
AFRL-IF-WP-TR-1999-1505

LEGACY SOFTWARE RE-ENGINEERING
TECHNOLOGY (LSRET)

PETER G. CLARK
JOHN A. GILL

TASC
55 WALKERS BROOK DRIVE
READING, MASSACHUSETTS 01867

APRIL 1998

FINAL REPORT FOR PERIOD OF 20 MARCH 1996 - 20 FEBRUARY 1998

Approved for public release; distribution unlimited. I

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7334

20010824 013

NOTICE

USING GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA
INCLUDED IN THIS DOCUMENT FOR ANY PURPOSE OTHER THAN
GOVERNMENT PROCUREMENT DOES NOT IN ANY WAY OBLIGATE THE US
GOVERNMENT. THE FACT THAT THE GOVERNMENT FORMULATED OR
SUPPLIED THE DRAWINGS, SPECIFICATIONS, OR OTHER DATA DOES NOT
LICENSE THE HOLDER OR ANY OTHER PERSON OR CORPORATION; OR
CONVEY ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE, OR SELL
ANY PATENTED INVENTION THAT MAY RELATE TO THEM.

THIS REPORT IS RELEASABLE TO THE NATIONAL TECHNICAL
INFORMATION SERVICE (NTIS). AT NTIS, IT WILL BE AVAILABLE TO THE
GENERAL PUBLIC, INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION.

•fficA,
ETH LITTLEJ'

Project Engineer

aftwyv
/AMES S. WILLIAMSON, Chief
Embedded Info Sys Engineering Branch
Information Technology Division
Information Directorate

WALTER B. HARTMAN
Acting Wright Site Coordinator
Information Directorate

Do not return copies of this report unless contractual obligations or notice on a
specific document requires its return.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (07040188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

APRIL 1998

3. REPORT TYPE AND DATES COVERED

FINAL REPORT FOR 03/20/1996 - 02/20/1998
4. TITLE AND SUBTITLE

LEGACY SOFTWARE RE-ENGINEERING TECHNOLOGY (LSRET)

6. AUTHOR(S)

Peter G. Clark
John A. Gill

5. FUNDING NUMBERS

C F33615-92-D-1052
PE 78611
PR 3090
TA 01
WU 14

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)

TASC
55 WALKERS BROOK DRIVE
READING, MASSACHUSETTS 01867

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

INFORMATION DIRECTORATE
AIR FORCE RESEARCH LABORATORY
AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AFB, OH 45433-7334
POC: KENNETH LITTLEJOHN. AFRL/IFTA. 937-255-6548 EXT. 3587

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL-IF-WP-TR-1999-1505

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE, DISTRIBUTION UNLIMITED.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This Final Report documents the state of the Legacy Software Reengineering Technology (LSRET)
Prototype Project at the time it was halted. The technology developed by TASC under the LSRET
program was to be used to assist in the reengineering of avionics software. The RET was designed to
process FORTRAN and JOVIAL code, and generate Ada code. The RET was also designed to be
extensible to other High Order Languages.

Much of the existing avionics software is poorly documented for maintenance purposes. LSRET was
being developed to support engineers in transforming the legacy code into a more modern
programming language and also to be used to (re)document either the legacy or the reengineered
systems. This would improve the maintainability of the avionics software in two ways. LSRET could
reengineer the software into a language that promotes better software engineering practices; and also
makes it easier to find engineers who are trained in the use of the newer language. Second, LSRET
could redocument the legacy and reengineered systems making them easier to maintain in the future.

14. SUBJECT TERMS 15. NUMBER OF PAGES

38
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

SAR
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

TABLE OF CONTENTS

Page

1. SCOPE 1-1

1.1 IDENTIFICATION 1-1
1.2 SYSTEM OVERVIEW 1-1
1.3 DOCUMENT OVERVIEW 1-1

2. REFERENCED DOCUMENTS 2-1

2.1 GOVERNMENT DOCUMENTS 2-1
2.2 NON-GOVERNMENT DOCUMENTS 2-1

3. TECHNICAL STATUS SUMMARY 3-1

3.1 SOFTWARE REENGINEERING STUDY 3-1
3.2 TECHNOLOGY TRANSITION 3-1
3.3 MULTIPLE LANGUAGE REENGINEERING PROCESS MODEL 3-3
3.4 EXISTING FORTRAN REENGINEERING TECHNOLOGY 3-4
3.5 LSRET PROTOTYPE 3-4
3.6 TESTING AND EVALUATION OF THE REENGINEERING TECHNOLOGY 3-5

4. SOFTWARE ASSETS DESCRIPTION 4-1

4.1 REASONING SYSTEMS SOFTWARE REFINERY 4-1
4.2 CUSTOM-DEVELOPED SOFTWARE 4-1

4.2.1 The ada Directory 4-2
4.2.2 The lsret Directory 4-2
4.2.3 The analyze Subdirectory 4-3
4.2.4 The casu Subdirectory 4-4
4.2.5 The casu-f Subdirectory 4-4
4.2.6 The cd Subdirectory 4-5
4.2.7 The ded Subdirectory 4-5
4.2.8 The dfd Subdirectory 4-6
4.2.9 The global Subdirectory 4-6
4.2.10 The hid Subdirectory 4-7
4.2.11 The jovial Subdirectory 4-8
4.2.12 The pak Subdirectory 4-8
4.2.13 The redoc-Ute Subdirectory 4-9
4.2.14 The src Subdirectory 4-9
4.2.15 The uid Subdirectory 4-10
4.2.16 The refine Directory 4-10
4.2.17 The ret Directory 4-11
4.2.18 The spag Directory 4-14

4.3 EXTRACTING AND RUNNING THE PROTOTYPE 4-14
4.3.1 Extracting the RET from Tape 4-14
4.3.2 Starting and Stoppingthe RET 4-15

5. CONCLUSIONS 5-1

in

LIST OF FIGURES

Figure Page
3-1 LSRET PROJECT PLANNING CHART 3-2
3-2 DIAGRAM OF THE LSRET PROCESS MODEL 3-4
4-1 LSRET SOFTWARE DIRECTORY STRUCTURE 4-2

IV

LIST OF TABLES

Table Page
4-1 CONTENTS OF THE LSRET DIRECTORY 4-3
4-2 CONTENTS OF THE CASU SUBDIRECTORY..... 4-4
4-3 CONTENTS OF THE CASu-F SUBDIRECTORY 4-5
4-4 CONTENTS OFTHE CD SUBDIRECTORY 4-5
4-5 CONTENTS OFTHE DED SUBDIRECTORY 4-6
4-6 CONTENTS OFTHE DFD SUBDIRECTORY 4-7
4-7 CONTENTS OF THE GLOBAL SUBDIRECTORY 4-7
4-8 CONTENTS OFTHE HID SUBDIRECTORY 4-8
4-9 CONTENTS OF THE JOVIAL-PARSER SUBDIRECTORY 4-8
4-10 CONTENTS OF THE PAK SUBDIRECTORY 4-9
4-11 CONTENTS OFTHE SRC SUBDIRECTORY 4-10
4-12 CONTENTS OFTHE UID SUBDIRECTORY 4-10
4-13 CONTENTS OF THE REFINE DIRECTORY 4-11
4-14 CONTENTS OF THE RET DIRECTORY 4-12

1. SCOPE

1.1 IDENTIFICATION

This Final Report (FR) documents the state of the Legacy Software
Reengineering Technology (LSRET) Prototype Project at the time it was halted.

1.2 SYSTEM OVERVIEW

The purpose of the RET Prototype System is to support Wright Laboratory (WL)
and other software maintenance personnel who are responsible for reengineering
legacy software in translating programs written in FORTRAN and JOVIAL into
Ada. The RET planned to recognize FORTRAN 77 [1] and the J73 dialect of
JOVIAL [2], and generate Ada code compatible with the Ada 83 dialect [3]. The
RET will be designed to satisfy this specific objective and be extensible to other
High Order Languages (HOLs).

From 1992 to 1995 'we developed and implemented a RET capable of
transforming FORTRAN to Ada under the Avionics Software Reengineering
Technology (ASRET) project. The ASRET project included a software
reengineering study, reengineering process model development, reengineering
technology development, and testing and evaluation activities [4].

Under ASRET, we investigated existing reengineering and reverse engineering
processes, techniques, and software tools. Based on this study, we developed a
process model and environment for reengineering software from one language
(FORTRAN) to another (Ada). The approach is to engineer an Ada program by
reusing portions of the original FORTRAN design and implementation. We
designed and implemented a RET prototype to assist the engineer in this process.

Under LSRET, the prototype executes on a Sun Sparc 10 workstation under
Solaris at Wright Laboratory. We developed the RET on a Sparc 20 at TASC's
Reading, Massachusetts facility.

1.3 DOCUMENT OVERVIEW

This report contains the status of the project and the entire RET Prototype
System and is divided into the following sections:

1-1

• Section 1 — Scope

• Section 2 — Referenced Documents

• Section 3 — Technical Status Summary

• Section 4 — Software Assets Description

• Section 5 — Conclusions

Section 1 describes the purpose and structure of the RET Prototype System and
the purpose of the FR. Section 2 identifies the Government and non-Government
documents that are referenced in and used in the preparation of this SDD.
Section 3 describes the status of all of the technical activities within the Project
at the time it was halted. Section 4 describes the configuration and state of the
commercial off-the-shelf (COTS) and custom-developed software assets acquired
and built for the RET, again at the time the project was halted. Section 5
provides some brief concluding remarks regarding the potential for this type of
tool had it been allowed to proceed to its planned completion.

1-2

2. REFERENCED DOCUMENTS

2.1 GOVERNMENT DOCUMENTS

1. MIL-STD-1753, FORTRAN DoD Supplement to ANSI X3.9-1978, 9
November 1978.

2. MIL-STD-1589C, JOVIAL (J73), 6 July 1984.

3. ANSI/MIL-STD-1815A, Ada Programming Language, 22 January 1983.

4. Avionics Software Reengineering Technology (ASRET) Project Final
Report Volume I, Project Summary, Account, and Results, Technical
Report WL-TR-95-1119, Avionics Directorate, Wright Laboratory, Air
Force Systems Command, Wright Patterson AFB, Ohio, May 1995.

5. Avionics Software Reengineering Technology (ASRET) Project,
Reengineering Tool (RET) User's Manual, Technical Report WL-TR-95-
1118, Avionics Directorate, Wright Laboratory, Air Force Systems
Command, Wright Patterson AFB, Ohio, May 1995.

2.2 NON-GOVERNMENT DOCUMENTS

6. Legacy Software Reengineering Technology (LSRET) Software
Reengineering Study Report, Technical Report TR-08290-12-3, TASC,
Reading, Massachusetts, 15 November 1997.

7. P.G. Clark, et al., Automated Reengineering for Legacy Weapon System
Software, Proceedings of the 16th AIAA/IEEE Digital Avionics Systems
Conference, 26-30 October 1997, Vol. I, pp. 1.1-35 -1.1-42.

8. Software Requirements Specification for the Legacy Software
Reengineering Technology (RET) Prototype System RET-SRS-01,
Revision 1, Technical Report TR-08290-12-la, TASC, Reading,
Massachusetts, 15 August 1997.

9. Software Design Description for the Legacy Software Reengineering
Technology (RET) Prototype System RET-SDD-01, Technical Report TR-
08290-12-2, TASC, Reading, Massachusetts, 30 June 1997.

lO.Software Refinery Training Manual, Reasoning Systems, Revised, June
1993.

11.GNU Emacs Manual, Seventh Edition, Version 19, Free Software
Foundation, September 1992.

2-1

12.LSRET Source & Executables (Current & New RET), 8 mm data tape,
TASC, Reading, Massachusetts, 13 February 1998.

2-2

3. TECHNICAL STATUS SUMMARY

This section provides a status summary of the major technical tasks within the
project at the time the work was halted. Figure 3-1 shows the planned schedule
for the project and where we were on the schedule at termination.

3.1 SOFTWARE REENGINEERING STUDY

The Software Reengineering Study for LSRET had been completed and the draft
was submitted to the Air Force [6]. The Study comprised a tool review, literature
review, and a number of software reengineering experiments aimed at
identifying better diagrams to enhance program understanding. The Study
concluded that the Control Data Call Diagram and Control Dataflow Diagram,
together with the theory on partitioning legacy embedded avionics software
systems and the analysis process that was used, constitute a powerful and novel
technology applicable to avionics software reengineering. TASC was awaiting Air
Force comments before finalizing the Study.

3.2 TECHNOLOGY TRANSITION

This activity was to be ongoing throughout the duration of the project. It
consisted of identifying potential technology transition candidates by whatever
means we could and then contacting the candidates to arrange presentations and
demonstrations with the idea of interesting them in using the LSRET Prototype
when it became available.

3-1

0

a
z

O

s

5

<
5

o

z

o
in

<

<

O

o

o

■o

■0-<l-

■<i<J 04 a

tf

i: <i ■<]■

e

t
■<]:-

-0--
•o-
o

■o
o
-<>-
-o-
o
o
o
o
o
o

-♦-
■♦■
■♦■'
♦-

-♦-
■♦'
-♦
■♦■■
■♦■
-♦■'■
♦■:

■♦••■
♦■■
♦•

■♦■'■
-♦-•
•♦■'■

<}

o

■♦■'
■♦■

■♦:
•♦■■

I -s

F
o

V (1)
tu (U

D
c
0) 7?

5

E S

a

Ul HI Ul HI

c E v a>
E a
8 U

Ofl £

ac
H t- E

LL. UJ
nr

S « ai (/)
a K-

(U
0. ac a a a

s- a- a

a. LI : u o
i- i- --M 8
1U UJ V o
tx a: a ac

E O I 5 a.

tf

<<]^0

is €
£ OC

E Sf 3 nl a
CO £0 CO

go —

3-2

To identify technology transition candidates we used a variety of methods that
were both structured and unstructured. Structured methods included writing
technical journal papers and making presentations and demonstrations at
conferences. We had recently presented a paper at the Digital Avionics Systems
Conference (DASC) [7] at which we spoke to a number of potentially interested
candidates. We also used less structured approaches such as just calling technical
contacts that were known through previous work relations and by piggybacking
on another related project, Advanced Avionics Verification and Validation
(AAV&V). We had made a presentation to the technical staff of three projects at
Lockheed Martin in Ft. Worth, Texas at the direction of our Air Force customer.
At the time LSRET was stopped, we were in the process of putting together a
demonstration to show to the technical staff at Lockheed Martin and at the
Software Technology Conference put on by Hill Air Force Base.

3.3 MULTIPLE LANGUAGE REENGINEERING PROCESS MODEL

The Process Model was something that was to be included with the user
documentation delivered with LSRET at the end of the project. A high-level
concept for the Process Model was beginning to emerge with the development of
the demonstration. The current concept for the Process Model is best represented
by the diagram shown in Figure 3-2. The process begins with the user parsing
and analyzing the legacy source code to produce an abstract software
representation. Then they would iterate between the software views to
(re)document the legacy and target systems and update the software
representation by redesigning and restructuring the legacy representation into
the target representation. When the user is happy with the target software
representation and target software views, they can generate the target source
code. The Process Model would have been refined throughout the testing and
evaluation of the LSRET Prototype.

3-3

Redesign
Restructure.

Parse and
Analyze Code

(Reverse
Engineering)

Updated
Software

Representation

Abstract
Software

Representation

Redocument

Software
Views

Generate Code

(Forward
Engineering)

Figure 3-2 Diagram of the LSRET Process Model

3.4 EXISTING FORTRAN REENGINEERING TECHNOLOGY

The existing FORTRAN Reengineering Technology [4] has been enhanced so that
the redocumentation features are implemented using the language-independent
approach designed for LSRET. This was done in preparing an LSRET
demonstration while waiting for the JOVIAL parser to be completed and
integrated. Some of the transformation of the features of the old ASRET tool,
such as FORTRAN arrays and input/output statements, were also identified for
enhancement, but were put at a lower priority and thus were scheduled to be
completed later in the contract.

3.5 LSRET PROTOTYPE

The LSRET Prototype was in the middle of the implementation phase when the
project was stopped. The LSRET requirements had been drafted and revised [8]
and the design had also been drafted [9]. Most of the redocumentation
requirements (SDD [9] Section 5.6) had been implemented and unit-tested (see
Section 4.2.13).

A JOVIAL parser/analyzer (SDD [9] Section 5.3) covering a substantial portion of
the JOVIAL language [2] was completed and tested in collaboration with the
AAV&V using the IRIS toolset. We were just about to start the integration of the

3-4

JOVIAL parser/analyzer into the LSRET Prototype when the project was
stopped. The integration of the JOVIAL parser/analyzer into the LSRET
Prototype entails building the abstract syntax graph and type graph domain
models for the Refine Object Base (SDD [9] Sections 5.7.1 and 5.7.2) and then
translating the outputs of the IRIS JOVIAL parser/analyzer to populate those
domain models.

Much of the remaining implementation work is in the area of the transformation
requirements (SDD [9] Section 5.4). Work on the language-independent version of
the Packager was well along, but had not been tested with any JOVIAL code.
Most of the remaining pieces of the JOVIAL version of the Transformer had not
yet been implemented. The Code Generator module of the Transformer is
commercial off-the-shelf (COTS) software being a part of the Refine/Ada tool that
was being used and thus is already integrated into the LSRET Prototype.

3.6 TESTING AND EVALUATION OF THE REENGINEERING
TECHNOLOGY

The task of testing and evaluation of the Reengineering Technology was
scheduled as a later activity of the project to take place after the completion of a
working LSRET Prototype (see Section 3.4). The plan was for the LSRET
Prototype to be delivered to one or more technology transition partners (see
Section 3.2) for trial use and evaluation.

3-5

4. SOFTWARE ASSETS DESCRIPTION

This section describes the software assets and their use and location of the RET
Project at the time it was halted.

4.1 REASONING SYSTEMS SOFTWARE REFINERY

The LSRET Prototype is developed on top of the COTS tool suite called the
Software Refinery [10], or Refine for short, sold by a company named Reasoning
Systems. The tools that comprise the Software Refinery support software
reengineering by providing various language parsing, analysis, and code
generation capabilities. The following Software Refinery tools will be found in the
directory /fsl/reasoning/ on the Air Force's lab computer and were purchased and
used as part of the LSRET Prototype development:

• Dialect - language and tools used to build parsers, code generators,
and pattern matchers for software languages from specifications

• Intervista - X-ll based toolkit for building windows-oriented user
interfaces for Refine-based applications

• Refine - interactive programming environment providing object
management and a high-level query/update language

• Refine/Ada - Ada language parser, analyzer, and code generator

• Refine/FORTRAN - FORTRAN language parser, analyzer, and code
generator

• Rerun - Runtime environment for using Refine-based applications

• Workbench - application-programming interface (API) to the
language-independent data structures and functions for building
software reverse engineering and reengineering tools.

4.2 CUSTOM-DEVELOPED SOFTWARE

All of the custom-developed software for the RET was maintained on TASC's
development computer in the /home/jagill/ directory as shown in Figure 4-1. The
contents of each (sub)directory is described in this Section.

4-1

home
jagill

ada

Isret

ada
src

spag

analyze
casu

casu-f
cd
ded
dfd
global
hid
jovial

jovial-parser
pak
redoc-lite
src
uid

refine
ret
spag

Figure 4-1 LSRET Software Directory Structure

4.2.1 The ada Directory

The ada directory contains the inputs and outputs for the old RET. The ada
directory contains two subdirectories named ada and src. The ada subdirectory
contains the Ada code generated from old RET using the Block 40 FORTRAN
code as input. The src subdirectory contains the original Block 40 FORTRAN
code given to TASC by the Air Force under the ASRET project. The src
subdirectory also contains the subdirectory named spag. The spag subdirectory
contains the structured Block 40 FORTRAN code generated using the SPAG on
the original Block 40 FORTRAN code.

4.2.2 The lsret Directory

The LSRET directory contains the source and executables for the new LSRET
Prototype. At this time, sessions can be run either in FORTRAN-to-Ada mode
(currently loaded in the analyze directory) or in language-independent mode

4-2

(loaded in the redoc-lite directory). In the future, systems similar to the one
loaded in the analyze directory would have been created for other source
languages. Similarly, taking the Call and Set/Use (CASU) into a target language
would have been accomplished using a similar RET session. Between the parsing
and writing, the RET can be utilized in a language-independent fashion.

Table 4-1 Contents of the lsret Directory

FILENAME/DIRECTORY DESCRIPTION

analyze Loads a RET session which includes source Analysis and CASU production
capabilities

casu Call and Set/Use (CASU) package

cd Call Diagram (CD) package

ded Declaration Diagram (DED) package

dfd Data Flow Diagram (DFD) package

global RET global identifier package

hid Hierarchical Interactive Display (HID) package

jovial JOVIAL parser/analyzer provided by AAV&V

make-pkgs.re Creates Refine packages for RET sessions

pak Packager (PAK) package

rcs-header.re Revision Control System (RCS) header for new source

redoc-lite Loads a RET session in language-independent mode, allows Redocumentation
and Packaging capabilities

refine-commands.re Provides several Refine and Lisp functions that assist during a RET session

src Source Code Listing (SRC) package

uid User Interface (UID) package

4.2.3 The analyze Subdirectory

This directory, analyze, contains a single file, system.lisp, that initializes a RET
session that enables Source Code Processing of FORTRAN code. This is a
language-dependent RET session (Refine/FORTRAN and Refine/Ada is present).

The FORTRAN AST produced during analysis is present. A CASU Domain Model
(DM) can be produced, and saved for later use. The system.lisp calls many other
system.lisp files (the "make-system" command). These components are loaded in
a specific order.

4-3

4.2.4 The casu Subdirectory

The CASU is a language-independent Domain Model Abstract Syntax Tree (AST)
which represents a subset of an AST developed under analysis using the parser
and semantic analyzer portions of the Source Code Processor (SCP).

CASU contains objects representing program entities that are used to develop
Redocumentation views (DFD, DED, CD) and the initial Packager Diagram view.
Because of its language-independence, the Redocumentation and Packager
capabilities do not need to be reimplemented for each new source language that
LSRET supports. Instead, a language-dependent extractor can pull out the
necessary information and create a language-independent counterpart. This
should make LSRET more extensible with only one function required for each
new language added to LSRET.

At this time, FORTRAN is the only language that is extracted into CASU. Future
plans included developing an Ada and JOVIAL extractor.

Table 4-2 Contents of the casu Subdirectory

FILENAME DESCRIPTION

casu-intrinsic-map.re Maps FORTRAN intrinsic functions to language-independent CASU counterparts

dm-casu.re Call and Set/Use (CASU) Domain Model

export.lisp CASU identifiers exported for use in other packages that "use" CASU package

system.lisp Loads RET files

utility.lisp General RET utilities

4.2.5 The casu-f Subdirectory

This package, specifically extract-casu-f, extracts the information from a
FORTRAN AST, and creates a language-independent CASU domain model.
Similar extractors would be created for other languages to be processed (both
legacy and target languages).

This extraction takes place during a language-dependent RET session. The
CASU DM can be saved as a Permanent Object Base (POB), and reloaded
without reloading the FORTRAN AST or reloading this package.

4-4

Table 4-3 Contents of the casu-f Subdirectory

FILENAME DESCRIPTION

dm-casu-f.re Call and Set/Use Extractor FORTRAN-specific Domain Model

export.lisp CASU FORTRAN identifiers exported for use in other packages that "use" casu-f
package

extract-casu-f.re Extracts AST information for the CASU DM

system.lisp Loads RET Files

4.2.6 The cd Subdirectory

This version of the Call Diagram component is language independent. It is
implemented using the CASU domain model. CD can generate a Call Diagram in
any source language, as long as the CASU has been extracted from the AST.

The functionality is similar to that of the old CD component, with an added
Detail window present which provides details on the set of unique subprogram
calls made from one subprogram to another.

Table 4-4 Contents of the cd Subdirectory

FILENAME DESCRIPTION

dm-cd.re Call Diagram domain model

dm-global-cd.re RET CD global domain model

rg-cd.re Call Diagram (CD) representation generator

system, lisp Loads the RET files

uid-cd-act.re Call Diagram (CD) Mouse and Menu Actions

uid-cd-detail-view.re Call Diagram Detail Window Draw Functions

uid-cd-hyp.re Model-to-view and view-to-model functions for the CD

uid-cd-view.re Call Diagram (CD) Draw Functions and Mouse Handler

4.2.7 The ded Subdirectory

This version of the Declaration Diagram component is language independent. It
is implemented using the CASU domain model. DED can generate a Declaration
Diagram in any source language, as long as the CASU has been extracted from
the AST.

The functionality is similar to that of the old DED component.

4-5

Table 4-5 Contents of the ded Subdirectory

FILENAME DESCRIPTION

dm-ded.re Declaration Diagram domain model

dm-global-ded.re RET Declaration Diagram global domain model

rg-ded.re Declaration Diagram (DED) representation

system.lisp Loads the RET files

uid-ded-act.re Declaration Diagram (DED) Mouse and Menu Actions

uid-ded-hyp.re Declaration Diagram (DED) Hyperlinks

uid-ded-view.re Declaration Diagram (DED) Draw Functions

4.2.8 The dfd Subdirectory

This version of the Data Flow Diagram component is language independent. It is
implemented using the CASU domain model. DFD can generate a Data Flow
Diagram in any source language, as long as the CASU has been extracted from
the AST.

The functionality is similar to that of the old DFD component. The file rg-dfd-sub
is not provided in this implementation, as the DFD subprogram structure will be
provided by the CASU domain model. In the old version, DFDs were only
provided for the Right Hand Side (RHS). Now, DFDs can be created for both the
RHS and Left Hand Side (LHS).

4.2.9 The global Subdirectory

The global domain model is used by all other RET packages. The DM was placed
in its own package, and the package was included in a use parameter during the
creation of other RET packages. This allows these other packages to refer to
global identifiers without the external global scoping.

It is possible that this package could be included in the CASU package, since the
CASU would probably be loaded at all times. However, It seems appropriate to
have global RET classes, maps and functions separated unto themselves.

4-6

Table 4-6 Contents of the dfd Subdirectory

FILENAME DESCRIPTION

dfd-record-map.re Maps variable names to records in FCR

dm-dfd.re Dataflow Diagram domain model

dm-global-dfd.re RET DFD global domain model

dm-uid-dfd-menu.re Dataflow Diagram Menu Domain Model

fsi-bfi-dfd.re File System Interface (Binary) for Dataflow Diagrams

rg-dfd-all.re Data Flow Diagram (DFD) Generator

rg-dfd-data.re Data Flow Diagram (DFD) Buffer and repository node generation

rg-dfd-gen.re Data Flow Diagram (DFD) Generator

rg-dfd-util.re Data Flow Diagram (DFD) generator utilities

system.lisp Loads the RET files

uid-dfd-act.re Data Flow Diagram (DFD) Mouse Handlers and Action Routines

uid-dfd-menu.re Data Flow Diagram (DFD) Diagram Window Menu Action Routines

uid-dfd-view.re Declaration Diagram (DED) Draw Functions

utility.lisp General LISP support for RET

Table 4-7 Contents of the global Subdirectory

FILENAME DESCRIPTION

dm-global.re RET global domain model

export.lisp Global identifiers exported for use in other packages that "use" global package

system.lisp Loads RET files

4.2.10 The hid Subdirectory

The Hierarchical Interactive Diagram (HID) structure is a set of common
functions that exists among several Redocumentation components. HID is an
abstract representation of a text-based diagram. CD, DED, and SRC are specific
types of HID diagrams. HID functions are required for any of these views, since
the specific view generators call the abstract functions in HID to produce
diagrams that exhibit a similar look and feel to one another.

4-7

Table 4-8 Contents of the hid Subdirectory

FILENAME DESCRIPTION

dm-hid-dfnl.re Hierarchical Interactive Display (HID) Draw Functional Domain Model

dm-hid-obj.re Hierarchical Interactive Display (HID) Object Domain Model

system.lisp Loads the RET files

uid-hid-dfnl.re Hierarchical Interactive Display (HID) Draw Functions

uid-hid-sup.re Hierarchical Interactive Display (HID) Support Functions

4.2.11 The jovial Subdirectory

The jovial subdirectory of lsret contains another subdirectory named jovial-
parser. The jovial-parser subdirectory contains the JOVIAL parser/analyzer that
was jointly developed with the AAV&V project for use on LSRET and some
sample JOVIAL code for testing. It must be emphasized again, that the JOVIAL
parser/analyzer had not yet been integrated into the LSRET Prototype at the
time the project was stopped.

Table 4-9 Contents of the jovial-parser Subdirectory

FILENAME DESCRIPTION

Hughesl .jovial Sample JOVIAL code from Hughes

Hughes2.jovial Sample JOVIAL code from Hughes

Hughes3.jovial Sample JOVIAL code from Hughes

README Instructions for using the JOVIAL parser/analyzer

iris JOVIAL parser/analyzer that creates IRIS graphs

iris_and_resolve Similar to iris with some variable nodes resolved to their declarations

iris_to_image Produces a postscript file from the IRIS graphs generated by iris and
iris_and_resolve

parser JOVIAL parser

samplel Small sample of JOVIAL code to test the parser/analyzer

samplel .ps Postscript file generated from samplel

test.iris Output file from iris run using test.jovial as input

test.jovial Larger sample (than samplel) of JOVIAL code to test the parser/analyzer

test.jovial.ps Postscript file generated from test.jovial

4.2.12 The pak Subdirectory

This version of the Packager component is language independent. It is
implemented using the CASU domain model. PAK can generate a Package

4-8

Diagram in any source language, as long as the CASU has been extracted from
the AST.

The functionality is similar to that of the old PAK component. This component
would be used if the target language were Ada or any other where the concept of
packages exists. Hence, for a legacy-to-C implementation, this component would
not be utilized to exhibit the goal of macro program restructuring.

Table 4-10 Contents of the pak Subdirectory

FILENAME DESCRIPTION

dm-global-pak.re RET Packager global DM

dm-pak.re Packager Domain Model

dm-uid-pak-menu.re Packager Diagram Menu Domain Model

fsi-bfi-pak.re File System Interface (Binary) for Packager Diagrams

pak-clu.lisp LISP support for pak-rfg.re

pak-rfg.re Packager (PAK) Resource Flow Graph (RFG)

rg-pak.re Packager Representation Generator (of PAK-LIBRARY-NODE data structure)

system.lisp Loads the RET files

uid-pak-act.re Packager (PAK) Mouse Handlers and Action Routines

uid-pak-menu.re Packager (PAK) Diagram Window Menu Action Routines

uid-pak-view.re Packager (PAK) User Interface Creates Windows

utility.lisp General LISP support for RET

4.2.13 The redoc-lite Subdirectory

This directory, redoc-lite, contains a single file, system.lisp, that initializes a RET
session in a language-independent mode. A CASU DM can be loaded. The
system.lisp calls many other system.lisp files (the "make-system" command).
These components are loaded in a specific order.

4.2.14 The src Subdirectory

This version of the Source Code Listing component is language dependent. It is
implemented using the source AST. In the future, this capability would have
been developed using a language-independent approach, similar to the other
Redocumentation capabilities.

4-9

Table 4-11 Contents of the src Subdirectory

FILENAME DESCRIPTION

clu.lisp Common Lisp Utilities for SRC

system.lisp Loads the RET files

uid-src-act.re Source Code Listing (SRC) Mouse and Menu Actions

uid-src-hyp.re Model-to-view and view-to-model functions for the SRC

uid-src-view.re Source Code Listing (SRC) Draw Functions and Mouse Handler

4.2.15 The uid Subdirectory

This directory contains all of the Main RET Window source and executables. The
UID is almost identical to the old RET UID. Some pull-down menus are all that
have changed.

Table 4-12 Contents of the uid Subdirectory

FILENAME DESCRIPTION

dm-global-main.re RET Main Window global Domain Model

dm-main.re RET Main Window Domain Model

dm-pir-global.re PIR global Domain Model

dm-pir.re Primary Internal Representation (PIR) Domain Model

fsi-bfi.re File System Interface (Binary) for File PIRs

system.lisp Loads the RET files

uid-main.re Main RET Window

4.2.16 The refine Directory

The refine directory contains the Refine environment configurations, called
"worlds," used to run Refine-based applications. These "worlds" can be loaded to
start a Refine session in an emacs [11] buffer.

4-10

Table 4-13 Contents of the refine Directory

FILENAME/WORLD DESCRIPTION

README.refine Instructions for using saved "worlds"

all World with all Refine extensions (Ada and FORTRAN)

bare-bones World with no Refine extensions (language-independent)

fretless-base World with the Ada Refine extension

un-ada-ed World with the FORTRAN Refine extension

4.2.17 The ret Directory

The ret directory contains the source and executable files for the old RET. The
file system, lisp lists the order of compiling and/or loading of files for the RET.

The source files written in Refine have an .re extension. When compiled, the
executables have an .lfasls2 extension. LISP source files have a .lisp extension,
and compiled files have an .fasls2 extension.

RCS was used for revision control. RCS is a GNU product, available through the
Free Software Foundation. The default header is provided in rcs-header.re.

Use the first lisp function in refine-commands.re to load the ret. Start the RET at
the Refine prompt with the "(ret)" command. Follow the instructions in the
ASRET Users Manual [5].

The directory structure is different on the development machine than on the
customer machine. Refine and many global LSRET files are located in
/fsl/reasoning/*. RET source and compiled files are stored on individual user
directories. The directory ~/ret/ includes the RET virtually intact from ASRET
(with some modifications). The language independent RET files are all in
subdirectories of -/lsret/. The -/refine/ directory contains Refine saved-worlds for
several situations.

4-11

Table 4-14 Contents of the ret Directory

FILENAME DESCRIPTION

dfd-record-map.re Maps variable names to records in FCR

dm-cd.re Call Diagram domain model

dm-ded.re Declaration Diagram domain model

dm-dfd.re Dataflow Diagram domain model

dm-global RET global domain model

dm-hid-dfnl.re Hierarchical Interactive Display (HID) Draw Functional Domain Model

dm-hid-obj.re Hierarchical Interactive Display (HID) Object Domain Model

dm-main.re RET Main Window Domain Model

dm-pak.re Packager Domain Model

dm-pir.re Primary Internal Representation (PIR) Domain Model

dm-rg-ada.re Ada Code Generator Domain Model

dm-scp.re Source Code Processor Domain Model

dm-uid-dfd-menu.re Dataflow Diagram Menu Domain Model

dm-uid-pak-menu.re Packager Diagram Menu Domain Model

fsi-bfi-dfd.re File System Interface (Binary) for Dataflow Diagrams

fsi-bfi-pak.re File System Interface (Binary) for Packager Diagrams

fsi-bfi.re File System Interface (Binary) for File PIRs

Implicit-fns.re Replaced by rg-signature.re

make-package.re Creates the ASRET-SCP package

make-pkg.re Creates the ASRET-SCP package

pack-data.re Routines to split common blocks into packages with the routines to which they
correspond

pak-rfg.re Packager (PAK) Resource Flow Graph (RFG)

refine-commands.re Helpful user commands for use during RET session

rg-ada-type.re Ada Code Generator - Deduce data types

rg-ada.re Ada Code Generator

rg-cd.re Call Diagram (CD) representation generator

rg-ded.re Declaration Diagram (DED) representation

rg-dfd-all.re Data Flow Diagram (DFD) Generator

rg-dfd-data.re Data Flow Diagram (DFD) Buffer and repository node generation

rg-dfd-gen.re Data Flow Diagram (DFD) Generator

rg-dfd-sub.re Data Flow Diagram (DFD) subprogram structure initialization

rg-dfd-util.re Data Flow Diagram (DFD) generator utilities

4-12

Table 4-14 Contents of the ret Directory (Cont'd)

FILENAME DESCRIPTION

rg-implicits.re Replaced by rg-subprogram.re

rg-package.re Locates External and Implicit packages in Packager

rg-pak.re Packager Representation Generator (of PAK-LIBRARY-NODE data structure)

rg-signature.re Subprogram signatures for implicit functions and external subroutines

rg-subprogram.re Generates packages for implicit functions and external subroutines

scp-anal.re Source Code Processor (SCP) Analyze

scp-comment.re Transform Comments

tran-act.re Transform Comments

tran-bits.re Transformations for objects which are used in logical expressions

tran-rules.re Transform FORTRAN statements

tran-subprogram.re Transform implicit function calls and external subroutine calls

uid-cd-act.re Call Diagram (CD) Mouse and Menu Actions

uid-cd-hyp.re Model-to-view and view-to-model functions for the CD

uid-cd-view.re Call Diagram (CD) Draw Functions and Mouse Handler

uid-data-act.re Data Item Mouse and Menu Actions

uid-data-view.re Data Items View

uid-ded-act.re Declaration Diagram (DED) Mouse and Menu Actions

uid-ded-hyp.re Declaration Diagram (DED) Hyperlinks

uid-ded-view.re Declaration Diagram (DED) Draw Functions

uid-dfd-act.re Data Flow Diagram (DFD) Mouse Handlers and Action Routines

uid-dfd-menu.re Data Flow Diagram (DFD) Diagram Window Menu Action Routines

uid-dfd-view.re Data Flow Diagram (DFD) User Interface Creates Windows

uid-hid-dfnl.re Hierarchical Interactive Display (HID) Draw Functions

uid-hid-sup.re Hierarchical Interactive Display (HID) Support Functions

uid-main.re Main RET Window

uid-pak-act.re Packager (PAK) Mouse Handlers and Action Routines

uid-pak-menu.re Packager (PAK) Diagram Window Menu Action Routines

uid-pak-view Packager (PAK) User Interface Creates Windows

uid-src-act.re SRC (Source Code View) Menus and Actions

uid-src-mouse.re SRC (Source Code View) Mouse Handlers

uid-src-view.re Source Code View

util.re Debugging Utility Functions

util2.re General-purpose utility functions

4-13

Table 4-14 Contents of the ret Directory (Cont'd)

FILENAME DESCRIPTION

initialize-session.lisp Make the scp package and set various options

load.lisp RET Prototype System loader

pak-clu.lisp LISP support for pak-rfg.re

system.lisp Loads the RET files

utility.lisp General LISP support for RET

4.2.18 The spag Directory

The spag directory contains the SPAG FORTRAN control flow restructuring tool
that was acquired and used by the old RET Prototype.

4.3 EXTRACTING AND RUNNING THE PROTOTYPE

This section contains the instructions for extracting the RET from the archive
tape that was created in closing down the project and running the RET. It must
be noted that the project was stopped with much work still in progress so
many functions are incomplete and there may be defects in some of the
functions.

4.3.1 Extracting the RET from Tape

In the process of closing down the LSRET project, an archive tape [12] of the files
described previously in this Chapter was created. This section contains the
instructions for extracting the files making up the RET. This procedure should be
done with the help of your System Administrator since it involves mounting
tapes and creating new directories to which you will need access in order to run
the RET.

1. Log on to your UNIX account.

2. Change directories (UNIX command "cd") to the directory that you want
to be the root for the LSRET Prototype. If the directory needs to be
created first consult with your System Administrator or use the UNIX
command "mkdir."

3. Load the archive tape [12] into a tape drive and mount the tape drive
(UNIX command "mount").

4-14

4. Extract the files from the tape using the UNIX command "tar xvf." This
function will create the same directory structure as previously described
in this Chapter and copy the files listed into the proper directories.

5. Rewind the tape using the UNIX command "mt rewind," unmount the
tape drive (UNIX command "umount"), unload the archive tape from the
tape drive, and store it.

4.3.2 Starting and Stopping the RET

This section contains the instructions for starting and stopping the RET. The
procedure assumes that all of the needed files have been extracted from the
archive tape (see Section 4.3.1) and are on a working UNIX platform in the

directories described previously in this Chapter. This section is not meant to be a
User Manual for the RET, but is included to help a user launch the RET and to
describe how to exit from it. After starting the RET, the user is free to explore all
of the functions in the RET found in the drop-down menus. To start the RET:

1. Log on to your UNIX account. If your account does not default to an X-
windows environment, then get into X-windows.

2. Change directories (UNIX command "cd") to the directory from which
you want to run the RET and start an emacs buffer (type "emacs&" at
the command prompt).

3. Follow the instructions in the file "README.refine" found in the refine
(sub)directory (see Section 4.2.16) to load the proper saved "world" that
you need to run the RET.

4-15

4. There are two main variants of the RET: the old RET or ASRET [4]; and
the new RET or LSRET [8 and 9]. The old RET is self-contained. To
invoke the old RET: 1) load the file "refine-commands.re" found in the
lsret (sub)directory (see Section 4.2.2) in the emacs buffer; 2) find the
first "(progn" in the refine-commands.re file and copy or type the entire
"(progn" down to the enclosing ")" into the command line of the empty
emacs buffer and press the "return" (or "enter") key; 3) after the "(progn"
has completed, type "(ret)" into the command line of the same emacs
buffer as in step #2 and press the "return" (or "enter") key, this will
launch the old RET. The new RET comes in two separate modules, the
analysis module (see Section 4.2.3) and the redocumentation module
(see Section 4.2.13). To invoke the new RET modules: 1) in the command
line type "(make-system "<path>/<module>")" where <path> is the full
directory path to the lsret directory (see Section 4.2.2), where the
LSRET files are stored and the <module> is either "analyze" for the
analysis module or "redoc-lite" for the redocumentation module, and
press the "return" (or "enter") key; 2) after the "(make-system" has
completed, type "(uid::ret)" into the command line of the emacs buffer
and press the "return" (or "enter") key, this will launch the new RET
module. For the redocumentation module to produce any meaningful
outputs: the analysis module must have been run earlier and the user
must have completed the "Save CASU" operation found in the drop-
down menus; and after starting the redocumentation module the user
must complete the "Load CASU" operation found in the drop-down
menus using the same CASU name as in the analysis module.

To stop any RET session:

1. Position the mouse pointer over the "▼" symbol in the upper left corner
of the RET window and press the right mouse button. This will cause a
menu of commands to appear on which you should select the "Quit"
command causing the RET window to be closed.

2. In the emacs buffer, drop down the "Files" menu and select the "Exit
Emacs" command. You will see a dialogue box asking whether or not to
kill the active processes (in this case Refine) to which you should click
on the "Yes" button. This will close emacs.

4-16

5. CONCLUSIONS

The technology developed by TASC under the LSRET program was to be used to
assist in the reengineering of avionics software. Much of the existing avionics
software is written in either the JOVIAL or FORTRAN programming languages
and is poorly documented for maintenance purposes. LSRET was being developed
to support engineers in transforming the JOVIAL or FORTRAN code into the
more modern Ada programming language and also to be used to (re)document
either the legacy or the reengineered systems. This would improve the
maintainability of the avionics software in two ways. LSRET could reengineer
the software into a language that is more modern and promotes better software
engineering practices; and also makes it easier to find engineers who are trained
in the use of the new language. Second, LSRET could redocument the legacy and
reengineered systems making them easier to maintain in the future.

In the area of software language-to-language translation, LSRET would provide
a semi-automated approach to reengineering. Manual translation of software
from one source code language to another is slow and very error prone, but does
allow redesign and utilization of more modern features of the target language.
This ultimately results in a much more maintainable system but forces a long
testing and operational period before the translated software can achieve the
same level of reliability as the legacy software. Purely automated translation of
software, while fast and fairly accurate, merely moves the syntactic and semantic
limitations of the legacy language into the reengineered software. This creates a
reengineered system that only utilizes the equivalent features in the target
language and may well result in software that is as hard, or harder, to maintain
than the original software. LSRET is unusual in that it tried to combine the best
aspects of both approaches by involving a "user-in-the-loop" to redesign and
making use of some of the modern features of the Ada language while providing
faster, more accurate automated translation of the low-level algorithmic code.
This would result in reengineered systems being fielded faster and more reliable
than with manual translation and more maintainable than with purely
automated translation.

In the area of specific language support, LSRET would provide some important
capabilities that are either non-existent or rare. For FORTRAN-to-Ada
reengineering tools, some do exist, but fall mainly in the area of purely
automated tools generating what the industry has dubbed as "AdaTRAN." In the

5-1

realm of JOVIAL-to-Ada reengineering, few if any tools exist with little hope of
new tools emerging. Also, LSRET has been designed to be language-independent
to the extent possible. We have demonstrated the capability to support multiple
legacy languages and adding another target language, such as C, should also
prove to be not very difficult.

5-2

