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Abstract 
 
 This report deals with the four main constraints on the scalability of 
programs parallelized using loop-level parallelism.  They are as follows: 
 (1) The available parallelism in the algorithm. 
 (2) The availability and scalability of appropriate hardware (including the 

operating system and the compilers). 
 (3) Limitations in the design of the hardware. 
 (4) The cost of getting into and out of a parallel section of code. 
 This, in turn, will lead to two important discussions:  (1) the theoretical 
limitations on the scalability of shared memory codes and (2) the role that the 
choice of hardware and usage policies play in determining the performance of a 
shared memory code. 
 These discussions will include examples from the author’s own work in 
porting the implicit computational fluid dynamics code F3D from the Cray C90 
to a variety of shared memory platforms. 
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1.  Introduction 

OpenMP supports both task-level parallelism and loop-level parallelism.  It 
appears that at least in the short term, many programs parallelized using 
OpenMP will use loop-level parallelism.  This report addresses the scalability 
issues of loop-level parallelism, although portions of the discussion will be 
equally relevant to programs parallelized using OpenMP’s task-level parallelism 
features.  Most of this discussion is based on the author’s work on systems from 
SGI, SUN, and Convex using their proprietary compiler directives for loop-level 
parallelism.  This work has been recently supplemented with work done on a 
system from HP using KAI’s guide program to run a program using OpenMP 
compiler directives.  The following are the four main constraints on the 
scalability of programs parallelized using loop-level parallelism: 

 (1) the available parallelism in the algorithm, 

 (2) the availability and scalability of appropriate hardware (including the 
operating system and the compilers), 

 (3) limitations in the design of the hardware, and 

 (4) the cost of getting into and out of a parallel section of code. 

Most work with parallel computing seems to have assumed that a program will 
have a nearly infinite level of parallelism.  Historically, this assumption was 
required since achieving meaningful levels of performance on a parallel 
computer meant using hundreds, or even thousands, of processors.  However, in 
considering the case of using loop-level parallelism to parallelize a loop for a 
three-dimensional (3-D) problem in CFD, the available level of parallelism will 
almost always be less than 1,000 and possibly less than 100.  In this case, when 
using larger numbers of processors, the ideal speedup is no longer linear.  
Instead, the ideal speedup now resembles a stair step.  The second constraint 
refers to the requirement for systems with enough processors.  It also requires an 
appropriate level of support from the operating system and the compilers.  The 
design of the hardware can be of particular importance.  With the Cray T3D and 
the CRAFT programming model (Oberlin 99), it is important to make every effort 
to minimize the effective memory latency.  This includes minimizing the cost of 
off node accesses for NUMA architectures.  Furthermore, not only must an 
adequate level of memory bandwidth be ensured, but with as few points of 
contention as possible (e.g., bank conflicts, insufficient bus bandwidth for 
bus-based systems, or insufficient off-node bandwidth for NUMA- and 
COMA-based systems). 
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These lessons are now extremely important, especially when considering the 
possible production of software distributed shared memory implementations of 
OpenMP.  It is not sufficient for a programming paradigm to be portable; it must 
also deliver acceptable and predictable levels of performance.  Without these 
guarantees, OpenMP will be no more useful than HPF. 

Possibly the most interesting constraint is the final constraint, the cost of getting 
into and out of a parallel section of code.  Many systems seem to have a lower 
bound for this number of around 2,000 cycles when using 10 or more processors.  
The upper bound for this number is virtually unlimited and can easily exceed 
1-million cycles.  The reason for this disparity is that the lower bound is driven 
by hardware considerations, while the upper bound is strongly affected by usage 
policies (e.g., the time sharing of processors).  A proposed solution is to have the 
system reduce the number of threads assigned to a job if the system becomes 
overloaded.  However, this can result in very unpredictable run times.  In 
addition, when using larger numbers of processors, this can move the job from 
the high side of a stair step to the low side of the stair step.  Consequently, a 
significant amount of computer time for a production run can be wasted. 

The fourth constraint, the cost of getting into and out of a parallel section of code, 
also becomes relevant in that it is easy to see the desirability of parallelizing 
outer loops (middle loops can sometimes be used, but are not as desirable).  
Additionally, maximizing the amount of work in the parallelized loop may 
require merging loops.  However, even after all of these transformations have 
been made, some loops, especially those in boundary condition routines, may not 
have enough work to justify the overhead of parallelization.  This implies that 
Amdahl’s Law may be a significant limitation when using larger numbers of 
processors.  The traditional solution to this problem is to discuss scaled speedup.  
However, the available parallelism will not be proportional to the problem size 
unless a loop nest is parallelized in all directions.  This violates one of the 
premises of scaled speedup.  Therefore, even for fairly large problem sizes, 
Amdahl’s Law cannot be ignored.  Of course, when dealing principally with 
large problem sizes, it might be possible to justify parallelizing and optimizing a 
larger subset of subroutines.  However, for many projects this does not appear to 
be a good assumption. 

2.  Available Parallelism 

Most efforts to parallelize programs have assumed that the available parallelism 
is nearly infinite.  Therefore, they have stressed concepts such as load balancing, 
optimizing the communications pattern for a grid undergoing domain 
decomposition, and even some such generic sounding concepts as Amdahl’s Law 
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and the need to optimize the ratio between computation and communication.  
However, when parallelizing loops, there is the very real possibility that one or 
more of the expensive loops will have a dependency in at least one direction.  If 
this is the case, then the available parallelism will no longer be strictly 
proportional to the problem size.  As a result, the ideal speedup will no longer be 
linear.  Instead, it will resemble a stair step.  Table 1 and Figure 1 demonstrate 
this effect for a 3-D problem with dependencies in two out of three directions, 
where there are only 15 iterations in the loop being parallelized. 

 

Table 1.  Predicted speedup for a loop with 15 units of parallelism. 

Number of 
Processors 

Maximum Units of Parallelism 
Assigned to a Single Processor 

Predicted 
Speedup 

1 15 1.000 
2 8 1.875 
3 5 3.000 
4 4 3.750 

5–7 3 5.000 
8–14 2 7.500 

15 1 15.000 
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Figure 1.  Predicted speedup for loops with various levels of parallelism. 
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For larger problem sizes and for two-dimensional problems, it is reasonable to 
assume that the available parallelism will be greater than 15.  However, when 
scaling to 100 processors, it is likely that this stair-stepping effect will become 
significant.  For example, if the loop being parallelized has 200 iterations, there 
will be stair steps at 50, 67, and 100 processors (a maximum of 4, 3, and 2 units of 
work per processor, respectively).   

3.  The Availability and Scalability of Appropriate Systems 

While it may have some educational value (e.g., helping one to get a Ph.D.), 
creating parallel programs and programming techniques without regard to our 
ability to efficiently run those programs/use these techniques will not help in 
getting the job done.  In terms of the hardware, this means several things: 

 (1) In theory, peak speed of the hardware must be great enough to meet the 
performance requirements of a job.  

 (2) Since it is rare to get close to 100% of peak performance, the peak 
performance must be great enough that even after the serial and parallel 
performance are discounted to appropriate degrees, a reasonable 
expectation of success exists. 

 (3) The choice of hardware must be well matched to the parallelization 
technique.  In particular, if the technique relies on shared memory, then 
a production effort should probably be based on the use of hardware 
shared memory. 

 (4) To meet the needs of a job, the usage policies must support using a 
sufficiently large percentage of a system’s resources by a single job. 

 (5) The operating system must be sufficiently scalable to properly support 
the size of the system, not just the size of the job.  For shared memory 
systems running UNIX, a major rewrite of the operating system (in 
particular, the way locks are used to protect critical sections/data 
structures) was required. 

 (6) The compilers must support the paradigm being used, and this support 
needs to be efficient. 

Traditionally, all of these areas have been a problem when it comes to shared 
memory programming.  There were two types of shared memory systems— 
those with a small number of powerful, but expensive processors, and those with 
a moderate number of weak, but cheap processors.  On systems with powerful 
processors, it was difficult to get permission to own multiple processors for the 
life of the run.  On the other hand, for a long time, the systems with weak 
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processors were too weak to be of value for high performance computing (HPC).  
Therefore, until recently, there was really no appropriate platform for running an 
HPC job using the shared memory paradigm.  Arguably, the SGI 
Challenge/Power Challenge product line was one of the first systems to support 
this paradigm in a meaningful way. 

4.  Hardware Limitations 

While the previous section discussed some of the more obvious limitations in the 
design of the hardware, some of the subtler issues include the following: 

 (1) There needs to be sufficient memory bandwidth.  Unfortunately, there is 
a lot of disagreement as to exactly what this means.  However, the 
presence of a shared bus design (e.g., the design of the SGI 
Challenge/Power Challenge product line) can be a significant factor in 
determining a system’s scalability. 

 (2) Similarly, large cache/TLB miss latencies can be hard to tolerate. 

 (3) For many designs, the effective cache miss latency is of particular 
interest.  This is best expressed in terms of the number of peak floating 
point operations per cache miss.  This value takes into account the 
following factors: 

 (a) the minimum cost of a cache miss, 

 (b) additional costs due to insufficient memory bandwidth and/or an 
insufficient number of memory banks resulting in contention, 

 (c) additional costs associated with an off-node access in a NUMA 
design, 

 (d) the cost of bottlenecks associated with going off node in any design 
with the concept of a node, 

 (e) the cost of bottlenecks that can arise in designs with the concept of a 
node when there is contention for a single node’s memory banks 
(e.g., all of the processors are accessing a single page of memory on 
a system that maps an entire page of memory to a single node’s 
memory banks), 

 (f) any costs associated with COMA -style DRAM caches, data 
replication, and similar attempts to avoid high latency operations, 
and  

 (g) the tradeoffs that various microprocessor design teams have made 
in terms of clock speed vs. the number of floating point operations 
per cycle. 
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The author’s experience on the KSR1 and the Convex Exemplar SPP-1600 clearly 
demonstrates the importance of the concept of the effective cache latency.  On 
both of these systems, the actual cost of going off node was too large to be easily 
tolerated by a shared memory program.  As a result, even though the SGI 
Challenge/Power Challenge had the obvious limitation of a shared memory bus, 
it could easily out perform these systems (Pressel 1999).  In some cases, even 
well-designed systems, such as the SGI Origin 2000 and the SUN HPC 10000 
have exhibited problems with contention. 

These results come from systems that were designed to be used as a shared 
memory platform.  When considering the obstacles to running software-
distributed shared memory (with little or no hardware support), the effective 
cache miss latency will clearly fair even worse.  This can significantly affect the 
tuning strategies needed for software-distributed shared memory environments, 
and may even effect the appropriateness of that type of platform for many 
algorithms (Jiang and Singh 1999).  Two examples of this include Oberlin’s 
speech that was mentioned in the introduction (Oberlin 1999) and the results 
listed in Table 2 and Figures 2-a and 2-b. 

5.  Parallelization Costs 

There is concern about the ratio between the costs of computation and 
communication with message-passing codes.  However, with shared memory 
applications, there is no explicit communication.  Instead, the cost of getting in 
and out of a parallel section of code is of concern.  Obviously, it is desirable to 
have as much work as possible per section of code, and this is generally achieved 
using the following techniques: 

 (1) parallelizing outer loops to the greatest extent possible, 

 (2) never parallelizing inner loops, 

 (3) combining loops under a common outer loop, 

 (4) leaving some loops unparallelized, and 

 (5) avoiding usage policies that will significantly increase the overhead 
associated with a parallel section. 

The fourth technique may seem strange, but the following explanation might 
provide clarity. 

On many shared memory systems, the cost of the overhead associated with 
parallelization is at least 2,000 cycles when using 10 or more processors.  Under 
unfavorable circumstances, it can easily exceed 1-million cycles.  To keep the cost 
of the overhead down to no more than 1% of the total CPU time, the parallel 
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Table 2.  The performance of various versions of the F3D code when run on modern 
scalable systems (1 -million grid point test case).a 

Speed 
 

System 
Peak Processor 

Speed 

(MFLOPS) 

No. of 
Processors Used 

 
Version 

(time steps/hr) MFLOPS 

SGI R10K O2K 390 8 Compiler Directives  793 1.04E3 
SGI R12K O2K 600  SHMEM 382 4.99E2 
SGI R10K O2K 390 32 Compiler Directives 2138 2.79E3 
SGI R12K O2K 600 

600 
 SHMEM 

Compiler Directives 
989 

2877 
1.29E3 
3.76E3 

SGI R10K O2K 390 48 Compiler Directives 2725 3.56E3 
SGI R12K O2K 600 

600 
 SHMEM 

Compiler Directives 
1083 
3545 

1.42E3 
4.63E3 

SGI R10K O2K 390 64 Compiler Directives 2601 3.40E3 
SGI R12K O2K 600 

600 
 SHMEM 

Compiler Directives 
1050 
3694 

1.37E3 
4.83E3 

SGI R10K O2K 390 88 Compiler Directives 3619 4.73E3 
SGI R12K O2K 600 

600 
 SHMEM 

Compiler Directives 
1320 
5087 

1.73E3 
6.65E3 

Cray T3E-1200 1200 8 SHMEM 349 4.56E2 
  32  1062 1.39E3 
  48  1431 1.87E3 
  64  1705 2.23E3 
  88  2443 3.19E3 
  128  2948 3.85E3 
IBM SP 160 (MHz) 640 8 MPI 199 2.60E2 
  32  342 4.47E2 
  48  420 5.49E2 
  64  423 5.52E2 
  88  396 5.18E2 
Sun HPC 10000 800 8 Compiler Directives 999 1.31E3 
  32  2619 3.64E3 
  48  3093 4.04E3 
  56  3391 4.43E3 
  64  2819 3.68E3 
HP V-Class 1760 8 Compiler Directives 1632 2.13E3 
  14  2392 3.13E3 

a For additional details, see Behr et al. (2000). 

 
section must process between 2,000,000 to an excess of 10-billion cycles worth of 
work (in terms of serial time).  If there are 1-million grid points, and this section 
of code is processing all of those points, then it is easy to satisfy the lower bound, 
although there will likely be trouble satisfying the upper bound.  However, for 
boundary condition routines, the amount of work per section is likely to be two 
orders of magnitude less (in this case), making it difficult to satisfy even the 
lower bound.  Therefore, it is frequently desirable to leave some of the boundary 
condition routines unparallelized. 
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Figure 2-a.  The performance of the shared memory version of the F3D code when run on 
a modern scalable SMP (1-million grid point test case).∗  

Figure 2-b.  The performance of the distributed memory version of the F3D code when 
run on a modern scalable SMP/MPPs (1 -million grid point test case).  * 

 

                                                 
* The speeds have been adjusted to remove startup and termination costs. 

*

*

*
*

*
*

*
*

*
*
* *

* *

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

*

S
pe

ed
in

tim
e

st
ep

s
pe

r
ho

ur

Number of Processors

SGI R12K Origin 2000 (128 p, 300-MHz system)

HP V2500 (16p, 440-MHz system) (Guide)

SUN HPC 10000 (64 p, 400-MHz system)

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0

1000

2000

3000

4000

5000

6000

7000

8000

S
pe

ed
in

tim
e

st
ep

s
pe

rh
o

ur

Number of Processors

Cray T3E-1200 (SHMEM)

SGI Origin 2000 (128 p 300-MHz system, SHMEM)

IBM SP (160-MHz system, MPI)

These results arecourtesy of Marek Behr.



 

 9

Furthermore, as the processors get faster, the lower bound will almost certainly 
continue to get larger. 

If the cost of getting into and out of a parallel section of code is not well 
constrained, then it is very difficult to show parallel speedup.  As Tables 3 and 4 
and Figures 3 and 4 show, this can be a serious problem when a system becomes 
overloaded.  Some people have suggested that the solution to this is to have the 
operating system automatically decrease the number of threads (and by 
inference the number of processors) assigned to a job.  However, the following 
are three objections to this approach: 

Table 3.  The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded HP V-Class. 

No. of 
Processors Used 

Wall Clock Time 
(s) 

User CPU Time 
(s) 

System CPU Time 
(s) 

1 3524 3244  8 

2 1698 3301  72 

3 1203 3303  186 

4 1974 3625  2302 

5 1871 3630  2696 

6 2554 3837  4955 

7 3166 4051  7089 

8 2915 3915  7223 

Note:  The job was run for 200 time steps. 

 
 
 (1) Even if it is assumed that the ideal speedup is linear speedup, the result 

can be an undesirable variability in the run time.  It can be difficult for 
the user to identify the cause of this variability, resulting in the hardware 
and/or the paradigm getting a bad reputation. 

 (2) The proposed solution would take processors away from shared 
memory jobs, but not from message-passing jobs.  Again, this would 
result in the paradigm getting a bad reputation, while inadvertently 
rewarding the owner of the message-passing job. 

 (3) For jobs where the ideal speedup is a stair step, reducing the number of 
processors by just one or two can result in a significant decrease in 
performance.  Unfortunately, the decrease in performance is not the only 
issue.  Since the run time has significantly increased with presumably 
only a modest decrease in the number of processors being used, the total
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Table 4.  The effect on performance and the consumption of CPU time from running a 
parallel job on an overloaded SGI Origin 2000.  

No. of Processors Used Wall Clock Time 
(s) 

User CPU Time 
(s) 

System CPU Time 
(s) 

1 503 390 5 
5 225 512 7 
10 256 729 9 
15 360 935 11 
20 1322 2263 36 
25 2119 3423 138 
30 3691 4414 188 

a The job was run for 40 time steps. 
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Figure 3.  The effect on performance and the consumption of CPU time from the running 
of a parallel job on an overloaded HP V-Class. 
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Figure 4.  The effect on performance and the consumption of CPU time from the running 
of a parallel job on an overloaded Origin 2000. 

 
amount of CPU time has increased.  At many sites, the users (or their allocations) 
are charged on the basis of CPU time, and in some cases, on the basis of memory 
usage (MB hours). 

The solution to this problem that was adopted at the U.S. Army Research 
Laboratory has been to implement a queuing system that actively manages the 
load factor.  This is done by quiescing some of the jobs (primarily background 
jobs that are not charged to a user’s allocation).  This allows the use of 
background jobs to keep the system busy while waiting for a foreground job to 
be runable and/or to finish a nonparallelized section of code (e.g., 
input/output).  Another consequence of the need to leave some portions of the 
code unparallelized is Amdahl’s Law.  Even if the cost of these sections is limited 
to 1% of the serial CPU time, the effect of Amdahl’s Law will be noticeable when 
using more than about 30 processors.  Furthermore, when using 100 or more 
processors, the effect is likely to be dominant.  For a well-parallelized job using 
loop-level parallelism, there is likely to be a sweet spot between 32 and 64 
processors.  For most jobs, the incremental benefit of using additional processors 
may not justify the cost. 
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6.  Conclusions 

Shared memory programs can be successfully scaled past the commonly quoted 
limitation of 4–16 processors.  However, there are a number of constraints that 
limit the ultimate scalability of these jobs.  Of particular interest is the effective 
cost of a cache miss.  This value is sufficiently important to generally preclude 
using software-distributed shared memory in production HPC jobs. 

The effect of usage policies on performance was also discussed.  Overloading a 
system can waste a significant amount of CPU time.  Furthermore, at production 
sites, the preferred solution to this problem is not to reduce the number of 
processors assigned to a shared memory job.  Instead, the preferred solution is to 
actively manage the load (including the quiescening of background jobs) in an 
attempt to avoid overloading the system.   
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Glossary 

CFD Computational fluid dynamics 

COMA Cache only memory architecture 

CPU Central processing unit 

DRAM Dynamic random access memory 

HPF High performance Fortran 

MB Million bytes 

NUMA Nonuniform memory access 

OVERLOADED The load factor exceeds the number of processors in the system, 
resulting in the time sharing of processors. 

TLB Translation lookaside buffer 
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 1 AIR FORCE RSCH LAB DEHE 
  R PETERKIN 
  3550 ABERDEEN AVE SE 
  KIRTLAND AFB NM 87117-5776 
 
 1 NAVAL RSCH LAB 
  RSCH OCEANOGRAPHER 
CNMOC 
  G HEBURN 
  BLDG 1020 RM 178 
  STENNIS SPACE CENTER MS 
  39529 
 
 1 AIR FORCE RSCH LAB 
  INFORMATION DIRECTORATE 
  R W LINDERMAN 
  26 ELECTRONIC PKWY 
  ROME NY 13441-4514 
 
 1 SPAWARSYSCEN D4402 
  R A WASILAUSKY 
  BLDG 33 RM 0071A 
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  53560 HULL ST 
  SAN DIEGO CA 92152-5001 
 
 1 USAE WATERWAYS 
  EXPERIMENT STATION 
  CEWES HV C 
  J P HOLLAND 
  3909 HALLS FERRY RD 
  VICKSBURG MS 39180-6199 
 
 1 US ARMY CECOM RSCH 
  DEVELOPMENT & ENGRNG 
CTR 
  AMSEL RD C2 
  B S PERLMAN 
  FT MONMOUTH NJ 07703 
 
 1 SPACE & NAVAL WARFARE 
  SYSTEMS CTR 
  K BROMLEY CODE D7305 
  BLDG 606 RM 325 
  53140 SYSTEMS ST 
  SAN DIEGO CA 92152-5001 
 
 1 DIRECTOR 
  DEPARTMENT OF ASTRONOMY 
  P WOODWARD 
  356 PHYSICS BLDG 
  116 CHURCH ST SE 
  MINNEAPOLIS MN 55455 
 
 1 RICE UNIVERSITY 
  MECHANICAL ENGRNG & 
  MATERIALS SCIENCE 
  T TEZDUYAR MS 321 
  6100 MAIN ST 
  HOUSTON TX 77005 
 
 1 ARMY HIGH PERFORMANCE 
  COMPUTING RSCH CTR 
  B BRYAN 
  1200 WASHINGTON AVE 
  S MINNEAPOLIS MN 55415 
 
 1 ARMY HIGH PERFORMANCE 
  COMPUTING RSCH CTR 
  G V CANDLER 
  1200 WASHINGTON AVE 
  S MINNEAPOLIS MN 55415 

 1 NAVAL CMD CNTRL & 
  OCEAN SURVEILLANCE CTR 
  L PARNELL 
  NCCOSC RDTE DIV D3603 
  49590 LASSING RD 
  SAN DIEGO CA 92152-6148 
 
 1 UNIVERSITY OF TENNESSEE 
  COMPUTER SCIENCE DEPT 
  S MOORE 
  1122 VOLUNTEER BLVD 
  STE 203 
  KNOXVILLE TN 37996-3450 
 
 

ABERDEEN PROVING GROUND 
 
 31 DIR USARL 
  AMSRL CI 
   N RADHAKRISHNAN 
  AMSRL CI H 
   C NIETUBICZ 
  AMSRL CI H 
   W STUREK 
  AMSRL CI HC 
   D PRESSEL 
   D HISLEY 
   R NAMBURU 
   R VALISETTY 
   D SHIRES 
   R MOHAN 
   M HURLEY 
   P CHUNG 
   J CLARKE 
   C ZOLTANI 
   A MARK 
  AMSRL CI HS 
   D BROWN 
   R PRABHAKARAN 
   T PRESSLEY 
   T KENDALL 
   P MATTHEWS 
   K SMITH 
  AMSRL WM BF 
   H EDGE 
  AMSRL WT PB 
   J SAHU 
   K HEAVY 
   P WEINACHT 
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INTENTIONALLY LEFT BLANK. 
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INTENTIONALLY LEFT BLANK. 
 
 








