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Electro-Thermal Behavioral Modeling 

Michael Steern .Christopher Snowden1 ,Frank Hart1, Daniel Stephenson* and Robert Johnson' 

'University of Leeds, School of Electrical and Electronic Engineering 
'North Carolina State University, Department of Electrical and Computer Engineering 
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Abstract 

This project developed the technology required to develop electro-thermal behavioral models of microwave circuits 
and subsystems   Electrical behavioral models themselves are poorly developed however we have developed an 
electrical behavioral model that can be readily extracted from single tone measurements or simulations and capture 
baseband effects and in particular thermal effects. The core technology is based on mathematics developed by the 
authors called the Arithmetic Operator Method which enables the basic mathematical operations such as addition, 
multiply divide and subtraction of signals to be performed by operating on their spectra. An example of application 
of the method to the modeling of a logarithmic amplifier are presented. The model was implemented in MATLAB 
code and this code is available by contacting m.b.steer@ieee.org. The code has been transferred to two MURIs 
(Multidsciplinary University Research Initiatives) managed by the Army Research Office. In the first MURI the 
work developed here will be used to model quasi-optical power combining amplifiers. In the second MURI the 
work will be used to model the co-site interference problem. 
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1. Introduction 

The Arithmetic Operator Method (AOM) was pioneered by Chang and Steer and has previously been 
described in two publications, [1] and [2]. It has been successfully applied to electronic c.rcuit behavioral 
modeling by Gard et al [3] and by de Carvalho and Pedro [4], [5]. This project further developed this 
behavioral modeling approach and implemented it in MATLAB together with a worked example and 
comparison to SPICE results. 

At the most basic level, the Arithmetic Operator Method (AOM) is a computer-aided method for simulating 
the time-domain multiplication of two signals in the frequency domain, using convolution in the frequency 
domain    However, its applications are not limited to the simple multiplication of two time-domain signals 
that one would find in a typical radio-frequency mixer, as a case study will later illustrate.   We will see that 
AOM can be used to model transfer functions of considerable complexity, as long as three prerequisites are 

met: 

1. The transfer function to be modeled can be expressed as a truncated infinite series form and must be a 
mathematically "analytic" function as defined by Taylor and Mann [6]; 

2. The spectral content of the input is known; and 

3. The domain of the spectral content (i.e. frequencies, but not amplitude or phase) of the output is either 
known or pre-specified. 

At first glance, the last prerequisite might seem difficult to meet. However, we will see that when the input 
is limited to a finite number of sinusoids of arbitrary frequency, then it is possible to specify the domain of 
the spectral content of the output. In the case study, we demonstrate how AOM can be used to model the 
response of a logarithmic amplifier to a two-tone sinusoidal input signal. 

2. Mathematical Description 

2.1 Mathematical Foundation 

The theoretical background underpinning the Arithmetic Operator Method was first described by 
Oppenheim and Schäfer [7] in 1975. In chapter 10 of their book, Digital Signal Processing, the authors 
describe a "Generalized Superposition" principle that has extended utility beyond the usual class of Linear, 
Time-Invariant (LTI) systems. The essential properties of such systems is that their operators must be both 
commutative and associative over the domains on which they operate.   Boyce and DiPrima [8] 
demonstrated that not all functions which can be convolved are associative, and this puts some restrictions 
on the form of the functions. The functions we consider will meet those restrictions. Such systems can be 
modeled using a linear transformation on a vector space, i.e. using matrix algebra. Systems that perform 
multiplication in the time domain, which corresponds to convolution in the frequency domain, exhibit the 
properties required for "generalized superposition" - even though they are inherently non-linear.   The 
resulting linear transformation implements the essence of the Arithmetic Operator Method. We present 
here the development of the transformation. 

2.2 Time and Frequency Domain Descriptions of Signals of Interest 

Let's begin with two time-domain signals, x(t) and zit) , both of which are composed of a finite number 

of sinusoids of arbitrary frequency content. For the purposes of the development here, we will assume that 
x and z have spectral content at the same frequencies, although with different amplitudes and phases. This 
is not restrictive, since if x and z were composed of sinusoids of different frequencies, we could describe 



both using a common (i.e. union) set of frequencies with some amplitude coefficients in x and z: both set to 
0.   Thus, the development that follows here for x{t) will also apply to z{t). We can express x(t) as the 

sum of a set of sinusoidal signals as follows: 

N           N                          N      eÄ^:*h)+e-m^f,) 
xW = Xx„(O=£|x„|cos(ö),;+0„)=XK|  0-D 

Here, we have expressed each sinusoid using the cosine function with frequency CO, = 2K/„ , amplitude 

\x I and phase <t> . Following that, we have used Euler's equation (eß = COS©+7 sin 0) to express 

the cosine function as the sum of two complex exponentials' We can further refine this result as follows: 

IKI 2L\xAe       +2£Ne 

„=o ^ "=0 

=*£[*,+/r-]^HXl*--■/*-]«"" 

Here we have again used Euler's equation to express the amplitude and phase as a complex number pair, 

X„r±jXni. If we now take the Fourier transform of x(t) using the final form in equation (1.2) above, 

we will have: 

Xm = F [x{t)} = F h±[X„r+jXny +mXnr-jXni)e-^' 

^\j\[X„r + jX^\2K5{(0-(0j}+\jjXnr-jXni}[2n8{(0+wn)] 

Now, from the definition of the inverse Fourier transform, we have: 

(1.3) 

' This form will allow us to use a phasor form for the cosine function later in the development. 
However, it must be stressed that since we are developing a model for a non-linear system, we cannot 
make the'usual linear phasor transformation x(t) = Ko[X(co)], and then use X(a>). Our representation 
is exact, although we will get the benefit of phasor arithmetic through our formulation. 



x(t) = F-l{X(ß)} 

=ij x{(oy*'dco 

=^j{iX[^+;ATj[2^(ffl-fl)j]+ii[^-Ä][2^(ffl+fflJ]}^"^ 
-oo I    «-0 "~ 

=i(2W)Thi[^+/yJ[«(»-®.)]+ii[^-^-]^fl)+fl)-4e/"dfl, 

=j(iX[z„r+^j[5(ffl-«j]+iiK-Ä][5(«+«,,)]}^'^ 
(1.4) 

Thus we see that there is a factor of In that appears when we follow the strict definition of the Fourier 
transform   This same factor is then eliminated in the inverse Fourier transform. For the purposes of our 
development we will ignore this domain conversion factor as we go forward, since the ultimate result of 
our efforts will be a time domain signal. With this simplification, we observe that the frequency domain 

constants for each 5(fl)-fl)J component are simply { (Xnr + jXni) = jX„ for components on the 

right hand side of the spectrum. On the left hand side of the spectrum, each S(ß) + ß>„) will have a 

multiplicative constant of \{Xm - jX„i) = \{Xllr +jXj =\X'n, where X'„ denotes the complex 

conjugate of X„ . Of special note is what happens for the case of DC, when n = 0 . By definition, DC 

corresponds to the origin in the frequency domain, so there is no imaginary part to the constant X0, i.e. 

X0 = X0r. This can also be seen by going back to equation (1.2), substituting 0 for n, and working 

through the complex arithmetic. Note also that there is no scale factor of ± on the DC term.   We can now 

rewrite X(0)) from equation (1.3), dropping the factor of lit and taking account of the coefficient scale 

factors: 

N N 

(1.5) 

To recap, the first summation is a set of frequency domain components on the right hand side of the 
spectrum, the second is a set of frequency domain components on the left hand side of the spectrum, and 
we carry the DC term separately. Now, since we will be dealing with convolution in the frequency domain 
shortly, it will be convenient to designate the components in the left hand side of the spectrum with 
negative indices, so we have: 

N N 

n=l -»=1 

.. .or, in an even more compact form: 

X(a>) = X08((ü) + ^{X„8(co-a„) + x:„S(co + w_J} (1.7) 



Now, we can express Z{(0) similarly, i.e.: 

Z(ffl) = Z05(ö))+i£{Z„5(©-ffl„) + z:„5(ü) + ö)_„)} (1-8) 

2.3 Convolution with Reduction of the Frequency Domain to Positive Frequencies 

At this point we can consider the effect of defining the time domain operation y(t) = x(t) ■ z(t) . Since 

time domain multiplication corresponds to frequency domain convolution, we have 

y(t) = x(t) ■ z(t) O Y(CO) = X{CO) * Z(ffl) , so 

Y(w) = \x08{co) + \^{Xl,S((o-o),l) + x:„S^ + ^,,)}\ 
[ J (1.9) 

{z05(ö))+iX{Z„«5(©-ö„)+z:„5(ß) + to.„)}j 

This is a cumbersome equation, but the effect of convolving X{(0) with Z(ffl) will be a set of 

8 functions with frequencies ranging from -2(0N (at summation index -2N) to 2wN (at summation index 

2N). We will thus have: 

y(ö)) = r05(ffl)+iX{y»5(ffl-ffl") + r-*»5(ö+ffl-»)} (1.10) 

If we examine the form of Y((0) , we see that the left hand side of the spectrum has the same amplitude 

and opposite phase of the right hand side of the spectrum. It thus conveys no information above and 
beyond that available from the right hand side of the spectrum alone, and so we can reduce the 
computational complexity involved in carrying out frequency domain convolution by eliminating the left 
hand side of the spectrum in the convolution operation. A consequence of doing this is that we must 
recover the amplitude and phase of each component of y(t) from the coefficients of the right side of the 

spectrum, i.e. given that  y{t) has the form: 

IN 

;K0 = £ W cose®,/+0»)+^o (l.ii) 

Then without adjustments, we would have, for each n, 

and: 

0 =tan-'  -^ 0-13) Til y 



The phase is unaffected by our dropping of half the spectrum, but in order to recover the correct amplitude, 
equation (112) must be scaled by a factor of 2. In the matrix formulation that we are developing, we take 
account of this factor of two in the formulation of the matrix, leaving the multiplying vector unsealed. 
Since the number of convolution operations is reduced geometrically2, while the additional operations 
increase linearly this is a good tradeoff. As we proceed with the development of the method, we will show 
frequency domain convolution only for the right hand side of the spectrum with the expectation that the 
amplitude and phase of y(t) are determined as above. With the spectrum limited to the right hand side, we 

define the spectrum forx(t) from equation (1.1) as: 

X(co) = X08{a) + \^X„8{a-a„) 0-14) 

Nowz(0 would be equivalent except for the fact that we wish to account for the output scale factor in its 

formulation, so we will multiply all frequency components by 2 to take this into account: 

Z(co) = Z05(ß)) + 2C|XZ„5(ü)-©„) 
"=' (1.15) 

= Z05(ö))+Xz„5(ß)-ö)„) 
»=i 

Now let's consider y(t) = x{t) ■ z(t) given this redefinition in the frequency domain. We have 

y(t) = x(t) ■ z(t) <H> Y(W) = X(CO) * Z(CO) , so: 

Y(co) = X(w)*Z(a) = X X(cok)Z((o-cok)(i.i6) 
Alltat 

Expanding this by substituting equations (1.14) and (1.15) into equation (1.16), we have: 

2 Consider, for example, a case where x and z arc both composed of tones of 10 different frequencies. 
This corresponds to 21 frequency domain locations (after including DC) that must be convolved with 21 
other frequencies, or computational complexity on the order of 212 = 441. Restricting the frequency 
domain to the right hand side, we need convolve only 11 frequency domain components for a 
computational complexity on the order of 112, or 121. The ratio is just under 4:1 or 22:1, indicating the 
geometric reduction in computation. 



Y(co) = X{co)*Z(co) = X X(cak)Z(co-cok) = 
Allak 

{X,8(cok)+±Xfi{tok -co,) + ^X28{cok -co2)+..±XN8(cok -co,)} 

\Z08(co-cok)+Z]8(co-cok-co1)+Z28(co-cok-co2) + 

\+ZN8(CD-COk-CON) 

All co t 

(1.17) 

[Xa8(cok) + \X,8(cok -co,)+^X28{cok -co2)+...±XN8{cok -coN)} 

Z08(co-cok)+Zl8[co-(cok+col)]+Z28[co-(cok+co2)]+... 

+ZN8[co-(cok + coN)] 

Alia,, 

In the equations above, we make only one stipulation - that CO0 = 0. We can now make some 

observations on the frequency domain convolution above. First, for a total of N distinct input tones or 
frequencies - all in the right hand side of the spectrum - the output Y(CO) has components at DC and 2N 

positive frequencies, the maximum radian frequency being 2C0N . Second, exhibiting the usual sifting 

property of the «5 function, for each distinct value of the frequency index k, only one term in X(COk) will 

be non-zero. This term will then form a set of products with all of the components of Z(C0 - COk), which 

retains the independent variable CO . Put another way, each sifted term in X{COk ) forms product terms 

with all of the terms in Z{CO) , but shifted in the frequency domain to the frequency dictated by the 

argument to the 8 functions for Z(CO) called for in equation (1.17). In the course of the convolution 

operation, there may be a number of non-zero products for different values of the frequency index k for 
which the 8 functions inZ(ß)) happen to evaluate to the same frequency. The convolution operation calls 

for these terms to add linearly, conforming to the notion of generalized superposition. 

To illustrate this, consider the cases of k = 1 and k = 2. 

When k - 1, we have: 

n»)U =W(ffl,-<»,)■ 

;X, 

Z08(co-col) + Zl8[co-(col+cot)] + 

Z28[co-(col+co2)] + ...+ 

ZAf5[ö)-(ffl,+ö)A,)] 

Z08(co-col) + Z]S(co-2col) + 

Z28[co-(co]+co2)]+...ZN8[co-(col+coN)J) 

(1.18) 

And when k = 2 , we have: 



wU^-M^-®*) 

•■: X-, 

Z05(öJ-ö)2) + Z,5[ö)-(ö)2+ ©,)]+ 

Z28[co-(co2 + co2)]+...+ 

Z^CD-fa + co,,)] 

Z08(a-co2) + Z18[(o-(co2 + al)] + 

Z28[(o-2(ü2)]+...ZN8[a)-(al +coN)]) 

(1.19) 

Consider the frequency component ft), + C02, which is indicated by any terms containing 

8[C0- (ft), +C02)] in equations (1.18) and (1.19). From equation (1.18), there is a term atö), + ft)2with 

the coefficient y X,Z2, while from equation (1.19), there is a term at ft), + ft)2 with the coefficient 
1X2Zl. In general, the terms in each Y(CO)\k will be composed of spectral components at different 

frequencies - each coefficient having a different argument to its 8 function. This is not the most useful 
form to implement using computed-aided methods, as we will now see. 

2.4 Formulation of a Matrix Method for the Frequency Domain Convolution 

Let's examine the result of performing the complex multiplication required to create one of the components 

of Y((0)I k . Continuing with terms that appear at the frequency ft), + ft)2 in Y(w), let's examine what 

happens when we perform the complex multiplication of Xt and Z2: 

X,Z2 =(Xlr+ jXv) ■ (Z2r + JZ2i) =      XlrZ2r - xuzv 

+ j(XuZ2r+XlrZ2i) 
(1.20) 

The result we obtain is a complex number composed of four product terms from the complex number pairs 

for Xt and Z2. Of particular note here is that there are real and imaginary parts of the product that will 

combine with other product terms occurring at fi), + C02 to create real and complex parts of Y((0) . Hence 

this complex multiplication can be viewed as forming two real-valued linear equations. If we do this, we 
can formulate the product in equation (1.20) in the following matrix form: 

X.L-, 
\.Z*J 

(1.21) 

Here we use the primes on Y merely to indicate that this product forms only a part of the output Y((0) at 

the frequency ft), + C02. In order to get the complete response of Y(co) at the frequency ft), + C02, it will 

be necessary to evaluate each F(ft))|j at the frequency ft), +ft)2and form the sum as suggested by the 

convolution summation. In other words, 

7(ft), +fl)2) = Y(cot +co2)\k=l+Y(col + (o2)\k__2+...+ Y((o] +ft)2)|i=2 (1.22) 



Equation (1.22) suggests extending the matrix multiplication form introduced in equation (1.21) so that a 
simple matrix multiplication will yield a sum of products that forms the complete response for Y((0) at a 

particular frequency. As an illustrative example, consider for a moment that Y(a, + (02) is limited to just 

terms in k = 1 and k = 2 . Referring to the product terms in equations (1.18) and (1.19), then, the matrix 
form of equation (1.21) would be extended to add extra columns to the matrix and extra rows to the vector: 

r(fl),+fl)2)|t=1,2 = F(fi)1+fl)2)|t=1+r(fi)1+fl)!)|* 

X 
,(ffl,+CU2) 

Y 

XY        -XY ±*„ ~I%M 

\*v l%2r 2-^lf 2-^lr   _ 

zu 

z» 

(1.23) 

This formulation can be generalized by adding two rows to the matrix for each unique output frequency in 
Y((0) , and it can be generalized for each additional input frequency by adding two columns to the matrix 

and two rows to the vector element. The matrix thus formulated has been termed the Spectrum Transform 

Matrix by Chang and Steer [2], In matrix algebra notation, the spectrum transform matrix is denoted T,, 

the spectral vector of frequency components for z(t) is denoted as Z , and the basic operation 

y(t) - x(t) ■ z(t) can now be written with its frequency domain counterpart as: 

y{t) = x(t) ■ z(t) ^ Y(C0) = X(CO) * Z(fl)) = T,Z (1.24) 

2.5 Generalization of the Spectrum Transform Matrix to Arbitrary Transfer Functions 

The Spectrum Transform Matrix as described in the previous section implements the frequency domain 
convolution for the basic time domain multiplication operation y{t) = x(t) ■ z{t) .   However, it is 

possible to further the utility of the Arithmetic Operator Method, as we will now describe. Consider y(t) 

as an arbitrary polynomial transfer function of x(t) , for example 
M 

y = a(j+alX + a2x
2 +... + aMXM -^jamx

m . Examining the term for m=2 more closely, we can write 

this is as y(t)\„„2 = a2x
2 = a2x ■ X, from which it follows that a2X ■ X <H» fl2T,X .   We can then 

substitute the matrix product T,X into the term for m=3 and obtain ö3X • X   <-> fljT, (T^X) = <Z3T ,X . 

In general, 

y (1.25) 

With this formulation, a word is in order about a convention that has been adopted into the algorithm for 
creating the spectrum transform matrix as described by Chang and Steer [2]. Referring back to equations 

(1.12) through (1.15), we see that we accounted for a lost amplitude scale factor of^by multiplying the 

non-zero components of Z(CO) by 2, leaving a scale factor of y in the Spectrum Transform Matrix. Since 



x(t) and z(t) were both composed of sinusoids, we chose arbitrarily to scale the spectral vector up by 2. 

However as we generalize the formulation of the Spectrum Transform Matrix, the spectral vector will 
generally'remain a set of sinusoids, but the Spectrum Transform Matrix will not.   In the interest of keeping 

the Spectral Vector description as simple as possible, we will move the j scale factor from the Spectral 

Vector to all of the non-DC terms in the Spectrum Transform Matrix T,. By convention, then, the 

Spectral Vector X will always be composed of the unsealed phasor coefficients for each sinusoidal 
component of the input. This scale factor is termed £ in the paper by Chang and Steer [2], which also 
gives a detailed algorithm for construction of the Spectrum Transform Matrix. 

2.6 Streamlined Method for Developing Entries in the Spectrum Transform Matrix 

Now that we have seen why the Spectrum Transform Matrix construction can be useful, we need to find a 
streamlined way to construct it - one that is simpler than writing out all of the convolution products and 
evaluating terms in Y((0) as described in equation (1.22). We will see in a moment that we can use a 

simple algorithm to tabulate all of the entries in the Spectrum Transform Matrix. This tabular form of the 
entries in the Spectrum Transform Matrix is termed the Spectrum Mapping Table by Chang and Steer [2]. 
It is derived by anticipating all combinations of the input tones (including intermodulation distortion 
products) that will result in incremental phasor components in the set of output frequencies that we have 
anticipated in advance. (Recall that anticipating the domain of the spectral content of the output is one of 
the prerequisites to using AOM.) To do this, we use a mathematical tool called the Basic Intermodulation 
Product Description (BIPD) table. 

2.6.1 Basic Intermodulation Product Description Table 

The Basic Intermodulation Product Description (BIPD) table is a list of frequencies which defines the 
anticipated frequency domain of the output signal y(t) . It is created by determining a set of frequencies 

of interest given the form of the input signal. Often the input signal is a non-commensurate two-tone 
signal, so we will use that for the purposes of discussion and illustration. However, BIPD tables can be 
developed for input signals of an arbitrary number of non-commensurate signals. As an example, consider 
the case of a down-conversion mixer where a narrowband RF signal and a local oscillator signal are to be 
mixed through an intentional non-linearity that is known to have non-linear behavior up to the third order. 

More formally, the input is a signal of the form x{t) = Xl COSft),f+ X, COSfty , where we are assuming 
2 3 

that ft)2 > ft),, and the mixer has a non-linear behavior that can modeled as y = a0 + axx + a2X  + a3x . 

Then because of the third-order non-linearity, we can expect to see harmonic distortion products at 3ft), and 

3ft)2 as well as intermodulation distortion products at 2ft), - (02 and 2ft)2 - ft),. In a down-conversion 
mixer, we are not generally concerned with third-order harmonics, since they can be filtered easily through 
a bandpass filter. However, the intermodulation distortion products just mentioned are of great concern 

because they surround the two fundamental frequencies of interest, ft), andft)2, and often fall within the 

passband of filters for the output y. Since they are of great concern to us, we will wish to use AOM to 
identify their possible effect on the output signal. The second order non-linearity will yield second order 

harmonics at 2ft), and 2ft)2 along with intermodulation products at C02 - ft), (the desired down-conversion 

result) and ft)2 + ft),. We have thus identified 9 output frequencies in this example in which we are 

interested: 0 (DC), ft),, ft)2, C02 - CO,, (02 + ft),, 2ft), - ft)2, 2ft)2 - ft),, 2ft),, and 2ft>2 . These are the 

Basic Intermodulation Product Description frequencies of interest to us. Thus, the Spectrum Transform 
Matrix we create for the problem should have a set of two rows and columns corresponding to each 
frequency. As noted in the paper by Chang and Steer, since the DC term of the output will have no 

10 



imaginary part, we simply delete the second row and column from the matrix after executing the algorithm 
to create it. Thus for the case of DC and 8 non-zero frequencies, the Spectrum Transform Matrix will be 
17x17. 

We can describe the BIPD frequencies by means of a table that describes the relationships among the 

frequencies using a vector algebra form. If f{ and f2 are the two non-commensurate frequencies that 

comprise the input signal x(t) , i.e. ffl, = 27r/| and CO, = 2K/2 , then we can describe the BIPD 

frequencies by means of the following algebraic weighting table: 

BIPD Table 

kx ni n2 

0 0 0 
1 1 0 
2 0 1 
3 -1 1 
4 1 1 
5 2 -1 
6 -1 2 
7 2 0 
8 0 2 

Here, kx is a mnemonic index that we use to distinguish different frequencies. By convention, we denote 

DC by kx = 0 and assign the non-commensurate tones to the values of kx corresponding to the description 

we gave for x(t) above. With this construction, we can now assign the non-commensurate input tones a 

unit vector algebraic description in terms of the frequency weighting factors n, and n2. Doing so allows 
us to describe the harmonic and intermodulation products as weighted sums of the non-commensurate input 
frequencies. Note, however, that beyond DC and the non-commensurate input frequencies, there is no 

functional relationship between kx and the harmonic or intermodulation tone it describes. The index is 

simply a tracking mechanism for these tones. With this table in hand, we now know the domain of the 
spectrum of the output- one of the prerequisites at the outset. That is, we now know the size of the 

Spectrum Transform Matrix Tx. However, we have not yet determined the range of the output, which is to 

say, the contents of the Spectrum Transform Matrix.   This comes from the Spectrum Mapping Table, to 
which we now turn our attention. 

2.6.2 Spectrum Mapping Table 

The rationale for describing the BIPD frequencies in vector form becomes apparent when we confront the 
prospect of trying to determine the output at each of the frequencies in the table.   Consider again the 

polynomial transfer function of the output for our example: y = a0 + a, X + a2X   + a3X  .   Since in the 

frequency domain this polynomial corresponds to repeated convolution operations, we must allow for the 
possibility that any of the frequencies in the BIPD table - including the harmonic and intermodulation 
products - will be further mixed within the mixing apparatus to produce additional phasor components at 
each BIPD frequency. We must specifically be alert to look for instances of any entry in the BIPD table 
being subtracted from any other entry where the resulting frequency maps back onto one of the BIPD 
frequencies. We must determine every instance where this does occur, because the output y at each 
frequency in the BIPD table will be composed of a sum of phasor products of exactly this sort. For 
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example, consider the result of subtracting the tone at frequency index kx = 3 (produced from the second- 

order mixing) from the tone at frequency index kx = 6,   (produced from third-order intermodulation): 

Spectrum Mapping 

kx ni n2 

-3 
6 

1 
-1 

Sum 0 

The result of this additional frequency convolution is a phasor product term that maps to the same output 

frequency as the non-commensurate fundamental tone f2 . There may be several phasor component 

products generated in this fashion that map onto the output BIPD frequencies. The enumeration of these 
frequencies forms the Spectrum Mapping Table. Unlike the simple illustrative example here, the Spectrum 
Mapping Table is constructed systematically by fixing the output BIPD frequency and then finding all 
vector combinations of the input BIPD frequencies - including vector subtraction combinations - that map 
to the output BIPD frequency. Each entry in the table will contain 5 pieces of information: The frequency 

index k, of the output BIPD to which the phasor product is being mapped, the frequency indices of the two 

input BIPDs being mixed, and the signs indicating frequency addition or subtraction. For example, if we 

denote our two input signals using frequency indices kx and fcz and denote the signs of the vector operation 

as Sx and Sz, then the entry in the Spectrum Mapping Table for the previous example would be: 

M. 

Spectrum Mapping Table Entry 

kx sx kz 
-1 1 

It must be emphasized that the Spectrum Mapping Table can, and often does, contain more than one entry 

with the same value for k  , this being the result of many different forms of intermodulation taking place 

among the BIPD frequencies. If we now refer back to equation (1.20), we can formulate the phasor result 
of the operation specified in the Spectrum Mapping Table Entry in terms of the BIPD nomenclature: 

Y: = (sxKr + j£sxxKt) ■ (zt_r+js,zkJ) = £^klj^i.r~SxSz£^k,J^U 

+AsxeXk,ZLr+s2eX.Zu) 
(1.26) 

In the spirit of equations (1.21) through (1.23), we can restate the basic formulation of the Spectrum 
Transform Matrix entries using the result in equation (1.26). We will have: 

v [  EXKr -esxszXkJ \zk,] 
.V. £sxXk. e,**,r LZvJ 

(1.27) 

It is important to note the primes on Y in equations (1.26) and (1.27) and emphasize that we have shown 
the result of the inclusion of only one BIPD mixing product here. As the paper by Chang and Steer [2] 
notes, the construction of the Spectrum Transform Matrix is done by first initializing all entries to zero and 
then adding to the matrix based upon the specifications of the Spectrum Mapping Table. Once all of the 
entries in the Spectrum Mapping Table have been read and updates made to the Spectrum Transform 

Matrix, the Spectrum Transform Matrix T, is now complete. To begin using Txto perform frequency 
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domain convolution operations, all that remains is to construct the spectral vector, Z or X (which are the 
same in the example in this section, although we used the Z variable for clarity in explanations). Z must 

have the same number of rows as Tx, which in our example is 17. The construction is straightforward: 

Given that x(t) = Xx COSG),/ + X2 COS(02t, Z is a vector containing a zero entry (for DC) followed by 
the phasor values for its two non-commensurate tones, followed by a set of padding zeros corresponding to 
the harmonic and intermodulation terms. Thus we have: 

Z = [0,Z,r,X„,X2r,Z2,.,0,0,0,0,0,0,0,0,0, o,o,o]T (1.28) 

Once the series of matrix multiplications corresponding to each polynomial term has been carried out as 
called for by the form for y in (1.25), the result is a vector of phasor coefficients for each polynomial term 
in y. Thus the time domain y(t) can be recovered by simply converting the phasor coefficients for each 

polynomial product into amplitude and phase terms and forming the cosine function with frequency 

2ltfk as determined by the BIPD table, and then summing the cosines that correspond to each polynomial 

product. 

3. AOM Case Study-A Logarithmic Amplifier 

Consider the logarithmic amplifier shown in Figure 1. Such circuits are most often used in instrumentation 
systems because of the wide range (many orders of magnitude) of inputs to which they can respond (see, 
for example, [9] and [10]). Its transfer function can be written as an infinite series expansion relating the 
output y(t) to the input x(t) . The Arithmetic Operator method is used to solve the expansion in the 

frequency domain. 

Figure 1: Logarithmic Amplifier 

The following assumptions are made about the circuit elements: 

1. Ideal Bipolar Transistor 

2. Ideal op-amp: The voltage between terminals tends to zero, and the current into the op-amp is zero. V0 

= -Vbc, and IC| = I,. 

From the transistor constitutive relations: 
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/^/.[exp^-lJo^expC^) (1.29) 
where Is is the reverse saturation current of the transistor, and V-, is the thermal voltage. Rearranging 
terms, 

£ = exp(£) (1.30) 

M±) = 'f (1.31) 

^,=WT) (1.32) 

V0=-VTHT) (1.33) 

Now, /, = 7C, = -f, so 

K=-VrW-k) (1.34) 

For use with the Arithmetic Operator Method, this transfer characteristic should be represented in terms of 
the basic mathematical operators - addition, subtraction, multiplication, and division. Three common forms 
exist for expanding the natural logarithm [11]: 

ln(x) = (x-l)-i(x-l)2+|(x-l)3+...     (0<x<2)   (1.35) 

ln(x + l) = x-^x2+^x3-|x4+...     (-1<X<1)       (1.36) 

ln(x) = 2[^ + |(^)3+i(^)5+|(^)7+...  (x>0)      (1.37) 
For the purposes of this paper, the circuit equation was manipulated to fit the form of (1.36). The input can 
be written as 

Substituting (1.38) into (1.34) results in 

-VT\n , and this can be expanded as: (1-39) 

Fo=-^[ln(xJ + ln(^) + ln(l + ^)] (1.40) 

Of the terms in (1.40) the first two are constant offsets. Only the last term has frequency-dependent 
characteristics. This last term can be represented by its linear series expansion shown in (1.36) and solved 
with the Arithmetic Operator Method. 

The comparison was performed for an input signal consisting of the sum of two sinusoids: 

V^Ao + Ai sm(2nfj) + A2 S,m(2nf2t) , which in the form of (1.38) is: 

A A 
V. =A0[\ + -Ls.m(2Kf]t) + ^sm(2nf2t)\ (1.41) 

A A0 

The sine form was chosen in order to assure convergence at the beginning of a transient simulation in 
Spice. Since sine and cosine are shifted 90 degrees in phase, that is, sin Wt = cos((0t — 90°), we take the 

phase into account by designating the amplitudes of the non-commensurate input tones above in the 
spectral vector as pure imaginary terms. Parameter values are shown in the Table 1: 
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Circuit and Input Parameters 

Parameter     Value Unit 
Ao 10 V 

A, 2 V 

A2 2 V 

ft 0.9 GHz 

f2 1 GHz 

R 1,000 Ohm 

Is 1.00E-16 Amp 

Table 1: Circuit And Input Parameters. 

The Arithmetic Operator Method requires the input signal to be a spectral vector of the form 

X = [X0 Xlr X,i X2r X2i ...Xkr Xki]
T, where 

X0 is the dc term, 
k is number of frequencies in the BIPD table, and 
Xkr,Xti represents the complex number pair (real part and imaginary) describing the amplitude 

and phase of the kth frequency component. 
To reach this form, rewrite (1.41) as 

A A 
V.=A0[\ + x], where  x = -*-sm(2x ftt) + ^-sm(2nf2t)      (1.42) 

A A> 
Now, for the input signal in (1.42), the AOM input is the frequency domain spectral vector of x, X, and 
consists of the following components: 

X0=0 
Xlr = 0 
X,i = -A,/ Ao 
X2r = 0; 
X2i = -A2/ A0 
As will be explained further in just a moment, there are 10 frequencies in the BIPD table, so the spectral 
vector X must contain 2*10+1 =21 terms. Thus, to form the spectral vector X simply pad the input vector 
with zeros to obtain the correct size. The spectral vector for this simulation is: 

X = [0,0,-(A,/ A0),0,-(A2/ A0),0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]T       (1.43) 
Now we must create the Spectrum Transform Matrix Tx. To do this, we need to choose a set of BIPD 
frequencies. For this example, we are interested in all of the frequencies in the frequency domain 
surrounding the fundamentals and its second harmonics. We could choose to have more frequencies, but 
since we can sometimes put second harmonics to good use [12], while third harmonic content is of little use 
and can be filtered, we will choose the second harmonic content limit. This gives us the following BIPD 
table: 
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BIPD Table 

kx ni n2 

1 1 0 
2 0 1 
3 -1 1 
4 2 -1 
5 -1 2 
6 2 0 
7 0 2 
8 3 -1 
9 1 1 

10 -1 3 

Table 2: BIPD Table. 

Notice in Table 2 that we are not ignoring third order intermodulation products, as the indices for 
k  = 4 and kx = 5 show. Furthermore, there will be some fourth order intermodulation products that 

appear in the range of the second harmonics, so we've added the frequency indices kx = 8 and kx = 10 in 

order to take account of this.   To gain some visual insight into the set of frequencies we are considering, 
the Table 2 above is plotted graphically in Figure 2 below using our selected values for the non- 
commensurate tones, fi = 0.9 GHz and f2 = 1.0 GHz .   (Note: The plot shown in Figure 2 accurately 

shows the locations of the BIPD frequencies, but does not give an accurate depiction of the output 
amplitudes we can expect from the logarithmic amplifier. This is because the plot was done assuming an 

arbitrary transfer function of the form y(t) = x(t) + x2 (t) + x>(t) + x" (t) with 

x(t) = lCbos(2tf/jO + 2Tbos(27r/*20 used as the input, and where some of the fourth order mixing 

components have been intentionally dropped.) 
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Plot of BIPDs for f1=900 MHz and f2=1000 MHz 

E < 

o o o  o o o o  •<- 
ffl fll  t-  t- 

f8  f6 f9 f7  f10 

o  o o  o  o o  o o  o  o 

0.5 1 1.5 

Frequency (BIPD indices indicated) 

Figure 2: BIPD Locations. 

Comparing the table above with that shown earlier in the 2.6.1 Basic Intermodulation Product Description 
Table section, we do not carry DC as a BIPD in the Table 2. We did not overlook DC in our AOM 
modeling, but we have found that it is more convenient to take DC mixing terms into account at the time 
the Spectrum Mapping Table is constructed when using computer-aided methods, and this is what we have 
done. This is because the DC terms created through mixing of BIPD entries are essentially composed of 

fundamental inputs (designated by kx — 1 and kx = 2 in the table above) mixing with themselves through 

subtractive intermodulation. Using the systematic methods described previously, the Spectrum Mapping 
Table is created, and from this the Spectrum Transform Matrix. For the example here with 10 non-zero 
BIPD terms, the Spectrum Mapping Table has 115 entries. With the Spectral Vector and the Spectrum 
Transform Matrix now defined, we, perform the series expansion of (1.36) in the frequency domain for the 
output spectral vector Y: 

Y = X-±T;K+±T,(TIX)-±TK(T1(T,X)) + ... (1.44) 

For this simulation, the infinite series expansion as described in equation (1.36) was truncated at 20 terms. 

Figure 3 below shows the accuracy of the 20 terms approximation over the interval (— 1 < X < 1) . Note 

that with the magnitude x of the input having a maximum value of 0.4, we can expect very little error in the 
results attributable to the decision to truncate the series expansion at 20 terms. But since the number of 
terms has a direct impact on simulation time, minimizing the number of terms given an accuracy target 
should always be a goal. We established our accuracy target through graphical inspection of Figure 2, but 
it is feasible to dynamically adapt the number of terms depending on the iteration error. This is a 
convenient place to optimize a simulation beyond what is presented here. 

Transforming Y back to the time domain, and adding the constant terms of (1.40), the AOM simulation 
results compare favorably with Spice output as shown in Figure 4. 

17 



Figure 3: Series Expansion of ln(l+x) for 20 terms. Dotted line is predicted; solid is actual. X-axis is x; Y- 
axis is ln(l+x). 

-0.835 - 

Figure 4: Logarithmic Amplifier Simulation: AOM (dotted line) compared with Spice (solid line). X-axis is 
time; Y-axis is VQ. 
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The results indicate good agreement with the Spice output. The small discrepancies that one sees can be 
attributed to two factors: First, the Spice model used a gain of 100 for the operational amplifier rather than 
an infinite value, so the Spice output itself may have some error compared to a completely ideal model. 
Running Spice with the op amp gain as a parametric value would make for an interesting area of further 
research. Second, since we have demonstrated that a 20 term polynomial expansion for the natural 
logarithm function yields an accurate approximation given the magnitude limits on x, the error is likely 
attributable to deviations in the Spectrum Transform Matrix. We get deviations in the Spectrum Transform 
Matrix through our choice of BIPD frequencies. It is likely that increasing the number of BIPD frequencies 
will lead to more accurate results. Referring back to Table 2, we chose to limit our fourth order 

intermodulation terms to only two - those for kx = 8 and kx = 10 . We will, however, also have fourth 

order intermodulation products at DC due to subtractive mixing of the second harmonic frequencies, these 
were not taken into account, and it is possible that their inclusion could increase the accuracy of the results. 

4. Conclusion 

We have explained the Arithmetic Operator Method (AOM) mathematics in some detail and shown the 
relationship between the mathematics and the algorithms used to implement the method in the paper by 
Chang and Steer [2]. We have also presented a case study of the application of AOM for a logarithmic 
amplifier and demonstrated that the results of using the method compare favorably to those from a Spice 
reference simulation model. It is our view that these favorable results confirm the utility of the method for 
behavioral modeling of devices, and it is our hope that our explanations and case study will help others 
apply AOM. 
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