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PREFACE 

Though this report, as per its title, deals primarily with the theoretical and experimental 
investigation of acoustic dyadic sensors, it sets the groundwork for a generalized theory of 
directional acoustic sensors.  Starting with the Taylor scries of the acoustic pressure, it moves 
quickly from the basic pressure sensor to the vector sensor and then on to the dyadic sensor. 
More generalized acoustic sensors are obtained by including additional terms of the Taylor scries. 
One of the payoffs of more advanced sensors is improvement in the bcamwidth. With a vector 
sensor, we can achieve a bcamwidth of 105° from a single point. Using an acoustic dyadic 
sensor, this bcamwidth can be decreased to 65°. A further reduction in bcamwidth is anticipated 
as the order of the acoustic sensor increases (achieved by the addition of more Taylor scries 
terms). 

This report shows how finite-difference approximations can be utilized to estimate the 10 terms 
that define the dyadic sensor. The associated realization of the dyadic sensor takes on the form of 
19 judiciously placed pressure sensors. An alternative realization using 18 accclerometcrs and 1 
pressure sensor is also considered. Both realizations involve a symmetrical placement of sensors, 
which allows us to consider the sensors as collocated with a common phase center at the origin. 
A detailed analysis is carried out in this report of the error that arises when using finite 
differences in an environment of mismatched sensors that have nonzero spacing between them. 
The analysis shows that it is not prudent to employ the method of finite differences to the 
estimation of second-order partial derivatives of the pressure. The opposite is true for the 
estimation of first-order partial derivatives (the gradient of the pressure). For example, for a 
± 0.2 dB amplitude mismatch and a one-tenth of wavelength spacing, a typical mean error in 
estimating a first-order partial is about -0.14 dB with a standard deviation of about 0.06 dB. The 
error analysis leads to the recommendation that an acoustic dyadic sensor be realized with 18 
accclerometcrs and a pressure sensor at the origin. This will eliminate the gradient estimation 
error and significantly reduce the Hessian estimation error, since the Hessian of the pressure can 
now be estimated by first-order finite-difference approximations. 

This report also shows that these first-order finite-difference approximations can be successfully 
performed in the presence of quantization and wide band noise effects. A worst-case analysis 
shows that using two accclerometers spaced 3 inches apart, one can achieve a normalized RMS 
error of 10% when attempting a first-order finite difference of a 50 Hz plane wave in a 2000 Hz 
band. This requires a signal-to-noisc ratio (SNR) of at least 30 dB and assumes that the noise at 
each accclcromctcr is uncorrclated. This can be done using a 16-bit analog-to-digital converter 
(ADC). Further, for frequencies up to 2000 Hz, the required SNR drops off at about 6 dB per 
octave. This implies that the same 3-inch spaced accclerometcrs only need a SNR of 6 dB to 
achieve the same 10 % error for a first-order finite difference of a 800Hz plane wave. 

A partial dyadic sensor (three orthogonal accelerometer dipoles and a pressure sensor at the 
origin) was tested at Seneca Lake during May 2001. The experimental in-water beam pattern 
measurements confirmed theoretical predictions. SITTEL CORPORATION also demonstrated 
that for a plane wave source, dyadic sensor performance can be achieved by advanced signal 
processing of only the pressure and acceleration measurements. 

This report was prepared for James McEachern and his ONR 321SS team under ONR contract 
number N00014-01 -M-007. The Program Officer was Jan Lindberg. This is the Final Report and 
is submitted in accordance with CDRL A001, Item number 0001AA- Final Report. 
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A Theoretical and Experimental Investigation 
Of Acoustic Dyadic Sensors 

1.0 Introduction 

Current research in the area of directional acoustic sensors has shown that a tri- 
axial accelerometcr and an omnidirectional hydrophone, packaged in the same housing 
with a common acoustic phase center, can provide an effective directional acoustic sensor 
[1,2,3]. Since this type of directional acoustic sensor measures both the scalar acoustic 
pressure and the x, y and z components of the vector part of the acoustic wave field (e.g., 
the acoustic particle displacement, velocity or acceleration), it has been called an acoustic 
vector sensor [4,5,6]. A single acoustic vector sensor can provide up to 6 dB of array 
gain against isotropic noise relative to an acoustic scalar sensor or omnidirectional 
hydrophone [5]. This vector sensor can also unambiguously estimate the direction of 
arrival (DOA) of an acoustic source [4]. Further, this vector sensor can produce a 
frequency-independent beam pattern with a 3-dB beamwidth of 105 degrees [6,7]. 
If three accelerometers and a pressure sensor (i.e., a vector sensor) can achieve the above 
results, a question that naturally follows is how many more individual sensors (e.g., 
accelerometers and/or pressure sensors) must fit into a given sensor housing or form 
factor to improve upon the aforementioned directionality of the acoustic vector sensor? 
In Section 2.0, formulating a rigorous mathematical framework for the general theory of 
directional acoustic sensors provides a partial answer. From this theory we show that the 
next logical step to further improve vector sensor directionality is to define the acoustic 
dyadic sensor. Section 3 shows that, for a general linear acoustic wave, 19 judiciously 
placed pressure sensors or 18 accelerometers and one pressure sensor can approximate 
the acoustic dyadic sensor. Section 4 consists of an acoustic analysis of a theoretical 
dyadic sensor, and Section 5 shows how an acoustic dyadic sensor can be used to create a 
Multichannel filter. Experimental results from a Seneca Lake test, conducted in May 
2001, are presented in Section 6.0. Measured beam patterns for a partial dyadic sensor, 
implemented by six accelerometers and a pressure sensor, are presented in Section 6.1. 
In Section 6.2, we show how multi-channel signal processing of a vector sensor can be 
used to realize the performance of a dyadic sensor when the pressure field is assumed to 
be an arbitrary plane wave. We also provide experimental results to validate this claim. 
We close this report with Section 7.0, which provides a summary and recommendations 

for future research. 

2.0 General Theory of Directional Acoustic Sensors 

Let us consider a single acoustic sensor located at some measurement point 
r() = (xQ,y0,z()). A Taylor series for the scalar acoustic pressure field p(t,f) about this 

point would include the scalar (tensor of order zero) pressure p{t,rQ) as the zero-order 

term, the pressure gradient/vector (tensor of order one) Vp(t,rQ) at the point as part of the 

first-order term, the dyadic (tensor of order two) VV^,;";,) at the point as part of the 



second order term, and so on. Using this Taylor series, we define a general class of 
directional acoustic sensors as follows [6]. A scalar acoustic pressure sensor (e.g., a 
hydrophone) will be referred to as a directional acoustic sensor of order zero. This sensor 
only measures the scalar acoustic pressure p(t,r()) at the point F0; its Taylor series about 

r0 assumes that the acoustic pressure field p(t,r) about that point is independent of the 

field point r - (x,y,z). An acoustic vector sensor will be referred to as a directional 

acoustic sensor of order one. This sensor measures both p(t,r()) and the pressure 

gradient/vector Vp(t,r()) at the point r0; its Taylor series about F„ assumes that the 

acoustic pressure field p(t,r) about that point is a linear function of the field point F . 
Similarly, an acoustic dyadic sensor will be referred to as a directional acoustic sensor 
of order two. This sensor measures p(t,r()), Vp(t,r()) and the dyadic Wp(t,r()) at the 

point F0; its Taylor series about F0 assumes that the acoustic pressure field p(t,r) about 

that point is a quadratic function of the field point F . 

D'Spain [8] was the first to point out a qualitative relationship between the Taylor 
series expansion of the pressure field and a vector sensor. Following his observation, we 
consider a single acoustic sensor located at some measurement point F0 = (x0,_y0,z0). The 

Taylor series for the pressure p(x,y,z,t) expanded about the point (x0,y0,zn) is 

p(x,y,z,t)= p(x0,y0,z0,t) + (* - *<, )T~+(y - •>'<>)—+(z " zo )- 
o 

d x 

ö o 

d~z 
p \xi)i y»izo^) 

+ — 
2 

{x - xn )— + {y- y0 )^ + {z- z0 )— 
c x a v o z 

(1) 

p{xn,y0^0,t) + R3 

where p(x0,y0,z()j) following the brackets means that the partials within the brackets 

are to operate upon p at the point (x0, y0, z0), and the brackets indicate that the 
expansion of the quantity within is to be a trinomial expansion except that 

\oxJ \°)'J 
(2) 

is to be replaced by 

and terms like 

d"~k 

■"-i      n "\       k o x o y 

f d\° 

\oxJ 

(3) 

(4) 



are to be replaced by 1.   Let us define the column vectors 
X *0 

V '!ii = To 

_-_ _"<> _ 

(5) 

Vp(xn,yn,za,t) = 
op    op     op 

ox or o X 
(6) 

and the Hessian matrix 

VV^(.v(1,v0, z„,t) = 

c p ö p ö p 

dx2 dxdv dxdz 

d2p d2P d2
P 

dvox dv2 dvdz 

crp e2
P e2

P 
"1    "^ ozox czov 

(7) 

Using (5) through (7) in (1) and dropping the remainder term R3, we obtain 

p{x, v,zj) = p(x0,.)•„,z(),t)+\r-j\J Vp(xQ,y0,z0,t) 

+ T t - 'o ) VV^(^'(1 > v„, zQ, t)(r - /•„) 
(8) 

The function p(x,y,z,t) is the pressure estimate generated by the dyadic sensor and is 
capable of extrapolating the acoustic pressure field beyond the measurement point r0 so 

that it actually knows this field at every point inside a sphere of radius R = |/~ - ^|, where 

R is defined by the type of directional sensor and the error associated with the 
extrapolation. The Taylor series (8) is the formula used to do the wave field extrapolation 
with some specified error s{t,r)- For example, a directional sensor of order zero, can 
only measure the pressure at rn, so its estimate of the field beyond this point is 

p{t,r) = p{t,r0) and the corresponding estimation or extrapolation error is 

e(t,r) = p(l,r)- p(t,r0). If the error is required to be small (less than 10%), then R will 
be small. This implies that the aperture (2R) of a single pressure sensor is small, so by the 
theory of spatial Fourier transforms [9], the zero-order sensor is essentially 
omnidirectional. However, a sensor of order one (vector sensor) measures both the 
pressure and pressure gradient at rQ, so its estimate of the field beyond this point is 

/)(/,r) = p(t,rn)+(r - rn)■ Vp(t,P0) and the corresponding estimation error is 



e{t,r)= p(t,r)-p{f,r) 

e(t, r) = p(t, r)- [p(t, P0)+{r-r0)- Vp(t, F0)] 

(9) 

For the same error, the vector sensor will have a larger aperture than the scalar sensor, so 
it should be more directional. Thus, the dyadic sensor should be better than the scalar and 
vector sensors at estimating the field, so it should be even more directional. 

wavefront 

Figure 1. The propagation of a planar wavefront 
toward the origin of a rectangular coordinate system. 

For the case of a plane wave pressure field (refer to Figure 1), we define the mean- 
squared error in estimating the pressure field beyond r0 by 

n r 

MSE = -^jj\e{t,rfdtdß , 
xT 

(10) 
0 0 

where T is a suitable integration time (e.g., the temporal period of a plane wave) and ß is 
the angle between h and r (a unit vector in the direction of r ). 
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Figure 2. Normalized mean-squared estimation error (equation (19)) vs. RlX 
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Dividing (10) by the average power in the acoustic pressure field we obtain the 
normalized MSE. Figure 2 shows the normalized mean-squared error as a function of 
RIA for the scalar, vector and dyadic sensors. For a specified normalized MSE of 10%, 
notice that the acoustic aperture (2R) of the scalar sensor is about A/10, whereas the 
apertures for the vector and dyadic sensors are A/3 and All, respectively. Figure 3 is 
scaled to graphically depict the situation. 

Taylor Scries Extrapolation of Pressure Field = Volumetric Spherical Sensors 

dyadic 

Figure 3. Spherical coverage for 10% error. 

We are now in the position to answer the question posed in the Introduction: If three 
accelerometers and a pressure sensor (i.e., a vector sensor) can achieve the above 
results, a question that naturally follows is how many more individual sensors (e.g., 
accelerometers and/or pressure sensors) must fit into a given sensor housing or form 
factor to improve upon the aforementioned directionality of the acoustic vector sensor? 
Recall that the dyadic sensor measures p{t,r0), Vp{t,r0) and the dyadic VVp(t,f0) at the 

point r0. According to (6), (7), and (8), we must measure 13 terms involving the pressure 

and the first and second partial derivatives of the pressure. Due to the symmetry of the 
mixed partials in (7), the number of distinct terms reduces to 10. The next section 
demonstrates that these 10 terms can be estimated by 19 judiciously spaced pressure 
sensors, or 18 judiciously spaced accelerometers and 1 pressure sensor placed at the 
origin. 

3.0 Realization of an Acoustic Dyadic Sensor 

The goal of this section is to show how finite difference approximations can be used 
to estimate the 10 terms that define the dyadic sensor; that is, the scalar pressure, the 3 
terms of the pressure gradient, and the 6 distinct terms in the Hessian matrix. We will 
first show how to realize the dyadic sensor by using 19 pressure sensors, then we will 
provide a dyadic sensor realization that uses 18 judiciously spaced accelerometers and 
one pressure sensor at the origin. Both realizations utilize a symmetrical placement of 



sensors, which allows us to consider the sensors as collocated with a common phase 
center at the origin. 

3.1 Finite-Difference Approximation of the Pressure Gradient 

Figure 4 illustrates an arrangement of pressure sensors useful for estimating the 

first partial derivatives —, — and— at (0,0,0). The finite-difference approximations 
8x   dy        cz 

of the pressure gradient are given by 

ap(?m0) * W,Ä,0,0)-Jp(f,-Ä,0,0)]/2A 
8x 

M^2)»[p(r,o,Ä,0)-^0,-Ä,0)]/2A 
qv 

^M0)4(r,0,0,A)-^0,0,4)]/2A 
& 

(11a) 

(lib) 

(lie) 

The errors of the above approximations are on the order of h2. Note that 6 pressure 
sensors are required to realize the pressure gradient. 

Figure 4. The arrangement of six pressure sensors for the 
finite-difference approximation of the pressure gradient. 



3.2 Finite-Difference Approximation of the Hessian of the Pressure 

Figure 5 illustrates an arrangement of pressure sensors useful for estimating the 

second partial derivatives —V,—(-and—V at (0,0,0). The finite-difference 
dx~    cv~ dz~ 
^,^and^ 
d.x~    cy~ dz~ 

approximations of these partials arc given by 

o2/;(0,0,0,/)     p(h,0,0,t)-2p(0,0,0,l)+p{-h,0,0,t) 
ox Ir 

d2p{0,0,0j) ^ p(QJi,0,t)-2p{0,0,0,t)+p{0-h,0,t) 

oy h 

d2p{0,0.0,t)    p{0,0, h,t)- 2^(0,0,0,0 + p{0,0-h, t) 

Ir 

(12a) 

(12b) 

(12c) 

The errors of the above approximations are on the order of h2. Note from (12) and from 
Figure 5 that there are 7 pressure sensors involved in the estimation of 
o~p   o~p d-p 

— and —— at (0,0,0). The pressure sensor at the origin is also utilized to 
dx~    dy~ dz~ 

measure the acoustic pressure at (0,0,0). This pressure is the first term in the pressure 
estimate given by (8) where x(l = v„ = zf) = 0 . The other six sensors in Figure 5 are the 
same sensors that provide data for the estimates appearing in Equations (11). 

'"'-■......_ 

cy2  

] 

>..ßv2 """-"-. 

_ "i'-'--".. ><~       ^^ 
 :"::*.„ ,. 

--:><  '"t2p 
3;;;""' 

. ..-.->< 

■■a~:- 0.5 

-1      -1 

Figure 5.  Sensor placement for the estimation of the diagonal 
elements of the Hessian of the pressure at the origin. 



Figure 6 illustrates an arrangement of pressure sensors useful for estimating the 

mixed second partial derivatives ——, —— and —— at (0,0,0). The four "star" 
dxdy   dxdz       dydz 

sensors can be used to estimate d2 p I dxdy , the four "diamond" sensors can be used 
.V= !' = --(> 

^-   .^  / ^ A to estimate crp/oxo. 

-, 2       / ^    -> o p/oyo 

, and the four "square" sensors can be used to estimate 

. The finite-difference approximations of these partials are given by 

0(0,0,0,')   p{\AAt)- p(4,-4,0,/)- p(-\AAt)+ p(-\-\s>,t) 

oxov 

a2p(o,o,o,0„MTA4,0-HTA-4,?)-p(-4,o,4,Q+M-4A-i0 
dxdz h2 

d2p{o,o,o,t)_.p{QA,4,t)-p{o,± -4,0-p(o,-f,4,Q+^(o-j-4,0 

(13a) 

(13b) 

(13c) 

The errors of the above approximations are on the order of h2. Note from (13) and from 
Figure 6 that there are a total of 12 pressure sensors involved in the estimation of 

c~ p    o" p d-p and^- at (0,0,0). This makes a total of 19 sensors: 7 for the estimation of 
dxdy   dxdz        dydz 
the gradient and the diagonal terms of the Hessian and 12 for the estimation of the off- 
diagonal terms of the Hessian. 

c-p 

-1   -1 

Figure 6.  Sensor placement for the estimation of the off-diagonal 
elements of the Hessian of the pressure at the origin. 



3.3 Realization of a Dyadic Sensor by Means of Accelerometers 

From Newton's Second Law of Motion, the pressure gradient and acoustic particle 
acceleration vector are related by 

Vp = -pä (14) 

Taking the vector gradient of both sides of (14) results in the dyadic/Hessian 

VVp = -V(p ä) = -pVci - ciVp « -pVä (15) 

where 

Vtf = 

oa. oa. oa. 

dx ox dx 
dax day da. 

dv dv dv 

tex 
oa v 8a _ 

dz dz dz 

(16) 

is the gradient of a , p is the mass density and Vp is the gradient of the mass density at 

the origin. Note the approximation appearing in (15). According to Camp [10], a 
reasonable acoustic approximation is to neglect Vp at the origin.   Equations (14) and 

(15) are two of the three quantities measured by a dyadic sensor (pressure being the third 
one). First-order finite difference approximations can be used to estimate the elements of 
(16). This would require 18 accelerometers symmetrically arranged as in Figures 5 and 
6. Like the pressure sensor realization of the dyadic sensor, the accelerometer realization 
utilizes a symmetrical placement of accelerometers, which allows us to consider the 
accelerometers as collocated with a common phase center at the origin. 

3.4 Comparison of Pressure and Accelerometer Realizations of the Dyadic Sensor 

Table 1 provides comparisons between the pressure and acceleration methods of dyadic 
sensor realization: 

Table 1 
Pressure Realization Accelerometer Realization 

Requires 19 pressure sensors with one at the 
origin. Sec Figures 5 and 6 for placement. 

Requires 19 sensors (18 accelerometers and 
one pressure sensor). See Figures 5 and 6 for 
placement. 

One hydrophone at origin measures pressure One hydrophone at origin measures pressure 
Estimates the pressure gradient by first-order 
finite differences. 

Measures the pressure gradient. Sec Eq. (14). 

Docs not require knowledge of p at the 
measurement point to estimate the Hessian. 

Requires knowledge of p at the measurement 
point to estimate the Hessian. 

Requires first-order and second-order finite- 
difference approximations 

Requires only first-order finite-difference 
approximations 



4.0 Analysis of a Theoretical Acoustic Dyadic Sensor 

This section will examine the effects of finite-difference approximations on the 
estimation of the pressure gradient and Hessian (realization by pressure sensors). It will 
also examine the effects of finite-difference approximations on the estimation of Va 
(realization by accelerometers). 

4.1 Pressure Gradient Estimation 

In the underwater and in-air communities, the pressure gradient/vector, needed for 
a vector sensor, is found in a variety of different ways. As discussed above, one can 
measure the acoustic particle acceleration vector a(t,r0) directly and use (14) and 

knowledge of the mass density at the measurement point F0 to obtain a fairly accurate 

value of the pressure gradient Vp(t,r{)). Alternatively, one could measure the acoustic 

particle velocity vector v(t,rn) directly, perform a time derivative to get the acceleration 
vector and proceed as above to get the pressure gradient. (The accuracy of this method 
would depend on how well one implemented the time derivative). If one decides to use 
scalar pressure sensors to approximate the pressure gradient, then the finite difference 
approximations in (11) would have to be computed. However, great care must be 
exercised when approximating the pressure gradient by (11). For example, (11a) 
approximates the x-component of the pressure gradient at the measurement point 
rn = (0,0,0). (Refer to Figure 4). If the pressure field was the arbitrary (narrowband or 

broadband) plane wave 

p{tj') = f(t + ^-), (17) 

which is assumed to be propagating toward the origin of the coordinate system in Figure 
1, then the exact value of the temporal Fourier transform of the pressure gradient would 
be 

VP(co,r) = jF{ajkelhT = JP{co,?)k . (18) 

Here, the wavenumber or propagation vector k = kh has the magnitude k = col c = 2K IA 
and the direction n , where h is the unit vector 

h = sin <f)T cos 8Tx + sin <f>T sin 6Ty + cos <firz. (19) 

The position vector 

r = xx + yy + zz = r sin <j) cos 6x + r sin <f> cos 6y + r cos <fi        (20) 
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is the vector from the origin to an arbitrary field point r = (x, v,z) in rectangular 

coordinates or r = (/-sin^cos#,/-sin^sin#,rcos^) in spherical coordinates. The 
temporal Fourier transform of the plane wave pressure field (17) is found by using 

P(coj) = j"rp{t,?yj""dt. (21) 

Now if we use (1 la) to approximate the x-component of the pressure gradient at the 
origin (the point r{) = (0,0,0)), then the temporal Fourier transform of this approximation 
can be expressed as 

dP(co,i\)        ,    _N     -/       * /   xsin(/c h) 

ox 
(22) 

Since the exact value of Py(co,r{)) is given by 

Px{eoJ'0) = jkxF{a>), (23) 

as h —> 0, the estimate given by (22) approaches the exact value given by (23). A good 
measure of the quality of the gradient estimation is the decibel error 6 , namely, 

t =20 log (24) 

Since h = AJV/2 , where Ar is the sensor spacing, we have from (22) and (23) that 

t =201og|sinc(A-vAx-/2j (25) 

Figure 7 illustrates the error 6 as a function of Ax/A for the case <f>r = 90° and 6T = 0° 
An error of -0.5 dB will occur for a spacing of Ax = 0.186/1 or 0.186 wavelengths. A 
spacing of one-tenth of a wavelength will yield an error of-0.14 dB. Another popular 
measure of the quality of estimation is the percent error defined as 

f 
p 

\ 
Ö = -1 L 

p 
V J 

xlOO (26) 

The relationship between Sc and £ is illustrated in Figure 8. For example, a value for $ 

of 0.4 dB corresponds to a öc of about 4.7%. 
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0.15 0.2 0.25 0.3 0.35 0.4 
Sensor separation as a fraction of a wavelength 

0.45 0.5 

Figure 7. The error f in estimating the partial derivative of the pressure with 

respect to x (at the origin),   (j), = 90  and 6T = 0°. 

Figure 8. Relationship between percent error and dB error. 

Notice that (25) is frequency dependent because of the presence of kx and is valid only 
when the two hydrophones in the x-axis dipole (Refer to Figure 4) are exactly matched in 

12 



their amplitude and phase frequency responses. In practice, this is seldom the case, so we 
must modify our analysis to include the effects of mismatch in the frequency responses of 
the hydrophone and corresponding signal conditioning associated with each hydrophone 
in the dipole. The temporal Fourier transform of (17) is 

p(coJ-) = F(co)eik,: (27) 

However, when the pressure waveform impinges on the sensor, the sensor would 
transform this pressure to the analog voltage Fourier transform 

V{(0,r) = K((o)P{co,r) (28) 

The quantity K(co) is the composite (sensor sensitivity plus electronics) frequency 
response of the sensor. Taking the temporal Fourier transform of (1 la) and incorporating 
the composite frequency responses of the two sensors, we arrive at 

V{coJ;)=F{co) 
K,(^)g

,v'-K2(ft>)e 

2/7 

-jkj, 

Let the mismatch between the two sensors be described by the quantity 

M 
K,(ö>) 

where ju{co) and C,{co) are the amplitude and phase mismatch, respectively. 

Utilizing (30) in (29) gives 

K\co) 

The magnitude of (31) is 

V(a>,r0) 

F(cofkJ -^ 
V    ; 2/7 

j[-kj<-; (<:>)} 

KXco) 
Px{cojA = \F{co} 

■yjl -2//cos(2/cv/7 -^)+//9 

2/7 

The dB gradient estimation error has the value 

yl —2/Jcos(2kJi ~C)+ ju2 

f =20 log 
2k h 

(29) 

(30) 

(31) 

(32) 

(33) 
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When // = 1 and C, = 0, there is no amplitude and phase mismatch and (33) reduces to 

(25). The error t becomes infinite when k\ = 0 . However, kx = 0 means that the 

pressure waveform is not a function of x, and we would not be estimating the partial 
derivative of the pressure with respect to x since it is zero. From Equation (1 la) we 
observe that the separation between the two sensors along the x axis is Ax = 2/?. 
Assuming that £ - 0 (no phase mismatch) and noting that/i v = 2/nijA, we can write (33) 

as 

t =20 log 
■yjl - 2// cos(2/r(/?vAx/A)) + //" 

2x(nxAx/A) 
(34) 

Figure 9 is a contour plot of 6 versus Ax/A and // for the case nx = sin <f>T cos#r = ±1 

{t is an even function of nx). The contours shown correspond to t = ±1, ± 0.5 and 0 

0.15 0.2 0.25 0.3 0.35 
Sensor separation as a fraction of a wavelength 

Figure 9. Contour plot of the error f as a function of \x and Ax/A, for the 

case nn = ±1. 

dB. From the figure we see that to achieve a gradient estimation error of-0.5 dB (-5.6%) 
when the sensor amplitude mismatch is// = -1 dB, we need a sensor spacing of 0.1 
wavelengths. This is 46% smaller than the required relative spacing with no mismatch. 
Figure 10 is a contour plot for the case »v = ±\. Note that for the same & and ju the 

sensor spacing is now 0.2 wavelengths or double the previous value. For an arbitrary «v, 

the new spacing would be 0.l/|//v| wavelengths. Note that the spacing increases as |«v| 

decreases. Hence, |HV| = 1 is the most restrictive case and Figure 9 should be used to 

determine the required sensor spacing. 
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Figure 10. A contour plot of the error f for the case 7?v = +—. 

4.2 Estimation of the Pure Second-Order Partial Derivatives of Pressure 

This section performs an analysis of the error that results in utilizing finite-difference 
approximations to estimate the pure second-order derivatives of acoustic pressure. The 

(-h,0,0)     (0,0,0)     (h,0,0)       x 

K, K- K, 

Figure 11. Arrangement of pressure sensors for the finite-difference 

approximation of the pure second-order partial o~ pjOX' at the origin. 

errors that will be considered are those due to non-zero sensor spacing and to mismatch 
in the frequency responses of the various sensors. We will be concerned with the second- 
order partial derivative d2 p(0,0,0,t)/dx2 . The results of error analyses of the two other 
pure second-order partial derivatives would be analogous. Figure 11 shows the 
arrangement of the pressure sensors.Starting with the estimation equation (13a) we would 
arrive at an equation analogous to (29), namely, 
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V„W = FW 
Kx exp{jkJi)-2K, + AT, exp(-,/AvA) 

A2 (35) 

If /C, = K-, = Kt (no mismatch), then (35) reduces to 

Vvv(co) = -k;K,F(«)sinc2 (Av A/2) (36) 

From Figure 5 we observe that the relative sensor spacing is Ax = A . The error t is 
given by 

t =20 log 
?2p(b,fl?y. cxov 

f-P^,co)dxoy 
20 log 

P.. 

F, 
= 401og|sinc(AvAx-/2| (37) 

Equation (37) approaches zero as Ax approaches zero. A comparison of (37) with (25) 
reveals that for a given sensor separation Ax , the error in estimating the pure second- 
order partial derivative is twice the error in estimating the first-order partial derivative. 
The problem is more complicated when the sensors are mismatched. The magnitude of 
(35) has the form 

M (38) 

where 

ju = 

K:JK, 

1 

Ml 

Mi 

1 -2COS(AYA)     COS(2AVA) 

-2COS(AVA) 4 -2COS(AVA) 

COS(2A'VA)     -2COS(A'VA) 1 

(39) 

(40) 

For this more general case, (37) becomes 

$ =20 log 4tLTE 
(A,AX)

2 
(41) 

If each element in // is one, then (41) reduces to (37). In the current error analysis we 

have ignored the mismatch in phase response between sensors. A more complete 
analysis would result in addition of a phase terms in the arguments of the cosines that 
appear in (40). To see the effect of sensor mismatch on the dB error #, let us begin by 
computing the relative sensor spacing to achieve an # of-0.4 dB (4.7% error) when 
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(j)T = 90 and 6T = 0C. If we use (37) we will obtain tSx/A = 0.118 . Figure 12 shows a 

contour plot of f in dB versus the mismatch parameters //, and //, for the special case 

(/), = 90 , 0T = 0  and Ax/A = 0.118 . Observe from Figure 12 that when //, = //2 =0 dB, 

the value of t is -0.4 dB as expected. We see from the figure, that sensor mismatch may 
improve the error (note the 0 dB error contour). However, the error can get much larger. 
For example, if //2 = -0.5 and //, = +0.5 dB, the value of f increases to about 2 dB. 

-0.5 0 0.5 
Mu2lndB 

Figure 12. Contour plot for f as a function of the mismatch parameters 
M: and |u:, for the special case of (j), = 90", 0T = 0° and Ax/^= 0.118. 

4.3 Estimation of the Mixed Second-Order Partial Derivatives of Pressure 

This section performs an analysis of the error that results in utilizing finite-difference 
approximations to estimate the mixed second-order derivatives of acoustic pressure. The 
errors that will be considered are those due to non-zero sensor spacing and to mismatch 
in the frequency responses of the various sensors. We will be concerned with the second- 
order partial derivative d2 p(0,0,0, t)/dxdy . The results of error analyses of the other 
mixed second-order partial derivatives would be analogous. Figure 13 shows the 
arrangement of the pressure sensors. 
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Figure 13. Arrangement of pressure sensors for the finite-difference 

approximation of the mixed second-order partial C  p/OXOy at the origin. 

Starting with the estimation equation (13a) we would arrive at an equation analogous to 
(35), namely, 

/(*,+*, ),/2 „       /■(*,-*,. >./2 v      A-k^kr),l2 /(-*,-*., >./2 
,,   /   \    r/   \A> -A\<? +A3e -A4e  
VAV (ö)) = F(ö>) ^ —    (42) 

If A"4 = Ä\, = K2 = A', (no mismatch), then (42) reduces to 

yvi. (a) = -Ä;YÄ',. A",F(«)sinc(/cv A/2)sinc(Av A/2) (43) 

The error t takes on the form 

fi = 201og|sinc(A-Y/7/2)sinc(AvA/2] (44) 

^'approaches zero as h approaches zero. The problem is more complicated when the 
sensors are mismatched. The magnitude of (42) has the form 

i      ,   ., \F{OD\   r—.  
(45) 

where 
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M 

1 " 1  " 

K2/K, fh 
KJK, M, 

1*4/*J j"4_ 

(46) 

r 

cos •S(A',./7) -COS(A-V/?) COS((AV+A,,)?) 

-COS(A,./>)                  1 COS((AV-A,,)?) -COS(AV/?) 

-cos(Av/?)       COS((AV-A,.)?) 1 -COS(A,7?) 

COS((A( +kvp)      -cos(Av/?) -COS(A,./?) 1 

(47) 

The error f' becomes 

t = 20 log -\tLYtL 
JkJJkJ) 

(48) 

When the vector // contains all ones, (48) simplifies to (44). In order to gain some 

understanding of the behavior of (48), let us define 

dB(/)=201og 
'A:^ 

\K\ J 
,   / = 2,3,4 (49) 

We will choose a positive number dBmax and declare each dB(/) to be a random variable 

uniformly distributed on the interval (-dBmax,+dBmax). Once sample values are obtained, 
the sensor sensitivities are given by 

K, =K.\0   20 ',   / = 2,3,4 (50) 

Figure 14 shows a plot of the error (48) versus the sensor separation in terms of a fraction 
of a wavelength for dBmax going from 0.1 to 2 dB in steps of 0.1 dB. The values of 
<f)r and Gr are 90° and 45°, respectively. Equations (49) and (50) were applied 100 times 

for each dBmax and the maximum error plotted. Figure 14 reveals some important 
features of the estimation error. As the relative sensor separation h/A becomes larger, 

the error is less sensitive to the degree of sensor mismatch. Note that at half-wavelength 
spacing the band of error between dBmax = 0.1 dB and dBmax = 2 dB is narrow. However 
for h/A < 0.2, the relative error is highly sensitive to sensor mismatch, the error reaching 

unsatisfactory values very quickly. In summary, for small h/A the error is sensor- 

mismatch limited and for large h/A the error is sensor-spacing limited. It appears from 

Figure 14 that the sensor spacing should be somewhere in midrange. Figure 15 gives a 
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plot of relative estimation error in dB for sensor spacing from 0.2 to 0.5 wavelengths, and 
sensor mismatch parameter dBnm of 0.5, 1.0, 1.5, and 2.0 dB. 

0.2 0.25 0.3 0.35 0.4 
Sensor separation as a fraction of a wavelength 

Figure 14. Error f with dB„m going from 0.1 to 2 dB in steps of 0. 
dB and <!>, = 90° and 0T = 45°. 

_ 1 

\ I            !            \ 
\ \j 
\\.      :     \2.0 dB 

\sS\1.5dB\ 

^~\^^ : i.o <JB ^\, 

 • ; \ - 

i 0.5 dB    ^^~~- 

1                           I                            i                           i                            i                      

0.3 0.35 0.4 
Sensor separation as a fraction of a wavelength 

Figure 15. Error (' with dBmax of 0.5, 1.0, 1.5, and 2.0 dB and <|)T = 
90° and 9T = 45° 
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4.4 Summary 

This section has analyzed some of the errors that occur when finite-differences are used 
to estimate the first-order and second-order partial derivatives of the acoustic pressure. 
The errors considered are those caused by a (1) finite, nonzero spacing Ax between 
sensors and (2) an amplitude mismatch among the composite frequency responses of the 
various sensors. Expressions for these errors were derived and plots were generated that 
illustrated the dependency of error-behavior on relative sensor spacing and dB-mismatch. 

This section ends by describing pictorially the statistical behavior of the estimation 

error.  Let <pr = 90 and 0T = 45 . Let us first focus on estimating d2 p(0,0,0,t)/dxdy . 

Figure 16 shows a histogram of the estimation error (equation (48)) at a sensor spacing of 
0.1 wavelengths. All of the sensors were assumed to be within ± 0.2 dB of each other (a 

uniform probability distribution for each // was assumed). The histogram represents a 

compilation of 2000 sample realizations. Also illustrated in Figure 16 is the mean value 
and standard deviation of the estimation error for sensor spacing from 0.1 to 0.5 
wavelengths. At a spacing of 0.1 wavelengths, the mean error is about 0.25 dB. 
Mowever, the standard deviation is 1 dB. Note that as the spacing increases, the mean 
error increases, whereas the standard deviation decreases. 

Figure 17 contrasts the estimation of the first-order partial derivative dp[0,0,0,t)/dx and 

the second-order partial derivative<92/?(0,0,0,/)/dx2 . For both cases, <j)r =90° and 

0T = 0 . Observe the plots in the upper portion of Figure 17. The mean error (in 

estimating the second-order partial, refer to equation (41)) at the right is twice the mean 
error (in estimating the first-order partial) at the left. The lower portion of Figure 17 
shows the standard deviation of both cases. In the first-order partial case, the standard 
deviation is constant with respect to sensor spacing and has a small value of 0.0571. In 
the second-order partial case, the standard deviation decreases exponentially from 0.66 at 
a spacing of 0.1 wavelengths to 0.065 at a spacing of 0.5 wavelengths. At a sensor 
spacing of 0.1 wavelengths, the mean error in estimating the first-order partial is -0.14 
dB and the mean error in estimating the second-order partial is -0.28 dB. Note that at 
small values of sensor spacing, the standard deviation of the error in estimating the 
second-order partial is large as compared to the mean value of the error. The opposite is 
true for the estimation of the first-order partial derivative. That is, the standard deviation 
of the error is small as compared to the mean value of the error. From Figures 16 and 17, 
we conclude that finite-differences can be utilized effectively in estimating the gradient 
of the pressure, but confidence in finite-difference techniques decreases significantly 
when they are used to estimate the Hessian of the pressure. It is therefore recommended 
that an acoustic dyadic sensor be realized with 18 accelerometers and a pressure sensor at 
the origin. This will eliminate the gradient estimation error and significantly reduce the 
Hessian estimation error, since the Hessian can now be estimated by first-order finite 
difference approximations. (Refer to equations (14), (15) and (16)). 
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0.25 0.3 0.35 
Spacing relative to wavelength 

Figure 16. Statistical behavior of the error in estimating the mixed second- 
order partial derivative (with respect to x an y) at the origin. 

Estimation error in dB Estimation error in dB 
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Spacing relative to wavelength 

0.1 0.2 0.3 0.4 
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0.5 0.1 0.2 0.3 0.4 
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Figure 17. Statistics of the error in estimating the first-order (shown at the left) 
and pure second-order (shown at the right) partial derivatives of the pressure at 
the origin. 
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5.0 Multichannel Filtering and Directional Acoustic Sensors 

For the purposes of this section, it is convenient to deal with the temporal Fourier 
transform of the Taylor series (8).  Generalizing (8) in the frequency domain we obtain 

p(fo,/-) = Wn{co,r)P{co,rt)) + W} {co,r)- VP(co,r(l)+ W2{co,r)■ VVP{co,ra)■ W2{co,r),      (51) 

where we have retained only the first three terms of the series (dyadic sensor) and the 

weights W{), fVt and W2 are chosen such that the right side of (51) is consistent with the 

Taylor scries approximation of the pressure field. Specifically, Wt) = 1, Wx = r -r{) and 

W2 = (r - r() )/V2 are the only weights that allow (51) to be a Taylor series extrapolation 

of the pressure field by a dyadic sensor. 
It is important to note that (51) is valid for any analytic acoustic wave field. For 

the special case of an arbitrary plane wave we have that 

P{to,ra) = F{a>y-f° 

VP(co,r0) = jP(co,F0)k 

VVP{o)J\)) = -P{(o,rüjkk 

(52a) 

(52b) 

(52c) 

where the quantity kk is a dyadic and is equivalent to the rank 1 matrix kk_' where 

k = (53) 

Without loss of generality, we can let r0 = (0,0,0) in (52). The substitution of (52) into 

(51) gives 

P(coj) = p(co,ö)g(k,r) (54) 

where 

fch g\K>r + jr-±r~ (55) 

y = k -r = 2n — n ■ r 
Ä 

(56) 

The magnitude of (55) is 
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s N = , 1 + Z_ 
4 

(57) 

Equation (54) is in actuality an estimation provided by a dyadic sensor of the temporal 
Fourier transform of the pressure of a plane wave at the field point specified by the vector 
r . The quality of the estimation would depend on the value of r/A , where /* is the 
distance of the field point from the origin and/I is the wavelength. Indeed, from (52) and 
(54) we can write 

^p=201og 
P{coJ-) 

P{co,r) 
= 20 logg N (58) 

The magnitude of the g function is seen to define the dB error resulting from estimating 

P(co,r) by means of replacing the Taylor series by a Taylor polynomial of degree 2. 

Figure 18 contains several normalized polar plots of 10'i/in = P/P   plotted as a function 

of 0S for (j)T = <f)s = W and 6r = 0' where the angles <j>s and 9S appear in the vector 

r = sin^s. cos#5A' + sin^s sin6sy + cos<j)sz (59) 

90    1 90    1 

270 

r/lambda » 0.2 

r/lambda • 0.32 

90   1 

270 

r/lambda - 0.1 

Figure 18. Polar plots of the normalized Taylor approximation error as a 
function of 0S for <|>s = <j>T = 90° and 9T = 0° and several values of r/A,. 

24 



The parameter r/A takes on values of 2, 0.32, 0.2, and 0.1. The plots have been 

normalized so that the maximum value is unity. Observe that the polar plots in Figure 18 
have the form of a beam pattern. As r/A becomes smaller, the beam pattern approaches 

an omnidirectional pattern. The r/A = 2 pattern has a beam width of 65.54°   Equation 

(58) can be given two interpretations: (1) Taylor approximation error and (2) beam 
pattern. Thus, (54) can be interpreted as the generator of a beam pattern. In this 
interpretation the value of r is not driven by the need for an acceptable error bound on the 
estimate of P(co,r). The variable /• simply becomes a parameter in the forming of a 

beam and the function g\k,r) can be interpreted as a discriminative function. The vector 

/" in (56) becomes a steering vector and we are now interested in the quality of 
discrimination of the beam rather than the quality of estimation of P(co,r). 

From Figure 18 we see that there is an ambiguity in the beam patterns (presence of two 
peaks). Mathematically, this ambiguity is caused by the fact that (57) is an even function 
of y . It would be beneficial to generate beam patterns that do not have this ambiguity. 

Beam pattern ambiguity can be eliminated or significantly reduced by picking other sets 
of weights in (51). However, by doing so, we no longer have a valid Taylor series. It is 
more correct to modify (51) to 

B(co,r) = Wa(co,r)P{co,r„)+W](co,r)■ VP(co,r()) + W2{a,?)■ VVP(co,r0)■ W2(a,r) (60) 

where the function B(co,r) could represent the output of a frequency domain multi- 

channel filter with P(co,rt)), VP(co,f{)) and WP(co,r()) as the inputs. Refer to Figure 19 

for a pictorial representation of this concept. 

P fa) 

M* Jo) 
Wp{tJ-0) 

Multi-channel filter ► b(t, r) 

Figure 19. Multi-channel Filtering and Directional Acoustic Sensors 

Thus, (60) is a generalization of (51) and can be viewed as a multi-channel filtering 
approach to directional sensors. Consider the following set of weights: 

W](co,f) = a 
c   r 

W2(co,r) = 4ß 

jco r 

c   r 

(61) 

jco r 
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where a and ß are two parameters that may be a function of frequency. The substitution 
of (61) into (60) results in 

where 
B{a>,r) = p(p,o)g(n,r) 

g{h, r) = \ + a{n ■ r) + ß(h ■ r)~ 

(62) 

(63) 

We could select the weights in (63) to steer the beam of the directional sensor so that we 
have maximum sensitivity in the look direction and place a null in another direction. 
Further, we could select the weights so that the directional sensor produces a beam 
pattern that results in maximum array gain against isotropic noise [14]. Figure 20 shows 
the two weight-selection criteria for the vector sensor. The maximum-array gain case of 
Figure 20(a) corresponds to a = 3,ß = 0, whereas the optimum-null case of Figure 20(b) 
corresponds to a = l,ß = 0. Figure 21 does the same for the case of the dyadic sensor. 
The maximum-array gain case of Figure 21(a) corresponds to a = -2, ß = -5 , whereas 
the optimum-null case of Figure 21(b) corresponds to a = 2,ß = 1. Observe that in each 
case, the ambiguity was eliminated or significantly reduced. 

105° 
For maximum 

Array gain 
.,.0    For optimum 
131     Null placement 

Array gain = 6 dB Array gain = 4.8 dB 

(a) (b) 

Figure 20. Selection of weights for a vector sensor, (a) For 
maximum array gain, (b) For optimum null placement. 

For maximum For optima 

Z70 

Array Gain-9.5 dB 

(a) 

Figure 21. Selection of weights for a dyadic sensor, (a) 
For maximum array gain, (b) For optimum null 
placement. 
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6.0 Experimental Results Using a Partial Dyadic Sensor 

A vector sensor placed at a point in space measures both the pressure and the gradient of 
the pressure at that point. A dyadic sensor also does this. In addition, it also measures all 
of the spatial second-order partial derivatives of the pressure at the point. This section 
will discuss a partial dyadic sensor. The dyadic sensor is partial in the sense that it only 
measures the spatial pure second-order partial derivatives of the pressure (i.e., the 
diagonal elements of the Hessian matrix (7)), not the mixed second-order partials. Figure 
5 shows the placement of the components of the partial dyadic sensor. The components 
consist of a pressure sensor at the origin and six CAVES-type (flexural disk) 
accelerometers placed at the extremities of the three orthogonal lines in Figure 5. 
SITTEL CORPORATION used the services of EDO Electro-Ceramic Products, Salt 
Lake City, Utah to build the partial dyadic sensor illustrated in Figure 22.   Figure 23 
shows the support structure used to make beam pattern measurements. These 
measurements were performed at Seneca Lake in May 2001. 

In section 6.1, we derive the theoretical beam patterns for the elements of the partial 
dyadic sensor and provide measured results from Seneca Lake to validate the theory. In 
section 6.2, we show how multi-channel signal processing of a vector sensor can be used 
to realize the performance of a dyadic sensor when the pressure field is assumed to be an 
arbitrary plane wave. We also provide experimental results to validate this claim. 

Figure 22. Partial dyadic sensor built by EDO Electro-Ceramic Products. 
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Figure 23. Support structure used for partial dyadic sensor. 

6.1 Theoretical and Experimental Beam Patterns for a Partial Dyadic Sensor 

The goal of this section is to discuss beam patterns produced by particular accelerometer 
components and certain combinations of accelerometer components of the EDO sensor. 
Specifically, we will focus on the lines labeled d2p/dx2 and d2p/dy2 in Figure 5. The 

accelerometer at the left extremity of the line d2p/dx2 will be referred to as the 
+ x accelerometer, whereas the accelerometer at the right extremity will be called the - x 
accelerometer. Similarly, the accelerometer at the foremost extremity of the line 
d2p/dy2 will be referred to as the + y accelerometer, whereas the accelerometer at the 
rearmost extremity will be called the - y accelerometer. Before presenting empirical 
beam pattern measurements, it is necessary to first discuss the theoretical equivalents. It 
is well known in the theory of vector sensors, that the frequency-independent beam 
pattern of a single accelerometer follows a cos# ( + x or -x accelerometer) or sin# 
( + y or - y accelerometer) pattern. We will derive the theoretical beam pattern for 

dajdx, which can be approximated by the first-order finite difference of the + x and 

- x accelerometers. Let us begin with the relationship 

dax 

dx 

1 82p 

p dx2 (64) 
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This relationship is valid for a homogeneous medium resulting in a constant/? . For a 
sinusoidal plane wave of frequency <x>, (64) becomes 

dax(t,r)     k2   .   2 2        /   ^ 
= —sin  tpr cos  0Tp[t,r) 

ox p 

The mean-square value of (65) is 

rdax(t,rf\ 2      AQ -K   COS   0T 

V ÖX y 
where 

k2 

K = —sin2 <f>Tp
2(t,r) 

P 

(65) 

(66) 

(67) 

The parameter K is kept constant by fixing the frequency <x> and the angle <j)T. We 
generate a theoretical beam pattern for dajdx by plotting (66) as a function of the angle 

0T . Similarly, we generate a theoretical beam pattern for day/dy by plotting 

fda ,MY 
dy 

2-4/1 = K  sin  6T (68) 

as a function of the angle 6>r . 

A first-order finite difference of the + x and - x accelerometers was used to estimate the 
left side of (64). Figures 24 (a) and (b) give the empirical and theoretical beam patterns 
of both accelerometers at 1200 Hz. Both empirical patterns are close to the theoretical 
"cos6*" pattern. Note the -25 dB nulls in the empirical patterns. Figure 24 (c) consists of 
the empirical and theoretical patterns for dax jdx . The empirical pattern is close to the 

theoretical " cos2 6 " pattern. Note the - 21 dB nulls for the empirical pattern in contrast 
to the infinite nulls for the theoretical pattern.   Pulsing a source at a fixed frequency of 
1200 Hz, recording and processing data, and then rotating the vertical shaft in Figure 23 
in the xy plane in order to achieve a different angle 0T generated the patterns for dax /dx 

and day/dy, respectively. Figures 25 (a) and (b) give the empirical and theoretical beam 

patterns of the + y and - y accelerometers. Both empirical patterns are close to the 
theoretical "sin6" pattern. Note the -25 dB nulls in the empirical patterns. Figure 25 (c) 
consists of the empirical and theoretical patterns for dajdy. The empirical pattern is 

close to the theoretical " sin2 0 " pattern. Note the - 21 dB nulls for the empirical pattern 
in contrast to the infinite nulls for the theoretical pattern. 
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(c) 

Figure 24. Empirical and theoretical beam patterns, (a) +x accelcromcter 
(b) "X accelcromcter (c) the difference between the +x and-x accelerometers. 

Figure 25. Empirical and theoretical beam patterns, (a) +y accelerometer (b)~y 
accelerometcr (c) the difference between the +y and -y accelerometers. 
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6.2 Achieving Dyadic Sensor Performance by Multi-channel Processing of a Vector 
Sensor in a Plane Wave Field 

In this section, we show how multi-channel signal processing of a vector sensor can be 
used to realize the performance of a dyadic sensor when the pressure field is assumed to 
be an arbitrary plane wave. We also provide experimental results to validate this claim. 

First, consider the case where the pressure waveform is a sinusoidal (narrowband) plane 
wave having the form 

p(x, v, z,t)= p(r, t)= A sin (cot + £ + k ■ r ) (69) 

The gradient and the Hessian of (69) at (v0, v„,z()) are 

Vp(x„, v„,z0,t) = k.Acos(cot + £ + k-r{i) (70) 

V Vp(x(), v„ ,z()j) = -k_k'A sin (cot + £ + k-r0) (71) 

where k_ is the column vector of wavenumbers. Let us now place a vector sensor at the 
point (x{), v„, z{)). This sensor measures 

p{x0, v„, za, /) = A sin {(Ot + £ + k ■ r0) (72) 

a(x(), v„,z0,/) = ^cosf^ + ^ + A' -r;,) (73) 
P 

where the column vector a contain the acceleration components. From (73) we obtain 
the 3x3 matrix 

9      2 

kk' = ——\a{xa,ya,_0,t)a' (xQ, v„,z0,t)dt (74) 
A    J 

Equations (70) and (71) can be expressed as 

V/?(A-0 , v(l, za, t) = -pa(x0, v0, z0, t) (75) 

^      2 

VVp(x(), v(),z0,t)= —— p(x0, v0,z0,t)ja(x0, v0,z0,t)a (xQ,y0,z0,t)dt    (76) 

The above pair of equations indicates that for time-harmonic plane wave fields, both the 
pressure gradient and the pressure Hessian can be determined by pressure and 
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acceleration measurements. A vector sensor located at (x(),yt),z0) achieves these 

measurements. 

Let us now consider an arbitrary (narrowband or broadband) plane wave. An arbitrary 
plane wave moving towards the origin can be written in the form 

p{x,y,zj) = f t+  
V        c   J 

(77) 

It follows Vp and VVp have the values 

c 
t + — 

V        c   J 
(78) 

VV/? = m? —h\ t + 
c   V        c   J 

n-T^ 
(79) 

where 
g = f 
h = g' = f" 

(80) 

The Fourier transforms of (77), (78), and (79) are 

FM = F{j°>)exP jco- 
n -r 

(81) 

¥[Vp] = n-jcoF[p] 

F[vv^] = -nn'- co2F[p] 

(82) 

(83) 

The Fourier transform of the acceleration is given by 

F
[ö] = —Ftv^] = —a ia Fip] 

P PC 
(84) 

Multiplying (84) by the transpose of its conjugate results in 

F[dF*'M = 7-^rM'^2|FH2 

KP0) 
(85) 
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Equation (85) leads to an expression for nn', namely, 

111  ={pc)- %   „  .  r  (86) 
I &r|F[/;J dco 

The quantities Vp and Wp can be expressed in terms of the pressure and acceleration as 
follows: 

F[Vp] = -~pF\a] (87) 

F[Wp] = -p2a>2F[pY   U   r    , (88) 
*y~ F[/?J Ja» 

Equations (87) and (88) indicate that for an arbitrary plane wave field, both the pressure 
gradient and the pressure Hessian can be determined by pressure and acceleration 
measurements. A vector sensor located at (xt), y„, z()) achieves these measurements. 
Based on the above discussion, we can use equations (60) and (61) to construct a 
frequency domain multi-channel filter with P(co,r0), VP(o),r{)) and WP(co,r0) as the 
inputs. In this way, we can obtain the performance of a dyadic sensor with vector 
sensor measurements. 

In order to validate this claim, tests were conducted at Seneca Lake during the period 
May 2001. A vector sensor was placed at the origin of a rectangular coordinate system 
and a 400 Hz acoustic target was placed &tRT = \30 ft.,0r = O\0r = 90"relative to the 
vector sensor (refer to Figure 1). Figure 26 shows a contour plot of the mean-squared 
value of (60) as a function of frequency and azimuth with ß = 0 (a vector sensor). This is 
the Frequency-Azimuth (FRAZ) display for a vector sensor. The weights of the multi- 
channel filter (a = 3, ß = 0) were chosen so that the vector sensor beam would achieve 
maximum array gain against isotropic noise. Figure 27 shows the FRAZ display that 
results when the weights of the multi-channel filter (a = -2,ß = -5 ) were chosen so that 
the equivalent dyadic sensor beam would achieve maximum array gain against isotropic 
noise. A comparison of Figures 26 and 27 shows the spatial filtering improvement when 
using the extra estimate of (88) to achieve dyadic performance from a vector sensor. 

Using the same test set-up as above, a 1300 Hz interfering source was placed at 
Rr =222 ft., 6T =225c,^7 =19° relative to the vector sensor, so now we have a 400 
Hz target and a 1300 Hz interferer simultaneously radiating energy toward the vector 
sensor. Once again, a comparison of Figures 28 and 29 shows the significant 
improvement of using the extra estimate of (88) to achieve dyadic performance from a 
vector sensor. 
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Figure 26. FRAZ display using vector sensor processing (single 400 Hz target 
located at r = 130 ft, 9T = 0°, <t>T = 90°). 
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Figure 27. FRAZ display using dyadic sensor processing (single 400 Hz target 
located at r = 130 ft, 0T = 0°, <t>T = 90°). 
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Figure 28. FRAZ display using vector sensor processing (400 Hz target located at 
r = 130 ft, GT = 0", <t>T = 90°and 1300 Hz interfercr located at r, = 222 ft, 0, = 225°, 

+i = 19°). 
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FRAZ display using dyadic sensor processing    (400 Hz target located at r = 130 ft, 
= 90°, and 1300 Hz interferer located at r, = 222 ft, 0, = 225°, <)>, = 19°). 
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7.0 Effects of Quantization and Wide Band Noise on Finite Differences Between 
Two Accelerometers 

This section analyzes the effects of quantization and wide band noise on the finite 
differences between sinusoidal signals received from two accelerometers spaced three to 
six inches apart. The noise bandwidth is 2000 Hz and is comprised of the following three 
components: 

(1) Ambient Ocean noise 
(2) Preamplifier noise 
(3) Analog to Digital Converter (ADC) quantizing noise. 

Ambient noise ranges from the maximum acceptable noise as shown in the NUWC 
Vector Sensor Specifications dated 03 Feb 2000, to a value 40dB higher. An 
accelerometer sensitivity of-18 dBv/g is used. Preamplifier noise is -166dBv/VHz, 
which is equivalent to the noise floor of a SITTEL CORPORATION signal conditioner. 
ADC quantizing noise is 10.8dB below the least significant bit (LSB) level or quantizing 

Accelerometer 1 
Sens: -18dBv/g 

Gain: 40dB 
BW:  50-2050HZ 

16 to 24 Bits 
1 Volt Full Scale 

Signal 1 

Ambient  P/A 1   ADC 1 
Noise 1   Noise   Noise 

Preamplifier/ 
Filter 1 

ADC 1 

f 
Spacing, d 

Ambient   P/A 2 ADC 2 
Noise 2    Noise  Noise 

'   Signal 2   * 

Accelerometer 2 
Sens:-18dBv/g 

Finite 
Difference 

Gain: 40dB 
BW:  50-2050HZ 

16 to 24 Bits 
1 Volt Full Scale 

Figure 30. Modeling Setup 

step size of the ADC. For an N-bit, bipolar ADC with full-scale amplitude of + Fs, the 
LSB level is Fs/2(N"I). The analysis uses both a 16-bit ADC and 24-bit ADC to observe 
the effects of quantizing step size on the finite difference errors. Figure 30 shows the 
modeling setup used for the analysis. 

The analysis is comprised of the following four parts: 
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Part 1. The signal frequency is set at 50Hz, which is considered to be worst case 
since the finite differences are the smallest at the lowest signal frequencies within the 
band with fixed accelcrometer spacing. Noise is considered to be uncorrelated between 
accelerometcrs. Accelcrometer spacing is 3 inches and 6 inches. The RMS value of the 
composite noise ranges from 1 LSB to 100 LSB's for the 16-bit ADC and from 256 
LSB's to 25,600 LSB's for the 24-bit ADC with the sinusoidal signal levels, in each case, 
ranging from OdB to +50dB above the composite noise level. The signals are assumed to 
be plane wave and arrive along the axis formed by the two accelerometers. 

Part 2. The signal frequency is set at 50Hz. Noise is uncorrelated between 
accelerometers. Accelerometer spacing is 3 inches and 6 inches. The RMS value of the 
composite noise ranges from 1 LSB to 100 LSB's for the 16-bit ADC and from 256 
LSB's to 25,600 LSB's for the 24-bit ADC with the sinusoidal signal levels, in each case, 
ranging from OdB to +50dB above the composite noise level. The signals are assumed to 
be plane wave and arrive along the axis formed by the two accelerometers. The signal is 
sensed with 2 accelerometer sets and averaged to determine improvement in errors due to 
averaging. 

Part 3. The signal frequency is set at 50Hz. The noise correlation coefficient 
between accelerometers ranges from 0% to 95% to determine the improvements in finite 
difference errors due to correlated noise. The noise and signal attributes are as described 
in part 1 and part 2. A 16-bit ADC converter is used with 3-inch spacing between 
accelerometers. With close accelerometer spacing, ambient noise is likely to be 
correlated as described in Appendix A. 

Part 4. The signal frequency varies from 50Hz to 2000Hz with a constant 
accelerometer spacing of 3 inches. Improvement is expected at higher frequencies due to 
greater finite differences. The ADC is set at 16 Bits with the input noise level set at lOdB 
above the LSB. The signal-to-noise ratio varies from OdB to 50dB. 

Conclusions. Jt is feasible to measure finite differences of 50Hz sinusoidal signals, in 
the presence of wide band noise, emanating from accelerometers with 3-inch spacing 
between accelerometers. When input signal plus noise levels are large enough to dither 
the ADC, the analysis shows that the errors depend upon the signal to noise ratio. An 
acceptable dithering level is lOdB or greater relative to the LSB of the ADC. At this 
level, there is no difference in error performance of a 16-bit ADC and a 24-bit ADC. 
Normalized errors are the difference between the perturbed finite difference and actual 
finite difference divided by the actual finite difference. 

For a 50Hz signal from 2 accelerometers spaced 3 inches apart, with wide band noise 
uncorrelated between accelerometers, a SNR of 30dB is required to obtain a normalized 
average RMS error of 10%. The normalized average RMS error is the square root of the 
normalized mean square error averaged over a cycle of signal frequency. For a 
normalized maximum RMS error of 10%, the SNR must be in excess of 50dB. The 
normalized maximum RMS error is the square root of the maximum normalized MSE 
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within a cycle of signal frequency. In this analysis, the maximum MSE occurs at the peak 
of the sinusoidal signal where the minimum finite difference occurs. The minimum finite 
difference is defined as A*(l-cos (A9)) where A is the peak signal amplitude and A0 is 
equal to 2*n*d/X, with d equal to the distance between accelerometers and X equal to the 
wavelength. A SNR of 36dB is required for a normalized maximum RMS error equal to 
the minimum finite difference. 

The analysis has shown that increasing the spacing between the accelerometers results in 
lower errors for the same signal frequency. At 50Hz, a 6dB improvement is realized by 
6-inch spacing over 3-inch spacing. 

The analysis has shown that averaging the finite differences of 2 sets of accelerometers 
looking at the same signal results in 3dB error improvement as long as the noise is 
uncorrelated between sets of accelerometers. 

The analysis has shown that lower errors occur when the noise between accelerometers is 
correlated. The improvement is 7dB from 0% correlation to 90% con-elation at a given 
SNR. The actual noise con-elation is not known but is expected to be high due to the 
close spacing of the accelerometers. 

Finally, the analysis has shown that 50Hz has the worst case errors. The errors for 3-inch 
spacing improve at higher frequencies. For frequencies up to 500Hz, the enor 
improvement is 6dB per octave of frequency. For frequencies above 500Hz, the 
improvement is substantial, although less than 6dB per octave. 

Analysis. A Monte Carlo analysis was used to compute the difference enor due to noise 
and quantizing effects. A signal cycle was divided into 400 phases with each phase 
equivalent to the phase shift between accelerometers. The finite difference is the 
difference in instantaneous amplitudes between 2 adjacent phases of the signal. The 
mean square error (MSE), between the finite difference corrupted by noise and ADC 
effects, and the actual finite difference, was computed at each of the 400 phases using 
2048 sample functions of noise at each ADC input. The average MSE was then 
computed by averaging the MSE over a cycle of signal input and normalizing to the 
actual finite difference. Likewise the maximum MSE was computed by determining the 
maximum MSE over a cycle and normalizing to the actual finite difference. It is 
expected that the maximum enor occuned at the minimum finite difference. As shown 
in Appendix A, the minimum finite difference is equal to A*(l-cos (A0)), where A is the 
peak signal amplitude and A0 is equal to 2*ic*d/A., with d equal to the distance between 
accelerometers and X equal to the wavelength. The maximum finite difference is equal to 
A*sin (A9). 

With 3 inch spacing, at 50Hz, A9 is equal to 0.9 degrees, and the minimum finite 
difference is equal to A*123*10~06. The ratio of maximum to minimum finite difference 
is 127 or 42.1 dB. With 6 inch spacing, at 50Hz, A6 is equal to 1.8 degrees, and the 
minimum finite difference is equal to A*493*10"06.  The ratio of maximum to minimum 
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finite difference is 63 or 36.1 dB. The finite differences are directly proportional to 
frequency for a constant spacing between accelerometers. 

Analysis Part 1 

Figures 3 1 and 32 show the normalized average MSE and maximum MSE, respectively, 
versus input noise level and signal to noise ratio (SNR) for a 16 bit ADC and 3-inch 
spacing. The minimum noise level is about lOdB above the ADC LSB. A 30dB SNR is 
required for a normalized MSE of 1%, which corresponds to a normalized RMS error of 
10%. However, for a normalized maximum MSE of 1%, a SNR in excess of 50dB is 
required. A 36dB SNR is required for a normalized maximum MSE less than the 
minimum finite difference. 

These plots show that the errors are constant with input noise levels and a function of 
only the SNR for input levels that are lOdB or more above the LSB of the ADC. The 
slight decrease of errors at levels below lOdB relative to the LSB, for SNR's OdB to 
30dB are unexplained and may be anomalies caused by small input levels relative to the 
ADC LSB. Since it is good practice to maintain minimum RMS noise into an ADC at a 
level lOdB or more above the LSB, the data below lOdB is ignored. 

Figures 33 and 34 show the normalized average MSE and maximum MSE, respectively, 
versus input noise level and SNR for a 24 bit ADC and 3-inch spacing. The minimum 
noise level is about 48dB above the ADC LSB. It can been seen that the errors are 
equivalent to those of the 16 bit ADC with input noise 13dB or higher relative to the 
LSB. 

It can be concluded that as long as the input RMS noise level is kept above the LSB of 
the ADC, the finite difference errors of a 16 bit ADC is comparable to those of a 24 bit 
ADC. A 30dB SNR is required to keep the average MSE below 10%. A 36dB SNR will 
keep the maximum MSE below the minimum finite difference. 

Figures 35 and 36 show the average MSE and maximum MSE, respectively, for a spacing 
of 6 inches, with 50FIz input into a 16-bit ADC. As shown in the figures, the errors are 
6dB lower than those with 3-inch accelerometer spacing are. This suggests that higher 
frequencies will have lower errors at 3-inch spacing. Errors as a function of frequency 
are addressed in part 4 of this analysis. 

Analysis Part 2 

Figures 37 and 38 show the average MSE and maximum MSE, respectively, for a spacing 
of 3 inches, with 50Hz input into a 16-bit ADC with the finite differences obtained from 
an average of 2 accelerometer sets. As shown in the figures, the errors are 3dB lower 
than those obtained with a single set of accelerometers. This analysis shows that as long 
as the noise is uncorrelated between sets of accelerometers, an improvement in finite 
difference error can be realized by averaging. 
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Analysis Part 3 

Adding portions of uncorrelated noise from one accelerometer into the other 
accelerometer simulated correlated noise. Defining Nl as the noise from accelerometer 
#1 and N2 as the noise from accelerometer #2, the correlated noise inputs are defined as 
NT = Nl + a*N2, and N2' = a*Nl + N2, where a is a coefficient, less than unity 
defined by the correlation coefficient, p, as follows: a = [l-(l-p2)1/2]/p. Figures 10 and 
11 show the improvements in average MSE and maximum MSE, respectively, due to 
noise correlation. For noise correlated at 90%, a 7dB improvement is realized. 

It can be concluded that noise correlation will result in an improvement in finite 
differences. 

Analysis Part 4 

The signal frequency was varied from 50Hz to 2000Hz with a constant accelerometer 
spacing of 3 inches. The ADC was set at 16 Bits with the input noise level set at lOdB 
above the LSB. The signal-to-noise ratio was varied from OdB to 50dB. Figures 41 and 
42 show the improvements in average MSE and maximum MSE, respectively, as a 
function of frequency. At lower frequencies (f < 500), the improvement is 6dB/octave of 
frequency. At higher frequencies, the improvement is less than 6dB/octave. 

It can be concluded that 50F£z signals in the presence of uncorrelated wide band noise is 
the worst case for finite difference errors. 

Recommendations. This analysis suggests that a dyadic sensor, covering the frequency 
band of 50 Hz to 2,050 Hz, can be built in a small package like the form factor of the 
existing DT 276 hydrophone (a 3-inch diameter by 6-inch long right circular cylinder). 
In order to fit the necessary accelerometers in this form factor, SITTEL recommends the 
use of singlecrystal or MEMS sensor technology. SITTEL is currently developing a 
complete dyadic sensor and signal processing design using this advanced sensor 
technology. 
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as a Function of Noise Correlation 
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8.0 Summary and Recommendations For Future Research 

8.1 Summary 

In Section 2.0, we formulated a rigorous mathematical framework for the general 
theory of directional acoustic sensors. Specifically, the number of terms in the multi- 
dimensional Taylor series expansion of the acoustic pressure field p(t,f) about some 

measurement point r0 defines the order of the directional sensor. A scalar acoustic 

pressure sensor (e.g., a hydrophone) was defined as a directional acoustic sensor of order 
zero. This sensor only measures the scalar acoustic pressure p(t,f0) at the point F0; its 

Taylor series about r0 assumes that the acoustic pressure field p(t,r) about that point is 

independent of the field point r = (x,y,z). An acoustic vector sensor was defined as a 

directional acoustic sensor of order one. This sensor measures both p(t,r0) and the 

pressure gradient/vector S7p(t,r0) at the point r0; its Taylor series about r0 assumes that 

the acoustic pressure field p(t,r) about that point is a linear function of the field point f . 
Similarly, an acoustic dyadic sensor was defined as a directional acoustic sensor of 
order two. This sensor measures p(t,r0), Vp(t,r0) and the dyadic Wp(t,f0) at the point 

r0; its Taylor series about r0 assumes that the acoustic pressure field p{t,r) about that 

point is a quadratic function of the field point r . 
Equation (8) is the pressure estimate generated by the dyadic sensor and is capable of 

extrapolating the acoustic pressure field beyond the measurement point r0 so that it 

actually knows this field at every point inside a sphere of radius R = \r - f0\, where R is 

defined by the type of directional sensor and the error associated with the extrapolation. 
The Taylor polynomial (8) is the formula used to do the wave field extrapolation with 
some specified error s(t,r). The normalized mean-squared value of s(t,r) vs. RIA is 
plotted in Figure 2. For a 10% pressure estimation error, the dyadic sensor measures the 
pressure field everywhere inside a sphere of radius R = A/4. In this sense, the dyadic 
sensor is equivalent to a volumetric spherical array of pressure sensors. In practical 
terms, this means that for an acceptable pressure estimation error, a dense volumetric 
array of pressure sensors can be replaced by a sparse array of dyadic sensors. 

In Section 3.0, we answered the question: If three accelerometers and a pressure 
sensor (i.e., a vector sensor) can achieve a maximum array gain against isotropic noise 
of 6.0 dB, a question that naturally follows is how many more individual sensors (e.g., 
accelerometers and/or pressure sensors) must fit into a given sensor housing or form 
factor to improve upon the aforementioned directionality of the acoustic vector sensor? 
Recall that the dyadic sensor measures p(t,r0), Vp{t,r0) and the dyadic VVp(t,rQ) at the 

point rQ. According to (6), (7), and (8), we must measure 13 terms involving the pressure 
and the first and second partial derivatives of the pressure. Due to the symmetry of the 
mixed partials in (7), the number of distinct terms reduces to 10. We demonstrated that 
these 10 terms can be estimated by 19 judiciously spaced pressure sensors, or 18 
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judiciously spaced accelerometers and 1 pressure sensor placed at the origin. Under these 
conditions, the dyadic sensor could achieve a maximum array gain against isotropic noise 
of 9.5 dB. 
In Section 4.0, we examined the effects of finite-difference approximations on the 
estimation of the pressure gradient and Hessian (realization by pressure sensors) and also 
examined the effects of finite-difference approximations on the estimation of Va 
(realization by accelerometers). Specifically, this section analyzed some of the errors that 
occur when finite-differences are used to estimate the first-order and second-order partial 
derivatives of the acoustic pressure. The errors considered were those caused by a (1) 
finite, nonzero spacing Ax between sensors and (2) an amplitude mismatch among the 
composite frequency responses of the various sensors. Expressions for these errors were 
derived and plots were generated that illustrated the dependency of error-behavior on 
relative sensor spacing and dB-mismatch. From Figures 16 and 17, we conclude that 
finite-differences can be utilized effectively in estimating the gradient of the pressure, but 
confidence in finite-difference techniques decreases significantly when they are used to 
estimate the Hessian of the pressure. It is therefore recommended that an acoustic dyadic 
sensor be realized with 18 accelerometers and a pressure sensor at the origin. This will 
eliminate the gradient estimation error and significantly reduce the Hessian estimation 
error, since the Hessian can now be estimated by first-order finite difference 
approximations. (Refer to equations (14), (15) and (16)). 

Section 5.0 discussed how the dyadic sensor can be viewed as a multi-channel filter. 
Refer to Figure 19. Specifically, equation (60) is the temporal Fourier transform of the 
output of the filter and the inputs to the filter are the temporal Fourier transforms of the 

pressure, pressure gradient and Hessian of the pressure. The filter weights W0, W^ and 

W2 can be functions of frequency and can be chosen so that the filter output is either an 
estimation of the pressure (a Taylor polynomial), a beam that achieves maximum array 
gain against isotropic noise, or a beam that can be shaped in some desired fashion, like 
placing a null in the beam pattern to spatially filter out an interfering source. With proper 
selection of the weights to achieve maximum array gain against isotropic noise, a dyadic 
sensor can produce a 65-degree beam (3-dB beam width). Under the same conditions, a 
vector sensor can produce a 105-degree beam. 

The experimental results in Section 6.1 show that the elements of a partial dyadic 
sensor can produce acceptable beam patterns with nulls between -20 to -25 dB. The 
experimental results in Section 6.2 show that a dyadic sensor is a very effective multi- 
channel spatial filter. 

Section 7.0 showed that first-order finite-difference approximations can be 
successfully performed in the presence of quantization and wide band noise effects. A 
worst-case analysis shows that using two accelerometers spaced 3 inches apart, one can 
achieve a normalized RMS error of 10% when attempting a first-order finite difference of 
a 50 Hz plane wave in a 2000 Hz band. This requires a signal-to-noise ratio (SNR) of at 
least 30 dB and assumes that the noise at each accelerometer is uncorrelated. This can be 
done using a 16-bit analog-to-digital converter (ADC). Further, for frequencies up to 
2000 Hz, the required SNR drops off at about 6 dB per octave. This implies that the 
same 3-inch spaced accelerometers only need a SNR of 6 dB to achieve the same 10 % 
error for a first-order finite difference of an 800Hz plane wave. 
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8.2 Recommendations for Future Research 

Based on the results in this report, SITTEL CORPORATION recommends the 
design, build and test of two complete dyadic sensors; each sensor using 18 underwater 
accclcrometers and a single pressure sensor housed in the existing DT 276 form factor. 
In order to minimize the finite difference approximation errors and fit within the DT 276 
form factor, SITTEL recommends the use of single crystal or MEMS technology to 
implement the accelerometers.  SITTEL intends to perform extensive element pattern 
measurements associated with the complete Hessian matrix and compare these 
measurements to theoretical. For a general linear acoustic wave, we will perform 
extensive signal processing algorithms to show the improvement over the FY01 partial 
dyadic sensor and vector sensor. We will also demonstrate how two dyadic sensors can 
improve an intensity-based ranging algorithm using vector sensors. Further, we will 
show that for a single plane wave source, the outputs of a dyadic sensor can be processed 
in a triadic signal-processing algorithm to achieve triadic sensor performance. 
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APPENDIX A 

1. Finite Differences. 

Define: S, = A*sin (cot) 
S2 = A*sin (cot - kd), where:  k = 2*KIX and d = spacing between 

accelerometers 

Let: cot = 9 and kd = A9 

Then: S| — S2 = A*(sin8 - sin (9 - A0)) which is maximum at 9 = 0 
And 0 at 0 = (TI - 9)/2 

The minimum step size used in this analysis occurs when 9 = Till. 
In this case S, - S2 = A*(l-cos (A9)) 

2. Effects of correlation. 

Define: X, = S,+N| 
X2 = S2 + N2 

With: as~ = signal power, equal at both accelerometers 
G„~ = noise power, equal at both accelerometers 
ps = signal correlation coefficient 
p„ = noise correlation coefficient 

X|-X2 = S|-S2 + N,-N2 

Output power = <(X 1 - X2)
2> = <(S 1 - S2)

2> + <( N, - N2)
2> 

= 2as
2(l - ps) + 2an

2(l - pn) 
Where <> denotes expected value.  Signal cross noise terms are equal to 0 since signal is 
uncorrrelated to noise. 

If signal is sinusoidal ps= cos (kd) or if broadband over range Fi to F2, 
ps = cos (tüoT)*sin (7IBT)/(TIBT), with co0 = 7i*(F2+Fi), x = d/c and 
B = F2-F| 

If noise is isotropic pn - sin (kd)/kd, 

For broadband noise: 
kd 2 

<pn> = (kds-kd,)"1* ^d(kd)*Sin{kd)l(kd), for d = 3", F, = 50, F2 = 2050, 
kd\ 

<pn> = 0.976 and 2a„2(l - <p„>)/2an
2 = -16dB or noise is reduced by 16dB due to 

correlation 
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