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PREFACE

Though this report. as per its title, dcals primarily with the theoretical and cxperimental
investigation of acoustic dyadic sensors, it scts the groundwork for a generalized theory of
dircetional acoustic sensors. Starting with the Taylor scrics of the acoustic pressure, it movces
quickly from the basic pressure sensor to the vector sensor and then on to the dyadic sensor.
More generalized acoustic sensors arc obtained by including additional terms of the Taylor serics.
Onc of the payofts of morce advanced sensors is improvement in the bcamwidth. With a vector
sensor, we can achicve a bcamwidth of 105" from a single point. Using an acoustic dyadic
sensor, this beamwidth can be decrcased to 65°. A further reduction in beamwidth is anticipated
as the order of the acoustic sensor increases (achicved by the addition of more Taylor scrics

terms).

This report shows how finite-difference approximations can be utilized to cstimate the 10 terms
that define the dyadic sensor. The associated realization of the dyadic sensor takes on the form of
19 judiciously placed pressurc sensors. An altemative realization using 18 accclerometers and |
pressure sensor is also considered. Both realizations involve a symmetrical placement of sensors,
which allows us to consider the sensors as collocated with a common phase center at the origin.
A detailed analysis is carricd out in this report of the crror that arises when using finite
differences in an environment of mismatched sensors that have nonzero spacing between them.
The analysis shows that it is not prudent to employ the method of finite differences to the
cstimation of sccond-order partial derivatives of the pressure. The opposite is truc for the
cstimation of first-order partial derivatives (the gradient of the pressure). For cxample, for a
+0.2 dB amplitudc mismatch and a onc-tenth of wavelength spacing, a typical mcan error in
estimating a first-order partial is about —0.14 dB with a standard deviation of about 0.06 dB. The
crror analysis Icads to the reccommendation that an acoustic dyadic scnsor be realized with 18
accclerometers and a pressurc sensor at the origin. This will eliminate the gradient estimation
crror and significantly reduce the Hessian estimation error, since the Hessian of the pressure can
now be cstimated by first-order finite-difference approximations.

This report also shows that these first-order finite-difference approximations can be successfully
performed in the presence of quantization and wide band noise effects. A worst-casc analysis
shows that using two accclerometers spaced 3 inches apart, onc can achieve a normalized RMS
error of 10% when attempting a first-order finite difference of a 50 Hz plane wave in a 2000 Hz
band. This requires a signal-to-noisc ratio (SNR) of at least 30 dB and assumcs that the noisc at
cach accelerometer is uncorrelated. This can be done using a 16-bit analog-to-digital converter
(ADC). Further, for frequencies up to 2000 Hz, the required SNR drops off at about 6 dB per
octave. This implics that the same 3-inch spaced accelerometers only neecd a SNR of 6 dB to
achicve the same 10 % error for a first-order finite diffcrence of a 800Hz plane wave.

A partial dyadic sensor (three orthogonal accelerometer dipoles and a pressure sensor at the
origin) was tested at Sencca Lake during May 2001. The experimental in-water beam pattern
measurcments confirmed theoretical predictions. SITTEL CORPORATION also demonstrated
that for a planc wavc source, dyadic sensor performance can be achieved by advanced signal
processing of only the pressure and acceleration measurements.

This report was prepared for James McEachern and his ONR 321SS team under ONR contract
number N00014-01-M-007. The Program Officer was Jan Lindberg. This is the Final Report and
is submitted in accordance with CDRL A001, Item number 0001 AA- Final Report.
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A Theoretical and Experimental Investigation
Of Acoustic Dyadic Sensors

1.0 Introduction

Current rescarch in the area of directional acoustic sensors has shown that a tri-
axial accelerometer and an omnidirectional hydrophone, packaged in the same housing
with a common acoustic phase center, can provide an effective directional acoustic sensor
[1,2,3]. Since this type of dircctional acoustic sensor measures both the scalar acoustic
pressure and the x, y and z components of the vector part of the acoustic wave field (e.g.,
the acoustic particle displacement, velocity or acceleration), it has been called an acoustic
vector sensor [4,5,6]. A single acoustic vector sensor can provide up to 6 dB of array
gain against 1sotropic noise relative to an acoustic scalar sensor or omnidirectional
hydrophone [5]. This vector sensor can also unambiguously estimate the direction of
arrival (DOA) of an acoustic source [4]. Further, this vector sensor can produce a
frequency-independent beam pattern with a 3-dB beamwidth of 105 degrees [6,7].

If three accelerometers and a pressure sensor (i.e., a vector sensor) can achieve the above
results, a question that naturally follows is how many more individual sensors (e.g.,
accelerometers and/or pressure sensors) must fit into a given sensor housing or form
factor to improve upon the aforementioned directionality of the acoustic vector sensor?
In Section 2.0, formulating a rigorous mathematical framework for the general theory of
directional acoustic sensors provides a partial answer. From this theory we show that the
next logical step to further improve vector sensor directionality is to define the acoustic
dyadic sensor. Section 3 shows that, for a general linear acoustic wave, 19 judiciously
placed pressure sensors or 18 accelerometers and one pressure sensor can approximate
the acoustic dyadic sensor. Section 4 consists of an acoustic analysis of a theoretical
dyadic sensor, and Section 5 shows how an acoustic dyadic sensor can be used to create a
Multichannel filter. Experimental results from a Seneca Lake test, conducted in May
2001, are presented in Section 6.0. Measured beam patterns for a partial dyadic sensor,
implemented by six accelerometers and a pressure sensor, are presented in Section 6.1.
In Section 6.2, we show how multi-channel signal processing of a vector sensor can be
used to realize the performance of a dyadic sensor when the pressure field is assumed to
be an arbitrary plane wave. We also provide experimental results to validate this claim.
We close this report with Section 7.0, which provides a summary and recommendations

for future research.

2.0 General Theory of Directional Acoustic Sensors

Let us consider a single acoustic sensor located at some measurement point

= (xo,y(),z(,). A Taylor series for the scalar acoustic pressure field p(t,?) about this
point would include the scalar (tensor of order zero) pressure p(z‘,fb) as the zero-order
term, the pressure gradient/vector (tensor of order one) Vp(z‘,f‘(,) at the point as part of the

first-order term, the dyadic (tensor of order two) VVp(t, 7(,) at the point as part of the




second order term, and so on. Using this Taylor series, we define a general class of
directional acoustic sensors as follows [6]. ‘A scalar acoustic pressure sensor (c.g., a
hydrophone) will be referred to as a directional acoustic sensor of order zero. This sensor

only measures the scalar acoustic pressure p(z,f;,) at the point 7; ; its Taylor series about
i;, assumes that the acoustic pressure field p(t,f') about that point is independent of the
field point 7* = (\1:) An acoustic vector sensor will be referred to as a directional
acoustic sensor of order one. This sensor measures both p(t,f;,) and the pressure
gradient/vector Vp(t,f;,) at the point 7 ; its Taylor series about 7, assumes that the

acoustic pressure field p(z,7) about that point is a linear function of the field point 7 .
Similarly, an acoustic dyadic sensor will be referred to as a directional acoustic sensor
of order two. This sensor measures p(t,if,), Vpl(z,7,) and the dyadic VVp(l,FO) at the
point 7, ; its Taylor series about 7, assumes that the acoustic pressure field p(t,F ) about
that point is a quadratic function of the field point 7.

D’Spain [8] was the first to point out a qualitative relationship between the Taylor
series expansion of the pressure field and a vector sensor. Following his observation, we
consider a single acoustic sensor located at some measurement point 7, = (xo, y(,,z(,). The

Taylor series for the pressure p(x, v, :,t) expanded about the point (x(,,y(),zo) 1S

A

%) 0 1%
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where p(x,, V.2, ,t) following the brackets means that the partials within the brackets
are to operate upon p at the point (x(), Yo»2,)» and the brackets indicate that the
expansion of the quantity within is to be a trinomial expansion except that

)
cx)\0oy

is to be replaced by
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are to be replaced by 1. Let us define the column vectors
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Using (5) through (7) in (1) and dropping the remainder term R, we obtain

/3(7\'3)’35,[) = p(“\‘(w."mzwl)*_ (L _i) Vp(xo,y(,,z(,,t)

+%(‘ IU)VVp( Xa» Vuw()’t)(’;_f(_))

The function p( v,z,1) is the pressure estimate generated by the dyadic sensor and is
capable of extrapolating the acoustic pressure field beyond the measurement point 7, so

®)

that it actually knows this field at every point inside a sphere of radius R = lF - E)’ , where

R is defined by the type of directional sensor and the error associated with the
extrapolation. The Taylor series (8) is the formula used to do the wave field extrapolation

with some specified error 5([,?). For example, a directional sensor of order zero, can
only measure the pressure at 7, so its estimate of the field beyond this point is

p(t.7) = plt,7,) and the corresponding estimation or extrapolation error is

e(t,7) = p(t,7)- p(t.7,). If the error is required to be small (less than 10%), then R will

be small. This implies that the aperture (2R) of a single pressure sensor is small, so by the
theory of spatial Fourier transforms [9], the zero-order sensor is essentially
omnidirectional. However, a sensor of order one (vector sensor) measures both the

pressure and pressure gradient at 7, so its estimate of the field beyond this point is
pt,7)= p(t,7)+ (7 = 7,)- Vp(t,7,) and the corresponding estimation error is



&(t.7) = plt.7)- ple.7 ) ©)
e(t,7)= plt,7)-[plt.7;)+ (F - 7)- V(. 73]

For the same error, the vector sensor will have a larger aperture than the scalar sensor, so
it should be more directional. Thus, the dyadic sensor should be better than the scalar and
vector sensors at estimating the field, so it should be even more directional.

lZ

- wavefront
(x..2)
> )V

1Y

8¢

X

Figure 1. The propagation of a planar wavefront
toward the origin of a rectangular coordinate system.

For the case of a plane wave pressure field (refer to Figure 1), we define the mean-
squared error in estimating the pressure field beyond 7, by

MSE = —17] [le(e.7Y dedp (10)

7[()0

where T is a suitable integration time (e.g., the temporal period of a plane wave) and f is
the angle between 7 and 7 (a unit vector in the direction of 7).
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Figure 2. Normalized mean-squared estimeétltion error (equation (19)) vs. R/ A .




Dividing (10) by the average power in the acoustic pressure field we obtain the
normalized MSE. Figure 2 shows the normalized mean-squared error as a function of
R/ A for the scalar, vector and dyadic sensors. For a specified normalized MSE of 10%,
notice that the acoustic aperture (2R) of the scalar sensor is about 4/10, whereas the
apertures for the vector and dyadic sensors are 4/3and A/2, respectively. Figure 3 is
scaled to graphically depict the situation.

‘ Taylor Scries Extrapolation of Pressure Field = Volumetric Spherical Sensors

scalar
vector

dyadic

Figure 3. Spherical coverage for 10% error.

We are now in the position to answer the question posed in the Introduction: If three
accelerometers and a pressure sensor (i.e., a vector sensor) can achieve the above
results, a question that naturally follows is how many more individual sensors (e.g.,
accelerometers and/or pressure sensors) must fit into a given sensor housing or form
factor to improve upon the aforementioned directionality of the acoustic vector sensor?

Recall that the dyadic sensor measures p(z,7,), Vp(t,7) and the dyadic VVp(t,7,) at the
point 7. According to (6), (7), and (8), we must measure 13 terms involving the pressure

and the first and second partial derivatives of the pressure. Due to the symmetry of the
mixed partials in (7), the number of distinct terms reduces to 10. The next section
demonstrates that these 10 terms can be estimated by 19 judiciously spaced pressure
sensors, or 18 judiciously spaced accelerometers and 1 pressure sensor placed at the

origin.

3.0 Realization of an Acoustic Dyadic Sensor

The goal of this section is to show how finite difference approximations can be used
to estimate the 10 terms that define the dyadic sensor; that is, the scalar pressure, the 3
terms of the pressure gradient, and the 6 distinct terms in the Hessian matrix. We will
first show how to realize the dyadic sensor by using 19 pressure sensors, then we will
provide a dyadic sensor realization that uses 18 judiciously spaced accelerometers and
one pressure sensor at the origin. Both realizations utilize a symmetrical placement of




sensors, which allows us to consider the sensors as collocated with a common phase
center at the origin.

3.1 Finite-Difference Approximation of the Pressure Gradient

Figure 4 illustrates an arrangement of pressure sensors useful for estimating the

: .. op Cp op L o
first partial derivatives —,——and — at (0,0,0). The finite-difference approximations
ox oy oz

of the pressure gradient are given by

PO _1(1.10.0)- ple—r.0.0)]/ 2 (11a)

Oox

p(r.00.0) _ [p(2.0,7.0)= p(t.0.~h.0)]/ 2h (11b)

oy

p(0.00) [p(2.0,0,1)— p(£,0,0,~h)]/ 2h (11c)

oz

The errors of the above approximations are on the order of 2”. Note that 6 pressure
sensors are required to realize the pressure gradient.

y ) : x

Figurc 4. The arrangement of six pressure sensors for the
finite-difference approximation of the pressure gradient.




3.2 Finite-Difference Approximation of the Hessian of the Pressure

Figure 5 illustrates an arrangement of pressure sensors useful for estimating the

~2 ~2 "
) . 1% ¢ c ) o
sccond partial derivatives — p ~ ’I and —- at (0,0,0). The finite-difference
o™ v oz~

approximations of these partials arc given by

*p(0.0,0.1)  p(h.0.0,1)-2p(0,0,0,1)+ p(~1,0,0,1) (122)

A h-

¢ p(0.0.0.1) _ p(0,7,0,¢)-2p(0,0,0,1)+ p(0,~1,0,¢) (12b)

ov” h-

0 p(0.0.0.0) _ p(0.0.5.1)-2p(0.0.0.6)+ p(0.0.h.1) (12¢)

o-" h-

~ . . i
The errors of the above approximations are on the order of /#~. Note from (12) and from
Fiourc 5 that there are 7 pressure sensors involved in the estimation of

0 . o -
o p , ~ {) ”md 6 5 at (0,0,0). The pressure sensor at the origin is also utilized to

ox® oy Z

measure the acoustic pressure at (0,0,0). This pressure is the first term in the pressure
estimate given by (8) where x, = v, =z, = 0. The other six sensors in Figure 5 are the
samc sensors that provide data for the estimates appearing in Equations (11).

Figure 5. Sensor placement for the estimation of the diagonal
elements of the Hessian of the pressure at the origin.




Figure 6 illustrates an arrangement of pressure sensors useful for estimating the

~2 ~2 ~2
. . L c 0 19 .
mixed second partial derivatives — f) = f) and —2 at (0,0,0). The four “star
OxOv  OXCz ovez

sensors can be used to estimate ¢ p/@.\'ﬁy , the four “diamond” sensors can be used
- )

X=y=o

to estimate 0° p / oxoz e and the four “square” sensors can be used to estimate

N Vo

o' p / Oyoz| . The finite-difference approximations of these partials are given by
2 p(0.0.0.0) _ ple£0.0)- plh 1 00)= ple b0 plt b o)
oxXoV h

& p(000.0)  pE0.L0)= pla0-tr)- p(-20.5.0)+ p(-4.0.-4.1)

OxCz h*

(13b)

(13c)

The errors of the above approximations are on the order of 4°. Note from (13) and from
Figure 6 that there are a total of 12 pressure sensors involved in the estimation of

o'p O 0’ . L
P , P and — Dot (0,0,0). This makes a total of 19 sensors: 7 for the estimation of
oxdy  Ox0z ovoz
the gradient and the diagonal terms of the Hessian and 12 for the estimation of the off-
diagonal terms of the Hessian.

Figure 6. Sensor placement for the estimation of the off-diagonal
clements of the Hessian of the pressure at the origin.
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3.3 Realization of a Dyadic Sensor by Means of Accelerometers

From Newton’s Second Law of Motion, the pressure gradient and acoustic particle

acccleration vector are related by
Vp=—-pa (14)

Taking the vector gradient of both sides of (14) results in the dyadic/Hessian
VVp=-V(pa)=-pVa-aVp ~—pVi (15)
where

a A
oa, od. Oa.

Ay

ox oy Ox
o) ~
ca, 04, Ca.
o} . o) . jon) N (] 6)
oy oy ay
~ ) ~
ca, od. od.

<
Ql
i

| Oz oz Oz |

is the gradient of @, pis the mass density and Vp is the gradient of the mass density at
the origin. Note the approximation appearing in (15). According to Camp [10], a
reasonable acoustic approximation is to neglect Vp at the origin. Equations (14) and
(15) arc two of the three quantities measured by a dyadic sensor (pressure being the third
one). First-order finite difference approximations can be used to estimate the elements of
(16). This would require 18 accelerometers symmetrically arranged as in Figures 5 and
6. Like the pressure sensor realization of the dyadic sensor, the accelerometer realization
utilizes a symmetrical placement of accelerometers, which allows us to consider the
accclerometers as collocated with a common phase center at the origin.

3.4 Comparison of Pressure and Accelerometer Realizations of the Dyadic Sensor

Table 1 provides comparisons between the pressure and acceleration methods of dyadic
sensor realization:

Table 1
Pressure Realization Accelerometer Realization
Requires 19 pressure sensors with one at the Requires 19 scnsors (18 accclerometers and
origin. Sec Figures 5 and 6 for placement. one pressure sensor). Sce Figures 5 and 6 for
placement.
Onc hydrophonc at origin mcasurcs pressure Onc hydrophonc at origin measures pressure
Estimates the pressurc gradient by first-order Mcasures the pressure gradient. Sec Eq. (14).
finite differences.
Docs not require knowledge of p at the Requires knowledge of p at the measurement
mcasurement point to cstimate the Hessian. point to cstimate the Hessian.
Requires first-order and sccond-order finite- Requires only first-order finite-difference
difference approximations approximations




4.0 Analysis of a Theoretical Acoustic Dyadic Sensor

This section will examine the effects of finite-difference approximations on the
estimation of the pressure gradient and Hessian (realization by pressure sensors). It will
also examine the effects of finite-difference approximations on the estimation of Va
(realization by accelerometers).

4.1 Pressure Gradient Estimation

In the underwater and in-air communities, the pressure gradient/vector, needed for
a vector sensor, is found in a variety of different ways. As discussed above, one can
measure the acoustic particle acceleration vector a(t,7,) directly and use (14) and

knowledge of the mass density at the measurement point 7, to obtain a fairly accurate
value of the pressure gradient Vp(i,f;,). Alternatively, one could measure the acoustic

particle velocity vector \7([,7;,) directly, perform a time derivative to get the acceleration

vector and proceed as above to get the pressure gradient. (The accuracy of this method
would depend on how well one implemented the time derivative). If one decides to use
scalar pressure sensors to approximate the pressure gradient, then the finite difference
approximations in (11) would have to be computed. However, great care must be
exercised when approximating the pressure gradient by (11). For example, (11a)
approximates the x-component of the pressure gradient at the measurement point

I, = (0,0,0). (Refer to Figure 4). If the pressure field was the arbitrary (narrowband or

broadband) plane wave

p(z,f)=f(r+’ﬁj : (17)

c

which is assumed to be propagating toward the origin of the coordinate system in Figure
1, then the exact value of the temporal Fourier transform of the pressure gradient would
be

VP(w,7) = jF(oke"" = jP(o,F )k . (18)

Here, the wavenumber or propagation vector k = ki has the magnitude k = w/c =27/ A
and the direction 7, where 7 is the unit vector

n=sing, cosf,x+sing, sin@,y+cosg,z. (19)
The position vector

F=xX+yp+zZ =rsingcosék + rsingcoséy + rcosgc (20)
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is the vector from the origin to an arbitrary field point 7 = (x,y,z) in rectangular
coordinates or I° = (/'sin(/ﬁcosﬁ,rsin @sin 0,1'cos¢) in spherical coordinates. The
temporal Fourier transform of the plane wave pressure field (17) is found by using

Plo.7)= [ ple.i “dr . 1)

Now if we use (11a) to approximate the x-component of the pressure gradient at the
origin (the point 7;, = (0,0.0)), then the temporal Fourier transform of this approximation

can be expressed as

(/P((a, r(,) - Plo F“)z A_A(a), A ) _ '/F(a)) 3111(//\"\,/7) . (22)
x 1

Since the exact value of P (w,7,) is given by

P (w.7,)= jk Flo), (23)

as i > 0, the estimate given by (22) approaches the exact value given by (23). A good
measure of the quality of the gradient estimation is the decibel error & , namely,

~

P
¢ =20logl— (24)
Since h = Ax/2, where Ax is the sensor spacing, we have from (22) and (23) that
¢ =20log|sinc(k, Ax/2) (25)

Figure 7 illustrates the error ¢ as a function of Ax/A for the case ¢, =90" and @, =0".

An error of —0.5 dB will occur for a spacing of Ax =0.1861 or 0.186 wavelengths. A
spacing of one-tenth of a wavelength will yield an error of -0.14 dB. Another popular
measure of the quality of estimation is the percent error defined as

&:UR
P

The relationship between &, and ¢ is illustrated in Figure 8. For example, a value for &

0f 0.4 dB corresponds to a &, of about 4.7%.

- 1} 100 (26)
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Figure 7. The error ¢ in estimating the partial derivative of the pressure with
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Notice that (25) is frequency dependent because of the presence of & and is valid only
when the two hydrophones in the x-axis dipole (Refer to Figure 4) are exactly matched in




their amplitude and phasc frequency responses. In practice, this is seldom the case, so we
must modify our analysis to include the effects of mismatch in the frequency responses of
the hydrophone and corresponding signal conditioning associated with each hydrophone
in the dipole. The temporal Fourier transform of (17) is

Plo.7)=Flw)e™" (27)

However, when the pressurc waveform impinges on the sensor, the sensor would
transform this pressure to the analog voltage Fourier transform

V(a), F) = K((())P(a),f') ' (28)

The quantity K((z)) is the composite (sensor sensitivity plus electronics) frequency

response of the sensor. Taking the temporal Fourier transform of (11a) and incorporating
the composite frequency responses of the two sensors, we arrive at

)/'/\'\/z _ —jk
V.7 )= F((U)K,((o)c K, (@)e 29)
2h
Let the mismatch between the two sensors be described by the quantity
K, (a)) _
M(w) = —— = u(w)expli¢ ()], (30)
K, (o)
where ,u(a)) and g“((u) are the amplitude and phase mismatch, respectively.
Utilizing (30) in (29) gives
/ - jk h [k h=2 ()]
J (a),zo) _ F(a) e ;1(&))@ 31)
K, () 2h
The magnitude of (31) is
r - 1-2 2k h - ?
V((U”()) :}P\ ((U»ﬁwle((l)X\/ IUCOS( < §)+/'l (32)
K, ((’)) 2h
The dB gradient estimation error has the value
1-2 2k h— ?
¢ zzomg’\/ preoshh—E)+ 7 (33)

‘ 2k h ‘




When g =1and ¢ =0, there is no amplitude and phase mismatch and (33) reduces to
(25). The error ¢ becomes infinite when & =0. However, k=0 means that the
pressure waveform is not a function of x, and we would not be estimating the partial
derivative of the pressure with respect to x since it is zero. From Equation (11a) we
observe that the separation between the two sensors along the x axis is Ax =2/ .
Assuming that ¢ = 0 (no phase mismatch) and noting thatk, =27 /A, we can write (33)
as

- ’\/1 _2'“COS(27[(”A\~AX//1))+;12 \
é = 2010${ 277(;1_\_A,\’/i) ’ (34)

Figure 9 is a contour plot of ¢ versus Ax/Aand u for the case n_=sing, cosf, = £l

(¢ is an even function of »n_). The contours shown correspond to ¢ ==*1,£0.5and 0
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Figurc 9. Contour plot of the error ¢ as a function of p and Ax/A for the
case 11, = xl.

dB. From the figure we see that to achieve a gradient estimation error of —=0.5 dB (-5.6%)
when the sensor amplitude mismatch is ¢ = —1 dB, we need a sensor spacing of 0.1
wavelengths. This is 46% smaller than the required relative spacing with no mismatch.
Figure 10 is a contour plot for the case n, = +1. Note that for the same ¢ and u the

sensor spacing is now 0.2 wavelengths or double the previous value. For an arbitrary n_,
the new spacing would be 0. 1/ |”,\-l wavelengths. Note that the spacing increases as ln‘\_|

decreases. Hence,

n_‘A’ =1 is the most restrictive case and Figure 9 should be used to
determine the required sensor spacing.
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4.2 Estimation of the Pure Second-Order Partial Derivatives of Pressure

This scction performs an analysis of the error that results in utilizing finite-difference
approximations to estimate the pure second-order derivatives of acoustic pressure. The

('h,0,0) (0,0,0) (h,0,0) X

° ° ° - 5

K:s K, K
y

Figurc 11. Arrangement of pressure sensors for the finite-difference

L . 2 2 I
approximation of the pure second-order partial O p/&\’ at the origin.

errors that will be considered are those due to non-zero sensor spacing and to mismatch
in the frequency responses of the various sensors. We will be concerned with the second-
order partial derivative 52/)(0,0,0,1)/83'2 . The results of error analyses of the two other
purc second-order partial derivatives would be analogous. Figure 11 shows the

arrangement of the pressure sensors.Starting with the estimation equation (13a) we would
arrive at an equation analogous to (29), namely,
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K, exp(jk h)—=2K, + K, exp(~ jk })

v, (@)= F(o) pE (35)
1
If K, =K, =K, (nomismatch), then (35) reduces to
V. (@)= -k K Flo)inc’ (k h/2) (36)

From Figure 5 we observe that the relative sensor spacing is Ax = & . The error ¢ 1is
given by

~

P.\'.\’

~
(@)

¢ =20log = 20log|—- = 40log|sinc(k, Ax/2) (37)

-

ARy

Equation (37) approaches zero as Ax approaches zero. A comparison of (37) with (25)
reveals that for a given sensor separation Ax, the error in estimating the pure second-
order partial derivative is twice the error in estimating the first-order partial derivative.
The problem is more complicated when the sensors are mismatched. The magnitude of

(35) has the form
Flo ;
V_\,'\_(a)] =K, |~77(—2—X1/£ 'y (38)

where
1 |
u=1K, /K, |=| 1 (39)
K /K, Hs
1 —2cos(k h)  cos(2k k)
I'=|-2cos(k h) 4 —2cos(k h) (40)
cos(2k h) —2cos(k h) 1

For this more general case, (37) becomes

JHTu
¢ =20log == (41)

(k,Ax)

X

If each element in x 1s one, then (41) reduces to (37). In the current error analysis we

have ignored the mismatch in phase response between sensors. A more complete
analysis would result in addition of a phase terms in the arguments of the cosines that
appear in (40). To see the effect of sensor mismatch on the dB error ¢, let us begin by
computing the relative sensor spacing to achieve an & of —0.4 dB (4.7% error) when

16




¢, =90 and @, =0". If we use (37) we will obtain Ax/1 =0.118. Figure 12 shows a
contour plot of ¢ in dB versus the mismatch parameters , and #, for the special case
¢, =90 .0, =0 and Ax/4A =0.118. Observe from Figure 12 that when z, = 1, =0dB,
the value of ¢ 1s —0.4 dB as expected. We see from the figure, that sensor mismatch may

improve the error (note the 0 dB error contour). However, the error can get much larger.
For example, if 2, = -0.5and 7, = +0.5 dB, the value of ¢ increases to about 2 dB.

051

Mu3 in d8
)

Mu2in dB

Figurce 12. Contour plot for ¢ as a function of the mismatch paramcters
> and p; for the special case of ¢ = 90°, 0 =0 and Ax/A=0.118.

4.3 Estimation of the Mixed Second-Order Partial Derivatives of Pressure

This section performs an analysis of the error that results in utilizing finite-difference
approximations to estimate the mixed second-order derivatives of acoustic pressure. The
errors that will be considered are those due to non-zero sensor spacing and to mismatch
in the frequency responses of the various sensors. We will be concerned with the second-
order partial derivative 821)(0,0,0,t)/6x(2v . The results of error analyses of the other

mixed second-order partial derivatives would be analogous. Figure 13 shows the
arrangement of the pressure sensors.
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Figure 13. Arrangement of pressure sensors for the finite-difference

approximation of the mixed sccond-order partial Gh p/@xay at the origin.
Starting with the estimation equation (13a) we would arrive at an equation analogous to
(35), namely,

) K, Gt WY e ik b2 K, o/ Rk 2 _ g ilekik b2

v, (@)=Flo : = : — (42)
If K, =K, =K, =K, (no mismatch), then (42) reduces to
V(@)= ~k k K F(o)sinc(k, h/2)sinc(k, h/2) (43)
The error & takes on the form
¢ = 20loglsinc(k //2)sinc(k, i /2] (44)

& approaches zero as s approaches zero. The problem is more complicated when the
sensors are mismatched. The magnitude of (42) has the form

F
vV, (@) =K, -'ﬁ uT pt (45)

where
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1 1

K,/K, 7
=| - =" 46
z K, /K, H; (40
K, /K, Hy
1 - cos(/c_\ /7) —cos(k h) COS((]\"\ +k, )’7)
- cos(/\' l,/z) 1 cos((/\'_\ ~k., )’1) —cos(k /)
= ' ‘ ' (47)
—cos(k h) cos«/\j\ — k. )/7) 1 - Cos(/{“‘h)
cos((/\'_\ +k, )’7) —cos(k /1) - cos(/\"‘_/z) !
The crror ¢ becomes
NYa WY
¢ =201 —— 48
S m)k “5)
When the vector H contains all ones, (48) simplifies to (44). In order to gain some
understanding of the behavior of (48), let us define
. K, | .
dB(i) = 20log[?’], i=234 (49)
!

We will choose a positive number dB,, and declare each dB(i) to be a random variable
uniformly distributed on the interval (-dB,.,tdBmax ). Once sample values are obtained,
the sensor sensitivities are given by

(dli(l)j
K =K10 */ i=234 (50)

3

Figure 14 shows a plot of the error (48) versus the sensor separation in terms of a fraction
of a wavelength for dB,,,,x going from 0.1 to 2 dB in steps of 0.1 dB. The values of

¢, and @, are 90° and 45°, respectively. Equations (49) and (50) were applied 100 times
for each dB,,, and the maximum error plotted. Figure 14 reveals some important
features of the estimation error. As the relative sensor separation 4/A becomes larger,
the error is less sensitive to the degree of sensor mismatch. Note that at half-wavelength
spacing the band of error between dB,;,,x = 0.1 dB and dB,,,,x = 2 dB is narrow. However
for h/2 < 0.2, the relative error is highly sensitive to sensor mismatch, the error reaching
unsatisfactory values very quickly. In summary, for small 4/A the error is sensor-
mismatch limited and for large /1/1 the error is sensor-spacing limited. It appears from
Figurc 14 that the sensor spacing should be somewhere in midrange. Figure 15 gives a
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plot of relative estimation error in dB for sensor spacing from 0.2 to 0.5 wavelengths, and
sensor mismatch parameter dB,,,x of 0.5, 1.0, 1.5, and 2.0 dB.

dB estimation error

4 i ; i ! i i i
0.1 0.15 02 0.25 03 0.35 0.4 0.45 05
Sensor separation as a fraction of a wavelength

Figurc 14. Error ¢ with dB,,,, going from 0.1 to 2 dB in steps of 0.1
dB and ¢ = 90" and O = 45".
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Figure 15. Error ¢ with dB,,,, of 0.5, 1.0, 1.5, and 2.0 dB and ¢ =
90° and 04 = 45°




4.4 Summary

This section has analyzed some of the errors that occur when finite-differences are used
to estimate the first-order and sccond-order partial derivatives of the acoustic pressure.
The crrors considered are those caused by a (1) finite, nonzero spacing Ax between
sensors and (2) an amplitude mismatch among the composite frequency responses of the
various sensors. Expressions for these errors were derived and plots were generated that
illustrated the dependency of error-behavior on relative sensor spacing and dB-mismatch.

This section ends by describing pictorially the statistical behavior of the estimation
error. Let ¢, =90 and @, =45 . Let us first focus on estimating 6° p(0,0,0,)/&xdy .
Figurc 16 shows a histogram of the estimation error (equation (48)) at a sensor spacing of
0.1 wavelengths. All of the sensors were assumed to be within 0.2 dB of each other (a
uniform probability distribution for each z, was assumed). The histogram represents a

compilation of 2000 sample realizations. Also illustrated in Figure 16 is the mean value
and standard deviation of the estimation error for sensor spacing from 0.1 to 0.5
wavelengths. At a spacing of 0.1 wavelengths, the mean error is about 0.25 dB.
However, the standard deviation is 1 dB. Note that as the spacing increases, the mean
error increases, whereas the standard deviation decreases.

Figure 17 contrasts the estimation of the first-order partial derivative 6p(0,0,0,7)/dx and
the second-order partial derivative (?Zp(O,O,O,t)/sz . For both cases, ¢, =90 and
6, =0". Observe the plots in the upper portion of Figure 17. The mean error (in
estimating the second-order partial, refer to equation (41)) at the right is twice the mean
error (in estimating the first-order partial) at the left. The lower portion of Figure 17
shows the standard deviation of both cases. In the first-order partial case, the standard
deviation is constant with respect to sensor spacing and has a small value of 0.0571. In
the second-order partial case, the standard deviation decreases exponentially from 0.66 at
a spacing of 0.1 wavelengths to 0.065 at a spacing of 0.5 wavelengths. At a sensor
spacing of 0.1 wavelengths, the mean error in estimating the first-order partial is —0.14
dB and the mean error in estimating the second-order partial is —0.28 dB. Note that at
small values of sensor spacing, the standard deviation of the error in estimating the
second-order partial is large as compared to the mean value of the error. The opposite is
true for the estimation of the first-order partial derivative. That is, the standard deviation
of the error is small as compared to the mean value of the error. From Figures 16 and 17,
we conclude that finite-differences can be utilized effectively in estimating the gradient
of the pressure, but confidence in finite-difference techniques decreases significantly
when they are used to estimate the Hessian of the pressure. It is therefore recommended
that an acoustic dyadic sensor be realized with 18 accelerometers and a pressure sensor at
the origin. This will eliminate the gradient estimation error and significantly reduce the
Hessian estimation error, since the Hessian can now be estimated by first-order finite
difference approximations. (Refer to equations (14), (15) and (16)).
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5.0 Multichannel Filtering and Directional Acoustic Sensors

For the purposes of this section, it is convenient to deal with the temporal Fourier
transform of the Taylor series (8). Generalizing (8) in the frequency domain we obtain

ﬁ((z},f’) =W, (.7 )P, 7))+ W (0,7) VP(w,F, )+ W, (w,7)-VVP(w,F, )W, (.7 7)., (51)

where we have retained only the first three terms of the series (dyadic sensor) and the
weights W, , W, and W, arc chosen such that the right side of (51) is consistent with the
Taylor series approximation of the pressure field. Specifically, W, =1, W, =7 —71,and
W, =(F -7, )/«/5 are the only weights that allow (51) to be a Taylor series extrapolation

of the pressure field by a dyadic sensor.
It is important to note that (51) is valid for any analytic acoustic wave field. For

the special case of an arbitrary plane wave we have that

Plew.F)) = F(w)e™" (52a)
VP(w.7,) = jP(w.F, )k (52b)
VVP(w.F,)=-P(w.7, kk (52¢)

where the quantity &k is a dyadic and is equivalent to the rank 1 matrix kk' where

k=|k, (53)

Without loss of generality, we can let 7}, = (0,0,0) in (52). The substitution of (52) into
(51) gives

P w, / (a) O)g(/\ ) (54)
where

g6.7)=1+jy -1y (55)

yzE-fzz;z—;-ﬁ.f (56)

The magnitude of (55) is




g(/;~7):1/1+%4— (57)

Equation (54) is in actuality an estimation provided by a dyadic sensor of the temporal
Fourier transform of the pressure of a plane wave at the field point specified by the vector
7. The quality of the estimation would depend on the value of r/4, where r is the
distance of the field point from the origin and A is the wavelength. Indeed, from (52) and
(54) we can write

ﬁ(a),f‘)
Plw,7)

¢, =20log

g(/?.f) | (58)

‘: 20log

The magnitude of the g function is seen to define the dB error resulting from estimating
P(a), F) by means of replacing the Taylor series by a Taylor polynomial of degree 2.

Figure 18 contains several normalized polar plots of 107" = ‘P/P‘ plotted as a function
of @, for ¢, = ¢, =90" and 0, =0 where the angles ¢, and &, appear in the vector
F=sing, cos@.x+sing, sinbgy +cosPgz (59)
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Figurc 18. Polar plots of the normalized Taylor approximation error as a
function of Og for ¢s = ¢y = 90° and O+ = 0° and scveral values of 1/A.




The parameter r//l takes on values of 2, 0.32, 0.2, and 0.1. The plots have been
normalized so that the maximum value is unity. Observe that the polar plots in Figure 18
have the form of a beam pattern. As /4 becomes smaller, the beam pattern approaches
an omnidirectional pattern. The /2 =2 pattern has a beam width of 65.54°  Equation

(58) can be given two interpretations: (1) Taylor approximation error and (2) beam
pattern. Thus, (54) can be interpreted as the generator of a beam pattern. In this
interpretation the value of 7 is not driven by the need for an acceptable error bound on the

estimatc of P(w,7). The variable  simply becomes a parameter in the forming of a
beam and the function g(/\',f') can be interpreted as a discriminative function. The vector
i 1n (56) becomes a steering vector and we are now interested in the quality of
discrimination of the beam rather than the quality of estimation of P(w,7).

From Figure 18 we sec that there is an ambiguity in the beam patterns (presence of two
peaks). Mathematically, this ambiguity is caused by the fact that (57) is an even function
of y. It would be beneficial to generate beam patterns that do not have this ambiguity.

Beam pattern ambiguity can be eliminated or significantly reduced by picking other sets
ot weights in (51). However, by doing so, we no longer have a valid Taylor series. It is
morce correct to modify (51) to

B(w.7) = W, (.7 )P(cw.7; )+ VZ((O,F)' VP(w,7,)+ w, (0.7)- VVP(w,T,) W, (a),F) (60)

where the function B(w.7) could represent the output of a frequency domain multi-
channel filter with P(a),f;,), VP((o,f;,) and VVP(a), E)) as the inputs. Refer to Figure 19

for a pictorial representation of this concept.

p(t.7)

Vpl(t.7) = Multi-channel filter ——— b(l‘»f )

Figure 19. Multi-channel Filtering and Directional Acoustic Sensors

Thus, (60) is a generalization of (51) and can be viewed as a multi-channel filtering
approach to directional sensors. Consider the following set of weights:

",(w,?):ajiw;; (61)
W, (w,7) = —=
Jjo 1




where o and f are two parameters that may be a function of frequency. The substitution
of (61) into (60) results in

B(o,7) = Plo.0 (3, 7) (62)

where
2

g(h,F)=1+al(h-#)+ p(i-7) (63)
We could select the weights in (63) to steer the beam of the directional sensor so that we
have maximum sensitivity in the look direction and place a null in another direction.
Further, we could select the weights so that the directional sensor produces a beam
pattern that results in maximum array gain against isotropic noise [14]. Figure 20 shows
the two weight-selection criteria for the vector sensor. The maximum-array gain case of
Figure 20(a) corresponds to & =3, # =0, whereas the optimum-null case of Figure 20(b)
corresponds to @ =1, #=0. Figure 21 does the same for the case of the dyadic sensor.
The maximum-array gain case of Figure 21(a) corresponds to o = -2, f = -5, whereas
the optimum-null case of Figure 21(b) corresponds to « =2, =1. Observe that in each
case, the ambiguity was eliminated or significantly reduced.

For optimum
Null placement

m 17
Array gain=6 dB Array gain=4.8 dB
(a) (b)

Figurc 20. Selection of weights for a vector sensor. (a) For
maximum array gain. (b) For optimum null placement.

Array Gain = 9.5 dB Array Gaia=7dB

@ ®)
Figure 21. Selection of weights for a dyadic sensor. (a)
For maximum array gain. (b) For optimum null
placement.
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6.0 Experimental Results Using a Partial Dyadic Sensor

A vector sensor placed at a point in space measures both the pressure and the gradient of
the pressure at that point. A dyadic sensor also does this. In addition, it also measures all
of the spatial second-order partial derivatives of the pressure at the point. This section
will discuss a partial dyadic sensor. The dyadic sensor is partial in the sense that it only
measures the spatial pure second-order partial derivatives of the pressure (i.e., the
diagonal elements of the Hessian matrix (7)), not the mixed second-order partials. Figure
5 shows the placement of the components of the partial dyadic sensor. The components
consist of a pressure sensor at the origin and six CAVES-type (flexural disk)
accelerometers placed at the extremities of the three orthogonal lines in Figure 5.
SITTEL CORPORATION used the services of EDO Electro-Ceramic Products, Salt
Lake City, Utah to build the partial dyadic sensor illustrated in Figure 22. Figure 23
shows the support structure used to make beam pattern measurements. These
measurements were performed at Seneca Lake in May 2001.

In section 6.1, we derive the theoretical beam patterns for the elements of the partial
dyadic sensor and provide measured results from Seneca Lake to validate the theory. In
section 6.2, we show how multi-channel signal processing of a vector sensor can be used
to realize the performance of a dyadic sensor when the pressure field is assumed to be an
arbitrary plane wave. We also provide experimental results to validate this claim.

Figurc 22. Partial dyadic scnsor built by EDO Electro-Ceramic Products.




Support
Structure

Directionci
Acoustical
Sensor

Vibration
kolation
Mount —/

Figure 23. Support structure used for partial dyadic sensor.

6.1 Theoretical and Experimental Beam Patterns for a Partial Dyadic Sensor

The goal of this section is to discuss beam patterns produced by particular accelerometer
components and certain combinations of accelerometer components of the EDO sensor.

Specifically, we will focus on the lines labeled 8% p/dx* and & p/éy* in Figure 5. The
accelerometer at the left extremity of the line 82 p/dx* will be referred to as the

+ x accelerometer, whereas the accelerometer at the right extremity will be called the — x
accelerometer. Similarly, the accelerometer at the foremost extremity of the line

o'p / dy® will be referred to as the + y accelerometer, whereas the accelerometer at the
rearmost extremity will be called the — y accelerometer. Before presenting empirical

beam pattern measurements, it is necessary to first discuss the theoretical equivalents. It
is well known in the theory of vector sensors, that the frequency-independent beam
pattern of a single accelerometer follows a cos@ (+ x or —x accelerometer) or sin &
(+ y or — y accelerometer) pattern. We will derive the theoretical beam pattern for

da, /0x , which can be approximated by the first-order finite difference of the + x and
—x accelerometers. Let us begin with the relationship
da, __10°p

¥ 64
Ox p o’ (64)
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This relationship is valid for a homogeneous medium resulting in a constant p . For a

sinusoidal plane wave of frequency @, (64) becomes

M = k—~Sin2 ¢7‘ COSZ ﬁrp(t”_;) (65)

Ox P

The mean-square value of (65) is

(————aa"' ( r)] =x’cos' 9, (66)
Ox
where
k* ., Y
K =—sin’ ¢, p*(,7) (67)
0

The parameter x is kept constant by fixing the frequency @ and the angle ¢,. We
generate a theoretical beam pattern for da_/0x by plotting (66) as a function of the angle

0, . Similarly, we generate a theoretical beam pattern for da, /dy by plotting

(M] —x%sin®6, (68)
oy

as a function of the angle &, .

A first-order finite difference of the + x and — x accelerometers was used to estimate the
left side of (64). Figures 24 (a) and (b) give the empirical and theoretical beam patterns
of both accelerometers at 1200 Hz. Both empirical patterns are close to the theoretical
“cos@” pattern. Note the —25 dB nulls in the empirical patterns. Figure 24 (c) consists of
the empirical and theoretical patterns for da_/Ox. The empirical pattern is close to the

theoretical “cos’ @ pattern. Note the — 21 dB nulls for the empirical pattern in contrast
to the infinite nulls for the theoretical pattern. Pulsing a source at a fixed frequency of
1200 Hz, recording and processing data, and then rotating the vertical shaft in Figure 23

in the xy plane in order to achieve a different angle 8, generated the patterns for da, /ox
and da, / dy , respectively. Figures 25 (a) and (b) give the empirical and theoretical beam
patterns of the + y and — y accelerometers. Both empirical patterns are close to the
theoretical “sin @ pattern. Note the —25 dB nulls in the empirical patterns. Figure 25 (c)
consists of the empirical and theoretical patterns for da, / 0y . The empirical pattern is

close to the theoretical “sin” @ pattern. Note the —21 dB nulls for the empirical pattern
in contrast to the infinite nulls for the theoretical pattern.

29




(©)
Figurc 24. Empirical and theoretical beam patterns. (a) +x accelcrometer
(b) —x accelerometer (c) the difference between the +x and —x accelerometers.

=1

Figurc 25. Empirical and theoretical beam patterns. (a) +y accelerometer (b)~y
accelerometer (c) the difference between the +y and —y accelerometers.
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6.2 Achieving Dyadic Sensor Performance by Multi-channel Processing of a Vector
Sensor in a Plane Wave Field

In this section, we show how multi-channel signal processing of a vector sensor can be
used to realize the performance of a dyadic sensor when the pressure field is assumed to

be an arbitrary plane wave. We also provide experimental results to validate this claim.

First, consider the case where the pressure waveform is a sinusoidal (narrowband) plane
wave having the form

plx, vzt = p(F.a)= Asin(a)f + O+ k- 7') (69)
The gradient and the Hessian of (69) at (,\'0,_1’(,,20) are
Vp(xys s 2.1) = kAcoslor + £ + £ -7, ) (70)

V(x4 vy.2, ,t) =—kk'A sin((ul +¢ + k - T, ) (71)

where £ is the column vector of wavenumbers. Let us now place a vector sensor at the

point (x(,,),’“,z(,). This sensor measures

p(x,.vy.2,.1) = Asin (a)t +C+k- Ty ) (72)
1 ~
g(x(, 2 Vo Zo ,t) =——kA cos(a)t +C+k- r“) (73)
P

where the column vector ¢ contain the acceleration components. From (73) we obtain

the 3 x 3 matrix

o

r 2 - I3
kk = /;03 JQ(X(,,)’O,ZQJ)Q (Xn,y”,z(),t)dl‘ (74)

Equations (70) and (71) can be expressed as
Vp(xo,y(,,zr,,t):—p_q(xo,yo,z(,,t) (75)

2

2

VVP(XO,.V(,,ZOJ): _A—pgp(xovyo»20*;)".9_(“\'07}’0’20at)ﬂl(x(>=y0920at)dt (76)

The above pair of equations indicates that for time-harmonic plane wave fields, both the
pressure gradient and the pressure Hessian can be determined by pressure and
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acceleration measurements. A vector sensor located at (xn ,y(,,z(,) achieves these

measurements.

Let us now consider an arbitrary (narrowband or broadband) plane wave. An arbitrary

plane wave moving towards the origin can be written in the form

p(x,y, ot)= f(t + ﬁ—fj

c
It follows Vp and VVp have the values

ner

1
Vp = Q—g[l + —)
¢ c

VVp =nn' L:h(t +ﬂ]

C c
where
!
g=/
’ o4
h=g"=1

The Fourier transforms of (77), (78), and (79) are

F[p] = F(j(o)exp{/’a) ﬁ!il
F[Vp]=ﬂ%jw Flp]

FIVVp]=-mn' L w’Fp]
¢
The Fourier transform of the acceleration is given by
1 |
Fla]= -—F[Vp]=~—n jo [p]
P pPe

Multiplying (84) by the transpose of its conjugate results in

FlaF[a] = (};)2 w'e’[F[p)’

(77)

(78)

(79)

(80)

81)

(82)

(83)

(84)

(85)




Equation (85) leads to an expression for nn', namely,

IF a|F ' [aldo

J.[()2|F[p]2(/(z)

nn' = (pc) (86)

The quantities Vp and VVp can be expressed in terms of the pressure and acceleration as
follows:

F[Vp]=-p Fld] (87)

JF[Q F*'[aldw

FIVVp|=-
[ p] prer I(() |F p] dw

(88)

Lquations (87) and (88) indicate that for an arbitrary plane wave field, both the pressure
gradient and the pressure Hessian can be determined by pressure and acceleration
mcasurements. A vector sensor located at (,\'(,,y(,,z()) achieves these measurements.
Based on the above discussion, we can use equations (60) and (61) to construct a
frequency domain multi-channel filter with P(w.7,), VP(w.7,) and VVP(w,7;) as the

inputs. In this way, we can obtain the performance of a dyadic sensor with vector
sensor measurements.

In order to validate this claim, tests were conducted at Seneca Lake during the period
May 2001. A vector sensor was placed at the origin of a rectangular coordinate system
and a 400 Hz acoustic target was placed at R, =130 f.,0, = 0°,¢, = 90" relative to the
vector sensor (refer to Figure 1). Figure 26 shows a contour plot of the mean-squared
value of (60) as a function of frequency and azimuth with £ = 0 (a vector sensor). This is
the Frequency-Azimuth (FRAZ) display for a vector sensor. The weights of the multi-
channel filter (ar = 3, # = 0) were chosen so that the vector sensor beam would achieve
maximum array gain against isotropic noise. Figure 27 shows the FRAZ display that
results when the weights of the multi-channel filter (o« = -2, # = —5) were chosen so that
the equivalent dyadic sensor beam would achieve maximum array gain against isotropic
noise. A comparison of Figures 26 and 27 shows the spatial filtering improvement when
using the extra estimate of (88) to achieve dyadic performance from a vector sensor.

Using the same test set-up as above, a 1300 Hz interfering source was placed at

R, =222 ft.,0, = 225" ¢, =19° relative to the vector sensor, so now we have a 400
Hz target and a 1300 Hz interferer simultaneously radiating energy toward the vector
sensor. Once again, a comparison of Figures 28 and 29 shows the significant
improvement of using the extra estimate of (88) to achieve dyadic performance from a
vector Sensor.
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Figure 26. FRAZ display using vector sensor processing (single 400 Hz target
located at r = 130 ft, 67 = 0°, 7 = 90°).
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Figure 27. FRAZ display using dyadic sensor processing (single 400 Hz target
located at r = 130 ft, 01 = 0°, ¢ = 90°).
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Figure 28. FRAZ display using vector sensor processing (400 Hz target located at
r=130 ft, 04 = 0°, ¢ = 90°and 1300 Hz interfercr located at r, = 222 ft, 0, = 225°,
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Figurc 29. FRAZ display using dyadic sensor processing (400 Hz target located at r = 130 ft,
0p = 0°, ¢y = 90°, and 1300 Hz interferer located at r; = 222 ft, 0, = 225°, ¢, =19%).
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7.0 Effects of Quantization and Wide Band Noise on Finite Differences Between
Two Accelerometers

This section analyzes the effects of quantization and wide band noise on the finite
differences between sinusoidal signals received from two accelerometers spaced three to
six inches apart. The noise bandwidth is 2000 Hz and is comprised of the following three
components:

(1) Ambient Ocean noise
(2) Preamplifier noise
(3) Analog to Digital Converter (ADC) quantizing noise.

Ambient noise ranges from the maximum acceptable noise as shown in the NUWC
Vector Sensor Specifications dated 03 Feb 2000, to a value 40dB higher. An
accelerometer sensitivity of —18 dBv/g is used. Preamplifier noise is ~166dBv/VHz,
which is equivalent to the noise floor of a SITTEL CORPORATION signal conditioner.
ADC quantizing noise is 10.8dB below the least significant bit (LSB) level or quantizing

Accelerometer 1 Gain: 40dB 16 to 24 Bits
Sens: -18dBv/g BW: 50-2050Hz 1 Volt Full Scale

Preamplifier/

Filter 1 > ADC1

A Signal 1

%

Ambient P/A1 ADC 1
Noise 1 Noise Noise

.
. Finite
Spacing, d (1" Difference
Ambient P/A2 ADC 2
Noise 2 Noise Noise
Y .
Signal 2 Preamplifier/ o
Filter 2 > ADC2
Acce!t_arometer 2 Gain: 40dB 16 to 24 Bits
Sens: -18dBv/g BW: 50-2050Hz 1 Volt Full Scale

Figure 30. Modeling Setup

step size of the ADC. For an N-bit, bipolar ADC with full-scale amplitude of £ Fs, the
LSB level is Fs/2™". The analysis uses both a 16-bit ADC and 24-bit ADC to observe
the effects of quantizing step size on the finite difference errors. Figure 30 shows the
modeling setup used for the analysis.

The analysis is comprised of the following four parts:
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Part 1. The signal frequency is set at SOHz, which is considered to be worst case
since the finite differences are the smallest at the lowest signal frequencies within the
band with fixed accelerometer spacing. Noise is considered to be uncorrelated between
accclerometers. Accclerometer spacing is 3 inches and 6 inches. The RMS value of the
composite noise ranges from 1 LSB to 100 LSB’s for the 16-bit ADC and from 256
LSB’s to 25,600 LSB’s for the 24-bit ADC with the sinusoidal signal levels, in each case,
ranging from 0dB to +50dB above the composite noise level. The signals are assumed to
be plane wave and arrive along the axis formed by the two accelerometers.

Part 2. The signal frequency is set at 50Hz. Noise is uncorrelated between
accelerometers. Accelerometer spacing is 3 inches and 6 inches. The RMS value of the
composite noise ranges from 1 LSB to 100 LSB’s for the 16-bit ADC and from 256
LSB’s to 25,600 LSB’s for the 24-bit ADC with the sinusoidal signal levels, in each case,
ranging from 0dB to +50dB above the composite noise level. The signals are assumed to
be plane wave and arrive along the axis formed by the two accelerometers. The signal is
sensed with 2 accelerometer sets and averaged to determine improvement in errors due to
averaging.

Part 3. The signal frequency is set at SOHz. The noise correlation coefficient
between accelerometers ranges from 0% to 95% to determine the improvements in finite
difference errors duc to correlated noise. The noise and signal attributes are as described
in part 1 and part 2. A 16-bit ADC converter is used with 3-inch spacing between
accclerometers.  With close accelerometer spacing, ambient noise is likely to be
correlated as described in Appendix A.

Part 4. The signal frequency varies from 50Hz to 2000Hz with a constant
accelerometer spacing of 3 inches. Improvement is expected at higher frequencies due to
greater finite differences. The ADC is set at 16 Bits with the input noise level set at 10dB
above the LSB. The signal-to-noise ratio varies from 0dB to 50dB.

Conclusions. It is feasible to measure finite differences of S0Hz sinusoidal signals, in
the presence of wide band noise, emanating from accelerometers with 3-inch spacing
between accelerometers. When input signal plus noise levels are large enough to dither
the ADC, the analysis shows that the errors depend upon the signal to noise ratio. An
acceptable dithering level is 10dB or greater relative to the LSB of the ADC. At this
level, there 1s no difference in error performance of a 16-bit ADC and a 24-bit ADC.
Normalized errors are the difference between the perturbed finite difference and actual
finite difference divided by the actual finite difference.

For a 50Hz signal from 2 accelerometers spaced 3 inches apart, with wide band noise
uncorrelated between accelerometers, a SNR of 30dB is required to obtain a normalized
average RMS error of 10%. The normalized average RMS error is the square root of the
normalized mean square error averaged over a cycle of signal frequency. For a
normalized maximum RMS error of 10%, the SNR must be in excess of 50dB. The
normalized maximum RMS error is the square root of the maximum normalized MSE




within a cycle of signal frequency. In this analysis, the maximum MSE occurs at the peak
of the sinusoidal signal where the minimum finite difference occurs. The minimum finite
difference is defined as A*(1-cos (AB)) where A is the peak signal amplitude and A0 is
equal to 2¥m*d/A, with d equal to the distance between accelerometers and A equal to the
wavelength. A SNR of 36dB is required for a normalized maximum RMS error equal to
the minimum finite difference.

The analysis has shown that increasing the spacing between the accelerometers results in
lower errors for the same signal frequency. At 50Hz, a 6dB improvement is realized by
6-inch spacing over 3-inch spacing.

The analysis has shown that averaging the finite differences of 2 sets of accelerometers
looking at the same signal results in 3dB error improvement as long as the noise is
uncorrelated between sets of accelerometers.

The analysis has shown that lower errors occur when the noise between accelerometers is
correlated. The improvement is 7dB from 0% correlation to 90% correlation at a given
SNR. The actual noise correlation is not known but is expected to be high due to the
close spacing of the accelerometers.

Finally, the analysis has shown that 50Hz has the worst case errors. The errors for 3-inch
spacing improve at higher frequencies. For frequencies up to 500Hz, the error
improvement is 6dB per octave of frequency. For frequencies above S500Hz, the
improvement is substantial, although less than 6dB per octave.

Analysis. A Monte Carlo analysis was used to compute the difference error due to noise
and quantizing effects. A signal cycle was divided into 400 phases with each phase
equivalent to the phase shift between accelerometers. The finite difference is the
difference in instantaneous amplitudes between 2 adjacent phases of the signal. The
mean square error (MSE), between the finite difference corrupted by noise and ADC
effects, and the actual finite difference, was computed at each of the 400 phases using
2048 sample functions of noise at each ADC input. The average MSE was then
computed by averaging the MSE over a cycle of signal input and normalizing to the
actual finite difference. Likewise the maximum MSE was computed by determining the
maximum MSE over a cycle and normalizing to the actual finite difference. It is
expected that the maximum error occurred at the minimum finite difference. As shown
in Appendix A, the minimum finite difference is equal to A*(1-cos (AD)), where A is the
peak signal amplitude and A is equal to 2*n*d/A, with d equal to the distance between
accelerometers and A equal to the wavelength. The maximum finite difference is equal to
A*sin (AO).

With 3 inch spacing, at 50Hz, A® is equal to 0.9 degrees, and the minimum finite
difference is equal to A*123%10. The ratio of maximum to minimum finite difference

is 127 or 42.1 dB. With 6 inch spacing, at 50Hz, A8 is equal to 1.8 degrees, and the
minimum finite difference is equal to A*493*%10. The ratio of maximum to minimum

38




finite difference is 63 or 36.1 dB. The finite differences are directly proportional to
frequency for a constant spacing between accelerometers.

Analysis Part 1

Figures 31 and 32 show the normalized average MSE and maximum MSE, respectively,
versus input noise level and signal to noise ratio (SNR) for a 16 bit ADC and 3-inch
spacing. The minimum noise level is about 10dB above the ADC LSB. A 30dB SNR is
required for a normalized MSE of 1%, which corresponds to a normalized RMS error of
10%. However, for a normalized maximum MSE of 1%, a SNR 1n excess of 50dB is
required. A 36dB SNR is required for a normalized maximum MSE less than the
minimum finite difference.

These plots show that the errors are constant with input noise levels and a function of
only the SNR for input levels that are 10dB or more above the LSB of the ADC. The
slight decrease of errors at levels below 10dB relative to the LSB, for SNR’s 0dB to
30dB arc unexplained and may be anomalies caused by small input levels relative to the
ADC LSB. Since 1t is good practice to maintain minimum RMS noise into an ADC at a
level 10dB or more above the LSB, the data below 10dB is ignored.

Figures 33 and 34 show the normalized average MSE and maximum MSE, respectively,
versus input noise level and SNR for a 24 bit ADC and 3-inch spacing. The minimum
noise level is about 48dB above the ADC LSB. It can been seen that the errors are
equivalent to those of the 16 bit ADC with input noise 13dB or higher relative to the
LSB.

It can be concluded that as long as the input RMS noise level is kept above the LSB of
the ADC, the finite difference errors of a 16 bit ADC is comparable to those of a 24 bit
ADC. A 30dB SNR is required to keep the average MSE below 10%. A 36dB SNR will
keep the maximum MSE below the minimum finite difference.

Figures 35 and 36 show the average MSE and maximum MSE, respectively, for a spacing
of 6 inches, with 50Hz input into a 16-bit ADC. As shown in the figures, the errors are
6dB lower than those with 3-inch accelerometer spacing are. This suggests that higher
frequencies will have lower errors at 3-inch spacing. Errors as a function of frequency
arc addressed 1n part 4 of this analysis.

Analysis Part 2

Figures 37 and 38 show the average MSE and maximum MSE, respectively, for a spacing
of 3 inches, with 50Hz input into a 16-bit ADC with the finite differences obtained from
an average of 2 accelerometer sets. As shown in the figures, the errors are 3dB lower
than those obtained with a single set of accelerometers. This analysis shows that as long
as the noise is uncorrelated between sets of accelerometers, an improvement in finite
difference error can be realized by averaging.




Analysis Part 3

Adding portions of uncorrelated noise from one accelerometer into the other
accelerometer simulated correlated noise. Defining N1 as the noise from accelerometer
#1 and N2 as the noise from accelerometer #2, the correlated noise inputs are defined as
N1’ = NI + a*N2, and N2° = o*N1 + N2, where a is a coefficient, less than unity
defined by the correlation coefficient, p, as follows: o = [1-(1-p*)"*]/p. Figures 10 and
11 show the improvements in average MSE and maximum MSE, respectively, due to
noise correlation. For noise correlated at 90%, a 7dB improvement is realized.

It can be concluded that noise correlation will result in an improvement in finite
differences.

Analysis Part 4

The signal frequency was varied from 50Hz to 2000Hz with a constant accelerometer
spacing of 3 inches. The ADC was set at 16 Bits with the input noise level set at 10dB
above the LSB. The signal-to-noise ratio was varied from 0dB to 50dB. Figures 41 and
42 show the improvements in average MSE and maximum MSE, respectively, as a
function of frequency. At lower frequencies (f < 500), the improvement is 6dB/octave of
frequency. At higher frequencies, the improvement is less than 6dB/octave.

It can be concluded that S50Hz signals in the presence of uncorrelated wide band noise is
the worst case for finite difference errors.

Recommendations. This analysis suggests that a dyadic sensor, covering the frequency
band of 50 Hz to 2,050 Hz, can be built in a small package like the form factor of the
existing DT 276 hydrophone (a 3-inch diameter by 6-inch long right circular cylinder).
In order to fit the necessary accelerometers in this form factor, SITTEL recommends the
use of singlecrystal or MEMS sensor technology. SITTEL is currently developing a
complete dyadic sensor and signal processing design using this advanced sensor
technology.
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Figure 32. Maximum MSE with 16 Bit ADC,
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Figure 39. Average MSE with 16 Bit ADC
as a Function of Noise Correlation
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Figure 40. Maximum MSE with 16 Bit ADC
as a Function of Noise Correlation

z 20 16 BILADG
z - ) .| Noise Level: 10dB Re LSB
w 0+ L Noise Band: 50Hz - 2050Hz
7] =
= v -
b ———— ~
§-20 Te - on - - o T T
= v
E ; .
§40% - - - - - s s
2 R
5
604 - - - -
o
>
< .80 : + ;
0 500 1000 1500 2000
Frequency (Hz)
= 0BSNR  100BSNR v 20dB SNR
. 30d8SNR  40dBSNR  50cB SNR

Figure 41. Average MSE with 16 Bit ADC
and 3 Inch Accelerometer Spacing, as a
Function of Frequency
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8.0 Summary and Recommendations For Future Research

8.1 Summary

In Section 2.0, we formulated a rigorous mathematical framework for the general
theory of directional acoustic sensors. Specifically, the number of terms in the multi-

dimensional Taylor series expansion of the acoustic pressure field p(t,? )about some
measurement point 7, defines the order of the directional sensor. A scalar acoustic
pressure sensor (.., a hydrophone) was defined as a directional acoustic sensor of order
zero. This sensor only measures the scalar acoustic pressure p(t,?o) at the point 7; its
Taylor series about 7, assumes that the acoustic pressure field p(t,? ) about that point is
independent of the field point 7 = (x, y,z). An acoustic vector sensor was defined as a
directional acoustic sensor of order one. This sensor measures both p(¢,7) and the
pressure gradient/vector Vp(t,f‘o) at the point 7, ; its Taylor series about 7, assumes that

the acoustic pressure field p(z,F ) about that point is a linear function of the field point 7 .
Similarly, an acoustic dyadic sensor was defined as a directional acoustic sensor of
order two. This sensor measures p(z,7,), Vp(t,7,) and the dyadic VVp(t,7,) at the point
7., ; its Taylor series about 7, assumes that the acoustic pressure field p(t,? ) about that

point is a quadratic function of the field point 7 .
Equation (8) is the pressure estimate generated by the dyadic sensor and is capable of

extrapolating the acoustic pressure field beyond the measurement point 7, so that it
, where R is

actually knows this field at every point inside a sphere of radius R = ‘F -7,

defined by the type of directional sensor and the error associated with the extrapolation.
The Taylor polynomial (8) is the formula used to do the wave field extrapolation with
some specified error £(7,7). The normalized mean-squared value of &(,7) vs. R/ 4 is
plotted in Figure 2. For a 10% pressure estimation error, the dyadic sensor measures the
pressure field everywhere inside a sphere of radius R = A/4. In this sense, the dyadic
sensor is equivalent to a volumetric spherical array of pressure sensors. In practical
terms, this means that for an acceptable pressure estimation error, a dense volumetric
array of pressure sensors can be replaced by a sparse array of dyadic sensors.

In Section 3.0, we answered the question: [f three accelerometers and a pressure
sensor (i.e., a vector sensor) can achieve a maximum array gain against isotropic noise
of 6.0 dB, a question that naturally follows is how many more individual sensors (e.g.,
accelerometers and/or pressure sensors) must fit into a given sensor housing or form
factor to improve upon the aforementioned directionality of the acoustic vector sensor?

Recall that the dyadic sensor measures p(t,7), Vp(t,7,) and the dyadic VVp(t,7,) at the
point 7,. According to (6), (7), and (8), we must measure 13 terms involving the pressure

and the first and second partial derivatives of the pressure. Due to the symmetry of the
mixed partials in (7), the number of distinct terms reduces to 10. We demonstrated that
these 10 terms can be estimated by 19 judiciously spaced pressure sensors, or 18
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judiciously spaced accelerometers and 1 pressure sensor placed at the origin. Under these
conditions, the dyadic sensor could achieve a maximum array gain against isotropic noise
of 9.5 dB.
In Section 4.0, we examined the effects of finite-difference approximations on the
estimation of the pressure gradient and Hessian (realization by pressure sensors) and also
examined the effects of finite-difference approximations on the estimation of Va
(realization by accelerometers). Specifically, this section analyzed some of the errors that
occur when finite-differences are used to estimate the first-order and second-order partial
derivatives of the acoustic pressure. The errors considered were those caused by a (1)
finite, nonzero spacing Ax between sensors and (2) an amplitude mismatch among the
composite frequency responses of the various sensors. Expressions for these errors were
derived and plots were generated that illustrated the dependency of error-behavior on
relative sensor spacing and dB-mismatch. From Figures 16 and 17, we conclude that
finite-differences can be utilized effectively in estimating the gradient of the pressure, but
confidence in finite-difference techniques decreases significantly when they are used to
estimate the Hessian of the pressure. It is therefore recommended that an acoustic dyadic
sensor be realized with 18 accelerometers and a pressure sensor at the origin. This will
eliminate the gradient estimation error and significantly reduce the Hessian estimation
error, since the Hessian can now be estimated by first-order finite difference
approximations. (Refer to equations (14), (15) and (16)).

Section 5.0 discussed how the dyadic sensor can be viewed as a multi-channel filter.
Refer to Figure 19. Specifically, equation (60) is the temporal Fourier transform of the
output of the filter and the inputs to the filter are the temporal Fourier transforms of the

pressure, pressure gradient and Hessian of the pressure. The filter weights W, W, and

Wz can be functions of frequency and can be chosen so that the filter output is either an

estimation of the pressure (a Taylor polynomial), a beam that achieves maximum array
gain against isotropic noise, or a beam that can be shaped in some desired fashion, like
placing a null in the beam pattern to spatially filter out an interfering source. With proper
selection of the weights to achieve maximum array gain against isotropic noise, a dyadic
sensor can produce a 65-degree beam (3-dB beam width). Under the same conditions, a
vector sensor can produce a 105-degree beam.

The experimental results in Section 6.1 show that the elements of a partial dyadic
sensor can produce acceptable beam patterns with nulls between —20 to —25 dB. The
experimental results in Section 6.2 show that a dyadic sensor is a very effective multi-
channel spatial filter.

Section 7.0 showed that first-order finite-difference approximations can be
successfully performed in the presence of quantization and wide band noise effects. A
worst-case analysis shows that using two accelerometers spaced 3 inches apart, one can
achieve a normalized RMS error of 10% when attempting a first-order finite difference of
a 50 Hz plane wave in a 2000 Hz band. This requires a signal-to-noise ratio (SNR) of at
least 30 dB and assumes that the noise at each accelerometer is uncorrelated. This can be
done using a 16-bit analog-to-digital converter (ADC). Further, for frequencies up to
2000 Hz, the required SNR drops off at about 6 dB per octave. This implies that the
same 3-inch spaced accelerometers only need a SNR of 6 dB to achieve the same 10 %
error for a first-order finite difference of an 800Hz plane wave.
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8.2 Recommendations for Future Research

Based on the results n this report, SITTEL CORPORATION recommends the
design, build and test of two complete dyadic sensors; each sensor using 18 underwater
accclerometers and a single pressure sensor housed in the existing DT 276 form factor.
In order to minimize the finite difference approximation errors and fit within the DT 276
form factor, SITTEL recommends the usc of single crystal or MEMS technology to
implement the accelerometers. SITTEL intends to perform extensive element pattern
mcasurcments associated with the complete Hessian matrix and compare these
measurements to theoretical. For a general linear acoustic wave, we will perform
extensive signal processing algorithms to show the improvement over the FY01 partial
dyadic sensor and vector sensor. We will also demonstrate how two dyadic sensors can
improve an intensity-based ranging algorithm using vector sensors. Further, we will
show that for a single plane wave source, the outputs of a dyadic sensor can be processed
in a triadic signal-processing algorithm to achieve triadic sensor performance.
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APPENDIX A
1. Finite Differences.
Define: S = A¥sin (ot)
S, = A*sin (ot — kd), where: k = 2*n/A and d = spacing between
accelerometers

Let: ot=0and kd = A9

Then: S| -S> = A*(sin0 - sin (0 - AB)) which is maximum at 6 =0
And 0 at © =(m - 6)/2

The minimum step size used in this analysis occurs when 0 = n/2.
In this case S} — S, = A*(1-cos (AB))

2. Effects of correlation.

Define: X;=8;+N,
X>=5,+N>
With: .’ = signal power, equal at both accelerometers

o,.~ = noise power, equal at both accelerometers
ps = signal correlation coefficient
Py = noise correlation coefficient

X|—X3:S1—SQ+N]——N2

Output power = <(X1 — X3)> = <(S1 — $2)*> + <(N; = N»)*>,

=20,(1 - py) + 26,°(1 - py)
Where <> denotes expected value. Signal cross noise terms are equal to 0 since signal is
uncorrrelated to noise.

If signal is sinusoidal ps= cos (kd) or if broadband over range F; to F,,
ps = cos (woT)*sin (nB1)/(nBt), with ) = n*(F,+F)), t = d/c and
B= Fz-F|

If noise is isotropic p, = sin (kd)/kd,

For broadband noise:
kd 2
<pp> = (kdy-kd))'* J.d(kd) * Sin(kd) (kd) , for d =37, F; = 50, F, = 2050,
kdl

<pp> = 0.976 and 20’112(1 - <pn>)/20n2 = -16dB or noise is reduced by 16dB due to
correlation

A-1
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