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Avionics Systems Performance Management 

1.      Executive Summary 

This report summarizes the work performed under the Avionics System Performance Management (ASPM program 
funded by U.S. Air Force Wright Laboratory under the contract No F33615-93-C-1346. Avionics System Performance 
Management includes the methods and technologies used to develop and assure the timing behavior of real-time avi- 
onics systems. The reasons for improved performance management include advances in processor technology and ar- 
chitectures, increasingly integrated systems and the requirement of reducing costs in developing and deploying the sys- 
tems. These methods include: schedulability modeling and analysis; simulation modeling and analysis; and perfor- 
mance instrumentation and testing. The approach used under this program is an integrated use of technologies and 
methods that leverages the strengths of individual methods while overcoming their weaknesses. The program resulted 
in the integration of a suite of tools that enables the developers of avionics systems to analyze the performance char- 
acteristics of a real-time avionics application and to perform rapid iterative debugging, testing, and performance en- 
hancements to the application so as to ensure that performance requirements are satisfied.The integrated tools include 
Scalable Parallel Instrumentation (SPI), MetaH and Domain Modeling Environment. The key benefit of such a toolset 
is the significant reduction in level of effort and the time required to transform an application from a design phase to a 
real-time multiprocessor application that meets the performance requirements on the target hardware. 



2o Introduction 

The earlier claim is realized by integrating an existing set of tools developed under previous government programs and/ 
or Honeywell internally funded program: Scalable Parallel Instrumentation (SPI), MetaH, and Domain Modeling En- 
vironment (DoME). SPI provides a flexible and configurable architecture for instrumenting the performance of a mul- 
tiple and/or parallel processor application. MetaH is an architecture specification language for describing the software 
and hardware architecture of real-time securely partitioned, fault-tolerant, scalable multiprocessor avionics systems. 
The MetaH toolset supports, among other things, real-time schedulability analysis and the automatic generation of 
"glue" code that implements real-time message passing and process dispatching for a class of multitarget architecture. 
DoME is an extensible collection of integrated model-editing, meta-modeling, and analysis tools that provides the rich, 
expressive power and abstraction facility required to support complex systems development. Graphical MetaH, one of 
the notations supported by DoME, supports the graphical specification of MetaH language.Transformation tools are 
provided that support transforming from the textual representation of MetaH to its corresponding graphical represen- 
tation, and vice versa. Under this program, these three toolsets were integrated to support the rapid specification and 
automated code generation of a performance measurement experiment. A performance measurement experiment con- 
sists of an instrumented real-time avionics application that runs on the target architecture and for which the perfor- 
mance data is gathered, analyzed, and displayed. 

Several applications were integrated during the program to demonstrate the benefits of an integrated approach. The 
first application integrated was the navigation application generated by using the Adage toolset from Lockheed Martin 
Federal System. Lockheed Martin Federal System, one of the contractors for the DSSA program, developed the Adage 
toolset that automates the task of generating Navigation application from a library of modules. The final demonstration 
demonstrated the capabilities of the testbed for the embedded missile application. The US Army Missile Command 
(MICOM) Software Engineering Directorate (SED) is developing a Domain-Specific Software Architecture (DSSA) 
for an embedded missile application. The application had stringent performance requirements. The testbed identified 
the bottlenecks in the system and the subprograms within the application that could be optimized. This information, 
which was previously very difficult to obtain, can now be utilized in optimizing the performance of the application. 
The program also developed a set of performance management guidelines that describes why improved performance 
management is needed and the alternative approaches for achieving performance management, including the strengths 
and weaknesses associated with each technique. The techniques described include Schedulability Modeling and Anal- 
ysis, Simulation Modeling and Analysis, and Performance Instrumenting and Testing. The performance management 
approach recommended supports the integrated use of formal schedulability modeling and analysis, simulation, and 
instrumentation and testing. By using these methods in an integrated fashion, the weaknesses associated with each 
technique can be overcome while taking advantage of their respective strengths. The applicability of these methods as 
it relates to the major steps of the development process, including Analysis and Design, Detailed Design and Compo- 
nent Implementation, Software and Systems Integration, and Testing and Verification is discussed. Also, discussed are 
the performance management process and the application of methods and techniques to the Capability Maturity Model 
for Software and Software Considerations in Airborne Systems and Equipment Certification. 

The report is organized in the following manner. Section 3. describes the overall capabilities and the features of the 
Avionics System Performance Management testbed. It discusses the salient capabilities of the testbed and its applica- 
bility in developing, testing and deploying a real-time avionics system application. It also describes the physical and 
hardware architecture of the testbed. Section 4. describes the capabilities and the features of the SPI toolset. It also 
provides a high-level description of the steps involved in using the SPI toolset in developing an instrumentation exper- 
iment and describes the tasks performed under the ASPM program. Section 5.describes the capabilities and the fea- 
tures of the MetaH toolset. It provides a high-level description of (1) the steps involved in using the MetaH toolset in 
developing and deploying a real-time avionics system application of the testbed and (2) the steps involved in using the 
MetaH toolset in developing the avionics application. It also describes the steps performed under the ASPM program. 
Section 6. describes the details of the final demonstration that was performed under the program. Section 7. describes 



the results of the investigation that was performed in analyzing the alternate mechanisms for accomplishing "perfor- 
mance management" for real-time avionics system. Section 8. details the conclusions from the program and the lessons 
that were learned during the course of the program. 



3. Avionics System Performance Management Testbed 

3.1 Avionics System Performance Management 

By "performance management," we mean the methods and technologies used to develop and ensure the timing behav- 
ior of real-time systems. Improved performance management is needed for the following reasons. First, processor tech- 
nology and architectures are changing rapidly in a way that makes performance management more difficult. Compute 
(execution) times are becoming more variable and more difficult to model and bound due to increased use of complex 
architectural features such as caches. Increased processor throughput means more functionality, more tasks and events, 
and larger and more complex scheduling problems. Second, systems are becoming increasingly integrated. Perfor- 
mance management must span multiple heterogeneous processors and buses. Performance management must deal with 
more complex workloads in which hard real-time tasks share resources with soft real-time event-driven and interacting 
tasks. Third, cost reduction is essentially a requirement. Improved performance management can reduce hardware re- 
source requirements and increase software portability. This means that improved performance management can reduce 
recurring production and upgrade costs (which usually dwarf initial software and system development costs). To im- 
prove performance management, this program used an approach that integrates the MetaH and SPI toolset. 

3.2 ASPM Testbed Features 

The Avionics System Performance Management system is a comprehensive testbed for the rapid development, testing, 
and deployment of a real-time avionics systems application. The testbed consists of a collection of tools that signifi- 
cantly reduces the development and the testing of complex real-time avionics systems developed using a multidisci- 
plinary development approach. 

The development of avionics systems requires the talents of many engineers trained in a variety of engineering disci- 
plines, of which software engineering is only one. There are trends toward more concurrent and iterative multi-disci- 
plinary development, toward greater reuse of a variety of development artifacts, and toward greater automation and 
increased use of specialized tools. Different disciplines are sometimes best served by different domain-specific lan- 
guages and tools, and the results of their work must somehow be integrated to form a complete system. The Avionics 
System Performance Management toolset provides the mechanisms for integrating development artifacts from differ- 
ent domain-specific tools and generating the final executable image that can be deployed on a real-time testbed. The 
testbed supports the toolsets for analyzing the performance characteristics of the deployed application to detect prob- 
lems, enabling a significant reduction in cycletime associated with the iterative nature of testing and deployment of 
application. Overall, the testbed significantly reduces time and effort in the development, testing, and deployment of 
real-time avionics application in a multiprocessor configuration that meets the performance requirements. 

The toolset within the Avionics System Performance Management testbed supports the following capabilities. 

• Multidisciplinary real-time development and test environment 
• Significant reduction in the development, testing and deployment of real-time avionics systems 

• A toolset for performing what-if analysis on the alternate rates on the schedulability of the application 

• Flexible display architecture for viewing and analyzing performance data from the application 

° A configurable instrumentation environment 
• A configurable environment for building applications with or without the instrumentation system 
• Performing post-analysis of the experiment 
• Performing both fine-grained and coarse-grained time analysis of the experiment 
• Library of performance management actions for supporting the instrumentation needs of typical avionics appli- 



cations 
• Graphical specification of the experiment 
« Ease of configuring experiments to execute on a multiprocessor system 

3.2.1 Multidisciplinary Real-time Development and Test Environment 

Different disciplines are sometimes best served by different domain-specific languages and tools, and the results of 
their work must be integrated to form a complete system. A common problem with doing multidisciplinary develop- 
ment is the level of effort required to integrate and test the artifacts generated from multiple toolsets and ensuring that 
the real-time schedulability and performance requirements of the application are satisfied. The integration and the test- 
ing of these artifacts account for a majority of the costs and lead to significant program overruns and delays. The ASPM 
testbed addresses this limitation by providing a collection of tools for rapidly integrating the artifacts from multiple 
domains/disciplines and supports instrumentation of the resultant application for verifying the performance require- 
ments and computational correctness of the application. The MetaH environment provides the software and systems 
analysis and intecration toolset. This environment enables the user to perform staue analysis of die real-time charac- 
teristics of the application and generation of the executable image. The SPI toolset provides the real-time dynamic 
analysis capability that enables the user to validate the performance and correctness requirements of the application. 

3.2.2 Significant Reduction in the Development, Testing, and Deployment of Real-time 
Avionics Systems 

The ASPM testbed significantly reduces the level of effort and time required to move the application from a design 
phase to being a fully qualified, deployable real-time multiprocessor application. The tools automate the tasks, includ- 
inc performing staue analysis of the application, automated glue-code generation for the real-time systems, and dy- 
namic performance analysis of the application. A key issue confronting the developers of an avionics application is the 
integration and testing of the application. The development, integration and testing of the application are typically per- 
formed in an iterative manner wherein the errors and the performance problems detected in the testing phase arc fed 
into the development phase. The ASPM testbed addresses the following classes of problems associated with a real- 
time avionics application: performance related, application correctness, and schedulability related. Existing systems 
provide little support for reducing the cycle-time and accelerating the iterative nature of development and testing ac- 
tivities. The ASPM toolset addresses each of these requirements by providing a testbed that automates the tasks of 
transforming design specifications performed in MetaH (Architecture Specification Language) to an instrumented ap- 
plication executing on a real-time testbed. Once the application is specified, the steps for iterating between the testing 
and development phases is trivially accomplished by the collection of tools that automate the tasks associated with de- 
velopment and testing. 

3.2.3 A Toolset for Performing What-if Analysis on the Alternate rates on the Schedulability 
of the Application 

One problem that confronts the developers of a real-time avionics application is the lack of support for performing rap- 
id what-if analysis on the schedulability of the application under different rate structures. This feature is important to 
ensure that the available processing power is utilized optimally and that the computational accuracy of the application 
can be achieved within the constraints of processing power. This requires the capability to analyze the impact of chang- 
ing the rates on the processes and on the schedulability of the application. Although existing tools support the static 
analysis of the schedulability analysis, there is little support for environments that support real-time dynamic analysis. 
The ASPM toolset provides both the static and the dynamic schedulability analysis. The MetaH schedulability analysis 
tool enables the user to perform static schedulability analysis of the tool whereas the SPI system provides a visual aid 
to determine and dynamically analyze the schedulability of the application. This feature enables the developer of the 
avionics application to utilize the processing power optimally and maximize the computational accuracy of the appli- 
cation by selecting the appropriate rate structures for the application. 



3.2.4 Flexible Display Architecture for Viewing and Analyzing Performance Data from the 
Application 

The complexity of the avionics system and the real-time requirements make specifying and developing general-pur- 
pose diagnostic and error-detection mechanisms very difficult. There is need a for a powerful and flexible mechanism 
for visualizing and analyzing the data from the underlying application. The ASPM testbed provides a flexible display 
architecture that enables the users to visualize, analyze, and detect problems in the underlying system and perform the 
necessary corrective actions. The following are the features of all the SPI displays: 

° The ability to store the results of the experiment and replay it, thereby enabling the users to perform post-anal- 
ysis of the experiment and comparisons across multiple configurations. 

• The ability to control the time-granularity of the display, thereby enabling the user to analyze states and transi- 
tions at a microscopic level to detect problems in the system. 

» The ability to control the speed of the display thereby enabling the users to view the data in slow motion so as 
to detect problems. 

3.2.5 Provide a Configurable Instrumentation Environment 

The complexity of the avionics system and the real-time requirements make specifying and developing general-pur- 
pose diagnostic and error-detection mechanisms very difficult. A testbed and a development environment are needed 
that enable the user to perform custom instrumentation programming. A problem encountered with existing instrumen- 
tation environments is the difficulty in reconfiguring the system in collecting and analyzing performance analysis data 
beyond that included with the instrumentation system and the level of effort required to tailor the system. An instru- 
mentation system is needed with an open-ended architecture that simplifies the task of incorporating special-purpose 
performance gathering and analysis modules while allowing existing display mechanisms and analysis modules to be 
easily incorporated in an experiment. The SPI system provides such an environment where the user has complete con- 
trol and flexibility in specifying the performance measurement experiment. The SPI architecture is based on the event- 
action paradigm wherein the user is provided a development environment for specifying the actions that are performed 
in response to events in the system and specifying how the events get routed to the actions. This architecture enables 
the users to develop actions such as analysis, data reduction, and display that can be easily integrated in a performance 
management experiment. 

3.2.6 A Configurable Environment for Building Applications with or without the 
Instrumentation System 

A problem with existing systems that provide the ability to flexibly specify a performance management experiment is 
the tight coupling that exists between the application system and the instrumentation system. For such a system, it is 
difficult to sever the instrumentation system link once the application has been fully debugged and tested. The ASPM 
toolset automates the task of constructing an application with or without the instrumentation system. During the typical 
development cycle, the instrumentation capability is enabled to allow debugging and problem detection in the appli- 
cation However, once the user is satisfied with the performance characteristics and accuracy of the application, the 
user can disenable the functionality. The capability enables the user to deactivate the instrumentation functionality dur- 
ing actual deployment. The experiment specifier merely specifies whether or not the application is configured with the 
instrumentation system and the task of whether or not to include the instrumentation code is automated by the toolset. 



3.2.7 Performing Post-analysis of the Experiment 

Existing systems lack a general-purpose capability to perform post-analysis of the data and require rerunning the ap- 
plication to analyze performance measurement data. In many avionics systems, the task of recreating and rerunning 
experiments is formidable and expensive. The architecture of the instrumentation system enables the user to replay and 
rerun the results of the experiment even after the experiment is completed. The instrumentation system supports the 
ability to store the results of an experiment that can be redisplayed and replayed at a later time. This eliminates the 
need for rerunning the experiment to perform post-mortem analysis of the results. An added benefit of this capability 
is the ability to perform comparative analysis across multiconfiguration application (e.g., two different experiments 
run with different rates, single/multiprocessor configuration). 

3.2.8 Perform both Fine-grained and Coarse-grained Time Analysis 

One of the requirements for a real-time system is the ability to analyze the results of an experiment at varying levels 
of time granularity (e.g., view the task timeline data at a fine time granularity to verify and validate the schedulability 
analysis of the application, or observe the trend of the variable during the course of the experiment at a coarser level 
of time granularity). The ability to see the same set of performance data at varying granularity of time is a vital require- 
ment for analyzing the performance data of an avionics application. The instrumentation system supports this capabil- 
ity as a generic set of features allowing the user to control the display of information at varying levels of time granu- 
larity. 

3.2.9 Library of Performance Management Actions for supporting the needs of typical 
Avionics Applications 

One requirement for the underlying system supporting the performance measurement of an avionics system is the need 
to quickly develop an experiment that is instantiated to the specific needs ofthat application. This is necessary because, 
for a complex system such as an avionics application, the specification of the performance management application is 
difficult to ascertain a priori. The instrumentation system delivered as part of the ASPM program addresses these needs 
by providing a library of displays and the actions for rapidly developing a performance management application. The 
following are the categories of display action included with the instrumentation system: 

• Task Timeline Actions: The task timeline display and its associated set of data collection and analysis actions 
enable the user to verify and validate the schedulability characteristics of the application. The user can observe 
the occurrences of kernel-level events such as semaphore locking/unlocking, scheduling of the kernel, etc. 

• Strip Chart Display: The strip chart display and its associated data analysis actions enable the user to trend the 
real-time values of variables under study. The real-time values of output variables can be used to check for the 
computational correctness of the application. The display can also be used for performing comparative analysis 
of multiple variables in the system. 

• Histogram Display: The histogram display can be used to display the results of those variables that are cumu- 
lative over the course of the experiment. The subprogram profiling display can display the relative execution 
time spent in different subprograms within a process to determine the compute intensive subprograms and pro- 
cesses. This information can then be used to optimize the performance of the system by optimizing compute- 
intensive subprograms and processes. 

3.2.10 Graphical Specification of the Experiment 

The complexity associated with assembling artifacts generated from multiple disciplines and domains that is typically 
required in constructing an avionics system application results in major resource requirements and introduction of er- 
rors to the system. One of the means for alleviating such a problem is providing graphical mechanisms for specifying 



the experiment and the automated generation of a real-time run time executive that is built from the artifacts created 
usinc domain-specific tools. The Graphical MetaH addresses that requirement by providing graphical specification and 
automatic code generation that runs on the target hardware for the performance management experiment. 

3.2.11 Ease of Configuring Experiments to Execute on a Multiprocessor System 

The complexity of the application, hardware configurations, and processing power requirements typically necessitate 
executing the application in a cooperatively executing multiprocessor environment. The requirement is for a testbed 
environment that supports execution of the avionics application in a multiprocessor environment and the ability to rap- 
idly configure the experiment for alternate software process to hardware processor mapping. The MetaH runtime pro- 
vides the necessary constructs for executing the application in real time in a multiprocessor configuration. The run time 
provides the necessary mechanisms for real-time clock scheduling and coordination in the executive services in a mul- 
tiprocessor environment to make the underlying hardware topology seamless to the avionics application. 

3.3 ASPM Testbed Hardware Architecture 

This section describes the hardware architecture for the ASPM Instrumented Avionics testbed (seeFigure 1). The pro- 
cessors used for the testbed include the Cyclone CVME962 board and a Motorola MV 147 board. The MetaH runtime 
and the avionics application are hosted on the CVME962 processor. The Cyclone CVME962 is physically connected 
to the SUN Workstation using the RS-232 cable. The RS-232 cable serves as the interface for downloading executable 
images developed on the SUN Workstation and the communication mechanisms used by the cross-compiler and the 
cross-debugger toolset provided by Tartan. The RS-232 based communication mechanism severely limits the amount 
and rate at which performance data can be sent to the SUN Workstation from the CVME962 processor. So a Motorola 
MV 147 board is installed on the backplane of CVME962 board, and these two boards are connected via a fast VME 
bus and have common shared memory. Tne Motorola MV 147 board is connected to the SUN Sparc station via ethernet 
that enables data transfer between these processors at a much higher rate than the RS-232 connection. The Motorola 
MV147 processor board hosts the instrumentation run time thereby creating a configuration comprising a dedicated 
processing unit for hosting the instrumentation services. This significantly reduces the invasiveness that may be intro- 
duced by having the instrumentation run time execute on the same processor as the MetaH kernel ;ind sharing the pro- 
cessing resources with the application software The invasiveness is limited to the event-signaling probes that are in- 
serted in the MetaH run time and the application code. The Motorola MV147 also supports a TCP/IP link to the SUN 
workstation, thereby providing transfer rate from the instrumentation run time to the display system at ethernet speed. 

The Motorola MV 147 board runs the VxWorks operating system, whereas the CVME962 board runs the MetaH ker- 
nel. Since these two boards are connected via fast VME bus and the Motorola MV 147 board itself is connected to 



SUN workstation via ethernet, multiple VxWorks application processes can do real-time I/O with the 80960MC pro- 
cessor. 
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4. SPI: A Toolset for Instrumenting Real-Time Avionics 
Systems 

Scalable Parallel Instrumentation (SPI) provides a complete development and execution environment for real-time in- 
strumentation functions for heterogeneous parallel/distributed systems. The SPI system addresses the following two 
critical issues for real-time systems: 

• Design Correctness: Design correctness must be ensured in the presence of non-deterministic behavior and 
non-repeatable execution characteristics present in a parallel and distributed system. Ensuring correctness 
would typically require checking for the absence of race conditions, testing the system under various possible 
execution interleaving and external stimuli, and checking that the consistency of certain system parameters is 
maintained by the parallel components of application functions. 

• Requirements Validation: Reactive embedded systems must respond to external events/inputs and exert real- 
time control on their environment in the form of actuator control, displays, and data/control interaction with oth- 
er subsystems. For these systems, the developer must ensure that, in addition to design correctness, the applica- 
tion meet their real-time deadlines, the scheduling mechanisms and policies meet their properties/guarantees, 
and correct values of outputs are produced. 

4.1 SPI Features 

SPI provides an environment that allows application developers to build instrumentation that helps obtain the objec- 
tives of correctness and requirements validation. 

4.1.1 Performance and Behavior Monitoring 

This includes real-time continuous monitoring of the performance and behavior of selected system components and 
activities in both an aggregate and event-based manner: 

• Hardware resource utilization, contention/congestion, and OS overheads 
• Inter-process communication activity, with message selection by type, source, destination, etc. 

• Process execution/scheduling and operating system activity 
• Application-level monitoring: flexible probe mechanisms and real-time data-reduction/correlation and display 

services 
• Adaptive monitoring: e.g, turn on monitoring functions based upon results of previous data-reduction. 

4.1.2 Testing and Validation 

This includes capabilities for testing the functional correctness, parallel performance, and fault-tolerance aspects of the 
system and validating them against the system functional and non-functional requirements. 

• Stimulation capability to inject synthetic loads, test inputs, and various fault modes in the system. 
• Experiment control capability that includes execution perturbation and replay and repetitive testing control. 

*'■ • Dynamic assertion checking capability that allows application developers to specify and verify assertions about 
local and global properties (e.g., checking for specified casual order of application events). 
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4.1.3 Instrumentation Architecture and Development Environment 

The architecture of the instrumentation system is perhaps as important as the instrumentation function itself; especially 
in an embedded parallel system. This includes: 

• Ability to collect, reduce, and analyze the data on the fly (in real time) with minimal or accountable invasive- 
ness. 

• Scalable instrumentation architecture that can itself execute in parallel and can be configured for a heteroge- 
neous target system under study. 

• Uniform notation (e.g., a language) to specify instrumentation function selection, customization, and for build- 
ing application-specific instrumentation functions. 

4.2 SPI Architecture 

SPI provides a comprehensive approach to instrumentation based on the concepts of events, actions, and event-action 
virtual machines (ea-machines). Figure 2 shows the logical view of SPI's distributed event-action model. This model 
postulates that all the instrumentation functions (such as performance analysis, specific behavior monitoring, stimula- 
tion, and display) can be uniformly implemented as actions executed in response to events. The actions are partitioned 
(mapped) over multiple communicating ea-machines, each providing a run-time environment to its resident actions. 

System Under Study (SUS) 

Appl. Process 
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probes 

Instrumentation 
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FIGURE 2 Distributed Event-Action Model of Instrumentation 

The Experiment Specification Language (ESL) allows the flexible specification of desired instrumentation functions 
in an experiment as graphs of events and actions, using hierarchical composition. The actions in a typical subgraph act 
as monitors, filters, event correlaters, data-reducers, or fault-injectors. Multiple ea-machines, distributed across the het- 
erogeneous system, cooperate in real-time to route the events and execute the actions. 
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SPI allows flexible mapping of instrumentation components over the hardware resources of the distributed system, in- 
cluding special hardware resources dedicated to instrumentation. In an experiment, an ea-machine can share a proces- 
sor with application software, or it can be executed on a dedicated processor, according to a user-specifiable configu- 
ration. This enables continuous, real-time operation of instrumentation and the minimization of instrumentation inter- 

ference with the application. 

The SPI architecture insulates the distributed architecture of the instrumentation experiment at the ESL level. The user 
specifies instrumentation in terms of abstract graphs of events and actions and mapping directives. The ESL run-time 
provides complete location transparency to actions by automatically routing events from one action's output port to 
another action's input port over multiple stages and types of communication. 

The SPI architecture is flexible and extensible that permits the users integration of new hardware and operating sys- 
tems, integration of new action libraries and integration of new display systems. 

• Integration of new hardware and operating system: This capability enables new hardware and operating systems 
to be integrated in the SPI system. Under the ASPM program the SPI runtime was rehosted and retargeted to 
the VxWorks operating system and the 68030 embedded processor. The rehosting to a new system typically in- 
volves porting the communication sub-system and the E-A machine onto the new hardware/operating system. 
The task of adding a new hardware and operating system typically requires intimate knowledge of the SPI in- 
ternals and is typically not performed by the users. 

• Integration of action libraries. The SPI system is based on the event-action paradigm. Events can range from 
application signaled event to a clock event. The action is the information processing that occurs in response to 
actions. The SPI system provides the core set of data collection and data reduction actions needed for perform- 
ing the performance management for a typical avionics application. However, these libraries can be extended 
and/or enhanced to support the specific performance management requirements of the application 

• Integration of display systems. Under the ASPM program several display systems were integrated in the SPI 
system. These display systems included the task timeline, strip chart, and multisegment/multibar. Integration of 
display systems involves developing the data analysis, reduction and display actions. 

4.3 Experiment Specification Language (ESL) 

ESL is used for specifying an instrumentation experiment. An instrumentation experiment consists of processes rep- 
resenting the system-under-study (SUS) and the instrumentation operations on the SUS. ESL supports the following 
kinds of program composition, parallelism expression, and synchronization: 

ESL supports the following kinds of program composition, parallelism expression, and synchronization: 

• Connection of output events of an action to the input events of other actions 
• Hierarchical composition by nesting actions to arbitrary levels 
• Declaration of arrays of events and actions over subsets and shapes of target system node space 

• Full concurrency among actions as per the event-action model 
• Mapping directives for mapping actions to target system processors 
• Several types of synchronization among multiple input-event streams coming into an action 

The above composition constructs make it possible to flexibly specify an ESL program consisting of distributed/par- 
allel components that match the structure of the instrumented system and that can perform the desired data collection, 

analysis, and display tasks in real-time. 
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simple example, Figure 3 is a graphical depiction of an experiment that monitors the time spent by user processes 
certain activities of interest. The experiment is denned as a top-level action named My „experiment. It contains two 
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FIGURE 3 E5L Structure of Top-Level Action 

user processes represented in ESL as actions up I and up2 (instances of the same action type my_proc), each signaling 
out information about the start and finish time of six different activities. Each of the actions tsl and ts2, of type activity, 
calculates the time spent by a user process in each activity and builds a 1-D array of six elements containing this data, 
then signals it on its output port. The action cat receives the 2 1-D arrays and builds a concatenated 2-D array (number 
of processes X number of activities). It fills it with the data coming from the actions tsl and ts2 and signals it on its 
output port to the action bardisp. The action bardisp is an instance of type barjdisplay, a special kind of action that 
executes as a separate X-window client process. It displays the 2-D array in a display window in the form of multi- 
segment bars. The action clock signals on its output port periodically to actions of type activity to allow them to cal- 
culate and output the time spent by the user process in various activities. 

4.4 ESL Development Environment 

SPI's ESL development environment consists of a set of tools with which users can use to build customized instrumen- 
tation of their applications. The tools provide a high degree of automation and allow users to rapidly construct instru- 
mentation experiments. 

The ESL translator compiles user experiment specification to code in the target language. A set of commands (spi.ls, 
spi.import, spi.rm) is provided to browse and modify the action library. A single command {spi.make) is provided to 
construct the experiment from the ESL specification. It automatically invokes the mapper and builder tools. The map- 
Per maps actions to ea-machines, allowing for the distribution of instrumentation functions across processors. The 
builder uses the mapping tables and builds the executable images for the specific ea-machines needed for the experi- 
ment. An experiment-specific loader is automatically generated that uses the mapping information, platform configu- 
ration, and the information created by builder etc., to load and start the various processes comprising an experiment. 
To start the remote machines, the loader requests services of a SPI server resident on each remote host. 
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4.5 ESL Run-Time Environment 

The actions written in ESL are supported by a powerful run-time system and a set of library routines. The run-time 
system provides the abstraction of a global event space to the actions. The following is the summary of the capabilities 
provided by the run-time environment: 

• Event buffering and representation optimizations, with run-time procedures for an action to control the degree 
of buffering and priority for action input and output events. 

° Multiple mechanisms of event-probes in target systems, controlled by platform configuration. 

• Transparent, multistage routing of events over multiple types of communication and gateways. 
o Efficient communication among ea-machines to meet real-time response requirements and minimize the over- 

head. 
• Maintaining a virtual input event queue for each event handler and procedures to manipulate it. Optimizations 

to share event queues in the same ea-machines. 

» Synchronization among an action's input-event streams. 

• Procedures for signaling time-based events, including periodic events. This allows for flexible implementation 
for both event-based and time-based instrumentation functions. 

Figure 4 provides a user's view of the SPI environment for the development and execution of experiments. In this fig- 
ure, any UNIX commands that the user executes are enclosed in rectangular boxes and shown in large bold italics (e.g.: 
spi.makey, certain commands that are automatically invoked by SPI are shown in parentheses (e.g. (elab)). 

The following describes the high-level steps involved in using the ESL 

° Constructing an experiment which involves developing the esl specification and using the tools for generating 
the executable image for the underlying instrumentation architecture. 

• Executing an experiment which involves using the toolset in starting and controlling the execution of the instru- 
mentation system. 

4.6 SPI Displays 

The most important characteristics shared by all the SPI displays is that they provide the user with the visualization of 
the system behavior, operation, and performance. Visualization of collected data is a critical element of providing de- 
velopers with the needed insight into the system under study. The user is able to locate and isolate selected events and 
activities when presented in graphical form in both real-time and post-mortem analysis mode. A flexible visualization 
architecture enables the user to display the results and perform analysis of the data. 

SPI provides standard display types that are associated with instrumentation such as strip charts, bar graphs, multivari- 
able plots, and task timeline. Unlike many other display and plotting tools, SPI displays must be real-time and be able 
to operate at fast refresh rates. 

All the SPI displays share a common and consistent look and feel and the mechanism for interacting with the displays 
especially suited for displaying real-time data. The following characteristics shared by all displays make them extreme- 
ly powerful for analyzing real-time monitoring and diagnostic information for avionics application. The features pro- 
vided by the display include: 

• Performing post-analysis of the results: This capability enables the user to store the results from a given ex- 
periment and perform post-analysis of the data. It provides the flexibility of performing post-mortem analysis 
of the application run as well as the mechanisms for performing comparison across multiple experiments. This 
is an important feature for performing what-if analysis for different experiment configurations. The store/redis- 
play capability also eliminates the need to rerun experiments that may require a nontrivial level of effort and 
cost for avionics application. 

• Controlling the time window for display: This capability enables the user to control the time granularity of 
the displays, ranging from seeing the activities at fine-grained to coarse-grained time-intervals. In the case of 
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FIGURE 4 Experiment Development and Execution Environment 

task timeline display, the fine-grained time-interval enables state transitions or fine-grained process scheduling 
activities to be viewed. A coarse-grained time-interval displays the overall trend of the variable over the run of 
the experiment to be viewed. 
Controlling the speed of the display: Controlling the speed of the display enables the user to vary the speed 
of updates, thereby enabling display of the results at varying rates. This is an important characteristic for real- 
time displays that are used as a mechanism for detecting and diagnosing problems. In a typical experiment, the 
display can be shown at regular speeds, with slower speeds used to display the data within a time interval where 
problems are detected and fast mode is used when no problems are detected. Playing the results at slower speeds 
enables the user to detect abnormal patterns or problems that may be difficult to detect if the experiment is run 
at normal speed. In Figure 5 the speed control buttons can be used to either single-step a single frame, or control 
the speed of display. 
Playing back experiment data during application execution: The ability to play back display data during ap- 
plication execution provides the control for replaying the data to detect anomalies, patterns, and missed infor- 
mation. In Figure 5, the 2 back arrow keys can be used to play back the display, alternatively the time slider can 
be used to control the time period of the experiment run that is displayed. 
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• Controlling the granularity of the display This capability enables the user to control the granularity of the 
display. Zooming out from the display enables the user to view the finer details of the display, whereas zooming 
in compresses the display to enable the user to perform. In Figure 5 the Zoom In/Zoom Out button in the Display 
Options area can be used for zooming in or zooming out. 

The following provides a high-level description of the displays developed as part of the ASPM program. 
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FIGURE 5 Task Timeline Display for the Missile Application 

Task Timeline Display: The task timeline display provides a general-purpose mechanism for observing state 
values and state transitions as a function of time. It can be used for displaying information that typically holds 
discrete values and where the transitions and/or changes in these values over the time period is important in per- 
forming diagnosis of the application. A typical instantiation of this display can be used for displaying the sched- 
uling each process/task of the applications to ensure that the schedulability requirements are met and that the 
scheduling policies of the kernel are being applied to the application. Thus the results derived from the mathe- 
matical schedulability analysis theory can be verified with the actual results. The task timeline display can also 
be used to display kernel-level activities such as semaphore locking/unlocking, scheduling of the kernel, etc. 
Upto eight task timelines can be displayed on a single display enabling intertask comparisons (e.g., display the 
task timeline for each process in the application, the scheduler and the idle process). A given task-line can use 
a combination of task color and task height to display the stale of that task e.g., for displaying the process sched- 
uling information the colors of the task can be used to display the current state (running, ready to run, blocked 
on semaphore) of the task. The zoom out capability available with the task timeline display can be used to per- 
form micro-time analysis when problems are detected in the task timeline. Figure 5 shows a typical time display 
in which the task timeline associated with each process in the application is displayed, including the kernel 
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Multisegment, Multibar Display: The multisegment, multi bar display can be used to display cumulative val- 
ues of occurrences in the system. A typical instantiation of the display can be used to display the subprogram 
execution profiling information. The subprogram profiling display can be used to detect processes and subpro- 
gram that are compute intensive. This information can be used to optimize the performance of the process and 
correct any bottlenecks that may exist in the system. Figure 6 displays the interprocess subprogram execution 
profile with the height of each bar indicating the percentage of time spent performing that activity (e.g., the dis- 
play indicates that approximately 70% of the time is spent in the idle process, thereby providing the user with 
vital information on processor availability). The multiple segments within each bar indicate the relative amount 
of time spent in each subprogram. A color legend associated with each display lets the user bind the color in the 
multiple segments to the name of the subprogram. This information can be used in determining the compute- 
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Strip-Chart Display: The strip-chart display provides a general-purpose mechanism for displaying the value 
of variables from the underlying system under study as a function of time. The display is typically used for plot- 
ting the variables. The strip-chart display provides the mechanisms for displaying values of multiple variable 
from the system, thereby enabling the user to perform comparative analysis between them. The user specifies 
the bounds of the display. During the experiment the display bounds for a variable can be used to constrain the 
values of the monitored variables, with a distinctive coloring scheme used to indicate when the variable is out 
of the display bounds. Figure 7 displays the coarse-grained range of port variables Dv_Nav2 and Dv_Nav3. The 
strip chart enables the user to monitor the trend of application variables which can then be used to determine the 
computational correctness of the application. The following are example usage of strip-chart variables: 

• Multiple-variable display: Since in a typical avionics application variables computed by the application 
tend to be interrelated, the ability to visually see multiple variables on a single display enables the user of 
the system to determine the computational correctness of the application. 

• Displaying the error variables in the system: The difference between the actual value ol" the variable vs. the 
expected value of the variable is the application error. A strip-chart display used to indicate the error values 
can be used in determining the accuracy of the application. 

Histogram Display: The histogram display can be used to display the results of those variables that are cumu- 
lative over the course of the experiment. The subprogram profiling display can be used to determine the relative 
execution time spent in different subprograms within a process to determine compute-intensive subprograms 
within a process and the interprocess execution times to determine the compute-intensive processes. This infor- 
mation can then be used to optimize the performance of the system 



Incorporating one or more displays in an instrument experiment merely requires the user to create an instance of dis- 
play action type and to connect another action's output event to the input of the instantiated display action. The SPI 
mapper and loader tools automatically fork the X-client process for the display, and the other ea-machines transpar- 
ently route the events to this process. 

4.6.1 SPI Displays Design 

All the SPI displays consist of two distinct components: the display driver and the custom Xt widget. Combined, they 
provide SPI with a real-time data visualization and recording capability. The selection of the display and control of 
major attributes are all controlled directly from ESL. The display actions (task timeline, strip chart, bar graph etc.) are 
completely integrated into the SPI build process. They are automatically built, linked, loaded, and executed just as any 
registered SPI action. The experimenter will select or create actions that provide the events in the predefined formats 
of the particular display. Initialization values for the displays (titles, x, y axis titles, etc.) are also generally set up in the 
action that directly feeds the display. The experimenter will define the event flows from standard SPI or custom probes, 
filter and reduce the data, format it appropriately for the chosen display, and connect the display action to the resulting 
event output. 

Based on selections in the user menus and buttons, one can monitor the real-time display or view the captured data 
while continuing to record incoming events. They display data can be stored to file for later examination and analysis. 

The driver component has been designed to provide the functionality of an EA machine and supports the SPI event 
protocol. The driver accepts SPI-compliant events, buffers them, and based on user selections sends the appropriate 
information to the widget. The drivers for all the different display types utilize many of the same procedures and util- 
ities. In particular, the log buffer, ea machine utilities, and display control library are used consistently across all dis- 
play types. The procedure names shown in the driver are the specific ones that are most likely to differ between the 
display types. The Xt widgets are controlled through the methods and resources of the Xt widget interface. 

All displays are implemented with XLIB and X Toolkit Intrinsics. The widgets have been designed to be completely 
compliant with the resource and method protocol for X Toolkit. The typical SPI user should not be concerned with the 
actual widget interface. The driver handles all aspects of widget control. The widgets have been designed to provide a 
very generic graphics capability and it is possible that new display actions could be created by driver modification us- 
ing the same widget. This is significantly more difficult than configuring an ESL display action. 

The high-level structure of a complete display action including both the driver and widget, is shown in Figure 8. The 
major components are the widgets, the utilities, and the driver. Specific instances of the driver are named in accordance 
with the ESL action name. For example.ESL action bar_display has a driver of the name bar_display.c. Display action 
can be modified by developing an ESL wrapper that accepts different data representations and converts them to the 
standard ESL display action format. 

4.7 Enhancements and Extensions to the SPI System 

Under the ASPM program several enhancements were performed to the SPI run time and the SPI display systems. 

4.7.1 Enhancements and Extensions to the SPI Run time 

Several configurations were analyzed and evaluated in providing the instrumentation functionality for the MetaH ap- 
plication and kernel including: 

• Rehosting the SPI run time on the same processor as the avionics application and the Metal! kernel: This alter- 
native would have entailed rehosting the SPI run time on the same processor as the MetaH kernel. This would 
impact the schedulability analysis of the MetaH kernel, since, the scheduling of the SPI run time would need to 
accounted by the MetaH run time. The static schedulability analysis will need to account for the overhead of the 
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SPI run time in performing the schedulability analysis of the application. Additionally, it would require the de- 
velopment or integration of real-time operating system and networking services on the I80960MC processor. 
These services are required by the SPI run time in executing the event-action machine and communicating with 
other SPI run times. 

• Rehosting the toolset on a separate processor from the avionics application. This configuration would involve 
retargeting and rehosting the SPI run time on a separate dedicated processor. 

Under this program, it was decided to rehost the SPI software on a separate dedicated processor with TCP/IP connec- 
tivity to the host system. The 68030 processor board running the VxWorks operating system from Wind River was 
selected as the dedicated processor for hosting the SPI software. The TCP/IP connectivity with the SUN host was used 
as the communication mechanism for communicating the display results on the SUN. The VME memory provides the 
mechanisms for maintaining the event buffer that consists of events signaled by the MetaH application and MetaH ker- 
nel. The following were the benefits for the choice of dedicated hardware 

• Minimally invasive instrumentation system: Since the instrumentation system runs on its own dedicated hard- 
ware the execution performance of the instrumentation system has no impact on the performance on the MetaH 
run lime and the application ensuring that the dynamic behavior of the system is not impacted. 

• Increasing the throughput between the SPI system and host system. The only communication mechanism avail- 
able for the I80960MC processor with the host system was via the use of serial link. This link severely limits 
the rate at which data can be transferred between the target system and the host system. Using the ethernet link 
between 68030 and SUN host would significantly increase the bandwidth of data that can be sent to the host 
thereby permitting larger collection and display of performance data and providing the scalability needed to ad- 
dress the performance measurement needs for a complex avionics application. 

The following tasks were performed in retargeting the SPI run time to 68030 processor 

• Rehosting the SPI run time from SUN Unix OS to VxWorks: This task involved rehosting the SPI run time that 
was hosted on the SUN Unix operating system to the VxWorks operating system. 

• Development of event management module between 68030 and I80960MC: The event management module 
provides the set of services for maintaining and managing the events signaled by processes on I80960MC pro- 
cessor in a shared area of memory on the VME bus. 

• Development of event buffering scheme: The event buffering scheme provides the mechanisms for buffering 
'events consisting of the data for the display system from the 68030 to I80960MC to optimize the usage of the 
ethernet and to ensure that the data transfer mechanisms are scalable to the requirements of signaling perfor- 
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mance data for an avionics system. 

4.7.2 Enhancements and Extensions to the Display System 

The displays provided by the existing instrumentation system were not ideally suited for displaying the performance 
management data for an avionics system. The following displays were developed during the course of the program. 

• Task timeline display system: The task timeline display as described in Section 4.6 provides a general-purpose 
mechanism for observing state values and state transitions as a function of time. The display system comprising 
of data analysis, data reduction and data display actions were developed under the program to observe in real- 
time the schedulability of the MetaH application and the MetaH kernel. Extensions were also performed on the 
MetaH kernel to support the signaling of raw scheduling data that is analyzed and displayed on the task timeline. 

• Strip-chart display system: The strip-chart display as described in Section 4.6 provides a general-purpose mech- 
anism for displaying the value of variables from the underlying system under study as a function of time. The 
display system comprising of data analysis, data reduction and data display actions were developed under the 
program to observe in real-time the values of variables as a function of time. 

• Multisegment, multibar display system: The multisegment, multibar display as described in Section 4.6 pro- 
vides the mechanisms for displaying the cumulative occurrences of events in the system. The multisegment dis- 
play system comprising of the data analysis, data reduction and data display actions, was developed under the 
program to support subprogram profiling. Extensions were also performed on the MetaH kernel to support the 
signaling of information necessary for constructing the subprogram profiling information. 

4.8 Architecture for the Instrumented Experiment 

Figure 9 displays the architecture of the processing that occurs on the testbed to support instrumentation of the MetaH 
application. The MetaH application executes on the i80960MC processor. The instrumentation event-action engine ex- 
ecutes on both the 68030 processor and the SUN workstation. The data filtering and the data analysis actions execute 
on the 68030, while the display actions execute on the SUN workstation. A shared area of memory on the VME bus is 
used by the MetaH application and the instrumentation event-action machine for signaling events from the MetaH ap- 
plication. 

The MetaH kernel and the MetaH application signal three types of events to support the instrumentation functionality. 
The kernel events are automatically included with the MetaH kernel when an instrumented target of the MetaH kernel 
is built. The kernel events include events from the scheduler that signals process scheduling information and events 
from the subprogram profiler that, based on a random number timer, signals the program counter of the executing pro- 
cess. The communication events signaling the state or value of the port variable are signaled by the communication 
signaler process. The code for the communication event signaler is automatically generated by the DoME toolset. The 
signaler is automatically integrated by the MetaH toolset when a version of MetaH kernel is built that supports display- 
ing the strip chart for the port variables. The instrumentation probes for signaling application level Will have to be man- 
ually inserted by the application developers. Signaling an application event requires calling a subprogram with the ap- 
propriate parameters. The code for managing the event queue is included for both the instrumentation system and the 
MetaH system. 

The preliminary set of data analysis, data reduction and data filtering actions is performed by the event-action machine 
executing on the VxWorks. For the kernel events, the data analysis actions construct the process scheduling informa- 
tion and signal to the display action the state of each element displayed in the timeline and the transitions occurring 
for each element. This information is used by the display system in displaying the task timeline display. The data re- 
duction actions executing on the VxWorks include the creation of the multisegment, multibar display from raw event 
signaled by the MetaH kernel that indicates the program counter. The data reduction action generates the data for both 
the interprocess and the intraprocess histograms. This data is then routed to the multisegment, multibar display action 
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on the SUN workstation. The data filtering actions include the actions that take as input the events from the port vari- 
ables, performing filtering and transformation of that data and signaling the resultant data to strip chart display. 
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FIGURE 9 Instrumented Avionics Testbed Architecture. 

5. MetaH 

5.1 MetaH Features 

MetaH is a language for describing the software and the hardware architecture of real-time multiprocessor avionics 
systems. The language supports the definition of securely partitioned, fault-tolerant, scalable systems. The toolset sup- 
ports, among other things, real-time schedulability analysis and the automatic generation of "glue" code that imple- 
ments real-time message passing and process dispatching for a class of multi target architecture. MetaH allows devel- 
opers to specify how a system is composed from software components such as processes and packages and hardware 
components such as processors and memories. 

Low-level software constructs of the MetaH language describe source components written in some traditional pro- 
gramming languages such as Ada. MetaH subprogram, package, and monitor specifications describe important at- 
tributes of source modules such as the file containing the source code, nominal and maximum compute times on vari- 
ous kinds of processors, stack and heap requirements, real-time semaphore protocol to be used, etc. Events (user-spec- 
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ified enumeration literals used in certain service calls) and ports (buffer variables used to hold message values) can 
appear within source modules and must be described in the MetaH specification. 

The higher-level constructs of the MetaH language are processes, macros, and modes. Processes group together source 
modules that are to be scheduled as either periodic or aperiodic processes. A process is also the basic: unit of security 
and fault containment, and memory protection and compute time enforcement are provided. Macros and modes group 
processes, define connections between events and ports, and define equivalences between packages and modules that 
are to be shared between processes. The difference is that macros run in parallel with each other, whereas modes are 
mutually exclusive. Event connections between modes are used to define the hierarchical mode transition diagrams, 
whereas mode changes at run time can stop or start processes or change connections. 

MetaH also allows hardware architectures to be specified using memory, processor, channel, and device components 
grouped into systems. Hardware objects may have ports, events, or monitors in their interfaces. Software and hardware 
ports and events can be connected to each other, and software can access hardware monitors (hardware monitors pro- 
vide hardware-dependent service calls). Hardware descriptions identify (among other things) hardware-dependent 
source code modules for device drivers, as well as code to provide a standard interface between automatically com- 
posed applications and the underlying real-time operating system. 

Both graphical and textual specification are supported. The two can be mixed (part of the specification can be main- 
tained textually and part graphically), and the toolset can translate graphical to textual and vice versa. This is conve- 
nient in a software and systems integration tool, since different parts of a specification may be produced by different 
groups or automatically generated by different domain-specific tools. 

A simple software/hardware binding tool assigns to hardware those software objects in a specification that are not ex- 
plicitly assigned, possibly subject to user-specified constraints. 

An executive generator tool automatically produces the "glue" code needed to compose various source modules to 
form the overall application. This glue code resembles an application-specific executive or supervisor, with code to 
dispatch processes and pass messages, synchronize access to shared resources, vector events, perform mode changes, 
etc. 

The design schema for the generated executives is based on preemptive fixed-priority scheduling theory. Using at- 
tributes in MetaH specifications of process period, deadline, and criticality, the executive generator derives priority, 
period transformation, and dispatch and time slice refill information used in data tables and dispatching code. Port con- 
nection specifications and process timing information are used to schedule and generate code to move data between 
processes' port buffer variables. Monitor specifications are used to generate semaphore protocol and timing data tables. 
Code to vector events to dispatch aperiodics or to trigger mode changes, and code to manage mode changes, is also 
generated. 

Using information contained in the MetaH specification and produced by the executive generator, the real-time mod- 
eler generates a detailed preemptive fixed-priority schedulability model of the application. The model contains ele- 
ments common to all applications (e.g., a dispatcher process) and elements that are application-dependent (e.g., pro- 
cess periods and compute times, monitor blocking times, communication times). The model includes all scheduling 
and communication overheads. The schedulability model is a conservative and accurate representation of the final load 
image structure and behavior (from the real-time scheduling standpoint). 

The schedulability analysis algorithm used is an extension of the exact characterization algorithm. The analysis tool 
produces sensitivity analysis information describing how compute times may be changed while preserving (or in order 
to achieve) schedule feasibility; and it allows processes to be decomposed into component source modules and pro- 
vides timing analysis data for individual source modules. The report generated by the analyzer contains a listing of 
various application source components and also various executive overheads. 

The MetaH language includes a construct called an error model, which allows users to specify sets of fault events and 
error states. An error model also includes specifications of transition functions to define how the error states of objects 
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change due to fault, error propagation, and recovery events. An individual object within a specification can then be 
annotated to specify the error transition function and fault arrival rates for that object. 

A prototype reliability modeling tool generates a stochastic concurrent process reliability model. Error propagations 
between objects arc modeled as synchronizations or rendezvous between stochastic concurrent processes. Each such 
propagation synchronization in the model can be controlled using an associated consensus expression, which can con- 
ditionally mask propagations depending on the current error states of selected objects. In the MetaH specification, user- 
supplied consensus expressions describe the error detection protocols that are implemented by the underlying source 
modules for a particular application. The reliability modeler uses the MetaH error model specifications and annotations 
to generate the proper set of object error state machines and uses the consensus expressions and design structure to 
generate the proper set of propagation synchronizations between these object error state machines. A subset of reach- 
able state space of this stochastic concurrent process is a Markov chain that can be analyzed using existing tools and 
techniques. The MetaH kernel implementation is based on the stochastic concurrent process model rather than one of 
the popular stochastic Petri Net models because it allows the generation of a reliability model whose structure can be 
easily traced back to the MetaH specification and vice versa. One of the goals of the toolset is maintaining good map- 
pings between specifications, formal models, and code. 

The executive code generated from a MetaH specification includes a number of security mechanisms (protected pro- 
cess address spaces, process criticalities, enforcement of execution time limits, capability lists for executive services). 
A prototype safety/security modeling and analysis tool checks that the mechanisms properly enforce a particular safety 
or security policy. 

The source objects can be annotated with a safety level to indicate the degree to which the code has been assured cor- 
rect. The safety policy is that proper operation of an object cannot be affected by an error in any other object having a 
lower safety level. For example, a higher-criticality object should not receive data from a lower-criticality object (un- 
less the connection is explicitly annotated in the MetaH specification to allow this). A higher-criticality process must 
have a higher scheduling criticality specified than all lower-criticality processes on the same processor, or else execu- 
tion times must be enforced on all lower-criticality processes on the same processor. 

Objects might also be annotated with a list of security rights. However, the security checks are not currently imple- 
mented. The security policy is that an object cannot receive or share data unless it has at least the security rights of the 
object that supplies the data. The connections or data accesses of an object with many security rights can be annotated 
in the MetaH specification to show that only some subset of these rights are needed to access information provided 
through that particular connection or shared data area, however. Security (and safety) properties can also be specified 
for hardware objects, e.g., an inter-processor channel can be flagged as low-security (or low-criticality), making it er- 
rorncous to route a high-security (or high-criticality) message over that channel. 

The MetaH system is similar to a number of others such as Durra, Maruti, SARTOR, ABE, LileAnna, CAPS and On- 
ika/Chimera in its use of an architectural specification language for composing source modules written in traditional 
programming language. It is similar to Real-Time Euclid, Maruti, SARTOR, CAPS and Onika/Chimera in its integra- 
tion of real-time schedulability theory and analysis with automated code generation or composition. Modes and macros 
provide capabilities to specify hierarchical system-level state transitions that are comparable to aspects of Durra, 
Statemate and Modechart. MetaH represents a selection, integration and extension of a variety of basic technologies 
in an attempt to meet the requirements of a range of real-time fault-tolerant securely partitioned multi processor appli- 
cations. 

5.2 Developing Applications Using the MetaH Toolset 

This section describes the high-level steps involved in developing an experiment using the MetaH toolset and executing 
it on the testbed. The details for specifying an application using the MetaH language can be found in the MetaH Pro- 
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grammer's Manual. The distribution software includes the MetaH specification for the applications that were devel- 
oped under the ASPM program, including the guidance and navigation application and the missile application. 

5.2.1 MetaH Specification of the Application 

A typical Metall specification for an application consists of defining the various modes of the application, the process 
specification (including the specification of periodicity for each process) within each mode, the in/out port (data vari- 
ables that are exchanged between multiple tasks), specification for each process, and the connections between the pro- 
cesses. The MetaH specification enables the user to specify the overall architecture of the application and the specifi- 
cation of how components are combined in making the overall application. Both graphical and textual specification are 
supported. The graphical specification is done using the DOME toolset while the textual specification can be done us- 
ing a standard text editor and by generating a specification file that conforms to the syntax and the semantics of the 
MetaH language. The two can be mixed (part of the specification can be maintained textually and part graphically), 
and the toolset can translate graphical to textual and vice versa. 

5.2.2 Instrumentation Specification 

Once the standard application specification is performed by the user, the next step is deciding on Whether the applica- 
tion will be instrumented during application execution or not. The MetaH language provides an instrumented target 
option. Selecting that option automatically generates all the glue code necessary for gathering and signaling perfor- 
mance data to the instrumentation system. This provides flexibility and control to the experimenter, who can control 
whether or not the instrumentation code is integrated with the application. For an instrumented application, the user 
can view the task timeline and the subprogram profiling displays. Additionally, the user can graphically specify the 
port (application variables that are exchanged between multiple tasks) variables that will be instrumented. An instru- 
mented port variable will be displayed in a strip-chart display during program execution. The graphical MetaH gener- 
ates the set of required files to create the MetaH specification and the support files needed to construe:! the instrumen- 
tation subsystem. 

5.2.3 Compilation of the Application MetaH specification 

The next step is compiling the MetaH specification using MetaH compiler. If the compilation is successful without any 
errors, it will still give some warning (which can be ignored). If the compilation is successful it will create a directory 
called 180960MC and inside that directory it creates subdirectories for each process specified in the experiment. All 
the source files defined for each process in the specification and other standard files are placed by the metah compiler 
in the corresponding process sub directories. The MetaH compiler also creates a static time analysis file that contains 
the schedulability data of the application. 

5.2.4 Building an Executable Image of our Application 

The final step is to create an executable image from the Ada source files generated by the MetaH compiler. The MetaH 
toolset provides a build tool that performs the task of compiling all the files for the respective processes and the gen- 
eration of the final executable image for the application. The build tool uses the Tartan Ada compiler and linker in gen- 
erating the final build image. 

5.2.5 Run of MetaH Application (run of application load image) 

The next step is to download the build image onto the 180960 processor and execute the application. A script file is 
provided for loading the build image from the Tartan Ada compiler to the target processor and executing the applica- 
tion. 
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6. Final Demonstration 

The application selected for the final demonstration was the embedded missile application that was rearchitected and 
reengincercd by the U.S. Army Missile Command (MICOM) Software Engineering Directorate (SED) by using the 
Domain Specific Software Architecture (DSSA) techniques. DSSA tools developed by the Honeywell Technology 
Center, consisting of ControlH, MetaH, and DoME, were used. ControlH generates tactical Ada code for guidance, 
navigation and control systems, and also supports analysis of these systems in a module testing context. MetaH as de- 
scribed in the previous sections creates a real-time executive, based on rate monotonic theory, that binds with hand 
generated Ada code and code generated from ControlH. The MetaH toolset provides an easy mechanism for modifying 
process execution rales and a schedulability analysis of the processes in the system. DoMe as described in the previous 
sections provides the graphical programming interface for ControlH and MetaH. The representations created using 
DoME can be outputted into the Architecture Description Languages, which are interpreted by the ControlH and the 
MetaH tools. 

The selection of this application for the final demonstration was driven by the following considerations: 

• A MetaH specification for this application already existed as part of the work performed by MICOM. This elim- 
inated the need for reenginecring an application in MetaH, which could have consumed significant resources 
from the ASPM program and would have limited the functionality that could be demonstrated. 

• The missile application with the rate structure exhibited significant performance measurement characteristics 
that made it ideally suited for the testbed. The rate structure and the processing requirements of each process in 
the application posed a major challenge on the testbed. Providing an ability to identify the performance bottle- 
necks in the system and performing optimizations on it could result in significant benefit to the application. 

• Previously demonstrated the development and the reverse engineering of an application for the JAST demon- 
stration 
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FIGURE 10 MetaH Specification of the Missile Application 

Figure 10 is the MetaH specification of the missile application for the vehicle simulation mode. The figure illustrates 
the processes and the port variable associated with the specification. The process specification and the port specifica- 
tion can be performed using the DoME toolset. 
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FIGURE 11 The Instrumentation Specification of Port Variable 

The DoME tool provides the graphical specification of port variables that will be instrumented during the course of the 
experiment. Figure 11 illustrates the instrumentation specification of the port variable. The symbolic name maps to the 
name that will be displayed in the strip-chart display while the minimum range and the maximum range values enable 
the user to appropriately scale the y-axis of the strip-chart display for that variable. DoME supports automatic code- 
generation that gets linked both into the MetaH and SPI system that supports the monitoring of the port-variable during 
program execution. 

The following are captured from running the missile application. 

Task Timeline Displays: Figure 5 and Figure 12 show the task timeline for the missile application. Figure 5 displays 
a coarse-grained task timeline for a 0.5 second range of time interval, whereas Figure 12 displays a fine-grained task 
timeline. In each of these figures the color legend red indicates that multiple activities occurred within that time frame, 
the green color indicates that the process is executing, and the yellow color indicates that the process is ready to run. 
Observing the patterns in the figure confirms the correct workings of the real-time scheduler. 

Subprogram Profiling Displays: Figures 6 and 13 display the results for interprocess and intra-process subprogram 
profiling data, respectively. The inter process display provides the information on the relative time spent in each pro- 
cess. After adjusting for the periodicity of the processes this information can be used to determine the compute inten- 
sive processes. This intra-process display provides the information of the relative time spent in each subprogram within 
a process. This information can be used in optimizing the performance of the process. 
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FIGURE 12 Fine-grained Task Timeline for Missile Application 

6.1 Results from the Final Demonstration 
The approach used for performance management as described in Section 7.1 is one that integrates the methods and the 
technologies for performance management in an integrated environment. The following is the summary of results: 

• Detect the performance bottlenecks in the system: The performance requirements for the application were not 
being met by the target hardware, thus it was very essential to determine where the performance bottlenecks in 
the system occurred. The results displayed in Figure 6 identified that the Vehicle dynamics process is the most 
compute-intensive process. While this information was previously known from static analysis the assertion was 
verified with actual results by running the application. The ability to actually view the results was not previously 
available because of the lack of integration of performance measurement application. 

• Optimize the workings of the application: The results in Figure 6 and Figure 13 illustrate the most compute- 
intensive subprograms that occur in the Vehicle dynamics process. The two most compute-intensive subprogram 
were associated with mathematical functions for matrix manipulations. This information is crucial in determin- 
ing the appropriate optimizations techniques that can be applied. For this application performing inlining of the 
matrix manipulation function can significantly improve the performance of the application 

• Enable performing what-if analysis under alternate rates: Without an integrated toolset for performance man- 
agement it is very difficult to perform the what-if analysis on alternate rates for a performance stringent appli- 
cation. This analysis enables the user to determine whether the application meets its performance management 
objectives, such as schedulability of the application. It also enables the application developer to determine the 
extent to which the rates of various processes can be adjusted to improve the quality of results. The task-time 
line display illustrated in Figure 5 enables the user to verify that the schedulability requirements of the applica- 
tion are being satisfied. 

• The ability to visually see the results from the actual application as illustrated in Figure 7 provided the ability 
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to the user to ensure correctness of the application. This capability was previously not available because of the 
lack of an integrated environment for debugging a real-time application. 
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7. Performance Management for Avionics Software and 
Systems Development 

During the ASPM program, alternative mechanisms for "performance management" were investigated and a report 
describing the methods and technologies used to develop and ensure the timing behavior of real-time systems was de- 
veloped. The report [1] also describes a process-oriented perspective of performance modeling and the performance 
management methods that can be applied to each major step of the process. The following summarizes the results of 
the findings. 

7.1 Performance Management Technologies 

The basic technologies for performance management include performance modeling, both formal and simulation; 
technologies to estimate model parameters such as compute time; instrumentation and testing; performance verifica- 
tion; and the integrated use of these technologies. The following sections describe these technologies, the mechanisms 
available for applying the technologies, the strengths and benefits of each, and the results that can be obtained by ap- 
plying them. 

7.1.1 Performance Modeling and Analysis 

The two major classes of performance models include the schedulability and the simulation models. 

Schedulability Modeling and Analysis 

A schedulability model is a formal model for which mathematical analyses exist to determine timing properties. Sched- 
ulability modeling and analysis methods are closely associated with specific design and implementation techniques. 
The strengths of schedulability modeling and analysis are: 

• Mathematical assurance is provided that the analysis results will be true under all possible executions of a sys- 
tem, subject to the assumptions and parameters in the model. 

• Schedulability models are typically relatively easy to develop. 
• Schedulability analysis can typically be performed very rapidly, essentially in an interactive fashion. 
• Schedulability analysis can produce sensitivity or parametric analysis results that give insight into system scal- 

ability and relationships between design elements. 

The weakness of schedulability modeling and analysis is: 

• Schedulability analysis is limited by the power of the underlying scheduling theory. It is not possible to model 
important aspects of many real systems. 

The detailed overviews of schedulability models can be found elsewhere[2][6][7][20] . Preemptive fixed priority 
schedulability models describe the workload on a single processor as a collection of periodic and aperiodic (event-driv- 
en) tasks. Analysis can determine whether a specified system will always meet its deadline[9][8] , can determine the 
worst-case completion or response times of the individual tasks [5][3], and can determine the amount by which indi- 
vidual task compute times and blocking times could increase without causing the deadlines to be missed[10]. The Me- 
taH toolset generates a preemptive fixed priority schedulability model from the input architectural specification (a type 
of design specification). Analysis is performed for each possible operating mode or configuration (MetaH supports dy- 
namic reconfiguration), for each processor and inter processor channel. 
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Simulation Modeling and Analysis 

The simulation models is concerned with performance simulation of real-time embedded computer systems. A perfor- 
mance simulation model is an executable high-level description of a system that captures those aspects that are felt to 
be significant in estimating timing and resource allocation and utilization characteristics. The model is executed in sim- 
ulated time using several input and parameter values, yielding several execution traces with accompanying timing in- 
formation. 

The strengths of simulation are: 

• Simulation modeling is powerful and flexible and can deal with behaviors that cannot be formally modeled and 
analyzed. 

• Simulations are executable models that allow developers to experiment with, observe and debug system behav- 
ior in an intuitive way. 

The weaknesses of simulation are: 

• Simulation models may become quite intricate and require significant effort to develop and verify. 

• Simulation can be computationally intensive with long turn-around times, especially for parametric and design 
trade-off studies, or studies requiring a high degree of confidence. 

• It can be difficult to gain insight into how various parameters and modeling decisions interact, to understand the 
limits of system scalability, or to achieve high levels of confidence. 

Simulation modeling is essentially a programming activity, with the associated characteristics of flexibility, power, dif- 
ficulty, proneness to errors, and uncertainty. The most effective use of simulation probably relies on systematic, repeat- 
ed use of modeling structures, methods and artifacts that have demonstrated effectiveness and accuracy for a particular 
product domain. SES/Workbench[12], Foresight[13] and Cosmos[14] are few commercial products that have been 
used for performance modeling of embedded real-time computer systems. 

Estimating Model Parameters 

The parameters of interest for performance models, including the sequences of scheduling events and their times (e.g., 
dispatch events, semaphore lock and unlock events); and the compute (execution) times of source code components on 
processors. In multiprocessor systems, message release and communication times are also important. 

Dispatch times for periodic tasks are often derived during system design based on other engineering considerations 
(e.g., vehicle dynamics). 

The compute time of a sequential, single-threaded source code component is the accumulated CPU time (number of 
processor cycles times cycle time) required to execute instructions from the entry to the exit of that source code com- 
ponent. Estimating the compute time parameter can be accomplished by using one of the five basic ways: conjecture 
based on experience and judgement, derived from algorithm operation counts, derived from compute times of similar 
components, derived from analysis of source code, and derived from test executions (usually called benchmarking). 

7.1.2 Performance Instrumentation and Testing 

Instrumentation and testing is the injection of selected test stimuli into an implementation and the measurement of se- 
lected behaviors. Two levels of performance instrumentation and testing is supported: source code component mea- 
surement (usually called benchmarking) and system instrumentation and testing. 

The strengths of instrumentation and testing are: 

• Data is obtained form the actual implementation, not from an approximate and possibly erroneous model. 
• Direct observation, understanding, debugging and testing of the implementation are provided. 
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The weaknesses of instrumentation and testing are: 

• Instrumentation can be intrusive and can perturb the behavior of the system. 

• Implementations are not as controllable or observable as a model. 

• Instrumentation data is available relatively late in the development process. 

• Instrumentation alone provides little insight into why a system behaves the way it does. 

• Instrumentation may require special relatively expensive equipment. 

Most real-time operating system development environments include some form of performance instrumentation such 
as Stethoscope[16] and TimeScan[17]. Several benchmark suites are widely-available[18][ll][19]. 

Component Benchmarking 

Component benchmarking is used to measure the compute time of individual source code components. Component 
benchmarking requires the code to be callable from a benchmarking main program, and a choice of input data that 
gives the desired information about the distribution of compute times. The dual-loop benchmarking is a simple and 
widely-used method [4] for component benchmarking. 

System Instrumentation and Testing 

Integrated systems or subsystems can be instrumented and tested. The level of measurement corresponds to system 
structure and behavior in a performance model. The integration of MetaH and SPI toolset supports the gathering of 
two specific types of performance instrumentation. First, a scheduling time line for application processes and the ex- 
ecutive/kernel can be displayed. This is useful in understanding system scheduling behavior, e.g., to compare instru- 
mentation data with model behavior. Second, an execution profile can be displayed that shows the relative utilizations 
spent in each library-level unit in each process. This is useful in understanding the compute time behavior of source 
code components, e.g., to compare measured utilizations against model predictions at the source code component level. 

7.1.3 Performance Verification 

Performance can be tested directly using instrumentation; however, it is impossible to cover all possible system exe- 
cutions with any finite set of tests. Confidence in testing results depends on the degree of "test coverage" of require- 
ments and design and implementation. Confidence also depends on assurance that the instrumentation and testing tools 
work properly and accurately. Performance modeling and analysis can significantly increase assurance that the timing 
behavior of a system is correct. The following are the three basic approaches for performance verification. First, per- 
formance testing can be performed. Second, the parameters used in, and analysis results obtained from, a performance 
model can be compared with values obtained by testing. Third, the mapping or traceability between the performance 
model and the design and implementation can be verified. 

The primary consideration in performance testing is the determination of a good set of performance tests that can be 
carried out on the system. Performance testing may be limited by the controllability and observability of the system 
under test. 

In a model-based testing approach, performance verification compares the results of performance model analysis with 
the results of performance testing. This approach directly compares the analysis results with implementation behavior 
and simultaneously validates the model and verifies the analysis results. 

In the performance model comparative analysis approach the performance model is validated to explicitly describe the 
mapping between performance model, design and implementation and verify the correctness of mapping. 

Performance tool verification is necessary since instrumentation and testing tools can have defects. In the case of per- 
formance instrumentation and testing, there are also inherent inaccuracies in time measurements. The advantage pro- 
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vided by model-based testing is a consistency check for each product and test, above and beyond any general and pre- 
vious verification of the tools themselves. 

7.1.4 Integrated Performance Management 

Integrated performance management is the integrated production and use of designs, models, analyses, implementa- 
tions and tests. Integration of design and modeling processes leads to models that are easily and accurately derived 
from the designs or vice versa. Integrated modeling and design can be done in a non-automated way simply by adapting 
the development process to tie design and performance model development together. Integration of the schedulability 
and simulation modeling and analyses, which have complementary strengths and weaknesses, leads to a system that 
leverages the strengths of each approach while overcoming weaknesses of individual method. The integration of these 
two methods depends on the actual design structure, which in turn affects the structure of the models. The MetaH/SPI 
integrated toolset provides both schedulability modeling and analysis and performance instrumentation in support of 
model-based performance testing. 

7.2 Performance Management Process 

The performance management methods can be applied to each major step of the process. The performance manage- 
ment process is described in the context of two widely-used software process guidelines, the Capability Maturity Mod- 
el for Software and Software Considerations in Airborne Systems and Equipment Certification. For each phase of the 
software development, Analysis and Design, Detailed Design and Component Implementation, Software and Systems 
Integration and Testing and Verification, the performance management considerations and methods to be applied are 
reported. 

Performance is usually a critical constraint for avionics systems, and performance modeling should be used to make 
complex trade-offs between functionality, quality, cost, size/weight/power, etc. The preliminary performance should 
be developed as part of the requirements analysis and high-level design activity. The results of parametric and sensi- 
tivity analysis generated from the analysis and design phase should be used to determine the order in which detailed 
designs and code components should be developed. In general, subsystems and components that analysis reveals are 
possible bottlenecks, or where relatively small variations in model details or parameter values produce relatively large 
variations in system performance, should be developed. The performance model should be refined and reverified (by 
comparative analysis) as the detailed design proceeds. During the software and systems integration phase, the software 
is typically deployed on a target hardware, such as a non-real-time workstation or a real-time testbed. Incremental re- 
finement and verification should be performed during this stage. 
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8, Conclusion 

During the course of the program various methods and technologies were investigated to ensure performance manage- 
ment of avionics application. Under this program the emphasis was placed on integration technology that leverages the 
strengths of the individual methods and technologies while trying to overcome the weaknesses of the methods. Under 
this program we integrated the schedulability modeling techniques with the system instrumentation and testing meth- 
ods. The result is a suite of tools that simplifies and automates the tasks associated with code generation for the target 
hardware for an avionics system, the MetaH/SPI integrated toolset 

The performance management data that is collected from the experiments are from actual implementation and not from 
an approximate mathematical or simulation. This data serves the means for verifying and checking the correctness of 
both the schedulability model and the instrumentation toolset. The toolset provides direct observation, understanding, 
debugging and testing of the underlying implementation. For a multi processor real-time avionics system having such 
a capability enables the user to debug and test a complex system comprising of interacting components. 

The implementation architecture also was minimally invasive by having a dedicated processor for performing the in- 
strumentation functionality and using a low overhead shared memory area for managing and signaling events from the 
application. The toolset also provided performance management support from the detailed design to the implementa- 
tion resulting in a system that provides these data at early stages of the application development enabling the develop- 
ers to make trade-off decisions at early stage of the lifecycle. It is our conclusion that the integrated toolset and the 
demonstration of application with stringent performance management requirements result in a powerful environment 
for conducting performance management experiments. 

8.1 Lessons Learned 

We can now summarize what we believe to be the most important lessons learned: 

• The ability to have an environment comprising of integration of the MetaH toolset and SPI toolset provided con- 
siderable help in developing and testing the environment. The ability to cross-verify the results generated by 
static analysis tools supported by MetaH with the actual data collected from executing the experiment signifi- 
cantly improved the quality of results. This approach was used extensively during the course of the program to 
verify the correctness of the system. 

• The ability to have a configurable environment where the experiments could be easily configured for different 
performance measurement experiment served very well. This provided the ability to overcome the significant 
bandwidth limitation that was experienced during the course of conducting the final demonstration of relaying 
the results from the SPI run-time to the SPI display systems. Different experiments, each configured with the 
ability to collect and display a subset of performance management data, provided the ability to overcome the 
network bandwidth limitation while still providing a comprehensive view of the performance management data. 

• During the course of the program it became very clear that developing, testing and integrating new functionality 
in the integrated environment was a very challenging task because of the real-time nature of the application and 
the lack of sophisticated toolset for debugging an embedded application. Detecting problems with the underly- 
ing system was typically accomplished using brute-force methods and techniques. However, the ability to per- 
form consistency check between results obtained from static analysis vs. the actual results provided helpful hints 
in identifying the source of the problem. 

• The real-time nature of the experiment and the requirement for viewing the process-level scheduling informa- 
tion introduced significant loads on the network. For very fast rate processes the socket level communication 
over the ethernet between the VxWorks on 68030 and SUN workstation was the bottleneck in the system. Thus 
it became clear that utilizing technology with higher bandwidth of data transfer and faster processor was essen- 
tial for using the toolset for applications with more stringent performance requirements. 
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