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Abstract  ^  

This report is concerned with developing and implementing scalable algorithmic 
approaches for solving coupled micro and macro structural applications based on the 
asymptotic expansion homogenization (AEH) method. AEH for nonlinear and short 
transient loading applications is computationally demanding and cannot be addressed on 
serial computers. Hence, the emphasis of the present investigation is to develop and 
implement consistent AEH numerical formulations on scalable computers to address 
elasto-plastic material response of structures subjected to short transient loading. A 
second order, accurate velocity-based, explicit time integration method, in conjunction 
with the AEH method on scalable computing architectures, is implemented using 
message-passing interface (MPI). Two different scalable implementation approaches 
are discussed, and the scalability of the computational approach is demonstrated. 
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1. Introduction 

Many practical military structural analysis problems are concerned with heterogeneous media 

subjected to short impact or transient loading. For these heterogeneous media applications, the 

challenges include accurately assessing various failure modes at the micro-mechanics level, 

expressing constitutive model with effective material properties at the macro-mechanics level, 

and understanding the relationship between micro and macro levels. The effective material 

properties can be obtained either by using mathematical homogenization theory [1-5] or its 

engineering counterpart [6-10]. For short transient impact loading condition, a detailed 

knowledge of the material flow in and around material micro structural constituents, and material 

interfaces is necessary. This flow is three-dimensional, transient, nonlinear, and the controlling 

global loads are of short duration impact. Classical theories such as rule of mixtures that are 

based on constant stress or strain assumption leads to an aggregation of the response in the 

micro-structural details and thus are of limited use. 

Recent advances in mathematically rigorous asymptotic expansion homogenization (AEH) 

methods enable the coupling of micro and macro approaches for both linear and nonlinear 

structural applications [11-15]. Most recently, Chung et al. [16] demonstrated the applicability 

of AEH method for heterogeneous media subjected to short transient loading by employing 

explicit dynamics finite element formulations in conjunction with elasto-plastic material 

response. Using the AEH approach, the micro-level variables were expressed as direct functions 

of the macro-level variables in a strict, mathematically seamless approach. Their work [16] was 

especially suitable for conducting explicit transient elasto-plastic analysis of heterogeneous 

materials. An updated Lagrangian scheme for small strains and small rotations is employed to 

account for large displacements, strains, and rotations over many time steps. At each time, 

the equihbrium solution from the previous time step is used to update the position of the nodal 

coordinates such that the next simulation computes its solution based on the new equiHbrium 

configuration. Updating the mesh at every solution interval allows for the subsequent interval 

to employ the last equilibrium state as its reference state. Since an explicit time integration 

scheme  takes   quite   a  large  number   of time   steps   and  the  macro-   and  micro-level 
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computations are to be performed at each time step and for each global finite element, the 

attendant micro and macro computations can take much longer times for solution. Scalable 

computational approaches are needed to explore these computationally intensive methods. 

General purpose explicit dynamics codes like PARADYN [17] and PRONT03D 

[18] demonstrated large scale analyses on a variety of scalable computing platforms using 

message-passing interface (MPI) libraries and domain decomposition. Macro-mechanics 

implementation of the proposed method on scalable computers is similar to these general 

purpose explicit dynamics codes. The investigation of Chung et al. [16] considers the dynamic 

equation of motion discretized according to a second order accurate scheme as presented in 

Namburu [19]. In addition to macro-mechanics explicit formulations, the proposed AEH 

formulation requires coupling, and solving the local micro-structural response in terms of the 

global macro structural response. One strategy that was explored extensively was based on using 

a global domain decomposition scheme for spreading the global finite element computations 

across a grid of processing nodes, and then using a separate set of processors for the micro- 

element computations. In a later extension of this approach, the global processors that are 

finished with their part of computations ahead of other processors were put to use in helping with 

the micro-element computations in other domains. Scalability of the approach is demonstrated 

for a Taylor impact problem. The results obtained on an IBM-SP2 showed consistent scaling 

with 2,4, 8,16,32, and 64 processor computations. 

The outline of this report is as follows. Section 2 introduces the fundamental ideas of the 

mathematical and numerical formulations of the asymptotic expansion homogenization method. 

Section 3 discusses the algorithmic issues and implementation of the AEH method on scalable 

computers. Scalability of the approach is discussed in section 4. 

2. Mathematical Formulations 

2.1 Governing Equations. Assume a three-dimensional body Q is an assembly of periodic 

structures containing different material as shown in Figure 1.   Typically, the unit cell is very 
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Figure 1. Macro-Micro Analyses' Neighborhoods. 

small, of order s (where sis a small positive number) compared to the dimensions of the problem 

domain. Structural response quantities such as displacements, velocities, stresses, and strains are 

assumed to have slow variations (macroscopic) from point to point as well as fast (microscopic) 

variations within a small neighborhood s of a given point x. Let Y be a (periodic) representative 

part of Q. Here we distinguish two scales: the macroscopic scale (xeH) and microscopic scale 

(ye O). Lagrangian representation of conservation of mass and momentum equations are used in 

this study. The conservation of mass is used to calculate the current density from the initial 

density. The momentum equation, the kinematic relations, and the constitutive model are 

represented by 

P'V-Vßj^fi' 

e£ =—(vs +vE ) 

(1) 

(2) 



and 

<rse=Ss(ev,E), (3) 

where p is the density, f. is the body force vector, E is the internal energy, the superscript s 

denotes micro/macro continuum solutions, v,- is the velocity vector, cr.. is the stress tensor, and 

ey is the strain tensor. The initial conditions in the domain ÜE, boundary conditions on the 

surface of the domain fff, u TJ are given by 

<(* = <>) = «;, (4) 

v,*(' = 0) = v;, (5) 

uf=u?   <mdrit (6) 

and 

°>.-=Zl   onar2, (7) 

where ut is the displacement vector and nt is a surface normal. 

2.2 Time Integration. Second order accurate Lax-Wendroff based explicit time integration 

procedure [20] is employed for the conservation equation or equation of motion. In this 

approach, the dependent variable velocity is first discretized in time using second order Taylor 
series expansion. 

vf    =vf +Atvf (8) 

Taking appropriate time derivatives of equation (1) and substituting for the velocity and 

acceleration gives 



/TV,.       -/TV,.    =<Jßj     +pfi . (9) 

The stress increment is related to a strain increment through an appropriate constitutive equation. 

The elasto-plastic constitutive equation at midpoint time increment is defined by 

<n =Mm(°C +Q^r2^n+,/2;- do) 

Stresses and strain rates at midpoint time can be evaluated using the predicted displacements as 

shown: 

„+1/2 n At       ,»+1/2 . - 

<    =«i +YV<    • (11) 

2.3 Asymptotic     Expansion     and     Elasto-plastic     Constitutive     Equations. The 

homogenization method is based on the asymptotic expansion of the primary variables together 

with a unit cell approach for a heterogeneous structure. Assume a three-dimensional body Q is 

an assembly of periodic structures (1). Typically, the unit cell is very small, of order s (s is a 

small positive number) compared to the dimensions of the problem domain. Typically, two- 

scale asymptotic expansion can be employed to approximate the displacement, velocity, strain, 

or stress fields. 

«t(x,y) = u0i (x,y) + euh (x,y) + s2u2i (x,y) + •••, (12) 

v*(x,y) = v0(x,y) + sv, (x,y) + s\(x,y) + ---, (13) 

and 

e'{x,y) = e (x,y) + seh(x,y) + s2e2(x,y) + ---, (14) 

af (x,y) = <j0 (x, v) + £(Th(x,y) + £2
CT2J(x,y) + ---, (15) 



where  u?(x,y),   vf(x,y),   ef(x,y), and  a*(x,y)   are Y-periodic functions. 

The AEH approach for nonlinear applications is based on the instantaneously linearized 

assumption for the constitutive model, Terada and Kikuchi [12]. The fundamental assumption of 

the AEH approach, therefore, is that the true solution in the s space is decomposed into a macro 

space x and a micro space y. The basic assumption here is that multiple scales exist only in the 

spatial variables and that no such scaling exists for the time variable. Further reading in space 

and time asymptotic expansion approaches can be found in Benoussan et al. [4]. The general 

approach to heterogeneous problems is to separate and draw clear distinction between the micro- 

and macro-level equilibrium equations regardless, per the earlier linearized assumption, of 

material nonlinearity. This is accomplished by asymptotically expanding the primary variables 

where the asymptotic scale is approximated to the second order. 

vf (*,y) = v0;. (x,y) + svh (x,y) + s\ (x, v) + •••. (16) 

Spatial gradients in £-space are taken with respect to the x-coordinate system. The 

corresponding gradient for Y-periodic functions (where micro and macro are now 

distinguishable) is given by the chain rule where the scaling is defined by v = xle, and hence for 

any Y-periodic function </>, the earlier gradients are replaced by 

d(/)     d</>     1 di 
-£■ = -£- + T-. (17) 
dx;     dx;     s dyt 

Then, using equation (1) in equation (7) while considering equation (2) gives the rate of strain 

tensor defined by 

% =Wv.) + ^(vI)] + fi[«J(vI) + ^(v2)] + -, (18) 

where the symmetrized gradient tensors, e*y and eyy are defined by 



e;m=\ dxj    dxi 

(19) 

and 

eM) = 
1 d*t.+ d*j 

fyj     fyi 

(20) 

The relevant expressions for gradients and velocities are first substituted into the governing 

equations of motion. Next, the micro and macro equations are identified by selecting the 

appropriate coefficients to the scaling factors e which must each be identically zero. Substituting 

the asymptotically expanded velocities, equation (1), in the strain rate, equation (3), and then 

using the constitutive equation, equation (16), in the equations of motion, equation (15), yields a 

set of equations dependent on powers of s. To satisfy the equations of motion, each term 

associated with each of the powers of s must approach zero identically. This leads to a set of 

equations associated with the microscopic and macroscopic equations of motion. The first 

equation, associated with the powers of e~2 is given by 

.«-i 
,-2 (21) 

where C*jkl = MijpqCpqU. Equation (21) states that v^"1 is a function only of x. Hence, derivatives 

of y are zero. Using this inference, the equation associated with the powers of s~l is derived as 

——C        k   \        c    !* 
n-i 

1 Ö       ,*r .B-l/2> 

tyj dx,      tyj dy, At dyj 
(*VH     )■ (22) 

Equation (22) relates the perturbative velocity field, v„ to the macroscopic velocity field, v0. 

An equation relating these two quantities become the important micro-macro equation, providing 



the direct link to relate microscopic to the macroscopic velocities.   Such an equation is also 

called the localization equation due to its features. The localization equation is given by 

v" =-*' ■&—**'+^w> (23) 

where v,     is a constant of integration, and the corrector functions (sometimes referred to as the 

so-called characteristic functions) are the solutions to the equations 

»a    a. a.    ^Vmn> \A^) tyj    ,J     dyx       dyj 

and 

d „.   dxl      d „*     ux,k U     .. -»-1/2 

^^"^r^^^ • (25) 

Equations (24) and (25) are the corrections which account for the shape of the interface 

separating various phases and the time-dependent plastic softening effect due to material 

nonlinearities, respectively. Clearly, for a homogeneous problem, both correctors are identically 

zero. In the event where no plastic yielding occurs, the problem degenerates to a transient elastic 

problem. These equations arising from equation (22) constitute the microscale problem. 

Finally, the equation associated with the powers of s° is written as 

e o 

dXj   
ijU  dx,      toj»  dy,   + dyJ

C"  fr,      fy   »~ty~ 

-P-Avn+l -^LJ-M   ff'"""2 —P- f+m 

At2      "      Attoj     *»u       Ath     ■ 

(26) 



Much like equation (22) provided the basis for the micro-scale problem, equation (26) provides 

the basis for the macro-scale problem. By taking the volume average of equation (26), 

substituting for v, using the localization equation (23) and noting the periodicity, the final 

governing equation of motion is given by 

d {p)Av? = Atf-{a^ -*;) + At(p)frU2, (27) 
dx 

where the "corrector stress," cr^, is defined by 

u ~   >ßt 

«=\     \ dzl    drf dv'0 zA<^ + iM °Js-At 
dy,       By i    dxn 

(28) 
) 

and where quantities in brackets denote 

{()) = yl()dY. (29) 

It is of interest to note that equation (27), for heterogeneous conditions, is similar in form to 

equation (6), the homogeneous equation, making the integration of a micromechanical problem 

into a macro analysis tractable and straightforward. 

2.4 Constitutive Equation: Elasto-plastic. The stress tensor is split into two parts. The 

first part, Sy, is deviatoric stress, which is related to material strength, and the second part is 

pressure P. To simplify notation, the superscript £-has been omitted. 

<T,=-£,P + S,, (30) 



and 

1 
3
<r"=-p- (31) 

The first term in equation (30) accounts for volumetric changes and is typically evaluated 

from equations of state in explicit dynamics. The second term, the stress deviator, is related to 

the deformation of the material and is defined by a constitutive model, and in particular, the time 

rate of change of the deviator is evaluated from the strain rates. 

S..=2G*..+4,., (32) 

where G is the shear modulus and Atj is the correction for rigid body rotation. 

An isotropic hardening model with a rate-dependent Von Mises yield condition is employed 

in the present analysis. A consistency condition ensures that the stress state remains on the yield 

surface at the start and end of a time-step. Such a condition is given by 

Rn+1Qy=Sf\ (33) 

The variable R is the rate-dependent radius of the yield surface or the apparent yield stress, Qr is 

the vector specifying the normal direction to the yield surface, and Sy  is the deviatoric 

component of the stress. The stresses are understood to be the co-rotated second-order tensor 

according to the Jaumann definition of the co-rotational derivative. The Jaumann derivative of 

the Cauchy stress, &i is related to the material time derivative, &r by 

&fj = cr.. + <yik <okj + coik akj, (34) 

where a>kj is the rotation tensor, the standard skew-symmetric component of the velocity 

gradient. The radius of the yield surface is defined by 

10 



R = al 1 + + H'sp, (35) 

where o°Y is the static yield stress of the material and D and p are the so-called fluidity 

parameters. H' is the hardening parameter, and e p is the effective plastic strain. The effective 

rate of deformation, s is defined by 

e = J—e-e- 
V 3  ,J v (36) 

where ey is the deviatoric component of the total strain Sy. The normality condition, specified by 

the normal vector Qy, is given by 

&,= 
S, 

yjSmnS» 

(37) 

For a homogeneous material (which is applicable in the present derivation since the constitutive 

equations are applied at the micro level where the material is homogeneous within each phase) 

the incremental relationships for the apparent yield stress and the deviatoric stress are defined as 

R"+1=Rn+-H'AA, (38) 

and 

S™=Sr -2GMQ{j, (39) 

11 



where S~     is the deviatoric trial stress, AÄ is a scalar quantity representing the magnitude of 

the radial return correction due to plastic yielding, and G is the elastic shear modulus.   The 

deviatoric trial stress is defined by 

Sf =S;+Cyide:!At  , (40) 

where Q# is the tensor containing elastic properties. 

Finally, substituting equations (41) and (39) into equation (33) and solving for the radial return 

correction parameter gives 

,, 3/2 
(3G + H') 

fesfsf -R, (41) 

Using equation (40) in equation (41) and employing the standard assumption that a material is 

elastic in its dilatational behavior and plastic only in shear gives the total stress increment in 

equation (16). The constitutive equation (16) can now be employed in the derivation of the 

micro and macro governing equations. 

3. Computational and Implementation Issues 

3.1  Macro Finite Element Equations. Finally, in the absence of damping, the discretized 

equations are given in matrix form by 

MAvn+1 = F^U2 + F2
n+1/2 + F3

n+U2, (42) 

where the displacements are given by 

12 



ur=u!+/ltl(l-y)v?+yvr\ (43) 

and 

M=[NapNßdQe, (44) 
■>nc 

Frl2 = At\N^m\lQe, (45) 

F?m=-AtlnNy
M-n\ine, (46) 

F^m=At\  Napf
n+l,2dne, (47) 

jv
n+1=v',+1-vn,and (48) 

r+1/2=|(/"+,+/")- (49) 

The subscript e denotes element quantities, and y is a free parameter.   The volume averaging 

brackets are implied for densities and stresses. The stresses are defined by 

<+"2=<1/2-<^ (50) 

where erf.   is the stress corrector. The mass matrix M in equation (44) is lumped for the present 

explicit formulation.  The vectors F\, F2, and F3 are due to internal forces, boundary tractions, 

and external loads, respectively. 

13 



3.2 Micro Finite Element Equations. In order to compute each term in equation (44), the 

effective microscopic quantities for density and stresses must first be homogenized over the 

representative unit cell associated with that macro-level finite element. Despite the explicit 

formulation in the macro-level which avoids the solution of a set of equations, the micro-level 

equations require an iterative implicit solution of a sparse equation set. This is less computation 

than required in the quasi-static approach which requires solutions of both the micro-level 

equations and the macro-level equations. The present method avoids the solution of macro-level 

equations. 

The discretized forms of the micro-level equations are given by 

KX
l =Fr\ (51) 

and 

where 

^   =rm. (52) 

K=\YNJC*]NßjdY, (53) 

Kicro = jYNa,t[C*]dY, (54) 

and 

K"" = jyNai[M]{cx"-U2}dY. (55) 

Equation (51) possesses six right-hand side vectors corresponding with the six columns in 

[C*] while equation (52) possesses one right-hand side. Thus, for each macro-level element, 

seven sets of equations must be solved. Since the stifmess matrix is the same in each equation, a 

solver which can re-employ its factored stifmess matrix is warranted.  The micro-level stresses 

14 



are computed from equation (16), implying that every micro-level element stress must be stored 

between successive time steps, which are then averaged to give the macro-level stresses via the 

volume averaging operator. 

For true generality, the nonlinear equations (51) and (52) must be solved for each macro- 

level element because of micro-level stress variations which may occur. In light of the added 

computation required in multiscale analyses, the computational complexity, a subjective measure 

of the computation time, increases substantially for a micro or macro problem compared to a 

simple single-length scale macro problem. 

3.3 Scalable Implementation. This section discusses scalable implementation aspects of 

explicit macro finite element formulations and implicit micro finite element formulations. To 

enhance the scalable speed-up, two different micro-element implementation strategies were 

discussed. 

3.3.1 Scalable Approach for Macro Finite Element Method. The macro approach uses the 

self-starting velocity based explicit time integration algorithm of reference [20] in conjunction 

with the elasto-plastic constitutive relations and large deformation as shown in Figure 2. 

Note that the explicit time integration scheme does not involve any system of equations to 

be solved. Similar to other large deformation, explicit time integration codes, the present 

approach uses one-point integration to evaluate the element integrals. First, the finite element 

mesh is partitioned into subdomains using the domain decomposition approach based graph 

theory and in particular METIS software of reference [21]. This approach gives optimum mesh 

partitioning based on edge cuts. The number of subdomains partitioned is equal to the number of 

processors being used. Next, the MPI is used to communicate information between the 

processors. Figure 3 depicts the process. 

15 



Given the following equations of motion, p ü + ay = fe, 
subjected to the following boundary conditions,       uj = Uj on T{i and 

aij = Tionri2, 
and the initial conditions, Ui (t = 0) = u0; and 

^(1 = 0)=^°, 

with p = density, ü = acceleration, ay = internal forces, and fe = external forces; then the 
numerical algorithm begins with an assumption for the time integration. 

An example of a scheme based on the central difference is given below. The solution 
begins with the initial conditions for the displacements and velocities at time step n = 0. It 
progresses in the following substeps for each Atn: 

Step 1: Predictor step: if+1/2 =\f +—(f 
2 

Step 2: Velocity increment solution step: MAUn+1 =F "+1/2 +F "2
+in +F "+1/2 

3 

Step 3: Corrector step: u°+1=if+—rir'+in 
where the element integrals in the above 2 
are given as - 

M=JQNapN,dQe, 

F3=AtLeNapfn+1/2dQe,and 

=-At|QeN0{a"-.n)dQe F2 

Step 4:   Continue the corrector step to update the 
velocities,   displacements,   coordinates, 
time, and stresses: -n+ö    .n-~   ..„ A.n u   2=u   2+unAtn, 

Aun+1=ün+1-ün, 
1       1 

xn+1=xn+un+2Atn+2, 

..n+1     Atn+Atn+1 

At    2 = , and 
2 

.n+1« 1/2 

Step 5:   Check At for Courant stability criteria and continue Steps 1 through 4 until 
 specified time limit. 

Figure 2. A typical Algorithm for the Explicit Integration of Equations of Motion. 

16 



Global Mesh 

Domain 
Decomposition 

Domain 
processors 
compute both 
global and 
micro elements 

1                         1 
II 

WMWBmMBimm -A fl 

1   II   II   II   II   II   1 
□□□□□□ □□□□□□ 

I WWIB 

Figure 3.   Strategy 1 Showing Domain Processors Computing Both Micro and Global 
Elements. 

3.3.2 Scalable Approaches for Micro Finite Element Method. As opposed to the macro 

finite element method which uses the explicit time integration approach, the micro finite element 

approach involves solving systems of equations. Each macro element carries with it a micro- 

element model representing its micro-structural detail. In a traditional finite element, the material 

constitutive behavior is sampled at its integration points. In a similar manner, the constitutive 

behavior of a macro-element in the current program is obtained by solving the respective micro- 

element equations, at each time step. The micro-element solutions include the micro-element 

stresses, accumulated plastic strain, and the elastic and plastic material properties. Since AEH 

theory assures that these equations can be expressed solely in terms of the macro element 

response variables, the micro-element model computations are independent across the macro 

elements and across the different decomposition domains. That is, different strategies can be 

used to implement micro-element computations on scalable computers. In this study, two 

strategies are explored, and the issues of implementation and efficiency of the implementation 

are discussed next. 
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The two parallel implementation strategies are discussed. 

(1) Domain decomposition for macro elements with the domain processors also doing the 

computations of their respective micro-structural models (Figure 3). 

(2) Domain decomposition for macro elements with each domain processor assigned with 

helper processors for doing micro-structural model computations (Figure 4). 

Global Mesh 

Domain 
Decomposition 

Domain and 
helper 
processors 

—11      i 
11     11      11     i'      11      i 

mm 

Figure 4.    Strategy 2 Showing Helper Processors Computing Only Micro-elements and 
Global Processors Computing Both Global and Micro-elements. 

Figures 5 and 6 present the program flow for these two strategies. In the first strategy, the 

computations begin with the gathering of the following information: the macro-element 

coordinates, the micro-element coordinates, mechanical properties, plasticity properties, average 

macro-element stresses, detailed micro-element stresses, average macro-element plastic strains, 

detailed micro-element plastic strains, and the current velocity increments at the macro-element 

nodes. 

18 
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Figure 5. Program Flow for Strategy 1 Without Helper Processors. 

( End ) 

Figure 6. Program Flow for Strategy 2 With Helper Processors. 

19 



Computations in each micro-element involve updating the micro stresses, micro plastic 

strains, micro strain rates, and the micro mechanical and plastic properties. As shown in Figure 

6, these computations are carried with the aid of helper processors in the second strategy. After 

this, the corresponding quantities are aggregated at the macro element level and mass and 

internal force vectors are computed for each macro element. In this manner after each macro 

element and its micro-elements are computed, the mass and internal force vectors are assembled 

across the macro elements in all the domains. After all the elements are computed, the mass and 

internal force information is exchanged for the nodes that are shared across the domain 

boundaries. The fully assembled mass and internal force vectors are later used for obtaining a 

new set of accelerations. After updating the velocities and geometry (and after checking for 

possible contacts and failures), the next time step is commenced. In each time step, the domain 

processor does, these computations in serial manner first by calling the macro elements and then 

the micro-elements resident in each macro element. 

The number of helper processors (nh) that are needed, in the second strategy above, for each 

domain depends on several factors including the micro-structural model size, finite element 

interpolations, constitutive behavior of the material micro-components, and the complexity of the 

homogenization theory that is being used. Along with size and shape, the number of micro- 

elements determines the complexity. Thus, if one limits the type of micro-structures in a domain 

to just one kind, then the number of micro-elements (nm) appearing in each macro-element would 

be constant; and then one can begin with a number of helper processors that equals to this 

number (i.e., nh = nm). 

If nh is set equal to nm, however, the parent domain processor becomes idle while the micro- 

element computations are going on. To avoid this, nh is set equal to nm - 1, forcing the domain 

processor participate in doing one of the micro-element computations. 
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4. Scalability Studies 

The results from the first strategy (i.e., with domain decomposition and no helper processors 

for micro-element computation) are presented in Table 1. 

Table 1. Results for the Taylor Problem Without Helper Processors 

Column 1 Column 2 Column 3 Column 4 Column 5 

No. of 
Processors 

Avg. Computation 
Time per Domain 

Processors, X^c 

(s) 

Avg. Communication 
Time Between Domain 

Processors, A-dd 
(s) 

Avg. Wait Time 
per Domain 

Processors, Xdw 
(s) 

Run Time, 
h 
(s) 

1 40,474 — — 40,474 

2 18,470 6 2,445 20,921 

4 8,526 6 2,397 10,929 

8 3,922 5 1,774 5,701 

16 1,860 5 1,077 2,942 

32 943 7 565 1,515 

64 507 14 336 857 

By the results in columns 2 and 5 in Table 1, one can conclude that the computation and 

overall run times are fairly scaled with the number of processors. This was achieved despite the 

fair amount of wait time that the processors had to endure. This wait time occurred as a result of 

having more elements in some processors becoming plastic and thus needing more micro- 

element computations than others. 

This wait time can be reduced significantly by moving such elements evenly among all the 

processors. This was a result of the nature of the domain decomposition used on the input data 

set. With a prior knowledge of such deformation an even distribution of the plastic elements can 

be achieved.   Even though such knowledge is available in the present Taylor impact problem, 
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elements were not redistributed because the results for the run time scaled fairly. In the present 

problem, there was an impact in the longitudinal direction causing a radial distribution of the 

plastic elements. In spite of this, a longitudinal decomposition was employed which meant that 

domains away from the impact had to wait until their elements become plastic. 

The times of communication among the domain processors, as evident from the results in 

column 3 in Table 1, were fairly small. The results for the same problem with the second 

strategy of computation are presented in Table 2. In this strategy, helper processors were 

provided to help in the micro-element computations. Since the example problem had 

microstructures in all the global or macro elements, since each microstructure had two elements, 

and since the domain processors are also used in all the micro-element computations, one helper 

processor each was provided for each global domain processor. The results are presented in 

Table 2. 

Table 2. Results for the Taylor Problem With Helper Processors 

Column 
1 

Column 
2 

Column 
3 

Column 
4 

Column 
5 

Column 
6 

Column 
7 

Column 
8 

Column 
9 

Column 
10 

No. of 
domain 

processors 

No. of 
helper 

processors 

(s) (s) 
^■dh-d 

(s) (s) 
Ä'dh-h 

(s) 
Ä-hc 

(s) 
A-hw 

(s) (s) 
1 40,474 
2 2 7 2,004 560 13,359 6,526 5,540 3,864 15,930 
4 4 6 1,975 268 6,103 4,005 2,630 1,717 8,352 
8 8 5 1,458 125 2,797 2,377 1,230 778 4,385 

16 16 5 875 59 1,332 1,312 579 380 2,271 
32 32 9 462 30 690 687 290 214 1,191 

Note: A.dd = Average time per domain processor for communication with domain processors. 
Xiw = Average time per domain processor waiting for end of computations in other domains. 
A-dh-d = Average time per domain processor for communication with helper processors. 
Xic = Average time per domain processor for computation, = X2 - XM - Xiw - X^. 
A-dh-h = Average time per helper processor for communication with domain processors. 
ha= Average time per helper processor for doing micro-element computations. 
Xhw = Average time per helper processor for waiting, = X2- Xhc - X^. 
X2 = Average wall clock run time per processor. 
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From the results shown in column 10 in Table 2, one can conclude that the overall run times 

are fairly scaled with the number of processors. The computation times logged by the domain 

and helper processors, columns 6 and 8, show that the micro-element computations consume a 

significant amount of time. 

The practical benefit achieved by using the helper processors can be determined by 

considering the overall run times. When the wall clock run times in the last two columns of 

Tables 1 and 2 are considered solely in terms of the number of domain processors available (as 

shown in Figure 7), then the reductions in the wall clock run time are significant with the helper 

processors. However, when the same times are examined by considering that one could have 

used helper processors as domain processors, then it must be concluded that the helper 

processors are not utilized in an efficient manner. The run times with helper processors show an 

average increase of 35%, but such cursory examination is misleading because the wall clock run 

times included the wait times. These times are significant as shown for the domain processors in 

column 4 in Table 1 and column 4 in Table 2 and for the helper processors in column 9 in 

Table 2. Since these times can be eliminated with suitable input data set decomposition, the wall 

clock run times should be compared without these wait times. When this is done as shown in 

Table 3, the penalty reduces to an average of 9%. The results for the penalty are plotted against 

the total number of processors in Figure 8. 
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Figure 7. Total Run Times for the Two Strategies. 
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Table 3. Effective Run Times in the Two Strategies 

No. of Total 
Processors 

Strategy 2 Strategy 1 

Penalty Adw 

(s) 
Ä-hw 

(s) 
^2 

(s) 

Effective 
Run Time 

(s) (s) (s) 

Effective 
Run Time 

(s) 
4 20,04 3,864 15,930 10,062 2,397 10,929 8,532 1.18 
8 1,975 1,717 8,352 4,660 1,774 5,701 3,927 1.19 
16 1,458 778 4,385 2,149 1,077 2,942 1,865 1.15 
32 875 380 2,271 1,016 565 1,515 950 1.07 
64 462 214 1,191 515 336 857 521 0.99 
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Figure 8. Total Run Times for the Two Strategies vs. Total Number of Processors. 

In addition to the wait times, there is a potential for reducing the communication time 

between the domain and helper processors (i.e., the times shown in columns 5 and 7 of Table 2). 

The input to and the output from the micro-element computations were not minimized and 

packed with any due consideration. When this is done, the above penalty will reduce even further 

perhaps showing real gains for larger size microstructure idealizations. These and the results 

from the third strategy are in progress now. 
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5. Concluding Remarks 

In this report, scalable implementation of nonlinear explicit AEH for solving coupled micro 

and macro structural applications is presented. Scalability of the approach is demonstrated for a 

standard Taylor's impact test problem. It provides some data for using the helper processors for 

micro-element computations in dual-level finite element modeling with embedded micro 

structural models. The following conclusions can be identified from the present study. 

• Penalty, which is caused by the additional communication between domain and helper 

processors, reduces as the number of processors is increased. 

• In any given time step, computations in some domains may finish ahead of other 

domains. Processors of these domains may be used to help out the still ongoing 

computations at other domains. In the example problem, a greater number of processors 

become available for computing the plastic elements if the number of domains is 

increased. 

• The benefit of having additional processors for computation may outweigh the 

communication penalty as the size of the micro-structural model is increased. 

• An understanding of micro-material model details to be communicated vs. micro material 

model computation is needed for material modelers. 
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Glossary 

Unless stated otherwise, all indices vary according to dimensionality of the problem (e.g., i - 1, 

2, 3 in a three-dimensional structure). 

-p 
€ effective plastic strain 

X* a corrector 

xf first elasto-plastic corrector 

xf2 second elasto-plastic corrector 

[]T 
matrix quantity 

[]T matrix transpose 
{} vector quantity 
Cjjki a fourth order material property tensor 
D a fluidity parameter 
eu a strain vector 
Fi summed internal pre-stress force vector 
F2 summed external force vector 
F3 summed body force vector 
fi a body force vector 
G shear modulus 
H' a hardening parameter 
K bulk modulus 
M,Mij mass matrix 
nh number of helper processors 
rij a normal vector 
nm number of micro-elements in a macro-element 
P pressure 
P a fluidity parameter 

Qü a normal vector to the yield surface 
R rate dependent radius of the yield surface 
Sij a deviatoric stress tensor 
sub-subscript n used for Uj, Vj, a,, and ej to denote Y-periodic functions 
superscript s micro/macro continuum solutions 
superscript J Jaumann definition of a co-rotated quantity 
superscript n values at the nth time step 
t time 
Ti a surface traction vector 
Uj a displacement vector 
Vi a velocity vector 
Xj a position vector 
y« a position vector 
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AA. a scalar quantity representing the magnitude of the radial return correction 
a time derivative 

E an internal energy 
I~i surface of a boundary on which displacement conditions are prescribed 
T2 surface of a boundary on which traction conditions are prescribed 
Q a domain 
Sjj Kronecker delta 
s a small positive number 
<j) a Y-periodic function 
y a scalar quantity used in the time integration 
Ä-i run time with only domain decomposition and no helper processors 
A.2 run time with only domain decomposition and helper processors 
Ä.dc average computation time on domain processors 
^dd average communication time between domain processors 
Ä-dh-d average time for domain processors for communication with helper 

processors 
Ä-dh-h average time for helper processors for communication with domain 

processors 
A.dw average wait time on domain processors 
Ä-hc average computation time on helper processors 
A-hw average wait time on helper processors 
p density 
er; a stress tensor 
cry0 static yield stress 
cOkj a rotational vector 
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