

Approved for public release; distribution is unlimited.

The Scalability of

Loop-Level Parallelism

by Daniel M. Pressel

ARL-TR-2557 August 2001

Approved for public release; distribution is unlimited.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2557 August 2001

The Scalability of

Loop-Level Parallelism

Daniel M. Pressel
Computational and Information Sciences Directorate, ARL

 iii

Abstract

 This report deals with the four main constraints on the scalability of
programs parallelized using loop-level parallelism. They are as follows:
 (1) The available parallelism in the algorithm.
 (2) The availability and scalability of appropriate hardware (including the

operating system and the compilers).
 (3) Limitations in the design of the hardware.
 (4) The cost of getting into and out of a parallel section of code.
 This, in turn, will lead to two important discussions: (1) the theoretical
limitations on the scalability of shared memory codes and (2) the role that the
choice of hardware and usage policies play in determining the performance of a
shared memory code.
 These discussions will include examples from the author’s own work in
porting the implicit computational fluid dynamics code F3D from the Cray C90
to a variety of shared memory platforms.

 iii

Acknowledgments

The author thanks Marek Behr, formerly of the U.S. Army High Performance
Computing Research Center (AHPCRC), for sharing his results and the many
colleagues who worked on these research projects over the years and helped
collect this data and prepare this report. The author would also like to thank the
employees of Business Plus, especially Claudia Coleman and Maria Brady, who
assisted in the preparation and editing of this report.

Special thanks to Tom Kendall, Denice Brown, and the entire systems staff at the
ARL-MSRC for their support of the various projects for which these runs were
originally done.

This work was made possible through a grant of computer time by the
Department of Defense (DOD) High Performance Computing Modernization
(HPCM) Program. Additionally, some of the results mentioned in this work
came from projects that were funded as part of the Common High Performance
Computing Software Support Initiative (CHSSI) administered by the DOD
HPCM Program.

 iv

INTENTIONALLY LEFT BLANK.

 v

Contents

Acknowledgments iii

List of Figures vii

List of Tables ix

1. Introduction 1

2. Available Parallelism 2

3. The Availability and Scalability of Appropriate Systems 4

4. Hardware Limitations 5

5. Parallelization Costs 6

6. Conclusions 12

7. References 13

Glossary 15

Distribution List 17

Report Documentation Page 21

 vi

INTENTIONALLY LEFT BLANK.

 vii

List of Figures

Figure 1. Predicted speedup for loops with various levels of
parallelism ...3

Figure 2-a. The performance of the shared memory version of the
F3D code when run on a modern scalable SMP (1-million grid
point test case) ...8

Figure 2-b. The performance of the distributed memory version of
the F3D code when run on a modern scalable SMP/MPPs
(1-million grid point test case)...8

Figure 3. The effect on performance and the consumption of CPU
time from the running of a parallel job on an overloaded HP
V-Class...10

Figure 4. The effect on performance and the consumption of CPU
time from the running of a parallel job on an overloaded
Origin 2000 ..11

 viii

INTENTIONALLY LEFT BLANK.

 ix

List of Tables

Table 1. Predicted speedup for a loop with 15 units of parallelism.......................3

Table 2. The performance of various versions of the F3D code
when run on modern scalable systems (1-million grid point
test case)...7

Table 3. The effect on performance and the consumption of CPU
time from running a parallel job on an overloaded HP V-Class.......................9

Table 4. The effect on performance and the consumption of CPU
time from running a parallel job on an overloaded SGI Origin
2000 ..10

 x

INTENTIONALLY LEFT BLANK.

 1

1. Introduction

OpenMP supports both task-level parallelism and loop-level parallelism. It
appears that at least in the short term, many programs parallelized using
OpenMP will use loop-level parallelism. This report addresses the scalability
issues of loop-level parallelism, although portions of the discussion will be
equally relevant to programs parallelized using OpenMP’s task-level parallelism
features. Most of this discussion is based on the author’s work on systems from
SGI, SUN, and Convex using their proprietary compiler directives for loop-level
parallelism. This work has been recently supplemented with work done on a
system from HP using KAI’s guide program to run a program using OpenMP
compiler directives. The following are the four main constraints on the
scalability of programs parallelized using loop-level parallelism:

 (1) the available parallelism in the algorithm,

 (2) the availability and scalability of appropriate hardware (including the
operating system and the compilers),

 (3) limitations in the design of the hardware, and

 (4) the cost of getting into and out of a parallel section of code.

Most work with parallel computing seems to have assumed that a program will
have a nearly infinite level of parallelism. Historically, this assumption was
required since achieving meaningful levels of performance on a parallel
computer meant using hundreds, or even thousands, of processors. However, in
considering the case of using loop-level parallelism to parallelize a loop for a
three-dimensional (3-D) problem in CFD, the available level of parallelism will
almost always be less than 1,000 and possibly less than 100. In this case, when
using larger numbers of processors, the ideal speedup is no longer linear.
Instead, the ideal speedup now resembles a stair step. The second constraint
refers to the requirement for systems with enough processors. It also requires an
appropriate level of support from the operating system and the compilers. The
design of the hardware can be of particular importance. With the Cray T3D and
the CRAFT programming model (Oberlin 99), it is important to make every effort
to minimize the effective memory latency. This includes minimizing the cost of
off node accesses for NUMA architectures. Furthermore, not only must an
adequate level of memory bandwidth be ensured, but with as few points of
contention as possible (e.g., bank conflicts, insufficient bus bandwidth for
bus-based systems, or insufficient off-node bandwidth for NUMA- and
COMA-based systems).

 2

These lessons are now extremely important, especially when considering the
possible production of software distributed shared memory implementations of
OpenMP. It is not sufficient for a programming paradigm to be portable; it must
also deliver acceptable and predictable levels of performance. Without these
guarantees, OpenMP will be no more useful than HPF.

Possibly the most interesting constraint is the final constraint, the cost of getting
into and out of a parallel section of code. Many systems seem to have a lower
bound for this number of around 2,000 cycles when using 10 or more processors.
The upper bound for this number is virtually unlimited and can easily exceed
1-million cycles. The reason for this disparity is that the lower bound is driven
by hardware considerations, while the upper bound is strongly affected by usage
policies (e.g., the time sharing of processors). A proposed solution is to have the
system reduce the number of threads assigned to a job if the system becomes
overloaded. However, this can result in very unpredictable run times. In
addition, when using larger numbers of processors, this can move the job from
the high side of a stair step to the low side of the stair step. Consequently, a
significant amount of computer time for a production run can be wasted.

The fourth constraint, the cost of getting into and out of a parallel section of code,
also becomes relevant in that it is easy to see the desirability of parallelizing
outer loops (middle loops can sometimes be used, but are not as desirable).
Additionally, maximizing the amount of work in the parallelized loop may
require merging loops. However, even after all of these transformations have
been made, some loops, especially those in boundary condition routines, may not
have enough work to justify the overhead of parallelization. This implies that
Amdahl’s Law may be a significant limitation when using larger numbers of
processors. The traditional solution to this problem is to discuss scaled speedup.
However, the available parallelism will not be proportional to the problem size
unless a loop nest is parallelized in all directions. This violates one of the
premises of scaled speedup. Therefore, even for fairly large problem sizes,
Amdahl’s Law cannot be ignored. Of course, when dealing principally with
large problem sizes, it might be possible to justify parallelizing and optimizing a
larger subset of subroutines. However, for many projects this does not appear to
be a good assumption.

2. Available Parallelism

Most efforts to parallelize programs have assumed that the available parallelism
is nearly infinite. Therefore, they have stressed concepts such as load balancing,
optimizing the communications pattern for a grid undergoing domain
decomposition, and even some such generic sounding concepts as Amdahl’s Law

 3

and the need to optimize the ratio between computation and communication.
However, when parallelizing loops, there is the very real possibility that one or
more of the expensive loops will have a dependency in at least one direction. If
this is the case, then the available parallelism will no longer be strictly
proportional to the problem size. As a result, the ideal speedup will no longer be
linear. Instead, it will resemble a stair step. Table 1 and Figure 1 demonstrate
this effect for a 3-D problem with dependencies in two out of three directions,
where there are only 15 iterations in the loop being parallelized.

Table 1. Predicted speedup for a loop with 15 units of parallelism.

Number of
Processors

Maximum Units of Parallelism
Assigned to a Single Processor

Predicted
Speedup

1 15 1.000
2 8 1.875
3 5 3.000
4 4 3.750

5–7 3 5.000
8–14 2 7.500

15 1 15.000

10 20 30 40 50

10

20

30

40

50

5 Units of Parallelism
15 Units of Parallelism
25 Units of Parallelism
35 Units of Parallelism
45 Units of Parallelism

Number of Processors

Th
eo

re
tic

al
S

pe
ed

up

Figure 1. Predicted speedup for loops with various levels of parallelism.

 4

For larger problem sizes and for two-dimensional problems, it is reasonable to
assume that the available parallelism will be greater than 15. However, when
scaling to 100 processors, it is likely that this stair-stepping effect will become
significant. For example, if the loop being parallelized has 200 iterations, there
will be stair steps at 50, 67, and 100 processors (a maximum of 4, 3, and 2 units of
work per processor, respectively).

3. The Availability and Scalability of Appropriate Systems

While it may have some educational value (e.g., helping one to get a Ph.D.),
creating parallel programs and programming techniques without regard to our
ability to efficiently run those programs/use these techniques will not help in
getting the job done. In terms of the hardware, this means several things:

 (1) In theory, peak speed of the hardware must be great enough to meet the
performance requirements of a job.

 (2) Since it is rare to get close to 100% of peak performance, the peak
performance must be great enough that even after the serial and parallel
performance are discounted to appropriate degrees, a reasonable
expectation of success exists.

 (3) The choice of hardware must be well matched to the parallelization
technique. In particular, if the technique relies on shared memory, then
a production effort should probably be based on the use of hardware
shared memory.

 (4) To meet the needs of a job, the usage policies must support using a
sufficiently large percentage of a system’s resources by a single job.

 (5) The operating system must be sufficiently scalable to properly support
the size of the system, not just the size of the job. For shared memory
systems running UNIX, a major rewrite of the operating system (in
particular, the way locks are used to protect critical sections/data
structures) was required.

 (6) The compilers must support the paradigm being used, and this support
needs to be efficient.

Traditionally, all of these areas have been a problem when it comes to shared
memory programming. There were two types of shared memory systems—
those with a small number of powerful, but expensive processors, and those with
a moderate number of weak, but cheap processors. On systems with powerful
processors, it was difficult to get permission to own multiple processors for the
life of the run. On the other hand, for a long time, the systems with weak

 5

processors were too weak to be of value for high performance computing (HPC).
Therefore, until recently, there was really no appropriate platform for running an
HPC job using the shared memory paradigm. Arguably, the SGI
Challenge/Power Challenge product line was one of the first systems to support
this paradigm in a meaningful way.

4. Hardware Limitations

While the previous section discussed some of the more obvious limitations in the
design of the hardware, some of the subtler issues include the following:

 (1) There needs to be sufficient memory bandwidth. Unfortunately, there is
a lot of disagreement as to exactly what this means. However, the
presence of a shared bus design (e.g., the design of the SGI
Challenge/Power Challenge product line) can be a significant factor in
determining a system’s scalability.

 (2) Similarly, large cache/TLB miss latencies can be hard to tolerate.

 (3) For many designs, the effective cache miss latency is of particular
interest. This is best expressed in terms of the number of peak floating
point operations per cache miss. This value takes into account the
following factors:

 (a) the minimum cost of a cache miss,

 (b) additional costs due to insufficient memory bandwidth and/or an
insufficient number of memory banks resulting in contention,

 (c) additional costs associated with an off-node access in a NUMA
design,

 (d) the cost of bottlenecks associated with going off node in any design
with the concept of a node,

 (e) the cost of bottlenecks that can arise in designs with the concept of a
node when there is contention for a single node’s memory banks
(e.g., all of the processors are accessing a single page of memory on
a system that maps an entire page of memory to a single node’s
memory banks),

 (f) any costs associated with COMA -style DRAM caches, data
replication, and similar attempts to avoid high latency operations,
and

 (g) the tradeoffs that various microprocessor design teams have made
in terms of clock speed vs. the number of floating point operations
per cycle.

 6

The author’s experience on the KSR1 and the Convex Exemplar SPP-1600 clearly
demonstrates the importance of the concept of the effective cache latency. On
both of these systems, the actual cost of going off node was too large to be easily
tolerated by a shared memory program. As a result, even though the SGI
Challenge/Power Challenge had the obvious limitation of a shared memory bus,
it could easily out perform these systems (Pressel 1999). In some cases, even
well-designed systems, such as the SGI Origin 2000 and the SUN HPC 10000
have exhibited problems with contention.

These results come from systems that were designed to be used as a shared
memory platform. When considering the obstacles to running software-
distributed shared memory (with little or no hardware support), the effective
cache miss latency will clearly fair even worse. This can significantly affect the
tuning strategies needed for software-distributed shared memory environments,
and may even effect the appropriateness of that type of platform for many
algorithms (Jiang and Singh 1999). Two examples of this include Oberlin’s
speech that was mentioned in the introduction (Oberlin 1999) and the results
listed in Table 2 and Figures 2-a and 2-b.

5. Parallelization Costs

There is concern about the ratio between the costs of computation and
communication with message-passing codes. However, with shared memory
applications, there is no explicit communication. Instead, the cost of getting in
and out of a parallel section of code is of concern. Obviously, it is desirable to
have as much work as possible per section of code, and this is generally achieved
using the following techniques:

 (1) parallelizing outer loops to the greatest extent possible,

 (2) never parallelizing inner loops,

 (3) combining loops under a common outer loop,

 (4) leaving some loops unparallelized, and

 (5) avoiding usage policies that will significantly increase the overhead
associated with a parallel section.

The fourth technique may seem strange, but the following explanation might
provide clarity.

On many shared memory systems, the cost of the overhead associated with
parallelization is at least 2,000 cycles when using 10 or more processors. Under
unfavorable circumstances, it can easily exceed 1-million cycles. To keep the cost
of the overhead down to no more than 1% of the total CPU time, the parallel

 7

Table 2. The performance of various versions of the F3D code when run on modern
scalable systems (1 -million grid point test case).a

Speed

System
Peak Processor

Speed

(MFLOPS)

No. of
Processors Used

Version

(time steps/hr) MFLOPS

SGI R10K O2K 390 8 Compiler Directives 793 1.04E3
SGI R12K O2K 600 SHMEM 382 4.99E2
SGI R10K O2K 390 32 Compiler Directives 2138 2.79E3
SGI R12K O2K 600

600
 SHMEM

Compiler Directives
989

2877
1.29E3
3.76E3

SGI R10K O2K 390 48 Compiler Directives 2725 3.56E3
SGI R12K O2K 600

600
 SHMEM

Compiler Directives
1083
3545

1.42E3
4.63E3

SGI R10K O2K 390 64 Compiler Directives 2601 3.40E3
SGI R12K O2K 600

600
 SHMEM

Compiler Directives
1050
3694

1.37E3
4.83E3

SGI R10K O2K 390 88 Compiler Directives 3619 4.73E3
SGI R12K O2K 600

600
 SHMEM

Compiler Directives
1320
5087

1.73E3
6.65E3

Cray T3E-1200 1200 8 SHMEM 349 4.56E2
 32 1062 1.39E3
 48 1431 1.87E3
 64 1705 2.23E3
 88 2443 3.19E3
 128 2948 3.85E3
IBM SP 160 (MHz) 640 8 MPI 199 2.60E2
 32 342 4.47E2
 48 420 5.49E2
 64 423 5.52E2
 88 396 5.18E2
Sun HPC 10000 800 8 Compiler Directives 999 1.31E3
 32 2619 3.64E3
 48 3093 4.04E3
 56 3391 4.43E3
 64 2819 3.68E3
HP V-Class 1760 8 Compiler Directives 1632 2.13E3
 14 2392 3.13E3

a For additional details, see Behr et al. (2000).

section must process between 2,000,000 to an excess of 10-billion cycles worth of
work (in terms of serial time). If there are 1-million grid points, and this section
of code is processing all of those points, then it is easy to satisfy the lower bound,
although there will likely be trouble satisfying the upper bound. However, for
boundary condition routines, the amount of work per section is likely to be two
orders of magnitude less (in this case), making it difficult to satisfy even the
lower bound. Therefore, it is frequently desirable to leave some of the boundary
condition routines unparallelized.

 8

Figure 2-a. The performance of the shared memory version of the F3D code when run on
a modern scalable SMP (1-million grid point test case).∗

Figure 2-b. The performance of the distributed memory version of the F3D code when
run on a modern scalable SMP/MPPs (1 -million grid point test case). *

* The speeds have been adjusted to remove startup and termination costs.

*

*

*
*

*
*

*
*

*
*
* *

* *

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

*

S
pe

ed
in

tim
e

st
ep

s
pe

r
ho

ur

Number of Processors

SGI R12K Origin 2000 (128 p, 300-MHz system)

HP V2500 (16p, 440-MHz system) (Guide)

SUN HPC 10000 (64 p, 400-MHz system)

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

S
pe

ed
in

tim
e

st
ep

s
pe

rh
o

ur

Number of Processors

Cray T3E-1200 (SHMEM)

SGI Origin 2000 (128 p 300-MHz system, SHMEM)

IBM SP (160-MHz system, MPI)

These results arecourtesy of Marek Behr.

 9

Furthermore, as the processors get faster, the lower bound will almost certainly
continue to get larger.

If the cost of getting into and out of a parallel section of code is not well
constrained, then it is very difficult to show parallel speedup. As Tables 3 and 4
and Figures 3 and 4 show, this can be a serious problem when a system becomes
overloaded. Some people have suggested that the solution to this is to have the
operating system automatically decrease the number of threads (and by
inference the number of processors) assigned to a job. However, the following
are three objections to this approach:

Table 3. The effect on performance and the consumption of CPU time from running a
parallel job on an overloaded HP V-Class.

No. of
Processors Used

Wall Clock Time
(s)

User CPU Time
(s)

System CPU Time
(s)

1 3524 3244 8

2 1698 3301 72

3 1203 3303 186

4 1974 3625 2302

5 1871 3630 2696

6 2554 3837 4955

7 3166 4051 7089

8 2915 3915 7223

Note: The job was run for 200 time steps.

 (1) Even if it is assumed that the ideal speedup is linear speedup, the result

can be an undesirable variability in the run time. It can be difficult for
the user to identify the cause of this variability, resulting in the hardware
and/or the paradigm getting a bad reputation.

 (2) The proposed solution would take processors away from shared
memory jobs, but not from message-passing jobs. Again, this would
result in the paradigm getting a bad reputation, while inadvertently
rewarding the owner of the message-passing job.

 (3) For jobs where the ideal speedup is a stair step, reducing the number of
processors by just one or two can result in a significant decrease in
performance. Unfortunately, the decrease in performance is not the only
issue. Since the run time has significantly increased with presumably
only a modest decrease in the number of processors being used, the total

 10

Table 4. The effect on performance and the consumption of CPU time from running a
parallel job on an overloaded SGI Origin 2000.

No. of Processors Used Wall Clock Time
(s)

User CPU Time
(s)

System CPU Time
(s)

1 503 390 5
5 225 512 7
10 256 729 9
15 360 935 11
20 1322 2263 36
25 2119 3423 138
30 3691 4414 188

a The job was run for 40 time steps.

0 5 10 15
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

Number of Processors

T
im

e
in

S
ec

on
ds

Wall clock time

User CPU time
System CPU time

OVERLOADED HP V-CLASS

Figure 3. The effect on performance and the consumption of CPU time from the running
of a parallel job on an overloaded HP V-Class.

 11

0 10 20 30
0

500

1000

1500

2000

2500

3000

3500

4000

Number of Processors

T
im

e
in

S
ec

o
nd

s

Wall clock time
User CPU time
System CPU time

OVERLOADED ORIGIN 2000

Figure 4. The effect on performance and the consumption of CPU time from the running
of a parallel job on an overloaded Origin 2000.

amount of CPU time has increased. At many sites, the users (or their allocations)
are charged on the basis of CPU time, and in some cases, on the basis of memory
usage (MB hours).

The solution to this problem that was adopted at the U.S. Army Research
Laboratory has been to implement a queuing system that actively manages the
load factor. This is done by quiescing some of the jobs (primarily background
jobs that are not charged to a user’s allocation). This allows the use of
background jobs to keep the system busy while waiting for a foreground job to
be runable and/or to finish a nonparallelized section of code (e.g.,
input/output). Another consequence of the need to leave some portions of the
code unparallelized is Amdahl’s Law. Even if the cost of these sections is limited
to 1% of the serial CPU time, the effect of Amdahl’s Law will be noticeable when
using more than about 30 processors. Furthermore, when using 100 or more
processors, the effect is likely to be dominant. For a well-parallelized job using
loop-level parallelism, there is likely to be a sweet spot between 32 and 64
processors. For most jobs, the incremental benefit of using additional processors
may not justify the cost.

 12

6. Conclusions

Shared memory programs can be successfully scaled past the commonly quoted
limitation of 4–16 processors. However, there are a number of constraints that
limit the ultimate scalability of these jobs. Of particular interest is the effective
cost of a cache miss. This value is sufficiently important to generally preclude
using software-distributed shared memory in production HPC jobs.

The effect of usage policies on performance was also discussed. Overloading a
system can waste a significant amount of CPU time. Furthermore, at production
sites, the preferred solution to this problem is not to reduce the number of
processors assigned to a shared memory job. Instead, the preferred solution is to
actively manage the load (including the quiescening of background jobs) in an
attempt to avoid overloading the system.

 13

7. References

Behr, M., D. M. Pressel, and W. B. Sturek, Sr. “Comments on CFD Code
Performance on Scalable Architectures.” Computer Methods in Applied
Mechanics and Engineering, published by Elsevier Science Ltd., 2000.

Jiang D., and J. P. Singh. “Does Application Performance Scale on Modern
Cache-Coherent Multiprocessors: A Case Study of a 128-processor SGI
Origin 2000.” The Proceedings of ISCA’99, The 26th International
Symposium on Computer Architecture, published by IEEE Computer
Society, Los Alamitos, CA, May 1999.

Oberlin, S. Keynote speech given at ISCA’99. The 26th International Symposium
on Computer Architecture, May 1999.

Pressel, D. M. “Results From the Porting of the Computational Fluid Dynamics
Code F3D to the Convex Emplar (SPP-1000 AND SPP-1600).” ARL-TR-1923,
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, 1999.

 14

INTENTIONALLY LEFT BLANK.

 15

Glossary

CFD Computational fluid dynamics

COMA Cache only memory architecture

CPU Central processing unit

DRAM Dynamic random access memory

HPF High performance Fortran

MB Million bytes

NUMA Nonuniform memory access

OVERLOADED The load factor exceeds the number of processors in the system,
resulting in the time sharing of processors.

TLB Translation lookaside buffer

 16

INTENTIONALLY LEFT BLANK.
 1 PROGRAM DIRECTOR
 C HENRY
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 DPTY PROGRAM DIRECTOR
 L DAVIS
 1010 N. GLEBE RD STE 510
 ARLINGTON VA 22201

 1 DISTRIBUTED CENTERS
 PROJECT OFFICER
 V THOMAS
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 HPC CTRS PROJECT MNGR
 J BAIRD
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 CHSSI PROJECT MNGR
 L PERKINS
 1010 N GLEBE RD STE 510
 ARLINGTON VA 22201

 1 RICE UNIVERSITY
 MECHANICAL ENGRNG &
 MATERIALS SCIENCE
 M BEHR MS 321
 6100 MAIN ST
 HOUSTON TX 77005

 1 J OSBURN CODE 5594
 4555 OVERLOOK RD
 BLDG A49 RM 15
 WASHINGTON DC 20375-5340

 1 NAVAL RSCH LAB
 J BORIS CODE 6400
 4555 OVERLOOK AVE SW
 WASHINGTON DC 20375-5344

 1 WL FIMC
 B STRANG
 BLDG 450
 2645 FIFTH ST STE 7
 WPAFB OH 45433-7913

 1 NAVAL RSCH LAB
 R RAMAMURTI CODE 6410
 WASHINGTON DC 20375-5344

 1 ARMY AEROFLIGHT
 DYNAMICS DIRECTORATE
 R MEAKIN M S 258 1
 MOFFETT FIELD CA 94035-1000

 1 NAVAL RSCH LAB
 HEAD OCEAN DYNAMICS
 & PREDICTION BRANCH
 J W MCCAFFREY JR CODE 7320
 STENNIS SPACE CENTER MS
 39529

 1 US AIR FORCE WRIGHT LAB
 WL FIM
 J J S SHANG
 2645 FIFTH ST STE 6
 WPAFB OH 45433-7912

 1 US AIR FORCE PHILIPS LAB
 OLAC PL RKFE
 CAPT S G WIERSCHKE
 10 E SATURN BLVD
 EDWARDS AFB CA 93524-7680

 1 NAVAL RSCH LAB
 DR D
PAPACONSTANTOPOULOS
 CODE 6390
 WASHINGTON DC 20375-5000

 1 AIR FORCE RSCH LAB DEHE
 R PETERKIN
 3550 ABERDEEN AVE SE
 KIRTLAND AFB NM 87117-5776

 1 NAVAL RSCH LAB
 RSCH OCEANOGRAPHER
CNMOC
 G HEBURN
 BLDG 1020 RM 178
 STENNIS SPACE CENTER MS
 39529

 1 AIR FORCE RSCH LAB
 INFORMATION DIRECTORATE
 R W LINDERMAN
 26 ELECTRONIC PKWY
 ROME NY 13441-4514

 1 SPAWARSYSCEN D4402
 R A WASILAUSKY
 BLDG 33 RM 0071A

NO. OF NO. OF
COPIES ORGANIZATION COPIES ORGANIZATION

 17

 53560 HULL ST
 SAN DIEGO CA 92152-5001

 1 USAE WATERWAYS
 EXPERIMENT STATION
 CEWES HV C
 J P HOLLAND
 3909 HALLS FERRY RD
 VICKSBURG MS 39180-6199

 1 US ARMY CECOM RSCH
 DEVELOPMENT & ENGRNG
CTR
 AMSEL RD C2
 B S PERLMAN
 FT MONMOUTH NJ 07703

 1 SPACE & NAVAL WARFARE
 SYSTEMS CTR
 K BROMLEY CODE D7305
 BLDG 606 RM 325
 53140 SYSTEMS ST
 SAN DIEGO CA 92152-5001

 1 DIRECTOR
 DEPARTMENT OF ASTRONOMY
 P WOODWARD
 356 PHYSICS BLDG
 116 CHURCH ST SE
 MINNEAPOLIS MN 55455

 1 RICE UNIVERSITY
 MECHANICAL ENGRNG &
 MATERIALS SCIENCE
 T TEZDUYAR MS 321
 6100 MAIN ST
 HOUSTON TX 77005

 1 ARMY HIGH PERFORMANCE
 COMPUTING RSCH CTR
 B BRYAN
 1200 WASHINGTON AVE
 S MINNEAPOLIS MN 55415

 1 ARMY HIGH PERFORMANCE
 COMPUTING RSCH CTR
 G V CANDLER
 1200 WASHINGTON AVE
 S MINNEAPOLIS MN 55415

 1 NAVAL CMD CNTRL &
 OCEAN SURVEILLANCE CTR
 L PARNELL
 NCCOSC RDTE DIV D3603
 49590 LASSING RD
 SAN DIEGO CA 92152-6148

 1 UNIVERSITY OF TENNESSEE
 COMPUTER SCIENCE DEPT
 S MOORE
 1122 VOLUNTEER BLVD
 STE 203
 KNOXVILLE TN 37996-3450

ABERDEEN PROVING GROUND

 31 DIR USARL
 AMSRL CI
 N RADHAKRISHNAN
 AMSRL CI H
 C NIETUBICZ
 AMSRL CI H
 W STUREK
 AMSRL CI HC
 D PRESSEL
 D HISLEY
 R NAMBURU
 R VALISETTY
 D SHIRES
 R MOHAN
 M HURLEY
 P CHUNG
 J CLARKE
 C ZOLTANI
 A MARK
 AMSRL CI HS
 D BROWN
 R PRABHAKARAN
 T PRESSLEY
 T KENDALL
 P MATTHEWS
 K SMITH
 AMSRL WM BF
 H EDGE
 AMSRL WT PB
 J SAHU
 K HEAVY
 P WEINACHT

 18

INTENTIONALLY LEFT BLANK.

 20

INTENTIONALLY LEFT BLANK.

