain and central processing laboratories. 

Figure 2 shows the operations we selected in more detail. For example, Operations Support Justice 
III (SJ III), from November 1991 through April 1992, and 57 TV, from January 1993 through April 1994, 
interdicted trafficker flights of coca base from Peru to Colombia. During Operation 57 ///, the Peruvian Air 
Force (FAP) fired upon some trafficker aircraft, but the U.S. ended support soon after the FAP accidentally 
engaged a U.S. C-130 killing one airman. Operation SJ IV began with much more restrictive rules of 
engagement, essentially precluding lethal interdiction. Although the interdictions did not stop many 
trafficker flights, it strongly depressed coca base prices in Peru. After Congressional and Presidential 
review, the U.S. agreed to resume intelligence, detection, and monitoring support to the FAP under new 
rules of engagement. Before firing upon suspect aircraft, the FAP were to adequately signal suspected 
traffickers to land for inspection. In Peru, "shoot-down policy" enforcement began in March 1995, and 
immediately, most trafficker flights were deterred and coca base prices fell to the degree farmers 
abandoned their fields. This policy is still in force, and air trafficking has not recovered. 

In December 1996 and January 1997, the Colombian Government attacked and destroyed a major 
cocaine laboratory complex that was estimated to produce about one-third of all of Colombia's cocaine 
(CO Labs). This event occurred after the publication of the previous IDA report, and shows up in the street 
price on Figure 2 as a distinct bump in mid-1997. Finally, in November 1998, a joint force engaged the go- 
fast boat lanes in the western Caribbean - striking the Yucatan bases first and soon afterwards along the 
Colombian coast. Follow-up operations continue, and these appear as significant price rises near the end of 
the depicted series. 
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Figure 2. U.S. Street Price, Major Interdiction Operations, and Operational Indicators 

We analyze the price series consisting of 112 months from January 1991 through April 1999, 
spanning the three air interdiction operations in Peru, the Colombian laboratory attacks, and go-fast boat 
interdictions. We also examine the lag time from the initiation of the 1998 attacks on the go-fast lanes until 
their impact was felt on U.S. streets. Although the actual relationship between source-zone interdiction 
operations and effects on street prices might result from numerous factors (e.g., high pilot fees during an 
operation, complex mechanisms causing price rise, or possible long-tailed relaxation), the limited time 
period of analyzable data can only support parsimonious forms of modeling. We, therefore, adopt the 
Autoregressive Integrated Moving Average (ARIMA) process to establish a stationary baseline model and 
the simplest adequate model formulated in terms of linear operators. These linear operators will represent 
each of the events shown in Figure 2 as interventions. In this formulation, the ARIMA fit to these 
interventions will represent a delayed, abrupt price rise followed by a decaying relaxation to the price floor 
at a street price of $55 to $65. 

The remainder of this paper is organized as follows. First we apply ARIMA time series 
methodologies to derive a "baseline" model without modeling the interdiction activities. We then construct 
simple intervention expressions to model the specific interdiction events. These intervention expressions 
are introduced one-at-a-time, i.e., separately for each category of interdiction class relative to the baseline 
model. Next, we obtain a dynamic regression model formulation that incorporates all statistically 
significant intervention terms. To establish the impact of the "shoot-down policy," we characterize the 
differences between effects attributable to interdiction events occurring before and after implementation of 
the shoot-down policy. Finally, we show the significance of each term within the model and estimate the 
degree to which source-zone interdiction explains the major features of the street price series. 

BASELINE ARIMA TIME SERIES MODEL 

Standard ARIMA analyses rely on the assumption one can transform the subject time series into a 
stationary process whose mean and variance are constant through time, and whose autocorrelations have 
been eliminated to within the limits of reasonable statistical tests. In order to achieve this requisite first 
order stationarity, we took differences of the natural logarithms of the price series and corrected for month- 
to-month autocorrelations. This baseline ARIMA model estimates what the price series would be given all 
of its past history, but does not include intervention events for the interdictions in the forecasted month. 
Our baseline ARIMA(0,1,1) model (exponentially weighted moving average model) obtained for the price 
series (y,) is: 
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z,=ln(yl)-ln(y,_I) = (l-ÖB)fll=(l-  0.28  B)at, 
(0.08.0.48) 

(2) 

where  8 = 0.28 and the 95% confidence interval for  6   is (0.08,0.48).    This meets the invertibility 
condition \91 < 1 and leads to a simple expression for the one-step ahead forecast: 

ln(y,+1) = I[ö'x(l-ö)xln(yI_1.)]    or    yt. 
:=0 

(3) 

where the weights corresponding to the immediately preceding points rapidly diminish: 0.72, 0.20, 0.06, 
   The predicted value for time tn+1 under this ARIMA (0,1,1) model is strongly related to the actual 
value at time tn and to a much lesser degree to values at earlier times because the autocorrelations are weak. 
For our problem, all of the intervention processes quench exponentially with infinitesimal impact after at 
most 6 months. 

Figure 3 shows that the forecasted baseline series consistently appears shifted one month to the right 
when compared to the observed series, a direct result of the exponentially weighted moving average. The 
ARIMA baseline model, therefore, underestimates the rises to the peaks and overestimates the declines 
from the peaks because it considers trends in the past history and not immediate impacts from exogenous 
factors. Our full model will incorporate intervention terms arising from specific interdiction events, and 
these will be compared to the baseline model using the formal order selection Akaike information criterion 
(AIC). 

U.S. Street Price 
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Figure 3. Baseline Model ARIMA (0,1,1) One-Month Forecast 

CHARACTERIZATIONS OF SPECIFIC INTERDICTION EVENTS 

The framework we use for evaluating hypotheses based on interdiction events employs both the linear 
transfer function (LTF) and Box-Jenkins Sample Cross Correlation methodologies.3 The LTF method 
calls for a multi-lag model to obtain the general response pattern and examines the relationship among the 
estimated weights through maximum likelihood estimation. The Box-Jenkins method examines the cross 
correlation between time series at different lags and is used to confirm the LTF results. 

From observation of Figure 2, we see that, following some time after every interdiction event, street 
prices first rise and then decay toward the pre-interdiction price. This pattern of damage and recovery can 
be modeled via the LTF method through first positive and then negative weights. The general form of the 
dynamic regression model with damage and recovery is then: 

z,=C+- 
CO. dam(B) 5L 0)r, 

ÖäaniB) 
X, +- 

SreciB) 

(B)    » 
B"cx,+N,. 
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Here, C is a constant term, and N, is a stochastic disturbance described by an ARIMA process. The 
numerator co(B) represents a pattern of interventions or initial recovery rates, 8(B) represents the decay 
process, and Bb captures the respective delay times, where recovery follows damage. X, is a binary 
deterministic variable for the pulse interventions that takes the value 1 for a month with an interdiction 
event and 0 for all others.3 

For example, the simplest adequate characteristic response for attacks on the Colombian cocaine 
laboratory complex is: 

-0.10 
z,=   0.23   ß\aA;+J±22Äß6 (1_   038   )ä (4) 

(0.09,0.37) aJ      1-     0.61 (0.20,0.56) 
(0.15,1.07) 

There is an abrupt increase of 0.23 on the natural-log scale (e023 - 1 = 26 percent in the untransformed 
true price scale) 4 months after the December 1996 lab events and similarly for the January 1997 events. 
Starting the two months later, there is an exponentially decaying price decrease with an initial value of 
-0.10 and a decay constant of 61 percent, corresponding to a nominal 2 months relaxation time. Relative to 
the general form, the constant term, C, is not significantly different from zero in this and all interdiction 
classes. All of the other intervention classes share the same pattern of abrupt damage (Cü(B)=CüD and 
S(B)=1) and gradual recovery {a(B)=0Jt, and S(B)=1-S,B, 0<8,<\). The two exceptions are the medium 
intensity air interdictions before and after the Shoot Down Policy. They have no significant exponential 
decay in the recovery process in the full model. 

Rather than choosing broad operational period, e.g., all the months in 57 777, we modeled 57 777 with 
characteristic response terms similar to (4), but triggering the interventions on those months with air 
interdictions. We further subdivided the months by classes of interdiction intensity - low, medium, and 
high. Low intensity months were defined to be those with a single air interdiction. Medium intensity 
months had two to three interdictions, while high intensity months had four or more. 

The Go Fast Boat Attacks operation lasted several months in the Caribbean Sea and focused on the 
transportation capabilities of drug traffickers. We chose a single month (November 1998) to represent the 
initiations of the damage component of the campaign. We only examined the delay and initial magnitude, 
however, because the ongoing operation is too complex to model in a parsimonious manner. 

THE COMPLETE MODEL 

Table 1, below, shows the estimated damage and recovery parameters for each interdiction class fit 
independently from the other interdiction classes. Estimated 95 percent confidence intervals in the natural 
log first order difference space accompany each parameter. Many of these are wide due to large standard 
errors obtained. Note that none of the low intensity events (months with only a single plane interdicted) 
had a statistical or visual effect on predicting the peaks in the price series. In the majority of classes, the 
estimated damage and recovery are statistically significant. The current model is not able to adequately 
capture the weak recovery process for the 9-event Medium Intensity, Before Shoot Down class of 
interdictions. 

One of the most compelling pieces of evidence for a causal connection between source-zone 
interdiction events and price series upward excursions is the consistent 5 month lag time for all five of the 
independently fit air interdiction classes representing operations in Peru. Since we examined an interval of 
6 months for the signature of an up month followed by a down, the chance of all 5 yielding 5 month lags at 
random is only (1/6)5 < 0.0002. If the associations between source-zone events and street price excursions 
had been spurious (e.g., the next randomly occurring street price excursion after the event), then we would 
not expect any consistent value for the lag time. Similarly, the lag time from the Colombian laboratory 
attacks was 4 months, 1 month closer to the U.S. streets than the Peruvian interdictions - again consistent 
with the causal hypothesis. Finally, the go-fast events occurring even closer to the United States fit to a lag 
time of only 2 months. 
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Table 1. Estimated Damage and Recovery Parameters by Interdiction Class 

Damage Recovery 

Interdiction Class Number of 
Occurrences 

Lag 

Estimated 
Impact 

(95% Cl) 
Lag 

Estimated 
Initial 

Recovery 
(95% Cl) 

Estimated 
Exponential Decay 

Constant 
(95% Cl) 

Support Justice III, IV, 
and Between 
Operations, 

Medium Intensity 

9 5 0.04 
(-0.04 .0.12) 

6 -0.04 
(-0.12.0.04) 

-0.06 
(-2.10.1.9«) 

deleted because of 
instability 

Support Justice III, 

High Intensity 
1 5 0.26 

(0.04.0.48) 6 -0.13 
(-0.31.0.05) 

0.62 
(-0.08.1.30) 

Support Justice IV, 

High Intensity 
1 5 0.19 

(-0.03.0.41 ) 6 -0.11 
(-0.11.0.31) 

0.60 
(-0.48.1.52) 

After Shoot Down Policy, 
Medium Intensity 

5 5 0.16 
(0.00.0.32) 

6 -0.08 
(0.00.0.16) 

0.53 
(0.00.1.03) 

After Shoot Down Policy, 
High Intensity 

1 5 0.23 
(0.01.0.55) 

6 -0.07 
(-0.07.0.21) 

0.80 
(0.26.1.34) 

Lab Attacks 2 4 0.23 
(0.09.0.37) 

6 -0.10 
(-0.20.0.00) 

0.61 
(0.15.1.07) 

Go Fast Boat Attacks 1 2 0.37 
(0.11.0.70) 

not 
modeled 

not 
modeled 

not 
modeled 

DYNAMIC REGRESSION MODEL 

All of the interdiction classes individually add to the predictive ability of the combined model, 
except for the two low intensity classes. The AIC value is significantly reduced from -135 for the baseline 
model to -177 for the final dynamic model indicating a stronger fit. In the estimated LTF model, most 
estimated parameters were significant at the 95% level. Those parameters that failed to meet individual 
significance remained in the model to maintain zero mean for the residuals. The only exceptions were two 
parameters (decays on Before and After Shoot Down Mediums) that were deleted due to instability and 
strong multicollinearity effects. There is significant interaction between the first After Shoot Down Medium 
and the After Shoot Down High events because of the interference caused by the slow decay of the high 
intensity event.   The estimated LTF for the final model takes the form: 

*"t ~ ~™*}°D   xbefore shoot down policy medium.! ~ U-"'"   •*before shoot down policy medium.! 

+ 0.33B xSJIIIhight-————B %/Jifi>, 

+ 0.18B xsjwtognj _j_0605
Ä xSJivhigh.t 

after shoot down policy medium.t      U.IDD   xafter shoot down policy medium.! 

+ 0.29B:>x, after shoot down policy high,t 

+ 0.\6B*xlab! ™L-B6xlahl ■     1-0.675       lahJ 

+ 0.3\B2xhnau+(l-0.53B)ar 

010   -B\ 

(7) 

1-0.87B after skool down policy high.! 

Figure 4 shows the improved ability of our final full dynamic regression model to predict all of the 
peaks in street price (numbered peaks). Rather than present a separate figure for each estimated response 
function, we display the final fitted curve incorporating all of the modeled responses.   For example, 
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comparing the baseline in Figure 3 with the model in Figure 4 reveals how much more faithfully the model 
traces the price rise and fall following the Colombian laboratory attacks. 

There is little difference between the parameters for individual classes (Table 1) and the combined 
model shown above because the most parsimonious model was chosen to reduce the multicollinearity. 
Most intervention terms apply only locally about one specific interdiction operation, i.e., intervention terms 
do not overlap - with two notable exceptions. The high and medium intensity events in March and June 
1995 interact with each other and the resulting cumulative response exhibits a double spike (c) in Figure 4. 
In the second, the damage coefficient for the laboratory attacks drops from 0.23 to 0.16 in the full model 
due to an interaction with a medium intensity interdiction month. 
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Figure 4. Full Dynamic Regression Model One-Month Future Forecast 

The dynamic model also significantly reduces the residuals between the forecasted and observed 
prices. (Figure 5) First note that both series of residuals appear stationary, and this is bom out by our tests 
of fixed mean, freedom from autocorrelation, and apparently stable variance. The power of our model to 
reduce all of the strong deviations from the zero mean is also evident in Figure 5. The baseline had 16 
excursions outside the ±0.18 range, while the model had only 4 such excursions, most of which were minor 
by comparison. 

Shoot Down, High CO Labs 
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Go-Fast Boats 
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■ Transformed Baseine Residuals Transformed Dynamic Residuals 

Figure 5. Baseline versus Dynamic Regression Residuals 
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We can explain two of the excursions as artificialities of our choice of a parsimonious ARIMA 
representation of the actual interdiction operations in the source-zone countries. At (a), SJ IV began 
without any medium or high-intensity events although there were two medium events just before SJ IV; 
therefore, without an "event" representing the intimidation of simply beginning an operation, the model 
dipped with the data. The second is at (b) just before implementation of the shoot-down policy in Peru but 
after it was implemented in Colombia. A medium event in Peru two months before implementation was 
not weighted sufficiently as a Pre-policy event to bring the model forecast up to the actual data. 

Below we analyze observed responses associated with high- and medium-level interdiction events, 
separately for the period prior to the implementation of the shoot-down policy and for the period 
subsequent to its implementation. After the implementation, the U.S. Government provided detection and 
monitoring support to the Peruvian interdictor aircraft that were authorized to use lethal force, and these 
operations were sustained indefinitely. This was decreased the air trafficker flights from Peru to Colombia 
by over 80 percent. 

PRE-SHOOT-DOWN POLICY 

For the pre-shoot-down policy period, interdiction effects were moderate for the medium intensity 
(two to three planes) events, but quite pronounced for the high intensity (four or more planes) events. 
Thus, there appears to be a threshold somewhere between our "medium" and "high" intensity designations 
that determines whether there will be a significant effect on U.S. streets. Figure 6 compares the 
characteristic response of the four pre-policy air interdiction classes. Note that the flat profile for the low- 
intensity events confirms they are completely insignificant. 

Percent Street Rice Change per Event 
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Figure 6. Price Impacts of Pre-Shoot-Down Policy Air Interdiction Classes 

The December 1991 (SJ HI) high intensity lethal event had a strong price effect, 33 percent increase, 
5 months after the interdictions. The next month, an exponentially decaying decrease starting with 16 
percent recovery and a decay rate with 2 month relaxation time. The same intensity class event in May 
1993 (SJ IV), but with non-lethal consequences, led to a slightly weaker 18 percent price increase followed 
by a 13 percent recovery the next month and a similar 2 month relaxation-time exponential decay. The 
medium intensity events, by contrast, had almost negligible impact on the price series, a modest 8 percent 
increase 5 months after the interdiction. Medium intensity events had no observable recovery relaxation 
response while low intensity had no visual or statistically significant effect. 
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POST-SHOOT-DOWN POLICY 

For the post-shoot-down period, the street price impact increases with the air interdiction event 
intensity. The Table 1 and full model coefficients as well as Figure 7 show the price impacts of the post- 
shoot-down interdiction classes. After the shoot-down policy, the 5 medium intensity events had two-times 
the impact as the mediums before the policy. The high-intensity interdiction classes with lethal threat, 57 
/// and the post-Shoot-Down Policy operations, had over 60% greater impact as the non-lethal high- 
intensity interdiction class 57 IV. And the recovery from the high-intensity event after the policy 
implementation was much slower, 4.5 months versus 2 months before. Note that the low intensity class 
again did not exhibit a statistical or visual impact on street prices. 

Percent Street R-ice Change per Event 

30% 

20% 

-20% 
5 6 7 

Months of Lag 

12 

■ High Intensity ■ Medium Intensity ■Low Intensity 

Figure 7. Price Impacts of Post-Shoot-Down Policy Air Interdiction Classes 

SUMMARY AND DISCUSSION 

A parsimonious ARIMA process representing the impacts of source- and transit-zone counter-cocaine 
interdiction operations can model the significant upward price movements of the U.S. cocaine street price 
time series from 1991 to early 1999. We obtained stationary residuals for both the baseline and full 
models. This modeling provides new operationally useful information, e.g., more accurate estimates for the 
time lags along the distribution chain from source country to the U.S. streets and approximations to the 
traffickers' recovery time. 

We have demonstrated that the U.S. street price index developed at IDA provides a useful statistic for 
analyzing the impact of source-zone operations on the cocaine market at the street level in the United 
States. This finding may also provide the basis for analyzing regional differences within the United States 
given sufficient sample size. During the analysis period from 1991 to early 1999, the street prices 
continually return to a floor in the range of $55 to $65. We conjecture that this reflects the minimum price 
traffickers in the distribution chain require as compensation for the risks of being in this illicit business. 

In combination, several findings from our ARIMA modeling results give compelling evidence that 
source-zone interdictions were responsible for the significant excursions above a stable baseline for U.S. 
cocaine street prices. First, all seven independently fit and statistically significant event classes yielded 
completely consistent lag time estimates. All 5 interdiction classes of events in Peru led corresponding 
price rises in the U.S. by 5 months (probability less than 0.0002 by chance), the laboratory attacks in 
Colombia led price rises by 4 months, and the attacks on go-fast lanes in the western Caribbean led price 
rises by 2 months. 
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Second, the quantitative intensities associated with each interdiction class logically followed the 
progression of operational intensities. For air interdictions in Peru, high intensity months (with four or 
more interdictions) had larger fitted impact coefficients than medium intensity months (with 2 or 3 
interdictions). Low intensity months (with only one interdiction) did not have statistically significant fitted 
coefficients. Months in which trafficker pilots might be shot down if they did not land for inspection had 
larger fitted coefficients than months with non-lethal consequences for non-compliance. In fact, lethal 
medium-intensity interdictions after the implementation of the shoot-down policy had five-times the impact 
as medium intensity events before the policy. Finally, the post-policy interdiction events had much slower 
trafficker recovery times: 4.5 months versus 2 months for high-intensity events and 2 months versus none 
at all for medium-intensity events. 

Third, our model explains all significant peaks in the street price that occurred between 1991 to early 
1999 in terms of transit- and source-zone interdiction operations. For example, the first event, Support 
Justice III, followed an 8-month period of stable prices. Also, there was a 15-month period of stable street 
prices between the end of the affects of the attacks on Colombian cocaine labs and the next attack, those on 
go-fast lanes in the western Caribbean. If there were other reasons for significant price excursions, these 
quiescent periods offered ample opportunity for them to exhibit their effects. 

Areas for potential future research include ARIMA univariate and multivariate modeling of cocaine 
street purity time series because decrements of purity persisted after the shoot-down policy and dropped 
even more after the recent go-fast attacks. There is evidence for complex seasonal components in the 
residuals from our model, which might have operational utility. Finally, multivariate analyses might 
provide an integrated and more sensitive measure of the impact on the illicit cocaine business by 
integrating several independent indicators of cocaine use described in IDA's previous report.1 
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PROBLEMS OF CORRELATION IN THE PROBABILISTIC APPROACH TO COST ANALYSIS 

Stephen A. Book 
The Aerospace Corporation 

El Segundo, CA 90245 

ABSTRACT 

Since the probabilistic approach to cost analysis became de rigueur over the past decade in 
responding to DoD-issued requests for proposals (RFPs), it has been realized that correlation among 
element cost distributions contributes significantly to the total cost's uncertainty. Unfortunately for cost 
analysts, correlation turned out to be a more sophisticated mathematical concept than appeared at first 
glance. Except in the case of uniquely malleable normal distributions, the correlation coefficient p cannot 
range freely over the range -1.00 < p < 1.00 irrespective of the way marginal program-element cost 
distributions intertwine to form their multivariate distribution. Therefore a cost analyst cannot be sure that 
his or her a priori choice of numerical values for inter-element correlation coefficients can actually be 
attained in practice. One well-known case involves E.J. Gumbel's "first bivariate exponential distribution" 
(1960), in which the correlation between the two marginal distributions is restricted to the range -0.40365... 
< p < 0.00. In the case of a perennial favorite of cost analysts, the correlation between two lognormal 
random variables associated with correlated standard normal variables cannot be less than -0.367879... = 
(e''-l)/(e-l). Further complicating the situation is the impossibility of expressing the total-cost probability 
distribution in closed analytic form and the resultant need to model it by Monte Carlo simulation of the sum 
of pairwise correlated random variables. As it happens, generating the required sequences of correlated 
random numbers in support of this objective is a nontrivial problem. In addition, availability of several 
commercial software products that purport to circumvent the problem by providing sequences of rank- 
correlated random numbers has turned out to be a distraction standing in the way of a concerted effort to 
solve the problem properly. The present report describes the state of the art in modeling total-cost 
probability distributions as statistical sums of correlated program-element cost distributions. 

THE COST-RISK IMPERATIVE 

While it is agreed that the "best" estimate of system cost should accompany a program proposal up 
the DoD funding chain, no agreement exists as to what "best" means: is it the "most likely" cost, the 50th- 
percentile cost, the "average" cost? The typical "accounting" approach is to estimate the most likely cost of 
each program element and then to sum ("roll up") those estimates. Preponderance of high-end risks over 
low-end uncertainties (especially in technical development programs), though, causes the roll-up estimate to 
underestimate actual total cost by a wide margin, inducing cost overruns attributable purely to the 
mathematics of the procedure. For a justification of this fact, see Reference 2. DoD's solution to this 
problem is to require the cost of every element to be modeled as a random variable, with probability 
distributions defined for all elements [Reference 1, page 2-5], correlations or functional relationships 
between them estimated, and the distributions summed statistically by Monte Carlo sampling. The result is 
a probability distribution of total system cost, from which meaningful estimates of the median, 70th 
percentile, and other relevant quantities can be determined. 

"Cost-risk analysis" is the term used by cost analysts to refer to any procedure by which cost 
estimates are provided in the form of random variables rather than deterministic numbers. The name 
derives from the fact that, for any deterministic cost estimate, there is some degree of risk that the program 
will be unable to be completed and meet its stated objective at that particular funding level. Cost-risk 
analysis recognizes that there is a probability of success associated with each fixed cost estimate, a fact 
consistent with the representation of program cost as a random variable. 
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Representation of program cost as a random variable for the purpose of appropriately modeling 
uncertainty carries with it the assumption that understanding the degree of uncertainty in an estimate is a 
necessary aspect of cost analysis. Perhaps the most universal statistical descriptor of a random variable's 
degree of uncertainty is its standard deviation (or equivalently its square, the variance). It is this fact that 
makes correlation between program-element costs a critical factor in the estimation of total program cost. 

Suppose there are n separate program elements that comprise the total program and that their costs 
are, respectively, the random variables X,, X2 X„. Total program cost is then the sum of those random 
variables, namely 

Uncertainty in total program cost is measured by its variance: 

Var(Sn) = rk=l °l + 2I%2 W Pij°i°'j & 

where {prfl <i <n,l <j <n, i #j} are the pairwise correlations between pairs (XjJCj) of program-element 
costs, and {a,:/ <i <n) are the standard deviations of the costs {X,./ <i <n}, respectively. 

WHY INTER-ELEMENT COST CORRELATIONS ARE NOT ZERO 

Consider the case of a space system.   At the highest level of the "work-breakdown structure" 
(WBS), which is simply the list of all program elements that have costs associated with them, there are just 
three elements: space-resident satellites, a launch system, and a ground-based control and data-analysis 
system. The respective costs Xs, XL, and Xc may be positively correlated for several reasons, among which 
are (1) an increase in sizes, weights, and numbers of satellites to be orbited induces an increase in launch 
costs, either through the number of launches required or capability of the individual launch vehicles, and (2) 
an increase in number and data-gathering capability of the satellites forces an increase in ground-operations 
costs, either through the complexity of the tasking and control system software or the number and size of 
ground-station facilities. On the other hand, Xs, XL, and Xc may very well be negatively correlated for 
different reasons, one of which is that reducing the complexity of on-board satellite software and 
communications hardware may tend to increase ground costs by complicating the ground software, while 
decreasing launch costs due to reduction in size of on-orbit hardware. 

Further down into the WBS, costs are more highly correlated because they correspond to specific 
items that physically occupy adjacent locations within the satellites or ground stations or to software 
packages that operate specific pieces of hardware. 

WHY CORRELATION MATTERS IN COST ANALYSIS 

For a WBS comprised of n program elements having costs, the variance of total-program cost Sn is 
as given in Equation (2). If program-element costs were in fact all pairwise uncorrelated, namely all p,y = 
0, the variance of total-program cost would be 

Var(Sn) = Yn
k=xa

2
k (3) 

At the other extreme, if all inter-element correlations were equal to +1 

Var(Sn) = ZUOk+ZZWZ/äWj = kU°k$ (4) 
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Because "'ignoring" the issue of correlation when estimating total-program cost is tantamount to 
setting all p,y = 0, the following order relationships imply that such a tactic will lead to underestimating 
actual program cost uncertainty: 

£Z«i °l * iZ-i °\+ 2s%2 z£}°i°j * fau ** f ■ & 

To understand the significance of the error due to ignoring correlation, it is important to get an 
intuitive "feel" for the magnitude of the impact of inter-element correlation on total-program cost 
uncertainty. To do this, let's look at a simple, yet instructive, scenario. Suppose each ok = a, a constant, 
for 1 <k <n, and p,y = p for 1 <i <n, I <j <n. Then 

Var(Sn) = no2 + n{n-\)pa2 = ncr2[l + {n - \)p] (6) 

At its two extremes over the interval 0 < p < 1, the total-cost variance is 

Var(Sn) = no1      when p = 0 (7) 
1   1 = n a     when p= 1 

As can be seen, Var(S„) spans a wide range of possible values, the high-end value equal to n times the low- 
end value. This means that the larger number of elements in the WBS, the greater the underestimation of 
the total-cost variance attributable to ignoring correlation. 

A more precise way of expressing the impact of correlation on total-cost uncertainty is to calculate 
two ratios: (1) 100w%, the percentage underestimation of the total-cost standard deviation that is 
attributable to setting all correlations zero when, in fact, they are equal to p > 0, and (2) 100v%, the 
percentage oyerestimation of the total-cost standard deviation that ensues when all correlations are set to 1 
instead of to their correct value p. Expressions for u and v are as follows: 

V»g2[l-K/2-l)p]-V^ 1 
u = -s .  = 1—. (8) 

4na\\ + (n-l)p] <4\ + {n-\)p 

and 

_4n2o2 -^na2[l + (n-l)p] _ 

4no\\ + {n-\)p\ V + (n-l)p 
-1 (9) 

The percentages 100«% and 100v% are graphed for various values of p and n in Figures 1 and 2, 
respectively. In looking at these graphs, it is important to remember that nothing can ever be 
underestimated by more than 100%, but the possible extent of overestimation is unbounded. A glance at 
these graphs provides convincing evidence that correlation matters in establishing the extent of uncertainty 
in a cost estimate. 
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Figure 2 
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CHOOSING NONZERO NUMERICAL VALUES FOR CORRELATION 

Having established that correlation between pairs of WBS-element costs won't go away if we 
simply ignore it, we face the task of assigning nonzero numerical values to the inter-element correlations. 
There are a number of ways of selecting nonzero numerical values that do a reasonable job of modeling the 
actual impact of one element's cost upon another's, but that process is not the subject of this report. We 
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assume that this task has already been done, i.e., we already have an nxn matrix of numbers {py.7 <i <n,l 
<j <n, -I<Pij <1}, that, in our opinion, adequately represent the inter-element correlations. 

At this point several very deep mathematical difficulties of several different kinds arise. To 
set the stage for discussing these mathematical difficulties, let's explain what's involved in the mathematics 
underlying this whole process. We have a sequence of n random variables, each of which represents the 
cost of a WBS element. These random variables are not independent, but rather they are linked according 
to one or more dependency mechanisms, of which a correlation matrix is probably the simplest kind. 
(Whether or not a correlation matrix is the "correct" dependency mechanism is not the subject of this report 
—here we are assuming that it is.) We view the distributions of the n WBS-element costs as the marginal 
distributions of a multivariate probability distribution that models the joint behavior of the n costs. 

Suppose, for example, that the n WBS-element costs Xh X2,..., X„ are all normally distributed 

with means {#: / <i <n}, variances { of: I <i <n}, and a self-consistent set of correlations {p,y:V <i < 

n,I <j <n}. Then the joint probability distribution is uniquely defined and, of course, multivariate normal. 
Our work would be done at this point were it not for the unfortunate fact that the normal distribution is not a 
good model for element costs, especially for elements of high-technology state-of-the-art defense systems. 
A more appropriate model is a skewed distribution, such as the triangular distribution of Figure 3. The 
triangular distribution is a three-parameter distribution defined by its lower bound (the most optimistic 
estimate of the cost, usually supplied by the contractor in his proposal), its mode (the most likely cost, 
usually provided by a government cost-estimating team), and its upper bound (the "worst-case" cost, 
typically derived from information generated by a government technical-risk assessment team). In the case 
of defense systems, many of which "push" the state of the art, the preponderance of probability lies above 

Figure 3 
Modeling Cost as a Triangular Distribution 

Optimistic   Best-Estimate 
Cost Cost (Mode) 

Cost Implication of 
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3THE AEROSPACE . 
»CORPORATION 

the mode. Other common skewed distributions that serve as better models for cost elements than does the 
normal are the lognormal and the exponential. 
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Necessity to model costs as non-normal probability distributions raises some apparently very deep 
mathematical issues. In all cases, even those involving normal distributions, the preliminary question of 
whether or not the inputs given for the pairwise correlations constitute a consistent set must be answered. 
That particular question, though, is easy to answer, for it is well known that the correlation matrix must be 
nonnegative-definite in order for the pairwise correlations to be consistent, and there are relatively 
straightforward mathematical tests for this. The following questions, however, are much deeper: 

(1) Given a valid correlation matrix (i.e., a consistent set of correlations) and a set of marginal 
distributions, does a multivariate distribution exist with the given marginals and correlation 
structure? 

(2) Given a valid correlation matrix (i.e., a consistent set of correlations) and a set of marginal 
distributions, can we use the Monte Carlo process to generate random realizations of a 
multivariate distribution having those marginals and that correlation structure (assuming such 
a distribution exists)? 

(3) Do the random realizations (assuming they can be generated) model any feasible multivariate 
distribution? 

(4) If a number of multivariate distributions exist having those marginals and that correlation 
structure, can we tell which of them is being realized by the Monte Carlo process? 

(5) Do the sums of the random realizations of the WBS-elements costs X,,X2,...,X„ model the 
total cost distribution? 

FACTS WE WISH WEREN'T TRUE 

Several disturbing mathematical facts preclude satisfactory answers to all five of the above 
questions. These facts range from involving routine details of the Monte Carlo random-number-generation 
process all the way to adapting to the complex nature of multivariate probability distributions. 

A random-number-generating line of code in a computer program produces more or less 
independent, identically distributed (i.i.d.) observations from the continuous uniform distribution on the unit 
interval [0,1]. Standard transformation techniques, e.g., inversion of the distribution function when that is 
feasible and the Box-Müller procedure in the case of the normal distribution, applied to the i.i.d. uniform 
observations, yield simulated i.i.d. observations from the particular distribution of interest. 

If the distribution of interest is the normal, it is relatively simple to transform the i.i.d. sequence 
into a sequence of correlated observations having any desired correlation structure. The most direct way to 
do this is to use Cholesky factorization, a method of finding a square root of the nonnegative-definite 
correlation matrix [Reference 9, pages 52-55]. (Of course, if the matrix is not nonnegative definite, no such 
square root exists, but then the matrix cannot represent a consistent set of correlations either.) We multiply 
the nxn square-root matrix by the nxl vector of i.i.d. observations, and then the transformed observations 
will be correlated according to the given correlation matrix. See Reference 4 for specifics. 

If the distribution of interest is not the normal, however, difficulties arise in applying the Cholesky 
and other matrix transformations to the vector of independent random numbers. First of all, except for the 
normal and perhaps a few other pathological distributions, the linear transformation effected by the square 
root of the correlation matrix does not preserve the form of the distribution. For example, if we generate 
independent random vectors that realize a collection of triangular distributions and then apply a matrix 
transformation to each of the vectors, the multivariate distribution thus realized will have the "correct" 
mean, variance, and correlation structure, but will not have triangular marginals. 

Another problem involves the number of parameters specifiable for a multivariate distribution. In 
contrast with the multivariate normal distribution, which is uniquely determined by its mean vector, 
correlation matrix, and the requirement that its marginal distributions be normal, a general multivariate 
distribution is not thus uniquely determined, i.e., it is underdetermined by the correlation structure, or there 
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is no multivariate distribution having the given marginals, i.e., it is oyerdetermined by imposition of a 
correlation structure. The monograph by Johnson and Kotz [Reference 8, pages 260-268] provides several 
examples of different bivariate exponential distributions that may have the same correlation, as well as 
several that cannot have certain correlation values. Some of these examples are listed in Figures 4 and 5. 

Figure 4 
Correlated "Bivariate" Exponential Distributions 
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Figure 5 
Other Bivariate Exponential Distributions 
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Another illustrative example is provided by the version of the bivariate lognormal distribution that 
inherits its correlation characteristics from the underlying bivariate normal distribution. The fact that the 
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correlation p between two normal distributions must satisfy the inequality -/ <p <l forces restrictive 
bounds on the correlation between the two marginal lognormals. Details may be found in Reference 6, 
pages 364-365, and the results appear in Figure 6. 

Figure 6 
Correlated Lognormal Distributions 
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Conclusions that can be drawn from the above discussion can be summarized in the following two 
sentences: (1) A vector of random numbers generated from given marginal distributions and then 
transformed via a given correlation matrix may overdetermine a multivariate distribution and therefore may 
not in fact be a realization of any feasible multivariate distribution (and so the sums of the components of 
such random vectors may not represent a feasible total-cost distribution); and (2) Even if the cost 
distribution is a feasible one, we may not be able to determine which one of several possible 
underdetermined distributions it is. 

P.M. Lurie and M.S. Goldberg [References 10 and 11] appear to have obtained the currently best 
available results in this area. Starting with Cholesky factorization, they proceeded to develop an 
approximate method of producing properly correlated random numbers that do a pretty good job in certain 
cases of modeling given characteristics of a multivariate distribution and provide approximately correct 
values of the mean, standard deviation, and percentiles of the total-cost distribution. 

RANK CORRELATION TO THE RESCUE? 

Up to now, we have been discussing our inability to generate a Monte Carlo sequence of random 
vectors with correlated components that simulate realizations of a multivariate distribution with arbitrary 
pre-specified marginals and correlation matrix. This inability apparently has led the commercial software 
industry to choose to satisfy the market demand for correlated random numbers by providing the capability 
to generate rank-correlated random numbers. The reason behind the industry preference for Spearman rank 
correlation over Pearson product-moment correlation is a simple one: it is known how to generated rank- 
correlated random numbers. A distribution-free technique was published in 1982 by R.L. Iman and W.J. 
Conover [Reference 7]. While it seems reasonable that the Iman-Conover technique has been adopted by 
the commercial vendors of Monte Carlo software, we cannot be sure that this so, because they respond to 
inquiries by stating that their methods are "proprietary." In any case, the vendors have not acknowledged 
the Iman-Conover work. 
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The bad news, however, is that rank-correlated random numbers do not satisfy the needs of cost 
analysts. While it is true that there are no problems of existence, feasibility, and non-uniqueness in the case 
of modeling rank correlation, this is due to the fact that rank correlations are not parameters of the 
multivariate distribution. Because the Iman-Conover technique is distribution-free, no particular 
multivariate distribution is being modeled - indeed the analyst need not even propose a particular 
multivariate distribution. He or she can be confident that one or more multivariate distributions are sure to 
exist with the given rank-correlation structure. As we have noted earlier, one may not necessarily exist with 
a given Pearson correlation structure. 

The fact that no particular multivariate distribution is being modeled is not, by itself, bad for cost 
estimating. It would be sufficient for cost-estimating purposes to have the simulation produce reasonably 
correct values of the mean, standard deviation, and percentiles of the total-cost distribution. The real 
problem with rank correlation, though, is that it is not related in any known* way to the standard deviation 
(and therefore the percentiles) of the total-cost distribution. This means that modeling the distribution of 
total project cost using rank-correlated random numbers leads to a distribution that is not likely to contain 
the "correct" degree of uncertainty in the cost. In fact, a cost analyst who inputs a correlation matrix of 
Pearson correlations and then has these correlations interpreted by his or her software as if they were 
Spearman correlations will likely be surprised by the numerical value of the total-cost standard deviation 
that is reported by the software. If the software computes the standard deviation of the sums of the rank- 
correlated random numbers, which are supposed to be realizations of the total cost, it will not obtain the 
same numerical value as an analyst using Equation (2) to calculate the total-cost standard deviation. 

P.R. Garvey, author of a recent book on cost-uncertainty analysis [Reference 6], has been seeking 
for some time a relationship between the pairwise rank correlations on the one hand and the standard 
deviation and range of the total-cost distribution on the other. However, he has been unable to find one that 
he considers satisfactory and, as a result, has been recommending to the cost-analysis community that rank 
correlation not be used by cost analysts. Nevertheless, his advice has not been received favorably, because 
rank-correlation-based software exists, is easy to use, and provides pages and pages of impressive-looking 
computer output - just what analysts need. 

Lack of enthusiasm among cost analysts for Garvey's recommendations reveals that the 
commercial availability of software products that calculate random vectors consisting of rank-correlated 
random numbers has proved to be a "red herring" - a distraction that has served to take cost analysts' eyes 
off the hard statistical problems that have to be solved if cost uncertainty is to be "correctly" modeled in the 
future. 

SUMMARY 

Unfortunately for cost analysts, the probabilistic approach turned out to require the estimation of 
correlations between program-element costs as part of an effort to model total program costs. For its part, 
the concept of correlation among components of random vectors is more sophisticated mathematically than 
it appeared to cost analysts at first glance. Further complicating the situation is the impossibility of 
expressing the total-cost probability distribution in closed analytic form and the resultant need to model it 
by Monte Carlo simulation of the sum of pairwise correlated random variables. While generating the 
required sequences of correlated random numbers in support of this objective is a nontrivial problem, 
existence of multivariate distributions with given marginal and correlation structure is a more fundamental 
difficulty. Now that several commercial software products that purport to circumvent the problem by 
providing sequences of rank-correlated random numbers are easily available, interest in solving the 
modeling problem correctly has diminished among cost analysts. 

by me. 
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ABSTRACT 

Data mining is a hard, complex problem. This paper stitches together and reviews previous work on three 
separate fronts in data mining. The first issue concerns the preanalysis of one's data. The second issue concerns 
the choices and tradeoffs one must make in matching a particular nonparametric inferential technique to a given 
data set. The third issue concerns how one might estimate the local dimensionality of one's data. 

INTRODUCTION 

Data miners are like the blind Indian sages who were invited to inspect an elephant. Each found a true but 
distinct aspect of the elephant, and the real challenge was to integrate the different perspectives into a common 
understanding. In that spirit, this paper pulls together a decade of experience in working with statistical inference 
for superlarge data sets. Out of that, three particularly crucial problem areas emerge. 

The first problem one encounters is the preanalysis of the data. This consists of all work that must be done in 
order to get the data into a form to which appropriate statistical software can be applied. This phase of the analysis 
can easily consume 80% of one's time and resources, but is one of the most understudied aspects of statistical 
inference. The discussion in this paper draws heavily upon the work of Banks and Parmigiani (1992). 

The second problem is how to decide which of the many new wave nonparametric methods best applies to 
one's data set. Recent years have seen the invention of many new techniques (MARS, CART, ACE, PPR, Loess, 
neural nets, and so forth), and the analyst must have some informed basis for choosing among these methods. This 
portion of the paper summarizes work described in Banks, Olszewski, and Maxion (1999). 

The third problem concerns the estimation of the local dimensionality of one's data set. For reasons that are 
discussed later, local dimensionality drives the entire analysis. If local dimensionality is too large, then essentially 
no statistical method can produce good inference except under highly artificial circumstances. But if local 
dimensionality is low, then with intelligence, sufficient data, and a little luck, there is a good chance that the 
statistician can discover what hidden structure exists. The discussion of this relies chiefly on a paper by Banks and 
Olszewski (1997). 

The next three sections elucidate these issues. The intention is to provide a survey and a point of entry to the 
literature. For that reason, much of the discussion is heuristic and aimed at a general audience. 

PREANALYSIS 

The stoop labor of statistics lies in the preparation of one's data for analysis. This task can absorb enormous 
amounts of one's time, yet for large data sets it is nearly impossible ever to be sure that one has weeded out all the 
outliers, adequately handled the high-leverage points, and caught and corrected all transpositions, missing values, 
and other problematic data. This problem grows rapidly more acute as the size of the data set increases. With a 
few dozen observations, much can be checked by eye. With a few million multivariate observations, it quickly 
becomes necessary to devise automatic procedures and adaptive rules for reviewing and correcting data. 

This kind of data cleaning problem for large data sets arises in many contexts. Examples include intrusion 
detection for computer networks, analysis of interactions as shown from gene chips, and inference on complex 
manufacturing processes. The first and last examples have time series structure, which is an additional 
complication. Our discussion is motivated in terms of manufacturing, because the original data discussed in Banks 
and Parmigiani (1992) were obtained from PPG Industries and Alcoa.. However, the basic principles and approach 
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apply broadly. The core idea is that one must spend time to develop an explicit and nearly automatic protocol for 
data cleaning. 

The following data cleaning protocol is intended as a guideline for the preparation and initial analysis of data 
that arise from complex continuous or batch-continuous manufacturing processes. In any specific application, one 
expects to tailor the protocol to the problem. With this caveat, the key steps are: 

1. Data Input. Reformat the data; all numerical input is read into a common floating point representation. All 
non-numerical input is represented consistently. The size of the representations is determined by the largest 
possible (signed) value. 

2. Time Scale. Create or identify the time scale. All other observations are then keyed to the value of the time 
variable. The data record thus becomes a set of vectors indexed by time, or a multivariate time series. Each 
vector contains the measurements on all control or response variables at a given time point. If variables are not 
measured simultaneously, unmeasured values are assigned a code to indicate that they are missing as part of 
normal process operation. 

3. Missing Values. All data values known to be missing are assigned special codes. These indicate whether the 
data are missing due to plant shutdown, failure of a monitoring device, unknown causes, or routine operation of 
the process inspection schedule. 

4. Sample Size Check. Verify the numbers of observations for each variable. The input is the expected length of 
each time series and the expected length of each data record, accounting for known missing values. The output 
is a list of variables for which the expected and actual sizes do not match. 

5. Impossible Values. List and adjust all observations with impossible values. The determination of allowable 
values requires guidance from a process engineer or other domain expert knowledgeable about the data. With 
this list, the possible actions are to verify, approximate, code as missing data, or correct for a missing sign, zero 
or data-entry transposition. 

6. Synchronicity. Reindex the database so that values are synchronous. This ensures that measurements keyed to 
a specific time actually pertain to common process characteristics. With unsynchronized data, control 
measurements recorded at a given time do not affect quality measurements until the end of the production 
cycle. To properly assess the interplay between process control and output quality, the analysis must first link 
corresponding values into common records, and this usually requires expert judgment about process lags. 

7. Missing Value Chart. Produce a chronological guide to missing values. Often it is useful to subtract out 
known interruptions, which requires information from the process engineer regarding plant or subsystem 
shutdowns, or analogous information in non-manufacturing environments. 

8. Unequal Frequencies and Data Imputation. Use data imputation procedures, smoothing, or expert knowledge 
to fill short gaps in the data sequence. In most cases, the missing data arise because not all variables are 
recorded at the same frequency. In other cases gaps are caused by sensor failures or similar extraneous 
circumstances. Sometimes it happens that the short gaps are informative, especially when the values are 
probably near the boundary of the historical operating region; these require expert judgment. 

9. Extreme Value Chart. Generate a chart showing the extremes in the variation of process variables. This 
extreme value chart helps to flag outliers in step 10, identify data flaws that have not been previously detected, 
and point up patterns of variation that require examination. The chart may be viewed as a global Shewhart 
chart, and thus also has value for day-to-day process management. 

10. Outlier Detection. The extreme value chart can discover univariate outliers. These should be checked and 
confirmed, or else replaced by an estimate. Additionally, one should search for multivariate and possibly time 
series outliers. 

11. Descriptive Statistics. Test the time series for nonstationarity, and examine model consistency between plant 
shutdowns or other natural process interruptions. Do Q-Q plots to assess departures from normality, and 
perhaps make normalizing transformations of the data. 

12. Exploratory Analysis. This begins to phase into the conventional analysis. We find that some exploration is 
needed to plan subsequent work, and the specific methods used are sensitive to the context of the study. Rather 
than describing such generality, see Banks and Parmigiani (1992) for examples of tools used in previous 
applications. 

As a final step, we urge that one rethink all that's been done. A process engineer should review the adjustments and 
ratify the cleaning process. This sounds trivial, but our experience indicates that it is inevitably useful. 
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Many of these twelve points require some additional discussion. For example, the first step sounds trivial. 
However, consistent formatting makes all subsequent analyses easier to implement; in particular, one can move 
rapidly between different packages and special purpose software. Also, important flaws can be detected in this 
stage; for example, in a PPG data file, a particular variable field did not allocate enough space for large numbers, 
and so adjacent values were either read as a single number (free format input), or else negative numbers became 
positive (column input). It took two days to pinpoint the error, and thus it is time effective to write a simple 
program that automatically searches for such flaws. Similarly, missing values often arise when changes in the data 
collection methods are not properly reflected in the data format. Finally, if one inspects the records visually, a 
regular format magnifies the ability of the human eye to discover errors. 

Steps 1, 2, 3, 5, 6, 8, and 10 all create a new database from the preceding database. These new databases 
refine the original by reformatting, indicating the kind of missing values that occur, relagging the database time 
index to enable meaningful comparisons, and imputing discovered deficiencies. The result is a pseudo-database 
that approximates the data set one would have liked to have been given for study in the first place. 

In Step 3, the most common cause of missing data is differential measurement frequency. For example, in an 
Alcoa data set some variables were measured every half-hour, whereas others were measured each hour. Thus the 
time index changed in half-hour increments, and some variables showed missing values in every other observation. 
This kind of gap is viewed as missing as part of the normal operation of the process. Similarly, planned 
interruptions should be coded to distinguish them from failures in the data capture effort. 

Step 7 produces the missing value chart, a graphic output that aids process management and informs the data 
cleaning process. It displays patterns of omission by category of omission. Specifically, the chart: 
• ignores data that is absent as part of the normal operation of the process. 
• shows the number of observations missing at a given time period. 
• shows the number of consecutive time periods with missing values. 
• flags time periods in which certain subsets of missing values occur, such as those pertaining to specific 

subsystems in the production process. 
• flags time periods according to known causes of missing data, such as plant shutdowns or sensor failure. 
In our experience, process experts can read this chart easily, recognizing data gaps of which they were previously 
aware, and discovering new problems that require attention. 

In specific applications, other kinds of missing data may occur. For example, data may be missing because 
the values have fallen outside the range of sensitivity of the measuring instrument. Figure 1 in Banks and 
Parmigiani (1992) provides and example of a missing value chart, and the surrounding discussion shows how that 
chart's information was used to discover hidden aspects of the PPG data set. 

In realistically large applications, the time span is too long and the numbers of variables too great to allow 
missing values to be represented in a single chart. Instead, one should use a color monitor; white pixels mark 
normal values, colored pixels code the categories of missing data. This compact display accommodates about 750 
variables and 1000 time points on a standard workstation. For greater time spans one can scroll the screen, divide 
the time span into intervals or collapse intervals without missing data. 

Step 8 adjusts the database by imputing the missing values that arise from normal process operation, and, 
perhaps, for the sprinkling of isolated unpatterned missing values that occur for unknown reasons. In our work with 
Alcoa and PPG, most adjustment is made to account for differential sampling rates. There are sophisticated 
strategies for interpolating or imputing such missing values. If one has knowledge of the underlying time series 
model, or if the process history permits tight record matching, then one could use either a form of 
forecasting/backcasting or hot deck imputation, respectively. However, our experience indicates that situations 
with this degree of structure are rare, so we prefer to estimate values by linear interpolation of the data. 

The advantages of linear interpolation, as opposed to the more sophisticated smoothing routines described by 
Friedman, Grosse and Stuetzle (1983), are both computational and theoretical. First, linear interpolation is easy to 
program and quick to implement in almost any software system that might be used. Second, linear interpolation 
makes a strictly local adjustment of the data; distant values have no influence on the correction.   This seems a 
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desirable feature when cleaning data without a well-defined probability model. Even when there is information that 
would enable slight improvement over simple linear interpolation, it may not be cost-effective to pursue such 
refinement; i.e., if one's ultimate inference from the mountain of available data is sensitive to the rule for imputing 
missing values, then the entire solution is surely unstable. Spending effort on optimal imputation takes resources for 
other phases of the analysis, making this a case of the best being the enemy of the good. 

Whatever imputation method one uses, the output from Step 8 is a new, artificial database that spans data gaps 
in order to: 
• remove very short sequences of missing data whose absence is deemed random and uninformative. 
• obviate difficulties in subsequent analysis caused by data missing as part of the usual operation of the process. 
The first adjustment is appropriate when clerical error or sensor failure causes missing data, but the process is under 
control and nearby values are likely to be similar to those that are missing. The second is useful when not all 
observations are recorded at the same sampling rate; here one can interpolate the least frequent (data inflation) or 
average the most frequent (data reduction). If one variable is measured daily and another is measured hourly, we 
recommend interpolating the daily values to create hourly proxies, since the alternative, compressing the hourly 
data to daily averages, destroys information. 

A caution is needed. When large amounts of missing data are estimated, the variance of the values in the 
artificial database is too small. Thus the outlier tests in Step 10 will be oversensitive, and probably require some 
tuning. 

Step 9 produces an extreme value chart; in analogy with the missing value chart, it looks for patterns over time 
in the least and largest values of the control and quality variables. The vertical axis identifies the control and 
quality variables. In many applications it is useful to group these according to process sequence or process 
subsystems. The horizontal axis is the time index of the data. For a given variable at a given time, we plot blank 
space if the datum is within + 2.5 a of the mean for that control or quality variable. Otherwise, we plot a stroke if 
the datum exceeds the upper 2.5 a bound, and a dot if it falls below the lower 2.5 a bound. 

In our experience, a ± 2.5 a rule captures data oddities without overloading the visual display; for other 
applications, the customary + 3o zone might serve best. For data sets with very large numbers of variables, it is 
more compact to code the direction of extreme deviations with color pixels, and display very large numbers of 
variables simultaneously upon a color monitor. 

In general, the extreme value chart shows both isolated data points and runs of data (often affecting 
downstream variables) that fall outside the zone of normal operating values. The former look like potentially 
influential data flaws, and should be checked to ensure that no coding glitch has occurred; even if no identifiable 
cause can be found, it may improve the analysis to replace these outliers by interpolated values. In contrast, runs of 
extreme values carry a great deal of information about process capability beyond the usual operating region. These 
should be preserved in the database, and closely studied in the subsequent analysis phase. 

The extreme value chart enables managers to identify which variables are prone to fall out of control, and 
which quality variables are sensitive to such departures. These charts can also discover faulty control loops or 
differences in performance between operating shifts. For some applications, it merits note that the extreme value 
chart responds to planned changes in control set points, so one should calculate control means only over intervals 
between process innovations. 

Step 9 has produced a chart that guides Step 10. Here one identifies outliers, and remedies these in the way 
most appropriate to the problem. One should verify their values, and then either replace them by less extreme 
estimates (i.e., treat them as missing values), or else prepare a robust analysis. To increase the complexity, there is 
also concern about multivariate outliers and outliers with respect to the time series structure. 

Multivariate outliers occur when two or more variables take values that are jointly improbable. Hawkins 
(1982) describes methods of multivariate outlier detection. We feel that simple Mahalanobis distance is broadly 
sensitive and often adequate.  The Mahalanobis distance for the total process and the process subsystems may be 
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included as rows in the extreme value chart. If such outliers are found in those rows, they should be checked by 
process experts, and either retained or replaced by interpolation. 

Univariate and multivariate time series outlier detection is difficult, but potentially informative. Univariate 
time series outliers can often be recognized as runs of outside values on the extreme value chart, and multivariate 
outliers can be detected as patterns of such runs. No useful theory is available for the multivariate case. From an 
exploratory standpoint, inspection of the extreme value chart may be the most practical way to identify multivariate 
outlier behavior. In the PPG application described in Banks and Parmigiani (1992), these showed up visually as the 
process engineers chased the drifting system. 

Step 11 is conventional methodology; too much detail sidetracks the purpose of this survey. In brief, Step 11 
moves the preanalysis beyond data cleaning and lays the foundation for addressing substantive questions. One has 
finally constructed an artificial database that resembles what classroom lectures assume one receives in the first 
place, and now it becomes appropriate to begin applying textbook tools. For example, if one contemplates an 
analysis based upon normal theory methodology, such as fitting a linear model or extracting the principal 
components, then it is proper to undertake Q-Q plots and look for normalizing transformations. 

Step 12 moves the preanalysis firmly towards conventional analysis. Although methods depend on the 
application, we have found it useful to build two types of charts, both aimed at detecting data structure in the region 
of optimal operation. These tools provide useful guidance in planning an analysis when there is little physical 
understanding of the process model. Details on these charts, and our experience in implementing them, are 
described in Banks and Parmigiani, (1992). 

As a final point, we emphasize that the 12-step protocol is a guideline. In a formal sense, the preanalysis is 
part of the total analysis—if one has a good model, then it should drive one's decisions during the preanalysis 
phase. Since well-defined models are rare for complex processes, it usually happens that the chief concern is to be 
sure that the preanalysis does not entail any alterations of the data that will hinder subsequent examination of 
central research questions. 

CHOOSING A NONPARAMETRIC METHOD 

Classical statistical inference works well when the dimensionality of the data is low. However, regression 
analysis in high dimensions quickly becomes extremely unreliable; this phenomenon is called the "Curse of 
Dimensionality" (COD). There are three nearly equivalent formulations of the COD, each offering a usefully 
different perspective on the problem: 
• The complexity of the possible regression structure increases super-exponentially with dimension. 
• In high-dimensions, nearly all data sets are sparse. 
• In high dimensions, nearly all data sets show multicollinearity (and its nonparametric generalization, 

concurvity). 
Detailed discussion of this topic and its consequences for regression may be found in Hastie and Tibshirani (1990) 
and in Scott and Wand (1991). 

Historically, multivariate statistical analysis sidestepped the COD by imposing strong model assumptions that 
restricted the potential complexity of the fitted models, thereby allowing sample information to have non-local 
influence. But now there is growing demand for data analytical techniques that make weaker model assumptions 
and use larger data sets. This has led to the rapid development of a number of new methods; however, the 
comparative performance of these methods is poorly understood. 

We focus upon comparisons among ten commonly used methods: 
• Multiple Linear Regression (MLR). 
• Stepwise Linear Regression (SLR). 
• Additive Model (AM).   Described in Hastie and Tibshirani (1990), this fits sums of nonlinear univariate 

functions of the explanatory variables. 
• LOESS. This fits a local regression to the data, as described by Cleveland (1979), 
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Alternating Conditional Expectations (ACE). The method was invented by Breiman and Friedman (1985), and 
is similar to AM except that it allows transformations of the dependent variable to maximize the correlation 
between the left- and right-hand sides. 
Additivity and Variance Stabilization (AVAS).   A modification of ACE developed by Tibshirani (1988) that 
incorporates a variance stabilizing transformation. 
Projection Pursuit Regression (PPR).  This is like AM, except that the nonlinear univariate functions depend 
upon linear combinations of the explanatory variable (Friedman and Stuetzle, 1981). 
Recursive Partitioning Regression (RPR).  This is similar to the CART methodology pioneered by Breiman, 
Friedman, Olshen and Stone (1984); it finds rectangular regions in which local averages fit well. 
Multivariate Adaptive Regression Splines (MARS). Developed by Friedman (1992), this is combines features 
of RPR and PPR. 
Neural Network (NN).   We use a procedure called CASCOR, which automatically chooses the number of 
hidden nodes (Fahlman and Lebiere, 1990). 

These methods were chosen because people use them, because they have relatively sophisticated strategies, and 
because code is easily available to implement them. 

Currently, our understanding of comparative regression performance consists of a scattering of theoretical and 
simulation results. The key sources are: 
• Donoho and Johnstone (1989), who develop asymptotic results which imply that projection based regression 

methods (PPR, MARS) perform significantly better for radial functions, whereas kernel based regression 
(LOESS) is superior for harmonic functions. 

• Friedman (1991), who reports simulation studies of MARS alone, and related work described in the discussion. 
• Tibshirani (1988) and Hastie and Tibshirani (1990), who report simulation results for AVAS. 
• Breiman (1991), who describes benchmark results for high-dimensional regression for five functions, and 

pertinent discussions in the following section. 
• Barron (1993), who shows that in a somewhat narrow sense, the mean integrated squared error of neural net 

estimates for a certain class of functions has order that is subexponential in the dimension; similar results were 
subsequently obtained by Zhao and Atkeson (1992) for PPR. 

• Ripley (1993) describes simulation studies of neural network procedures, usually in contrast with statistical 
methods. 

These short, often asymptotic, explorations do not provide sufficient understanding for a practitioner to make an 
informed choice among regression techniques 

To address this gap, Banks, Maxion, and Olszewski (1997) describe a designed experiment that compares the ten 
regression techniques. The basis for the comparison is the mean integrated squared error (MISE) of the different 
techniques, assessed across a range of functions and conditions. The results of the simulation experiment are too ' 
lengthy to present here, but are available on the web at www.cs.cmu.edu/~bobski/. The simulation was performed 
on two advanced workstations (a DECstation 300 and an HP Apollo 715/75) that ran standard code for regression 
methodology over a period of nearly 19 months. 

The simulation experiment had six factors: 
• Regression Method. The ten levels of this factor are MLR, SLR, MARS, AM, PPR, ACE, AVAS, RPR, 

LOESS, and NN, as previously described. 
• Function. The five kinds of functions that were examined were hyperflats, multivariate normals with zero 

correlation, multivariate normals with all correlations .8, two-component mixtures of multivariate normals with 
zero correlation, and a function proportional to the product of the explanatory variables. These situations 
correspond to the kinds of structure one encounters in practice. 

• Dimensionality. The three levels of this factor take the dimensionality of the explanatory variable space to be 
2, 6, and 12. In higher dimensions, methods perform so poorly that it differences between them are of little 
practical interest. 

• Sample Size. The three levels of this factor take the sample size to be n=2pk, where p is the dimensionality and 
k = 4, 10, 25. This scales across dimensionality, so that the different values of k correspond to small, medium, 
and large samples, respectively. 
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• Noise. This determines the variance in the additive Gaussian error associated with each observation. The 
standard deviations of the error variance are a = 0 02, 0.1, 0.5. 

• Model Sparseness. This determines the proportion of explanatory variables that are functionally related to the 
response variable. The different levels consist of all variables, half of the variables, and none of the variables. 
The latter case is especially important in practice, since it shows how much spurious structure the methods will 
find in pure noise. 

Note that not all combinations of this design are realizable. Specifically, when Model Sparseness is set so that none 
of the variables pertain to the response variable, then the level of the Function is irrelevant. 

The simulation experiment proceeded according to the following steps: 
1. Generate a uniform random sample Xu ..., Xn inside the unit hypercube in W. 
2. Generate a sample of random errors £i,..., e„, all iid N(0, a2). 
3. Calculate Yi=f{X{)+£i, where f.W -» 91 is the target function determined by appropriate combinations of levels 

of Function, Dimensionality, and Model Sparseness. 
4. Apply one of the regression techniques in Factor 1 to obtain f*, an estimate of/. 
5. Estimate the integrated squared error off* over the unit cube. Call this m. 
6. Repeat steps 1-5 20 times. The average of the 20 resulting m values is an estimate of the MISE; we also 

calculate the standard error of this estimate for use in subsequent comparisons. 
From each combination of factor levels, we thus obtain an estimate of the MISE and its standard error. Regression 
methods whose MISE values are significantly lower than competing methods are superior. We wish to understand 
which methods are best for which functions, dimensions, sample sizes, and noise levels. 

The experiment produced a many findings, but those of most importance to practitioners are: 
• For the linear relationship, MLR and SLR do well, as expected. More interestingly, GAM also performs well. 
• For the normal model, LOESS generally does well. 
• For the correlated normal model, ACE, PPR, and LOESS do well, though there is great variation across 

situations. 
• For the mixture of normals model, MARS performs well; when all variables are used, LOESS also does well. 
• For the product model, the results are very mixed. A weak conclusion is that when MISE is low, MARS is 

often among the best, but when MISE is high, LOESS is among the best. 
• In low dimensions, MARS does consistently well when the explanatory variables are not related to the 

response variable. 
• In high dimensions with large samples, most of the methods do well when the explanatory variables are not 

related to the response variable. When samples are smaller, the more computationally sophisticated models do 
slightly worse, discovering spurious structure. 

• RPR, and presumably the commercial version of CART, generally have higher levels of MISE than competing 
methods. But RPR is often the winner in very high dimensional problems. 

More detailed comparisons are given in the technical report at www.cs.cmu.edu/~bobski/. 

In applications, there is a more direct and practical way to select a regression procedure. Hold out a portion of the 
data. Fit a model to the remaining data using each regression technique. Use that model to predict the values of the 
holdout sample. Then use the regression technique that achieves the smallest MISE on the holdout data. (If one's 
data set is not large enough to support holding a portion of the data out, then one probably ought not be doing high 
dimensional regression.) 

LOCAL DIMENSIONALITY 

None of the methods compared in the preceding section actually avoid the Curse of Dimensionality (except 
NN and PPR, in an impractical and narrow sense). Instead, they fit a flexible model that assumes some specific 
form for the hidden structure in the data set. If the model happens to approximate reality, then the method performs 
well. The methods are not truly nonparametric; they all make model assumptions of varying degrees of weakness. 

These weak assumptions typically involve the kind of locally low dimensional structure of the data. For 
example MARS, PPR, and neural nets (and wavelets) search hard to select a small set of variables that are 
influential in a particular region (MARS and wavelets) or a particular direction (PPR and neural nets). MARS and 
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wavelets do not assume that the same variables are active everywhere, which is a great boon, but it is unclear that 
they are particularly successful in handling regions where the local functional dependence involves more than about 
four variables. Similarly, PPR and neural nets are most effective when the regression surface in a given direction is 
dominated by the behavior of a small number of explanatory variables. In an alternate path to a comparable end, 
GAM, ACE, AVAS all assume a simple additive structure that precludes the interactions that make high- 
dimensions so difficult. 

Our perspective is that many problems are intrinsically too hard for statisticians to solve with the data 
available. It then becomes valuable to find a screening tool to identify data sets having simple structure that makes 
them potentially amenable to a modern computer-intensive analysis, as opposed to data sets that are so complex that 
no method has realistic hopes of discovering useful information. To this end, we describe a strategy for screening 
data sets that applies to either regression or structure discovery, and show the results of a designed experiment that 
implements our strategy for the structure discovery form of the problem. 

The simplest and first case to consider is that of structure discovery. The data consist of vectors X1;...,Xn in 
W, and one wants to discover whether there is some hidden pattern. We call this the "crumpled napkin problem" 
because of the following illustration. Suppose during dinner with Persi Diaconis (a mathematician who is also a 
magician), he draws a large number of dots on his napkin, crumples it loosely, and causes the napkin to become 
invisible, so that only the dots may be seen. From cursory observation, it appears that the dots are a featureless blob 
in space; but if one looks very closely, and if there are enough dots, one could in principle discover that the points 
lie on a hidden two-dimensional manifold that is the surface of the napkin. The clue that enables that insight is the 
fact that in sufficiently small regions of the volume containing the dots, the dots tend to lie on nearly flat two- 
dimensional surfaces. Thus the local dimensionality is in fact two except near the folds in the napkin, despite the 
apparent three-dimensionality. 

Following this direction, our analytical strategy is to pass a small hypersphere in 9tp over the volume of the 
data; at random intervals, we stop the sphere's passage, record the points that lie inside the sphere, and perform a 
principal components analysis on them. The number of eigenvalues that contribute appreciably to the trace of the 
covariance matrix indicates the approximate local dimensionality of the data. (In our work, we estimate the local 
dimensionality as the number of eigenvalues needed to sum to 80% of the trace, but this is more a choice of 
convenience than principle.) Finally, we average the local estimates of dimension; if the result is much smaller than 
p, we have good reason to hope that there is simple structure hidden in the data, and thus the data set might repay 
further study. But if the result is not much smaller than p, this suggests that no currently available analysis can 
succeed, and our time would be better spent on other projects. 

The previous strategy is still a bit too simple. Suppose that one's data fill out the locus between two p- 
dimensional spheres of different radii, each centered at 0. Then the moving sphere will typically find either no 
points in its ambit (when it lies in empty region of the smaller sphere), or it will estimate a local dimensionality of 
p, when it is located inside the outer sphere but outside the inner sphere. Thus the proposed strategy does not notice 
structure caused by regions of data sparsity. To repair this deficiency, we count the number of observations within 
the sphere at each random stop. If the number falls below a threshold (we use 2p), then the region is declared sparse 
and no further work is done at that site; otherwise we proceed with the principal components analysis. At the end 
of the passage, we record the proportion of stops that were sparse, and the average local dimensionality at the stops 
that were not. If the first is large or second number is small, this implies the presence of interesting structure. 

We want to extend the structure discovery approach to regression analysis. The way to do this is to replace 
the principal components analysis at each stop of the small, moving hypersphere with a principal components 
stepwise regression. The number of components that are selected for inclusion in the model represents the local 
dimensionality of the functional relationship between the explanatory variables and the response. When this 
number is low, there is hope that MARS, ACE, GAM, PPR, or one of the other new wave methods might be tuned 
to discover the kind of relationship that exists. 

Of course, this requires a bit more judgment. One must determine the levels of significance in the repeated 
tests for the stepwise regression's variable selection. Also, one would probably want to set a minimum value for the 
coefficient of determination, below which one does not feel that the strength of the local relationship is sufficiently 
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strong to warrant further study. In this spirit, one could calculate the local average coefficient of determination, 
which, if sufficiently small, would persuade one that an analysis is bootless despite a low average local 
dimensionality. 

This experiment calibrates the method we described previously for the situation in which data on a q- 
dimensional manifold is presented in W, for p > q. The particular structure of the manifold that we consider is the 
^-boundary of .the unit p-dimensional hypercube. For example, uniform data on the 1-boundary of a 3-dimensional 
cube would have points that lie (apart from noise) on the 12 edges of the cube. In contrast, uniform data on the 2- 
boundary of the cube would have points that lie (apart from noise) on the 6 faces of the cube. And clearly, when q 
= p =3, there is no structure present that anyone would be interested to discover. We wish to discover how well 
average local dimensionality and sparsity do in flagging the cases in which q < p. 

The experiment consists of 20 replications at each combination of the following factor levels: 
• Dimension. We take all values of (p, q) such that $7 > p > q > 1. 
• Noise.    All sample observations (uniform on the ^-surface are corrupted by independent p-variate 

Gaussian noise with mean 0 and covariance matrix a21 where a takes two levels: .1 and .5. 
• Sample Size. We consider two levels; the general formula is n = 2q k, where it =10,15. 

This design is not a stringent test of the strategy, but rather helps us to establish the general sensitivity of our tuning 
choices in developing the algorithm. These choices include the sphere size and the threshold value for the sum of 
the eigenvalues. 

The first result of the experiment is shown in Table 1. The entries show the average of the average local 
dimensionality over the 20 replications of the treatment combinations. The standard error on these estimates is 
small, on the order of 0.01 or less. 

Table 1: Estimated Average Local Dimension of ^-Surfaces onp-Cubes 

q=7 5.03 
q=6 4.25 4.23 
q=5 3.49 3.55 3.67 
q=4 2.75 2.90 3.05 3.18 
q=3 2.04 2.24 2.37 2.50 2.58 
q=2 1.43 1.58 1.71 1.80 1.83 1.87 
q=l 0.80 0.88 0.92 0.96 0.95 0.95 0.98 

P=l P=2 P=3 p=4 P=5 p=6 P=7 

The key result in Table 1 is that the estimated local dimensionality is quite stable across different values of p. 
Of course, the estimated dimensionality is lower than the true value of q, which is inevitable since the threshold rule 
sums only those eigenvalues needed to explain 80% of the variability in the data. But since the estimate is so 
stable, bias-correction methods, empirical or theoretical, should improve that performance. And the exact estimate 
of q is not essential—our purpose is simply to decide whether the data warrant further study. 

CONCLUSIONS 

This review has outlined three issues that arise in data mining. The first problem, involving preanalysis, is 
perhaps the most difficult to resolve. It is very hard to get around the need to invest substantial amounts of time in 
data preparation when rnining for structure. The second issue is becoming better understood. There is a growing 
body of experience, theory, and simulation that can provide guidance on selection of regression methods. The third 
issue is somewhat novel, but grows out of the fact that truly complex data is beyond our grasp. We need to develop 
better screening tools to identify which data sets are worth our time. 

Besides these three issues, there are other problems that arise, or should arise, in the minds of data miners. 
One concerns the problem of data compression.   This has ramifications for information theory, storage, and 
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automatic pattern recognition.  A second problem is to find typical values in a data set, thereby producing a quick 
index to the range of phenomena in the data set. 
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