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ABSTRACT 

A model, based on defect diffusion, is developed that describes temperature and pressure 

dependence of dielectric relaxation, ionic conductivity and viscosity of glass-forming liquids 

near the glass transition temperature. The resultant expressions for ionic conductivity are 

compared with experimental results for the polymer electrolytes poly(ethylene glycol) (PEG) 

and poly(propylene glycol) (PPG) containing LiCF3S03. Those for dielectric relaxation are 

compared with experimental results for polypropylene oxide) (PPO) and poly(vinyl acetate). 

The theoretical viscosity law is compared to experiments on propylene carbonate (PC). 

I.       INTRODUCTION 

In 1889, Arrhenius introduced the concept of an activation energy together with a law for 

the related characteristic relaxation time rA = v0
_1 exp(A/ÄT) where k is Boltzmann's constant 

and T is the absolute temperature. The Arrhenius law was later derived by Kramers in terms of 

the trajectory of a particle successfully crossing an energy barrier of height, A , with an attempt 

frequency of v0.   It is perhaps not as well known that this law is invalid for most glass-forming 

materials. A corresponding law for these materials, 

rv = Av exp '_0 0) 



was proposed by Vogel in 1921 and later by Fulcher, and Tammann and Hesse. Today this is 

often called the Vogel law or the VFT law or some other combination of the above. The 

interpretation of the parameters A v, B v and T0 is not straightforward. First, one notices that T0 

is a special temperature where the time scale diverges. The temperature T0 is typically well 

below T , the glass transition temperature of the material, i.e., the relaxation dynamics are 

focused on T0 and not on T .   There have been several attempts to derive the Vogel law or 

alternative laws. Previously, we had derived, within a defect diffusion model, the following 

equation for zero (approximately atmospheric) pressure '"3: 

TDD  ~ ^DD eXP 
BDD 

12 

J 
(2) 

{T_xr 

where ADD,BDD and Tc are constants. The derivation of eq. (2) involves a somewhat novel route 

by initially arriving at a stretched exponential relaxation time distribution within a defect 

diffusion model. The time scale in the stretched exponential law depends on the mobile defect 

concentration. In this model, as the temperature is lowered, the number of mobile defects 

decreases and the material becomes more viscous (rigidity begins to set in).   At T , rigidity 

percolates and the glassy state is formed. Relaxation, however, is still occurring. An 

"imminent" phase transition in the number of mobile defects, as the temperature is lowered 

towards Tc, creates the behavior characterized by eq. (2). The thermodynamic transition at Tc is 

never reached because ergodicity is lost at Tg.   . 

Equation (2) is consistently as successful as (or more so than) the Vogel law (eq. 1) for 

fitting ionic conductivity, dielectric relaxation and viscosity data for glass-forming 

materials4"6 especially when the Vogel law fails to fit data adequately near Tg, and the system is 

sometimes said to show a "return" to Arrhenius behavior.2 

The purpose of this Letter is to extend eq. (2) to include the effect of pressure.  It will be 

demonstrated that the resultant generalized Vogel-type law, eq. (5) below, successfully describes 



measurements of ionic conductivity in salt-containing, glass-forming liquids, such as those 

frequently used as the electrolyte in a battery. Finally, it is shown that the theory also accounts 

for dielectric relaxation and viscosity in several glass-forming materials. 

II.     THEORY 

Consider an ion-containing glass-forming material possessing a concentration c of defects, 

where cm of these are mobile. Assume an ion at a site is induced to hop at time t, due to the flux 

of defects, F(t), into that site.  To calculate F(t) we employ a waiting time probability density, 

ij/it), for holding a defect for a time t, in between its jumps in order to incorporate a randomness 

into the defect motion. The defect flux into a site, within a time t, is cmN(t) where N(t) is the 

number of distinct sites a single random walking defect visits within a time t. The ion-hopping 

probability distribution is '"3 then identical to the relaxation law 0(t) = exp(-cmN(t)). In this 

article, we shall generally retain the interpretation of (|>(t) as a relaxation law, recognizing 

however, that the application of <j)(t) to ion hopping problems is straightforward and direct. For a 

typical random walk, N(t) is proportional to t and exponential relaxation or hopping occurs. The 

stretched exponential is another possibility, i.e. 

j(t) = exp(- Ac,,, tß) - exp(- [t I TDD ]
P
) (3) 

with ß < 1, A constant and TDD = (Acm)~UJ3 = cm~upr0. This is the typical behavior exhibited by 

glassy materials. There are several ways one can arrive at eq. (3). If the defect delays are 

related to overcoming a free energy barrier as "follows: t = t0 exp(+ (A - TS) I JcT) then random 

distributions of energy barriers, A, and entropy barriers, S can generate a distribution of waiting 

times between jumps, with an infinite mean, i.e. y/(t)~ \lt~x~p with ß < 1, leading to N{t)^tp . 

Since only the defects are mobile in the model, as the temperature is lowered, the defects may 

cluster (or correlate their motion) to lower the system entropy.   We now assume that single 

isolated defects, of concentration cx, are more mobile than any cluster of defects. We therefore 



replace cm in eq. (3) by cx. To have a single defect at a site, one must first have a defect there 

with probability c and also have all of the z   "neighbor" sites within its correlation volume 

unoccupied, i.e. cx =c(l-c)z, with z = {glctf, where £ is the defect-defect pair correlation 

length, and d is the nearest-neighbor lattice spacing.   In a mean field lattice gas model, the 

correlation length £ between the defects grows near and above the critical temperature Tc as 

&)«!> 
f   T    \1/2 

T-TcJ 

where L is a constant and Tc is the temperature at which single defects 

disappear and below which only defect clusters exist. With increasing pressure, the nearest- 

neighbor    spacing,    d,     is    assumed    to    decrease    as     d3 =d0 (l-ö(T,P))     where 

1 - S(T, P) = V(T, P) I V(T,0) is the fractional volume change of the material as pressure 

increases and d0 is the mean lattice spacing separation at zero pressure. The time scale in the 

stretched exponential can now be expressed as, 

^DD~ciUßr0 = <T1//?r0exp 
( BTin \ 

(4) 
(T-Tcf

2(l-S(T,P)), 

where B = -(L/d^ \n(l-c)/ß. This represents a new relaxation (or hopping) law that is Vogel- 

like, but with a 3/2 temperature exponent and the inclusion of pressure effects. Note that Tc is in 

general a function of P. In the above model, the critical temperature Tc plays a role analogous to 

the Kauzmann temperature, Tfc. It is the thermodynamic transition temperature at which the extra 

entropy of the melt is lost, and like the Kauzmann transition, the demixing transition at Tc never 

occurs in a real system because Tg intervenes (i.e., rigidity percolates) first. Evidence for a 

demixing transition is clearly seen in the spatial heterogeneity found in all fragile glasses near 

Since the time scales for ion hopping and relaxation are both given by eqn. 4 above, a 

model of conductivity can be developed as follows. Although an individual defect may have an 

infinite waiting time between jumps, ion hopping, induced by the defect flux follows a stretched 



exponential waiting time distribution law, whose first moment, r, is finite. Since the ion 

I2 2   7") 
diffusion constant is of the form D = , employing the Nernst-Einstein relation a = , 

6xx kT 

where q is the charge on an ion and n is the ion concentration, we can, using eqn (4), derive an 

expression for the conductivity a(T, P) 

q2nl2cxlß      (       -BTV2       ^ 

"fr')-^"* 
(5) 

(T-Tcy
l2(\-S), 

Basically, as the pressure is increased, defects are pushed closer together and become more 

clustered leaving fewer single (mobile) defects. This will decrease the defect flux, increasing the 

time scale rh and thus decreasing the conductivity a. Single defect transport, of course, is 

anomalous and a diffusion constant for the defect motions cannot be defined in the normal way, 

while the subordinated ion motion is well-defined. 

An approximate equation for the viscosity, r\, follows by applying the Stokes-Einstein 

kT 
equation 7 = , where r0 is the effective molecular radius. We recognize that the Stokes- 

6ftDr0 

Einstein relation breaks down for fragile glasses near Tg, and it is used here merely to derive an 

approximate viscosity relation.20 

III. COMPARISON WITH EXPERIMENT 

A. Dielectric Relaxation 

For the purpose of comparing the theory of dielectric relaxation with experiment, eq. (4) is 

employed. The pre-exponential is defined to be c~u/3t0 = AT. For the present analysis, both Ax 

and B are taken to be constant. In addition, it is assumed that the volume of the material changes 

with pressure according to: 

\-S = l-z(T)P + f(T)P2+g(T)P\ (6) 



This form is chosen as it is supported by the PVT data of Zoller and Walsh.7 Finally, the critical 

temperature is assumed to be pressure dependent according to: 

( XT \ 
TC(P) = TC + 

dTc 
P+1- 

2 

rd2T\ 

v dP2 , \U1    J 
(7) 

KdP j 

where Tc with no pressure argument refers to the critical temperature at zero pressure. This 

functional form is chosen since, as will be shown, there appears to be a relationship between Tc 

and To and it is well known that there is usually a significant amount of curvature in the shift of 

To with pressure. Equations 6 and 7 are employed here simply as empirical relationships, which 

have been used by other investigators. PVT data for glass-forming materials is often directly 

fitted to eq. 6, which is thus also conveniently available for fitting the model eq. 4. The analog of 

eq. 7 for Tg has also been used by experimenters to fit data and, in light of the scaling found 

between Tc and Tg, it also seems a natural first choice for modeling the pressure dependence of 

Tc. The spirit of our approach is a Landau-type treatment of local free energy fluctuations, which 

can be expected to provide a useful approximation until one gets very close to Tc. Since Tc is 

never reached in glass-formers (due to Tg intervening), analytic Landau expansions should work 

reasonably well in the experimentally-accessible P-T range away from Tc. 

1. Zero Pressure Temperature Variation 

Equation (4) was best-fit to previously reported dielectric relaxation data at 1 atm for PPO8 

and poly(vinyl acetate) (PVAc)9 and new data for polypropylene glycol) of average molecular 

weight 1025 (PPG). The best-fit parameters are listed in Table I along with the rms deviations 

for both eq. (4) and the VFT equation (eq. (1)). The goodness of fit for the 1 atm dielectric 

relaxation data is about the same for eq. (4) and the VFT equation. A fragility plot of the data 

and best-fit curve for PPG is shown in Fig. 1. The agreement between theory and experiment is 

quite good. 

2. Zero Pressure Slope 



Experimental values for the pressure derivative of the dielectric relaxation time (or 

reciprocal of the peak frequency, z = l/»max =\l27tfmdX) at P=1.0 atm in PPO and PVAc have 

been reported.13'15 The prediction of eq. (4) for this quantity is 

f. 1.5 1   c DTTI-5 dlnf\        zBT*       l.SBTTe 
rdT\ 

dP   )T    {T-Tcf
5    (T-Tc)

25 
KdPj 

(8) 

This equation was best-fit to the data allowing (dTc I dP) to vary. The experimental results and 

best-fit curves are shown in Fig. 2. The agreement between the theory and experiment is quite 

good. 

The best-fit values of (dTJdP), 104K/GPa for PPO and 204K/GPa for PVAc, are 

interesting because [dTg I dP) has been measured for these materials. Those values are 

196K/Gpa and 266K/GPa for PPO10 and PVAc,15'16 respectively. In both cases, (dTc I dP) is less 

than \dTg I dP). That is not surprising since Tc, itself, is less than Tg. Furthermore, (dTc I dP) 

scales with [dTg I dP). 

3. Zero Pressure Curvature 

Next, the experimental values of [d2 ln/max ldP2)T for PPG vary from about -17 to -53 

GPa"2 as the temperature decreases from 273 to 23 7K.8 PVAc, on the other hand, shows no 

curvature.10   The present theory accounts for these results and differences since an equation for 

(92 ln/max IdP2) can be easily calculated from eq. (4). 

It is of interest to compare the pressure curvatures in Tc and Tg. The experimental values 

for   (d2Tg/dP2)   are  -340  and -1340  K7GPa2  for  PPO11'12  and  PVAc,10'13  respectively. 

Consequently, the values of [d2Tc/dP2) are both smaller than and scale with [d2Tg IdP2). This 

also suggests a relationship between Tc and Tg. The implications of these results will be 

discussed further in section IV. 



B. Ionic Conductivity 

For the purpose of comparing the theory of the ionic conductivity with experiment, eq. (5) 

was used defining Aa = {q2nl2cxip)l 6kr0 and assuming that it is constant.   Also, {1-5) was 

included in the  denominator of the pre-exponential to  account  for an  increase  in  ion 

concentration as pressure increases. 

1. Temperature Variation of Conductivity at Zero Pressure 

Equation (5) was best fit to the zero pressure ionic conductivity data for several 

electrolytes5'6'14 using a non-linear least squares approximation. The best-fit parameters are listed 

in Table I and the data and best-fit curve for PPG:LiCF3S03 are shown in Fig. 1. The fit to the 

data is quite good. 

2. Pressure Variation of the Ionic Conductivity 

Following a procedure similar to that described in Part A, the theoretical equation for 

(dlna/dP) was best-fit to the experimental data for PPG:LiCF3S03
6 and PEG:LiCF3S03

8 

allowing {dTJdP) to vary. The best-fit values of {dTJdP) are 94 and 64 K/GPa for the PPG- 

and PEG-based materials, respectively. 

Next, it was found that values of (d2Tc IdP2)= -179 and -134 K/Gpa2 for PPG:LiCF3S03 

and PEG:LiCF3S03, respectively, reproduce the experimental data for (d2 \na/dP2). 

Finally, using these input parameters, the theoretical values for In cr vs. pressure at three 

temperatures were calculated using eq. (5) and the results are shown with the experimental 

results in Fig. 3. The agreement between theory and experiment is quite good. 

C. Viscosity 

The zero pressure data for propylene carbonate (PC) reported elsewhere5 were best fit to 

the viscosity equation (see the discussion following eq. (5)). The results are presented in Table I. 

The factor of T in the pre-exponential results in a small reduction in the rms deviation over eq. 

(2) and consequently is even better than the fit using the VFT equation.5 We note that the 



agreement between the fitted Tc and the experimental Tjc is excellent.21 In fact the Tc found is 

much closer to Tfc that is To . This supports our view (see below) that the transitions represented 

by Tc and Tfc are the same or closely related. Uncertainties in the experimental values of Tc, T0, 

and Tfc are well-documented21 and further systematic experiment and analysis of well- 

characterized materials are needed. 

IV. DISCUSSION 

As with the Vogel law, a feature of the present model is the existence of an underlying 

critical temperature, Tc. There have been a number of detailed discussions concerning the 

relationship between T0 and Tfc, the Kauzmann temperature.15"17 In fact, one of the main 

justifications for eq. (1) is that T0 and 7> are about the same. For convenience, the values of T0 

for the present materials are also listed in Table I. It is clear that for all but PEG:LiCF3S03 Tc is 

relatively close to (12-20K below) T0. Since it has been concluded that T0 is close to Tk,ls~" it 

follows that Tc should also be close to 7>. PC is the only material in the present work studied by 

the authors for which the Kauzmann temperature is known.17'21 The value quoted there is 125.8 K 

which compares very well with the value of Tc =123.7K. Consequently, it will be of 

considerable interest to apply the formalism developed in the present work to other materials for 

which Tk is known. Tc is in fact closer to 7> than is T0 for this material.21 

In the present application of the model, five adjustable parameters were used, namely 

B, a prefactor, and Tc and its first two pressure derivatives . However, the results of the analysis 

suggest that a good representation of the dielectric relaxation data can be achieved by as few as 

one adjustable parameter, B. The reasons are as follows. First, it is clear that the pre-exponential 

is approximately constant at -11.3. This may be a universal constant, at least for relaxations in 

the vicinity of room temperature. Next, the value of Tc can be estimated from the experimental 

value of Tg.   The reason for this is that the data show that (Tg -Tc)/Tg* 0.25.   Further, the 

values of (dTc/dP)  and  (d2Tc/8P2)   appear to scale with Tg.    Consequently, to a first 

approximation, all necessary parameter values associated with Tc can be inferred from PVT data. 



The consequence, of course, is that the only remaining adjustable parameter is B. Interestingly, 

the experimental values of B are approximately the same for the structurally related materials 

(propylene glycols and propylene carbonates). The value of B is different for PVAc. This 

suggests that B reflects the structure of the material and this would be consistent with the theory 

since B comprises terms such as the defect-defect correlation length, the defect density, and the 

defect barrier. 

At present we recognize that the above theory of ionic conductivity remains 

phenomenological. However, it represents significant progress, since previous treatments 

utilized the concept of an activation volume that, as has been pointed out several times,6'18 is not 

applicable to materials exhibiting Vogel-type behavior. 
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Table I. Parameters relevant to the defect diffusion model. 

Ionic Conductivity Dielectric relaxation Viscosity 
PPG: PEG: PPG PPO PVAc        PC 
UCF3SO3 LiCF3S03   (1025)        (Parel) 

Log10(4) 0.973 1.31 -11.3 -11.2 -11.3 6.35 

(Aa and AT have units of S-K/cm and s, respectively.) 

B 7.84 5.28 4.45 4.18 6.08 4.71 

TC(K) 150.1 148.0 156.3 160.1 227.9 123.7 

Tg(K) 218 203 206 211 304 166 

T0(K) 172.3 181.7 168.2 172.7 249.2 136.9 

Temp Range of 
The Data (K) 

218-345 264-328 206-229 216-232 318-358 157-343 

rms dev 0.012 0.002 0.006 0.004 0.015 0.113 

rmsdev 
(VFT) 

0.033 0.002 0.006 0.004 0.015 0.189 
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FIGURE CAPTIONS 

Figure 1. Electrical resistivity for PPG:LiCF3S03 and electrical relaxation time for PPG 1025 vs. 
reciprocal temperature. 

Figure 2. Pressure derivative of the frequency of the maximum in the electrical relaxation peak 
(reciprocal of the relaxation time) at P=0 for PPO (Parel Elastomer) and PVAc vs. temperature. 
The points are experimental and the lines are theoretical. 

Figure 3. Electrical conductivity vs. pressure for and PPG:LiCF3S03 at various temperatures. 
The points are experimental. The squares represent decreasing pressure and the circles are 
increasing pressure. The lines are predicted by the generalized Vogel equation. 
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Figure 3 
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