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General Remarks about the Final Report 

This Final Report contains texts of all previously elaborated Progress Reports (as in the Final 
Version of the Third Report) presented in an ordered manner with few minor corrections and 
supplemented with the last Appendix, 'R'. 

In the up to now prepared Final Report the nomenclature applied makes use of the 
notion of polarization and phase (PP) vectors instead of usually being applied complex 
amplitude (CA) vectors. At the beginning, it may become confusing for Readers because there 
are rather CAs' that are being transformed by complex matrices such as Jones or Sinclair 
matrices. Confusions may happen because the problem of distinguishing between the CA and 
PP vectors never appears in the traditional optical polarimetry, or in the polarimetric antenna 
theory, where the CAs' always equal the PP vectors. However in radar polarimetry, for waves 
propagating in the -z direction of the propagation z-axis, the CAs' equal conjugate values of 
the PP vectors. Moreover, only the PP vectors can be presented on the Poincare polarization 
sphere, not the CA vectors, while the Poincare sphere transformations applicable to radar 
polarimetry are the main subject of this work. Therefore, consideration of the PP vectors 
instead of CAs' appears inevitable. In order to enable Readers to compare the proposed 
presentation with other, traditional approaches, several Appendices (from N to R) submitted at 
the end of the text may be of some help. 

Also some even essential solutions/results which are beyond the general philosophy of 
the here proposed approach based on using the inversion/Lorentz and rotation transformations 
on the Poincare sphere have been put into Appendices (e.g.: H, I, and J) for reasons of clarity 
of presentation. 

Fundamentals of the theory are presented in Chapters 1-9, and 15. Chapters 10-14 
contain some special results and applications. 
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FOREWORD 

Polarimetry enriches vision of electromagnetic waves by introducing new dimensions to their vectorial 
representations and, consequently, by applying polarization matrices instead of scalar coefficients describing 
propagation or scattering properties of media on their path (see, e.g., Kong [98], Ulaby et al.[137], 
Wanielik[138], Giuli[78]). 

Radar polarimetry differs from its optical predecessor by dealing with waves propagating in opposite 
directions (Boerner et al.: [13], [24]). However, it is very important and most convenient to use exactly the 
same vectors representing polarization independently of direction of propagation. For instance, we used to 
speak that optimum transmission between two antennas is being achieved when they are identically (!) 
polarized, though they have to look towards each other, thus being oriented in opposite directions. There are 
also other even more essential reasons for introducing such a unique representation of polarization which 
appears necessary when analysing 'geometrical' representations of transmission by applying the Poincare 
sphere transformations. Such representations appear physically fully justified in virtue of the fundamental 
property of electromagnetic plane waves which, being solutions of Maxwell equations, demonstrate their 
invariance under time reversal called also the time reversal symmetry or T-symmetry (Brosseau [28]). 

To follow the above requirement, vectors independent of direction of propagation will be introduced 
which, however, determine not only polarizations themselves but also phases. Moreover, what is essential, those 
phases will be not always temporal but rather spatial ones, expressing the wave's 'locations' along the 
propagation path in a 'frozen' time, independently of direction of propagation. That appears necessary for two 
reasons, both equally important. Namely, the temporal phase of the voltage received during one- or two-way 
transmission depends not only on physical distance between the receiving and transmitting antenna or 
scattering object but also on the difference between the two corresponding 'spatial phases', of the receiving 
antenna and the incoming wave (see, e. g., Section 4.5). That dependence is of special importance for problems 
of polarimetric interferometry. Another reason is connected with an orthogonal, generally elliptical, 
polarization basis. Its vectors cannot be determined without assuming their (spatial) phases. Even in the case of 
a linear polarization basis the null phases of its vectors are being tacitly assumed. Basis vectors can be 
presented as tangential polarization (TP) phasors on the Poincare sphere. Their orientations, determined by 
double spatial phases (Section 4.3), enable one to precisely express TP phasors of waves and to analyze their 
scattering transformations. 

That kind of analysis is possible when considering the Poincare sphere model of the scattering matrix. 
Such a model explains transformation of any illumination, its amplitude polarization and phase, by inversion of 
the incident waves' phasors through a determined 'inversion point' situated inside the sphere and by 
subsequent rotation of the sphere of such 'inverted phasors' about a determined axis by a determined angle. The 
cornerstones of the model are: its inversion point, and the characteristic coordinate system (CCS) in which 
location ofthat point is determined in some allowed regions of the sphere interior. Coordinates of that point in 
the CCS determine (sometimes two solutions are possible) all elements of the scattering Sinclair and Kennaugh 
matrices, axis and angle of rotation after inversion and, consequently, location of all special polarization points 
for those matrices. The scattered wave's intensity is proportional to the distance between the incident 
polarization and inversion points. In such a CCS, equivalent to the characteristic for the radar target 
polarization basis, the form of matrices becomes most simple ('canonical'). Transformation of any orthogonal 
polarization basis to that characteristic basis is unique, except of special cases for which an ambiguity is 
immaterial. 

This monograph is especially devoted to the bistatic radar polarimetry which includes monostatic and 
forward scattering representing its special cases. Among them the monostatic polarimetry exhibits a particular 
feature. Its scattering matrices are symmetrical. On the other hand forward scatterings, employing non- 
symmetrical matrices, can be considered as belonging to strictly bistatic polarimetry, without any 
distinguishing attributes. That is one of the reasons for which the bistatic polarimetry is of practical 
significance and deserves thorough studies. For example, the transmittance matrices of the polarimetric two- 
ports could not be analyzed without theoretical backgrounds of the bistatic polarimetry. The difference between 
the Poincare sphere models of the mono- and bistatic scattering matrices is essential. In the case of the 
monostatic scattering matrix the allowed region for the inversion point contains only the negative part of the 
first axis ('Q-axis') of its CCS inside the model's sphere. In cases of bistatic scattering the inversion point 
leaves that semiaxis but remains inside the so-called (upper) 'small hemisphere' of diameter coinciding with 
semiaxis for the monostatic scattering case and additionally covers a bounded region above that hemisphere (in 
that additional region two solutions for determination of the scattering matrix are possible). 

Such transformations are possible owing to the fact that not only the incident waves but also those 
scattered, as well as receiving antennas, can be represented by polarization and spatial phase (PP) vectors or 
their tangential polarization phasors on one Poincare sphere. That is evident because they all do not depend 
neither on direction of propagation nor on antenna orientation, contrary to waves' complex amplitudes (CA) or 
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Active transformations of inversion and rotation in the three Stokes parameter space and passive 
rotation known as the change of basis, are not the only Poincare sphere transformations being used in 
applications. However, all other transformations can be obtained as their special cases or their superpositions 
with those special cases. For instance, the active transformation of orthogonality (Section 6 1) may serve as an 
example of a special case of inversion; it is (with minus sign) an inversion through the center of the 
polarization sphere. Very important passive transformation is reversal of spatial coordinate system by its 
rotation (Section 6.2). It can be obtained as superposition of orthogonality transformation and special rotation 
(about a chosen linear polarization axis) in the three Stokes parameter space (Section 7 2) Formally it is 
equivalent to the active transformation reversing an antenna versus its spatial coordinate system As passive 
that transformation allows to obtain the propagation Jones or Mueller matrices from their Sinclair and 
Kennaugh scattering counterparts (Section 7.11). The procedure is called the 'change of alignment' 

Passive transformation changing the order of vectors - members of the polarization basis - is of a 
diflerent kind (Section 7.7). That transformation reverses orientation of all the tangential phasors and 
handedness of their polarizations. It can be used to compare representations of the PP or CA vectors and 
scattering/propagation matrices assumed by different authors applying opposite orders of basis vectors. 

It is hoped that the new here presented approach to the traditional vector based methods of analysis 
indicates one of possible ways of filling the hitherto existing gap caused by the insufficient set of basic concepts 
thus removing all appearing inconsistencies and ensures firm ground to solution of fundamental theoretical and 
computational problems of bistatic radar polarimetry. 
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1. Introduction 

Recognition of targets becomes more effective when using radars which are fully polarimetric. It 
means that when coherent scattering they should measure all elements of the 2x2 complex Sinclair matrix of a 
target, altogether 7 real parameters of the nonsymmetrical matrix when neglecting the absolute phase 
depending on the distance. However, the elements themselves have no direct physical meaning. They depend 
on the polarization basis in which the matrix has been expressed. That is why parameters independent of the 
polarization basis should be specified. 

When using properly selected the so-called 'characteristic' polarization and phase basis, the scattering 
matrix takes simple 'canonical' form. Then, the number of its real parameters, excluding absolute phase and 
target's magnitude, is three only for the coherent scattering case and nonsymmetrical matrices (this is in the 
bistatic scattering case, often being met in practice). These three parameters determine all inherent polarimetric 
properties of a target. They can be used to build up a geometrical model of the target's scattering matrix. It will 
take the form of the Poincare sphere of incident polarizations with an 'inversion point' inside. Three 
rectangular coordinates of such a point in the 'characteristic' coordinate system (CCS), corresponding to the 
characteristic basis, can represent these three parameters. The model shows how the incident polarizations and 
phases are being transformed during scattering. At first, the sphere is inverted through the inversion point, and 
then rotated. Both axis and angle of rotation are functions of the inversion point coordinates in the CCS. 

Some incident polarization points are of special properties. There are points which do not change their 
locus after inversion and rotation of the sphere (they are called the 'eigenpolarizations'). Some correspond to a 
maximum and minimum scattered power. Two points become antipodal (orthogonal) against themselves after 
rotation and inversion, thus resulting in no received voltage when the antenna of the same polarization has 
been used for transmission and reception. There is one point corresponding to a transmit-receive antenna 
polarization for which the voltage received from the scattered wave is of maximum value. There are also two 
the so called 'mutual polarizations' (No.l and No.2): if the polarization No.l is radiated and No.2 scattered, 
then No.2, if radiated, produces No.l scattered Some points correspond to a maximum or minimum received 
voltage when the receiving antenna is orthogonally polarized. 

All these special polarization points of the model are functions of the three parameters mentioned. 
Some of them can be determined by simple geometrical constructions based on the inversion point's locus in 
the CCS. 

There is an allowed region inside the Poincare sphere scattering matrix model in which the inversion 
point can be located. That location can serve to classify targets for their polarimetric properties. 

The whole model can be variously oriented when rotating together with its characteristic polarization 
basis. The three additional real parameters, of the basis rotation, can be considered another kind of target's 
polarimetric parameters. They are also suitable for target classification purposes. 

What should be stressed here, it is the importance of an exact definition of the polarization basis in 
which the scattering matrix has to be determined In the technical literature the orthogonal polarization basis is 
usually being defined by two antipodal points on the Poincare sphere. However, for polarimetric purposes, it is 
insufficient. The orthogonal null-phase (ONP) polarization basis should be introduced instead. It consists of two 
phasors which are tangent to the polarization sphere at the antipodal points. They are collinear, i.e. oriented in 
the same direction along a great circle of the sphere, and their order is essential. Phasors representing waves, 
not antennas, rotate in time. They can be considered rotating with a 'double speed' 2co: in the clockwise 
direction for waves propagating along +z axis, or in the counter-clockwise direction for waves traveling along 
—z axis. In a fixed time, they change their orientation after multiplication their polarization and phase (PP) 
vectors by an exponential spatial phase factor. Their rotation is counter-clockwise for waves delayed in space 
(shifted towards -z coordinates, independently of the direction of propagation). Basis phasors become no more 
collinear when both are multiplied by the same spatial phase factor. That is why the basis introduced has been 
called 'null-phase'. 

The orthogonality transformation should be applied four times in order to bring the first basis phasor 
to its original value (after two transformations it changes its sign for opposite one). That is why the polarization 
sphere of tangential phasors should be considered to be a kind of the two-folded Riemann surface. 

The use of that newly developed polarization phasor approach with the appropriate notation makes the 
whole theory, based on matrix calculus, very simple and provides powerful, indispensable tool for solving 
practical problems of radar polarimetry. 
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2. Remarks on the Existing Approaches to the Theory of Radar Polarimetry 

Roots of radar polarimetry are in much earlier formulated optical polarimetry. Main difference 
between the two theories has been caused by the necessity of consideration, in radar applications, also waves 
traveling in the backward direction along an established propagation axis. 

Following postulates of optical polarimetry for the monochromatic plane waves, standard polarimetric 
radar theory is based on the concept of the Jones vector [92], or complex amplitude (CA) column vector, as an 
entity defining the wave's amplitude, polarization and phase in a chosen orthonormal polarization basis. 
Complex amplitude corresponds to the so-called polarization ellipse usually determined in the xy (z=0) plane, 
perpendicular to the propagation z axis of the spatial Cartesian xyz coordinate system. The ellipse is traced by a 
tip of the electric vector rotating in time. According to the IEEE definition [90] the corresponding polarization 
is called right-handed or left-handed if the rotation is in the clockwise or counter-clockwise direction, 
correspondingly, when looking at the ellipse along the positive direction of propagation. Having determined its 
two angles, of the tilt and ellipticity, the polarization can be presented by a point on the Poincare sphere, in its 
upper or lower part - depending on the polarization handedness. 

The problem arises, however, with definition of the same polarization for a wave traveling backwards. 
Watching the polarization ellipse of the returning wave - when looking along the same +z direction - one can 
see the same tilt angle but the opposite handedness. It suggests to place the point of the same polarization on 
the opposite part of the Poincare sphere versus its equator of linear polarizations. As a consequence, 
misunderstandings appear in the literature regarding representation of the oppositely propagating waves on the 
Poincare sphere, causing sometimes an improper formulation of transformation rules. Solution to that difficulty 
has been found by introducing: two kinds of mutually conjugate 'directional' Jones vectors [112]. These 
directional Jones vectors stand for complex amplitudes (and represent polarization ellipses of both senses of 
rotation) for waves of the same polarization when taking into account two opposite directions of propagation. 
However, dual formulae are required for transformation of directional Jones vectors: 
•   under change of polarization basis, what follows from the relations (3.22) and (3.37). 

(<f=C*(4)+and   (e'Ay=C«(e>)- 

because of the unique change of basis transformation rule (5.9) for the polarization and phase (PP) unit 
column vectors, u, and their dependence on the CA unit column vectors, e, 

/*- u = e  ,     u* = e, 
when reversing the propagation z axis by 180° rotation of the spatial coordinate system, 

(<T=^(<f-d (°?Y=cB*(esy 
what directly follows from the uniqe rule (6.11) for the PP vectors, and 
for obtaining the corresponding Stokes vectors determining coordinates of polarization points on the 
Poincare sphere independently of waves direction of propagation, 

p; = u * Kes y ® (*; y *]=mep
B y ® (ep y *] 

= \J*(up®ep
B*), 

according to (7.8). 

Another serious problem often being met in the literature refers to the polarization bases of the Jones 
vectors. These bases are usually being determined with an insufficient precision. They may differ: 
•   by the time-convention exp{±jcot} , because the column PP unit vector (see (5.1) and (5.3)) of circular 

polarization is 

j left - handed circular 

[polarization for e '     conv. 

[right - handed circular 

I polarization fore ^     conv. 

"S^k+JhH**     *y] 
cos45° 

sin 45 V90" 
=>< 

2<j£=90°J 
2/H = 90° " 

2S% = -90° 

by their phase, because (see (6.5) with (6.2) and Section 7.5) for, e.g., 
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'H 
1 

and  u H 
(x,y) 

0 -1 

1 0 
L * 

4i (*,y) 

•[-' «1 - - 
the ONP PP basis or 

collinear phasor" basis 

tizj =u„ x e *H H and uH -u *H x e ±j45" 

=> 
[v       L'x 1     J the orthogonal ± 45   PP basis 

u        u      I- < 
[or' parallel phasor" basis 

•   by rotation in the 2-dim. complex space, what is evident because, e.g., the two bases, \u 

\uK    uKx 1 , with mutual dependence (see (5.23) and (5.22)) 

um] and 

u H ^BJI^H ~ ^H^Tt W 
KrHiiB 
H ^B "H 

are different, and 

•   by the order of components, because (see (3.22)) for 

-JXS+S) ' 

4 cos^e 
KS-s) 

B 

there is 
(x,y) or (y,x) 

Ov
B - Q0° -">vB 

~/(x,y) ~ yU        ~r(y,x) 

rfrB _ _r> rB 
ZO(x,y) -     AO(y,x) 

2e- (x,y) 2s8 

Moreover, in most applications, change of basis should be combined with the change of phase of basis vectors, 
what fact used to be overlooked in practice. 

Conjugate directional Jones vectors are determined in conjugate bases. That is an additional problem 
referring to presentation of Jones vectors of opposite directivity by the same point on one Poincare sphere. 
Therefore the next improvement has been introduced here, which makes a very small formal step but of 
essential significance. Instead of using the directional Jones vectors, application of the polarization and phase 
(PP) vectors has been proposed. 

Amplitude transformation matrices operate on complex amplitudes which form their domains and 
ranges. These CA vectors are being expressed in the literature by the ordinary Jones vectors, they may be 
expressed by the directional Jones vectors, and it is proposed to express them by the PP vectors which are 
identical with the Jones vectors (also directional) for waves propagating in the +z direction, and take conjugate 
values for waves propagating in the opposite direction. 

Differences between these approaches can be shown on a simple example of an evolution of the radar 
scattering equation with the Sinclair matrix, S. The following relations will be presented between incident and 
scattered electric vectors by successively applying: 

• the ordinary Jones CA vectors, E (formerly expressed by the unit vector e;E-E0e, E0 = E* -E), 

• the directional Jones vectors, E~ (E~ — E0e~), and 

• the PP vectors, E0 (further being expressed by the unit vector u; E0 = E0u, E0 = E0 * -E0), 
and obtaining: 

ES=SE'   ->   Es~=SEi+   ->   E£* = SE'0 

Waves represented by those vectors, propagating in the ±z directions, appropriately are: 

(2.1) 

E±{t,z) = Eei{M+kz)   -> 
\E+(t,z) = E+eKa*-kz) 

[E-(t,z) = E- eK°*+kz) -> 
\E+(t,z) = E0e

J{(O'-kz) 

[E-(t,z) = E0*eKa"+kz) 
(2.2) 
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Here co = 2n/Tmeans the angular frequency with the time period T, and k = Inll is the wave number with the 
wavelength A. The asterisk denotes complex conjugation. 

The corresponding ('full') Stokes four-vectors expressed in the form of Kronecker products with the auxiliary 
unitary U matrix, 

U 
4i 

1 1 0 0~ 

0 0 1 -j 
0 0 1 j 
1 -1 0 0 

(2.3) 

successively are: 

lJE = V2 0*(£-*®£±«)   -> -» I*=V2Ü*(£0®£0*) 

(2.4) 

Of course, the two 10E Stokes four-vectors are different for the same polarization of the wave propagating in 

the opposite directions. The next, ij vectors, present correctly that polarization for two directions of 
propagation, but expressed in terms of directional Jones vectors require application of dual formulae and are 
related to mutually conjugate polarization bases. Therefore their representation on one Poincare sphere can be 
disputed. The third representation, in terms of the PP vectors, is free of those two inconveniences and will be 
solely used in the approach here applied. 

Limited amount of simple formulae and the Poincare sphere geometrical models of scattering matrices 
can be obtained when applying to radar polarimetry the 'polarization and phase (PP) vector approach' 
introduced here, based on the time-symmetry of Maxwell equations and followed by a 'polarization phasor 
notation' which uses those phasors as upper and lower indices for vectors and matrices. 

See also: Appendix O, 'Comments about relations to the existing works', and Appendix R, 'Maxwell 
equations in radar polarimetry'. 
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3. The Definition of Polarization for Monochromatic Plane Waves 

3.1. Mutual Relation Between the CA and PP Vectors 

The PP unit vector u should be distinguished from the complex amplitude (CA) vector e, the last being always 
expressed in terms of u in the PP vector approach. Their mutual   dependence can be best explained on the 
example of two completely polarized monochromatic plane waves corresponding to the same vector u but 
propagating in opposite directions. 
Analyzing the time reversal symmetry (see [28]) of those waves under / —» -/ transformation we observe that 
if 

£(t,z) = Re{E0ueJ«*-^} (3.1) 

is a solution of Maxwell equations, then 

£{-t,z) = Re[E0« «»'<-*-**>} = Re{£0« * eKaX+kz)} (3.2) 

is also their solution. It presents a wave propagating in opposite direction but of the same polarization and of 
the same spatial phase for time /=0. 

The two above presented real vectorial functions can also be interpreted as helices moving, without 
rolling, in two opposite directions with a velocity of light. Such polarization helices represent both polarization 
and spatial phase of a plane monochromatic wave more properly than polarization ellipses do, the sense of 
which depends on direction of propagation and which can indicate the temporal phase only. (Temporal phase is 
equal to spatial phase for waves propagating in positive z direction, and changes its sign for opposite direction 
of propagation). 

Indicating by 'plus' or 'minus' directional indices along the propagation z-axis of a spatial xyz 
coordinate system we arrive at the following expressions for waves in a complex form: 

E+(t,z)  = E0e
+ e^-fe) = EQu ^«*-fe> 

E~ (/, z) = E0e~ eJ{a*+kz) = E0u * eK<ot+kz) (3'3> 

Here, e and e are directional unit complex amplitudes equal to u and «*, accordingly, where H is the unit 
complex PP vector. Column vectors of those waves can be presented as in (3.4) by the Cayley-Klein complex 
parameters a and b: 

PP(+) 

E+(t,z) = E0u e'(fi*-fa) = £0j?  e^-fa) 

CA<X) 
PPJL-) 

E~ (/, z) = E0u * eJ{0*+kz) = E0 Jrj; e
Kat+b) 

U- aa*+bb*=l      (3.4) 

where Eo means the real magnitude of the CA The value of the unit PP vector u does not depend on direction 
of wave's propagation. It is equal to the CA(+), the value of the unit CA vector for 'positive' direction of 
propagation of the wave along the z-axis, and to the conjugate CA(-) value of the unit CA vector for 'negative' 
direction of wave's propagation: 

PP(+)     PP(-) PP(±) 

CA(+)     [CÄ£)F     C4(+)&fc4(-)]» 
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3. 2. Time-dependent PP vectors and polarization phasors 

Tangential polarization phasors (see Chapter 4.) correspond to «+ and u PP vectors of antennas or waves and 
they do not depend on time. The time-dependent PP vectors of waves are: 

u+eJÜ*,  and     u~e~SM,    with     u+= u~ (36) 

They appear in expressions: 

E+(t,z) = E0(u+eja*)e-jkz,   and    E~(t,z) = E^ue~iat) * e+jkz. (3.7) 

As seen from the above, when considered as phasors, they rotate in time with 2a angular velocity in opposite 
directions, and are equal to each other for la* = 0 and 2wt = 4* For Iwt = 2/r, though coinciding in 
orientation, these phasors (and the corresponding PP vectors) have values of opposite sign   Thus   the 
!"™?°n sphere of agential phasors demonstrates properties of a kind of the two-folded 'Riemann surface' 
(see [13UJ). 

3. 3. A complex received voltage 

When neglecting coefficients independent of polarization, the transmission equation can be presented as a 
complex received voltage expressed by Hermitian product of two PP column vectors u and /(with a tilde 
denoting transposition): v 

PP(+)PP{-) 

vr=ü<u*=u^Jr_^ (38) 
CA(+) CA(-) 

One of those PP vectors no matter which one, corresponds to the incoming wave and the other to the receiving 
antenna Though only the wave's phasor rotates in time, the opposite directivity of antenna's phasor is also 
essential. In that Hermitian product, conjugate is always the PP vector with 'minus' index. Thus equation (3 8) 
presents also an ordinary product of two unit CA vectors with opposite directional indices' One of them 
represents complex amplitude of the incoming wave, and the other stands for the complex height of the 
receiving antenna. However, there is an important condition which the two PP column vectors have to fulfill for 
correctness of the above equation. They should be expressed in the same PP basis corresponding to common 
spatial coordinate system. 

3. 4. The polarization ellipse and polarization helix 

The monochromatic plane wave can be geometrically modeled as a polarization helix (or screw) moving 
without rolling, in a positive or negative direction along the z axis of an xyz rectangular coordinate system' 
buch a helix, passing the z = 0 plane, traces on it a polarization ellipse (Fig.3.1). The left-handed helix 
corresponds to the right-handed elliptical polarization, and vice versa. The helix determines the two 
polarization parameters and the spatial phase of the wave. That spatial phase is determined by the position of 
the moving helix along the z axis in time t = 0, independently of direction of the wave propagation 
u.^ ?e^1S one-to-°ne correspondence between the CA vector and the polarization ellipse, as well as 
between the PP vector and the polarization helix Only one helix moving along the z axis in both directions 
sufficiently represents the two waves of the same polarization and spatial phase traveling in opposite directions 
This is unhke the polarization ellipses which differ by their sense depending on the direction of the wave's 
propagation. 

The polarization ellipses, in the z = 0 plane and normalized to E0 = 1, can be expressed for the two 
opposite directions of propagation by the following vectorial functions of t: 

K(t) = ReE+(t,0)/Eo = Re{ueJa*} (3.9a) 
and 

r;(t) = ReE~(t,0) IE0 = Re{i/ * ejat) = re
+(-t) (3.9b) 
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For the polarization helix, at / = 0 and also normalized to E0 = 1, the only model representing the two 
waves is of the form 

/f (z) = kzlz + Re E± (0, z)IE0= kzlz + Re{ue~Jkz} = kzl + Re{« * e+Jh } (3.10) 

It is seen from the above equalities that there are the PP vectors «, or polarization helices only, and not 
the CA vectors, or polarization ellipses, that define unambiguously the polarization and spatial phase of a wave 
independently of its direction of propagation or antenna orientation. 

That is a very important property of the PP vectors that will be used when considering, e.g., the direct 
transmission between two antennas. The complex received voltage for such a transmission will be found 
depending on the mutual positions (locations and orientations) of two phasors, standing for the PP vectors, 
representing the two antennas looking at each other {oriented in the opposite directions) and, of course, on the 
phase factor accounting for the distance between the antennas. The phasors will be located in planes tangent to 
one, common polarization and spatial phase sphere (the PP sphere) at points corresponding to their 
polarizations. Orientations of the phasors will reflect the spatial phases of waves radiated by the two antennas in 
a transmit regime, reduced to the 'null distance' from each antenna. 

That is why the PP vectors, and not the CAs, ought to be represented by phasors on such a sphere, and 
that is one of several reasons for which the PP sphere of tangential phasors is an indispensable tool for the 
analysis of the polarimetric transmission equations. 

3. 5. Three groups of polarization and phase parameters 

In radar polarimetry authors are using different polarization and phase (PP) bases, and for complex 
representation of waves they are applying different time-dependence conventions, exp(±ja>t). To explain 
mutual relations between the existing standard approaches and the new one here presented, some notions, 
explained more fully in the next part of this monograph, will be in advance introduced now, at the very 
beginning. 

Parameters describing completely polarized (elliptically in general) monochromatic plane wave, 
propagating in an established direction and presented by its electric vector, will be divided into three groups: 

1° wave-dependent parameters 
2° component-dependent parameters, and 
3° PP-basis-dependent parameters. 

If complex representation of waves is being applied all those parameters are independent of the time 
convention. 

The component-dependent parameters correspond to basis vectors but do not depend on their order in 
that basis. They can be determined by basis-dependent parameters but differently for bases of mutually reversed 
order of their vectors. 

In the new notation proposed here, parameters belonging to the second or third group will be labelled 
with a lower index specifying the component or basis, accordingly, and may be labelled with an upper index 
identifying the polarization and phase of a wave (or of an antenna emitting such a wave). 

3. 6. Wave dependent parameters 

The following parameters belong to that group: 
• angular (radian) frequency, a , corresponding to the wave number k = ox, with c equal to the speed of 

light, 
• absolute value (magnitude) of the wave's electric vector amplitude, E0, and 
• the PP parameter of an absolute phase and 'complete' polarization, not yet specified, and represented by, 

e.g., two-dimensional complex unit vector « or, equivalently, by the 'polarization phasor'. 

The polarization phasor can be interpreted as a 'vector' tangent to the Poincare polarization sphere at 
the wave's polarization point, and of orientation: 
• representing wave's absolute phase for time t = 0, uniquely determined versus an established phasor which 

is known as being abslutely of null phase, 
• changing within the range of 4TT (after 2n rotation the 'vector's' value becomes of opposite sign, though 

its orientation looks the same), and 
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• same for both mutually opposite directions of wave's propagation in time / = 0 (with time, phasors of waves 
rotate in opposite directions with the angular velocity of ±2o, and sense of their rotation depends on the 
direction of propagation along the z axis of a right-handed Cartesian xyz coordinate system) 

(Remark: orientation of all the polarization phasors, though independent of rotation of the polarization bases 
becomes reversed with the reversal of the order of basis vectors. In such a sense the 1:1 correspondence between 
the PP vectors and polarization phasors is not entirely true if the the PP bases of two orders are being 
considered. One PP vector corresponds then to two oppositely oriented polarization phasors belonging to two 
mutually reversed polarization bases composed of the same PP basis vectors.) 

Parameters belonging to the first group can be used to expess the electric vector of a wave propagating 
m the +2 or -z directions. Applying the exp {jot} convention we will write: 

E+(t,z) = E0ue^-^ (311a) 

E-(t,z) = E0u*e^+^ (3.llb) 

Similar expressions in the exp {-ja>t} convention would be of the form 

E+(t,z) = E0u* «?-/«*-**> 

E-(t,z) = E0ue-J(B*+kz) (312) 

However, only the exp(+/ßtf) convention, approved by the IEEE Standard [90], will be used further. Values of 
all expressions in the other convention should just be taken conjugate. Formally, it can be performed bv 
exchanging everywhere the imaginary unit, j, by another imaginary unit, / = -j . 

In the above formulae the upper indices, '+' or «-', mean direction of propagation versus the z axis 
orientation, and the astensk denotes complex conjugation. All these waves are of the same polarization and 
spatial phase expressed by the PP « vector. (The term 'spatial phase" will be explained in the next section Also 
the use of mutually conjugate amplitudes for waves propagating in opposite directions will be later justified bv 
the time-symmetry of Maxwell equations.) 

i~ i u., ^the nCW notation apPlied here> toe absolute amplitude, E0, and the complex unit PP vector « may 
be labelled with the upper index identifying the polarization and phase of the wave or antenna Only the column 
vector version of the PP vector can also be labelled with the lower index specifying its PP basis. 

3. 7. Component-dependent analytical parameters. Spatial and temporal phase delays 

Real representation of waves will be chosen at first to show that the PP parameters are independent of the time 
convention. 

To determine the component-dependent parameters, the xyz ng/rf-handed Cartesian spatial coordinate 
system (SCS) will be chosen. Waves will be assumed to propagate along its z-axis in both directions (±z). The 
two non-vanishing x- and>>- real components of their electric vectors can be presented as follows: 

Sx (t, z) = ax cos {at + (kz + vx )} 

Sy{t,z) = a  cos{cot + (kz + vv)}. 

Here: k - coc - 2TT IX (c is the velocity of light, A - the wave's length), and ax, ay, vx, vy will be called 
the component-dependent analytical parameters. They describe: 
• amplitudes of the two components, ax and ay, 
• spatial phases (delays) of those components, vx and vy. 

The term 'spatial phase delay' can be explained when considering z = z^ and z = zo, polarization 
planes in which each component obtains maximum value at the time / = 0. E.g.: 

£*max =ax=£x(t = 0, z0x ). (314) 
That maximum appears for the cosine argument 

kz0x + vx=0, (3.15) 
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or for 

teox=-Vx- (3-16) 

So, vx I k represents spatial shift of the £~ (/ = 0, z) component in the -z direction, and is called the 'spatial 

delay' of that component versus its position for vx — 0, exhibiting maximum value at z = 0. Therefore vx , in 
radians, can be called the spatial phase delay. 

Similar considerations apply to the £~ (t = 0, z) component. 

Evidently, vx and vy parameters mean also temporal phase delays, but only for 'forward propagating' 
waves, in the +z direction. For backward propagating waves they mean temporal phase advance. Indeed, for z 
=0, 

£*max = aX = S* (>0* , * = 0) (3.17) 
for 

^0x + l/x=0. (3.18) 
or for 

(OtQx=±vx. (3.19) 

Here    Vx I O)    represents  temporal   delay  of the   Sx (t, z = 0) component,   or   temporal   advance   of 

Sx(t,z = 0), when considering their positions in time corresponding to maximum values at t = 0 for 

vx - 0. Therefore vx , in radians, can be called the temporal phase delay or advance, correspondingly. 

And again, similar considerations apply also to the £~ (/, z = 0) component. 

The component-dependent parameters, defined by the electric vector components (3.13), represent the 
same polarization and spatial phase of the two waves propagating in the opposite directions. That fact is of 
especial importance. It can be considered an immediate result of the time-symmetry of Maxwell equations for 
plane waves (see, for example, Brosseau [28]). 

The two of those parameters can serve to determine the wave's absolute amplitude, 

Eo = Va* + ay = ao . (3.20) 

which is represented geometrically by the Monge radius of the polarization ellipse described by the tip of the 
electric vector rotating with time in the plane z = 0. 

3.8. Basis-dependent analytical parameters 

It is convenient to define the basis-dependent parameters by using the electric vector in its matrix form, in the 
linear basis (x,y) or (y,x), with the order of components corresponding to the order of the basis vectors, 
lx and ly: 

»± 
£(*,,) C>z) 

Stit^z) 0 1 

1 0 

Introducing the PP basis-dependent analytical parameters /,S,£ defined as follows, 

Sfy,x)(t,z) (3.21) 

tan r(> ;y) ~ aylax= cotr(>,,x) 

*<* ,y) = (yx 
-v,)/2 ~   ^(y,*) 

£(* ■y) = (yx +Vy)l2 = £(y,X) 

(3.22) 
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and exchanging, for basis-dependent, the component-dependent parameters of expressions (1 13) representing 
comDonents in n ?n v       ''  ^"-^.iiiug components in (3.21), 

ax^E0cosy{xy)=E0smy{yx) 

ay=E0cosy{yx)=E0smy(xy) 

vy = d(y,x) + £{y,x) = SiXty) + S{xy), 

we arrive at the following forms of the real column electric vectors for waves propagating in two opposite 
directions, expressed in the two bases of mutually reversed orders: 

and 

£(x,y)(t,Z)- E0 

^(y,x)(^z)- E0 

cosy^y) cos{at + (kz + S{xy) + £(xy))} 

_smy{xy) cos{a>t + (kz -S^y) + e(x>y))} 

'cosy{yx) cos{^ + (kz + S{yx) + £{yx))}■ 

smyb,x) cos{cüt + (kz-5{yx) + s{yx))}_ 

(3.24a) 

(3.24b) 

Several important conclusions result from the above equalities, for example: 
• the IS parameter presents spatial phase delay of the first component versus the second one 
• the right-handed elliptical polarizations correspond to the negative 20 parameters expressed in the (x v) 

basis, and to their positive values in the (y,x) basis (after the IEEE Standard [28], according to which the 
polarization is right-handed if the electric vector is seen rotating clockwise when looking in direction of 

• the above relation between polarization handedness and the sign of the 15 parameter in the linear 
polarization bases has been established for real electric vectors, and therefore does not depend on the choice 
of the time-dependence convention, exp(±y'<y/), 

• circular polarizations correspond to 2y = 90° and linear polarizations to 25 = 0° or 180° in all linear 
polarization bases, independently of the order of the basis components 

• average spatial phase delay of the two wave's components, e , also does not depend on the order of the 
polarization basis (though it depends on the polarization basis vectors and, therefore, should be used with 
the lower index denoting the basis). 

tu A 
S°i 0IÜy

1.thref real Parameters sufficiently define the wave's polarization and spatial phase However 
they depend on the polarization basis, including the order of its vectors. 

3. 9. Basis-dependent geometrical parameters 

rfiir^ • AcCOrdin^ '° co™*0^ accepted convention, the tilt angle, ß, of the major axis of the polarization 
ellipse is measured from the first axis of the linear polarization basis in direction to its second axis. So- the 
ß(x<y) angle is measured from the x axis in direction to the y axis, and the ß{yx) angle from the y axis in 

direction to the x axis. That results in the relation between the tilt angles similar to that for the y angles. 

ß(x,y) = 90   - ß{yx). (3 25a) 
The ellipticity angles are of course of opposite signs, similarly as 6 angles: 

a(x,y) = -<*(y,x) ■ (3.25b) 

Only the phase angles of both components along the axes of the polarization ellipse remain independent of the 
order of components, similarly as wangles : 

X(x,y)  = X{y,x) ■ (3.25C) 

Rotating the original linear basis in two directions by the angles ß{xy) and ß{yx) to cover with the ellipse 

axes we arrive at two new right-handed coordinate systems, £?, with the following relation between their axes: 
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£(x,y) = rj(y,x) 

and rj(x,y) = -£(y,x). 
Components of the electric vector in one of those coordinate systems are 

^(x^it'2) = ao ^osa(xy) cos{cot + (kz + v^xy))} 

S^x,y)(^z) = a0 Sma(X,y) COS{(^ + (kz + V^y))}, 
with 

and 

2v^(x,y) ~ l-ö$(x,y) + 2£t(x,y) 

2 + 2%{x,y)        2 ~ 2X (*,y) 

2vi(x,y) ~ 1Sn(x,y) + 2erK*,y) 

2 + 2%(x,y)        2 ~ 2X(x,y) n 

That yields 

£}(x,y) (*, Z) = «0 C0S(X(x,y) COS {(Ot + (kz + X{x,y) )} 

Sv(*,y) ('•z) = Tao sin a(x,y) sin {a* + (kz + X{x,y))} 

Similarly, in the other coordinate system. 

Si(y,x) ('»z) = ao cosa{y,x) cos {cot + (kz + xiy,x))} 

2f(y,x){*,z) = +a0 sina{yx) sm{cot + (kz + X{y,x))} 

Here OC^xy) < 0 and a^y<x) > 0 correspond to the right-handed elliptical polarizations. 

(3.26) 

(3.27) 

(3.28) 

(3.29a) 

(3.29b) 

3.10. Mutual relations between analytical and geometrical polarization parameters 

The same £x and £y components depend on two sets of S% and £„ components as follows: 

or 

St(t,z) COS/? -sin/? Sf(t,z) 
B^(t,z) sin/? cos/? {x,y) S±,(t,z)_ 

>?(',*)" cos/? -sin/? '^(t,z) 

[St(.t,z)\ sin/? cos/? 
(y,x) Sf(t,z)\ 

Kx,y) 

iy,x) 

(3.30a) 

(3.30b) 

Comparing them with the components (24a) and (24b) we arrive (see Appendix Al) at the Stokes four-vectors 
expressed in terms of analytical and geometrical parameters. They are identical for both opposite directions of 
wave's propagation (or antenna orientation) but differ in sign of their second and fourth component for bases of 
the reversed order: 

"I" 

Q 
u = *l 
V (x,y) 

1 

cos 2/ 

sin 2y cos 25 

sin 2/ sin 25 

= ar 

(*,y) 

1 "I" 
cos 2a cos 2/? -Q 
cos 2a sin 2d u 

sin2or 
(x,y) -V 

(3.31) 

(>'■*) 
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Other relations between analytical and geometrical parameters, also including phases, can be found from the 
same formulae or from equations of spherical trigonometry. They are valid in both bases, (x,y) and (y,x): 

tm[S - (z - f)] = tan a tan /? 

tan[£ + (x - £•)] = tan a cot ß 

tan(2x - 2s) = cos 2/ tan 25 = sin 2a cot 2ß 

(3.32) 

Relation between analytical and geometrical parameters can be seen also when comparing Fig 3 1 and 
Fig.3.2. Tangential polarization (TP) phasors introduced in Fig. 3.2 enable one to present on the Poincare 
sphere not only polarization but also spatial phase, e. That spatial phase may change in the range between 0 
and In. That is why its double angle will change in the range of 4/r, and the TP phasor rotated by the In angle 
takes the negative of its initial value, though identically oriented. Therefore in the figure, to avoid an 
ambiguity, the le angle should always indicate the value from that doubled range. The reason for the necessity 
of using the double phase angle will be explained further, in Section 4.3. 

See Appendix M, and especially Fig. M. 1, for other angular parameters of the TP phasors. 

3. 11. Complex form of the PP vectors 

In order to obtain the complex matrix representation of electric vector waves, complexification of their 
real form is needed. Using earlier obtained formulae, in terms of analytical parameters it can be done as 
follows: 

,     COS/COS{fi#+ (fe + £+£)} 

[sin Y cos {cot + (kz-S + s)} [*i('4.. ,y)oi(y,x) 

[£±«-4 (x,y)ot(y,x) 

Similarly, in terms of geometrical parameters we obtain 

= Ef 
cos Ye 

sin Ye 

(x,y)°r(y,x) 

±J(S-s) 

(3.33) 
;'(öY+fa) 

(x,y)0T(y,x) 

[S\t,z)\ 
(x,y)or(y,x) 

= £n 
cos/?   -sin/? 

sin/?    cos/9 

cos a cos {cot + {kz +v.) 

sin a cos {cot + (kz + vn)} 

,+JZ 

cosacos/?e+J,v* -sinorsin^e+yv" 

cosasin/?e+7V* +sinacos/?e+7V" 

cos a cos/? + j sin a sin /? 

I [cos a sin /? ±y sin a cos/? 

It means that for electric vectors 

E+(t,z) = EQueJia*-kz> 

E~(t,z) = E0u* ejXeX+kz) 

and for u vector expressed by its column form u: 

{x,y)or(yjc) 

(x,y)°r{ys) 

(x,y)or(y,x) 

j(MTkz) 

" = ['•   'Al      =[',   1.] 
(x,y) 

; aa * +bb* = 1, 
CVrt) 

= u 

(3.34) 

(3.35) 

(3.36) 

the following PP column unit vectors have been obtained (compare [3]): 

u (x,y)or(y,x) 
cos Ye 

sin/e 
(x.y)OT(y^c) 

cos a cos ß - j sin a sin ß 

cos a sin /? + j sin a cos ß 
,-JZ (3.37) 

(x,y)0T(y^c) 
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Fig. 3.1. Geometrical, a, ß, %, and analytical, y, ö, s, angular 
parameters of an oriented (riglit-handed) polarization ellipse 

in the (y,x) basis of the reversed order. 
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Fig. 3.2. Geometrical, 2a, 2ß, 2%, and analytical, 2y, 28, 2s, angular 
parameters of a tangential polarization u phasor in the Q, U, V Stokes 
parameters space corresponding to the 0,*) basis of the reversed order. 
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4. Polarization Sphere of Tangential phasors 

4. 1. The Poincare sphere 

Together with the above 'amplitude' representation of the PP unit vectors, also their 'power' or 'intensity' 
representation is possible leading to another comparison of analytical and geometrical parameters of polarized 
waves though without the phase information. The so called normalized Stokes parameters can be expressed as 
three components, without the first one, of the previously obtained Stokes four-vector after its normalization: 

q = aa * -bb *        = cos 2/ = cos2orcos2/? 

u = ab * +ba *       = sin 2/ cos28   = cos2asin2/? (4.1) 

v = j(ab * -ba*)    = sin2y sin28    = sinla 

They satisfy the normalization equality 

q2+u2+v2=l. (4.2) 

These parameters can be considered as rectangular coordinates of points on the Poincare polarization 
sphere of unit radius with the equator (great circle for v = 0) denotig linear polarizations, and with the poles of 
circular polarizations (for v = ±1). 

According to the convention applied here the northern (upper) pole, for v = +1, represents right- 
handed circular polarization and the southern (lower) pole, for v = -1, the left-handed circular polarization. 
That corresponds to the (yjc) basis of the reversed order and to the assumption commonly being applied that the 
second, here x-component, leads the first one by the spatial phase angle IS = +n/2, independently of direction 
of wave propagation. 

The concept of the Poincare sphere of polarization points will then be extended to the polarization 
and (spatial) phase sphere (the PP sphere) by inclusion of phase information when introducing the tangential 
polarization phasors. 

4. 2. Tangential polarization phasors. An introduction 

Tangential phasors represent polarization helices of plane, monochromatic, completely polarized EM 
waves. Such helices, considered as models of waves, can be shifted with the velocity of light in two opposite 
directions along a propagation z-axis. Spatial phase of the wave can be defined by the position of the moving 
helix, in time t = 0, versus the z-axis coordinates, independently of direction of wave's propagation. The double 
value of that spatial phase has been represented by the angle of phasor's orientation. It means that phasors 
rotate in time with angular velocity of 2a in two opposite directions depending on direction of wave's 
propagation. 

The PP sphere will be considered as a kind of the two-folded Riemann surface. The concept of the 
ONP PP basis will be introduced and the orientation of their phasors explained, together with the rules of 
phasors' multiplication and addition. Advantages of the proposed notation will be shown on examples of 
various transformations. In the Appendix some useful formulae of spherical trigonometry of special value for 
polarimetry are attached. 

Contemporary theories of electromagnetic polarimetry usually consider polarization and phase of 
waves separately [3], [13], [121]. That is entirely impractical way in cases when obtaining special canonical 
forms for transformation matrices, e.g. for Sinclair or Kennaugh matrices, is desired [69]. Then, orthogonal 
polarization bases of those matrices require determination of specially adjusted phases for their both vectors. 

The definition of phase for elliptically polarized waves is a nontrivial problem. Polarization and phase 
(PP) vector approach to the theory of polarimetry proposed by this author introduces one unambiguous space of 
of the PP vectors for both opposite directions of wave propagation (or antenna orientation) as regular 2-dim. 
complex space, and establishes one-to-one correspondence relating all its vectors versus phasors tangent to the 
polarization sphere considered as a two-folded Riemann surface in the 3-dim. real Stokes parameters' space. It 
means that the same direction of phasors of the same polarization, but tangent to two different branches of the 
surface, corresponds to the PP vectors of opposite phase. In such a sense, the phasor 's direction defines an 
absolute phase of the elliptically polarized wave. Its numerical value depends on the polarization parameters 
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SS dWPint^ f ? "ft S<\IT ^ °f thC S3me abs0lute Phase' but of Cerent polarizations may erfubit different phase factors. Also absolute phases of three phasors, which are not tangent to the sphere alone 
them great circle arc, cannot be all equal. Those difficulties, in analytical expressing^ a^uSSftod 

l^ZitX™^nng the inf0rmatl°n *°« ** PhaSC *** ^rS -Pa^^ 
In the past, different authors (e.g., see [138]) used tangential phasors to present the phase of wave, tat 

HZ"? HP"1UtCPha!!ln**ab0VCCXplained»«*• ^th^ *dnot ***£« the polaSion^he et 
the two-folded Riemann surface. Their phasors used to rotate in time with an angular velocity c instelof2n 
asm the here proposed PP vector approach. Such doubled angular velocity makefth Äfe££X£e£ 
two PP vectors equal to one half of their phasors' direction angle difTerence It enables one to orLetf So 
phasors of different elliptical polarizations, and their sum, by properly rotatS, iStite XSSsoheT 

Tl^l^f^Z I"' Ph3Se ^ PhaSOrS' Cg   °" ^ P°,a^ andThel™  Ä essenüal significance for establishing geometrical rules of phasors' addition. 

4. 3. Polarization and phase sphere as the two-folded Riemann surface 

The fundamental question is how phasors should be oriented. The aim of introduction of the tangential Dhasor, 
on the polarization sphere is to represent the phase by the direction of the phasor That7s why Tft 

arc of the sphere without altering its phase. When moving the phasor along the equator of linear portions 

wVthT > 7hen f0Tg thC Sphere 3b0Ut itS P°lar "* toSether ™* thelLor undeTcomSon 
wtfhthe coordinate system being at rest, the double rotation is needed to arrive at the same po aSon and 
phase. Thus is because after the first full 2n rotation one arrives at an 'opposite polarization' (seeFig 4 n if the 
£a* is bemg considered constant during the rotation. The need of Z second Ston SggeS totltt 
essential to indicate the direction of rotation which brings the phasor to its orthogonal co-pha7dTsi^g 

from ly to lx, and not to - lx, what would be reached when moving in the opposite direction). For that 

reason the two phasors, ly and lx, both should be directed along the equator and in the same direction as 

S^ffiÄ J££ PhaSOr ^ 3 m °f """ "» *""* l0Cated in *e ^-W ^tween 

It will be natural to have the rule of addition for phasors independent of rotation of the PP sphere So 
a phasor of the right circular polarization, which can be obtained by addition of ly and lx phasors afler 

their rotation with the sphere by the nil angle about the OQ axis, should be also equal to the similarly rotated 

sum of ly and lx phasors. Indeed, defining the unit column Jones vectors, 1 and lx, by the matrix 
equalities 

1y=l1y>*x]lv With      /, l 

h-iKJAL 

the linearly polarized rotated phasors by 

with 4 = 
(4.3) 

«T=l,e-J*=[ly,lx]u
r      with 

,+J"/* "   =heJA=[L,lx]u
x       with 

uY = 
~e-j-/r 

. o J 
ux = 

0 
(4.4) 

sums of phasors by 
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^5° = h +1*= J*Vy >** 1 V With '„• = ;j= 

JluR=ur+ux='j2[l,,lx-\u
R       with        «*=4= 

V2 

-y^ 

,+/" 

(4.5) 

and the rotation matrix bv 

c = 
4i 

1-7      0 
0      1 + / 

-J% 

,+J", 
(4.7d) 

one arrives at the expected result for the rotation as a linear operation: 

4l uR = uY +ux = CL + CL = 
,+J; 

= C(/ +7X) = C(V2/    ) 
y      x 45° 

(4.6) 

What follows is (see Fig.4.2) that the orientation angles of the rotated ly and lx phasors, equal to -Ht/2 and 

-7t/2, are of doubled values of their spatial phase delay angles +;r/4 and -7t/4 respectively. That is also the 
general rule governing relations between angles of phasor direction and its spatial phase because it remains 
valid for any sum of phasors and any rotation of the PP sphere. 

The just obtained phasor of the right circular polarization is not in phase with the 1   vector before its 

rotation. To arrive at the in-phase phasor of circular polarization two ways can be chosen. You may shift 1 

along the great circle arc to the north pole of the sphere, or you may rotate the previously obtained phasor of 
circular polarization by -n/2 angle to the desired position. The last operation makes the rotated phasor to be 
advanced in phase by 7t/4. Generally, when rotating the sphere about its polar OV axis, the phasor of circular 
polarization changes its phase only and obtains its original value after two full rotations. Its total phase change 
is then In. Phasors of elliptical polarization change both their polarization and phase when rotating about that 
axis. Then after the next 2n rotation only they arrive at their original values. 

The above presented rule of obtaining the original value of phasors can be generalized to rotations about any 
other axis of the sphere. Thus, the PP sphere can be considered as the two-folded Riemann surface with its 
branch point on any rotation axis. For the q, u, and v rectangular coordinates of the branch point, defined by 
the equalities (4.1), the rotation of the sphere by the 2<p angle can be obtained when using the rotation matrix of 
the form: 

C = C(q,u,v;2^) 
cos^ - y'q sin <j>   (—v - y'u)sin^ 

(v - y'u)sin^    cos^ + y'q sin <f> 
(4.7) 

That matrix is unitary and unimodular. Therefore it depends on three only real parameters (see also (4.14)). So, 
any ux column Jones vector representing the corresponding phasor can be found to be after the rotation: 

U2=Cux (4.8) 

Of course, U2 = Ux for 2<f> = 0 or ±4K , and  U2 = -ul for 2(f> = ±2n . 
The often used special cases of the rotation matrix (4.7) are: 

C(O,O,1;20 = 
cos^   -sin^ 

sin^     cos^ 
(4.7a) 
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and 

C(O,-1,O;20) = 

CaO,O;20 

cos^    ysin^ 

jsmtj)    cos^ 
(47b) 

(4.7c) 
cos^-ysin^ 0 

0 cos^ + j sin <j> 
The last one for 2</> = it/2 is given in (4.7d). 

The following example shows two rotations of the PP sphere. They allow to obtain the right circular PP 
vector, which is in phase with the horizontal linear null phase vector. The first rotation changes the vector's 
polarization, while the second its phase only (see Fig.4): 

.R' un = C(0-l,0;;r/2)/ 

■C(0,0,l;-/r / 2)uR = 

1 _1 iX r 
4i J   iloj 

l "l   f i ~e-j%~ l ~i 

4i -l  l 4i /JY\ ~ 4i J. 

(4.10) 

4. 4. The orthogonal null-phase (ONP) polarization basis 

By rotating the original linear polarization basis with the Poincare sphere, one can obtain every other 
orthogonal basis represented by two colinear phasors tangent to the antipodal points of the sphere. Such a basis 
will be called null-phase because, after multiplication of its both vectors by the same phase factor, their phasors 
usually become not collinear. 

Worth noticing is that to specify any ONP polarization basis it is sufficient to take its first vector only, 
because its second vector is automatically defined by the same rotation rule as applied to the first one. 

To present the rotation, the previously proposed matrix (4.7) can be used yielding the new basis vectors of 
the form: 

uB=CBly 

When using simpler expression for the matrix: 

CB = 

Bx ■ B C"l (411) 

a r\B 

b    a* 

and the old basis vectors as in (4.3), the new basis will take the form 

(4.12) 

U° = uB* = 

with 
a 

aB =  cos^-y'qsin^   =  cosyBe~J(sB+£B) 

bB =   (v-yu)sin^       =   smyBe B+KS"-^) 

(4.13) 

(4.14) 

For any desired analytical parameters of the first new basis vector UB , the above equations determine both the 
angle of rotation 2<f>, and the coordinates q,u,v of the sphere's branch point on the axis of rotation. 
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4. 5. The Hermitian product of phasors 

The desirable property of phasors is the possibility of their addition and multiplication. The addition is 
important when considering interference of waves, whereas the multiplication allows one to find the received 
voltage for given phasors of the receiving antenna and incoming wave. The multiplication is necessary also to 
decompose a phasor into a sum of two other phasors. The rules of these operations appear to be independent of 
any rotation of the polarization sphere. 

There is a very simple method enabling one to find the rule of multiplication for phasors. At first, the 
fact should be used of the one-to-one correspondence between phasors and PP vectors in the sense that the 
result of any operation for the PP vectors should agree with that for phasors. Then, one can immediately see 
that very simple rule of multiplication applicable to any two phasors on the equator of linear polarizations 
remains valid also for any other pair of phasors of the same mutual positions, i.e. for phasors obtained from the 
original pair by any rotation of the polarization sphere. 

Distinguishing the two PP vectors of linear polarizations by upper indices, their Hermitian product can be 
presented in the form 

uA-uB* = uAuB* 

[cos Y 
A, sin Y A ] exp(-jsA) 

COSY 

sin/7 

;J> exp(+yO 

(4.15) 

AB 
cos e 

2 
-j2AA

B 

Here AB the means angular distance between the polarization points A and B of the two PP vectors and 2 Ag 

is one half of the angular difference in orientations of their phasors on the equator of linear polarizations and 
A B 

means the spatial phase delay of the U    versus!/   vector. 

A rotation of the sphere can now be considered. Using the rotation matrix C, the new PP vectors will 
be obtained: 

uA' = CuA   and    uB'= CuB 

Their Hermitian product is as before the rotation: 

(4.16) 

uA'uB'* = uACC*uB* = uAuB* = cos — e~J2* 
2 

(4.17) 

because C is unitary, satisfying the equality 

cc* 1    0 

0    1 
(4.18) 

The only difference is that the detailed result will be given by a more complex expressions. They will be found 
when considering the general forms of the two PP vectors in their Hermitian product. When using the 
analytical parameters of the vectors one obtains: 
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u    u  * = u   u 

[cosyAe-J(ßA+£A\smr
Ae+J{SA-£A) cosrBe+J^S+£^ 

smyBe-J{sB-E^ 

{cos(yA-yB)cos(öA -SB)-jcos(yA +yB)sm(SA -SB)} e 
(4.19) 

■K*As') 

AB  _ ,2^ 
cos e J   B 

2 

The phase delay of the U   versus UB vector can be presented successively, using formulae of spherical 
trigonometry (see Appendix A for comparison), as: 

2AA
B = eA - eB + arctan cos(yA +yB) , 

cos(yA -yB) 
-tm(öA -ÖB) (4.20) 

—  CA        r>B A XA       sB       In -e   -e +S   -5   -jEYBA 

= sA -sB +\[Tü-{A + B)] 

(4.21a) 

(4.21b) 

J^\ 
~s   ~£  +

?(-
£

'YBA "■S'YBA) (4.21c) 

It should be observed that for phasors located outside the equator their phase difference depends not only on 
their e parameters but also is enlarged, e.g., by a quarter of the difference of the excesses of two oriented 
colunar spherical triangles XAB and YBA (see Fig. 4.3). 

The magnitude of the product (4.19) can be found by applying simple trigonometric formulae 

and 

thus obtaining 

COS2 a  ] 
.  .      \ =  J-(l±cos2or) 

sin  a 

cos(a ± ß) = cosor cos^ + sin a sin/? 

AB f\n      i ~   
cos^-=Vc°s2 (rA - rB) cos2 (SA -6B) + cos2 (r

A + yB) sin2 (SA - SB) (4.22a) 

= ^[1+0082^ cos2/s +sin2^ sin2^5 cos(2<^ -2Ö3)] (4.22b) 

=4- Hl + qAqB+uAuB+vAvB] (4.22c) 

=A/|[l + cos(AB)] (4.22d) 

The rectangular coordinates of the two polarization points A and B appearing in (4.22c) are given by the 
formulae (4.1). J 
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The just obtained expression (4.22b) in comparison with (4.22d) yields the well-known formula of 
spherical trigonometry for the YBA triangle: 

cos(AB) = cos(YA)cos(YB) + sin(YA)sin( YB)cosf (4.23) 

The Hermitian multiplication of the PP vectors in terms of the geometrical parameters leads to similar 
results: 

uA-uB* = uAuB* 

= [cosaA cos/?"4 -jsinaA sin/?-4, cosaA sin/?5 + jsinaA cos/?5]*?-7*'' x 

cosaB cos/?"8 +jsince8 sin/95 

cos a5 sin/?5 -ysina5 cos/?5 

= {cos(aA -aB)cos(ßA -ßB)-jsin(aA + aB)sm(ßA -ßB)} e^^-S) 

,+Jf 

AB  _/2*» 
= cos e }   " 

2 

with (see Appendix A): 

2AA
B=zA -j5+arctan 

sin(ar +aB) 
cos(aA -aB) 

=XA-XB+ßA~ßB+\Ew 

=XA-ZB-U*-(A'+B')] 

X X   "4\^RAB      -^RAB) 

tan(/?^-/?5) 

and with 

AD , _ .  

cos—-=,jcos2(aA -aB)cos2(ßA -ßB) + sm2(aA + aB)sm\ßA -ßB) 

= <J±[l + sm2aA sin2a5 +cos2ö^ cos2or5 cos(2^ -2ßB)] 

= Vit1+tlV+uAuB+vAvB] 

=Vi[l + cos(AB)] 

(4.24) 

(4.25) 

(4.26a) 

(4.26b) 

(4.26c) 

(4.27a) 

(4.27b) 

(4.22c) 

(4.22d) 

Additional explanation of formulae employing analytical and geometrical parameters can be found in Fig 4.3. 

4. 6. Decomposition of the PP vector into two orthogonal components 

The just described Hermitian multiplication can be used to decompose the PP vector into two parts 

corresponding to any desired ONP polarization basis defined by its first UB vector as follows 
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uA=(uAuB*)uB+(uAuBx*)uBx 

AB  _„„<.   R      .   AB  . 

2 
= cos e J2A°uB +sin—e-J2A,'*uB* 

2 
_„AtB   ,   LA„BX — aBu   + bBu 

(4.28) 

All column u vectors without the lower index are, as before, in the original real basis of linear polarizations 
while the lower and upper indices of the a and b components in the last equality denote phasors of the ONP 
polarization basis and of the vector being decomposed, respectively. The same rule when applied to the column 
vectors can be expressed as follows: 

u   -\u  ,u    \uB 

u Ax .B   .Jx [u\u»x]u 
with 

Ax 
B 

(4.29) 

Ua = 

.Ax 

\ 
a 

A k 
lA B 

UA 
PB . 

> 

~-b*~ 
A 

-hA * UB 

_d r*_ B aA * aB 

aa * +bb* - 1 

(4.30) 

Now, the Cayley-Klein rotation parameters a and b of the PP vector tf4 in the u8 basis can be expressed in the 
form: 

a^cosrle-'^^ 

bB =smyAe A0+K8i-4) (4.31) 

uB*oiuBx* 
The correctness of the decomposition can be checked easily by multiplying both parts of the sum by the 

term and observing both normalization and orthogonality conditions: 

uB-uB* = uBx-uBx*=l 
(4.32) 

uB-uBx* uBx-uB*. 0 

4. 7. The addition of phasors on the PP sphere 

The sum of the two PP vectors of different polarizations and spatial phases will be considered in the form: 

pC   C A    A       r~.BtIB 
h0u    -h0u   +t0U (4 33) 

Here the upper indices denote the phasors of the three PP vectors, and E0 are the magnitudes of those phasors 
or the corresponding PP vectors. The result of addition can be found by decomposing the first vector into 
orthogonal constituents as in (4.28), one of them being of the same polarization and spatial phase as the second 
vector of the sum: 

E^uc=EA(aAuB +bAuB*) + EBuB 

= (EAaA
+E!)uB

+EAbAuB* (434> 

Now the resultant intensity of the wave corresponding to the above PP vector can be found as 
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Ic=(E^uc)-(EL;ucy = (Ec
0)

2 

= (EAaA + EB)(EAaA + EB
0)*+(EAbA){EtbA)* 

= IA + IB +24lAlBcosyA
Bcos{8A

B+eA) 
The last formula can be rewritten in the previous notation as 

jC =IA +IB +2yllAIB COS—COS2J AB 

2 
with 

and 

with the evident equalities: 

but 

AB        A 

2AA
B=SA

B+eA
B 

yA =vB 
7B     7 A 

2AA
B=-2AB

A 

(4.35) 

(4.36) 

(4.37) 

(438) 

(4.39) 

(4.40) 

Now, the location and orientation of the resultant U phasor should be determined This can be done by 
inspection of the ABC triangle on the PP sphere inside the small circle through the points A, B, and C 
(Fig.4.4). The ABC circle (with the C point on it, of unknown location yet) will be chosen that way as to have 
the phasors, corresponding to the it4 and K

5
 vectors, tangent to the circle. This can always be done by 

simultaneous rotation of the two phasors by the same double phase angle 2 A. 

The 2A angle can be found from simple formula: 

2 A = 5B, — £B, (4.41) 

A'        j       B' 
when designating by U     and U   the two vectors before the rotation. The problem is how to express the 

A' B' U phasor in the U basis to obtain the angles on the right side of (4.41). This will be explained later, after 
introducing the change of basis techniques based on the 'polarization phasor notation' discussed in more detail 
in the next sections. 

Starting from the expression (4.33) one obtains 

E*uc =(EAuA uc *+EBuB -uc*) uc 

AC BC 

Having 

EA cos^V^c +EB cos—e-*2* 
.  ° 2 2 

2AA
B = 2A%, = 2e% +2A = SA

B, + eB, 

one can find the two remaining phase difference angles, as shown in Fig.7: 

(4.42) 

(4.43a) 

2AA
C =2AA

B-A 

2AC
B = 2AA

B -B = -2AB
C 

(4.44) 

and very useful geometrical equality 
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resulting from (4.44), because 

and 

2AA
B =^--C + i£ABC =7r-\E'^c (443b) 

2AC
B+2AA

C=4AA
B-(A + B) = rc-C 

A + B = 7r-C + EABC 

All three angles of the spatial phase delay should be of the same sign according to the arrows on the great 

^nt^T? TA®' mtQ aDd indiCating diieCÜ0DS rf *■** P^ *%■ Th«* angles deterge common orientation of the three phasors all tangent to the same small circle of the sphere. 

It is worth while to observe that, according to the rule accepted here, all angles of rotation to the left are 
positive, and so are the three phase difference angles as well as the two spherical excesses shown in Fig.4.4. 

Another important rule stems; from Fig. 4.4 or 4.5. The polarization point C of the sum of the two phasors is 

phat defay *" *"* ^ ^ ""* orientation is showi *the arr™ dirked toLds the 

However the caution is recommended: the rule is true then only, when the right-elliptical polarizations 
correspond to the upper part of the polarization sphere, what has been proposed herf As ?S 
confirming the rule the locus can serve of the right circular polarization point, ft is on tiie right side Ä 

Sfnf S^l ^ ?f ar}° 2® honzontal Polarization point. This is the path of the (spatial) phase 
Sfi£ PP-JS °PP°slld^ectl0P' aIso J01» vertical to horizontal linear polarization^eans the phase aoVance 
on the PP sphere considered as the two-folded Riemann surface. . 

nni^ rCt l0Cati°n °f *?£ f^i*" * f0und when demandinS mutual cancellation of the orthogonally polarized Cx components of both interfering waves. The following equation should be analyzed: 

0 = (£>L •«<-**)«<* = (E
AuA -uc* *+E?uB -uc**)uc* 

= (EA sin^e"^ +Es Sin^e-J2^)uc* ^ 

= (#sm^-#sin^)«G< 

The solution is 

4AA
CX-4AB

CX=+2K    with   4AA
Cs=o  and   4J*X = +2TT (446) 

and 

£0 sin— = E0 sin— (447) 

There are two orthogonal families of circles on which the C point can be located. The circles of the one of 

those families, determined by the phase difference 2 4 as in Fig.6, are passing through the A and B points If 
that phase difference is equal to zero or TT then the C point is located on the AB arc or on the remaining part of 

at,Stor?47TÄfationd B *"* ** "* "****■ ^ ** °f «"*« *** *2Sed 
.   AC 

sin—       B 

.   BC     EA (448) 

sin—       o 
2 
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when crossing the 2 /YB = const circle, finally indicates the C point location. 

4. 8. The addition of n phasors 

The formulae (4.34-36) can be generalized to the addition of n PP vectors (phasors) E^ u ^';  7 = 1,...,». 
The resulting intensity takes the form 

/ = Z/4* +Z2^/4/^ cos-^-cos2^;   /,y = l,...,» (4.49) 

with 

I*=(E*f (4.50) 

A/A: .4, 
—iT^r* (4-51) 

and 

2^A=<*A +*A- (4.52) 

The derivation of formulae (4.36) and (4.49) can be found in Pancharatnam's paper [121], but without 
analytical parameters of the PP vectors involved. 



Z H. Czyz, ONR-Report-3 (Final Version) April I, 2001 
28 

I^GOOOO 
right circular polarization: change of phase only 

12345 

-^  y   f   x  ^- 
linear polarizations: change of polarization only 

Fig. 4.1. Change of phasor with the PP sphere rotation about its polar axis. 
Phasors at the poles are changing their phase only; phasors at the equator are 
changing their polarization only; phasors between the pole and equator are 
changing both polarization and phase; the total change is n after the 2n rotation. 

Fig. 4.2. Obtaining same rules for phasors' addition, independently of the PP sphere 
rotation (here, by 90° about the Q axis), requires change of each phasor's direction by 
the double value of its change of phase angle. 



Z H. Czyz, ONR-Report-3 (Final Version) April 1, 2001 29 

a) 

+ B + 2SA -25B n 

b) 

ERAß=A' + B' + 2ßB -2ßA -n 

Fig. 4.3. To the evaluation of the spatial phase delay of phasor u4 versus u8, 

2Aß , in terms of: a) analytical, and b) geometrical phasors' parameters. 
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C 

30 

Fig_4.4. To the explanation of the C point location; result of addition of C (Cx) comroneni« 
ofthc two phasors being added must vanish. (^components 
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Co«c 

A o u 

2AA-2AA 

B = 2Ai-2Ac
R 

C = n-2AA
C-2AC

B 

A + B + C = n + EABC 

4AB
C = 2ÖB

C + 2eB
c = -4AC

B 

r=M 

*B 2A\ + 2AA
C = 4AA

B ~(A+B) 

= K-C 

= 2AA -4£ 

2A, 

ABC 

n-C + \EABc 

Fig. 4.5. To the addition of phasors A and B resulting in the sum phasor C 
(phasors' magnitudes not shown). Mutual dependences between phasors' phase 
differences and angles of a spherical triangle ABC are presented. 
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5. Rotation Transformations on the PP Sphere 

5. 1. The polarization phasor notation 

Any vector is folly determined having components in a well-defined basis and established rules of 
transformation of those components under change of the basis. 

When considering the PP vectors it is necessary to present both polarizations and phases of the basis vectors, 
otherwise their definition would be insufficient. The ONP polarization and phase basis discussed earlier will be 
applied here. Its first vector only determines the whole basis completely. That results from the uniqueness of the 
orthogonality transformation which applied to the first basis vector produces the second one unambiguously. 

Having the PP tangential phasors determined, they will be used as an upper and lower indices of the PP 
column vectors. The upper index will represent the vector itself while the lower will denote the first basis 
phasor. 

Also, to have a unified designation of phasors, the linear basis vectors will be denoted by u" and / instead 
of ly and lx The whole basis will be called now the u" or, simply, the H basis. Formerly that basis was called 
the (y,x) basis of reversed order of its vectors. 

In the proposed notation the tf4 vector, represented by the A pohasor on the PP sphere, and the 
orthogonal u4X vector can be written as follows: 

,M
A
 -\,.H..HA,.A 

u   — \u  u     \uH 

uAx -\„H,.HA „Ax 

where the column vectors expressed in terms of their analytical parameters are: 

(5.1) 

(5.2) 

UAJ = 
a 

b* 
* a 

K 
bA * 

A  * 
H 

cos^<?-^+4) 

-smyA
He-J(S»-4) 

cosr
A

He
+HS"+^ 

sin^e 

-x<y+«) 

*j(S-£) 
H 

-smye -j(S-s) 

cos ye +j(S+e) 

The phase delay of the phasor A over the phasor H will be denoted as 

(5.3) 

(5.4) 

2^H=öA
H+s

A
H (5.5) 

what is numerically equal to   VH . The two phasors in the angular and Stokes coordinate systems, according to 
the proposed polarization phasor notation, are shown in Fig. 5.1. 

5. 2. Rotation matrix and the change of basis rule for phasors 

The rotation matrix can be defined when expressing the same PP vector in two different ONP polarization 
bases, Hand B, and using the equalities (5.1) and (5.2): 

uA=[uVx] 
= [«Vx]Wj 

- l,iH„ffx]\„B      „5x1, 

4 
(5.6a) 

(5.6b) 

(5.6c) 
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4 

Comparison of (5.6c) with (5.6a) yields a change of basis rule for the PP column vectors: 

Now, introducing the rotation matrix as 

c4=[4 «**]= a   -b* 

b    a* 

-iB 

one finally obtains the change of basis rule in a simple form 

from which the following rule of multiplication for rotation matrices results 

because 

Of course, 

pA _   pB (~<A 
*•'//■ _   LH LB 

= [4 <\ 

i  o 
<*=[«**]=  0    . 

It is immediately seen that the rotation matrix (5.8) is unitary: 

"l    0 

and unimodular: 

c|q?* = 

detC* =+1 

(5.7) 

(5.8) 

(59) 

(5.10) 

(5.11) 

(5.12) 

The requirement about unimodularity is natural because three real parameters sufficiently determine any 
rotation of the polarization sphere of tangent phasors. 

To have the engineering notation legible enough for engineers, the converse rotation matrix to that of 
(5.8) should be of the form 

with 

or, according to (5.11), 

rH _ pB * 

yß^H 1    0 

0    1 

(5.13) 

(5.14) 

(5.15) 

The last equality follows immediately from (5.10), but to obtain (5.13) the converse analytical parameters 
should satisfy the condition: 

<=-< (5.16) 
where 

(5.17) 
4^=2*?+2* 
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but with 

~y B - -y H 

The following ranges of angular parameters are proposed for unambiguity reasons: 

and 

or. instead. 

0 < 2y < 7i 

-n <28<n 

-2n<2e<2n 

-K<2A<7t 

5. 3. Change of polarization and spatial phase - a general formula 

The active transformation rule can be found by inspection of the equalities 

fB <-H    A       nB    A       \   B      Bx~\ L
HCA"H = <~H"A = ["H

U
H \ 

Denoting the rotation matrix C? in the u" basis as 

^ j u — <-wC j 
-.5 
-AM ~ ^H^A 

one obtains the desired active transformation presented by a simple formula 

Also, it is worth noticing that 

'A,A  - ^A,B 

Now, the general rule of the change of basis for rotation matrices can be found 

rB   ■, A -   B 

^AM "H - UH 

^ A 
(~,B _ rB     _ ^,B 
^A  - L.A 

34 

(5.18) 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5.24) 

5. 4. Change of basis transformation for rotation matrices - a general rule 

loZLVlTZuZ^ rd UniVerSal meth0d WhlCh <** te USed t0 devel°P miscellaneous transformation 
eZttn inT   i ^ ?%Umt mat"X inSerti0n meth0d'■ M™?S> one should start ™th » transmission 
SS^ffioT^      matnces equal t0 the unit aBaix-In the example ""** «»«i*»*» the 

1    0 

0    1 
_ f-H rB  _ rB  iff^H i. 

^B ^H  ~ ^-H     CB (5.25) 

will be inserted to the transmission equation representing a voltage, Vr, received from the incoming wave, the 
polanzanon and phase of which mil be transformed, from the transmitted T to the scattered S, by a rotation 
matrix determined in the //basis: '   ' 

= K{cH
Bc

B
H)c4M*(c°*cr)ul* 

= &c>;lc!*cs
TM*c'*lc«*4*) (526) 
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What can be seen from the above formulae is the needed change of basis rule for the rotation matrix. 

CS          s~iH /-iS      r^B 
T,B - LB ^T,HL'H (5.27) 

5. 5. Decomposition of the 3-parameter rotation matrices into products of 1-paramater rotation matrices 

The same rotation matrix can be used for changing the vector's basis (passive transformation) or for changing 
the PP vector themselves when preserving its basis (active transformation). In both cases decomposition of the 
rotation matrix into product of three 1-parameter matrices is formally the same but corresponds to different 
relative movements of tangential phasors on the Poincare sphere surface. Directions of movement are reversed 
and routes changed. However, the decompositions are different when matrices are expressed in terms of 
analytical or geometrical parameters. 

1. Analytical parameter case (Fig. 5.2) 

Following the change of basis rule K —> K' ->//'"->// : 

iH'" r'K' riK ..K -K ..K 

..K 

(5.28) 

4- 
or the change of polarization and phase H —>■ H''—> L'—> K 

■>L' H'   ..H 

one obtains 

.,*■ — r"A    CL     Cn   11" — CK    n" 14H -{-L,,H^H',H^'H,HuH ~^H,HUH 

4 

CK _ ~cosye-*5+s)    -sinye-^-^' 

smyeK*-£)       cosyeJ{S+s) 

K 

H 

^e~js      0 " cos y   - sin y e~j£      0 

0      eJS_ smy     cosy 0      eJE 

■'~LH,H 

(5.29) 

(5.30) 

2. Geometrical parameter case (Fig. 5.3) 

Similarly, following the change of basis rule, K —> K" L^H 

CKuK 
(5.31) 

«f 
or the change of polarization and phase, H —> H' —> P —» K : 
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"//  -LP,H{■ir.flLHJf"/f   =CHJ/l'l 

36 

(5.32) 

4" 

one obtains 
4 

(cosacosß-jsinasmß)e-J*    (-cosasmß + jsmacosß)eJ* 

_(cosasmß + jsmacosß)e-J*     (cosacosß + jsmasinß)eJ* 

cos/?   -sin/?Tcosa    ysina 

sin/?    cos ß j^j sin a    cos a 

// 
,-JZ 

„ix 

^H~LP,H 

(5.33) 

CF=C£»,// c£,=c" tf,// 

5. 6. Geometrical form of the PP Sphere Rotation Matrix 

The obtained formulae for the active transformation of the PP vectors and basis transformation of the rotation 
matnx can be applied to present rotation of the PP sphere about any OA axis by a 2<f> angle as follows (Fig 5.4) 

itf=c?vr = P,A UA 
0 

u, 
0      e 

By inspection of the equation (5.30) one can see that the only changing parameter of the rotated phasor is 

Equation (5.34) is in the.4 basis. In any other B basis, the rotation matrix takes the form 

0 

(5.34) 

(5.35) 

'--■PR—    <--R 
0 ,J+ 

cl 

P,B 

cos <f> - y/i, sin <f>   (-«3 - jn2 ) sin <f 

.("3 - jn2) sin <f>    cos<f> + jnx sin<f> 

= C{n,2<p)PP\B = -C(n,20 + 2TT)%B 

= CfT{n,2<f>) 

Here, the unit vector n is directed along the OA rotation axis. Its components in the B basis are 

(5.36) 

LVJ5 

cos 2y 

sin 2y cos IS 

sin 2y sin 2 S 

cos2yA 

sm2yA
Bcos28A

B 

sin 2yA
B sin 25A

B 

The obtained formulae correspond to the earl.er presented form of the rotation matrix as in (4.7). 

(5.37) 
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5. 7. Comparison of Two Forms of Rotation Matrices 

To obtain the axis, n, and the angle of rotation, 2<j>. realizing the change of polarization and phase, B —> K 
(see Fig. 5.4). we have to solve the matrix equation 

cjr(nM)=c;iB = cl 
cosye~1(S+£)   -smre-J{6-£) 

sinre+J{ß-£)    cosye+J{*+s) (5.38) 

Alternatively, rotation by 2<j> about the -n vector realizes the change of basis transformation,   K —> B, 
according to the equality 

TROT Cr (-«,20 = CB = 
-\B 

Taking into account mutual relations (see Fig. 5.5) 

vB -YK 

Sl=±90°-eK
a °K + SK = ~(dB + £B ) 

0°<yB< 90° 

-90° < SB < 90° 

4 = +90° - ÖK
B\        {öB-4= ±180° + (SK

B - 4)      [-180° < 4'< 180° 

(5.39) 

(5.40) 

one obtains the following (alternative) expressions which have to be computed successively 

cos^=  cosyB co^Sg + eB) = cosyBcos(sB
: + eB

K\,        0°<^<180° 

»,sin^=  cos^f sinis^ +e*\ = -cosyB
K s\n(sB

K + eB) 

n2sin<f>=-smyB sm(öB -eB} =  sin;r£ sinfjf. - sB
K) 

«3sin^=  sin7^ cos(sB - eB") = -smyB cos(öB - eB
K\ 

The inverse formulae present angles which also have to be computed successively: 

yB -arc cosycos2 <t> + n\ sin2 <j>, 

SB -arc tan sin^- 
ny sinyB -n2 cosy1^ 

cos^sin/B + «3 sin<f>cosyB 

0°<yB <90c 

- 90° <SB < 90° 

K            .   sind(n,smyR+n7cosy„) 
£B = arc sin —^-^ '-^ 2       ' B ' 

cos£g sin2/g 

sinj£(«, sin^f -«2 cos^) : arc cos 
sin 8K

B sin 2/ £ 
180° < ^^ < 180° 

(5.41) 

(5.42) 
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5. 8. Rotation matrix in the Stokes parameters space 

Using standard procedure with Kronecker multiplication and applying the auxiliary U matrix, for the amplitude 
rotation matrices we find, ' «F'"""«- 

DK
H=u*(cK

H®cK
H*yr =. 

1 0 

0      aa*-bb* 

0     ab*+a*b 

10    0      1 

10 0-1 

0 110 

0   j    -j     o 

0 

-(ab + a*b*) j{ab-a*b*) 
*2 

f a -b*~ 
« 

'a* -b If V b a* b* a ) 
j '  H 

0 

110 0 

0    0     1 -j 

o    0    1 j 

1-10 0 
K 

(a2+a*2-b2-b*2)/2     j(-a2+a*2+b2-b*2)/2 

0   j(ab*-a*b)   j(a2-a*2+b2-b*2)/2      (a2+a*2+b2+b*2)/2 

(5.43) 

where, for the Cayley-Klein parameters: 
,K ,K      -j(8Ü~4) 

we finally obtain. 

aH = cosy„ e 

b^smy^e^»-^ 
(5.44) 

1 0 0 

DK _ 0        cos2/ -sin2ycos2e 

0 sin2rcos2<? cos2xcos2£cos2£-sin2£sin2£ 

0 sin 2/sin 2£ cos2?'sin2Jcos2£ + cos2<?sin2£• 

Similarly, in the geometrical form,the rotation matrix is 

0 

sin2^sin2f 

- cos 2/ cos 2£ sin 2s - sin 2£cos2£ 

■cos2;Ksin2£sin2£■ + cos2£cos2£• 
(5.45) 

DROT T,(«M) = 

i o o 
0        cos2^ + 2«2sin2^ -n3 sm2</> + 2nln2 sin2 (j> 

0 «3 sin2^ + 2/I,#I2 sin2 <f> cos2^ + 2«2
2 sin2 <j> 

0 -«2sin2^ + 2«I/?3sin2 ^ «, sin2^ + 2«2«3 sin2 <f> 

n2 sin2<p + 2nln3 sin2 <f> 

-«, sin 2^5 + 2»2«3 sin2 (£ 

cos2^ + 2«2 sin2 <f> H 
(5.46) 

5. 9. The Unitary and Con-Unitary Transformations 

The change of basis formulae require some remarks. Let us look at the equation (5.27) rewritten with a slight 
modincation ° 

• B 

■ H (5.27a) 
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This is evidently a similarity transformation because of similar form of the two change of PP equations with the 
two mutually transformed rotation matrices: 

uH — (.. T HuH 

and 

Cr.s"l 
(5.47) 

However, transformation matrices in (5.27) are also unitary. So. we have to call the (5.27) transformation, in 
that special case, the unitary transformation. 

There is another transformation of the PP vectors that exhibit (other) similarity under change of basis. It is 
one which transforms, e.g., the Sinclair scattering matrix. There is an essential difference that can be observed 
when comparing these two kinds of transformations. The Sinclair transformation moves the PP vector of the 
illuminating wave to the conjugate complex space to represent the CA of scattered waves. This happens because 
the scattered wave propagates in the negative direction of the z axis of a local coordinate system of the 
receiving antenna. So its complex amplitude should be expressed by the conjugate value of the corresponding 
PP vector as in the equation (3.1 lb). In the proposed polarization phasor notation, the two analogous amplitude 
scattering equations in two different PP bases are: 

and 
Arus

H* = AHuT
H 

ÄTus
ß*=ABuT

B 

(5.48) 

with Ä as a positive real number depending on T only, and not on the polarization bases. The corresponding 
change of basis rule for the Sinclair matrices is 

A
B=CH

A
H
C

H (5.49) 

It could be named the 'con-similarity' transformation, with the 'con-' prefix for the 'conjugate' space of the 
scattered PP vectors. However, the unitarity of transformation matrices again should be taken into account. For 
that reason the name of the 'con-unitary' transformation seems to be more adequate. 
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2^X _ i n-LyH 

•Ax 26 ^ =±n + 25 

2eA
H
x =±n-2eA

H 

Fig. 5.1. Phasors of the ONP polarization basis A. 



Z H. Czyz, ONR-Report-3 (Final Version) April I, 2001 

V 

41 

Fig. 5.2. To the rotation matrix decomposition 
in terms of analytical parameters 

Fig. 5.3. To the rotation matrix decomposition 
in terms of geometrical parameters 
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ur c=>P 

42 

Fig. 5.4. The PP sphere rotation about the OA axis 
by the 2<f> angle. 

Fig. 5.5. An example of mutual dependence of two 
tangential phasors' angular parameters   The arrow 
on the grat circle arc segments indicate direction of 

the spatial phase lag. 
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6. Change of Phase, Orthogonality and Spatial Reversal Transformations on the PP 
Sphere 

There are two fundamental transformations of the PP sphere of tangential phasors on itself which are 
independent of the ONP PP basis rotation: change of spatial phase and orthogonality transformations. 

An essential difference between those two transformations is that they belong to two different classes. 
Change of spatial phase leaves PP vectors in the same complex C2 space while orthogonality moves them to the 
conjugate space, similarly as reversal transformation does, but the latter is basis dependent. 

However, there is another important common feature of the change of spatial phase and orthogonality. 
They both do not change the PP phasors' direction of rotation in time, unlike the reversal transformation. 

Also, it should be mentioned here, that all these three transformations, as well as previously described 
rotation, have one common essential feature: they keep magnitudes of the PP vectors constant. That is why to 
all of them the 'C symbols will be ascribed with suitably differentiating indices. 

One more C-type transformation could be considered but it will never be used. This would be a 
transformation which moves the CA vector into the conjugate space leaving its phasor unchanged, but rotating 
in time in the opposite direction. 

The change of spatial phase transformation does not require any special description. It just rotate all 
tangential PP phasors by the same angle equal to the double phase angle of the PP vectors. 

6.1. The orthogonality transformation 

The orthogonality transformation could be presented by the following matrix equation: 

{
Px* = CxUP (6.1) 

with the orthogonality matrix in the H basis 

Cx = 
0 -1 

1 0 
(6.2) 

However, performing the change of basis suitable for transformations moving the PP vector into conjugate 
space: 

fix   s-<B /ix /-iB 
^B  ~ ^H^H^H 

a       b 

-b*   a* 

0 -ija   -b* 
1 o\\b    a * 

-\B 

-ab + ab       -aa * -bb * 

aa * +bb *   a*b*-a*b* 

-|S 

JH 

(6.3) 

0 -1 

1 0 

we can observe that the above transformation is basis independent and can be expressed by using of a  real 
matrix 

Cx = 
0 -1 

1 0 
(6.4) 
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Therefore, we will write the orthogonality transformation in the form 

.Px 
CxuP

B\    and    u%xx=CxuPx* = CxCxup=-up. (6.5) 

By moving conjugation to the right side of the equation, in comparison with (6.1), we stress that the orthogonal 
PP vector can be represented by the tangential phasor of the same kind (rotating in the same direction in time) 
as before the transformation, and of the same phase, as, e.g., ly and lx vectors are of the same (null) phase. 

It can be shown that, in any ONP B basis, P and Px phasors are collinear and also form an ONP basis. In 
order to prove that we can start from the known PP change transformations: 

,t
p - rp    „B     »nA      „Px    rPx    ,.B* UH ~ <~B,H 

UH       and        UH   = CBx,H UH (6.6) 

It will be sufficient to demonstrate that the two PP sphere rotations used above are identical. Let us see first that 

C; Bx [,.Bx t.Bxx\ uB  uB   j = 
0 -1 

1 0 
and 

fB   _ fBx * _ /~ix 
'Bx 

what yields the expected equality: 
fPx      _ siPxpH 
^Bxji ~ ^H  ^Bx 

— \yffl-p j\yBx^B ) 

= c:x = cx 
(6.7) 

(6.8) 

^B 

(6.9) 

^H*-B a B,H 

6. 2. The spatial reversal transformation and the direct (one-way) complex voltage transamission equation 

Complex voltage received by an antenna from a wave can be presented by the following Hermitian product of 
two PP vectors expressed in the antenna local xyz coordinate system with the z-axis oriented out of the 
antenna: 

Vr=u' u w 
(6.10) 

Here constant coefficients of less importance for these considerations have been omitted. As usually, the upper 
indices denote phasors tangent to the Poincare sphere at points A and W, corresponding to the antenna and 
wave PP vectors respectively. Introduction of the Hermitian product of the PP vectors was necessary because of 
opposite orientations of the receiving antenna and the incoming wave. 

In the similar form, of the Hermitian product of two PP vectors, the equation of transmission between two 
antennas could be presented Unfortunately, however, it would suffer from one but essential inconvenience. It 
would not reflect the reciprocity of transmission. In order to resolve that difficulty, the PP vectors of the two 
antennas will be expressed in the PP bases B determined for their own local right-handed xyz coordinate 
systems, with the z-axes indicating, for both antennas, their directions of radiation/reception. The two antennas 
will be assumed 'looking' into each other with their local yz 'reference planes', called 'horizontal', coinciding. 
Then, the 'spatial reversal' matrix can be introduced that will reverse any of these two local coordinate systems 
by 180° rotation about its x-axis, called 'vertical'. As a result, complex amplitude vector of a wave radiated by 
one antenna, determined by the phasor T, can be obtained in the local coordinate system of the other antenna, 
with the PP vector then corresponding to the phasor 7b: 

.To * — c>i (6.11) 
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This is, alternatively, the conjugate value of the antenna's spatially "reversed PP vector' by reversal of its local 
coordinate system, or the conjugate value of the PP vector of the 'antenna reversed' versus its unchanged local 
coordinate system. The conjugation tells us about -z direction of the antenna orientation, or the transmitted 
wave propagation, as has been proposed in (3.1 lb). Of course, the reversal matrix will be subject to a change- 
of-basis transformation. In the horizontal //basis its form is especially simple, 

C° = 
-1    0 

0     1 
(612) 

Now, the transmission equation can be obtained in the form compatible with the reciprocity principle (see also 
Fig. 6. Id): 

K=ÜBC°BU
T

B=U;U-*=UB 
* „TO*^~R0 * U

T 

Applying to (6.12) the change-of-basis rule, we obtain 

/io  fi B s~to /-<B   
*-5 _ ^H^H^H - 

-W       U 

u    w 
with 

H 

and 

wi = 

(6.13) 

(6.14) 

(6.15) uB
H = sin2yB

Hcos28B
H 

B
H =cos2y£ cos28% cos2eB

H -sin28B
H sm2eB

H -j(cos2yB
H cos28% %m2eB

H +sin2<?£ cos2s£) 

with 

detC° = detC =-ww * -u2 = -1. 

In any ONP polarization basis the spatial reversal matrix is symmetric and satisfies the equality 

1    0 
0    1 

It may be interesting to observe that for the right-circular polarization, RC, defined by 

28R
H
c = 2y«c=-2ef = 90° 

the spatial reversal matrix remains unchanged: 

-1    0 
0     1 

= c° 

(6.16) 

(6.17) 

(6.18) 

(619) 

(6.20) 

similarly as for all in-phase, with H, basis phasors tangent to the polarization sphere at the great circle 28 = 
90°. These basis phasors, rotated by the Is = 180° angle, are eigenphasors of the (6.20) Sinclair scattering 
matrix. This is a special case of the general rule stating that, e.g., in the H basis, the spatial reversal operation 
changes analytical and geometrical parameters of the PP vector as follows: 

2^=180° 28 H-> 

2aT
H°=2aT

H, 
2rT

H°- 
2ßT° = 

2rT
H, 2e% =180° -2eT

H 

2z2 = 360°-2X
T

H 

(6.21a) 

(6.21b) 

and any PP vector with analytical parameters 28T
H = 2eT

H = ±90° will not change under reversal 
transformation. Figs. 6.1a,b present all those dependences for polarization phasors in the linear H basis (on the 
Poincare sphere in the corresponding to that basis the QUV coordinate system). In addition, Fig. 6.1b explains 
also the independence of the received voltage phase of the z-axis reversal by rotation of the xyz coordinate 
system. 
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6.3. The transformation changing the PP vector's propagation index 

One more C transformation can be considered, changing for opposite one the direction of propagation without 
influence on the polarization and spatial phase. This is the only exception among transformations when the 
domain and range constitute the C2 space of the PP vectors. If applied to the CA vectors it would cause a 

transfer to the conjugate C2 space. This is the C(±) transformation which changes the PP vector's propagation 
index, leaving the value of the vector unchanged: 

*B B      =   UB} > = uB. (6.22) 

As a result, the phasor of the transformed PP vector (if it belonges to a wave, not to an antenna) rotates in time 
with the 2co angular velocity, in the opposite direction 

Though the phasor of a wave only rotates, the propagation index of an antenna is also essential but 
only when considering the sign of temporal phase of the voltage received by the antenna from a wave That is 
tor the reciprocity reasons. It is not important which phasor of the two under consideration represents the wave 
and which one the antenna. The sign is positive (the voltage is delayed in time) if direction of rotation of the 
phasor with the minus propagation index to the phasor with the plus index is counter-clockwise (positive 
direction about the PP sphere radius to its piolarization point) because the two phasors tend to meet The 
opposite direction means the voltage advanced in time, for the distance between the phasors is growing So the 
spatial and temporal phases are of opposite sign for phasors with minus propagation index 

Using the PP vectors with their propagation indices, instead of (3.11) and for z=0 one can write 

E+(t,0) = Eo(u+e^) (623a) 
and 

E~(t,0) = E0u~ * e'- = E0(u~ *->-) * (6.23b) 

The last equality just explains the opposite sense of rotation of the transformed polarization phasor in time 
Such a phasor can be called of different 'kind', though its numerical value is the same for t = z = 0 

So, depending on its kind, the PP vector, or the polarization phasor, can be given a 'propagation index' 
plus or minus, indicating direction of wave propagation or antenna orientation along the z axis, as well as the 
sense of the wave s phasor rotation. 

6. 4. Four types of scattering and propagation (transmission) matrices 

Taking into account, according to (3.3), the dependence of the unit complex amplitude vector on the sense of 
the propagation z-coordinate axis (see Fig. 6.2a), and the following earlier presented form (5 48) of the 
amplitude scattering equation 

X UB*=ABUB (6.24a) 

we will apply the unit matrix insertion (UMI) method by inserting the unit matrices (6.18) to different places 
in the amplitude two-way transmission equation 

Vr=u^ABuT
B (6.24b) 

with the regular Sinclair scattering matrix AB (we shall call it the 'SI type' matrix). By doing so we arrive at 
three other amplitude matrices and the corresponding scattering and transmission equations (see Fig. 6.2b-d): 

the Jones propagation matrix of PI type, 

A°B=C°*AB;     A°uT
B=ATu$>,       Vr = uB"° * A° u?B (6.25) 

the Jones propagation matrix of P2 type, 

°AB=ABC*B * ;      °ABul°* = ATus
B*,     Vr = ff* <*, „* * (6.26) 
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the Sinclair scattering matrix of S2 type, 

AB - CB    ABL-B      ,       ABUB     -AuB,       yr=UB*ABuB* (6.27) 

These matrices and equations correspond to the reversed coordinate systems at the input, output, and on both 
sides of the scattering object, succesively. They will be especially useful when considering, eg the cascading 
connections of the polarimetric two-ports [14]. The reflectance and transmittance amplitude matrices of those 
two-ports can be of all the above mentioned types. However, in order to take full advantage of such 
representations, at first the Poincare sphere geometrical models of those matrices should be constructed, 
proceeded by their decomposition into product of matrices explaining successive transformations of. the PP 
vectors when scattering. 

6.5. Summary of advantages and envisaged applications resulting from introduction of the PP vectors 

There are several essential advantages/applications of the waves' representation by the PP vectors (or tangential 
phasors), e.g.: 
• The two Jones directional vectors (when applying Lueneburg's terminology [107]), i.e. complex amplitudes 

of waves or complex lengths of antennas oriented in opposite directions, can be determined by one only PP 
vector (its direct value or complex conjugate) what results in using the same orthogonal null-phase (ONP) 
PP basis and its transformation or spatial basis reversal (for the xyz coordinate system rotated by 180° 
about an axis perpendicular to the z-axis) independently of direction of wave 's propagation. It simplifies 
considerably presentation of transmission equations. 

• Sum and product of phasors can be used to present, on the PP sphere, results of waves' interference and 
values of complex voltages received by an antenna from a wave. 

• When considering scattering by targets, the polarization and spatial phase of both the incident and scattered 
wave, and of the receiving antenna, all can be presented by phasors on the same PP sphere, what will allow 
for a geometrical interpretation of scattering and two-way transmission on that sphere as its phasors' 
inversion, rotation, and change of phase, followed by multiplication of results by the receiving antenna 
phasor. 

• Not only special polarization points, but also special polarization phasors, e.g. eigenphasors, can be found 
for Sinclair matrices given. 

• Convenient notation can be applied which uses phasors of PP vectors and PP bases as upper and lower 
indices, thus obtaining simple comprehensive, and easy to remember formulae for transmission equations, 
the spatial coordinate system reversal, and for the ONP PP basis or the PP sphere rotation. 

• Changing phase of the first phasor of the ONP PP basis (together with automatic opposite change of phase 
of the second phasor in order to keep the basis null-phase) will be of fundamental importance when 
studying polarization properties of scattering matrices. It will allow one to arrive at canonical forms of 
bistatic fin general) scattering matrices with a minimum but sufficient number of parameters necessary for 
polarimetric considerations, e.g., for classification of targets. 
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ZxT0 =x-2z 

Compare:  uB  =C C uD=-uB  with  uD   = CB *CBuB =+uD 

Fig. 6. la,b. Mutual dependence between phase parameters: (a) analytical, e. and (b) geometrical, z, 
of the u and u° vectors. 

In (b): Phase delay A of the received voltage does not depend on the z-axis reversal bv the coordinate system 
rotation. (See also Fig. 6.1c. for the sign of A dependence on directional upper indices of polarization phasors) 

w+ 

phase lag, A 

/ = 0 

jv- 

w- ,A+ IV+ 

loot 

phase advance, -A 
Icot 

Fig. 6. lc. Determination for the received voltage its phase lag, A, or phase advance, -A, 
by inspection of the polarization phasors shifted parallel to a common polarization point P. 
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Ro * 

Jo * c 

u 

Jo * 
Jo * 

Fig. 6. Id. To the direct transmission equations (6.13). 

A° =C° *A 

ATuS0 

°A° =C° *AC° * 
)T..So 

To MC 

To * 

Fig. 6.2a-d. Complex amplitudes (directive Jones vectors) in four alignments: 
two 'scattering', of SI and S2 type, and two 'propagation', of PI andP2 type. 



Z. H. Czyz, ONR-Report-3 (Final Version) April 1, 2001 50 

7. Scattering and Propagation Matrices 

The same scattering phenomenon can be described from two points of view Historically the first one 
corresponding to the so called forward scattering alignment (FSA) or 'wave coordinate system' is usually 
being applied in optics. In radar transmission it is being used mostly to determine the change of polarization 
and phase of a wave propagating through the surrounding medium to and from an observed target Polarimetric 
properties of that medium are determined in the FSA by the Jones or Mueller matrices. Another point of view 
corresponds to the so called backward scattering alignment (BSA) or 'antenna coordinate system' It is 
especially useful when analyzing the change of polarization by an observed object itself. Sinclair and Karnaugh 
matrices are then in use to describe polarimetric properties of that target. Though scattering in the two 
ahgnmems is the same, the two points of view impose different interpretations of polarimetric signatures 
obtained for matrices in the two alignments. On the other hand, because of dealing with the same scattering 
phenomenon, an exact relation between the Jones and Sinclair matrices exists and will be presented Obtaining 

ali      entsatl°n *       ^^ "*** ""^ ^ ^^ ™QTSal transformation J°ining matrices in the two 

In order to gain geometrical representation of scattering, vectors of incident and scattered waves as 
well as the receiving antenna vector, should be presented on one Poincare sphere. For that reason all matrices 
Tu T°rS^m TC transmission «I"3*0« wm ^ expressed in the same precisely determined orthogonal 
null-phase (ONP) polarimetric basis. Such a basis will be represented on the Poincare sphere by two collinear 
polarization phasors tangent to the sphere at its antipodal points. And, what should be stressed, that basis will 
be exactly the same for illuminating and scattered waves independently of the alignment used, FSA or BSA 

To arrive at such representation of scattering, a concept of polarization and spatial phase (PP) vectors 
for antennas aid waves, different from complex antenna heights (CH) and complex wave amplitudes (CA) will 
be apphed. It will be based on time reversal symmetry of Maxwell equations and their solutions, and on precise 
relation of these PP vectors versus each local spatial coordinate system: for iUuminating waves, scattered waves 
and for a receiving antenna. 

•A *u ? °aSe °™mg ^ SÜ1Clair KaUetio& ma*"*- ^e last two spatial coordinate systems are identical 
with the first one. When applying the Jones propagation matrix, they are reversed by 180° rotation about an axis 
perpendicular to direction of propagation and to a chosen 'horizontal' reference axis. Therefore the 
corresponding PP vectors depend on the reversal (by rotation) of a local spatial coordinate system and'such 
reversal is the only reason for a difference between Sinclair and Jones matrices. 

i. J^ T,VeCt0rS °f antennas aad ^^ also will be represented by tangential phasors on the Poincare 
sphere. Mutual locations and orientations of the antenna and wave phasor with respect to a basis phasor define 
elements of the corresponding antenna/wave PP column vector. 

M"eto and Kennaugh matrices depend, what has been stressed, on the orthogonal polarimetric bases used It 
has been observed that different kinds of orthogonal bases are in use for different applications. Usually the ONP 
PP bases present the best choice. However, bases with their both phasors rotated by 90° seem to be more 
adequate for meteorological applications. For instance, they have been used in the McCormick's works Here 
demotion of reversal' transformations joining vectors and matrices in the two alignments has been presented 
based on the radar transmission equations. 

For Sinclair and Jones matrices, describing the same physical phenomenon of nondepolarizing 
scattering two different Poincare sphere models are proposed. The Sinclair matrix has been decomposed into a 
product of two operations of inversion and rotation of the Poincare sphere. For the Jones matrix model another 
Su™Jnatt» k* **n applied followed by additional orthogonality transformation. Such difference in 
construction of the two models can best explain diverse physical interpretations of their operation 

Limited amount of simple formulae and the Poincare sphere geometrical models of scattering matrices 
can be obtained when applying to radar polarimetry the PP vector approach, based on the time-symmetry of 
Maxwell equations and followed by the polarization phasor notation which uses phasors as upper and lower 
indices for vectors and matrices. 

Before approaching presentation of scattering and propagation matrices short summary of 
fundamental transformation matrices will be attached and their meanings explained. Then the two 'elementary' 
transformations will be presented by which, or by their special forms, all others can be expressed. 

7.1. Setting-up of fundamental transformations 

The following set of four transformation equations completes the u vector definition. A general rule is that the 
domain and range of all these transformations are CA vectors expressed by the corresponding PP vectors In 
such a sense we can speak about the following transformations of the PP vectors 
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• Scattering transformation in the BSA, with scattering (Sinclair) matrix A (of the so called SI type), 
transforms the PP(+) unit vector u of an incident wave into another, scattered wave PP(-) unit vector «' with 
real nonnegative coefficient A: 

PP(+)       PP(-) 

Au = Au'*,    alias   Au^^Xu''  *;        AeR+ 

CA(+) "~CM^) 
(7.1) 

The A matrix should be determined for local spatial coordinate systems of the two PP vectors, u and u', of the 
incident and scattered waves. Both the A matrix and u vector should be expressed in a common ONP PP basis, 
what results in the u vector also in that basis, i.e. the basis identically determined, like the u vector, versus its 
local spatial coordinate system. 
Conjugate value of the scattered unit PP vector means the unit CA vector of the scattered wave moving in the 
negative direction of the propagation axis in the BSA 

•   Orthogonality transformation of the PP vector, u->ux, also results in a conjugate value of the orthogonal 
PP vector: 

Cxw = wx*   alias or 

PP(+)    PP(-) 

CXJ^=?J 
C4(+)        C4(-) . 
pp{-)     pp(+y 

C     U      *= U 

C4(-)       CM+) 

C* 
"0 -f 

.   u* = 
~-b* 

[_1 °J a* 
uu** = 0. 

(7.H) 

This is compatible with the statement for scattering in the BSA because the received voltage expressed by the 
equation like (3.8), for mutually orthogonal receiving antenna and incoming wave, will vanish only for their 
opposite 'orientations', accounted for in the Hermitian product. There is no change of basis under the 
orthogonality transformation. 

•   Rotation transformation in the PP (C2) space will be defined for three different (in general) PP column 
vectors u, u', and «"as follows: 

Cu'=u",     C = [u   W
x]: 

a   -b 

a 
CC* 

1    0 

0    1 
det C = +1. (7.HI) 

No conjugation of PP vectors is experienced because rotation in the PP space does not change the direction of 
wave's propagation. 

• Spatial reversal transformation rotates the antenna/wave or, equivalently, the spatial coordinate system by 
180° in the R3 space about an axis perpendicular to direction of propagation. In both cases it changes the PP 
vector of the antenna/wave which becomes oriented in the opposite direction along the propagation Oz axis: 

with 

C°u = u0*,    alias   • or 

detC°=-l, C°= C° =C 

PP(+) PP{~) 

C° u+  - u°- * 
CA(+)        CA(~) 

c° *      - *= u 
CA{+) CA(- 

■c 
"-1    0" 

0     1 
c,   c°c°* = "1 

0 

o" 
1 

a.iv) 
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Here C° is a complex matrix defined in any ONP PP basis to which it is transformed, by using the rotation 
matrix C, from the simplest real form in the horizontal/vertical linear polarization basis. 

The following essential feature of definition of the reversal transformation should be observed- the PP vector 
of an antenna changes when its spatial local coordinate system reverses (by rotation) against the antenna This 
is because the polarization and phase is always determined in its local spatial coordinate system and never 
changes when antenna rotates together with that system. So, no matter what is reversing, the antenna or the 
coordinate system, the PP vector of the antenna always undergoes the same change. 

It is worth noticing the following dependencies between matrices C*, C, and C°: 

C*C=C*CX 
and CXC°=C°*C* (7.1) 

The four transformaüons, (I) - (IV), represented by the matrices A, C, C, and C, form a corner stone for 
the PP vector approach to the theory of radar polarimetry together with an 'polarization phasor notation' 
explained m Chapter 5. All other transformation formulae can be obtained by using those four only. 

7. 2. Two Elementary Transformations 

For purposes of representation of scattering on the Poincare sphere, the normalized inversion 

matrix A0n can be introduced instead of A, more elementary than the Sinclair matrix, realizing the following 
inversion transformation: 

where 
Asr*=i» INV 

Amv _ -U-yV     1 + Q 

. -1 + Q     U-yV 
detC =1-(Q2+U2+V2)<1 

(7.D 

(7.2) 

in which the Q, U, V values are coordinates of the 'inversion point' inside the Poincare sphere of unit radius 
The Sinclair scattering matrix can then be presented in the form: 

Here 
2 

10/7 (7.3) 

£ = -argdet.4,   a 0 = SpanA + 2\dct A\, (7.4) 

and — denotes the radius of the Poincare sphere model of the scattering matrix A. Of course, the 

inversion matrix depends on the ONP PP basis, contrary to the othogonality matrix, the transposed version of 
which presents its special case for the inversion point in the center of the sphere. 

Also the spatial reversal matrix can be presented as a product of simpler matrices: of conjugate 
rotation and transposed orthogonality multiplied by -/ phase factor. In that form it resembles the Sinclair 
scattering matrix and can be considered as that matrix for the free space. Its inversion matrix is the inverse (the 
transposed version) of the orthogonality matrix: 

C° = 
-1    0 

0     1 -^•(iu.jrM^C0)  => AINV(C°)=C*    (7.3') 

Taking all that into account one can see that all polarimetric matrices can be expressed by a product of 
only two elementary' matrices of rotation and inversion with a complex number factor. 

What can be seen from the above approach to the theory of radar polarimetry is that an efficient 
reduction m number of basic formulae has been obtained owing to expression of complex wave's amplitude and 
complex antenna height vectors, equipped with their directional indices, by the PP vectors numerically identical 
for both directional indices. 
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7. 3. The Poincare sphere of tangential phasors and the ONP PP basis 

In order to construct the Poincare sphere model of a Sinclair matrix for bistatic scattering, it is 
necessary to present that matrix in its characteristic coordinate system (CCS) in Stokes' parameters space, 
corresponding to some characteristic ONP PP basis. 

Any ONP PP basis is formed by two orthogonal PP vectors mutually related by the orthogonality 
transformation (7. II). In the polarization phasor representation they will be shown on the Poincare sphere as the 
ordered pair of two collinear phasors tangent to the sphere in two antipodal points [3]. It is evident that only the 
first vector of the basis should be determined because the second one can be found using formula (7.II). Let 
those phasors and the corresponding unit PP vectors be denoted by: 

BouB   and     BxouBx 
(7.5) 

and let such basis be denoted by its first phasor B. Then, any other PP vector, corresponding to, say, P phasor, 
can be expressed by its unit column PP vector in the ONP PP basis B in a matrix form as follows: 

B „5x- 
«'=[«"«*>£ (7.6) 

where the unit column PP vector itself will be determined by Cayley-Klein parameters a and b, expressed by 
halves of Euler angles between tangential phasors on the Poincare sphere: of that PP vector, and of the first 
vector of its ONP PP basis (Fig. 7.1). 

uD = 
-\P 

cosye 

smye 

-KS+s) 

(7.7) 

7. 4. The Stokes' four-vector of complete polarization 

The corresponding unit Stokes four-vector will be found according to (2.4) and (3.31) or (5.37) as 

-]P 
1 

1 p;=u*(«; »»;*)= 
4i 

cos2y 

sin 2y cos 28 

sin 2y sin 28 

(7.8) 

thus presenting rectangular coordinates of the polarization P point in the four Stokes' parameters space, on the 
polarization four-sphere of unit radius. 

7. 5. About different orthogonal PP bases - The collinear and parallel phasor bases 

The ONP PP bases can be called the bases of collinear phasors. Another often used is the basis of 
parallel phasors. This is a different class basis which can be obtained from the ONP PP basis not by its rotation 
but by multiplication of, e. g., its second (orthogonal) vector by +j or -j factor (the corresponding basis 
transformation matrix is of determinant equal.to plus or minus j, accordingly). There is, however, a problem 
about location of sum of the new basis phasors. There was no such problem for the ONP PP basis, for which the 
sum of its phasors was also collinear and always shown by the arrow of its first phasor. Simple rule can be 
proposed for the parallel basis phasors: if the second vector of the original ONP basis has been multiplied by -j 
(+/), then the sum of the new basis phasors is on the right (left) site of the first phasor of that basis, e. g. 
(Fig.7.2), 
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[■* u^=M) (H-s -*?i V2 
1      1 

7  -y 
E^yfl V2"".     (7.9) 

vectors of 
collinear 
phasors 

vectors of 
parallel 
phasors 

vector of the sum 
of basis phasors 

7. 6. Opposite orders of the (H,V) or (V,H) linear bases 

When using the (//, ^ or (V.H) ONP PP bases (H - horizontal linear, F- vertical linear) there is always 
a doubt about the order of basis vectors. Altogether four possibilities exist for choosing the horizontal/vertical 
linear polarization basis: 

(7.10) 
'EH~ 

Ey_ 
= 

'E; 
Ey_ 

? 

'EH~ 

Ev_ 
= 'E; 

[EX_ 
? 

'Ev~ 

EH_ 
= X" 
x_ ,   and 

'Ey' 

E
H_ 

- 
'Ey' 

Ex_ 

The above Jones or PP column vectors may correspond to the following linear bases: 

(H,V)o(x,y\   (H,V)o(y,x),   (V,H)<=>(x,y),   and   {V,H)o(y,x). (7.11) 

Recognition of the order of basis used by an author is necessary to identify handedness of polarization on the 
Pomcare sphere. 

7. 7. Phasors in bases of the opposite order 

Basis phasors, and all other phasors, if referred to the basis of the opposite order   should be 
represented on the Poincare sphere as oppositely oriented. 

If the original (x,y), alias X, ONP PP'basis will be rotated to the position of the (a,b), alias A basis 
then bases of the opposite order, called (y,x), alias Y'\ and (b,a), alias 5", will be represented by their first 
phasors, r' and B", oriented oppositely to Y and B. That is in agreement with the known relations between 
oasis-dependent polarization parameters for mutually reversed basis order. 

There are two main transformations governing the PP column vectors expressed in the orthogonal 
bases of opposite order (not necessarily the ONP PP bases): 

p p" 

p P" 

r° ll 

.i oj «A 

i 0" 
u [_0 -1 

(7.12) 

valid also in the 'opposite direction' (all double-primed phasors can be exchanged for non-double-primed and 
vice versa). 

7. 8. Amplitude Equations of Scattering and the Two-Way Transmission 

The scattering transformation in the, e.g., horizontal/vertical //basis can now be written according to (I) as 

-T       iT..S A   iil - 2Tni> * AHUH ~ A   UH 

and the received voltage, after (3.8) and (7.13), can be given by a Hermitian product 

V =ATuRus *-7jRA   i,T 
rr      /l   uHuH    -UHSi.HUH 

(7.13) 

(7.14) 

This is a simplified two-way (radar) transmission equation presented in terms of polarimetrically essential 
parameters only. 
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7. 9. Change of Basis Transformation 

Let the characteristic basis of the scattering matrix be denoted by phasor K symbol. In order to transform 
equation (7.14) to that basis the following rotation matrix will be used 

CH -[UH      UH ] = 
a 

a 
, with   C% =C% *   and   C*Cg = 

H 

1    0 

0    1 

Change of basis rules with that rotation matrix are [2]: 

CK uH and A-K - CHAHCH 

So, for transformation to the K basis, one obtains 

Vr = ATuRus
H* = ATü£CJ?C% *us

H* = ÄTuRus
K * 

V ~uRA   uT -uRCKCH A  CKCHuT -uRA  iJ 

or 

(7.15) 

(716) 

(7.17) 

(7.18) 

7. 10. Sinclair to Kennaugh matrix transformation 

The received power can be found in terms of a Kennaugh matrix, KK, in a K basis, say, determined as follows: 

Pr= Vr®Vr*= (uRAKuT
K)®(u£AKuT

K)* 

= (u§ 0 u* *)U *U(AK 0 AK *)UU *( uT
K 0 uT

K *) 

(7.19) 

PK^KPK 

= o-TP|P|    with   o-T = (AT)2   and   P^ = U * ( wf 0 us
K *) 

Elements of the Kennaugh matrix will be denoted in a way used by Perrin [126] and van de Hülst [83], but with 
a slight modification resulting from another alignment (BSA), in comparison with the FSA applied by those 
authors. In effect, the following forms will be obtained for Kennaugh matrices in the polarization phasor 
notation, in the H (horizontal/vertical linear) and K (characteristic) bases: 

K H 

"ai bi b3 b5 

ci a2 b4 b6 

C3 c4 a3 b2 

_C5 c6 c2 a4 

K, 

H 

b, 

-b, 

I),    b3    b5 

h    b4   b6 

-be   -bfi     0    a. 

(7.20a,b) 

Elements of those matrices will be presented in terms of elements of the following Sinclair A matrices in both 
bases (exact relations between AH andyl* matrices can be found, e.g., in [53]): 

*H 
H 

A2 Bl + jB2 

-Bl-jB2 A, 
,jf (7.21a,b) 

CCS 

HeTQ:AiH GC\AICCS and BiCCS e R\ and in the CCS: A2 > Ax >0, B2 > 0, and^ >0 but only if 

B2 = 0 (for unambiguity of the characteristic basis, K). In the H basis, the one digit lower indices of the 
scattering matrix elements are taken after van de Hülst [6]. It has been done for simplifying the notation, but 
also with one essential difference. In the proposal offered by van de Hülst his transformation matrix was 
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designed for the FSA. Here the BSA has beenchosen, which is more convenient for symmetry reasons in the 
case of backscattering. 

Relations between elements of the (20a) and (21a) matrices, in the H or in any other ONP PP basis 
will be presented in terms of the following real valued expressions (also after van de Hülst), for /   k=\ 1 3 
and 4: ' '   '   ' 

S»=Slk=±(AlAk*+AkAl*) 

-Dki=Dik=l(AiAk*-AkAl*) 

(7.22) 

In terms of those expressions, the KH matrix as in (20a) takes the form (compare [6], [1], and [5]): 

±(M2+M,+M4+Mi)   i(A/2-M3+M4-M1)    S32+Sl4    Di2+Dl4 

^(M2+M3-M4-MI)   ±{M2-M,~M4+MX)    S32-Sl4    Dn-D14 

Sn+Sn S42-S13 S34+Sl2    Du+D34 

D\2 ~^34       $34 -,^12 _ 

KH = 

D42+Du D„-n 13 

(7 23) 
Here, however, a caution is advisable: the similar van de Hulst's formula is for the bistatic propagation Pl- 
type, or Mueller matrix obtained for the corresponding Jones matrix. 

In case of symmetrical Kennaugh matrices, its diagonal elements, denoted as in (7 20a) satisfy the 
linear equation J 

(7.24) a, =a2 +a3 +a4 

Elements of the K* matrix (7.20b), determined in the characteristic coordinate system (CCS) 
corresponding to the characteristic ONP PP basis K, will be given directly by the (7.21b) matrix elements: 

with nine different elements: 

a, = \{A\ +A?) + B\ + B2
2 >0,   b3 = B^-A,), 

b4 = BX[A2 + 4), ,2 
'2. a2=j(42 + 4a)-2*f-Ä 

^ = AXA2-B\-B1
2, 

a4 = -Al A2 - B\ - B\ < 0, 

\ = i(4 ~ A?) > 0, 

satisfying the linear equation 
a2 =a,+a3+a4 

b5 = -B2{A2+Al)^0> 

b6 = -B2(A2-Ax)<0. 

b2=0 

(7.25) 

(7.26) 

They are mutually related   by the folloeing equation known as conditions for preservation of   complete 
polarization of the scattered wave: 

a,a2+a3a4 =b] 

a,a3+a2a4 = -b3-b* 

a,a4+a2a3 =-b, -b4 

(7.27a) 
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a*-a* = b*+b*+b4+b* 

a*-a3 =b*+b5
2+b4 (7.27b) 

a2-a2=b2+b2+b2 

b,(a,-a2) = b3b4+b5b6 

0 = b3b5-b4b6 

b1(a1+a3) = b,b4 

b4(a, +a4) = b,b3 

b5(a,+a4) = b,b6 

b6(a,+a3) = b1b5 

An additional remark: The above presented and commonly accepted form of the Kennaugh matrix is not the 
only one possible. Its another version was recommended by Kennaugh himself in his Reports [95]. Istead of 
(7.19), an equivalent procedure can be applied for expressing the received power: 

Pr= Vr®Vr*= (ugAKuT
K)®(u£AKuT

K)* 

= (u* ®u**)ÜÜ*(AK®AK*)U*U( u\ ® ul*) 

*K (7.19') 
_   piR I/-I     o'T 

= arTF*P'% with (T
T
=(A

T
)

2
 and P'£;=Ü( if| 0n£*) 

The unacceptable consequence of such approach are negative values of IS and 2a angles for the positive fourth 
V component of the new Stokes four-vector because, customarily, positive V values correspond to the upper 
part of the Poincare sphere. Of course, the right-handed circular polarization would be obtained for the upper 
pole of the sphere when applying the 'natural' (x,y) basis, what probably was the purpose of the Author. Also, 
in the new (precisely: original) Kennaugh matrix the following elements of it will change their signs: 
bs,b6,b2, c5,c6,c2 (or ^-elements only for symmetrical matrices, because in his reports Kennaugh 
considered symmetrical matrices). 

7. 11. Change of Alignment: from the BSA to FSA 

When applying the reversal transformation to the transmission equation (7.18), the Jones propagation matrix 
A", in the FSA can be immediately determined as dependent on the Sinclair^ matrix: 

K = uiAK4 = *£(C£C£*)^i£ = u*> * A°uT
K (7.28) 

ü*°*      A° 
where 

A°K=C°K*AK      and       C°=C%C°HC« (7.29) 

Also the Mueller matrix, K°, can be found when using procedure similar to that of (7.19): 

Pr= Vr®Vr*= (üp*A°Ku
T

K)®(u£°*A°Ku
T

K)* 

= (u£° *®ug°)UU*(^ ® A° *)UU *{uT
K®uT

K*) (7.30) 
*■ v ' 
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with 

K=Ü*(A0
K®A0

K*)l) = D0
KKK    where     D£=U(Q®C£*)U (7.31) 

In the H basis, 

-1    0 
0     1 and       D£=U(C£®C£*)U = 

So, from (7.20b) we obtain 

K£=D-K„ = 

b, 

-Ci 

H 

-1 (7.32) 

(7.33) 

In any other ONP PP basis B, the spatial reversal transformation matrix in the Stokes parameters space 
becomes 

D°B=Ü{C°B®C°B*)U 

and finally 

10 0 1 

10 0-1 

0 110 
0   -j   j     0 

-w    u 
u     w * 

-w 

u 

u 
w 

H 

110 0 
0    0     1 -j 

0    0     1 j 

1-10 0 

D° - uB - 

1 o 2 0 o 
0      1 - 2u -uf w + w*) \u(w - w*) 

0 -uCw + wV u2 -^(w2 + w*2>       ^(w2-w*2; 

0 jufw-wV       £(w2-W2)       u2 +±(w2 +w*2) 
H 

(7.34) 

(7.35) 

In special cases of B = Hot B = RC (right-circular and co-phased with H, represented by the parallel phasor) 
when u = 0 and w = 1, we obtain the previously presented form 

uHorC 

1 0 0   o" 
0 1 0    0 

0 0 -1    0 

0 0 0     1 

(7.36) 
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Fig. 7.1. Tangent phasor P, its angular coordinates in the ONP polarization basis B, 
and the corresponding rectangular coordinate system  QB UB VB 
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,=«* +«** 

Fig. 7.2. An example of formation of the parallel phasor basis. 
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8. The Poincare Sphere Analysis 

8. 1. Scattering as inversion, rotation, and change of phase 

In the H basis, the expression for the bistatic scattering Sinclair matrix can be presented in the form 

A A "in     "-3H A2    A3 

A 
(8.1) 

where elements of the matrix are numbered according to the notation proposed by van de Hülst [83]. 

The Sinclair matrix can be decomposed into a product of the inversion (dephased and normalized) and rotation 
matrices, and of two scalar factors: the radius k of the Poincare sphere model of the matrix, and the exponential 
absolute phase factor: 

^K 
1H 

Ir rK    * A 1NV eJ{ (8.2) 

where the subscript 'On' means dephased and normalized value of the inversion matrix corresponding to the 
unit radius of the Poincare sphere model of the matrix. The radius of the model before normalization is 

k-rn (8.3) 

It is called also the 'stress' of the matrix, after Krogager [102]. The square of the Poincare sphere diameter 
(before normalization) can be defined as 

a0 = SpanA + 2| det A\ 

and the absolute phase of the matrix is 

1 
£ = — arg det A 

2 

(8.4) 

(8.5) 

Span and determinant of the matrix are both independent of the PP basis. Therefore the name of the basis, 
usually presented by the lower index, has been omitted here. 

General idea of such decomposition for nonsymmetrical scattering matrices has been propesed by 
Kennaugh in [96]. 

The matrix  CP H  means rotation of the PP sphere placing some P phasor to cover with the 

characteristic basis K phasor , the rotation being expressed in the H basis. However, such a matrix describes 
rotation all tangential phasors on the Poincare sphere by an angle 2<j> about an axis along the sphere unit vector 
n. Therefore, also another symbol for that matrix can be used, 

C«OT(n,20)=C?°T=C*M (8.6) 
and the Sinclair scattering matrix can take the form: 

AH=Cr*A^e*, (8.7) 
Inversion always reverses direction of propagation versus the z axis and therefore produces the conjugate 
inverted PP vector. That requires an application of a conjugate rotation matrix which is: 

^•ROT *      nROT * •     ~J\ 

cos ^ + jnx sin <f>   (-«3 + jn2 ) sin $ 

(«3 + jn2) sin (j)    cos ^ - jnx sin ^ 

(8.8) 

H 
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Here <j> is one half of the rotation after inversion angle, and components of the unit n vector of the rotation axis 
are along the QH ,UH, and VH axes. The form of the above expression remains unchanged for anv other ONP 
PP basis B. 

That conjugate rotation matrix can be presented in terms of elements of the Sinclair matrix A (in any 

ONP PP basis). The derivation starts with determination of the dephased matrix Ae~J* and gives the following 
result: 

CROT* = -±={(Ae-^)c*+C*(A*e*)}=- A3e~Jf - A4 * eJ*    -A2e~^ - Ax * e* 

Axe~J4 + A2 * e*    -A4e'
J^ + A3 * e1^ 

(8.9) 

One can easily check that this is really a rotation matrix by just comparing mutual dependence of its elements 
with those defined in (III). Then, the inversion matrix can be found immediately when using the equation (8.7): 

Ar=e-'*CFOTA 

1 
{c*A*+AC*e-2jf}A = -^L ' A2A3* +A4AX *     M3 + Meldet A\ 

-M2-M4-\detA\   -A3A2*-AXA4* 

(8.10) 

And again one can check that this is an inversion matrix because for the inversion I point coordinates inside the 
sphere of diameter ^o"0 are: 

u 

Taking b{ values for / = 1, 2, 3, from expressions (7.20a), (7.22) and (7.23), one can find that 

-U-yV    &-+Q* 

pi] 
-1 

h 1  
V^o h 

iINV 4T = 
■^ + Q    U-yV 

2r„=Jcr„ 

(8.11) 

(8.12) 

is exactly equal to (8.10). 

8. 2. Propagation as Lorentz transformation, rotation, and change of phase 

Similar considerations conducted for the Jones propagation matrix of the form 

with (in any ONP PP B basis): 
A°= C°*A = e^CROT A^OR 

^B ~ ^H 

-1    0 
0     1 

c H 

(8.13) 

(8.14) 

4 LOR _0_ A LOR 

2 h   2 
(8.15) 

lead to the following results: 



2. H. Czyz, ONR-Report-3 (Final Version) April I, 2001 63 

and 

CROT=   l   J^«e-yr) + cx^o*eyrJcx} 

°«-/r A°e + ^ 
0 *^'<0 °„-/f AU -A o  *ajf° 

Ale-'? - A° *ejV    Afe''? + A\ * e J? 

= jC*C°CROT 

A0
LOR=e-j?C'ROT*A° 

1 
(A0*+CxA0Cxe-2j?\A0 

Ml + M°A +| det A\    Al Al * +A° Al * 

Al Al * +AI A° *    Ml + Ml +|det A[ 

= C*A™" 

iV^o-Q   -u+yv 
_-u-yv   iV^"+Q. 

2r0 = v^ 

(8.16) 

(8.17) 

(8.18) 

8. 3. Jones matrix in the horizontal/vertical linear basis 

When changing the alignment from BSA to FSA in the H ONP PP basis, the obtained Jones matrix, 
called also the propagation amplitude matrix, is of the form 

A0  _ rxr,ROT * jINV   J(t-x/2) siH — u.   u H      n.0H a (8.19) 
with 

and with another rotation matrix 

AINV !a0    AINV 

C™r* = CROr*(n',2<?>') (8.20) 

preceded by the orthogonality matrix and followed by the same inversion matrix. 
Simple derivation ofthat dependence can be based on the original definition of the Jones matrix: 

A-H -^H-^H ~^H^   ^   "-H -C   CHC   AH 

= -jC\jC°HC*CK
P,H*)A™e*=C*A™ 

(8.21) 

Above have been determined: the new rotation matrix, and the new absolute phase angle, g = £ - 7tTl; the 

inversion matrix of the newly defined another Sinclair scattering matrix, A™, has not been changed. 

The two Sinclair matrices have different characteristic bases, K and K°, and different angles and axes 
of rotation after inversion: 

cos^' = -n2H sin0; 0<2</>' <2n (8.22) 
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H 
4 \-n\ sin2 (f> 

«3 sin $ 

cos^ 

-«, sin <f> 
(8.23) 

The new rotation matrix differs from the previous one by an additional rotation by 180° about the UH axis. 

8.4. Decomposition of the Sinclair matrix into product of matrices in the characteristic ONP PP basis 

Especially simple formulae for the rotation and inversion matrices of the Sinclair matrix decomposition in the 
characteristic £ basis result from expressions (7.20b), (7.21b), and (7.25), from which one obtains: 

A     -fROT *   AMV   J4. A INV 
OK 

0    AINV 

,      ^OnfC 

with 

£ = £o + M,        £<> = ~arg(^2 A + Bx
2 - B\ + j2BxB2) CCS 

(824) 

(8.25) 

a0 =U2
2 + AX

2
 + 2(B2 + B2

2
) + 2J;(A2A1 + B2 -Bl)2 +4B2

XB$\ 

CROT * _ CROT *fn2d,)= C0S ^ (_w3 + jn2 ) sin <£ 
(th+jn2)s\n<f> cos^ 

CCS 

(8.26) 

'0 L 

25, cos£0 + 2B2 sin£0 -(^2 + Ax)cos^0 +y(^2 _ 4)Sin£0 

(^2 + Ax)cos£0 + j(A2 - AX) sin£0 25, cos£0 + 252 sin£0 ccs 

and 

A
OK   -~F= 

Bx(A2-Al)-jB2(A2+Al) 

-^-^A2-Ax
2) 

2      2     2        x) 

^--(A2-Ax
2) 

2      2     2       1J 

-Bx(A2-Al)-jB2(A2+Ax) 
CCS 

1 b3 + jb5 

_    2        ' 

2        ' 

-b3+jb5 
K 

-J°o 
-U-yV     jV^+Q 

-iV^o" + Q      U-yV 

(8.27, 8.28) 

(8.29, 8.30) 

K; 2r0=Jo~ 

Geometrically, the rule of inversion can be best explained when considering the operation in the equatorial 
plane of linear polarizations (see Fig. 8.1). That rule remains unchanged after any rotation of the ONP basis 
similarly as the form of equation (8.30) or (8.12) does. Fig. 8.2 presents an example of inversion and rotation in" 
the simplest case, of monostatic scattering. 

As seen from the above formulae, the rotation after inversion axis in the CCS is in the 0* =0 plane. 
The rotation axis components are nx =0, and «3 > 0. The rotation after inversion angles are: 

0<2^<180°   for   T4<0,    and       180°<2^<360°   for  \5l
K>0. (8.31) 
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In the Stokes parameter space the corresponding rotation and inversion matrices are: 

°o(a\+ao) 

DPK = 
1 0 

«ofai +ao) 0 

0 

ffi(«i+«o) 

vmv 1 -M«i+a0) 
^K (a,+a0) 

-Ä5(a,+a0) 

bx
2-a2(ax+aQ)        b4(a4-a0) 

-b4 (a4 - a0) -b\ - a3 (a, + a0) 

-Ä6(a3-a0) -£365 

*i(«i+«o) b^(ax+a0) 

~bl -a0(ax+aQ) -*i*3 

-*1*3 ~*3   -ao(al+afo) 

0 0 0 

-*52-a4(ai+a0) 

(8.32) 

-bxb5 

~bA 
~b] -a0(al+a0)_ 

(8.33) 
The amplitude and power expression for the inversion matrix in terms of Kennaugh matrix elements or I point 
coordinates are true for any ONP PP basis, not only for the characterise basis K . Therefore, e.g., for 
coordinates of the inversion point in the linear H basis 

-bxb5 -b}b5 

we obtain 
rsINV 

Q2+U2 + V2+^0 
4 

/^oV 

H; 2r0=^l 

-1 
V 

4ao 

-V^Q 

-Q2 + U2 + V2--^- 

-2QU 

-2QV 

H 

-2QU 

Q2 - U2 + V 

-2UV 

2     &o_ 

4 

-V^oV 

-2QV 

-2UV 

(8.34) 

Q2 + U2_V2-^ 
4 H 
(8.35) 

Having expressions for rotation and inversion matrices in the Stokes parameter space, we can present also in 
that space similar decomposition of the (power) scattering matrix In any ONP PP basis B we obtain: 

KB ~ UKßl^B 
with 

iBXP BKPXK DrK,B=DD
KD^=DB

KD"KD^B 

(8.36) 

(8.37) 

All special polarization points are symmetrically located versus the CCS coordinate planes and axes 
(see Chapter 9 and, e.g., [45], [77]). Of special interest is the eigencircle on the Poincare sphere model of the 
scattering matrix. It is determined by the crossection of the sphere with a plane through the inversion I point 
and perpendicular to the rotation after inversion axis. It contains two eigenpolarizations: one of them, situated 
closer to the inversion point, is repelling, whereas another one is attracting the scattered polarization point. 
Therefore, the eigenpolarization point which is located farther from the I point is polarimetrically more stable 
and also corresponds to a greater scattered intensity. 
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8. 5. Comparison of polarimetric transformations for the two alignments 

Polarimetric signatures for SAR objects can be considered as various dependencies of the received part 
of scattered power on transmit and receive polarizations. Therefore, special polarization points of scattering 
matrices in the two alignments should be examined. 

Change of the alignment has no influence upon the scattered polarization, though components of the 
PP vector in the reversed spatial coordinate system, being always related to that system, are different Also the 
scattered power cannot change with the alignment. This is in agreement with the equality of the inversion 
matrices for the two alignments in the same ONP PP basis. They depend on the coordinates of the same 
inversion point and the scattered power is proportional to the square of the distance between the incoming 
polarization point on the Pomcare sphere and the inversion point inside that sphere. 

However, inhw different characteristic bases, corresponding to two Sinclair matrices for the two 
alignments: A, and A as in (8.21), there are two different inversion matrices (not only the rotation matrices) 
It results m two sets of special polarization points of the two Sinclair matrices which differ in mutual positions 
Moreover, because of the extra orthogonality transformation that follows the Sinclair scattering in the Jones 
propagation transformation, physical interpretation of those polarizations should be changed And so- the CO- 
POL NULLs become eigenpolarizations, as their antipodal points, which therefore do always exist in the FSA 
•^noTI10 Wh3t 1S ^ observed in the BSA)- Afco X-POL NULLs (eigen-polarizations) of the Axo matrix in 
,v™Cr0SS"p0l3ri2Hi versus the incident Polarizations in the FSA And these polarizations, similarly 
as X-POL NULLs in the BSA do not always exist in the FSA 



Z //. Czyz, ONR-Report-3 (Final Version) April I, 2001 67 

AIMVuT -U       1 

-1       U 
nH 

cosyT
H 

smyT
H 

exp{-jeT
H} 

Irn«: v TINV 
T\ cosyH 
n\    ■        TINV expijer } 

TINV 

Fig. 8.1. The inversion transformation on the PP sphere of the unit radius in its 

equatorial plane (for the inversion point on the U« axis, \llH > 0 and 28T
H = 0). 
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Fig. 8.2. Phasor of incident wave transformation 
when monostatic scattering: 

1 - 2 inversion,   2-3   rotation,    3-4   change of phase. 
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9. Poincare Sphere Geometrical Model of the Scattering Matrix 

9. 1. Special incident polarization ratios 

In terms of canonical parameters (7.21b) , some special incident polarizations of the bistatic scattering matrix 
can be found in a simple form. The polarization ratio corresponding to the PP tangent phasor T, presented in 
the K basis, will be denoted by 

pT
K=^r = tmrT

Ke
j2S* (9.1) 

It can be shown (see, e.g., [14] and [45]) that neglecting the phase term fof the PP vectors of incident waves, 
some special polarization ratios for those waves can be expressed by solution of a quadratic equation with three 
complex coefficients Rl,R2, and R3: 

R2p
1-2Rlp-R3=0 (9.2) 

Special polarization ratios will then be presented in the form 

T r       Ri + \ A 
/?£'2=-4  (9.3) 

and the polarization ratios of the orthogonal polarizations by 

TxTx     Rl*+^^Ä* 1 
Pt1   =       g   ,       = —FTT <9-4> R2 * py* * 

with 

A = Rf+R2R3 (9.5) 

Rectangular coordinates of the corresponding polarization points can be found from the equalities (9.6): 

l-pp* 
q = 

l + pp* 

. P*+P 

l + pp* 

■  P*-P 

l + pp* 

(9.6) 

Using the above presented formulae with the coefficients given beneath, the polarization ratios (9.3) can be 
found for the following special incident polarizations Tx and T2 : 

- polarizations M and N, of maximum and minimum scattered   power, with the coefficients 

*. = *(*-4) 
R,=-B,(A1-A,)-jB,(A1+A,) = R1*, 

these polarizations are mutually orthogonal and situated at the end points-of Poincare sphere diameter through 
the inversion point I, 

- 'CO-PLO Nulls', Oi and 02, producing the orthogonally polarized scattered waves, with 
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what results in an especially simple formula 

/?, =0 

RZ=2A,;   R3=-2A2, 

P°S°>=*J. 

(9.8) 

(9.9) 

these polarizations are represented by points on the Poincare sphere which are in the CvW plane 
symmetrically located against the Qr axis in its negative part, 
- 'eigenpolarizations' E, and E2 , with 

R2=Bl(A2+Ai) + jB2(A2-Al) = -R* ■ 
(9.10) 

these polarizations are represented by points symmetrically located against the 0^=0 plane (they exist only 
when A > 0), J 

- 'mutual' polarizations E,' and E2, with 

^^K-AW^MM)^*; (911) 

the points of these polarizations are in the Qr=0 plane (they exist when eigenpolarizations disappear and also 
when A > 0), 

- polarizations K and L, mutually orthogonal, corresponding to maximum and 'saddle' received power when 
using same polarized transmit and receive antennas, with 

R1=A*-Af=JÄ 
R2 = 0 = R3 *, resulting in p\ = 0 and p\ = oo; 

ftefiret polarization ratio, corresponding to the characteristic polarization, can be obtained after resolving the 

Some of these, and other special incident polarizations, can be presented by even simpler formulae when using 
elements of the Karnaugh matrix in its canonical form (in the CCS). Also geometrical model of the scattering 
matrix may be better understood if presented in terms of those elements. Therefore, it is of interest to arrive at 
the canonical forms for both Sinclair and Kennaugh matrices. 

9. 2. Transformation of the Sinclair matrix from linear to the characteristic basis 

The change of basis will be done in two steps. In the first step, polarization only of the basis will be changed by 
the use of the following matrix (as usually, indices of the matrices are related to their elements and, in this case 
to their angular parameters): 

CK' = 
-js 

0 

0 
-\K' 

cos Y   - sin Y 

sin Y     cos Y 

-\K' ,# 0 
-js 

K' 

(9.13) 

S? S!f£ ^f ^Hta K' P°Siti0n Paiaüel' Preserving its phase (Fig. 9.1). After transformation, the matrix (8.1) will take the form 

CK' A   CK' - 
A2    A3 

K' ~A'l 

4 
A; 

(9.14) 
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In the next step the phase only of the basis will be changed using the matrix 

CK 
,-j{S+e) 0 

(9.15) 

to arrive at the final, canonical form (7.21b) of the matrix in its characteristic AT basis: 

"■K ~ ^-K'^K'^K' 

A2 Bl+jB2 

rBl-jB2        A, 
,JP (9.16) 

CCS 

The first step follows the transformation rule proposed in [14], adopted to obtain the result (9.14). The 
characteristic polarization ratio in the AT basis, of the form like (9.3), 

PH =P 
R.-yJRl+R.R,* 

R, 

will be obtained with: 

"\ ~ A1HA1H      AXHAm 

°z -   Am (A3H   +A4H )   A2H   (A3H + A4H) 

The end result of the two steps for R2 * 0 is as follows: 

(9.17) 

(9.18) 

(9.19) 

A'2 = [A2H + (A3H + A4H)p + Awp2]/ (1 + pp*) 
A>3 = \rA2Hp* +AiH - A4Hpp* +A1Hp]/(l + pp*) 

A\ = [A2Hp*2 -(A3H + A4H)p*+AlH]l(1 + pp*) 

// = ^-(arg^,
2 + arg^'1) 

2YH =2arctan \p\ 

2eK
H=±(argA'2-argA\)-2ö* 

A2 — A2CCS =\A 2 Is 

-^1 - A-iccs =M 1 l> 

Bl+jB2={Bl+jBJccs = A\e->lt 

What should be observed here is an ambiguity in determination of the canonical phase n and the rotation angle 
2eH , because it is always possible to add 2n to the argument of A[ or A2 , thus changing the canonical 
phase and the rotation angle by JV. In order to omit such an ambiguity, an additional requirement will be stated: 

B2 > 0,   or    5, > 0 if B2 = 0,    with    A2 > Ax > 0 (9.20) 

The above requirement should be satisfied also for R2 = 0, in which case the whole procedure becomes 
simpler but direct inspection of the change of basis equation of the form 
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A   = CK A rK - *. +JB2 

l-Bl-JBl 
(9.21) 

with the rotation matrix (5.30) is necessary. 
All formulae remain valid also in the case of symmetrical matrices (monostatic scattering) with an evident 

simplification: A[ = 0. 

9. 3. Poincare sphere geometrical model of the bistatic scattering matrix 

mSl arlm^thfT ** ^ T^ *"** l0Cati°n deSCribed in SeCtion C> "*» P"»**» of the model are. diameter of the sphere, as well as axis and angle of rotation after inversion 
The best starting point to the model analysis is the power scattering equation in the characteristic K basis 

KKPT
K=*TPS

K 

corresponding to the amplitude scattering equation 

AKuT
K=ATus

K* 

(9.22) 

(9.23) 

with a real coefficient 

°T=(l>T)   =a1+b1q£+b3u£+b5v£ (9.24) 

presenting scattered power for the unit incident power. 

From the equality (9.24) an essential dependence can be found of the scattered power cr7" on the (IT) the 

ttTm^^yeTi0n ^110 th5,i?dda,t Polarization point T, if the square of diameter of the Poincare 
sphere model of the scattering matrix will be chosen as (see [45]): 

where 

and 

<r0 = SpanA+2\detA\  = 2(a,+a0) 

a0 = \detA\  =Vaf-bJ 

b2=b?+b>+b> '1     '   "3    '   "5 

At first we observe that from (9.26) - (9.27) we obtain 

(9.25) 

(9.26) 

(9.27) 

h 
a, =  \SpanA =  5L°- + Z°. 

4       °o 
(9.28) 

Then, for the coordinates of the I point inside the sphere of the radius equal to Jo~ 12, 

-ii 

K; 2r0=^ 

\ 

(9.29) 

we have the square of the (IT) distance 
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(IT)' 

+ 

0   „T Ql
K 

+ 

-v1 

-U' 

= a 
(9.30) 

according to (9.24). 
This is exactly the result known for the monostatic scattering when the diameter of the sphere is equal to the 

trace A2 + Ax of the scattering matrix in its real diagonal form. However, it should be observed that such a 
trace is also equal to the square root of (9.25). Hence, the same formula (9.30) is applicable in both monostatic 
and bistatic scattering, what was also shown in [45]. 

9. 4. The allowed region for the inversion point inside the Poincare sphere model of the scattering matrix 

There is an allowed region inside the Poincare sphere in which the inversion point I can be located (outside that 
region, elements of the Kennaugh matrix would become complex). The permitted coordinates of that point 
inside the sphere of unit radius, in the CCS, are in the ranges: 

0< V<<^ 

-1<Q<0 

-V-Q-Q2 <U<V-Q-Q2 

-1-L/(Q>+U')(l-Q2)- |U| 

V-Q-Q2 ■u2 

forV>|U| 

forV<|U| 

(9.31) 

One part of that allowed region is inside an upper half (see Fig.9.2) of a 'small sphere' of radius equal to 1/2, 
having its diameter coinciding with the Poincare sphere radius directed along the negative part of the OQjc 
axis. Moreover, there is another part of that allowed region which is above the small sphere but below a 
boundary surface formed by the hyperbolic curves, in Q = const planes, determined by the limiting V values of 
the upper part of the last equality in (9.31) with the I point coordinates as in (9.32), 

K; r„=l 

bi -?, 1 
b, 

°"o 
_b5_ K 

o-o 

{AI-AI)<O ' 
2B1(Al -A2) 

2B2[A2 +A,)>0 

(9.32) 

These curves are tangential to the small sphere in V = |U| points. 

The just mentioned boundary surface corresponds to such Sinclair matrices for which the real part of 
determinant of their canonical form (9.16) with u = 0 is equal to zero: 

R=A2AX+Bi-Bl (9.33) 

There are two branches ofthat boundary surface, corresponding to plus and minus U values. They are crossing 
along a quarter of the Poincare sphere great circle U = 0 (for Q < 0 and V > 0). For I point on the Poincare 
sphere surface the whole determinant of the scattering matrix is zero. 

When Q = 0, the allowed region is on the positive V semiaxis only. When both U and V equal zero, i.e. the 
inversion point is situated on the Qc axis (in its negative part), then the Sinclair matrix is symmetric, 
corresponding to monostatic scattering. 
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9. 5. Reconstruction of the amplitude scattering matrix for given coordinates of the inversion point in the 

Having coordinates Q, U, and V of the inversion point I in the allowed regions inside the Poincare sphere of 
unit radius, in the CCS., it is possible to reconstruct the whole Sinclair scattering matrix of strength k in the 
characteristic K basis. Elements of the matrix will be expressed by the use of some auxiliary parameters: 

S = 2(a1+\R\) = k2Sn; k = (9.34) 

S   =2 

and 

or 

1 + Q2 +U2 + V2 +A/[I-(Q2 +U2 + V2)]   -(2UV/Q)2 

t = \J/Q = b3/b1 

e=-Q/\ =-bl/b5>0 

(9.35) 

(9.36) 

(9.37) 

There are two solutions possible: I and II. Solution I is for the whole allowed region. It depends on the f 
parameter: 

*2,1 

bxS  ±2(b2+b2)        Sn+4Q(l + t2) 

2^b2+b2        2Vl + ?2 

>0 

Ä, 
-*3    bj+bj 

= £2V. 
n+r >o 

(9.38a) 

(9.38b) 

(9.38c) 

Solution II can be obtained only for a part of the allowed region, above the small sphere, i.e. when V > |U| and 
V > -Q -Cr-U\ So, in that part of the region, both solutions exist. Solution II will be expressed in terms of the 
e parameter: 

2(b2+b2)±6,<>          4V(e2+\)±eSn 

^2 1 =       .— , = *— / >0 
2^P Vbi + b5 2^yle2 + 1 

B, 

B2=--L 

b,    b?+b2 

-b<   '     " 

2   e2 +1 

b2+b« 2\e2+\ 
>0 

(9.39a) 

(9.39b) 

(9.39c) 

In terms of canonical elements, solution I is when 

R = A2Al+B2-B2>0     or     S = (A2 + A,)2 + 4B2 >4k2\Q\(l + t2) (9.40a) 



1. H. Czyz, ONR-Report-3 (Final Version) April 1, 2001 75 

and solution II is when 

R = A2A,+B2 -B2<0    or     S = (A2 -Axf + AB2
2 <4k2V(e2 + \)le (9.40b) 

In case of the equality, common solution, I and II, exists. 

9.6. Reconstruction of the canonical Kennaugh matrix from elements of its first row 

The Kennaugh matrix in canonical form depends on four real parameters only, as its Sinclair counterpart does 
when neglecting the phase factor. Therefore, having four elements of its first row it is possible to restore the 
whole matrix. Again, as in the case of reconstruction of the Sinclair matrix from coordinates of the inversion 
point I, two solutions are possible. This is because of the dependence of three first row elements on these 
coordinates: 

V 
<T„ 

Q 
b3 

= y^ o 

2 
u 

W K LVJ 
= -2k' 

K; r„=l 

r-Q-,1 

u 
V 

(9.41) 

K- rn=l 

Introducing magnitude of the real part of determinant of the canonical Sinclair matrix with // = 0 in the form 

|Ä|=|;Mi +Bf -B\\=   a2 --i-(bf +bf)(bf +b5
2) 

W 
(9.42) 

and using equalities (7.27) we obtain: 

ai(bf-bäbf)±b?(b?-bj)Ä|    ai(e*_^)±(1_cV)|/q 
(b2

+b2)(b2
+b2) (l + /2)(e2+l) 

„   -albi±b?IÄI 
bi +b3 

-alt
2±\R\ 

\ + t2 

„      -aib
2+b2|*| 

b, +b« 

-a,+<?2|i?| 

e2+l 

(9.43a) 

(9.43b) 

(9.43c) 

bjb 
ai±|i?| _a,±\R\ 

3 u2 
= t- 

bi+bi \ + r 
(9.43d) 

b6=b1bJ 
ax+|i?| _     a,=F|/?| 

b2+bt e2+l 
b2=0 (9.43e) 

The double signs in the above equalities (9.43) correspond to solutions I and II, respectively. 
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9. 7. Rotation after inversion axis and angle 

76 

Having the CCS coordinates of a P phasor 

q£=cos2/£ = a,a 3a4 ana 0a2 
ao(ai +a0) 

up = s.n2r£cos2<^ = Ma4-aq) 
ao(ai+a0) 

v£ = sin 2rf sin 2ÖP
K = ^(a3~V > 0 

(9.44) 

ao(ai+a0) 

which rotated after inversion takes K position, we can find in terms of elements (96) direction of the rotation 

axis as a ratio of its unit vector components (»2 along the U* axis and n3 along V* , n\ + «2 = 1); 

tan2SP = - * = -bSB. H±O^X^o±[^l) 
«3       a,±|/?|   (2/e) + e(a0±|Ä|) 

h,     fl. — n 
-; «3^o, 

with 
a, -a (9.45) 

»2>0,      0<2^<^   and     2^ = 2r£ for    Br > 0,    i.e.  ,>0 

«2 <0 T<2<*<2,rand   2* = 2*-2y£     for   Ä, <0,   i.e.  r<of {0
~

2YK
 ~ K) 

and the 2<j> angle of rotation about that axis 

cos 2yp
K =cos2^ 

_2al?
2 -e2q/q2+a,anX4/<x0) + 2(l-eV)U?| 

2a0(l + /2)(e2+l) 

_a3a4 -a0a2   =   2b2 -a2<r0 

a0(ai+a0) a0<r 

(9.46) 

aU^dü^ are VCry USefiÜ WhCn 00MidBri,W ^^ cases of the I poi point location at the boundaries of its 

9.8. Special polarization points in terms of canonical Kennaugh matrix elements 

fo£wS^ nummum scattered power correspond to the 
wave: 

LVJ 

-)M,N 

±1 
b„ (9.47) 

Hence, values of those maximum and minimum scattered 

'5J 

powers are 
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a^N =a,±b (9.48) 

Equations (24)-(27) are in their form independent of the polarization basis, but in the K basis there is the 
following worth noticing dependence between polarization points of illuminating (M,N) and the corresponding 
scattered (M', N') waves 

q 
M',N' 

q 
u = -u 
V 

K 
-V 

M,N 

Coordinates of the CO-POL Null points are 

q 
°l-°2 

u = 

V 
K 

-b3/b4 

a, +a. 

Scattered wave polarizations are orthogonal, and scattered powers 

-°^=-a4+b J±±±± 
V    ai+a3 

B?+(B2±4I^~)
2 

Coordinates of eigenpolarizations are 

E,,E2 

_1_ 
+Vb'-b^-b 

"b4 

-b. 

These polarizations can exist only when bf > b 4 + b g . The scattered powers are 

<rE"E'=a2+>*-b^-b* 

When eigenpolarizations do not exist, then mutual polarizations points appear of coordinates 

E;,E; 

b'+b^ 

0 

-b1b4±b6V-b?+b^+b 
-b1b6+b4V-b?+b^+b 

cos2SE[>n> 

sm2SE['E> 

(9.49) 

(9.50) 

(9.51) 

(9.52) 

(9.53) 

(9.54) 

and the corresponding scattered powers are 
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<J 
F' F' 

A2+(Bl+jB2)expU2SEUE'2) 

with 

A2 =Vi(a,+a2) + b1, 

5, +Ä = [b3 +b4 -y(b5 +b6)V(2A2), 

^=(a3-a4)/(24). 

Polarization points of the characteristic basis have components 

(9.55) 

(9.56) 

q 
K,L 

~±1 
u = 0 

V 
K 

0 

corresponding to scattered powers 

a K,L 
■a,±b, 

(9.57) 

(9.58) 

Simple geometrical constructions can be presented indicating special polarization points in the CCS for the 
inversion points given (see [45] and [46]). 

9. 9. Scattering matrix synthesis for special polarizations given 

Such a synthesis can easily be performed in the characteristic coordinate system in which determination of 
special polarization points requires minimum parameters to be specified [55], 

For example, only three parameters are necessary to determine: CO-POL nulls (one parameter), and 
polarization point M of maximum scattered power (two parameters). Choosing these parameters: 
q    < 0,   u   , v    < 0, we arrive at the desired Sinclair and Kennaugh matrices: 

-q°b, 
2qM 

.M 

ir0-q°) 

uM 

L ^+A 

-q 
-/'v 

M 

ir0 + q°) 

and K^ of the form (7.20b) with elements: 

a2=-qMb„ 

.    qMb0 

<-v- -a, 

-q 
o    ~ai 

(9.59) 

-qMq°b (9.60) 

b, = qMb0 

3 

b. 

b, = uMb 
.Mi uMh 

< 
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where 

Mi b5 = vMb0 

:-vMq°b0 

a,= -Zs. 
4 

-He. 
2 

^0 

u 4- "f + 4(l + r2)c- -8rd 
°o 

1+J -2 + 2(c + 0 

r 
_ 1- -q° 
W 

c = </2 +dl 

d = d\-d\ 

dl=u ul + r 
2q 

M 1-^ 
.M 2q" 

t = V/-2 + c2 + 2rt/ 

The same parameters can serve to compute the angle of rotation after inversion and the direction of the rotation 
axis: 

c2-r2+(2c-l-r2)(//2) 
cos 2^ = 

n2     
v M 

tz +(2c + l+r2)(t/2) 
2 

C + /-A- («") 

(9.61) 

«, -u C + / + /" 

Worth noticing is the following dependence for parameters of eigenpolarizations in the CCS if they exist: 

u uM/(qMqu), vMq°/qM. (9.62) 

9.10. Geometrical model of the Jones propagation matrix. 

One of possibilities of the Jones matrix analysis is its presentation as a product of the Lorenz and rotation 
matrices. The Lorenz matrix can be treated as the inversion followed by the orthogonality transformation, i.e. 
inverse transformation to the inversion through the center of the Poincare sphere. Moreover, the Poincare 
sphere can be replaced by Wanielik's ellipsoid ([45], [138]) in order to present magnitudes of scattered powers 
proportional to the distance from one focus of the ellipsoid (coinciding with the center of the auxiliary 
polarization sphere) to its surface. 

However, in order to obtain a geometrical model of the Jones propagation matrix in the form most convenient 
for presentation of special incident polarization points, the reasonable solution is to use an SI type scattering 
matrix defined in the linear H basis as 

A™ - r° r* A 
A4    Ax 

A2    A3 

(9.63) 
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followed by the orthogonality transformation. Then, instead of the known expression for the Jones matrix in the 
//basis: 

(9.64) A" - r° A   - 
-1 

0 

0 

1 
A2 

A* 

A3 

4_ 
one obtains 

A°H=C*A™ = 
"o 

1 0 [t A; 

^3_ 

(9.65) 
Jff 

What has to be observed is a straightforward relationship between the Sinclair matrices in the two above 
equations with the rows simply interchanged. 

Of course, the Poincare sphere models of these two Sinclair matrices differ. Only the sphere diameters 
are equal to each other. For example, the fork angles differ, what can be seen immediately when inspecting the 
corresponding null-polarization ratios: for the AH matrix, 

P 
o,. 

and for the A™ matrix, 

P 
o» _ -{AX+A2)T^{AX +A2)

2 -4A3A4 

2A 

(9.66) 

(9.67) 

The fork angle of the first matrix becomes zero when its two null-polarizations coincide for 

and then, in general. 
(A3+A4)

2=4AA 1^2 

(Al+A2)*4A3Ai 3 "4 

(9.68) 

(9.69) 

what means that the fork angle of the second matrix, with fork's prongs pointing to two different null- 
polarizations, is different from zero. 

A simple example can show how the two models depend on each other. Consider the free space scattering 
matrix of the well known form: 

Then 

AH=C° = 
0 

I    0" 

1 

Axo - AH   - 
' 0 

-1 

f 
0 

= cx 

and the corresponding Jones propagation matrix of the free space becomes an identity: 

A°H = cKr 

what ought to be expected. 

1    0 

0    1 

(9.70) 

(9.71) 

(9.72) 
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Now, an analysis of special polarization points of a propagation matrix becomes very simple, as for the 
corresponding scattering matrix. The structure of the new scattering matrix A™0 in its characteristic K° basis, 

usually different from the K basis of the previous scattering matrix, is exactly the same as of the AK matrix. 
The only difference is in the physical meaning of special polarization points because of an additional 
orthogonality transformation for the propagation matrix. So, null-polarizations of the A ™ matrix become 

eigenpolarizations of the propagation matrix, and vice versa. Therefore, eigenpolarizations always exist in the 
FSA and CO-POL nulls may not appear, contrary to what is being observed in the BSA Only incident 
polarizations for the maximum forward scattering (or transferred) waves remain unchanged, though they take 
different positions in the characteristic coordinate systems (CCSs') corresponding to the K and K° phasors. 
Mutual positions of these two phasors can be found from the equality 

uK
K   = 

JK 

et*   b* 

-b    a 

-jK° 

— L,H    UH (9.73) 

expressed in terms of the Cayley-Klein parameters: 

a = cosy e -j{S+E) 

b = sin y e j(S-e) 
(9.74) 

for halves of the known 2y, 25,2s Euler angles of the two phasors in the H basis. 

The Axo matrices represent classical examples of the bistatic scattering matrices and their geometrical models 

can appear especially useful when considering synthesis of forward scattering matrices for desired polarimetric 
properties. 

9.11. Concluding Remarks 

A PP vector approach to the theory of coherent bistatic radar polarimetry has been based on application of 
matrix calculus in the two-dimensional complex space of polarization and phase vectors. Owing to that 
approach it was possible to obtain simple canonical forms of bistatic scattering matrices and their Poincare 
sphere geometrical models. Such models, demonstrating the way of polarization and phase transformation 
when scattering, may become useful in various practical applications like target recognition and classification, 
or polarimetric analysis of microwave networks. They can also be used to synthesize scattering or propagation 
matrices of desired polarimetric properties. 
Introduction of several new concepts appeared useful in application of matrix calculus. There were concepts of: 

moving helix model of the monochromatic EM plane wave and its spatial phase, 
conjugate PP vectors representing CAs' of waves propagating in ,,-z direction", 
polarization sphere of tangential phasors (representing the PP vectors) as a 2-folded Riemann surface, 
addition and multiplication of phasors, 
the ONP polarization basis defined versus local spatial coordinate system with its 'horizontal' reference 
plane, 
polarization phasor notation presenting the unit column PP vectors and matrices in the ONP bases, 
the 'spatial reversal' as another, after rotation, the change of basis operation, 
the characteristic basis of a bistatic scattering matrix or its CCS, 
decomposition of a bistatic scattering matrix into product of an inversion and rotation matrices, 
3 coordinates of the inversion point and three basis rotation angles as two kinds of parameters specifying 
geometrical models of scattering matrices, 
two scattering and two propagation types of amplitude matrices, 
geometrical models of propagation matrices without employing the Lorentz transformation. 

It is hoped that here presented theory will serve as an extension of the pioneering fundamental work of Huynen 
[85] from mono- to bistatic scattering, following suggestions contained in short communication published by 
Kennaugh [96] whose fundamental concept of the inversion point was an inspiration for this author to further 
developing the Poincare sphere models of scattering matrices. 
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Fig. 9.1. To the two step procedure of obtaining the characteristic K basis: 
//->£'(change of polarization), andAT'->A^ (change of phase). 

Fig. 9.2. The allowed regions for the inversion point I inside the 
Poincare sphere. Shadowed areas are in the crossection of 

those regions by a plane perpendicular to the QK axis. 
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10. Special Polarizations of the Bistatic Scattering Matrix in an Arbitrary ONP PP basis 

10.1. Polarizations M and N of the maximum and minimum scattered powers 

For the scattering equation 

K#Potf - 

bi    b, 5 '  1   " ' 1 " 

6 

2 
= aT qS 

4_ H 
vT 

H vs 

ö-rps (10.1) 

H 

the normalized total scattered power (corresponding to the unit incident total power) is 

aT =ax +blHqT
H +b3HuT

H + b5HvT
H 

Consider the last three terms in (10.2) as the scalar product of two vectors: 

• one with components q H, u H, vH , of the unit magnitude, and 

• another one with components    bXH, b3H, b5H, of the magnitude (compare (E.6g)) 

h = (y[bT+bf+bJ)H = {^cl + c\ + c\ )H 

(10.2) 

(10.3) 

One can see immediately that maximum and minimum scattered powers correspond to the following full, unit 
Stokes four-vectors (with the first total power component equal to unity in case of the completely polarized 
wave), 

3M,N 
OH 

1 \b°] 
qM,N ±1 h 
UM,N ~K h 
VM.N 

H h\ 

(10.4) 

H 

The corresponding (also full, unit) four-vectors of the scattered waves can be found when introducing (10.4) to 
(10.1) as illumination, and making use of second equalities of each set. (E.6g), (E.6a), (E.6f), and (E.6d), for 
the successive components of the resulting four-vector, thus obtaining: 

5M",N" 
QH 

1 I0"} qM',N- ±1 C) 
UM",N" ~h c3 

VM",N" 
H _C5. 

(10.5) 

L~SJH 

Maximum and minimum normalized total scattered powers are then: 

a    = al + b0 = <r 

a   = a.  min 
(10.6) 

The last equality undoubtedly suggest the necessary condition for physical realizability of the Kennaugh matrix 
in (10.1): 

a, >b0 . (10.7) 
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Complex polarization ratios for those four-vectors are: 

M,N _ b3// 
+ ft>5H PH   __U—n— and _M",N" _ C3H + JC5H 

PH 7T— cw ± b0 
(10.8) 

what can be found by applying fundamental formulae (derived in Appendix O) for mutually orthogonal 
polarizations: 

U+ TV 
p = —     and 

1 + q 

x     -1     U+/V 9       ?       ? 
P   =—l = -r^->    for    q    +uZ+vZ=l 

P*     1-q 
(10.9) 

Complex ratios for M and N polarizations can be expressed also in terms of the Sinclair matrix elements when 
applying to (10.8), for instance, some formulae from sets (E.4) and (E.5a-e). However those expressions are not 
such simple. 

10.2. CO-POL nulls, O, and 02 

In this case, it is more convenient to use the Sinclair matrix elements and to solve the quadratic versus p 
transmission equation in any ONP PP basis H of the form: 

i p°-°- 

obtaining the simple end result, 

H 

A2    A3 

A4    Ax H\- 

1 
= 0 

H 

PH 
o„o2 _ ~(Am +A4H) + yj(A3H +A4H)2 ~4AWA2H 

2A 

(10.10) 

(10.11) 
m 

Expressions for unit Stokes vector coordinates of those points are much more complex and will be not presented 
here. They can be found when applying formulae inverted versus (10.9), namely: 

1 
1 + pp* 

1- PP* ' 

p> *+P 

ÄP *-P>\ 

(10.12) 

Also the normalized total scattered powers is much more convenient to present in terms of the Sinclair (or 
Kennaugh) matrix elements in another, characteristic ONP PP basis K, as in (9.51). 

10.3. Eigenpolarizations, E, and E2 and their spatial phases 

Also eigenpolarizations, when expressed in an arbitrary ONP PP basis H, it is much more convenient to find in 
terms of the amplitude scattering matrix. Demanding to obtain identical incident and scattered unit PP vectors 
we have to solve the scattering equation 

A-H
U

H' l{ul^\ 

with X real and nonnegative. Looking at the equation conjugate versus (10.13), 

AH*(uE
H^y=Äu^ 

one can see that an action of the AH * matrix on two sides of equation (10.13) leads to 

AH*AHu^=A*u^. 
Introducing notation 

(10.13) 

(10.14) 

(10.15) 
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and 

^2H - -^2H^2H 

M\H = AXHAm 

W2 = M2H + A4HA3H * 

Wx = Mm + A3HA4H * 

Ri=Wr- W2 

R-2 =2(AlHA3H * +AmA2H*) 

R3 - 2{A2HA4H +A4HAW ) 

A = R2 + R2R3 

we obtain 

and the characteristic equation 

A   A   * — 
W2      R2/2 

R3I2      Wx 

W2-A2     R2/2 

R3I2     Wx-A2 
= A4 - Tr(AHAH*)A2 + detAHAH * 

= A4 - (Wx + W2 )A
2 + WXW2 - ±R2R3 = 0 

with eigenvalues 

A2=UWl+W2) + y[Ä 

and with, applying notation as in (E.4)-(E.6), 

A = (Tr(AHAH*)f -(2\detAH\f 

= (MX +M2 +2S34)
2

H-4[MlM2 +M3M4 -2Ke(A1A2A3 *A4*)]H 

= (al+a2H+a3H + a4H)2 -4(a2 -bo). 

(10.16) 

(10.17) 

(10.18) 

(10.19) 

(10.20) 

The value of A is real, but also should be nonnegative because A2 is real. Therefore, an important conclusion 
follows that the Sinclair matrix AH may have no eigenpolarizations (for negative A values). That fact can best 
be observed on the Poincare sphere model of that matrix (see Appendix J). The necessary and sufficient 
conditions of eigenpolarizations existence are inequalities 

Tr{AHAH*) - 2|det^| > 0 

or, equivalently, 

.ax +a2H +a3H + a4H-2yja2
l -b

2
0 >0. 

From the homogeneous equation, for instanc 

W2-A2 +pR2/2 = 0, 

_i?!+VA 

the complex polarization ratio follows: 

PH 
RI 

(10.21) 

(10.22) 

(10.23) 

(10.24) 

The normalized total scattered powers are, according to (10.19), 
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= j(a, +a2H +am + a4„ *J(&1 +&2H + a3„ +a4//)
2 -4(af -b2)). 

(10.25) 

Also spatial eigenphases, accompanying eigenpolarizations according to the scattering equation (10.13) with 
real A, can be determined for known complex polarization ratios as in (10.24). For that purpose the PP vector 
representing eigenpolarizations with their spatial phases will be presented in the form like in, e.g., (7.7): 

*H 
cos ye 

sxnye 

-j(S+s) 

+KS-E) 
H 

= cosyE
H
l* 

1 lE„E, 

cosy H 

tan ye 
Ei£- 

J2S 
E„E, exp[-j(6+ £)%*} (10.26) 

H 

\,,E\,E1 expC-yV^'^) 
H 

With that column vector the first component of the matrix equation (10.13) reads 

(AH + A,HpE
H^)exp(-jvE^) = ÄE^ exp(+yVj'^) 

where from the following values of eigenphases can be obtained: 

and 

exp(+72 v5"**) = -gL-^ + AWPV* ) 

2e%* = 2v$* -2Sl^; with 26%* = arg^   . 

(10.26a) 

(10.26b) 

10.4. Polarizations Xt and X2, orthogonal to eigenpolarizations, and their spatial phases 

Sometimes polarizations orthogonal to eigenpolarizations can be of interest. Their polarization ratios are 

-1   _#!*±VÄ 
PH

UX
' = 

p%* *        R3 * 
(10.27) 

Their spatial phases can be found from the orthogonality transformation equation 

uxs,x2 =c*(ufjl'Ei)* 
or 

cosy*-1'*2 
x,,x2 

H 

sxpt-AS + e)**-**)-. 
0 -1 

1 0 
cosy rf' 

E„E2 

exp(+j(ö+ £)§*) 
H 

(10.28) 

from which, taking into account that 

cosy?"*' =siny5"*>,        cotyE>*(pE^y = exp(-j26Ef>E>),       8X
H»
X> =-90° +SE>'E> 

it follows from the first component of (10.28) that 
(10.29) 
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exp(-j(SE
H^ -90°))exp(-74'^) = exp(-y(^'^ +**"*')) 

or, finally, 

'H -90° (10.30) 

10.5. Polarizations K and L, characteristic for the scattering matrix, and their spatial phases 

These characteristic for the Sinclair and Kennaugh matrix polarizations and spatial phases have been derived 
in Appendix G. The aim of introduction of such PP vectors, corresponding to the tangential polarization (TP) 
phasors and denoted as K, was to obtain in the ONP PP basis K a very simple form of the bistatic scattering 
matrices, Sinclair and Kennaugh (see (7.21b) and (7.20b). Obtaining of such a form of those matrices was 
necessary to construct their geometrical Poincare sphere models enabling one to easily observe mutual locations 
of all special polarization points (see Appendix J) and to discover the possibility of a special classification of 
bistatic scattering matrices of nondepolarizing ('point') targets (see Appendix I). Such classification is based on 
the inherent features of those matrices, invariant versus the ONP PP bases transformations. 

See also formula (10.41) in the next Section for rectangular coordinates of K and L points, formulae 

(9.17) or (G. 15) for p^, and formulae (9.19) or (G.5) for the double spatial phase argument, 2eH , uniquely 

determining also 2s H = -180° -2s% (compare with (10.30)). 

10.6. Recapitulation of the results obtained 

The considerations just performed indicate the possibility of expressing complex polarization ratios of special 
polarizations through three complex in general parameters, Rx ,R2 ,R^, appearing in a square equation 

R2p
2 -2Rlp-R3=0 (10.31) 

and being functions of the Sinclair matrix elements. With those parameters, complex polarization ratios of pairs 
special polarization points, Tj,T2 , and their orthogonal versions, TjX,T2X , can be presented in any ONP 

PP basis H as follows, 

An     - 
T,,T, 

PH  
2 = 

i?!+VÄ 
R, 

T,.T, 

H 

T,x,T,X 
PH 

Rx *+VA 
i?3* 

T,,T, 

H 

(10.32a) 

where 

A = Rl
2+R2R3. (10.32b) 

Cartesian coordinates of those points in the Stokes parameter space can be found with the aid of formulae 

with 

q 
u 
V 

1 
~ M 

H 

L 

ReN 

ImN 

L = -~R2R2*- KK* 

(10.33) 

M = R2R2*+KK* 

N = 2R,*K 

(10.34) 

and 
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KK* = RXRX * +|Aff2Re(/?! * VÄ) 

|A|= J\Rl\
4+\R2R3\

2+2Re[(R1*)2R2R3]. 

The following parameters determine special polarization points, 

R, = \{A2A2 * -A3A3 * +A4A4 *-AXAX*) = b, 

R2=-(A1A4*+A3A2*) = R,* = -b3+jb5, 
•   M and N=Mx: 

•   Oi and 02: *i -A3    A4 

R2=2Al, R3=-2A2, 

(10.35) 

(10.36) 

(10.37) 

•   Ei and E2 

Rx =AXAX *-A2A2 *+A3A4 * -A4A3 * 

R2=2(AlA3*+A3A2*) 

R3=2(A2A4*+A4Al*),    A>0 
(10.38) 

/?, = A2A2 *-AlA1 *+A3A4 *-A4A3 * 

•   X,=E1xandX2 = E2x:     R2 = -2(AXA4 * +A4A2 *) 

R3 =-2(A2A3* +A3AX *),    A>0 

(10.39) 

KandL=Kx: 
R2=-Al(A3*+A4*)-A2*(A3+A4) = R3*. 

(10.40) 

It should be remembered that in case of polarizations M and N, it is not advisable to use formulae 
(10.36). Instead, simpler formula (10.4) is more convenient. 

Simple formulae determine also rectangular coordinate of points K and L in terms of parameters 
(10.40): 

in 

±1 
VÄ 

*1 

-ReR2 

Im/?, 
(10.41) 

with A as in (10.32b). 
H 

It is worth noticing that the polarization ratios p^can also be obtained by solving the problem of 
eigenvector/eigenvalue for the Graves matrix [79] of the form 

GH=i(AH *+AH*)(AH+AH) = ±(AH *AH+AH *AH+AH *AH + AH *AH)   (10.42) 

Solving separately eigenproblems of the four above presented products of matrices one obtains in succession the 

polarization ratios: pE^E\ p„"'N", p%>N, pfi»*1. 
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11. Constant Received Power Curves on the Poincare Sphere 

In the English language literature there is a lack of publications treating that very useful 'geometrical' 
presentation of scattering. Basic concepts can be found in technical reports of Kennaugh [95] (1952), in 
Russian book on 'Polarization of Radar Signals', chapter 9, written by D.B. Kanareykin [94] (1966), and also 
in the Polish paper presented by this author [41] (1970). But still attempts can be met of researchers trying to 
find the most convenient ways to draw on the Poincare sphere the curves of constant co-polarized received 
power scattered backwards from nondepolarizing targets (see for example J. Yang [142] (1999)). It is believed 
that formulae presented beneath will be of some help also for those intending to solve similar problems for 
partially polarized returns. 

Application of the here presented formulae is envisaged, e. g., for estimating ranges of the allowed 
deviation of elliptical polarization, in monostatic radars, from its optimum values designed for efficient 
cancelling the rain clutter (compare Z. H. Czyz [39] (1967)). 

11.1. The CO-POL channel (the case of completely polarized scattering) 

To analyze the equipower curves on the Poincare sphere it is advisable, without loss of generality, to transform 
(rotate) the coordinate system of three Stokes parameters to the characteristic coordinate system (CCS) of the 
Kennaugh matrix under consideration. The CCS corresponds to a characteristic orthonormal polarization basis 
K in which the Sinclair matrix has the most simple diagonal form, 

A2     0 

0     Ax 

,iv A2>AX (11.1) 
CCS 

with real positive A2,AX, and n . The corresponding Kennaugh matrix is also very simple, and the resulting 
equation for the received power in the CO-POL channel is 

with 

JD
c(q,u,v) = -[l    q    u    v]^ 

tfi = 
Al+Al 

ax *i 0 0 1 

\ ai 0 0 q 
0 0 a3 0 u 

0 0 0 -a3 K V 

= |{a1(l + q2) + 2Z>1q+a3(u2-V
2)}j 

*i 

A2    Ax 
a3 - A2AX; 

(11.2) 

a, b\ (11.3) 

and 

q2+u2+v2 =1 (114) 

The last equation determines the Poincare sphere of unit radius in the CCS, while the Pc (q, u, v) = const. 
expresses a more complex surface of rotational symmetry. Its axial crossection presents the Cassini oval with 
focuses at the CO-POL Null points. For Pc = 0 it reduces to two points, its focuses. For the double CO-POL Null 
and non vanishing Pc> the surface becomes just a sphere. This is in agreement with the Kennaugh's 
'geometrical' formula for the CO-POL received power and can be explained as follows. 

Let us introduce the geometrical model of the Kennaugh symmetrical matrix, in the CCS, which has 
the form of the Poincare sphere 

x2 +y2 +z2 =r2; 
with the radius 

x = rq> y = ru> z = rv 

A2+Ax 

(11.5) 

(116) 
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and the x,y,z coordinates of the CO-POL Null points: Oi 2 (~e, 0,   + d), where 

90 

d = JÄ^,    e = A_A;     d*+e2=r2. 
2      > -      ■ (11.7) 

For transmit/receive polarization corresponding to a point P(x, y, z) on the model's sphere, the received power 
can be expressed by the equation 

^(P) = ^(x,y,z) = ^ja1(/-2 +x2) + 2Vx + a3(y2 -z2)} 

\{r2 + e2)(r2 +x2) + 4er2x + d2(y2 - z2)} 

2r' 
\   ,. . , . . (11.8a,b) 

~2 

In such a model the x,y,z coordinates of the CO-POL Max and CO-POL Saddle points are M(l, 0, 0) and 

N(-l, 0, 0), respectively, the x,y,z coordinates of the X-POL Max points are C{ 2 (0, 0, ± r), and the 

x,y,z coordinates of the X-POL Saddle points are D, 2 (0,  + r, 0). 

There is also another very important point inside the model, the so called inversion point, I, of x,y,z 
coordinates l(-e, 0, 0) . For any incident polarization represented by a P point on the model's surface the 
received power in the matched-pol channel is equal to the total scattered power, i.e., to the square of the (IP) 
distance: 

^=(IP)2 (11,9) 

For instance, 

^max=(IM)2 =A2, (11.10) 
and 

^saddle = (IN)2 = Al   ■ (11.11) 

The I point enables one to find immediately the scattered polarization point S. That can be done by inversion of 
the P point, through the I point, back to the model's surface, and by rotation of the inverted point, with the 
sphere, by 180 about the z axis. The Pc power can then be determined when multiplying the scattered power by 
the square of cosine of half an angle between the transmit/receive antenna polarization point P and the scattered 
polarization point S (see also formula (4.15) and the Appendix C): 

cp 
Pc(P) = (lPfcos2~. (11.12) 

Kennaugh has shown (see also Appendix D) that 

P,m-(QiP)2x(02P)2 

C(P)~ &f • (1U3) 

For any point P in the CCS, not necessarily on the model's surface, the Pc (?) = const, equation determines 
the rotational surface with an axial crossection of the form of the earlier mentioned Cassini oval, with focuses at 
Oi 2 points. The exact equation of that surface in the pz cylindrical coordinate system is 

[p2
+z2]2

+2d2[P
2-z*] = c4-d< 

p2 =(x + ef +y2 
(11.14) 

with a constant 
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c4=(01P)2x(02P)2=4A-2JPc(P) (11.15) 

Crossections of those surfaces with the Poincare sphere determine the curves of constant received power. 
Simple formulae present projections of those curves onto the coordinate planes xy and xz. Projection onto the yz 
plane gives more complex curve and will be not presented here. 

The xy plane 

For z   —r 
power curves onto the xy plane 

For z2 - r2 - x2 - y2, we obtain the following equation of ellipses as projections of constant CO-POL 

2    2       c 

r2(e + x)2 +d2y2 = (11.16) 

Their semi-axes, a and b, can be found as follows 

\2 
4r2(e + xf    4d2y2   _  1  _   (e + xf ^ y2 

?        +    -4 
c 

2 2 
C U       c 

a = —,   b- — 
2d 2r 

=  1 = 

a>b. 

b2    ~+a2 
(11.17) 

The xz plane 

Similarly, taking y2 = r2 - X2 - z2 , we obtain a set of hyperbolae as projections of the constant CO-POL 

power curves onto the xz plane: 

(ex+r2) -d2ir = — (11.18) 

Parameters a and b of those hyperbolae can be found similarly: 

4e' (      ''I X + — 
V       e) 4d2z 2_2 

f 2\2 
r 

x + — 
V       e) 

c4 c4 a2 

c2 

2e 2d 

2 hyperbolae are 

z = ±-(x + —) 
d         e 

■2 ' (11.19) 

(11.19a) 

It is worth noticing that those asymptotes are tangent to the great circle of the polarization sphere at 
the points Oi and Q>. They are crossing on the x axis at a point V of coordinate x = - (r2 le). It means that I 
and T points are 'mutual reflections' in the sphere surface. 

11. 2. Computational formulae in terms of the relative power level (the completely polarized scattering 
case) 

The parameter of constant level of the received signal versus \PC )      = A2 can be computed 

from the formulae 
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L = Pc[db] = 101og w. = 201og-^->0, 

where 

c2 = (42 + A, )JPC,      c
2
ax =2r(r + e) = (A2 + A{)A2 

Hyperbolae and ellipses for given L are the following functions of x: 

(11.20) 

(11.21) 

with 
c 

4 

r(r + e) 

llog-1(LI20)J 

Ellipses can be presented also in cylindrical coordinates by the formula 

c2 

P = 
iji r2 -e2 sin2 <p 

(11.22) 

(11.23) 

(11.24) 

where the <p angle is being taken from the xz plane. 

11.3. The case of CO-POL returns from a partially depolarizing backscatterer 

Considerations of this Section show how the partial polarization arises when incoherent superposition of 
scatterings from non-depolarizing targets. An example has been presented of the most simple case of the 
partially depolarizing scattering matrix which can be decomposed into a sum of two only nondepolarizing 
matrices (usually the sum of three non-depolarizing matrices is needed to present the partially polarized 
backscattering). Such example represents a simplified model of the rain scatterer consisting of vertically 
oriented spheroidal drops of different oblatenesses depending on their sizes. It may be used for estimating 
('underestimating') the depolarization of a wave illuminating the rain cloud. (To represent another limiting 
case, of 'overestimation' of the phenomenon of depolarization, can serve the cloud of raindrops oriented 
stochastically.) 

In the case of such a simple partially depolarizing backscatterer, its Kennaugh scattering matrix in the 
CCS has the form 

(11.25) 

the elements of which are governed by the inequality relation 

A2>B2+C2, (11.26) 

indicating that the condition of retaining complete polarization may not be fulfilled (only the equality 
corresponds to the previously analyzed nondepolarizing scattering). Geometrical model for such a scattering 
matrix has been presented in Fig. 11.1, showing its crossection by the plane y = 0. It can be considered as an 
'incoherent sum' of two models in the same CCS and of the same diameter, 

A B 0 0 

B A 0 0 
K ~ 0 0 c 0 

0 0 0 -c 

2r = VA + C, (11.27) 
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but of two different inversion points, I(1) and I(2), and the corresponding two pairs of the CO-POL Null points, 

O j 2 and 0 j 2 • These models correspond to two nondepolarizing (Sinclair) matrices in the CCS, 

A(0     - 
^ccs - 

'4°       0 
,  ' = 1,2 

CCS 0     A?\ 

creating the above defined Kennaugh matrix: 

KK = fj(A<»s ® 4&*)U + 0(4^ ® Ajgs*)U 

Elements of those Sinclair matrices in terms of elements ofthat Kennaugh matrix can be found to be 

A™=    ,l       (A-B + C-VA2-(B2+C2)) 
2VA + C 

4(2) =     /       (A-B + C + VA2-(B2+C2)) 
2VA + C 

4l)=   ,l     (A + B + C + VA2-(B2+C2)) 
2VA + C 

4(2)=     -1       (A + B + C-VA2-(B2+C2)) 
2VA + C 

Introducing parameters 

and 

c\ = (0[l)?)2 x (0<1}P)2 - (2r)2 Pc
w = (A + C)PC

(1) 

4 = (0[2)P)2 x (Of P)2 = (2r)2 P™ = (A + C)i>c
(2) 

c4=l(Cl
4
+c2

4) 

we obtain the following formula for the total co-polarization received power: 

Pe=i[l    q    u   v]T
KKx 

(11.28) 

(11.29) 

(11.30) 

(11.31) 

(11.32) 

(11.33) 

= />(I)+/>(2) = 
2c 2cA 

(2r)2     A+C 

Having constant   Pj   and P^   power curves as crossections, with the sphere   X   + y   + z 
elliptical cylinders 

and 

r\el+xf+d2y2=^- 

r2(e2+x)2+d2y2=^- 
4 

r\ of 

(11.34) 

(11.35) 
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or hyperbolical cylinders 

(e,x + r2)   -d2z2 =^j- (11.36) 

and 
4 

(e2x + r2)2-</2z2=^- (H.37) 

we can find the corresponding curves for the constant total power, Pc. Denoting (see Fig. 11.1): 

f2=i(e?+e}):   A~C 

e = ±(e1+e2). 

4 
B (1138) 

2VA + C 

w - el -e2 = 
'A2-(B2 +C2) 

A + C 
and performing addition of expressions for the corresponding cylinders, we arrive at similar cuves for the total 
received power. They are also ellipses: 

4       22 c   -r w 
^(x + eY+d'y2^ >0 (11.39) 

or hyperbolae 

( „       \2 r4 4    2 2   2     c       rw* 

V f      ) 4       4/2 (11.40) 

though slightly modified. In terms of the Kennaugh matrix elements they are ■ 
ellipses: 

and hyperbolae 

(A + CXx-f-^)2 +2Cy2 =c4 - A2
 -(B2 +C2) 

2VA + C 4 

rA    Ofa , B^A + C,2    7P2      4    A2-(B2+C2)    A + C 
(A~C)(x + ~^Q)     C   =c 4 xX^c~      (1L42) 

The above equations yield 

cLx=r2[w2+4(r + e)2] = ±(A + B)(A + C), 

cL=r2«>2=i[A2-(B2
+C2)] (1L43) 

We observe that the minimum received power is non vanishing now, corresponding to 

_2c;in_>,2^A2-(B2 + C2) 

(2r)2      2 2(A + C) 
/%.„;„= - = = -■       fm-Y = -*>     \r — O     ,n^   v2 = r2      o2 

;     forx = -e,  y = 0   andz^=r   - e,   (11.44) 

and the maximum received power is 

2c*        M>
2 

P, cmax 
max 

>2 (2r)2      2 
+ (<? + r)2 =A + B;   forx = /-   and  y = z = 0. (11.45) 
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Expressing the equation for projection of the curve of constant received power onto the xy plane of the CCS in 
the form of an ellipse 

(x + e)       Y2 

^ -J- + l- = \ (11.46) 
b2 a2 

we arrive at its great and small semiaxes: ^  

a=  \c4-r2w2 _  /4c4-A2+(B2+C^) 

4d2 V 8C 
(11.47) 

h=  UA-r2™2 _   4c4-A2+(B2+C2) 
I     V If 4(A + C) 

and their ratio 

a    r      /(A + C) 
(11.48) 

b    d    )/    2C 
Similar dependencies for hyperbolae are: 

(X + V)2      z2 
 1 _=1, (11.49) 

4f2d2 4/4 b     d 
Here the upper signs correspond to the hyperbolae above the asymptotes 

/ r2 

z = ±Mx + e—) (11.51) 
dV        f} 

9 9 9 
(for their positive z values) which always cross the X + z = r great circle. They become tangent to it for w 
= 0 what means the case of nondepolarizing scattering considered earlier. Those asymptotes correspond to the 
parameter 

= rV=A'-(B'+C»)xA±C 
asympt - 2 4 A - C 

It is interesting to observe that 

c4. \ w ) A2-(B2+C2) mm v (11.53) 
4 2 c r _      max     y  

~ c4 f2' asympt       J 

11. 4. Computational formulae in terms of the relative power level for partially polarized backscattered 
returns 

Curves of the constant received power can be computed also in terms of the power level using formulae similar 
to (11.22): 

J(L,X) = ±-
L
-^    (ellipses) 

d 
(11.22') 
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4     2 4 

,,    ,     ,_V / 4/2       4 
z{L,x) -± -     (hyperbolae), 

with 
,2r„2 c* _r*[wz +4(r + e)2] 

4 4 log"1 (Z/10) 
;   Z = Pc[d&]=101og w. 

101og-Sf->0.       (11.23') 

See Fig. 11.1 for a numerical example of the asymptotes of hyperbolae of the constant received power level 
curves projected onto the zx CCS coordinate plane. 

11. 5. The received power in the X-POL channel (the completely polarized backscattering case) 

The Px =C, or constant X-POL power curves on the Poincare sphere model of the symmetrical Sinclair 
matrix, can be found when applying a similar procedure. 

Starting from the expression for the X-POL received power: 

ax    bx     0      0 

i,    a,     0      0 
ii     -4     -u     -vi 

2L J  0     0    a3      0 

0     0     0    -a3 

Px(q,u,v) = -[l   -q    -u   -v] ^{«i(l-q2)-«3(u2-v2)} 

21       2 -(l-q^-^^-v^Jaj^+^Xl-q^)-^^-^)} 
or 

Px^Y,z) = ^j{-(r2 +ey -d2(y2 -z2) + .V +e2)j;    d 

(1154) 

2 2 2 -/•   -e ,      (11.55) 

one   obtains   the   equation   of   hyperboloids,    with   parameter   Px       changing    from    0    to    r2 

(for  x2 +y2+z2<r2),i. 

one-sheeted hyperboloids of the form: 

4+£-^=i 
a2     b2     b2 

for 2PX< r2 +e2 
(11.56a) 

or two-sheeted hyperboloids of the form: 

with parameters 
a2     b2     b2 

a = r. 
\r2+e2-2Px\ 

r2+e2 

for 2PX> r2+e2 

and    b = r. 
\r2+e2 -2PX\ 

2 2 
r   -e 

(11.56b) 

(11.57) 

where a/b < 1, and with Oz being always the axis of symmetry. 

The following projections of lines of crossections of those hyperboloids with the Poincare sphere onto 
the coordinate planes may be of interest. 
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The xz plane. Substituting y   =r   -x   - z2 in the above formulae we obtain hyperbolae in the xz plane, 

e2x2-d2z2=r2{e2-Px). (11.58) 

The xv plane.    Substituting    z   =r   - x   - y  , we obtain ellipses in the xy plane, 

r2x2+d2y2 =r2(r2-Pxy (11.59) 

The vz plane. Similarly, substituting   x   -r   -y   -z , we obtain other ellipses, in the yz plane, 

e2y2 + r2z2 = r2Px . (11.60) 

11. 6. The curves of equal CO-POL and X-POL received powers 

Starting from the above derived formulae: 

1 
Pc(x,y,z) = -^-Ur2 + e2)x2 + 4er2x + d2(y2 -z2} + r2(r2 +e2)\        (11. 8b) 

2r 

and comparing both expressions 

=> 

Px(x,y,z) = ^J[-(r2 +e2)x2 -d2(y2 -z2) + r2(r2 + e2)] (11.55) 

Pc(x,y,z) = Px(x,y,z)^> 

[r2 +e2)x2 +4er2x + d2(y2 -z2) + r2(r2 + e2) = -(r2 +e2)x2 -d2(y2 - z2) + r2(r2 +e2) 

we obtain the desired equation for those curves, 

(r2 + e2\x2 + 2er2x + d2(y2 -z2) = 0 (11.61) 

which depends on two parameters: r and e (c? - r2 - e2), and is independent of the received power level. It may 
2 2 2 2 be interesting to find projections of those curves, for r   =x   +y   +z ,   onto the coordinate planes xy, yz 

and xz, as presented beneath. 

2 2 2 2 The yz plane. For x   = r   — y   —z,   we obtain 

{r2 +e2)(r2 -y2 -z^ + ler2^2^2^2 +d2(y2 -z2) = 0 (11.62) 

or 
.2       ..2 2 r   -y   -z   - 

—L- \{{r2 +e2)(r2 -(y2 +z
2))j2 + {d2(y2 - z2)}2 + 2d2(r2 +e2)(r2 -(y2 +z

2j)(y2-z2) 
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M (r2 +e2f(r4 + y4 + z4 +2yV -2r2y2 - 2r2z2)+ </4y4 + </V - 2c/4y2z2 + 

+2r2d2(r2 + e2)y2 -2rV2(r2 + ,2)z2 -2</2(,2 + e2)y4 + 2c/2(r2 + e2)z4}, 

and finally, 

M (r2 +e2f -2d2(r2 +e2) + </4ly4 + Ur
2 + e2f + 2d2(r2 +e2) + d z4 + 

+2^2
+e2)2-^4ly2z2 + 

+2r2{(r2 +e2)[d2 -(r2 +e2)] + 2,V}y2-2,2{(,-2 + e2)[d2 +(,2 + e2)]-2e2r2}z2 + rV4} = 0 

or 

4(e2y2 +r2z2)2 -4r2(e4y2 +r4z2) + r4d4 =0. (11.63) 

,2 -.2 _^2 _    „2 The xy plane. For z   =r   -x   - y  , we obtain the equation of an ellipse 

with 

(X-XQ) y2 

a2 £2 

xn =—-,      a = - 
V r2+</2 r4r2 +d2 

.2  _^2    ,   „2 *        r 

(11.64) 

(11.65) 

It is worth noticing that for e = 0 (d = r), and x = 0, we obtain   x0 = 0, and a = b 
ri 

For d - 0 (e - r), and x = 0, we have a - ~x0 = — (compare same results for the xz plane). 

,2 _„2 2 2 The xz plane. For   y   -r   - xz - zz, we obtain hyperbolae: 

T(x-*Q)   +z^ 

a2       ~c2 

with upper signs for d>e, lower signs for rf < e, and with 

(11.66) 

2e 2e 

r4\d2~e2\              rj\d2-e2\ 2 ,       c     e 
 >      c = — ;       r   = d2+e2,     - = -.       (n.67) 
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x0 r r 
It is worth noticing that for e —> 0, d —> r , > -1 and c —> — the result is z —> ± —==, for 

a 2 V2 
any |x|< r denoting the crossection of the sphere with two parallel (asymptotic) plates. 

r 
For d = 0 (e = r), and x = 0, we have a = -x0 = — and  z = 0; in that case the resulting curve is 

the great circle in the x = 0 plane. 

The above presented results can be explained most simply when analyzing the geometrical model of 
the scattering matrix and the 'geometrical' formulae for the received power: 

cp cpx 
Pc(P) = (IP)2COS2—       and      Px(P) = (IP)2cos2^- (11.68) 

Here P means the polarization point of the receiving antenna, antipodal to P. One can immediately see that 
the  obtained  curves  of equal  CO-POL  and  X-POL  received power  correspond  to  equal   anglular 

distances, SP = SP , for scattered polarization points S, obtained for incident polarization point P after 
inversion and rotation of the polarization sphere. 

11. 7. The case of the bistatic scattering 

The problem has been solved for symmetrical Sinclair and Kennaugh matrices. In cases of bistatic scattering 
we deal with nonsymmetrical matrices. In that case the Sinclair matrix in its characteristic ONP PP basis can be 
considered as a sum of the diagonal real matrix and the matrix of the orthogonality transformation, both 
multiplied by a phase factor. Therefore, when using the same transmit/receive antenna, the problem remains 
exactly the same like for the symmetrical matrices. That is evident because the antenna will not receive the 
orthogonally polarized component of the scattered wave. So, what should be done, it is to take as the Sinclair 
scattering matrix its symmetrical part only. However, when considering the bistatically scattered wave received 
in the cross-polarized channel, one should apply a modified procedure. Again, only the symmetrical part can be 
taken into account but of a different Kennaugh matrix, after the orthogonality transformation. According to the 
known rule, the received power in the cross-polarized channel can be expressed as beneath: 

Pr=P*KP = PxDxDxKP = PKxP (11.69) 

That leads to another characteristic ONP PP basis, for the K x matrix, and to consideration of the 'co-polarized' 
reception. In that case, however, formulae obtained for the curves of equal CO-POL and X-POL received 
powers cannot be applied directly because of dealing with two different scattering matrices. 
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0.81 
nA-nvP _ 

-17.6 db (min.) 

0(
2
1} 

Odb(max) 

100 

QA-=X 

Fig. 11.1 Geometrical model of the scattering matrix with the curves of constant received power levels for a 
partially depolanag target determined by three parameters. A numerical example for the input data- 

r = 1,    £,=0.7,    e2=0.3. 

The secondary parameters: e = \_ (e, + <?, ) = 0.5, w = el-e2= 0.4, / 2 = 1 (<?2 + e2) = 0.29, 

di=Tlr2-e*=JÖ5\,   d2 = Jr2 - e\ = VÖ9l",   </2 =l(^2 + </2) = 0.71;   /2 W2 = r2. 

Jos and KK matrix elements:   ^(1) =r-cl= 0.3,   ^2
(1) = /• + el = 1.7,   42) =r-e   = 0.7, 

^2)=r + e2=1.3;   A = (2/-)2-2</2=2.58,  B = 4re=2,  C = 2rf2 = 1.42;    VÄ+C=2r. 

P A2-(B2+C2) 
R„;„ = i = 0.08 (Z - 17.58 db, for x = -e = -0.5), ^min 

2(A+C) 

^max = A + B = 4.58 (1 = 0 db, for x = 1) ;   tm2aODt = V^T 
opt 

A+C-B . 
 = tan 60 
A + C + B 

-asympt       —    , 
= ±4(X + ejr) = ±0-639(* +1-72), Las}Vipt = ^™ x/l = 12;20db -'asympt       p ■ ■     2 

Exemplary hyperbolae for: I = 5.493 db (z = 0 for x = -0.4 and z = 0.706 for x = 0) , 

L = 2.845 db O = 0 for x = +0.18 and z = 0.852 for x = 0.6) 
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12. The Basis-Invariant Decompositions of the Sinclair Matrix 

12. 1. Preliminary considerations on 'elementary' models of the Sinclair matrices 

Before approaching the ONP PP basis-rotation-invariant decomposition, or simply 'basis-invariant' 
decomposition of the Sinclair bistatic scattering matrix, it is instructive to present at first the Kennaugh and 
Sinclair matrices and their geometrical models corresponding to separate Huynen parameters of the symmetric 
Kennaugh matrix of the form 

3l bi b3 b5^ ~A0 + BQ C H F 

b, a2 b4 b6 C A0+B E G 
H ~ 

b3 b4 
a3 b2 H E A0-B D 

J>5 b6 b2 a4 H 
F G D -A0+B0 

(12.1) 

H 

The dependence of the Sinclair matrix elements on those of the Kennaugh matrix for monostatic scattering 
(compare with (E.8) for the bistatic scattering case) is: 

2A2H =72(a1+a2+2b1)7 ,H =J2(2A0+B0+B + 2C) 

A3H=A4H=[b3+b4-i(b5+b6)]H/(2A2H) = [H + E~j(F + G)]/(2A2H) 

Am=[a3 -a4 -J2b2]i/1(2A2H) =(2A0 -B0 -B- j2D)l(2A2H) 

(12.2) 

For further purposes it is convenient to assume the phase of the first element equal to (j) + ^0 with 

<f>0=arg(2A0+C + jD). (12.3) 

The phase <f> may be chosen arbitrarily. The fo argument indicates the phase difference between the two, (12.4) 
and (12.5), beneath shown amplitude representations of the Kennaugh matrix (12.1). 

So, the Sinclair matrix just obtained is 

lH 
2A0+B0+B + 2C     H + E-j(F + G) 

y/2(2A0 +B0 +B + 2C) I H + E-j(F + G)    2A0-B0-B-j2DJH 

Its equivalent is 
,J* 

1H 
ZJA* 

2A0+C + jD        H-jG 

H-jG        2A0-C-jD 

(12.4) 

(12.5) 
JH 

The last form can be obtained when applying to (12.4) the following selected conditions, (12.a), (12.g), and 
(12h) for preservation of the complete polarization expressed in terms of the Huynen parameters and selected 
from their complete set (see also[85] or (E. 14a) and (14.d)): 

C2 +D2 =2A0(B0+B) 

H2 +G2 =2A0(B0-B) 

F2 +E2 =B%-B2 

C(B0 - B) = EH + FG 

D(B0 - B) = -EG + FH 

(12.6a) 

(12.6b) 

(12.6c) 

(12.6d) 

(12.6e) 
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C(B0 - B) = EH + FG (12.6d) 

D(B0 - B) = -EG + FH (12.6e) 

H(B0 + B) = CE + DF (12.6f) 

2A0E = CH-DG (12.6g) 

2A0F = CG + DH (12.6h) 

G(BQ + B) = CF - DE (12.6i) 

The Sinclair matrices in the right-circular basis will be also considered. The Euler i tngles chosen for that basis: 

2SR
H=2yR

H=-2eR
H=7tl2 

yield the column PP vector 
(12.7) 

uR = 

and the change-of-basis matrix 
_ smyR e'rt-ft _ 

1 Y 

H 

(12.8) 

rR    \„R    ,.Rx]      * "1 / 

J 1_ H 

(12.9) 

The resulting transformation of (12.5) to the R basis gives: 

A   -rR A  rR - es+ G + C + j(H + D) 

G- C + AH -D) 
R 

(12.10) *Ä" 
or, the use of another Huynen' s condition (12.6b), yields 

- e/arg[G+C+/(//+D)] 

-F eJ arg[G-C+/( (12.11) *R=e" 
y/Bo+f 

H-D)] 
R 

Similar transformation of the (12.4) matrix gives: 

AD = 
p(2A0+B0+B + 2C) 

F + G + B0+B + C + j(H + E + D) 

D + j(2A0+C) 
-D + j(2A0+C) 

F + G-B0-B-C + j(H + E-D) 

(12.12) 

The submitted Table 12.1. presents Sinclair and Kennaugh matrices in the horizontal linear H basis and the 
Sinclair matrices in the right-circular R basis (always with <j> = 0). The individual targets correspond to separate 
Huynen's parameters (named in the first column) and values of the remaining non-zero parameters are listed 
(second column). The Sinclair matrices have been obtained by direct use of forms (12.5) or (12.4) and of 
(12.13) or (12.10). Poincare sphere models of matrices are presented in the H basis. They show the CO-POL 
Null and inversion points, always for the sphere of unit radius. Coordinates of the inversion point can be found 
from the equality 

-iH 
A0+B0+J(A0+B0)

2-C2-H2-F: 

~c 
-1 

"C" 
H 

~2~ 
H 

lF\ F 

(12.13) 
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They coincide with the double CO-POL Nulls if the I point occurs on the surface of the sphere. In another 
possible case, for the I point in the center of the sphere, the CO-POL Nulls are situated at the antipodal points, 
on the axis of rotation (by 180°) after inversion, and their spherical coordinates versus the H phasor are 
determined by the formula 

P = PH tanrJ
2exp{2<^} = ^-+' 

X\H^2H 
(12.14) 

HH 

Sinclair matrix elements can be found from the equalities (12.2) which are rather simple in cases under 
consideration. Having those complex polarization ratios p, the corresponding Stokes coordinates can be found 
also from the well known relations: 

-lO,, 

1 

l + pp 
H 

1- PP* 
p 

¥+p 

ÄP *-p)\ 

(12.15) 

The list of elementary symmetrical amplitude matrices of Table 12.1 should be supplemented with one non- 
symmetrical, but of special significance, the orthogonality amplitude matrix and its power counterpart, both of 
the form 

A-H — ~R - C    - 
0 -1 

1 0 
Kw — Ki k# D> 

10 0 0 

0-100 

0 0-10 

0    0     0-1 

(12.16) 

Its model has the inversion point in the center of the sphere, but no rotation after inversion axis exists in that 
case. As a result the whole surface of the sphere presents the CO-POL Null points. 
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Target  Other 
defining non-zero 
element elements 

K, *H 

Poincare 
sphere 
model 

Target 

A0= 1 

V 

1 
0 

0 
1 

0 
j 

•j 
0 c1 

J J M 
sphere 

B = 1  B.= 1 -1 

r _. 
1 0 1 0 
0 -1 ü -1 

J -J 

U  biplane 

E =-1 

D = 1 

D =_1 

= -1 

Bo= 1 

Ac=Bo 
= B = 

Ao=?o 

_ _, 
Ü 1 j 0 1       ° 1 0 Ü J 

—' -J 

0 + 1 
1 0 

r- —, 
1 

ß 
i+j   o 
0     1-j 

1 
1z 

i 

j 
j 

-J 
-1 — 

1_ 
2 

0-1 
1 0 

1 
/2 

l-j    0 
0     1+j 

1 
/2 

-J   J 
j     J 

Ao=Ec 

A0=Bo 
=-B 

.1 
'p 

.1_ 
"2 

  
0        1 1 l -.1 l 1 -1 

1 
1       0 W -j l {2 J 1 

0 -1 
1 

1 0 

1 
12 

1 
j 

j 
1 

1 -1  j 
j   -1 

V 

diplane 
45D 

snhere 
and +j 

U  diplane 
0 o' 

U 

sphere 
and _j 
diDlane 
0° 

sphere 
and -j 
diplane 

Q  45ö 

sphere 
and +,; 

45 6" 

E = 1   B = 1 0 1 
1 0 

1  1 
1 -1 

_1_ 1+j  0 
0 -1+j u dinlane 

+22.5° 

Table 12. 1. Scattering properties of elementary targets 
/to be continued/ 
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Target  Other 
defining non-zero 
element elements 

KH 

Poincare 
sphere 
model 

Target 

E =-1  B^= 1 

F = 2   B„= 2 

F = _2   B0= 2 

C = 2 

C =-2 

Ao=Bo 

A0 = Bo 
= B =1 

H = 2  A0=B0 
= _B=1 

0-1 
-1 0 

1_ 1 -1 
-1-1 

JL i-j o 
O -1-j 

0 
0 

0 
0 

-2 

2 r _. _ 
1 ,i 0 0 
,i -i 0 -2 

2 - - 

2 2 
2 2 

0 
0 

2-2 
.2 2 

0 

2   2 
0 

2   2 

°J 

2  0 
0  0 

1  1 
1  1 

1  J 
j   -1 

0 0 -1 j 

n 
0 2 j   1 

J 

2 
V 

1 
-j 

-j 
-1 

2 
0 

0 
0 

2 L J L -J 

diplane 
-22.5° 

r i gh t 
helix 

left 
helix 

hori- 
zontal 
diuole 

verti- 
cal 
dipole 

tilted 
dipole 
+45k 

H  =-2       An-B0 
= -B=l 

2      -2 -. r 

0 1 -1 -J J 
-2       2 -1 1 .1 -<1 

0 L - - 

tilted 
diDCle 
-45° 

Table 12. 1:   Scattering properties of elementary targets /continued/ 

o   -  the  inversion point,    •   -   the  null-polarization point 
© -  the  inversion point and the double null-polarization point 

/for dipoles  and helices/ 
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12. 2. The Krogager's decomposition of the Sinclair matrix into matrices of the sphere, diplane, and helix 

After Krogager ([102], [103]) the linear combination can be proposed of three amplitude matrices, of the 
sphere, diplane, and helix, representing any stable scatterer. It will be shown that such decomposition is 
entirely roll-invariant. 

Matrices AR of Table 1 will be taken into consideration because in the uR basis there is a very 

simple form of the roll transformation by the 20 angle about the VH axis: 

fROLL _ PiR  * 
^R ~^H 

Under the roll transformation, 

matrices are changing as follows: 

A 
^V? sphere • 

A 
R diplane 0° 

Aft ri^rt helix 

A 
^*R right helix 

cose?    sin# 

-sin#   cosf? 
CK - 

H 

-J0 

0 

0 

A _ rRROLL  A   rRROLL 
^RROLL ~ ^R AR^R 

o   j 
J  o. 

-> 
J   °. 

- 

"l     0" 

0   -1 
-» 

~ejw        0 

0      -e-j20_ 

"2   0" 

0   0 
-> 

'2   0 

0   0 
ej20 

"0    0* 

0   -2 
-> 

"0     0 

o  -: I 
e-J20 

- no change 

(12.17) 

(12.18) 

(12.18a) 

(12.18b) 

(12.18c) 

(12.18d) 

All matrices in Table 1 are of strength k=l.  Altogether six parameters are at our disposal to construct the 
sum matrix. So, using the right helix, we can write 

(12.19) 

*=«" J*,e"< 'o f 
J o. 

+K ~eJ2e 

0      - 

0 
+ khe»> 

"2    0" 

0   0 

-eJ<p \k^+2kh)ej2d     jkte»- ' 

L    A ej<p, - k+de-**\ 

Similarly, with the left helix, we obtain 

,]<P 

\k,e»- 
0 

J 
j 
0 

+ kd 

eJ20 

0      -e 

0 
-jie + khe-<" 

0 

0 

0 

-2 

Jk,e19' -(* 

jksi 

;+2 

(12.19) 

we obtain 

Using the (12.12) form of the Sinclair matrix in the R basis with 

<f>=<P + <Ps 

*s =l-4v?l= V -4>> 

K = y/Bo-m i-e.  k+
d =\Am\= ^BQ-F    and   *J =1^*1= V5o+*" 

h=J\\AR HAR I=AK - 4Bl - F2 yi 

(12.20) 

(12.21a) 
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<P = \(V%A2R+9XgAlR-x) 

20 = ±(argA2R - argAlR + n) (12.21b) 

<Ps = argA3R - ±(argA2R + arg AlR) 

The chirality of the scatterer is: 

right, if \A2R\>\AlR\, 

left, if \A1R\>\A2R\. <1222> 

The ks, kd and ks parameters are obviously roll-invariant because they depend on the roll-invariant Huynen 
parameters A0, B0 and F only. 

Worth noticing are relations between elements of amplitude matrices in the two bases, R and H: 

A2R=Mm+j(Am-Am), 

AR ~JAH ~ J(AH ~ AIH\ (12.23) 

AR = J(AH + AH)- 

These relations are useful when the matrix is known in the H basis and one wants to compute parameters of the 
decomposition from equalities (12.21) and (12.22). parameters oi tne 

streneth^JSS 'JT*"* ^^^ tothe roU-mvariance " conservation of identical relations between 
strengths of matrices of the component targets under the roll transformation, independently of the ONP PP 

That roU-invariance can be explained also geometrically. When looking at the Poincare sphere models 
of the component matrices we observe their axial symmetry about the VH axis. No doubt thS S 

SÄ exhlbltS.SUCh a SyTietry *"** ^ favenka P0^ fa ** **" °f the model and ^tn ^S of 
rotaüon after inversion coinciding with the V„ axis coming through the two null polarization potato Modd of 
matrices for the right and left helices, with their double polarization potato coindlgTSirS 
and located at the poles of the model on the VH axis, show similar symmetry ^ 

Though helices have axes of rotation after inversion perpendicular to the V„ axis and of direction 
dependent on their phases, nevertheless these directions have no influence on the nugnnSe otne SS 

StÄtaveSÄ01117 °n (PrOPOrti0nal t0) ** ^ ""™ «» -ans^eceivetSr 
The simplest roU-tavariant decomposition is into sum of a sphere and two helices, right and left- 

handed, of strength JB0 +F 12 and jB~^F/2,as seen from (12.11) and (12.18c and d). However if it 

IcT^oTn^U^T^ TT * det™g cMraäty of th* scatterer, then one should observe that 
Hifff ÜL i dlCeS °f equal strength forms a ^P131^ roIled W an angle dependent on the phase 
difference between helices, according to (12.18t>d). The model of the diplane is chLcteSedby the taveS 

lEfi "*"* "? r0taÜOn ^ Ü1VerSi0n "*» " Pedicular to the V„ axis J^SefcH^ 
ThatJ one can arrive geometrically at the roll-invariant Krogager decomposition because L roU immS 

roU-antle.COmPO ^ "^ ^ &°m a" ^»ent torgeto independent of tne^S 

m«.. °Tg t0, ^ ^'T111116^ of ** comment models, they strengths can be discerned by applying in 
SSSÄSTS^ *****&& and left (L), transmit and receive antennas^cSring 
scattering mechanisms of inversion and rotation it is immediately seen that RR and RL transmit-receive 

X:a"t:T7r,?om?ei?i^ LL and"-frL the ^™£™^*oT*: sphere and RL from the diplane. In all these cases no return from the target can be explained or bv 
coincidence of üansmit and/or receive polarization with the inversion point (helceT- aLSSutav£i2 

EÄS5       0rth0g0nality «** «*»» ™ versus the receive%iLti?n (splerfS Splane rotaüon after inversion axes mutually perpendicular). p 

nrt^ V11011,1^, °bSerVed that in the ^ basis amP»tude matrices of the sphere, diplane 0° diplane 45° and 
orthogonaler (the last multiplied by/) are the succeeding Pauli matrices, algeb aiy correXndmtto the 
unit quaternions or orthogonal column vectors of the unitary U 4x4 transformation matrix T^rtiiogonal set 
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of matrices can be exchanged for another set, also orthogonal, consisting of the same first and fourth matrix but 
instead of the second and third one including their sum and difference. These two new matrices represent the 
right and left helices. So, instead of nonothogonal set of matrices forming the Krogager's decomposition it is 
possible to apply the alternative decomposition employing the just proposed new orthogonal set. Both 
decompositions can also include the orthogonality matrix which will enable one to deal with decomposition of 
the nonsymmetrical Sinclair matrices. 
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13. Decomposition of the Partially Depolarizing Kennaugh Matrix into Four Non- 
Depolarizing Components 

There are many decompositions possible but most interesting are those which are the ONP-PP-basis-invariant. 
From the mathematical point of view, the unique such decomposition, into the sum of four orthogonal non- 
depolarizing matrices of bistatic scattering, has been proposed by Cloude [33]. However, Cloude's component 
matrices are all non-symmetric, each one dependent on 16 parameters, and mutual relations between them have 
not yet been presented. Mainly two cumulative parameters of such a set of matrices, the 'entropy' and the so- 
called a parameter representing polarization properties of a monostatic or bistatic scattering object, have been 
used in practice for classification of 'distributed' targets [35]. Therefore it seems desirable to find alternative 
decompositions, though for matrices non-orthogonal, however exhibiting other important features. Some 
attempts of such trials have been described in a review paper by Cloude and Pottier [34]. Here, an alternative 
roll-invariant decomposition for the bistatic scattering will be presented in which the component matrices 
depend on 7, 5, 3 and 1 mutually independent parameters, the 16 parameters of the whole set. 

13.1. The decomposition into matrices depending on 7,5,3, and 1 parameters 

Three steps of that decomposition will be considered. The first one divides the Kennaugh matrix of a 
bistatically scattering distributed target (BUT) into two parts: the non-symmetrical matrix, corresponding to 
nondepolarizing bistatically scattering 'point' target (EFT), preserving the complete polarization, and the 
symmetrical matrix, like of a 'monostatically scattering' distributed target (MDT), partially depolarizing the 
illuminating wave. Such decomposition is fully basis invariant because symmetrical matrices retain that form 
under any rotation of the polarization basis, similarly as nonsymmetrical matrices do. 

The second step strictly follows the well known Huynen's decomposition [85] of the MDT matrix into 
the monostatically scattering point target (MPT) and the distributed 'polarimetric noise' target (DNT) matrices. 
That decomposition is also basis invariant because the feature of retaining the complete polarization does not 
depend on the change-of-basis procedure. 

The last step, of decomposing the DNT matrix into two point noise target (PNT) matrices is only roll- 
invariant and can be manifold, as will be seen soon. 

To analyze that decomposition the original matrix of 16 independent real parameters (elements) will 
be considered using the Cloude's notation [33, 34] being an extension of Huynen's notation from the 
monostatic to the bistatic scattering case. After the two first steps the decomposition of the BDT matrix into 
three matrices, of the BPT, MPT, and DNT, can be presented in any ONP PP basis , for instance the H basis, in 
the form: 

K ■M N 
H K# +K// +K// (131) 

with the original BDT matrix 

KH = 

bl       b3 

H 

AQ+BO C + N H + L 

C-N A + B E + J 

H-L E-J A-B 

F-l G-K D-M 

F + I 

G + K 

D + M 
(13.2) 

H 

and the component matrices, of BPT, 

K 

AS+B* CB +N HB+L FB+I 

CB-N AB+BB EB+J GB +K 

HB -L EB -J AB-BB DB +M 

FB -/ GB-K DB-M -AB
+BB 

H 

(13.3) 
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MPT, 

and DNT, 

VM KH   = 

A? +B, 
CM 

FM 

M 

K 

CM 

A^ + BM 

H 

B, 

G 

N 

M 

0 
N 

0 

0 B 

0 EN 

FN      0 

H M 

E M 

M 

A^ - BM 

D 

0 
EN 

-BN 

FM 

GM 

DM 

,M 
-K +Bo 

M 
H 

FN 

0 

0 

0       Ä N 
H 

(13.4) 

(13.5) 

The way of construction of the first component matrix is straightforward. That matrix depends on 7 
only parameters of the BDT matrix: 6 parameters of asymmetry, namely I, J, K, L, M, N, and the difference 
A0- A disappearing for the monostatic scattering. All remaining parameters can be found when using the 
right side of equalities (E.6) representing conditions for preservation of complete polarization. So, one obtains: 

,B_I2+J2+(A0-A)2 ^Q 
xl0 

2(4, -A) 

iB I2 + J2- (A0- A)2 

2(A0 -A) 

BB _K2 + L2 +M2 -f -N2 

■"o 
2(A0 -A) 

EB _^2 + L2- M2- N2 

>0, 

2(A0-A) 

CB =(IK + JL)/(A0-A), 

DB =(-IL + JK)/(A0-A\ 

EB =(KM-LN)/(A0-A), 

FB =-(KN + LM)/(A0-A), 

GB =-(IN + JM)/(A0-A), 

HB =(M-M)/(A0-A). 

(13.6) 

rM 
Elements of the K^ matrix can be found by taking the difference between five elements of the K^ and 

K^ matrices. So, altogether five parameters define the ¥^ matrix and the remaining ones can be obtained by 
applying the equalities (E.6) again. That yields the following result: 

,M 

T« 

AS > 0, 
CM   =C_QL 

vM DM =D-DB, 

GM =G-GB, 

HM =H-HB. 

BM  „[{CM)2+{DM)2 +(GM)2 +(H
M)2]/(4A^X 

B M \Mx2 [(CM)2+(DM)2 -(GM)2 -(HM)2]/(4A^), 
pM _ ({-iM j_fM       pjM f-i_M \ i fn AM\ (CMHM -DMGM)I{2A™), 

^M M TJM • (CMGM + DMHM)I(2A™). 

(13.7) 

Elements of the remaining DNT matrix can be obtained by subtraction of the BPT and MPT matrices 
from the BDT matrix: 
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what yields 

VN 
= KH 

VB       -w-U 

DN 
B0 = B0- 

rfB        DM 

BN = B  - -BB -BM, 

EN = E - -EB-EM 

FN = F - FB _pM 

(13.8) 

(13.9) 

Decomposition of the DNT matrix into two PNT matrices will be presented in the following four 
alternative forms: 

K H :KF + Ktf ~ 

B5o 

0 

0 

F3 

B 

E1 

0 
N 

0 F3 

0 
-BN     0 

0       Bl 
H 

D4 
30 0 0 Bo 
0 0 0 0 

0 0 0 0 

V    0   0    B4
0 H 

(13.10) 

KN _ -iv-5     ,!/■(> 

Bl      0 
0 

0 

B N 

-N 

-N 

-B' 

F5 

0 
0 

0       B' 

+ 

D0 0   0 -B 

0 0   0 0 

0 0   0 0 

-Bn 0   0     B° 
H 

(13.11) 

K# _K// +K// 

B7o 

0 

0 
pN 

0 
BN 

E1 

0 

0 
E1 

N F 

0 
BN      0 

0       Bl 
H 

Bl 
0 
0 
0 

0 
0 

Bl 

0 

Bl 
0 
0 

0 

0 

0 

B! 

(13.12) 

H 

Ktf -K# + Ktf 
10 0 

0 

0 

E9 

FN      0 

-f?7 

0 
0 

Bl 

+ 

H 

D10 
B0 

0 

0 

0 

0 

0 

-B, 10 
-A, 

0 

0 

10 

0 

0 

0 

B 10 

H 

(13.13) 

with parameters (elements): 

Bl 
(< -FN)2+(BN)2+(ENY 

2(B£ N FN) 
>0, (13.14a) 

>N \2 N x2 ,AK2 

*o = 
(B^y-jF^y-jB") 

2(B£ -FN
) 

(EN)2 

>0, (13.14b) 
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Ds_(B0
N+FN)2

+(BN)2+(EN)2     n 
0 -,DA/   ,   rN,  ° > (13.14C) 2(B£ + FN) 

B6 = (BoN)2-(FN)2-(BN)2-(EN)2 

° 2(B0
N+FN) ' 

BioJB^)2-{EN)2-{BNf-(FNf 
° 2(B0

N+EN) ' 

>JV 

F>=- (B£ -FNf-(BN)2-{ENy 
7N     T-W • 2(50" -FN) 

. fRN4-P s_(Bl+FN)2-(BN)2-(EN)2 

>N       T?N\2       /DA'N2       ,T?N\2 
p7_    (B?-E")2-(BN)2-(FN): 

2(<-£w) 

£9=i<+i^)2-(^)2-(F")2 

(13.14d) 

Dy_(B0
N-EN)2

+(BN)2
+(FN)2    A 

° = 2«-£-) -°' (D14e) 

Ds_(B0
N)2-(EN)2-(BN)2-(FN)2 

° = 2«-^) -°' (1314f) 

p9_(<+£^)2
+(^)2+(F^)2    A 

° = 2«+^) -°' (1314g) 

(13.14h) 

(13.14i) 

2«+/^ ' (1314j) 

(13.14k) 

TT, • (1314D 2(B£ +EN) 

Though each of the matrices K^ , K^ , K7
H , and K^ has 4 different elements, each one depends on 3 only 

independent parameters because of the conditions for preservation of complete polarization (see the upper 
equality of the right side of (E.6j)): 

(B3
0)

2-(F>)2=(B>)2-(F5)2=(BN)2
+(EN)2 (13.15) 

and 

(B7
0)

2 -(E7)2 = (B9
0)

2 -(E9)2 = (BN)2 +(FN)2. (,3.i6) 

The above four decompositions of the KH matrix of the BDT, each depending successively on 7, 5, 3, 
and 1 parameters (altogether 16 mutually independent parameters), were for the first time explicitly presented 
by this author m [54] and [59]. They can be derived, for example, when using the procedure proposed by 
Barnes [4] who discovered that there are always three roll-invariant decompositions possible (see also Holm 
and Barnes [81]). His second and third decomposition was here applied to the DNT obtained after the first 
decomposition of the MDT matrix. However, the second or third Barnes' decomposition can be also applied to 
the MDT matrix. Then, other obtained that way DNT matrices can undergo the third and first or the first and 
second decomposition, accordingly. Altogether three groups of four different roll-invariant decompositions are 
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possible for the MDT matrix in any ONP PP basis , each group depending on four sets of 5+3+1 = 9 
parameters. Of course the decomposition of the BDT matrix into matrices of MDT and BPT is unique. 

13. 2. Physical readability of the BDT matrix 

Physical realizability of the original BDT matrix can be checked easily by the use of the above 
presented decomposition. For instance, it is sufficient to ascertain that all four component matrices have 
determined non-negative values of their first elements of general form of ax = A0 + B0. That is evident 
because all other elements fulfill conditions of preservation of the complete polarization what ensures their 
realizability. So, the following inequalities should hold for elements of the original matrix and matrices of the 
presented decomposition: 

A0+B0>0 

A0-A>0, 

A0 -A$>0 or, equivalents,   A2 > A2 +12 + J2 + 2(A0 - A)7 

< > 0, 

(13.17) 

fN\2 N\2 ^N\2 (B£y>(B"y+(E"y+(F") 

13. 3. An example of decomposition of the completely depolarizing matrix 

The simplest example of the proposed procedure is the decomposition of the matrix completely 
depolarizing each incoming wave. It may be presented, e. g., as follows: 

K H 

4    0 0 o" 
0    0 0 0 

0    0 0 0 

0   0 0 0 

= K£+K^+Kl+Kt=K£+K^ +K4„+K3 <
H ^H ktf "■# ^H '■H 

J H 

1 0 0 0 

0 -1 0 0 

0 0 -1 0 

0 0 0 -1 

+ 

H 

1 0 0 o" 
0 

0 

1 

0 

0 

1 

0 

0 
+ 

0 0 0 -1 H 

1 0 0 f 
0 0 0 0 

+ 
0 0 0 0 

1 0 0 1 H 

H 

1     0 0 -1 

0    0 0 0 

0    0 0 0 

-1    0 0 1 

(13. 

H 

17) 

The component matrices in the ONP PP H basis of the reversed order represent successively an orthogonalizer, 
a sphere, and two helices: right- and left-handed. 

13. 4. Exemplary presentation of two Poincare sphere models of matrices depending on 1 and 3 
parameters 

Exemplary presentations of matrices models will better explain the decomposition and hopefully, will confirm 
usefulness and efficiency of previously elaborated methods of the Poincare sphere transformations. 

Models of the K^ and K^ matrices will be presented. For simplicity reasons the upper indices of matrix 
elements, here N, 3, and 4, will be omitted. 

The ¥KH matrix model. 

The  K^ matrix represents the right-handed helix (contrary toK^   representing the left-handed 
helix). The inversion point is in the lower pole of its Poincare sphere model and the 'RR' received power, 
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corresponding to the right circular polarizations of the transmit/receive antenna and the unit incident power is 
equal to the square of the sphere diameter: 

RR = ±[l   0   0   l]H 

B0 0 0 B0 

0 0 0 0 

0 0 0 0 

B0 0 0 B0 H 

= \[\    0   0    \}H2B, 

H 

2B0.     (13.18) 

H 

It is also equal to the span of the corresponding Sinclair matrix of the form: 

;   SpanAH = 2am = 2B0. 2 ^H 
1       -j 

-J       1 
(13.19) 

H 

The KH matrix model. 

The model of the Kj matrix (identical considerations refer also to K^, K7
H, andK^ matrices of the same 

structure), depends on four algebraic parameters, B0, B, E, F, joined with one relation: 

F2 +B2=Bi 

It corresponds to the more complex Sinclair matrix (see (12.4)) 

A„=- 
,K*+h) B0+B      E-jF 

E-jF    -(B0+B) P(B0+B) 

One of its geometrical parameters is the square of the Poincare sphere diameter: 

cr0 = 2(or, + a0 ) = 2(B0 + ^B^-F2) 

(13.20) 

(13.21) 
H 

(13.22) 

The inversion point remains on the VH axis and its one only non-zero coordinate inside the sphere of unit 
radius (see Fig. 13. 1. for F < 0), 

ö"o F 
(13.23) 

presents the second geometrical parameter. The cord joining the CO-POL Nulls, coming through the inversion 

point and perpendicular to the V„ axis, is inclined versus the Q^ axis at an angle 2/?°2 which is the third 
geometrical parameter ofthat matrix (see for example Fig. 13. 1). 

The angle 2ßH
2 can be found when searching for the characteristic K basis of the Sinclair matrix 

(13.21). Formulae (9.18) and (9.17) of the standard procedure lead to the characteristic polarization ratios 

~K 
PH=-J   for   F<0,   and   pK

H =j   for   F>0. (13.24,25) 

Then, realizing the first step of the transformation one obtains, after (9.19), the following matrix in the K basis 
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AK.= 

and the Euler angles 

0      AX'\K,    p(B0+B)_ 

B0+B + F + jE 0 

0 -B0-B + F + jE 

and 

2eK
H=\[zxgA2>  -arg.V]±900=±900-2/#=2/?£, 

(13.26) 

(13.27) 

(13.28) 

with upper signs for the negative and lower for positive F values. There is an ambiguity of 180° in the last 
expression. It can be omitted by taking limited value of general phase of the matrix 

|//| = i|arg.V +arg^'|<900. 

Owing to such limitation, the sense of the rotation after inversion axis will be precisely determined. 
To clearly present derivation of final formulae, the intermediate parameter will be introduced: 

In turn one can write 

/ = tan(-2/?£) 

arg^'  -arg^'=tan(-4^) = ^- 
l + r 

(13.29) 

(13.30) 

(13.31) 

Now, for known values of arguments 

arg^2 '= arg(50 + B + F + JE) 

KgA^&rgi-Bv-B + F + jE) 
(13.32) 

arg^ = arg(-#0 - B +1 + jh) 

one can find 
E 

tan(-4/?£) = -— (13.33) 
B 

independently of sign of the F element. That enables one to find simple solution of equation (13.31) in the form 

/ 
B ±ylß2+E2     B±T]B

2
+F

: 

E E 

That result can be rewritten in a more useful form of two equalities 

(13.34) 

t = 

u + F2 + B 

E 

>oa + F2 -B 

-E 

(13.35A) 

(13.35B) 

It is immediately seen that numerators of the two expressions (13.35), in view of (13.34), are positive. 
Therefore / and E are of the same sign when using (13.35A), and of opposite sign in (13.35B). Also, both 
expressions lead to the same relation between B and E: 

B = -En, 
with 

« = ■ 

It 

(13.36) 

(13.37) 
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what agrees with (13.31) and (13.33). The elements B and E are of the same sign   when / > 0 and f2 >1 , or 

when t < 0 and  f- <1, and negative in the other cases. The sign of t  is opposite to the sign of   2/?°2. 

Combining signs of /,  B, and E with expressions (13.35) the following final formulae for the 2/?°2 angle 
become evident: 

2fiP=mmMIfzl.   „ith   JE<0,S>0, 2/# <0, |2/#|<45° 

or 

3o 2n=^Kjll±.   wWl   (E<0,5<0>2/?2.>0;|2^|<45» 
-£ [E>0,B>0, 2/# <0, |2yff£|>45° 

Beneath, also the inverse formulae will be presented enabling computation of the K^ matrix elements, 

BQ> F, E, and 5, for given geometrical parameters, 

r0>0, 

2a = 2a#=90°-2a°>      . (13.39) 

2ß = 2ß°Il =-(2ßK
H-90°). 

Knowing the auxiliary parameters: 

2 sin 2a 
m- — 

1 + sin2 2a ' 

* = -tan2/?>0 , (13.40) 

1-f 

2/ 

2 

one obtains 

4rn
4 

4A0 +/W (13.41) 

F = -B0m. 

Therefore from (13.24), and for the definition of t in (13,30), we obtain the two remaining elements expressed 
as follows: 
Moreover, combination of (13.36): 

B = -En 
and (13.20) yields 

\Bl-F1 

V   \ + n 

The sign of E can be found from (13.38) as a function of 2/?°2 and 12/?°2 |, similarly as the sign of B. 

Fig. 13.1. presents results of computations and structure of the Poincare sphere model of the K# matrix 
corresponding to chosen geometrical parameters. 
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Fig. 13.1. The Poincare sphere model of the K^ matrix with the elements: 
J50 = 15.787,   F = -13.627,   £ = -5.124,   5 = 6.106, 

computed for the geometrical parameters: r0 =4,  2a - 35°, 2ß = -20°. 
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14. The Polarimetric Two-Ports 

An important example of application of the Poincare sphere transformations is the theory of the polarimetric 
two-ports. Network theory of microwave four-ports can be extended to the domain of completely polarized fields 
of plane waves and used to polarimetric analysis of the electromagnetic two-ports. For that purpose incoming 
and outgoing waves in two ports on each side of the four-port have been combined to create the polarization 
and phase vectors. Their transformation by two reflectance and two transmittance Sinclair matrices will be 
considered. Then, directions of the propagation z-axes at both ports will be reversed by rotation of spatial 
coordinate systems to form also two transmittance Jones matrices, thus allowing for cascading connection of the 
polarimetric two-ports. 

Considerations will be limited to the losses, reciprocal systems and mutual relations between elements of the 
1 fr a£LJof s,inatrice

T
s ^ te Presented. A geometrical model of the scattering matrix of the whole two- 

port has been build up^ It is of the form of four polarization spheres of tangential phasors. Each sphere 
represents one of four Sinclair matrices. Its diameter, inversion point, and rotation after inversion axis and 
angle are determined, shape and orientation of the polarization fork presented, and some special incident 
polarizations specified. 

14.1. Fundamental equations of the polarimetric two-ports 

Scattering equation of the two-port in the coordinate systems as in Fig. 14.1, and in the linear ONP PP basis H 
, will be presented in the following form 

^AAUH 
SAA *     .,      ^SAB 

■ABUH 

L^BAUH 
SBA*+A-»SBB* bBBl H 

/iAuH 

L*B«H   *J 
(14.1) 

with the real positive coefficients A, Sinclair back-scattering (symmetrical) reflectance matrices 

S„ = >H 
s3 

Si. 
3 

H 

RH = R2 R3- 
(14.1a) 

H 

and the Sinclair forward scattering, and therefore nonsymmetrical, transmittance matrices 

TH = 
X    T3 

T4    71 
H 

T, H 
T2    T4 

r3    TX\H 
(14.1b) 

The same scattering equation, with the Sinclair scattering matrices expressed by their elements and with 
components of the electric field amplitude PP vectors defined as in (2.1), introduced instead of column PP unit 
u vectors, is of the form 

°2 °3 1z lA 

S3 ^1 T3 T\ 

T2 T3 R2 R3 

T4 7J R3 R, 

~FA ' ^Oy ^Oy 

EA 
^Ox 

pSA * 
^Ox 

EB 
^Oy 

pSB * 
^Oy 

H FB 
-0x_ 

pSB * 
-Ox 

(14.2) 

2ln
C
H 

pIeLa ,SymmetnCal ™mrinZ t™1™ of »he whole two-port, presented in the above equation 
depends on 20 real parameters. That number can be reduced to 10 (one half) by taking no losses ca?e, apart 
from the previously assumed reciprocity. The resulting matrix has to be unitary and therefore its component 
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Sinclair matrices should fulfill equations (the transposition has been shown for the nonsymmetrical matrices 
only): 

SH *SH+TH *TH = TH *TH + RH *RH = 
1    0 

0    1 

and 

$H * TH + TH * Rff 

0   0 

0   0 

They result in the following fundamental equations for the two-port: 

SpanS = SpanR = 2 - SpanT 

SpanS + SpanT = SpanR + SpanT - 2, 
or 

or 

and 

|det5)   =|det/2|   = l-SpanT+\detT\' 

det 7|2 = 1 - SpanS + |det S\2 = 1 - SpanR+\ det Rf 

arg det S + arg det R - 2 arg det T. 

(14.2a,b) 

(14.2c) 

(14.3a) 

(14.3b) 

(14.3c) 

Here, indices of matrices have been omitted because span and determinant are independent of the ONP PP basis 
choice. 

Two fundamental equations, (14.3a) and (14.3b), govern diameters of all four Sinclair matrices, 
because squares of those diameters are 

aos = aoR - SpanS + 2| detS\ 

aoT = aQf - SpanT + 2|det T\ 
(14.4) 

The last fundamental equation, (14.3c), bounds phases of the component Sinclair matrices of the reciprocal 
lossless two-port depending on 10 real parameters. 

14.2. A physical interpretation of the phase relations between the component Sinclair matrices of the two- 
port 

There may be an interesting physical interpretation of equation (14.3c).   If we call the overall „electrical 
length" of the two-port as equal to the phase of its transmittance matrix, 

£ = }argdetr = £0+//, (14.5a) 

being a sum of its „canonical phase" of the matrix in its characteristic coordinate system corresponding to the 
characteristic ONP PP basis K, 

£o=TargdetrCCs; Tc CCS 
A, Bl+jB2 

-Bl-jB2 A2 

TK=Tccse
ifi, (14.5b) 

and an „additional phase" n, then we may consider backscatterings by the two-port as scatterings from a plane 
inside the two-port, at an electrical distance a from the port .4 , 
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a = ±<irgdetS = a0+a, (l4.6a) 

and from the same plane, on the other side of the two-port, at a distance ß from the port B , 

ß = ±argdetR = ß0+p (14 6b) 

All the above mentioned phases and the corresponding distances are connected with the equalities 

£o=ao+A>>   G = a + ß,   and   ju = cr + p. (14.7) 

The canonical phase of reflection at the port A, a0, and the additional phase a , will be defined in the next 
section. 

14.3. The five-parameter model of the two-port 

Further reduction of the number of independent real parameters is necessary to obtain the geometrical model of 
the two-port. That can be reached by changing the ONP H basis for the characteristic basis, KT, of the T 
matrix. Of course, the KT basis will be neither the characteristic basis, KS, of the S matrix- nor the 
characteristic basis, KR, of the R matrix. The resulting canonical form of the transmittance scattering matrix 
can be presented as 

1KT - ^H   JH ^h 
A2 Bx +jB2 

[_-Bx -jB2        A, 
,JP 

(14.8) 

while the form of the reflectance Sinclair matrices in the new KT basis will not undergo any simplifications and 
will read: 

and 

p    _ rKT P rKT - 

s2 ^3 

k si\* 

r^2 RA 
L^3 R

I\ 

(14.9a) 

(14.9b) 
KT 

Now, the number of parameters has been reduced to 7. That is 3 parameters less, because of 3 Euler angles of 
the basis rotation for the transmittance matrix. What can be done more is neglecting two phases: one, 
corresponding to the „additional electrical length" of the two-port, it is ft, and another one, responsible for the 
„additional electrical distance" of the scattering plane inside the two-port from the port A., it is a. By the 
following equation we shall include <rin the definition of the S matrix with S3 element, in the KT basis, defined 
as real: 

dKT - 
sl 

,/2<x 

KT 

s,=s3*. (14.10a) 

Now, the canonical phase for the port ,4 can also be defined as: 

«o = 7 arg det SKT - a = \ &rg{S2Sx - S%). (14.10b) 
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When neglecting additional phases, u. and <J (and p, in virtue of (14.7)), not essential for further 
considerations, the resultant scattering matrix of the two-port and its four-sphere geometrical model can be 
considered as depending on five only real parameters: A2,Al,Bl,B2, and 5"3 . 

14.4. The allowed range for the S3 parameter and the S matrix dependence on T matrix elements 

The S3 value of equation (14.10) cannot be chosen arbitrarily. It should be contained in the range determined as 
follows: 

SpanS-2\detS\ < 
IS, 

sin# 
< SpanS+ 2\detS\ = a oS (14.11) 

where 6 is an angle between the QKT axis of the CCS of the T matrix and the (01) vector, from the center O of 
the Poincare sphere model ofthat matrix to its inversion point I. The range (14.11) is a direct consequence of 
the unitarity of the two-port scattering matrix. In order to show that, the two-port scattering matrix (14.12) will 
be considered, corresponding to the matrix (14.2) transformed to the KT basis and with the additional phases n 
and CT neglected, 

Sl        Bx +jB2 

-Bl-jB2        A, R* 

-B1-jB2 

A 

R 

(14.12) 

By inspection of a Hermitian product of the two first columns ofthat unitary matrix with £3 real: 

0= S2 *S3 +S3S, +B1(A2 -Al) + jB2(A2 +AX) 

and considering the C1 plane with complex numbers expressed by vectors: S2*S3 , S3SX , and 

W=Bl(A2-Al) + jB2(A2+Al) 

= -CeJr, 

(14.13) 

(14.14) 

we arrive at a vector diagram on that plane, as in Fig. 2. It shows that two solutions of the equation (14.13) for 
an S3 given are possible. They exist when only the length H of a straight line segment, as shown in Fig. 2, is 
real. 

In order to express two elements, S2  and   S{, and the length H, as a function of the five real 
parameters of the two-port model, we will introduce the following auxiliary real parameters: 

P = \-B2
X -B\- Al > 0, 

Q = \-Bl-B2
2-Al>P, 

C2 = WW*, 

D2=PQ-C2, 

Q-P 

(14.15a) 

(14.15b) 

E = - 
2C 
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In terms of those parameters we obtain: 

\S2\
2
 = P-SL 

lsll2=ß-s3
2*ls2l\ 

(14.16) 

(14.17) H = ^^(P+ Q)S2 ~4(1 +E2)S^ -C2 . 

and, introducing additional parameters, 

A = ~-ESl 
2         3 

(14.18a) 
B = C-A, 

cosy = -ReW/C, 

siny = -\mW 1C. (14.18b) 

the following two solutions for the arguments of S2 and Sx elements can be found: 

argS2 = aig{Aco&y±H siny-j(AsmyTH cosy)}, 

argS{ = arg {B cos y + H sin y + j(B sin y ±H cos y)}. (14.19) 

The length of H, as expressed by (14.17), is real for the S3 in the range 

(14.20) 

1   10 + P-2D ^        ^    1   IQ + P + 2D         Ja0S   .   n 

2V     l + E2       -Si~   2V    l + E
2        -       2     Sm* 

what corresponds to (14.11) because 

Q + P = SpanS , (14.21) 

D=\detS\, (14.22) 
and 

E = cot6. (14.23) 

14.5. The R matrix dependence on the S and J matrices 

Using again the matrix equations (14.2a,b,c) and after transformation of their Sinclair matrices to the TK basis 
as in (14.8) and (14.9), we arrive at the following expressions for the R matrix elements: 

*2 = detr*[ S2*AiA2-S3Bl(A2+A1) 

+jS3B2(A2-Al)-Sl*(B2+B2)], 

Ri = detrJ S2 *(B2 +BD + SMA, +A,) 
(14.24) 

+jS3B2(A2-Al)-S1*A1A2], 

R  —           r?  * A (n     in \ 
3 ~ detr*L 2    Ä2(ßi~jß2> 

-S,(A2 ~B2
X-B2

2)-SX *A2(BX +jB2)]. 
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The R matrix, corresponding to the Fand S matrices as in (14.8) and (14.10), is of the form: 

R KT 

R2    Ä3 

R3    Rx 

,J2(fj-a) (14.25) 
KT 

A numerical example verifying the above presented formulae can be found in [61, 68, 69]. 

14.6. Geometrical parameters of the two-port Sinclair matrices' models 

A few of useful formulae can be helpful in computing geometrical parameters of the models. Some of them are 
in terms of additional parameters presented in equations (14.15). 

Diameters of the polarization spheres are: 

(14.26) 
^ = ^ = yl2-(P + Q) + 2yll-(P+Q) + D2 

CO-POL Null polarization ratios in the KT basis: 

p™ = (S3 + <J-detS)/Sl, 

p™ = (-i?3 + V-deti?) / R1, 

PKT 
= PKT ~ ^J\^i ' A. 

(14.27) 

They correspond to the fork angles (subtended between prongs pointing to the CO-POL Null polarizations): 

KVKl^2«"*1/ 4D 

Q+P+2D ' 
(14.28) 

Ur
F)   =Ur

F)   =2arcsin^^ 
\'   h    \r   If A2+A, 

Polarization ratios in the KT basis for maximum and minimum transferred powers (corresponding to minimum 
and maximum powers scattered at the ports) are: 

„MT,NT 
PKT :W E + yll + E' ,y[arg(-W*-90 °±90°) (14.29) 

The corresponding powers related to the incoming power at each port equal to one are: 

- transferred powers: 

Ptranrf. = [1 ~ (P +0/2]± CS/l+ £2  , 

-powers reflected at the ports: 

Preß.   =[(P+Q)/2]+Cj\+E2    . 

(14.30) 

(14.31) 
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14.7. Mutual orientations of the Sinclair matrices' models of the two-port 

Mutual orientations of these models can be found by computation of two pairs of the three Euler angles by 
which the KT basis should be rotated to the characteristic bases, KS or KR, of the two reflectance matrices. 

The whole procedure of obtaining the S and R matrices in their characteristic bases is rather simple 
because of known values of the polarization ratios 

PKT -   PKT - PKT (14.32) 

according to (14.29). What has to be done is just to apply formulae (9.17) - (9.19) remembering that for 
monostatic matrices there is always A£ = 0, and that the indices of the Euler angles should be changed 
appropriately. The reflectance matrices will take forms 

Of-c — }KS 

and 

RjTO  =■ KKR 

0 

0   s1 

HO     R,_ 

iJPs 

1 KS 

yJMx 

' KR 
with real nonnegative parameters 

and with the phase angles, according to (14.3c), (14.10) and (14.25), satisfying the equalities 

MS+MR= 2£,; JUS = 2a0,   MR = 2ß0 = ±xgdetRKT - 2(ju - a). 

(14.33a) 

(1433b) 

(14.34) 

(14.35) 

It should be observed that the models of mutually transposed transmittance matrices differ only by 180° 
rotation about the Q^ axis, and by the same rotation differ also the reflectance matrices. Fig. 14.3 illustrates 
mutual orientations of such models corresponding to the numerical example presented in [61, 68, 69]. 

14.8. Four types of scattering and cascading matrices of two-ports 

When analyzing the cascade of two-ports, it is advisable to use rather the complex amplitude (CA) column 
vectors, representing directional Jones vectors [92, 93, 107], instead of the PP vectors, in order to apply 
traditional notation of the network theory. 

So, the scattering equation for the two-port (in the local spatial coordinate systems with z-axes directed 
to the two-port on its both sides) will be used in the following form of that new polarimetric notation. Instead of 
(14.1) we will write 

S    T 

T   R 

a, 

a. 
(14.36) 

where the lower indices indicating the ONP PP basis, still applicable, have been omitted for simplicity reasons. 
Here, complex amplitude column vectors of the incoming and outgoing waves are designated by o, and bt 

respectively, with the lower index V denoting the port number (1 or 2). One has only to remember about two 
slightly different rules of transformation which those C A vectors undergo under change of the ONP PP basis or 
under reversal (by rotation) of the spatial coordinate system. The b values (contrary to the a values) used in the 
scattering equation (14.36) are conjugate values of the corresponding PP vector components as representing 
waves propagating in the -z direction of the local coordinate system. (However, the later used values o° and b, 
expressed for the spatially reversed z-axes of the local coordinate systems, will behave oppositely. Namely, the 
a ' s will be conjugate values of the corresponding PP vector components.) 



Z. H. Czyz, ONR-Report-3 (Final Version) April 1, 2001 125 

By rearranging the matrix equation (14.36), two different cascading matrices and the corresponding 
equations can be obtained. They depend on at which port, 1 or 2, the incoming and outgoing wave has to be 
transformed by the cascading matrix to the other port. Such matrices can take the following forms (for 
comparison with microwave two-port equations see [82]): 

T-SrlR   ST'1 

-T~lR       T~l 

a. 

.2 _ 

\ 
a. 

or 
T-RTAS   RT'1 

_T-is T -I 

a, 

*i a, 
(14.37a,b) 

The first one of these two forms will be chosen for further applications. 

Other types of scattering and cascading matrices of the two-ports are also possible (the names of these 
types have been introduced as for the types of the 2X2 complex matrices, according to similar dependence on 
the z-axis reversal at the 'output' and 'input'). Table 14.1 presents four types of those matrices in their 
transformation equations. These types differ by reversal (by rotation) of the spatial coordinate system at the 
ports: 1, 2, and 1 and 2, successively. 

14.9. Transformation rules for reflectance and transmittance matrices 

Together with the z-axis reversal, also some Sinclair scattering matrices and some CA column vectors are 
properly transformed. The SI type Sinclair matrices are transformed according to formulae under z-axis 
reversal, and using formulae under basis rotation. The complete set of transformations for the 2X2 complex 
amplitude matrices contained in the scattering matrices of the two-port is given below, 

}H 

H 
°if - CK R-K CK 

H 

H 
*H ~   ^K   TK CK 

(14.38a) 

where 

1H ~   ^H   1K  ^K   > 

T"0   _    s-tK  if    T?0   /iff if   . 

°   T        _      fK-     *      O rp        s~<H   if 

lH 

i oO   _   f-iK   0 rrO   /~<K  . 

T° = -c°K * T 

% = TK 

°TK = -- TK 
r° * 

°TK- = c°K 
*   T 2K 

s°K = c0 * c   c° * 

° pO   _   (~iK   O nO  (~iK  . 0 r>0   _   ^o  *   r>     /^O 

C»=C**   and     Cl=C% 
-1    0 
0     1 

(14.38b) 

(14.38c) 

(14.38d) 

14.10. Transformation rules for complex amplitudes 

As mentioned in Section 14.8, the difference in comparison with previously used formulae has to be taken into 
account when dealing with the complex amplitudes instead of PP vectors. 

According to definitions of the Table 14.1, the incoming CA vectors a represent waves propagating in 
the +z directions, so their transformations are the same as those of the PP vectors, independently of the port 
numbers. On the other hand, the b vectors correspond to waves propagating in -z direction and, being CAs, 
they require different kind of transformation (that is one of reasons why the use of PP vectors is preferred in 



<*1H = ^H aiK-> 

biH = CK * h 

a°H = CK * n°  ■ a?K = CKaiK> 

b°H = CK h°   ■ 
^H °iK ■> & = C°K*biK 
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general theory of polarimetry). Summarizing, the following rules of transformations under change of the PP 
basis and under z-axis reversal apply: 

(14.39) 

14.11. An example of a cascade of three two-ports 

A cascade of three two-ports will be considered with z-axes at the input and output ports of the cascade 
directed to the cascade and between the two-ports directed to the central two-port (see Table 14.11). Scattering 
matrices of the successive two-ports, No.l, 2, and 3, are of the type PI, SI, and P2, respectively. Wave 
amplitudes between the two-ports are then: 

a2{\) = "l(2) a2(2) =*1(3) 

°2(1) ~al(2) ö2(2) -fll(3) 

The amplitude transformation equation for the cascade has been also shown in Table 14.2. 

14.12. Concluding remarks 

The here presented polarization sphere approach to the theory of polarimetric two-ports, developed by Czyz and 
Boerner [16, 69], has been based on matrix calculus in the two-dimensional complex space of the polarization 
and phase vectors and/or complex amplitude vectors. Owing to that approach it was possible to obtain simple 
canonical forms of bistatic (forward) scattering transmittance matrices and their polarization sphere 
geometrical models, together with models of two reflectance matrices. 

These models depend on no more than five real parameters, the fifth of which, S3, governs rotation 
only of the S and R matrix models about their characteristic O-KS and O-KR axes, what was presented in a 
most simple way using the characteristic coordinate system of the transmittance T matrix. 

The presented example of the polarization sphere approach, which follows suggestions contained in a 
short communication by Kennaugh [96], indicates physical reasons for the extension of the pioneering work of 
Huynen [85] from the mono- to bistatic scattering. 

The theory of cascading connection of polarimetric two-ports can also be treated as an application of 
the theory of cascading connection of microwave two-ports presented by Horton and Wenzel [82] and 
continuation of an early work on similar subject published by this author in 1955 [38]. 
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Table 14.1 

Four types of scattering matrices of the reciprocal  lossless two-port and the  corresponding 
cascading matrices in their transformation equations 

THE SI TYPE MATRIX 

S   T ax *i 
T   R_ .a2. kJ 

f-ST']R   ST'1 

_rx R ri 

(A/) V (A/) k m k" 
kj .fll. kJ 

(A'-1) 

THE PI TYPE MATRIX 

' s     f°~ ~aC [V 
rj~'0           O  nO kJ k°j 

TO       CT10      ° /?°       CT*° 
w 
ki 

(A/) [k (AO kl 
_r->  o R° rpO~ 1 A0. .*!. kJ 

(AM) 

rpQ 

RQ 
-<s 

rpO 

a" 

THE P2 TYPE MATRIX 

0 OO O'yT a, «1° 

°f-s°rxR 
-°r'/i 

O PO   O'T'-l (A/) k~ (A/) pk (A/) -              -1 

a2 

OT-I w kJ L*J 
(A/-1) 

4° -<  

°r)   CR ^ - - 

 >► 

a, K 

THE S2 TYPE MATRIX 

o no       QH->O 

O'T'O       o no k 

DyO 0 no   On->0   *   O nO o rrO   OnnO-' 

rpo        O nc 

(A/) 

k" m k" (A/) V 
kJ kJ kJ 

(A/-1) 

o^oj) 

a, 

tf 
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The. cascade of three two-ports 

Table 14.2 

f°-ST°~]°R°   ST0'1 

-T°   °R nrO~ 

0) f-srlR sr1 (2) Jy  r. 0-T---1 n       o no  o-r*-l l«r a2 
lW 
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T 

PORT A -=s- PORT B 

r 
Fig. 14.1. The polarimetric two-porl uilh the 7and f transmittance 

and S and R reflectance matrices, 
and the two local xyz coordinate systems at its A and B ports. 

-w 

Fig. 1^.2. Vector diagram for explanation of the allowed range 
for the £•) real parameter 
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Fig. 14.3. Mutual orientations of the polarization sphere geometrical models 
of the transmittance and reflectance matrices 
(from numerical examole in [61] and [68]). 
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15. The Four-Sphere of Partial Polarizations and Its Applications 

15.1. The Stokes' four-vector and power equations of scattering and transmission 

The unit Stokes' four-vector of a partially polarized scattered wave will be presented in the form first 
announced by Landau and Lifschitz [104] but slightly modified, compatible with the here proposed notation for 
complete polarizations and independent of the direction of propagation along the z-axis of the spatial xyz right- 
handed coordinate system: 

cos20 nS 

ps _ sin 20 cos 2y 

sin2#sin2?'cos2£ 

sin 20 sin 2y sin 2 8 

1*51=1 (15.1) 

-iff 

Here, as usually, 
• the lower index H denotes any ONP PP basis determining the coordinate system of three Stokes' 

parameters: QH, \JH, and YH, 
• the upper index S refers to the polarization point on the Poincare sphere of the completely polarized part of 

the wave corresponding to any S phasor (tangent to the sphere at that point), or any u PP vector of an 
arbitrary phase (the information about the phase is lost in case of the Stokes vector representation of waves, 
also partially polarized), and 

• 2y and Id are known angular coordinates of that polarization point in that basis, 

The only new element is the 20 angle, independent of the ONP PP basis of the wave's polarized part. The 
tan 20 function denotes the wave's degree of polarization. Contrary to the usual practice the double 0 angle 
has been introduced in accordance with the notation for all other polarization sphere angles, including the 
28 angle, also usually being expressed by the single 8. 

Such a unit Stokes' four-vector can be used to present the full Stokes four-vector: 

iS 

I Off 

I 

Q 
U 

jSpS . L0rff' ll=J(l2+Q2+V2+V2)s
H. (15.2) 

With the 'degree of polarization', 

p = tan2<9: 
VQ

2
+U

2
+V

5 

(15.3) 

the full Stokes four-vector of a partially polarized wave can be expressed also in another useful form, 

lOff :lücos20s 

1 

pcos2^ 

p sin 2/ cos 28 

p sin 2y sin 28 

s 
' 1 " 

=IS pq 
pu 

H _PV_ H 

with the total power 

IS=I;jcos20S. 

q2+u2+v2=L (15.4) 

(15.5) 
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For the complete polarizations: 29 = 45°,   p = 1, and we arrive at the known forms of the unit, full, and 
efficient Stokes four-vector of the wave or receiving antenna in the H basis: 

1 R T R 

cos 2y 1 q 
sin 2y cos 28 V2 u 
sin 2y sin 26 H V H 

(15.6) 

TR 

TR   -TRPR -    o 

1 K Y 
cos 2y 

sin 2y cos 28 
= IA q 

u 
sin 2^ sin 28 

H V 

(15.7) 

//■ 

15.2. The integrated Stokes four-vector 

Generally, Stokes vectors should be spectral functions, similarly as elements of the partially depolarizing 
Kennaugh matrix. However, for many applications integrated (over the frequency band) components of the full 
Stokes vector of the quasimonochromatic wave, known as Stokes parameters, may appear sufficient to describe 
the partial polarization state of the wave ([28, 118, 120, 123, 132, 30, 11, 94]). 

The integrated full Stokes four-vector can be expressed in terms of the temporary electric field PP 
vectors, 

E0(t,z) = E0(t)u(t)e^-^;      \u(t)\=l, (15.8) 

which, for example, can be represented by a complex quasimonochromatic transversal wave PP column vector 
of the amplitude stochastic (ergodic) process, assumed to be zero mean and complex normal distributed [139, 
70], of the form in the H = (y,x) basis: 

E0y(t) 

EoAt) 
,y(o0-fe) 

=£o(o«wo*'(*,~b)- 
The procedure of obtaining the required integrated full Stokes four-vector can be as follows 

Vx) = V2Ü * (EI (0(K0 ® u * (0)^,) = 

{E0y(t)EQy(t)* + E0x(t)E0x(t)*)' 

(E0y(t)E0y(t)*-E0x(t)E0x(t)*) 

(E0y(t)E0x(t)* + E0x(t)EOy(t)*) 

_j(E0y(t)E0x(t)*-E0x(t)E0y(t)*) 
(ys) 

(15.9) 

(15.10) 

with 
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u = 
fl 

110 0 

0    0     1 -j 

0    0     1 j 

1-10 0 

I = (E2(t)),    and     (...)= lim f  ... dt (15.11) 

15.3. Power received from the partially polarized wave. The efficient Stokes four-vector 

It should be observed that the reception of a partially polarized wave by an antenna is being expressed not by 
the product of their full Stokes four-vectors but rather with the use of smaller, the so-called efficient Stokes 
four-vectors. That becomes evident when considering the averaged square of Hermitian product of two PP 
vectors, one of which, that of scattered wave, being partially polarized (the ONP PP basis indicated here as H 
can be of course arbitrary): 

Pr = (\Vr|
2) = (|£0

S (t)hR (uRus * (t))H |2) 

= {E*(t)hR(« V *(t))H <8> (uR *us(t))H) 

= ±[y[2 h*(uR ®üR*)HU*y[2\j(Ei;(t)(us *(t)®us(t))H)] (15.12) 

~ 2 l<SHlQH 

_|R   jS 

where the effective Stokes vectors and effective powers have been defined in terms of the full Stokes vectors and 
its magnitude or its total power and the 2Wangle as follows, 

lefiW 
4i~ 

is 1 

45 

nS 

- Is  PS 

H 

Ts -Is 
■lo 

V2      -Jicosie 
(15.13) 

It should be observed that in case of complete polarization (20 = 45 ): 

and 

TR    _T
R
 P

R
 _ Aeff 1eflH _ 1eff rH ~     ■— 

V2 

1 

cos2f 

sin 2y cos 18 

sin 2/sin 2£ 

-iR T 
IR 

q 
& u 

-H V 

nR 

(15.14) 

(15.15) 

L'Ji/ 

Equations for power reception by the antenna (or for transmission between two antennas) for arbitrary 
wave and antenna polarizations (generally both can be partially polarized if considered as independent 
stochastic processes) presented in terms of the unit Stokes four-vectors are: 

p _ 1 TR rS    _lTRjSpRpS 

TR fs l
eBHleffl 

TR TS pRpS 
(15.16) 

effxeff KHM:H 
where 

;RDS R„s .R„S .R..S- P*P* =cos20K cos20& + sin20K sin26>s(qKq!> +uKub + vKvs)„.      (15.17) 



Z. H. Czyz, ONR-Report-3 (Final Version) April 1, 2001 134 

Denoting 

cos2^RS =cos(RS)=(qRqs +uV + vRvs)// (15.18) 

the scalar product of the two unit Stokes four-vectors will be obtained in the form of cosine of an angle on a 
sphere, 

P£P* = cos20R cos20s + sin20R sin20s cos2^RS = cos20RS,      (15.19) 

or in terms of degrees of polarization, 

P|P£ = cos20R cos20s(l + pRps c^yr*8), (15.20) 
thus obtaining 

Pr=±lX cos2QRS={I0
RI« cos20Rcos20s(l + pVcos2^RS) 

= Itf Irf cos2nRS = !*,& cos20R cos20s(l + pRps coaly™) 
(15.21) 

In the case of complete polarization   {20R = 20R = 45° )one obtains known result (compare e g   with 
(4.15)): '      " 

and 

f£P* =i(l + cos2^RS) = cosVRS 

=|«V*|a, 

Pr=ilRI«cosVRS 

rR TS     2 ,.,RS 

(15.22) 

(15.23) 
= ISA cos V", 

as well as 

P,.=AeScosVRS, (15.24) 

which will be obtained when using the usual notation: for the receiving effective area of an antenna, 

!rfr ~ Ae> (15.25a) 

and for the incident power density, 

leff =  S. (15.25b) 

15.4. Scattering and transmission power equations for the partially polarized waves 

Using similar procedure as in (15.12), the scattering and transmission power equations with the partially 
depolarizing Kennaugh matrix can be presented as follows (also for partially polarized incident waves, but 
when the Kennaugh matrix is non-depolarizing, as for a 'point' target [123, Part 1-4], or it represents the 
stochastic process independent of the illumination [123, Part 1-5]): 

KX = ^X    and   i>r=P]KX^TPX. (15.26) 

The form of those equations is exactly the same as in the case of nondepolarizing Kennaugh matrices (compare 

with (7.19)). Only the scattered power aT cannot be considered as the square of the distance between the 
polarization point on the Poincare sphere model of that matrix (now not existing) and an inversion point in it. 
However, such a scattered power can be treated as the sum of powers scattered by the component 'point' (non- 
depolarizing) targets corresponding to an incoherent decomposition ofthat parent matrix (observe an example 
in Fig. 11.3). F 

Sometimes it is convenient to present incident and scattered waves by such 'unit' Stokes four-vectors, 
components of which are Stokes parameters with the unit total power as the first component. So, in cases of 
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completely polarized incident waves and partially polarized scattered waves, by using the 'full unit' Stokes 
four-vectors instead of formerly defined (efficient) unit vectors: 

OH V2P; = and Pn
s„=V2P|=V2cos20s 

•OH LH 

H 

1 

pq 

pu 

Pv. 

-iT 

H 

the scattered wave may be obtained in the form 

KffioH - Kff aT¥L =V2o-Tcos20s 

H 

1 

pq 

pu 

PV 
H 

where 

Is =V2o-Tcos26>s 

means the total scattered power for the unit incident total power, and the received power is 

p_lpr    pT    _I„TpR pS 
rr ~ 2 r0H^Hr0H ~ 2°   r0Hr0H 

= ^[l   q   u   vgV2o-Tcos2(9s 

1 ~T 

pq 

pu 

.PVJH 

-^o-1 cos20s[l + ps(qRqs+uV+vRvs)„] 

= -j^aT cos20s[1 + ps cos2^ ]. 

(15.27) 

(15.28) 

(15.29) 

(15.30) 

15.5. The polarization four-sphere 

Following the expressions (15.1), (15.2), (15.3), and (15.19), the (integrated) Stokes four-vector of a partial 
polarization will be represented by a point on the four-sphere surface (the surface of a sphere in the four- 
dimensional real space) with a radius equal to the magnitude, Io , of the 'full' vector. In that case the first of 
four mutually perpendicular axes ofthat space will correspond to the total power, I, of the completely polarized, 
partially polarized, or completely unpolarized wave. 

To simplify the drawing of the four-sphere, one of their axes, except of the first one, and sometimes the 
two axes, will be omitted (see Fig. 15.1 or Fig. 15.2). Such drawings may occur useful to present also the 
Poincare three-sphere (of complete polarizations) in the four-dimensional space. It takes form of a hypercircle 
(with a radius equal to I, the total power of the completely polarized wave), being a crossection of the four- 
sphere surface with a 90° hypercone having axis of symmetry coinciding with the I axis 

Fig. 15.1 presents also three decompositions of the four-vector into incoherent components: completely 
polarized (corresponding to elliptical polarizations) and unpolarized (like natural light), 
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IOE+I ON 

pel pN] 
Q + 

0 

U 0 

_v_ 0_ 

IE=VQ
2
+U

2
+V

2
, (15.31a) 

two orthogonal, completely polarized, 

*o — *oi + *02 - 

V [i2] 
Qi + Q2 

u2 

LViJ _V2J 
I/=VQ?+U?+V,

2
,   i = l,2, (15.31b) 

and component full Stokes vectors of the total power (intensity) and of pure polarization order, 

lo - IQI 
+ 'OP - + 

T "o" 
0 

+ Q 
Ü u 
0 _v_ 

i > VQ
2
+U

2
+V

2 
(15.31c) 

It should be mentioned that the last decomposition is also physically realizable but rather in a virtual world. For 
instance it can be build up in a electronic circuit as a virtual receiving four-vector. In such a virtual space the 
total power I can take even negative values. 

The following mutual relations can be observed between those component vectors: 

and their components: 

lOE loi Tx 
*02> 

*ON _  I(>2 +    ^02 ■> 

(15.32) 

I = I0cos2<9 = IE +IN =Ij +I2, 

IE = I0sin2<9 = I1-I2, 

I> 21 2' (15.33) 

\\ = 2(I2+I2), 

p =  tari20  = — 
I Ii +Ia 

Fig. 15.2. shows the angles 2<9R, 26s, 2^RS and 2QRS as they appeared in the expressions: (15.19), for 
the scalar product of the (efficient) unit Stokes four-vectors, and in (15.21), for the received scattered power. 
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Fig. 15.1. Three decompositions of a full Sokes four-vector 
into incoherent components 

Poincare sphere. 

Fig. 15.2. The polarization four-sphere representation of two partially polarized 
Stokes four-vectors and the angles responsible for their scalar multiplication 
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15.6. An example of applications. Canceling the partially polarized radar clutter 

The concept of formation of the virtual receiving vector perpendicular to the partially polarized radar clutter 
has been described in the workshop paper [73] and can be explained using the here presented approach based 
on the polarization four-sphere transformations. 

To simplify formulae the following notation will be introduced for the effective Stokes four-vectors: 
for the power scattered from the target, \\a = Seff, 

for its component perpendicular to the clutter,  lfff=Ren.=ReffP
R, 

for the desired receiving unit vector, PR , (15 34) 

for the disturbance (source of clutter), I°ff = Deff = Deff PD, 

for the transmitted signal, IT„ = T - = T ^PT 

and for the signal plus disturbance, Weir = Teff + Dejr 

With the desired receiving four-vector perpendicular to the clutter, the received power (see (15.12)) 
will be 

Pr =ReffP
R =K^YK = 11^ =|Reffl=Seff sin2QDs. (15.35) 

That is the expression for the received signal which can be extracted from the disturbance However its value 
depends also on the transmitted polarization It will be shown how the optimum transmit polarization can be 

determined when knowing the Kennaugh matrices for the disturbance, KD, and for the signal plus 
disturbance, K   . 

Having those matrices one can find the four-vectors 

PD = |l^]       aad      W^=KWPT (15-36) 
The expression for the received power can be found in the form 

^=|ReirN(l-PDPD)Weff| (15.37) 

where 1 is the 4 x 4 unit matrix. The above expression can be verified as follows: 

Reff=(l-PDPDXSeffP
s+DeffP

D) 

= SeffP8 + D^P0 -S^(PDPS)PD - D^(PDPD)P 

= Seff(Ps -(P»pS)pD) = Seff(ps _cos2n
DSPD) 

= Seffsin2Q0sPD. 
Therefore one can write 

^2=|ReirN(l-PDPD)Weff|
2 

^TKW^K^P^ (1,39) 

'     PTKDKDPT' ' 

That expression for the square of the received power is of the form depending directly on the transmit 
polarization. Its maximization enables one to determine the optimum transmit polarization. 

S     /KD^SSBDN     O     ™S ~~ns~n. (15.38) 
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APPENDIX A. USEFUL FORMULAE OF SPHERICAL TRIGONOMETRY 

A 1. Spherical excess 

The solid angle subtended by the spherical triangle ABC (see Fig.Al) is numerically equal to the spherical 
excess of the triangle, i.e., the excess of the sum of its three angles over n. 

E
ABC =A + B + C-7T 

The excess is a measure of the oriented triangle, what means that 

(Al) 

-ß A DP             Hj . 'ABC CBA (A2) 

If Cx be the point diametrically opposite to C (Fig.Al), then the spherical excess of the triangle CxBA 
colunar to ABC is 

because 

Also 

£ABC 
S
£C'BA = 2C-EABC=x-(A+B) + C 

^ABC + ^ABC _ 2C 

i(E^c-EABC) = x-(A + B) 

(A3) 

(A4) 

Consider an A phasor (Fig. A2), oriented as the CA great circle arc, and then shifted parallel along the three 
sides of the spherical triangle ABC to the left, without rotation. After one full turn, the phasor shall be rotated 
versus its original orientation also to the left, by the angle E^ , numerically equal to the spherical excess of 

the triangle. Only after the additional rotations by TV-A, 7U-B, and K-C angles (at the vertices of the 
triangle, for example), one obtains the total rotation of the phasor equal to In. 

When shifting the phasor along any circular path (Fig. A3) considered as a sum of paths around narrow 
oriented triangles of diminishing width and of summed area equal in the limit to the solid angle subtended by 
the circle, then, if the shifts along all sides of all triangles be parallel, after the full In turn the phasor will be 
rotated versus its original orientation by the angle numerically equal to the surrounded area. Also direction of 
the angle will be that of the path. If, when shifting, the phasor be kept parallel to the circular path then it will 
undergo an extra rotation in the same direction, to the total of In radians. Therefore, in that case the total 
angle of rotation can be considered as consisting of two parts: one caused by the true rotation and another one 
made by surrounding of an area. 

A. 2. Other useful formulae 

For spherical triangle as in Fig. A1 and Fig. A4: 

a + b 

arctan 
cos 

2   ,    ±C tan— 
cos- 

a-b 
_±C+EABC_i^-(Ä±m    1E^ZE_^L 

2 2 4 

(A5) 

COS 
F' sin2 ja + sinH£-sin2!< cos 2±a' + cos2±b' + cos2±c-\ 

2sin|asin|^cos^c 2cos|a'cos|^'cos|c 
= - cos 2AA, 

(A6) 
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where 
F                      F' 

2AA
B= TT-C + ^^-   = n ^;        0<2AA

B<x   for    0<EABC<2x (A.7) 

tan|tan|sin[c-^J = sin^.;    sinf C - ^-) = sin 2AA
B (A.8) 

cose = cos a cos b + sin a sinö cosC (A.9) 

^ 5    sin^cota-cosAcosC -    sinacotA-cosacosC 
cot^4 = ^  ; cot£ = ^  (A.10) 

sinC sinC 

.   ~    sinasini? .   A    sin^sin^ 
sin^ =  ; sini? =  (All) 

sin£ sin a 

For spherical triangle as in Fig. A. 5: 

^    ,-™o     ^   x „       COt 20 tan(90° -2TJ) = cot2^ =  (A. 12) 
cos 2/ 

E
ABC=

2S
-

2T
} (A.13) 
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c 
142 

Fig. A. 2. 

Fig. A. 3. 
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C 

2 ^ABC 

Fig. A. 4. 

£ABC = 2S-2TJ 

Fig. A. 5. 
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APPENDIX Al 

STOKES FOUR-VECTORS IN TERMS OF ANALYTICAL AND GEOMETRICAL PARAMETERS 
FOR THE TWO ORDERS OF BASIS VECTORS 

Consider 'analytical components' of the ellipticaUy polarized electric vector: 

£* = ay cos(6tf + kz+vy) = ay [cos vy cos(ötf + kz) ± sin vy sin(ßV T kz)] 

Ex = ax COS(ö# + kz + vx) = ax [cos vx cos(cot + kz)± sin vx sin(Grf + kz)]. 

and its 'geometrical components' in two coordinate systems, £(x,y)r](x,y) and g(y,x)Tj(y,x) : 

(Al.l) 

Et(x,y) = <*o cosa{xy) cos(o)t + kzTz) 
r± - _ (Al.2) hn{*,y) = +ao sm a{x<y) sin(ö# + kz + x). 

and 
Eh,x) = +ao sin a{y^ sin(fttf T fe + x) 

^7(y,*) = ao cos a{yx) COS(G* + fe + ^r), 

with the Monge's circle radius of the polarization ellipse, 

ao=^al+a2
y . (A14) 

Al. 1. The case of the (y,x) polarization basis 

f^lfproSr °f ^ deCtriC VeCt°r M * "** * termS °f itS ge°metrical ™*«*«* * *c 

= a0[cosa cosßcos(at + kz + x) ± sin a sinßsin(cot + fe + ^)]( x) 

= a0 {COS(G# T fc)[cosa cos ß cos # - sin a sin /? sin x\y x) 

± sin(ü)t T kz)[cos a cos/?sin x + sin a sin /?cos ^](>, x)} 

£x = £*,,*>sin A,.) + ^ <*»£ü^ (A1'5) 

= a0[cosa sin ßcos(<ot + fe T j) T sin a cosj0sin(etf T /fe T ^)]ü,tX) 

= a0 (cos(e# + fe)[cos a sin /? cos # + sin a cosy?sin #]( x) 

± sin(<# + #z)[cos a sin /? sin ^ - sin a cos/?cos ^](y x)}. 

Comparing expressions for analytical components of the electric vector,   Ey and£x, combined with 
cos(c#-te) and  sin(ö*-fe) terms of the expressions (Al.l) we arrive at the equalities 

ay cos vy = a0 (cos a cos/?cos x - sin a sin^sin x)(y,x) 

a^sinvj, =a0(cosacos>ffsin^ + sinörsin>9cos^)(>,^) 
(A1 6) 
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They allow to express 

ax cos vx = a0(cosa sin/?cos x + s^naC0SßsinZ)(y,X) 

ax ivaVy. =a0(cosasin/?sin^-sinörcos/?cos^)(>,x) 

ay=aQ(cos  a cos  /? + sin  a sin  ß)^ytX) 

2 2/ 2 „   -_2  o . „:_2 2 ax=a0 (cos  a sin  /? + sin  a cos  ß)(y,X) 

and, after simple manipulations, 

ay -a
2

x=al cos2a{yx) cos 2/?^ 

2a ax(cos v  cos vx + sin v sin vx) = 2a ax cos(v  -vx) 

a0 cos2a(yx) sin 2/? (y,*) 
and 

2a ax(sin v cos vx - cos v sin vx) - 2a ax sin(v  - vx) y"x 

-ajarta^. 

(Al.7) 

(Al.8) 

(Al.9) 

(Al. 10) 

(Al. 11) 

These equations lead to known expressions for the Stokes four-vector in the (y,x) polarization basis. It 
formulates the 'intensity representation' of elliptically polarized waves and presents mutual relations between 
analytical and geometrical parameters of the polarization ellipse in the (y,x) basis: 

10* = 

i       i ay+ax 

2 2 ay-ax 

2ayax cos(v>, - vx) 

(y,*)    \}aya* sin(yy ~ v*\ 

= a; 

1 

cos 2y 

sin 2y cos 28 

sin2f sin2£ 

= a; 

(y,x) 

1 

cos2arcos2/? 

cos 2a sin 2ß 

sin 2a 

(Al. 12) 

(>-,*) 

Neglecting the first component, the remaining ones, called 'Stokes parameters', can be interpreted as 
rectangular coordinates of the polarization point on the Poincare sphere for the elliptically polarized electric 
vector, components of which are expressed in the (y,x) basis. These Stokes parameters satisfy the equality 

12=<&*>+UL)+vLx) <Al-13> 
and are independent of the direction of wave's propagation or antenna's orientation along the z axis. 

Al. 2. The case of the (x,y) polarization basis 

The procedure is similar. Again, analytical components of the electric vector in terms of its geometrical 
components, now in the (x,y) basis, can be obtained as follows: 

El Etocy)cosß(*,y) Elix,y)^nß{x,y) 

= a0 [cos a cos ß cos(cot + kz + %) ± sin a sin ß sin(ö# + kz + %)] (JC } 

= a0 {cos(ajt + kz)[cosa cos/?cos % - sin a sin ßsin x\x,y) 

± sm(cot + £z)[cos a cos/? sin x + sin a sin /?cos x\x,y)} 

Ey  = Et(x,y) Sinß(x,y) + Eix,y) COS^^^ 

= a0[cosa sin ßcos(ü)t + kz + x) + sin a cos/?sin(e# + kz + x)\x,y) 

- a0 {cos(cot + kz)[cos a sin ß cos x + sin a cos /? sin x\x,y) 

± sin(arf + &z)[cos a sin /?sin x - sin a cos /?cos x\x,y)) ■ 

(Al. 14) 
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Comparison of expressions (Al. 1) and (Al. 14) with the same cos(ö# - kz) and sin(cot - kz) 
ax cos vx = a0 (cos a sin ß cos x - sin a cos ß sin x) (x,y) 

ax sin vx = aQ (cos a sin ß sin ^ + sin a cos /? cos x) (X,y) 

ay cos I/J, = a0 (cos a cos/?cos # + sin a sin ßsin ^)(jej)) 

a^ sin vy = aQ (cos a cos/?sin ^ - sin a sin ßcos x)(X,y) 

That allows to express 
ax = a\ (cos2 a cos2 ß + sin2 a sin2 j0)(x ^ 

a2 =of2(cos2 orsin2 /? + sin2 acos2 ß)(xy) 

and, after simple manipulations, 

a\ -a) =al cos2a{xy) cos2ß{xy) 

laxay (cos vx cos vy + sin vx sin vy ) = 2axar cos(vx - v ) 

= #n cos2or. 
and 

*o^^^(X,y)sin2ß(xy) 

terms yields: 

(Al. 15) 

(Al. 16) 

2axay (sin vx cos vy - cos vx sin vy ) = 2«^ sin( vx-v ) 

= a0sin2a(   j. 

(Al. 17) 

(Al. 18) 

(Al. 19) 

(Al.20) 

These equations lead to known expressions for Stokes four-vectors, now in the (x,y) polarization basis They 
present mutual relations between analytical and geometrical parameters of the polarization ellipse in the (x,y) 

V 
Q 
u 
V 

(*,y) 

a2
x+a2

y 1 

2axaycos(vx-vy) = *l cos 2^ 

sin 2/cos 2£ 
2axaysm(vx-vy) _sin2;rsin2£ 

= a; 

ix,y) 

1 

cos la cos 2ß 

cos 2a sin 2ß 

sin 2a 

(Al .21) 

(*,y) 

It should be observed an essential result: 

'{x,y) -Q (y,x) 

U(x,y) ~ U(.y,x) 

V       --V v(x,y) ~    vO-,x)- 

(Al.22) 

For example, for circular polarizations: -2a{xy) = 2a(y,x) = 90°. It means that in the (y,x) basis the right- 
handed circular polarization is represented by the upper pole of the Poincare sphere, and in the fey) basis by its 
lower pole. J 
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APPENDIX B 

DIAMETER OF THE POINCARE SPHERE MODEL OF THE SCATTERING MATRIX 

There are two polarization points on the Poincare sphere, M and N, which correspond to maximum and 
.M 

minimum of the scattered power, a = cw and a =o-min, accordingly. These scattered powers correspond 
to the unit power of the incident wave and can be found immediately from the following scattering equation in 
any ONP PP basis, the H basis for example, 

v    pM,N _ 

b,    b 3    b5 

b4    b6 

a3    b2 

H 

1 
M,N 

,M,N 

,M,N 

.M,N 

-*H 

1 
M",N" 

M",N" 

,M",N" 
_C5      C6      C2      a4. 

The obtained result (in any ONP PP basis) is 

au-N=al+blq
M'N+b3u

M'™+b5v 

= ai±(b?+bl+bl)/b0 

= a\ ±*o 
where 

-a M,NpM",N" 
r0// (B.l) 

H 

b0=fif+b[+bj. 

(B.2) 

(B.3) 

The term b0 does not depend on the basis, similarly as ax which is the half of span of the corresponding Sinclair 
matrix. 

The incident wave's unit total power Stokes four-vectors (called also the 'full' unit four-vectors) are 
accordingly: 

PM,N 
r0H 

1 \K~ 
qHN 1 ±bx 

UM,N h ±*3 
VM,N 

H ±b5 H 

(B.4) 

what means that they are mutually orthogonal, and their points on the Poincare sphere are antipodal to each 
other. 

Consider now the Poincare sphere of incident waves of unit total power, in any ONP PP basis, and its 
MN diameter with two points on it: the center of the sphere, O, and an I point (called the inversion point) 
located somewhere on the ON radius. Let the length of the radius ofthat sphere be 

r0=(ON)„=(OM)„=l. (B.5) 

Here the subscript '»' means that the radius of the sphere has been normalized to one. Vectors of those two 
radii are 

vec(OM)„ 

vec(ON)„ 
+ 

,M 

.M 

.M 

That yields the vector of the (OI)„ segment: 

(B.6) 

ve< <0I)„ 
[Qil ["qMl 
ui = -(oi)n uM 

Lv-J vM 

(oi), 
h 

(B.7) 
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and the scalar product 

vec(Oll * vec(OM)„ = Qj,qM + U^uM + V„'vM = (0I)„ = (01),. _, < 1. (B.8) 

Following the equalities 

(,»)' 4M)2 H*UT=' - «+«+(V-)2=(o.t,,    M 

squares of the (M)n and (IN)„ segments can be presented as: 

(IM)„2 

(IN); 
(BIO) 

|}=(±qM-Ql)a+(±uM-ui)a
+(±vM-Y;)a 

= i+(oi);; + 2(Q^HN + U<uM-N + yj v*") 

That resembles the above presented expressions for the scattered powers. Therefore, denoting after Kennaugh 
[ ] the radius of the Poincare sphere for scattered waves as ^ennaugn 

rQ=k 

it is possible to present the following equalities: 

<Tn 

and 

b0 = -2k(kQl
nq™ +kVl„uM +kVI

ny
M) = 2k[k(Ot)r^] = 2k(OT)^k 

a, =*2[1 + (0I)2] = *2 +[k(Oi)n]
2=k2

+(OI)l=k 

(B.11) 

(B.12) 

.^_+b[_ (B.13) 

4     an 

(B.14) 

what yields 

aM-N = a, ± b0 = *2 + (OI)2 =, ± 2*(0I)r _* = [* + (01)    , ]2 = I^-* r° 1(IN)2
=, 

S'if diameter °f thC POinCare SPhere f°r SCattercd W3VeS (thC P°inCare ^^ model of the scatterin8 
2r0=k(M)ro=l +*(IN)ro=1 = (IM)ro=, +(IN)r_, =2k 

= J^ + 4^=fir CB.15) 
and its square is 

v y (B.16) 
= ^?aw^( + 2|det^| 

c^sSyrSliv^^here5^eter/S (3fter KennaUgh [96]) 'P^rtional to the target's effective 
crossection (ECS) givenby the squared sum of square roots of radar crossections (RCS) for polarizations M and 
1'trivT    ^^^ **?** md determinant of «>e Sinclair matrix A, corresponding to the Kennaugh 
matrix K, as has been shown above (see also Appendix C). 

™tri v   S^ ^r15 are P™^003110 «I"31-65 of segments inside the Poincare sphere model of the scattering 

Si Sclents      ^ S' " Wdl 3S thC *""** °f thC m0de1' are Pr°P°rt^ to amplitude^ 
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APPENDIX C 

OTHER POWER RELATIONS INSIDE THE POINCARE SPHERE MODEL 

In the Appendix B developed magnitude of the target's effective crossection (ECS) can be presented by the 
following sequence of formulae: 

°"o = (V°max  + V°min ) 

= °max + O-min + 2V°"max°'min 

= 2("l+Vai2-A2J (C.l) 

= Ml+M2+Mi+M4 + 2yJMxM2 +M3M4 - 2Re( A^A^ * A4*) 

= SpanA + 2\detA\ 
Expressing the absolute value of determinant of the Sinclair matrix by 

one obtains 

and other useful relations: 

ao Hdet^|=Vo-maxormin =Vai2 -*o = Y"~ai 

C70=(2Är)2=2(a1+a0) 

(IM)n=l + (OI)„=V^/^ 

(IN)„ = l-(OI)„=V^r-/Ä: 

COD    =  vamax ~V°min   _   fy) 
2* "2*2 

l-(OI)^^ = a0n;     l + (OI);=-^. = a: 
K AT 

«I\2 rK2- a^o^iiKQir+CUi^+cyJ)2] 
Ql 

I 

_ 1 
\Q] 

u TJ 
k 

V V u    J 
'0=1 

2k' 
rn=k 

V -2 V 
Al A, 
*5 

<^o 
*5 

For any incident polarization point T: 

CID:=(qT-Qi)a+(uT-Ui)a
+(vT-Vi)a 

= l + (Ol)^-2(QUT + UiuT + VnV) 

—[a1+(*,qT+*3u
T+65v

T)] 

1       T 

(C2) 

(C.3) 

(C.4) 

(C5) 

(C.6) 

(C.7) 

(C.8) 

and 

ffT = (IDU-V^«- (C.9) 
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APPENDIX D 

GEOMETRICAL REPRESENTATION OF THE CO-POLARIZED RECErVED POWER 
FOR THE BISTATIC SCATTERING (NONSYMMETRICAL) MATRIX 

Following the original derivation by Kennaugh [95], and using the here proposed notation, the co-polarized 
received voltage will be presented by the amplitude transmission equation in the characteristic ONP PP basis K 
in the form: ' 

Vc=[a   b] A2 Bl+jB2\     \a\T 2 

-Bl-jB2 A A     -
A

KCS(PK)   +A\ccs(bT
K)

2 (D.l) 
CCS K 

where the exponent term, exp{/>}, of the 4c scattering matrix has been omitted, leaving the diagonal elements 
or that matrix, 

^2 - A2CCS     -    A - A1CCS , (D.2) 

nonnegative real. It can be immediately seen that the problem is almost exactly like for the symmetrical matrix. 

The only difference will be in the value of the effective crossection, a0 '= (A{ + A2 )2 < <r0, representing 
the square of diameter of the Poincare sphere model for that matrix. 
When using the known formulae for the Cayley-KIein parameters in terms of the analytical parameters, 

a - cosy exp{-J(S + s)} 

b = sin/exp{j(S-e)}  ' ^3) 

the co-polarized received power can be presented as follows, 

Pc =\VC\
2 = (A2 cos2 y\ + A, sin2 yT

K)
2 - ^A,A2 sm2yT

K sin2<S£)2. (D.4) 

For the CO-POL Null points, O, and Oz, in the CCS we have 
cos2y?"=TTTs0' sin2rou=^r,0 

Ai+A2 Ar+A2 

Denoting 

2r°'=2y%=2y° (D.6) 
we obtain 

A2 cos2 yT+Ai sin2 yT
K=±(Al+A2)(l-cos2y° cos 2^) (D.7) 

and 

4AXA2 sm2yT
K sin2<?£ =-\{Ax + A2)sin2yJ sin2r£ cos(90° +2ST

K). <D.8) 

Presenting the received power as a product of the sum and difference of the above expressions, applying the 
known dependence from spherical trigonometry, 

cos2^i>2 = cos2r2 cos2^ -sin2r? sin2^cos(90° ±25), (D.9) 
and the equality 

£(l-cos2i«0 = sinV, (D.lO) 
we arrive at the formula 

pc = (A +^2)
2sinV1sin2 y/2. (D.H) 

In view of the equality 
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sin^U=2(°UT)r0=i=^r(OuT)2f.=^7,    with      ^=A,+A2, (D.12) 

the equivalent geometrical dependence for the co-polarized received power takes the form, 

/>c = (^1+A)2
[(0iT)2x(02T)2] 

10 

(A+A)2 (D.13) 

= ~P^[(OlT)2x(02T)2] 

where 
v2 _, A    ,   ,,  x2 a0'=(2k'y=(Al+A2) 

< a0 s (2£)2 = 42 + ^,2 + 2(£2 + £2
2) + 2^/(4^2 + #i2 - ^2

2 )2 + 45i2^ 
(D14.) 
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APPENDIX E 

RELATIONS BETWEEN ELEMENTS OF SINCLAIR AND KENNAUGH MATRICES 
CONDITIONS FOR PRESERVATION OF THE COMPLETE POLARIZATION 

E 1. Bistatic scattering. General form of matrices 

The following two notations will be used for presenting the Kennaugh matrix in the ONP horizontal/vertical 
lmear basis: after Perrm [126]/van de Hülst [82] (originally being applied to the FAA, but here to the BSA) 
and after Huynen/Cloude (Cloude [32] extended the Huynen's notation, originally introduced for symmetrical 
matrices, to the bistatic scattering case), 

«i b, b3 b5 

KH = 
c3 

a2 

c4 

b4 
a3 

b6 

b2 

_C5 c6 c2 a4 

A0+B0 C + N   H + L F + I 

C-N A+B    E + J G + K 

H-L E-J    A-B D + M 

H    L F-I G-K   D-M -A0+B0 

(E.l) 

H 

That Kennaugh matrix corresponds to the following Sinclair matrix in the appropriate notations 

AH = 
A2    A3 ,J* 

H    yjl{A0+A) 

A0+A + (C+jD)   H-jG- j(I +jj) 

H-jG+j(I+jJ)   A0+A-(C+jD) 
(E.2) 

H 

and can be obtained according to the formula 

K^=U(^0^*)U;      U = 
^ 

1 1 0 0" 
0 0  1 -J 
0 0  1 j 
1 -1 0 0 

(E.3) 

(E.4) 

It should be observed that matrices in the above explained Perrin/van de Hülst notation, and all further 
presented formulae m that notation, can be related to any other ONP PP basis, not only to the H basis They are 
equally valid for the natural and reversed order of basis vectors, but only for the time-convention expf+jat) and 
for propagation z-axes directed towards the target for the incident and scattered waves. 

Expressions for elements of the Kennaugh matrix will be presented with the use of the additional 
auxiliary notation: 

Mk=AkAk* 

Sh =Sik =i(AiAk *+AkAi*) = Re(AkAi*) = Re(AiAk*) 

-A, =Dik =i(AiAk *-AkAi*) = lm(AkAi*) = -lm(AiAk*) 

The resulting formulae are 

al = j(M2 +M3+M4+M1) 

a2 = J-(A/2 - M3 - MA + Mx) 

by =i(M2-M3+M4-Mi) 

a3 =S34 +^2 =Re(^4^3 *+AiAl*) 

a4 =S34-Sl2 =Re(A4A3 *-A2A{*) 

(E.5a) 

(E.5b) 
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b2 =Dn + D34 = Tm(A2A1 *+A4A3*) 

c2=Dl2 -D34 = hn(A2A1 *-A4A3*) 

b3=S32 + S14 = Re(A2A3 *+A4Al*) 

b4=S32-Sl4=Re(A2A3*-A4A1*) 

b5 = D32 + Dl4 = \m{A2A3 * +A4A{ *) 

b6 = D32 -Dl4 = lm(A2A3 * -A4AX*) 

(E.5c) 

(E.5d) 

c3 ^^ +Sl3 = Re(A2A4 *+A3At*) 

c4 = £.2 ~Sl3 = *e(A2A4 *-A3AX*) 

c5 = D42 + D13 = lm(A2A4 * +A3AX *) 

c6 =D42 -D13=1m(A2A4 *-A3A,*) 

(E.5e) 

For nondepolarizing (or 'point') target , only 7 independent elements of the Kennaugh matrix may 
exist. Therefore the following mutual relations between elements of that matrix can be found. They are known 
also as conditions for preservation of the complete polarization: 

a,bj -a2Cj =c3c4 +c5c6 

aiC, -a2b!=b3b4+b5b6 

a3b1+a4c1=b3c4+c5b6 

a3Ci+a4b1=c3b4+b5c6 

aib2 -a2c2 =c3b5-b4c6 

aiC2-a2b2 =b3c5-c4b6 

a3b2 +a4c2=b3b5-b4b6 

a-,c + a4b, = c3c5 - c4c6 

><?>< 

i3^2 *4U2 

><=> 

a,b4 -a4c4=Cib3-b2c6 

a,c4-a4b4=b1c3-c2b6 

a2b4+a3c4=bib3-c2c6 

a2C4+a3b4 = c1c3-b2b6 

aib5-a4c5=c1b6+b2c3 

aIc5-a4b5=biC6+c2b3 

a2b5+a3c5=b1b6+c2c3 

a2c5+a3b5 = CiC6+b2b3 

a,b6 - a3c6 = qbj - c2c4 

o 

><?>{ 

a,c6 - a3b6 = bjCj - b2b4 

a2b6 + a4c6 = bxb5 - b2c4 

4u6 - CjC5 a2c6 + a„b C2^4J 

y <=> < 

C(BQ-B) = EH + FG 

C(A0-A) = IK + JL 

N(B0+B) = -EL-FK 

N(A0+A) = -GI-HJ 

' D(B0-B) = -EG + FH 

D(A0-A) = -IL + JK 

M(B0+B) = EK-FL 

M(A0+A) = -GJ + HI 

E(A0+A) = CH-DG 

E(A0-A) = KM-LN 

J(B0+B) = CL + DK 

J(B0-B) = -GM-HN 

F(A0+A) = CG + DH 

F(A0-A) = -KN-LM 

I(B0+B) = CK-DL 

I(B0-B) = -GN + HM 

G(BQ+B) = CF-DE 

GiAo - A) = -IN - JM 

K(A0 + A) = CI + DJ 

K(B0-B) = EM-FN 

(E.6a) 

(E.6b) 

(E.6c) 

(E.6d) 

(E.6e) 
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a3C3 =Cjb4 +C2C5 
a,b3 

aIc3-a3b3=b1c4+b2b5 

a
2b3+a4c3 = b1b4+b2c5 

a2c3 +a4b3 =c,c4 +c2b5 j 

><^>< 

H(B0+B) = CE + DF 

H(A0-A) = M-JN 

L(A0+A) = CJ~DI 

[L(B0-B) = -EN-FM 

l>o=b? + b3
2+b5

2=c2 +c3
2+c5

2 o CN + FI + HL = 0 

b2+b2+b2=c2+c2+c2 o CN + EJ + GK = 0 

b3-b2+b2=c2-c2+c^ <=> DM-HJ + HL = 0 

b6 -b
2 =c5 c2 -c2 <=> DM-FI + GK = 0 

a,a2 +a3a4 = blC, +b2c2 of   + D* = <4> +^X*o + B) 

[M2+N2=(A0-AXB0-B) 

a1a3+a2a4=b3c3 +b6c6o \G2+H2=(A0+A)(BQ-B) 

{K2+L2=(A0-AXB0+B) 

Other relations: 

{F2 4- F2 - R2       »2 -H0 -B 
I2+J2

=A2_A2 

SpanK = 4a2 = {SpanA)2 

det^ = -a^=-|det^|4. 

Inverse relations (for ^positive real): 

i42=V2(ai+a2+bi+c1) 

4=[b3+b4-j(b5+b6)]/(2^2) 

^4=[c3+c4-j(c5+c6)]/(2^2) 

A=[a3-a4-j(b2+c2)]/(2^2) 

E 2. Monostatic scattering. General form of matrices 

For monostatic scattering: 
A4 = A3 

c,=b„  / = !,...,6 

I = J = K=L = M = N = 0,    A = A0 

Thus, Karnaugh and Sinclair matrices take the forms 

KH = 

*i    bj    b3    b, 
bi    a2 

b3    b4    a 
4       "6 

■x    b, 

Lb, 

C        ^o + B       E 

H E       A0-B 

F 

G 

D 

*JH    L     F D       -Ao+B0JN 

154 

(E.6f) 

(E.6g) 

(E.6h) 

(E.6i) 

(E.6j) 

(E.7) 

(E.8) 

(E.9) 

(E.10) 
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XH 
*3 

H 2JA 

2A0+(C + jD) H-jG 

H-jG 2A0-(C + jD) H 

(Ell) 

Elements of the Kennaugh matrix are 

&1 = \(M2+2M3+MX) 

a2 = j(M2-2M3+Mx) 

bx=\(M2-Mx) 

a3 = M3 + Sl2 = M3 + Re(A2 Ax *) 

a4 = M3 - SX2 = M3- Re(^ ^ *) 

b2=DX2=Im(A2Al*) 

b3=S32+Sl3=Re[A3*(A2+Ax)] 

b4=S32-Sl3=Re[A3*(A2-A1)] 

b5=D32+Dl3=hn[A3*(A2-A1)] 

b6=D32-Dl3=lm[A3*(A2 + A1)] 

(E.12a) 

(E.12b) 

(E.12c) 

(E.12d) 

For nondepolarizing (or 'point') target, only 5 independent elements of the Kennaugh matrix may 
exist. Therefore the following mutual relations between elements ofthat matrix can be found. They are known 
also as conditions for preservation of the complete polarization: 

äi   — cL2  T" a3    i   CLA 

(aj-a4)(a!-a3) = a1a2+a3a4 =bj+bj <=> C2+D2 =2A0(B0+B) 

(a!-a4Xai -a2)=a1a3 + a2a4 = b3 +b\ o- H2 +G2 = 2A0(B0 - B) 

(aj-a2Xai-a3) = a!a4+a2a3 =b;+b4   <=>  F2+E2=B7 BA 

*\ i2 =bf + b?+b*+b* 

af-a^bj+bj+bj+b? 

a?-a*=b?+b2+b£+b^ 

bjb3b5 =bjb4b6 + b2b3b4 + b2b5b6 

bi(ax -a2) = b3b4 +b5b6 <=> C(B0 -B) = EH + FG 

b2 (a! - a2) = b3b5 - b4b6 o D(B0 -B) = -EG + FH 

b3(a! - a3) = bjb4 + b2b5 <=> H(B0 +B) = CE + DF 

b4(a,-a4) = b1b3-b2b6 <>2A0E = CH-DG 

b5(a! -a4) = bjb6 +b2b3 o 2A0F = CG + DH 

b6(al-&3) = bxb5-b2b4t>G(B0+B) = CF-DE 

(E.13) 

(E.14a) 

(E.14b) 

(E.14c) 

(E.14d) 
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E 3. Bistatic scattering in the characteristic basis 

In the characteristic coordinate system (CCS) of Stokes parameters, corresponding to the characteristic basis, 

K, of the orthogonal null-phase (ONP) polarization and phase (PP) basis vectors, w^and uL = u** 
obtain 

K CCS 3Kr = 

»i     b,    b3 

t>i     a2    bA   b 

-b3    -b4    a 
4      u6 

0 

"b5    -b« 
3 

0    a 

= KKHDK
H=V(AK®AK*)V 

for 

and 

where 

and 

D£=U*(Cf ®Cf*)U 

K = 
A2      /43 

-Aj    Ax_ 
K 

A2         B1+jB2~ 

-Bx+jB2        Ax 

^2 - A2CCS = A 2Ke     ^Ax= AICCS =. 

-iCCS 

AlKe~Jfl>0 
B2>0 with Bx>0 if B2 = 0. 

CK - 
a   -b* 

a 

r\K 

, we 

(E.15) 

(E.16) 

(E.17) 

(E.18a) 

(E.18b) 

(E.19) 
// 

Components of the K matrix in the K basis are (lower indices K have been omitted for simplicity of notation): 

at =±(A2
2+Al

2) + B1
2+B2

2 >0,   b3 =8^ -A,), 

*2 = \(A1 + A1
2
)-BX

2
-BI       b4 = B,[A2 +A,), 

a3 = 4 ^ - JBf - £2, b5 = -^(^ + 4 ) < 0, (E.20) 

a4 = -4 ^2 - B2 - B2 < 0, 

b1 = l(42-42)>0, 
^ = -^2(^2-4)^0 

b2=0 

They satisfy the linear equation: 

a2 =a, +a3 +a4. 

The corresponding conditions for preservation of complete polarization are: 

(a2 -a4)(a2-a3) = (a1+a4Xa1+a3) = a1a2 +a3a4=b2 

(a} + a4)(a3 + a4) = a^ + a2a4 = -b2 - b2 

(ai +a3)(a3+a4) = a1a4+a2a3 = -b2 -b2 

a2-a^=b2+b2+b2+b2 

a2-a^=b2+b^+b^ 

a2-a2=b2
+b2+b2 

(E.21) 

(E.22a) 

(E.22b) 
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and 
b,(a, -a2) = b3b4+b5b( 

0 = b3b5 

b3(a, +a3) = b1b4 

b4(a1+a4) = b,b3 

b5(a1+a4) = bib6 

b6(a1+a3) = b,b5 

b4b6 (E.22c) 

(E.22d) 

£ 4. Monostatic scattering in the characteristic coordinate system 
For matrices 

"a! bj 0 

bj a! 0 

0 
Kccs = Kjr - 

0 

0    a3 

0     0 

0 

0 

0 

-a. 

= D^K^Df = V(AK ® AK*)U        (E.23) 

and 

AK = 
0 

0 

4. 0     Ax 
e    -CH AHCH 

JCCS IK      L 

we obtain values of the Karnaugh matrix components 

*!=$&%+A?) = ±SpanA 

b1=}(^2
2-A2) = bo 

a3 = AXA2 =a0 =|det^4|>0. 

The one only condition for preservation of complete polarization is 

„2       „2   . L2 ai =a3 +bi. 

(E.24) 

(E.25) 

(E.26) 

APPENDIX F 
COVARIANCE AND COHERENCE MATRICES 

F 1. Definitions 

For Sinclair or Jones matrices, 

A = 
'A 

A 
2       ^*3 

4      A. 
? ^° = A2    A3 

A4    Ax 

and the corresponding amplitude complex four-vectors, 

4 4° 

kL = vecA - 4 
4 

t *L°Svec4° = A 
Al 

A\ <| 
or 

Afp — U    äL , Äp — U      Kp , 

(F.l) 

(F.2) 

(F.3) 
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using the unitary matrix with columns presenting Pauli matrices in vector forms, 

u= 
Ji 

1 1 0 0 

0 0 1 -j 
0 0 1 j 
1 -1 0 0 

(F.4) 

we define, in the ONP PP basis H, two covariance matrices, Umd 2°, and two coherence matrices, T and 7°, 
with mutual relations between them: 

ZH=kLHkLH*=\JTH\J\ 

1H = kPHkPH   = U * £fjU, 

^=C^V = U7^Ü* 

fO _ KO  ro *_fT*roTT 

(F.5) 

(F.6) 

Explicitly (see notation in Appendix E, formulae (E.l)), the covariance matrix is: 

s„=- 

aj+aj+b^cj b3+b4+j(b5+b6) c3+c4+j(c5+c6) a3-a4+j(b2+c2)" 
b3+b4-j(b5+b6)      a^aj-b^C! a3 +a4 -j(b2 -c2) c3 -c4 + j(c5 -c6) 

C3+c4-J(c5+c6) a3+a4+j(b2-c2)      a1-a2+b]-c1 b3 -b4 + j(b5 -b6) 

a3-a4-j(b2+c2) c3-c4-j(c5-c6) b3 - b4 - j(b5 -b6) a1+a2-b1-c1 

A0+A+B0+B + 2C H + E + J + L + j(F + G + I + K) 

H + E + J + L-j(F + G + I + K) B0-B + A0-A-2N 

H + E-J-L-j{F + G-I-K) B0-B-A0+A+j2M 

A0+A-B0-B-j2D H-E + J-L-j{F-G-I + K) 

H + E-J-L + j(F + G-I-K) A0+A-B0-B + j2D 

B0-B-A0+A-j2M 

B0-B + A0-A + 2N 

H-E-J + L-j(F-G + I-K) 

H 

H-E + J-L + j{F-G-I + K) 

H-E-J + L + j(F-G + I-K) 

A0+A + B0+B-2C 

The coherence matrix is: 

T„=- 

a,+a2+a3-a4 bl +c, - j(b2 +c2) b3 +c3 +j(b6 +c6) b5 -c5 - j(b4 -c4) 

bi+c1+j(b2+c2) ai+a2-a3+a4 b4 +c4 + j(b5 +c5) b6 -c6 - j(b3 -c3) 

b3+c3-j(b6+c6) b4+c4-j(b5+c5)     ai-a2+a3+a4 b2-c2 + j(bx-c,) 

b5-c5+j(b4-c4) b6-c6+j(b3-c3) b2-c2-j(b1-c1)     ai-a2-a3-a4 # 

'A0+A C-jD H + jG I-jJ 

C + JD B0+B E + jF K-jL 

H-JG E-jF BQ-B M + jN 

I + jJ K + jL M-jN A0-A 
H 

(F.7) 

For the monostatic scattering, elements of the last column and row ofthat matrix are equal to null. 
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F 2. The spatial reversal transformation 

Starting from the known equation with the Sinclair matrix in any ONP PP basis B we immediately obtain the 
corresponding relation for the amplitude Sinclair four-vector: 

A° -r° * A •        r° -rB * 
^B ~^B      AB^ ^B~^H 

KLB ~ u5     KLB> U°* = (C° *< 

-1   o" 

0     1 
CB = 

-w 

u 

u 

w * 

B 

H 

-w * 0      u 0 

"1   0" 
) 

0    1 ).= 
0 

u 

-w*    0 

0      w 

u 

0 

0 it 0 w 

^■B     ^B 
1    0 

0    1 

VB*UB=diag{l, 1, 1, 1} 

H 

with 

and 
\xBH = sin 2y„ cos2SB

H 

v/BH = cos2^^ cos2SB
1 COS2£-^ - sin2dB

H sin2eB
H 

-j(cos2yB
H co$25B

H sin2e# + sm2SB
H cos2sB

H\ 

The corresponding relations for covariance and coherency matrices are 

yo _ko ro  * 
^B ~ KLBKLB 

= TT° *k    t     *TT° 

and 

because 

lLBnLB      ^ B 

-TT° *T   TT° 

TB
y=\J*VB* XJTB\J * XJ°B U 

i£ = urs°u*=u° * zBu° = v°B * VTB\J * uB 

(F.8) 

(F.9) 

(F.10) 

(F.ll) 

(F.12) 

(F.13) 

F 3. The transmission equations 

The received voltage can be presented in terms of the Sinclair and Jones amplitude complex four-vectors in any 
ONP PP basis B as follows: 

where 

Vr = uBABul = (uB 0 u^kjjg = sBkPB 

= u*° * AWB = (u™ *®uT
B )k°LB = sB°k°PB 

sB=V(uB®ul) 

5J|=Ü(iff0*®lfJ) 

1   0 

0    1 
)U*0(iiJ®ifl) = 0(CX®4) = U(Q° 

= \JV°BV*sB 

and the received power in terms of the corresponding Karnaugh and Mueller coherency matrices 

(F.14) 

(F.15) 
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P =vv * r       'r"r 

= sHkPHkPH   sH   - sHTHsH (F.16) 

-s°k°  k°   *c0*-T0T°e0* - bHKpHKpH      !>H     - SH1HSH    . 

F 4. The change of basis transformations 

Again, starting from known equations for amplitude Sinclair and Jones matrices we can immediately obtain the 
corresponding relations for the covariance matrices in the new ONP PP basis. Taking 

we find 
A  -cB A rB A ° - rB * A ° rB 

K
LB 

A 

(CB®CB)kLH, XLB 

'Al 
Al 
Al 
Al 

— rrB * (CB*®CB)k°LH 

(F. 17) 

(F. 18) 

and 

as well as 

T    - k    k     * ^B  ~ KLBKLB 

= (CJ®CJ)kLHkLH*(C%*®C*B
H) 

= (CB®CB)I.H(CB*®C*B
H) = f.B*, 

yo _j0 ro * 
6fl  — KLBKLB 

= (CJ*®CB)k°LHk^*(CB®C*B
H) 

= (CB*®CB)Z°H(CB®C*B
H) = f.B*, 

T   - k     k      * 1B ~ *PBKPB 

= IJ*(CB®CB)I.H(CB*®C*B
{)\J 

= V*(CB®C%)WH\J*(C%*®C*B
H)U=TB*, 

Iß   — lipBKpB 

■U **™*™*u=ü*z°Bu 
\J*(CB*®CB)I.0H(CB®C*B

H)V 

\J*(CB*®CB)\JT^\J*(CB®C*B
H)U = DB

HTM=TB°*. 

(F. 19) 

(F.20) 

(F.21) 

(F.22) 

It is interesting to compare the just obtained equalities with the corresponding change of basis equations for the 
Kennaugh and Mueller matrices, 

KB=DB
HKHDB

H=\J*(CB*®CB)XJKH\J*(C%®CB*)\J, 

^B=DB
HK%DB

H=\J*(CB*®CB)\JK0
H\]*(CB®CB*)V. 

(F.23) 
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APPENDIX G 
THE CHARACTERISTIC POLARIZATION RATIO AND THE SINCLAIR MATRIX 

IN THE CHARACTERISTIC BASIS 

The two-step procedure of obtaining the Sinclair matrix in the characteristic polarization basis uses as the first 
step the transformation 

AK' ~ ^H AHCH   ~ 
A2     A2 

A   AA 
A'2     A'z 

-A[   A; 
(G.l) 

with the transformation matrix 

CK  - 
0      e's 

iK' 

H 

cos y   - sin Y 

sin/     cos^ 

K' 

H  _ 

JS -\K' 

-jS 
H 

cos/       -sin^e 
JlS 

-jlS 

sin^e 

1 

cos/ 
(G.2) 

H 

y/l+pp* IP 1 

1      -P> 
K' 

H 

The second-step transformation will change only phases of diagonal elements. Using the transformation matrix 

CK = 
0 

we obtain 

A
K -CK'AK.CK. - 

A\e 

J{3+e) 

A\ 

(G.3) 

t,   0]2{S+e) 

A2     A3 

-A3    Ax 

(G.4) 
7-j2(S+e) 

A\ A\eJ 

In the characteristic basis we want to have equal phases of diagonal elements. It can be achieved when taking 

2£%=±(argA'2-argA\)-2ö% (G.5) 

These elements will become real when excluding from the matrix the exponent term, expfy», with the phase 
argument 

ß = ±(aigA'2+aigA\). (G.6) 

The problem remains of obtaining the characteristic polarization ratio 

P = PH=PH (G.7) 

for known elements, A1H, A3H, A4H, Am, of the AH matrix Such polarization ratio should fulfill the 
equality 

A3K + AAK = A3K, + A4r = 0. (G.8) 

The first of the two transformations yields expressions 

A
\=1-

A
IHP* +A3H - A4Hpp* +Amp]l(\ + pp*) 

A
\=[-

A
IHP* ~

A
3HPP* +

A
AH + A\HPV'(1 + PP*) 

(G.9) 
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Neglecting denominators we will add these two expressions equalizing the sum to null, and take also its 
conjugate value, thus obtaining the two equations: 

-2A2Hp*+2AlHp + (A3H + A4H)(l- pp*) = 0 

2AlH * p * -2A2H * p + (A3H * +A4„ *)(1 - pp*) = 0 (G.10) 

Multiplying the first equation by A2H *, the second one by Aw, and taking their sum we obtain 

-2(A2ffA2ff *-AwAw*)p*+[AlH(A3H *+A4H*) + A2H *{A3H + A4H)](l-pp*) = 0. 

Then, denoting 

we arrive at the equation 

"i _ A2HA2H *-AXHAm * 

R2 = -AXH{Am * +A4H*) - A2H * (A3H + A4H) 

-2Rlp*-R2+R2pp* = 0 

which after multiplication by pi p* takes the form 

R2p
2 -2RlP-R2-P- = 0. 

Solution ofthat equation is 

because then 

and our equation becomes 

_Rl-ylR^+R2R2*      K 

P= ^ = Pn 

P_ = R^ 
»* or      R2-^ = R2* p*     R, - p 

R2p
2 -2Rlp-R2* = 0. 

That equation exactly agrees with the proposed solution and determines the two lacking arguments 

2rH=2arctm\p*\. 

Now, all elements of the Sinclair matrix can be found from the equation 

AKe -JM A2 Bl+jB2 

rBx-jB2 A, 
They are 

ccs 

\A2'\       Az'e~>» 

where 

^2 - A2CCS -\A'2 |, 

A\ - AICCS =\A\\, 

Bi+jB2=(Bl+jB2)ccs = A'3e-J" 

A i = [A2H + (A3H + A4H)p + AlHp2]/(\ + pp*) 

A\ = [~A2Hp * +A3N - A4Hpp * +Awp] I (1 + pp*) 

A\=[A2Hp*2 -{A3H + A4H)p*+Aw]f (1 + pp*). 

(Gil) 

(G.12) 

(G.13) 

(G.14) 

(G.15) 

(G.15) 

(G.16) 

(G.17) 

(G.18) 

(G.19) 

(G.20) 
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APPENDIX H 

THE ALLOWED REGIONS FOR THE INVERSION POINT INSIDE THE POINCARE SPHERE 
OF UNIT RADIUS 

HI. Boundary surfaces of the allowed regions 

Polarization properties of the Sinclair scattering matrix, such as the scattered power formation, or the Poincare 
sphere inversion (before its rotation, in the process of polarization transformation when scattering), depend on 
location of the inversion point I inside the Poincare sphere model of that matrix. Also reconstruction of the 
whole Sinclair or Karnaugh scattering matrix is possible for known coordinates of that I point in the 
characteristic coordinate system (CCS), when the sphere diameter is known. However, location of the I point in 
the CCS cannot be arbitrary, and in some regions two solutions for reconstruction the matrix exist. Therefore, it 
is of special importance to find boundary surfaces of the allowed regions for that point inside the sphere in the 
CCS. Location of the I point on those surfaces, or between them, may also serve to classify scattering matrices 
independently of their polarization bases because the geometry of the model is basis invariant. 

To simplify considerations and notation the sphere radius will be chosen equal to one (k = 1), and the 
upper and lower indices of coordinates of the I point will be omitted by taking: 

Q«QJ,   U=U<,   V.V]. 

One boundary surface corresponds to common solution, I and II, satisfying the equation 

\R\=\RnWRe(detACCSn)\  

= Vn-(Q2+U2+V2)]2-[2UV/Q]2 =0' 

(HI) 

(H.2) 

In the Q=const crossections ofthat surface, V as a function of U presents two symmetrical hyperbolic branches, 
for U<0 and UX), 

V = ^V(Q2+U2)(1-Q2)-|U|, (H.3) 

determined in the range |U|< V, with the common point atU = 0. A part of the allowed region for the 
inversion point is below that surface but for V > 0. 

Another boundary surface can be found when considering the CCS conditions A2 > Ax > 0 in the 
two solutions. From (9.38a) and (9.39a) we have 

and 
b15'>2(b1 +b3) for solution I 

2(bj 4- b5 ) > b^ for solution H 

For k = 1, and nonpositive Q, we obtain from (9.41) 

b1=2|Q|,   b2=4U2,   b2=4V2 

and according to (9.35) 

S = S=2 1 + Q2 +U2 + V2 +^[l-(Q2 +U2 + V2)]2 -(2UV/Q)2 

(H.4a) 

(H.4b) 

(H.5) 

(H.6) 

2(a,+|tf|)>0 

with 

a,=a1/;=l + Q2+U2+V2 
(H.7) 



Z H. Czyz, ONR-Report-3 (Final Version) April 1, 2001 164 

and 

with 

l*H*J=+/a2-^(b2
+b2Xb2

+b2) 

= +Vao-(b3b5/b,)2 

a0=a0„=|det(.4cc&,)| 

= 1-(Q
2
+U

2
+V

2
)>0. 

(H.8) 

(H.9) 

The new boundary surface corresponds to limiting cases of the two conditions, with inequalities being changed 
for equalities. That results in solution I: 

2|Q| l + Q2
+U2

+V2
+^[l-(Q2

+U2
+V2)]2-(2UV/Q)2] = 4(Q2

+U2);    (H.10) 

what after rearranging and squaring yields 

(Q2 +U2 + V2 +QX1 + QXQ2 +U2) = 0. (H.ii) 

Taking the null value of the first term in brackets we arrive at the equation of the so-called 'small sphere', 

(|Qhi)2+U2
+V2=l, (H.12) 

with its center of coordinates Q = -0.5, U = V = 0, and the radius r = 0.5. Only the upper part of that 

sphere (for V > 0) can be considered as a part of the allowed region for the inversion point. It appears that the 
two just obtained boundary surfaces are tangent to each other along the circles formed by their crossections with 
the half-planes 

±U + V = 0:       V>0. (H.13) 
However, for the solution I, only a part of that surface, on and below those half-planes, is a true boundary above 
which the |Ä| term becomes imaginary. The remaining part, above those half-planes, is the boundary surface for 
the solution n only. The I points for that solution can be subtended above that surface and beneath the boundary 
surface for common solution. In that region the two solutions exist. That can be checked by inspection of the 
corresponding equation for the solution n, 

4(Q
2
+V

2
) = 2|Q|^1 + Q

2
+U

2
+V

2
+^[I-(Q

2
+U

2
+V

2
)]

2
-(2UV/Q)

2 
(H.14) 

leading to the same equation of the 'small sphere'. 

H2. The allowed regions for the inversion point 

That way the allowed regions have been found in which the inversion point I can be located Outside those 
regions elements of the Kennaugh matrix would become complex because of the imaginary R values 
Coordinates of the I point inside the sphere of the unit radius, in the CCS, are subtended in the ranges- 

0<V< 

-1<Q<0 

-VlQ|-Q2<U<VlQ|-Q2 

|Q|L^(Q2
+U2)(l-Q2)- ,U| 

VlQ(-Q2-u2 

forV>|U| 

forV<|U| 

(H.15) 

(H.16) 
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Such location of the I point allows to obtain the solution I. The solution II is also possible but only for V >| U| 
and above the 'small sphere', for 

v>VlQhQ2-u2 (H.i7) 
(see Fig. HI). 

H3. The S and R parameter dependence on the Aces matrix elements 

It is interesting to examine how the S and R parameters depend on the elements of the ACcs matrix 
belonging to the two solutions. Using equalities (7.25) (see also Section E 3 in the Appendix E) we find that 

a2 = (A2AX + B2 - B2)2 + 4B2B2   and   b3b5 / b, = -2BXB2 (H.18) 

thus obtaining 

|Ä|= +^(A2AX+B2-B2)2 . (H. 19) 

Denoting in turn 

S1 = (A2 + Ax )
2 + 4BX (H.20a) 

and 

Sn=(A2-A{)
2 +4Bl (H.20b) 

we can show that 

S = ±[SY+Sa +T](S
1
 -S*)2] = mzx(Sl,SG). (H.21) 

It can be shown also that 

b^1 -l{b\ +bj) = Ax(A2 - Ax)S* >0 (H.22a) 

and 

2(b2 +b2)- bxS
n = Ax (A2 + Ax )S

n > 0 (H.22b) 

what means that S   and 5"   are the S parameters for the solutions I and II, accordingly. Also, having 

\R\=iyl(Sl -SU)2 (H.23) 

we obtain conditions: 

R = A2 Ax + B2 - B2 > 0 ,   for the solution I, when S = S1 > SR, (H.24a) 

and 

R = A2AX + B2 - B\ < 0 ,   for the solution n, when S = SU > S1. (H.24b) 

H4. The iS" and R parameter dependence on the I point location 

However, if we will chooseA2,Ax
l,Bl,Bl   and   A2 ,Ax ,B2 ,BX corresponding to different 

solutions but for the same Q, U and V coordinates of the I point, then in virtue of the equality 

1*1 = J[I-(Q
2
+U

2
+V

2
)]

2
-(2UV/Q)

2 (H.25) 
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we obtain 

\R\=\Rl\=\AlA} +(Bl)2 -(B*)2\=\Ra\=\A?A? + (B?)2 - -(B?n (H.26) 
with 

Rl=-Rn>0 
and, what follows, 

(H.27) 

S = 2(al+\R\) = S1=S]I. (H.28) 

Having these results it is interesting to observe that starting upwards with the I point from the V = 0 
plane in its region inside the circle 

(IQhj)2+u2=j (H.29) 

we first begin with the maximum positive R value, 

Ä = a0=l-Q2-U2, (H.30) 

corresponding to the solution I, until reaching the boundary surface R = 0 for common I and II solution Then, 
applying the solution n, we can move with the I point downwards having negative R values, until reaching the 
boundary surface for that solution corresponding to the minimum R value, 

U2 

Ä = -l+|QH-2—. 
IQI 

(H.31) 
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APPENDIX I 

EXAMPLES OF SCATTERING MATRICES AND THEIR POINCARE SPHERE MODELS 
FOR SPECIAL LOCATIONS OF THE INVERSION I POINT 

General remark. All models are normalized to the sphere radius k = 1. The resulting square of the sphere 
diameter is a0n = 4. The I point coordinates are expressed in the characteristic coordinate system (CCS) and 
have been denoted as: 

QsQi      U.Ui Km v=v^„. (1.1) 

The V coordinate should be nonnegative because for V < 0 it is always possible to rotate the polarization sphere 
by 180° about the KL (OQr) axis preserving the condition AAK - -A3K required for the characteristic ONP 
PP basis, known also as the CCS in the Stokes' parameters domain (see also Appendix K). 

Other parameters are: 
/ = U/Q = b3/b, 

e = -Q/V =-b,/b5>0 

ao„,i* =1 + (Q2 +U2 + V2 );    a0>1 =*Vi„> 

o-o«=2(a,„+a0„) = 4 

l#J=V[l-(Q2 +U2 + V2)]2 -[2UV/Q]2 

= +Va2-(b3b5/b1)
2;     \R\=k2\Rn\, ' 

s„ = 2(ai„+|/y) 

= 2 1 + Q2+U2+V2 + ^[l-(Q2+U2+V2)]2-(2UV/Q)2 S = k2S„ 

(12) 

(1.3) 

(1.4) 

(1.5) 

(1.6) 

(17) 

Scattering matrices have been presented in the form (for comparison see (7.21b) and (7.20b)): 

xCCSn 
rBi-JBi 

Bi +JB2 

at b, 

5 

CCSn 
KKn = 

-b3 

a2 

-b4 

_"b5 "b6 

b4   b6 (18) 

Kn 

Elements of matrices correspond to formulae (9.38-39) and (9.43). They depend on the Q, U, V 
coordinates of the inversion point in the CCS and their functions: ratios r and e, parameters R and S, and 
elements of the first raw of the K K matrix. Sometimes two solutions are possible satisfying conditions (9.40). 

Axis and angle of rotation after inversion have been presented after the formulae (9.45-46) with upper 
or lower signs related to the solution I or II, accordingly. The axis of rotation after inversion has been 
expressed, after (9.45), by its tilt angle, the ratio of its unit vector components (n2 along the \JK axis, and n3 
along the V* axis) and in terms of all the above defined parameters as follows: 

tan2Sp -   "2-   ai"T|i?"1 2/ + (1/0(aon+l^D 
n-. ain±\R„\  (2/e) + e(a0n±\RJ) 

b6   a3-ac 

b4   a4 -: 

The angle of rotation about that axis, 2<z>, is after (9.46): 

«3>0. 

(I.9a) 

(I.9b) 
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with 

cos 2y K = cos 2<j> 

_2aln/
2-g

2(|/y2
+a,„a0J + 2(l-gV)|flJ 

2a0„(l+/2)(<?
2+l) 

2a0„ 

(MO) 

2a0n 

2<j> = 2yp
K forU<0] 

2^ = 2;r-2>'£ for U>ol 
for 0<2yP

K<n,  with 0<2<t><2x. (Ill) 

According to the above formulae, the rotation after inversion axis is always situated in the 
U^V^ coordinate plane with its n3 component always nonnegative. For the I point in the Q^V^ plane it is 

always vertical (n3 = 1) for the solution I and always horizontal (n2 = ±1) for the solution II. However, the U 

component of the I point and the n2 component of the rotation axis are always of opposite sign. Therefore, 

when the I point penetrates the QKVK plane, the axis of rotation after inversion corresponding to the solution 

II reverses its direction in order to maintain the value «3 > 0. Simultaneous change of the angle of rotation 

after inversion from 2^ > 0 to 2^-2^ keeps the rotation angle about that axis positive. It must reverse the 
phase of the scattering matrix expressed in the CCS and rotating, after inversion, the two-folded Riemann 
surface of the PP sphere. However, it has no influence on the transformation of polarization 

Beneath, scattering matrices and their Poincare sphere models will be presented in both solutions for 
the mversion point I located on: two coordinate planes, boundary surfaces, some circular lines, coordinate axes 
and special polarization points in the CCS. 

L 1.1 point in the QU plane of the CCS 

Here, for V = 0, the remaining allowed coordinates of the inversion point being considered are: 

-1<Q<0,      -T]\Q\-Q
2
 <U<0 (1.12) 

Only negative U values (posirive Ä,) are possible when V = 0 (see Appendix K). Values of other essential 
parameters are: 

0</<  /—-1, 
VIQI 

l/<? = 0, 

a0,,in=l + (Q2+U2) 

°n - a0n 

There exists the solution I only. Scattering matrices are of the form: 

(1.13) 

iCCSn 

A2     Bl 

-Bx    Ax 
K Kn 

CCSn 

"«1 *i h 0 

*I a2 K 0 

-h "*4 a3 0 
0 0 0 a4 

(1.14) 

Kn 

Their elements and parameters of the rotation axis and angle are: 
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and 

_1±]Q1(1 + /2) _      /      _n 

7 
l2n 

1 + f2 

1 + /' 

a3n - 

4 \ + tÄ 

-&lnt   +a0„ 

1 + /2 >       a4n -     aOrt> 

b,„=2|Q|,    b3„=-2U,    b4„=-^ = sin2rJ, 

/ -1 
cos2yP

K=- ,    2S
P

K=K. 
r+ 1 

(1.15) 

(1.16a) 

(1.16b) 

(1.17) 

The last equality means that the rotation after inversion axis is oriented along the OV* coordinate axis. 

L 2.1 point in the QV plane of the CCS 

For U = 0 the two solutions can exist in the allowing regions: 

_,    n r     ~~T    „r     [ 0 for the solution I 
-1<Q<0,      Vl-Q   >v>1 f^r^T iVlQhQ1 for the solution II 

The remaining parameters are: 

IQI 
Ji-Q3 

<e< 

t = 0 

oo     for the solution I 

IQI 
HQI 

a0„,ln = i + (Q2 + v2) 

13,1= ao„ 

for the solution II 

Sm = 4 = o On 

(1.18) 

(119) 

(1-20) 

Both matrices have the same form for the two solutions: 

xCCSn 

A2        ßl 
K Kn 

CCSn 

<*\ *i 0 b5 

by a2 0 b6 

0       0 a3 0 

-b5 -b6 0 a4 Kn 
but their elements are different: 

^2„,„ = 1+IQI,     B2n = V        for the solution I 

1 _V(e2+\)±e 
Shn.ln - /   „ >     &2n I e2+l I e2+i 

for the solution n 

and 

a2* = 

ai»g2±aon      .    _+a        a    _-ai„+e2a0„ 
'      d3n - —d0n>      d4n ~' 

e2+l e2+l 

b,„=2|Q|,       b5n=-2V,       b6n=-e   ai"2 
+ a°" 

e*+l 
Angle and axis for the solution I are determined by: 

(1.21) 

(1.22) 

(123) 
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and for the solution II by: 
2yp

K=2Sp
K=x, 

P        e2 -1 
cos2yK=~ ——l,     2ö

1
K=KI2 for 20 = 2yp <TT 

e2 +1 r      i K 

The last equality means that the rotation after inversion axis is oriented along the OUr coordinate 

L 3. I point on the 'small sphere' surface 

The region under consideration is for V > 0, given by the equation 

OQI-})2 + U2 + V2 = i,        or equivalents        Q2 +U2 + V2 =|Q|. 

Mutual dependence between parameters t and e is 

(1.24a) 

(1.24b) 

axis. 

and other parameters are: 
>2+(l/e2) = (l/|Q|)-l 

a0n,in=l+IQI 

U2-V2 

(1.25) 

(1.26) 

\K\ = 
IQI 

(I.27a,b,c) 

The two matrices: 

4I Ql (1 + '  ) = 4A2„ + A\n     for the solution I and for | U| > V only 

4 Vle + 7 J  =4B2"+ A2n    *™ I U| < V but for the solution H only 

l-CCSn 
B1+JB2 

l-Bi-JBi -ICCSn 

have the same elements for both solutions: 

^n=2VfQi,     Aln=0,      BXn 

and 

KA>, ~ 

-u 

or, by b3 b5 

bx      a2 A3 b5 

-b3    -b3 a3 0 

-b5    -b5 0 a3 

(1.28) 

Kn 

iQi'    *" Viol 

a2»=3|QK   a3„=a0„,   bllf =2|Q|,   b3„=-2U,   b5„=-2V. 

Angular functions are also identical for the two solutions: 

cos2r£=l-2|Q|,       tan2££ = 
U 

(1.29) 

(1.30) 

(1.31) 

The last equality means that the axis of rotation after inversion is parallel to the straight line tangent to the 
circle of the small sphere surface crossection by the plane QK = Q , at the I point. 

one A   u,  ^™T observed in that interesting case is: vanishing of the A, element, the existence of vm. 
double CO-POL NULL polarization point, Q = -1, and formation of a great eigencircle crossing the OCv axis 
and ocated m the plane containing the I point (see Fig.J.4). That plane is inclined versus the coordinate 
Q^Ur plane at an angle arctan(Z?2 I Bx) . 
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I. 4. I point on the surface of common solutions (Ä = 0) 

That boundary surface can be presented for | U|< V only, in the form 

Q2+U2+V2 = 1-2|/|V. (1.32) 

If the inversion point would be located on such a surface for|U|> V, it would mean that to arrive at the 
uniquely defined ONP characteristic coordinate system its K phasor should be rotated in its orientation by plus 
or minus 90 degrees. 

On that R = 0 surface the t and e parameters are mutually dependent. 

i'i=7^r[Vo-Qaxi+«2)-i], (i.33) 
IQI«  

Q2(l + /2)-l 
The remaining parameters are: 

a0ll=2|f|V 

a,„ = 1 + Q2 + U2 + V2 = 2(l-|f| V) 

Rn=0 

S„=2aI/?=4(l-|fjV) 

Vi + t2     ln     \i-\t\v 

with 

and 

e2-t2 t1 

-a, 
(l + /2)(e2

+l)'     3"~   ai"l + /2'   a4n"   ai"e*+l 

u t u e 

V4rt= a,- r-,   b6„=-aln 
l + t2'     b"        l"e2+l 

Angular parameters satisfy the equalities: 

-,  P A      a,„(2f2 -e2a0„) 
cos 2y £ = cos <j> - ——-■ °"' 

2a0„(l + f2)(e2+l) 

(1-1/1 V)(M-g2V)=   |U|V-|Q|3 

V(l + /2)(e2+l)        |U|V-|Q| 

(1.35) 

Elements of scattering matrices are the same for the two solutions: 

*i» = Bl = ' JP^ = < = 'VJfr^ d-36a) 

BlnBln=N (1.37) 

2-,n"52„
±  v ~Vi+t2 IQI

VH^' (  } 

bln=2|Q|,   b3„=-2U,   b5„=-2V, (1.39) 

a.40) 

(141) 
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and 

tan2£V = ■/»_    2f + (a0<l/Q   _   U2+|QU|V 

*       (2/e) + ea0„        U(V+|QU|) 

= (sgnU)IM^v. 
V+IQIIUI 

For t -> 0 (when I point tends to the surface of the polarization sphere), these functions become 

CO$2yP
K = -Q2,        \m28\ = +|Q|  (for U < 0 or U > 0, accordingly) 

and for V=|U| (another limiting case), 

cos2^£ = 1 -2|Q|,        tm2S?
K = +1 (for U< 0 or U > 0, accordingly) 

(1.42) 

Generally, 

: = —-+I/I 
1-QZ 

W      |Q|,mVQ2+U2 

V+IQHUI    <5V 

(1.43) 

(1.44) 

(1.45) 

where 
|U|+|Q|v  aj 

sgnU<0 

^ = -coX2Sp
K=-sznljVim^=-mmW 

äJ K |U|+|Q|V     U2+|Q||U|V (146) 

L S. I point on the OQ* coordinate axis 

This is the case of symmetrical matrices, corresponding to the monostatic scattering. For the whole range 
1 *• C\ ^ r\ -1<Q<0 

the solution I only exists. Other parameters are: 

U = V = / = l/e = 0,    a0/U„ = l + Q2,   Rn=&0n,   S„=4 

Scattering matrices have the following elements: 

(I.47a) 

a.47b) 

*CCSn 
"1+IQI      0   • 

.   0      1-IQI 
KJO; ~ 

CCSn 

and the angles are: 

1 + Q2 2|Q| 0 

2|Q| 1 + Q2 0 

0 0 1-Q2 

0 0 0 

0 

0 

0 

-1 + Q2 

(1.48) 

Kn 

2rP
K=2Sp

K=v. 

That is the only case with two common points: K, M, E2 and L, N, E, (Fig.). 

L 6. I point on the OVK coordinate axis 

There are two solutions in the whole range 

with Q = U = 0. Other parameters are: 

(149) 

0<V<1 (1.50) 

0<M< 
1-V 

2V 
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e = 0, 

l^l=V0-V2)2-4/2V2, 

S„ = 2(1 + V2 + V(l-V2)2-4f2V2). 
(151) 

Matrices are: 

*CCSn 
Bl+jB2 

rB\ ~ ß% 

with elements for solution I: 

KKn - 
CCSn 

»1 

0 

0 

0       0 

0       0 

0 

0 

-a, 

(152) 

Kn 

A-ln ~ 
1 

2 V1 + / 
for solution II: 

2V 

2V1 + /2 

IN 

B,=2V. 
1 + r 

'2n 

Ä V^" 
2n 

and for both solutions: 

a2„ = 
1 + /2      : 

aln±|fl„| 

1 + / 
5n -2V. 

(1.53a) 

(I53b) 

(1.54) 

cos2/£=-a2„/a0„,    2££=;r. 

Special property ofthat case should be observed: 
B In 

B. 
(1.55) 

In 

That value is independent of the I point location and can be chosen arbitrarily in its allowed range, thus 
generating a continuum number of solutions I and II which for each V and t values have two different rotation 
angles satisfying the equation 

„  P     (l + V2)f2+V(l-V2)2-4r2V2 

COS2;K£ =-  
(l + r)(l-Vz) 

(1.56) 

Greater of those rotation angles corresponds to the solution I, and smaller to the solution II. Between those 
values is the common solution I and II with 

rl ■,      T7-2 

(1.57) cos 2yp
K 

1-V2 

1 + V 
for       ' = 'max = 

1-V2 

2V 

In the other limit case, for t = 0, 

P _J n, for the solution I 

I   0, for the solution H 
(158) 

For all solutions the axis of rotation after inversion coincides with the coordinate axis OV* . Therefore 
all eigencircles are in planes perpendicular to that axis. However, eigenpolarizations exist only for the Solution 
I and t = 0 because only then the rotation angle is ?r and all points of the eigencircle are eigenpolarizations. The 
solution n for t = 0 is also interesting because of the simple rule of transformation of the incident polarization 
(no rotation after inversion). Also it is interesting to observe that the M and Oi points coincide (at the lower 
pole), what cannot be the case for other models. 
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L 7. I point on the semicircle (-U)m„ in the CCS 

There exists the solution I only. For the I point location, 

-i<Q<o,   -u = VlQI-Q: v = o, 
other parameters are 

(1.59) 

0<(< 
1 

1. 

yielding matrices 

'IQI 
\le = Q, 

a0„,in=l+IQI,    |Ä„|=a0, 

(1.60) 

*CCSn 
B, 

_-Bx     0_ 
K Kn 

CCSn 

with elements 

S„=4 

a2     b3 

0 

0 

-b3   -by   a3    0 

0       0      0a, 

(161) 

Kn 

a2=-l + 3|Q|,   a3=-l+|Q|,   b,=2|Q|,   b3=-2U. 

For the angles one obtains 

cos2r£=l-2|Q|,     2SI=K. 

L 8. I point on the surface of the polarization sphere 

(162) 

(1.63) 

There exists one double, I and H, solution. The I point is located on a quarter of the great circle arc Its 
coordinates and other parameters necessary to compute the elements of matrices are 

-i<Q<o, u = o, v=Vi-Q2 >o, 

f = 0,    e = . 

The matrices are 

1-Q 
ao„=0,    allf=2, 

\Rn\=0,    S„=4. 

2 ' 

(1.64) 

(1.65) 

1CCSn 
Ä2        jB2 

\rJB2   Ax 

KAT« ~ 
CCSn 

with elements 

at t>! 0 b5 

b, a2 0 b6 

0 0 0 0 

-b, -bÄ 0 a„ 

(1.66) 

ATn 

4=HQI, 4 = HQI, B2=I]I-Q
2
=V, 

a2=2Q2,   a4=-2(l-Q2),   b,=2|Q|,   b5=-2V,   b6 = -2|Q|Vl- Q2 =-2|Q|V. 
(167) 

To find the axes and angles of rotation after inversion it is possible to investigate continua of solutions as in the 
case of the I point on the OV* axis (here as functions of the 331 /^parameter, what has been analyzed in 
[18]). However, it is recommended to use one solution only, 
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2yp
K=2Sl=K, 

because all other lead to the same result for the I point on the Poincare sphere surface. 

(1.68) 

L 9. I point on the crossection of the small hemisphere with planes through the QK axis inclined at +45° 
and -45° angles versus the Q*U* plane. 

Coordinates of the inversion I point satisfy the equalities 

Q2+2U2+Q = 0,   |U|=V>0. (1.25') 
There exists common solution I and II which can be considered as a limiting case of solution I or II in 1.3 for 
|U|=V resulting in 5i = B2. Scattering matrices are as in 1.3 but with BX = B2. Their geometrical model is also 
as in Fig. J.4. 

L 10. I point on the polarization sphere equator 

This is the limit case for the I point location, at Q = -1. And again, the one only solution is recommended, 
corresponding to the limit case for the inversion point on the OQK axis, with following parameters: 

t=l/e = 0,  a On 0, l\n = 2,    \RJ=0,   S„=4, 
corresponding matrices: 

*CCSn 

and angles: 

2   2    0   0 

"2   0" 

0   0 
CCSn 

2    2    0   0 

0    0    0   0 

0    0    0   0 

2yp
K=2SK = 7T. 

Kn 

(1.69) 

(1.70) 

(171) 

The unique properties of that model are: coincidence of the K, M, M" and E2 points being the only 
scattered polarization point, and no scattered power for the E, incident polarization coinciding with I and L 
points. Though for each I point on the Poincare sphere surface there is one only, E2 , scattered polarization 
point but, beyond Q = -1 coordinate of the I point, it was never the M" point. 

L 11. I point at the (upper) pole of the polarization sphere 

That location of the inversion point, V = 1, is recommended for consideration as the limiting case for the I 
point on the OVK coordinate axis. The corresponding parameters and the yielded matrices are: 

t = e = Q,   a0„=0,   allf=2,   \Rn\=0,   S„=4, (172) 

*CCSn 

2   0   0 -2 

"1 / 
rJ   i. 

> 
CCSn 

KATn - 
0    0    0 

0    0    0 

2    0    0 

0 

0 

-2 
The rotation after inversion angle, 

Kn 

2y$=x, 

(1.73) 

(1.74) 

has no influence on the scattered polarization point, located always at the pole of the sphere, because of the 
rotation axis coming through that point. Only the scattered wave's phasor will be rotated accordingly. 

A special property of that model is the coincidence of points I and O2. Therefore the incident 
polarization point, corresponding to the maximum scattered power, is located at the lower pole of the sphere 
and produces the orthogonal scattered polarization (the M and Oi points coincide). No matrix of monostatic 
scattering may exhibit such a property. 
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L 12.1 point in the center of the polarization sphere. 

Two solutions, I and II, exist for the I point of coordinates Q = U = V = 0. There is a continuum of solution I 
versions for t parameter in the range 

-oo< t <oo. 
Taking into account: 

e = 0>    ao„=a1#f = l,    \R„\=l,    Sn=4, 
the following matrices will be obtained for the solution I 

(1.75) 

(1.76) 

^CCSn - 

with elements for solution I: 

2     Bi A 

-B,    A2 

K Kn 
CCSn 

0      0 

0     -b4 

-b5      0 

0 

0 

-a, 

(1.77) 

Kn 

Hn 
1 ■-./>„ t 

a2* = 

VI7 
t2 -i| 

= sxn2yK,    Bln = 
V 

/2+l 
■^s2rp

K,   b4„ = 

i + r 

2t 

■ = cos2yp, 

l + t 2
   sin 2rp

K 

For the whole range of the t parameter we obtain 

0<2yP
K<0,     2Sl=7t. 

(1.78) 

(1.79) 

(1.80) 

A special property of that model is independence of the scattered power from the incident polarization. 

Eigenpolarizations appear only for / = 0. Then 2yK = n and all points of the polarization sphere equator are 
eigenpolarizations. That model corresponds to the scattering by a sphere. 

An important conclusion which can be drawn from that example is that there is no scatterer preserving 
each incident polarization. 6 

Of a special interest is the case of t = +oo . The corresponding matrices are: 

"l     0     0     0 

*CCSn - 
0     1 

-1    0 
K Kn 

CCSn 

0-100 

0 0-10 

0    0    0-1 

(1.81) 

Kn 

Similar result exhibits the solution n. For the same parameters as above we obtain matrices 

10     0     0 

0     / 
*CCSn l-J o 

K
JDJ - 

JCCSn 

In both cases the rotation after inversion angle is 

0-100 

0 0-10 

0    0    0-1 
Kn 

2/
P

K = O. 

(1.82) 

(183) 

Tte obtained model is an orthogonalizer which converts any incident polarization point into the 
^Kf ^ ottered wave without changing the wave's intensity. So, any incident polarization point 
is the M and Oi point. 

An extra phase change can be arbitrary. Usually for the orthogonalizer (represented by the Cx matrix 
as in (7.11) or (6.4)) we choose 5, = -1 and B2 = 0, while for the 'inverter' through the polarization sphere 

center (represented by the A$?matrix as in (8.30) with Q=U=V=0 and <*, =4) we apply Bx = 1 and B2 = 0. The 
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obtained phase difference between results of both those transformations is n because the inversion for the two 
cases can be interpreted as rotation by the ±n angle (in opposite directions) about an axis through the center of 
the sphere and perpendicular to the incident polarization phasor. Speaking precisely, the two transformations 
do not change the phase, shifting phasors parallel along the great semicircles of the polarization sphere. Then, 
however, the resulting phasors should be interpreted as 'oppositely' (not orthogonally !) polarized what 
interprets the obtained phase difference. 
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APPENDIX J 

GEOMETRICAL CONSTRUCTIONS OF THE POINCARE SPHERE MODELS 
OF SCATTERING MATRICES IN THE CCS 

J. 1. Mutual locations of special polarization points of the Poincare sphere models of scattering matrices 

Having coordinates of special polarization points in the CCS as presented in Chapter 9 Section 9 8 (formulae 
(9.47) - (9.57)), it is possible to distinguish their four groups. Points of each group are located on a common 
plane through the K L diameter along the OQ coordinate axis of the CCS (see Fig. J. 1). 

Apart from K and L, the following points belonge to those four groups: 

1. 0!and02, 

2. M, N, M", NH and I 

3. E1andE2> and 

4. P. 
ThtP fTl iS SUCh an invertcd P0"" 0f an incident P°Iarization which by rotation after inversion, about an axis 
m the UV plane of the CCS, becomes the characteristic point K of the Poincare sphere model of the scattering 
matrix. B 

Moreover, also the fifth group of points can be specified. It forms the plane of the so-called eigencircle 
not necessarily coming through K and L points (in the cases of 'small eigencircles*). The plane of the 
eigencircle is always perpendicular to the axis of rotation after inversion and contains the inversion I point as 
well as the eigenpolanzations, E, and E2, if they exist for the scattering matrix under consideration A special 
property of the eigencircle is that its points remain on that circle after the inversion and rotation even if the 
eigenpolanzations do not exist. In case of a great eigencircle it contains also the P point, thus belonging to the 
fourth of the above defined groups. 

The four groups can be determined by the angles of inclination of their planes versus the OU 
coordinate plane in the CCS as follows: 

tan2<?£2 =+oo 

b3      BMi-Ax) 
(J2) 

'K 
b4      B1(A2+Al) 

tan2« =^fazll) =tan2^E o-, -4r» 
K(a0-a4) O-0-4/22 

«3>0. 
(J.3) 

where 

o-0 = 2(&1 +a0) = Al + A2 + 2(B2
2 + B2) + 2^(AlA2 + B2 -B2

2)
2 + AB\B\ ,      (j.4) 

2rl=A2+A1,     2r2=A2-Av 

What is interesting to observe, it is mutual orientation of those planes, 

180° > 28\ * 2S* > 2S% > 2S& = 90° for   U^ < 0 (j.5a) 
and 

0°<2^<2^<2^<2^=90°    for   U^>0. (J.5b) 
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J. 2. The cases of great eigencircles (Poincare sphere models of scattering matrices for the I point in the 
QV and QU planes, and on the 'small sphere' surface) 

The simplest constructions of the Poincare sphere models of scattering matrices can be presented in cases when 
great eigencircles exist, also when there are no eigenpolarizations. Three kinds of such constructions can be 
distinguished for scattering matrices resulting from the I point location (in the CCS): 

1. In the QV plane (U^ = 0) for the solution II (see Fig. J. 2), 

2. In the QU plane (V£ = 0) for the solution I (Fig. J.3), 

3. On the 'small sphere' surface and solution I, for | U|> V, or solution II, for |U|< V( Fig. J.4), 
including limiting cases for location of the inversion point on boundaries of its allowed regions. 

In the cases of the first kind ( Fig. J.2): Bx = 0, B2=Vg (the V coordinate of the illuminating 
polarization corresponding to the minimum scattered power) and the great eigencircle is in the QV plane. The 
polarization sphere radius is then 

r  - V^ _   nj~R*-      ,       A2~Al ro=—^-yir2+B2,    r2= —l-. (J6) 

The I point should be located beyond, or on the circle, 

(IQKV^/
4

))
2
 + v2=(V^7/4)2, (j.7) 

which is a crossection of the 'small sphere' with the QV plane. For the existence of eigenpolarizations the 
distance of the I point from the center of the sphere should be 

„   _ A2 + ^i V^O p 
ri = 2       2 = ~2~ C°SYK (I8) 

where the equality corresponds to the one double eigenpolarization point at the upper pole of the sphere. 

The model shows how location of the I point determines: AltA2 and B2 parameters of the 

^ccsmatrix, the M, N, M", N", O,, O2, E1; and E2 points, and the rotation after inversion angle ,2<j> = 2yP
K, 

corresponding to the rotation axis directed along the OU coordinate axis. It should be observed that E1; and O2 
polarizations can be found as the end points of radii through the crossection of a circle of the (01) radius and 
straight lines through the N point, parallel to the Q and V axes, accordingly. 

Dependences between elements of the ^ccs scattering matrix for the limiting cases of the I point 
locations are: 

B2 = ^AXA2 , and    Ax - 0. (J9) 

They correspond to the inversion point on the Poincare sphere surface and on the 'small sphere' surface, 
accordingly. In the first case there is one only the eigenpolarization point, E2, because incident polarizations 
E,, 02 and I meet in one point giving no scattered power. In the second limiting case, Ay= 0, the double 0,2 

point occurs. That explains geometrically why closer location of the I point to the center of the polarization 
sphere is impossible for the solution II. 

Constructions of the second kind present great eigencircles in the UV plane. The I point is contained 
inside the circular region 

(IQ|-(V^/4))2 +U2 - (Vo~/4)2. (j.io) 

As can be seen from the Fig. J. 3, the radius of the polarization sphere is now 

V°"o       n     T7 A2 + A, ro=-^- = jrl
2+Bl

2;    r, =    \    l . (j.H) 
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The eigenpolarizations exist for the I point distance from the center of the sphere 

A2 

2 '        2 ^Bi = -^4rLcosr£ (J.12) 

where the equality corresponds to one double eigenpolarization point at |U| = 1. Projection of the O, and O, 
points on the QU plane is determined by crossection, with the Q axis, of a segment of the straight line through 
the point I and perpendicular to the ON radius. & 

Constructions of great eigencircles are possible also in any plane through the OQ axis but only for I points on 
the 'small sphere' surface (Fig. J. 4). Then Ax = 0 and one double 0,,2 point exists. The radius of the 
Poincare sphere for that third kind of models is 

r0^^ = ^(A2/2)2
+B2

+B2. 

The eigenpolarizations exist when 

^& 
2
+B2=- o P 

— cosyK 

(J.13) 

(J 14) 

The rotation after inversion angle is 2<f> = 2yP
K, for U^ <0, or 20 = In - 2y p, for U^ >0). As 

usually, theaxis of rotation after inversion is perpendicular to the plane of the eigencircle and directed upwards 
versus the QU coordinate plane of the CCS. F 

J. 3. The cases of small eigencircles 

The case of the solution I for the inversion point in the QV plane can serve as a classical example of the small 
eigencircle formation. The corresponding model of the scattering matrix has been shown in the Fig J 5 Here 
the small eigencircle in represented by the line E, -^ . The axis of rotation after inversion is the V^ coordinate 
axis and the angle of rotation is 180° The model shows its construction based on the I point location. 

However, in general case of the scattering matrix in the CCS, the rotation after inversion matrix is 

inclined versus the V^ coordinate axis by an angle 180° -2S?
K but remains in the UV coordinate plane. 

Therefore, in order to present the eigencircle in its plane, it is necessary to rotate the model about the OQ axis 
by that angle in the opposite direction to obtain the new V axis perpendicular to the small eigencircle plane 
(see Mg.J. 6). The following transformation procedure should be applied: 

U* 

V 
cos 2SP

K    -sin 28P
K 

sin2# cos2£ K_\ 

For the Poincare sphere model of diameter 2r0 = fi~ = 2k, the radius of an eigencircle is 

(J. 15) 

^ = ^T-(v-)2=iT-(u-sin2^-v- P \2 cos 25 K) 

= kU_    B?Bl[r2\k*-r?)-r?{k*-r})f 
a i6) 

The above result can be obtained by introducing the formerly derived expression for tan 2SP, substituting: 
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a0=4k  ,    A2 + Ax- 2rx,    A2 -A{= 2r2, 

U 
-b, -2Bxr2 

2k 2k 

and making use of known trigonometric formulae: 

V -■ 
2k 

2B2r, 

2k 

(J17) 

sin 2SP
K 

+ \an2öp
K 

yll + tan22Sp- 
co&Si 

+1 

t + tan2 2S[ 
(J18) 

The choice of sign depends on the trigonometric quarter of the 2SF
K angle. The upper sign corresponds to the 

second and the lower to the first quarter. 
Other similarly obtainable useful formulae (see Fig. J. 6) are: 

tan^£ 
Ql

K jB
2r2(k2-r2)2

+B2
2r

2(k2-r2)2 

TJ" Btiki-rD + Blik2-^2) 
(J.19) 

and 

'EcosrW(Qr)2+(u^)2^ (J.20) 

They justify construction of the small eigencircle of Fig. J. 6. and location of eigenpolarization points Ei and E2 
resembling models of Fig. J. 2-4. 

J. 4. Location of the CO-POL-NULL points in general case of the scattering matrix model 

Two constructions are possible depending on the solution chosen. Therefore it is advisable a quick recognizing 
when which solution may exist in the CCS. To do that two simple methods can be applied. 

In the first method, direct application of formulae (9.40) locates the inversion point of coordinates 
(9.29): 

K; 2r0=^ 

-1 
V 
b3 

b5 

1 V 
b3 

b5 
■I^ö -2k 

K 

(J.21) 

in the Q^ = const, crossection of the Poincare sphere model of unit radius (see Fig. J 7) in the allowed 
regions: OABCGHO for the solution I, and in DBCGD for the solution II. It should be observed that the whole 
region of the allowed solution II is contained inside the region for the solution I. 

Another method is based on computation of the (01) distance according to the same formula (9.29) 
and elongating them when multiplying by the ratio of a, IS. If the end point , I', of projection of such an 
elongated (OI) distance on the QU plane is inside the shadowed 'small circle' of Fig. J. 8, then the solution I 
exists. If its projection, I", on the QV plane is in the shadowed region outside another 'small circle', then also 
the solution n exists. To explain those conditions (again see Fig.J. 8) it can be observed that the postulated 
requirements are: 

2k cos 2a > (OI')   for solution I, and 

2k sin 2ß < (OF)   for solution H (J22) 

They correspond to the previously found requirements, for the solution I: 

b^>2(b2+b2): 
2A:b, 

Vbf+b2 = 2kcosa>-jy]b2 +b2 =^V(Q5,)2 +(U^)2 ,  (J.23a) 
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and for the solution II: 

b.5s2(bj + bJ)=»^_ = 2*c0./>sHvtr^f=^l/(Q!c).+(Vi7 (J23b) 

The same <J0 IS ratio can be used to constructional determination of the CO-POL-NULL points O, 

results2 Similar C°nsiderations' ^"S advan^ge of formulae (9.50), (9.38a) and (9.39a), lead to the following 

o,,       A~ - A, 

A2+AY 

__MiMl_ ^(Q^)2+(u^)2 f u   t .  T 
b,5      "     s *JQ1J    for the solution I (j24) 

^i 

bi-y        ^     /tiQj^i 

Geometrically, for Q/2 = kq°12, it means 

IQ?JI      (OD     i    f t.    , .   T 

(<r0 / 5X0D ~ IQ^T ^   f°r thC SOluÜOn ''and (J 25a> 

A;_d = ^C0S^ = ^(0I)lQ^i   for the solution H. (j.25b) 

So simple construction^are obtainable especially in cases of simple relations between Oö and 5. For instance 
the 'äst equation describes construction determining the C^ point location for the inversion point I in the OV 
plane of the CCS (where S=ob), for the solution II (Fig, J. 2). 

Other figures illustrate special behavior of polarizations being transformed along the eigencircles 
when the eigenpolanzations do not exist, Fig. J.9, how one eigenpolarization 'attracts' the polarization point 

toZS^miui. 'rePelS' tbem' Flg  J 10' aDd h°W ^^^tions are Snsforming'mto 
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V, 

2* = 2rp
K 

Fig. J.l. Projection of special polarization points 
onto the UV plane in the CCS. 

VK 

N" -n.,P 

eigencircle 

2<j) = 2y 

B, 

Ll* M.        \ /^ J   1K 
1  ^ A    1 

\f       \ 

\^ 
QK 

N 

E2 

M" 

Fig. J.3. I Point in the QU plane in the CCS 
and the great eigencircle in that plane 
(solution I is here the only possible ). 
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N 

Ei ^___ 

v* 

E2 

o2 

T       A 

l^\V 
f\Ä\          A 

//\ \    B1 

L   T^ 
*1 c              y/^^               ^    T QK 4 / A\A        "     / 

0, 

IM" 
2^ = 2/j 

M 

Fig. J.2. I point in the QV plane of the CCS - solution EL 
Great eigencircle in that plane. The case of UV = 0. 

2(f)=2yP
K =n 

Fig. J.5. I point in the QV plane of the CCS - solution I. 
Small eigencircle in the plane perpendicular to 

the OV axis. The case of UV = 0. 
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4B;+B; 

20 = 2yp
K for Ul

K<0 

2<f> = 2x-2yp
K for Ul > 0 

Fig. J.4.1 point on the 'small sphere' surface - 
solution I for the |U *-| > VK and solution II for the |UVj < VA-. 
The great eigencircle is inclined at an angle of arc tan^/ßj) 

versus the QU plane in the CCS. 

VK 
2<f> = 2yp

K for U^ < 0 

7<f> = 2x-2yP
Kfox\Jl

K>0 

Fig. J.6. General case of the small eigencircle. 
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Fig. J.8. To the method of verification solutions I and II 
using projections of elongated (01) distances 
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lQ*=Qr 

Fig. J. 12. The great eigencircle and double eigenpolarization for Q1 = -0.5, U1 = V1 = -1 

2V2 
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APPENDIX K 

ABOUT UNIQUENESS OF THE CHARACTERISTIC ONP PP BASIS K 

The proposed form of the Sinclair matrix in the characteristic orthogonal null-phase (ONP) polarization and 
phase (PP) basis is 

4J Bl+jB2 

~Bi ~ ßi A     jccs 

,Jf (K.1) 

That 'canonical' matrix, of an especially simple form, is determined by location and orientation of its 
characteristic tangential phasor K uniquely represented by the characteristic PP vector (of the form independent 
of the ONP PP basis order): 

*H 
cos ye 

sin ye 

-j(S+s) 

(K.2) 

JH 

and corresponding to the characteristic coordinate system (CCS) of the three Stokes' parameters Q, U and V. 
To obtain the uniqueness of the K basis the following requirements has been stated regarding the ranges for 
values of real elements of the Sinclair matrix in that basis: 

A2 > Ay > 0 

B2>0 

#! > 0  if B2 = 0 

(K.3) 

The first of those conditions determines the only non-zero Q component of the inversion I point to be contained 
in the range 

-r < (& < 0 ; \a0l2 
with 

a0 = A} + Al + 2{B\ +Bl) + 2^j(A2A1 +Bf +B2
2)

2 +4B*B 

(K.4) 

(K.5) 

The second condition, B2 > 0, stems from the equivalence of two geometrical models of the matrix for K and 
IC bases the phasors of which are oppositely oriented. Assuming 

28%. = -n   and    2yK
r - sK

r - 0 

one obtains the rotation (the change-of-PP-vector) basis matrix 

(K.6) 

rK      _ rKrK* _ rK _ \   K Kx 1 J   o 
o   -j 

(K.7) 

and the following mutual dependence of the Sinclair matrices in the two bases 

<K 
^K - CK'AK.CK 

j    o 

A 

-Bx-jB2 

Bl+jB2 -IK' 

'J   o 
0 -/ 

Bi+JB* 
-B,-jB2 K 

(K.8) 
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The obtained transposition of the matrix with the reversal of its phase corresponds to the rotation of the model 
by 180° about the QK = Qr axis joined with the change-of-sense of the rotation after inversion angle. So, the 
two models are entirely adequate and there is no reason for the use of two such characteristic models which will 
correspond to opposite signs of elements of the second diagonal of Sinclair matrices in the two characteristic 
bases. Therefore, the second condition can be found justified. 

Exactly the same argumentation applies to the third condition. Therefore it is sufficient, for B2>0, 

to consider U^ < 0 only, what corresponds to ^ > 0 in the CCS, and has been additionally explained on an 

example for |U^ |max = r I 2 in Fig. K. 1. 
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270° about the VA-axis  / 

about the V^. axis 

90° about the Vr axis 

Fig. K. 1. The equivalence of models for oppositely oriented basis phasors, K and K, 

corresponding to B\>0 and B\<Q (for B2=0). Examples with the I point in the VA- = 0 plane 

(rUl
K=V]r=-Q1

K=-Q]r=r/2). 

CK,A ,rK, - j    o 
0   -j 

A2    -Bx 

Bx      0 
K' 

j   o A2     Bx 
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APPENDIX L 

THE WANIELIK'S/CARREA REPRESENTATION OF THE POINCARE SPHERE TANGENTIAL 
POLARIZATION (TP) VECTORS USING THE TP PHASOR NOTATION 

LI. Background: the change of basis transformation in the 2-dim. space of the PP vectors 

For the Cayley-Klein parameters (see (4.31) and (5.40)) 

a = cosye -ns+s) 

b = sinre+J{0-£) 

0°<^<90° 

with     -90°<£<90° 

-180°<f<180° 

(LI) 

the matrix and vectorial forms of the PP vectors have been determined as follows (see (4.30) and (4 29) or (5 1) 
to (5.4)): 

r  -[P a .Px 
,     »H Uu    = 

H 

-b* 
a 

r\P 

aa*+bb*=\ , (L2) 
H 

UP=[UHUH*]UP
H,       UP*=[UHHH*]UP

H\ (L3) 

fulfilling conditions of unitarity and the 'null-phase orthogonality' (see (4.32) and (6.1)) in the C2 space: 

0 -1 

1 0 *H- 
|H'|=|«^|=1,   U

P
*U

PX
*=0;   U

P
** = 

With those vectors the rotation matrix (see (5.8) and (5.30)) for the C2 space has been determined, 

(L4) 

K   «?]= cos/e~KS+s)    -sinre~J(S-s) 

= C H 
H 

which can be used to present the change-of-basis transformation (5.9) for the PP vectors, 

rBnp - *,p 

(L5) 

(L6) 

L2. Extension of the PP vector complex form to its representation in the 3-dim. real space of Stokes 
parameters 

By analogy to the previously presented procedure in the C2 space, the following matrix and vectorial forms of 
three mutually perpendicular real vectors can be determined: 

nP 
PH 

p 

H 

QR2 

QR3 

»   <lw = 

H 

-\P 
qn 

qE 

qn H 

P'=[l,    lu    1VLP£,   q£=[l,    1.    K]H<&H,   qf=[lf    1.    l^qfc 

(L7) 

(L8) 

The above used lower indices 'R' and T have been assumed to correspond with the real and imaginary parts of 
the Cartan's null vector [138], 
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q = qR
+yqi 

-lab "QI" 

a2-b2 = q2 

j(a2+b2) .qs. 

q?+qi + qf =o. (L.9) 

The three just defined real vectors are assumed to satisfy conditions of unitarity and mutual perpendicularity: 

lp|=l<iRl=|qil=i, 

p»qR=qR»qi = qi#p = o, (L-H>) 

PxqR = qn   qRxqi = p»   qixP=qR 

It can be verified that these vectors can form the known rotation matrix (5.45) as follows, 

D H 
H 

10     0      0 

0   P   qR    qi 

10 0                                                         0 

0        cos 2/ -sin2xcos2£                                   sinlysmls 

0   sin 2y cos 2d cos ly cos 18 cos 2s -sin 18 sin 2e - cos ly cos 18 sin 2f- sin 2£ cos Is 

0   sin 2^ sin 18 cos2^sin2<5cos2£+cos2<5sin2£ - cos ly sin 18 sin 2e+ cos 18 cos 2f 

with the following explicit forms of their components: 

q PH - cos ly PH,   u# = (sin ly cos 18)^,   v£ = (sin ly sin 2<!>)£, 

q£iH=(-sin2rcos2£)£ 

q R2// = (cos 2^ cos 2^cos 2e - sin 2£sin ls)p
H 

qR3// = (cos ty sin 2£cos2£ + cos 18 sin 2£-)# 

qfi//=(sin2/sin2ff)^ 

q^H = (-cosly cos2^sin Is - sin 18cos2f)£ 

qt?tf =(-cos2/sin2<5sin2£, + cos2^cos2£)^ 

(L.ll) 

0.12) 

(L.13) 

(L.14) 

determined in the ranges (5.19): 

and 

0<2^<;r 

-K<18<n 

-ln<le<ln (L.15) 

The range for the last Euler angle, 2e, is especially important for ensuring the one to one correspondence 
P p between the PP vectors, u   , or the corresponding TP phasors, P, and their real counterparts, qR. These real 

vectors do not change their orientation after addition of 2n to their 2e angle. Therefore, to omit the ambiguity, 
P r\     P it is always necessary to present on the Poincare sphere, for the q^ vectors, the 2sH angle which may be 

contained in the +271 range. Only the 4n change of that argument relates that real vector to the same TP 
phasor (compare [29]). 
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L3. An exemplary derivation of the qR and qx vector expressions for the p vector given 

Very simple derivation may start with the evident result for vectorial product of two tangential vectors, q^ 

and q^, the first of which corresponds to the angle 2s% =0. That product can be presented by the 

following determinantial equation with the three unknown components, q^, q^, and q£3H : 

<& X(
IRH=  sin2sp

H p£ 

=  sin2^(lqcos2^ + lusin2^cos2<5 + lvsin2^sin2<5)^ (L.16) 

-sin2y   cos 2/ cos 2 ö   cos2;rsin2£ 

Comparison of the third and second components of the product yields the expressions for qMand qR3 

obtained in terms of q R1: 

-qR1 cos2^cos2(?-sin2ysin2^sin 2e 

sin 2y 

-qR1 cos 2y sin 2S + sin 2y cos 25 sin 2e 

sin 2y 
After simple manipulations one obtains 

qRlcos2 2y + sin2 2y sin2 28 

H 

(L17) 

qL +qR3 = i-qRi 

and 
sin  2y 

qR1 =-sin2^cos2£-. (L.18) 

The minus sign can be found, for example, when considering 2y = n 12  and 2e = 0 in which case 

qRi =_1- The remaining values (L.13), qM and qR3, can be immediately obtained from (L.18) and 
(L. 17). The (L. 14) components will then be determined by the vector product of (L. 10), 

PxQR=qi- (L.19) 

L4. Change-of-basis rules in the 3-dim. Stokes parameter space 

Denoting three basis vectors of an ONP PP basis B: 

-PS, 
„B „B 

= qis (L.20) 

the following change-of basis equations can be written 

q qRi qn 
u qR2 qE 

v qR3   qH H 

■vl 

H 

(L.21) 
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q QRI qn 
B 

~0 
B 

qRi 

u qR2 qß 1 = qR2 

V qR3 q»_ H _0_ B _qR3. 

= <IRH 

q qRi   qn 

u   qR2   qE 

v   qR3    qD 

B ~ö B 
\l\~ 

0 - qE 

H 1 B _qi3_ H 

-\B 
10     0      0 

o p qR  Qi 

10    0     o" 

o p qR  qi_ 

^10     0      0 

9 p ^R qi 

HJi\s>- 

HL 

H 

0 

qR 

0 

qi 

i 

' o" 

qR. 

0 

qi 

H 

P 

H 

pj?=D£p; 
H 

Op   - TtB np 

QW=D^Q is 

It is worth noticing that such a compact change-of-basis expression for the Cartan's null vector, 

has been obtained owing to application of the TP phasor notation. 

(L.22) 

(L.23) 

The linear combination of the above equations leads to the final change-of-basis expressions: 

[p qR  <II]HPB=PH> [p qR  <II]H<&B=
(

IIH> [P qR  <1IL<1B = <IW     (L-
24

) 

In the 4-dim. Stokes parameter space the equivalent change-of-basis equations take the form: 

(L.25) 

(L.26) 

(L.27) 

(L.28) 

L5. Tangential vectors in terms of the q, u, v parameters and the spatial phase double angle, 2 K An 
alternative form of the rotation matrix in the Stokes parameters space. 

In the formulae (L.13) and (L.14) trigonometric functions of the Eider angles can be exchanged with the 
expressions resulting from the equalities (L. 11): 

q = cos2/ sin2x = Vl~q2 = 
u2+v2 

u = sin2^cos2<^ =>    cos2£ = 
^ 

v = sin 2/ sin 28 sin 25 - 
Vl^q1 

and additionally, from the definition of the double spatial phase delay (see (3.23)), 

2v= 2E + 2Ö, 

(L.29) 

(L.30) 
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corresponding to the equivalent alternative form of the PP vector: 

u- 
VHPF lo- 

using (L.30) and (L.29), simple transformations yield: 

ucos2£- vsin2£- 

e~J2y;   p = \myej2S. (L.31) 

cos2v: 

sin2v = 
usin2£ + vcos2f 

VT 

cos2£- = 
ucos2v + vsin2v 

VT 
sin 2£- usin2v-vcos2v (L.32) 

VT 
With these trigonometric functions of the three Euler angles, 2y, 28, and 2e, from (L.13) and (L.14) one 
obtains the tangential vectors components in the form presented by Carrea and Wanielik [72]: 

QRW =(-UCOS2V- vsin2v)£ 

p 
H.V3H 

[q(l + q) + v2 ] cos 2 v - uv sin 2 vA 

1 + q J 
(L.33) 

-uvcos2v + [q(l + q) + u2]sin2v 
1 + q 

H 

t 

J 
and 

H 

qfur = (usin2v- vcos2v)£ 

p    _ ~[q(l + q) + v2 ]sin 2v - uvcos2v 

i+q 
(L.34) 

# 

qi3 
uvsin2v + [q(l + q) + u2 ]cos2v 

V 1 + q J H 

Substitution of those expressions to (L. 11) yields an alternative form of the rotation matrix 

iP 

D 'H 
10     0      0 
0   P   QR    QI H 

1    0 

0   q -ucos2v-vsin2v usin2v- vcos2v 
.2l___„_.      ....   ..     „ r    .....       2 

0   u 

0   v 

0 0 

[q(l + q) + v2]cos2v-uvsin2v     -[q(l + q) + v2]sin2v- uvcos2v 

1+q 1+q 
-uvcos2v + [q(l + q) + u2]sin2v     uvsin 2v + [q(l + q) + u2 ]cos2v 

1+q 1+q 

(L.35) 

H 

Also that simple form of the rotation matrix has been obtained using the method of the PP vectors and the TP 
phasor notation. 
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V, 

Po/oq^ 

Fig. L. 1. The polarization and phase orthonormal vectors triplet (one vector, p, perpendicular 

to the polarization Poincare sphere and two, qR and qr, tangential) 
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APPENDIX M 

ANGULAR PARAMETERS OF THE TANGENTIAL POLARIZATION (TP) PHASORS 

Three kinds of angular parameters of the TP phasors can be distinguished. 
• 'analytical'parameters, 2y, 28, 2s and 2v = 2S+ 2s, 

• 'geometrical'parameters, 2a, 2ß, and 2x, and (Ml) 
• 'mixed' parameters, 2t] = 2% - 2e, and 2q> = 2v - 2%. 

Among analytical angular parameters two of them, 2/ and 25, are polarization dependent, and two, 

2e and 2v = 28 + 2s, are phase dependent. The argument 2f >0 means the 'analytical' spatial phase 
delay of the wave, and 2v> 0 means the 'analytical' spatial phase delay of the first wave's component, both 
for the wave's PP vector expressed in any ONP PP basis. However, the polarization dependent 2S > 0 angle 
means also the spatial phase delay but of the first versus the second orthogonal PP vector component presented 
in any ONP PP basis being assumed. 

Polarization dependent geometrical angular parameters are 2a and 2/?, and 2% is a phase 

dependent geometrical parameter. The argument 2^ > 0 means the 'geometrical' spatial phase delay of the 
wave. 

The two mixed parameters are both polarization dependent only but can be expressed by differences 
between wave's analytical and geometrical spatial phase delay parameters, as has been shown above. 

Analytical and geometrical parameters can take values in the following ranges: 

§<2Y<IX -nl2<2a<nl2 

-n<28<n -n<2ß<K (M.2) 

-2n<2e<2n -2n<2x<2n 

They determine the polarization and (spatial) phase delay of a completely polarized plane wave, identically for 
both opposite directions of propagation (along the propagation axis in a ±z direction of a right-handed local 
spatial coordinate system xyz), and for any assumed order of its spatial components, 'natural' (xy) or 
'reversed' (yx), satisfying condition that the second component leads the first one by the spatial phase angle 
28. 

Mutual dependences between some different angular parameters (see Fig. Ml) are as follows: 

2v = 2d + 2e = 2<p + 2x, 

2x = 2r] + 2e,     or     2T] = 2X~2S, (M.3) 
28 = 2(p + 2r(. 

In any ONP PP basis H, for example corresponding to linear bases, (xy) or (yx), these angular 
parameters are presented in Fig. Ml. They determine the PP vectors represented by the TP phasors P, situated 
on the upper or lower part of the polarization sphere in the Stokes parameter coordinate system QH\JH V^ 
corresponding to the ONP PP basis determined by its first TP phasor H. In the linear polarization bases these 

two TP phasors P represent elliptical polarizations of opposite handedness. Their positive 2SP
H and 2aP

H 

angles denote the left-handed polarizations for the natural order, xy, of the basis vectors, or right-handed - for 
their reversed order, yx. 

Angular parameters, as in Fig. Ml, are related versus the right spherical triangles HLP. Any pair of 
parts of such a triangle, its sides or angles, plus one phase angle, completely determine the TP phasor P. Also, 
they determine all other parts of the triangle and other phase angle parameters. 
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Simple mnemonic Neper's rule for a spherical right triangle (see [133]) enables one to immediately 
present trigonometric relations between, expressed in degrees, sides and angles of such a triangle. That rule 
can be formulated as follows. 

If three parts of a right triangle are situated side by side, then the cosine of the middle part is equal to 
the product of cotangents of the extreme parts; if however the parts are situated not side by side, then the 
cosine of the separately situated part is equal to the product of sinuses of parts situated side by side, with legs 
of the right triangle being exchanged for their complements with respect to 90°, and with the right angle not 
treated as a separate part, what means that legs should be treated as situated side by side. 

Ten equations presented beneath follow that mnemonic rule (see the right spherical triangles in Fig. 
Ml): 

■2i7) cos(90°-2a) = sin 2a = sin 2y sin 2d = cot(90°-2/?)cot(90 

cos(90°-2/?) = sin2y# = sin2/sin(90°-2/7) = cot(90°-2a)cot2£ 

cos 2/ = sin(90°-2a)sin(90°- -Iß) = cot2£cot(90°-2/7) 

cos2<5> = sin(90°-2ar)sin(90°- -2rj) = cot(90°-2^)cot2r 

cos(90° -27) = sin 21] = sin2£sin(90°-2/?) = cot2^cot(90°-2a) 

where, after (M.l), 
(M.4) 

2rj = 2%-2e, 

sin(90° - 2/7) = cos(2^ - 2s), 

cot(90° - 2/7) = tan(2x ~ 2s). 

For comparison, see also the equalities (4.1), and the last equality (3.32). 
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2vp
H >0 

2ZH>0 

2ep
H >0 

2SP
H>0 

2VH>0 

2<pH=EHLP>0 

U H 

2K£>0 

2XH>0 
1 P - ~ /                    — %>o 

^  1<PH = = £HLP<0 

2T1
P

H<0 

28 
p„<o 

2££ <0 2a£ <0 

Fig.Ml Angular parameters of the TP phasors P in the ONP PP H basis 
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APPENDIX N 

COMPARISON OF THE PP AND VARIOUS CA VECTOR APPROACHES BEING 
MET IN THE LITERATURE 

A has been proposed by Mott in [118], three local spatial xyz coordinate systems, orthogonal and right-handed, 
will be introduced: xlylzl for the transmitting antenna, x2y2z2 for the scattering object at its 'output', and 
x3y3z3 for the receiving antenna, with all three z axes considered as the propagation axes and directed: zl from 
the transmitting antenna to the scattering object, z2 from the scattering object to the receiving antenna, and z3 
from the receiving antenna to the scattering object. Moreover, the.y2 and y3 axes will be parallel, what means 
that xl and x2 axes will be antiparallel. 

Beneath, a comparison will be presented of notations used in cases of the complex amplitude (CA) and 
polarization and phase (PP) vector approaches. 

Nl. CA and PP vectors, E and/T0, and complex polarization ratios, Pand p, in linear polarization 
bases of natural order 

Incident (transmitted) electric vectors in the two approaches usually are being presented as follows, 
T 

CA ET(t,z) = ETe^^\   ET=E^(lxl+PTlyl),   Pr=%, 
XT ■* F1 

PP: 

PPvsCA: 

Scattered electric vectors, 

ET (t z}-ETeJi0*-kz)     FT-FT(1   +nT     1 \     nT     - r.   yi,z)-c0e ,   u0 -£,0x(ix + p(xy)ly),   p(xy) - 

Ef = ET,    pfx.,=P< 

^Oy 

^Ox 

(*,y) 

CA      Es (t,z) = £V«*+fa>,   Es = Es
x2 (lx2 + Ps ly2 ) = Es

x3 (lx3 - Ps ly3 X 

with 

Jy2 

7s~ 
-•xl 

pS _ ^yl _     ^y3 
?S 

'2l 

'"x3 

PP: Es(t z}-Fs *eK°*+kz)     Fs*-Fs *(1   +ns      *J    \       r>s      -    0y r.   \i,z)-cQ     e ,   n     -&0x    {lx+p{xy)    ly2),     p(xy)-—- 
EQX 

PPvsCA zr ■ES>   PL)=~P s * 

(N.l) 

(N.2) 

(N.3) 

(N.4) 

(N.5) 

(N.6) 

(N.7) 

N2. Scattering (SI alignment, or BSA, and linear polarization bases of natural order) 

= s, CA: Es 
^(x3,y3) 

Es n,
x3 

Ey-i 

Sxlxl      $x3y\ 

Sylxl      Sy3yl 

ET 
^xl 

FT \x3,y3)E(xl,yl)> (N.8) 

PP: p*      *- X
s*" \A A>] ~ET~ ^0x 

Es
y *_ k M (*,y) 

ET 

. °y. 

A      FT 
(N.9) 

PP vs CA: E!       - ^T 
'<Kx,y) F1 

E()(x,y)    ~ E(x3,y3) > \x,y) ~ S(x3,y3) ■ (N.10) 
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N3. Transmission in the SI and PI alignments (in the BSA and FSA) 

CA 
^=^3)^3)=^      #]5?=[A5      < 

hR -1    0 

0    1 

'Jtf 

Fs        -hR       Fs 
^{x2,y2) -n(x2,y2)^(x2,y2)^ 

-1    0 

0     lj 
^x2 

Es 
y2. 

PP: K - "0(*,. 

PPvsCA: 

*     Fs      *- \hR     hR 1 ^ox      _ \,R     , 

\r*y   J 
- hR      C°      T?So       — URo      * r&> 
- n0(x,y)^(x,y)^0(x,y) ~ "o(x,y)     &0(x,y) , 

n0(x,y)-"(x3,y3),      ^0(x,y)    ~ &(x3,y3) > 

■•So 

0y i -1    0 

0     1 

Es° ^Ox 
rpSo 
^Oy 

F°°       _ rS i Ro      * _ iff 
^0(x,y) ~ ^(x2,y2) >     "0(;c,.y)    ~ "(x2j>2) ■ 

Note regular product of the CA vectors and Hermitian product of the PP vectors. 

N4. Propagation (PI alignment, or FSA, and linear polarization bases of natural order) 

CA: ^(x2j>2) ~ T(x2,y2)E(xl,yl) ~ 

■5o 

-1     0 

0       1 '(x3,yl) 
-1    0 

0     1 
>Cx3,y3)lL(x\,yl) 

PP: *0(X,y) ~ A{x,y)&Q{x,y) - L(xy)     h0{xy)    = C^y)     A{xy)E^y) 

A° [x,y) - 1{x2,y2)> r°   - 
PPvsCA: 

-1    0 

0     1 

A(x,y) ~ C{x,y) * A(x,y) <=> T, (x2,y2) 
-1   o" 
0     1 \xl,y3) 

(N.ll) 

(N.12) 

(N.13) 

(N.14) 

(N.15) 

(N.16) 

Conjugate value of the C°xy) matrix in the above expression is justified because after change of basis that 

matrix becomes complex, though always remains symmetric. In any other ONP PP basis B one obtains (see 
(6.14)): 

what results in 

r<o _ ?iB    ^0     (~<B 
^B ~ ^(x,y)^(x,y)^(x,y) 

C°B * = ^yflyfL, )• = CB^Cly) * Cly) * 

p0   (~<0    *_ 
L-(B)'-(B)    ~ 

1    0 

0    1 • ^(x,y)^(x,y) 

(N.17) 

(N.18) 

and confirms correctness of the transmission equation, 

V =h£°     * FSo      -hR     r°     l?So      -uR     n*>     A0     r-T vr    "o{x,y)   ^o{X,y)~n0{x^L(x>y)tQ{Xty)-h0{xy)C{xy)A^y)E0{xy) 

- hX       /"»0      /""0        *   A rpT 7*R j T-, 
■ n0(x,y)^(x,y)^(x,y)      A{xy)h0(xy) = h0^y)A{xy)E, T 

■0(x,y) ■ 
(N.19) 
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N5. Stokes four-vectors and Kennaugh matrices 

Utilizing expressions for the amplitude transmission equation, and the unitary matrix U, 

U = (N.20) 

"110     0 

_1_ 0     0     1    -j 

V2   0    0     1     j 

1   -1   0    0_ 
one obtains the power (polarimetric) transmission equation for the SI alignment in the (CA) approach, 

VrVr * = Vr®Vr* = {h^S^El^) ® {h^S^^El^) * 

CA: = (h*^ ® Ä& ^ *)U * U(S(xXy3) ® S(xXy3) *)UU *{ET
{xhyl) 0 E[xlyl)*)   (N.21) 

- VJ(x3,>'3)rX(x3,>'3)0(xl,yl)- 

When using similar procedure for the (PP) approach, simpler form of the power transmission equation results, 

VrVr * = Vr®Vr* = (h*x,y) A{x>y)E^y)) 0 (h0«x,y)A{x,y)E^y)) * 

PP: = (Ä£xjr) 0 /^ *)U * UC^, ® ^} *)UU * (E^y) ® £jXd0 *) (N.22) 

- rR   u"      r^r      - JR      w      tT 

~Kj{x,y)rK(x,y)Kj(x,y)   ~ ldS{x,y)TS{x,y)Lefi{x,y) ■ 

As is seen from the above expressions, the Stokes four-vectors, G, and Kennaugh matrices, K, are identical 
for the two approaches. One can prove that these Stokes four-vectors can be expressed also in terms of complex 
polarization ratios, 

p(x,y)=PT,  and   p?x,y)=PR (N.23) 

e.g. (for incident wave) as follows, 

G^y) = Ü * (E[xl,yl) ® E[xlyl) *) = Ü * (£jrj0 0 E^y) *) 

1     \ET
X\

2+\E 
^T\2 

4i I + (PP*) 
T 
(x,y) 

1 + PP* 
1- PP* 

p' *+p 

ÄP *-P)\ 

(N.24) 

(x,y) 

with 

ET 
^x 

ET 
- 

Exl 

ET 
- 

ET 
^0x 

FT 
^Oy 

E1 

; P\x,y) = -y = tan r \x,y) exp(j2S^y)). 
Er 

(N.25) 

The problem however arises if somebody wants to apply that formula to calculate the Stokes four-vector for the 

scattered wave taking P(x>y) - P   instead of the correct dependence (N.7), 

P(x,y) ~    r 

That leads to erroneous results what happens to less experienced researchers. 

(N.26) 
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N6. Comparison of different forms of Stokes four-vectors and Kennaugh matrices being met in the 
literature 

When using the PP vector presentation of the polarimetric power transmission equation, it is a good 
occasion for discussing its different possible forms, all correct, but the one only being accepted by most of 
researchers for practical applications. The four possibilities of such (normalized) equations will be considered 
which in the PP vector approaches take the following forms: 

Pr=Vr®Vr* 

= <*£,, ® 2&,> *)U* U(^} ® A^y)*)UU* {uly) ® uly) *) = P^K^P^, 

o „ (N.27a) 
= («£,) ® «(^) *)UU * (A^y) ® A{x,y) *)U * \J(u[x,y) ® uly) *) (N.27b) 

= <?L) ® <y) *)UU *{A{x,y) ® ^ *)UU * (u[x>y} 0 uly) *) (N.27C) 

= K,y) ® *£,) *>U* (UU)U* (4*o0 ® ^, *)UU* («£,, ® uly) *) (N.27d) 

The first version, (N.27a), is being the most commonly used and recommended for applications It has been 
used by this author since 1967 [39], following the Kennaugh's concept [95], but with introduction of the 
reversed, (y,x), order of the ONP PP basis what results in the right-circular polarization point situated at the 
upper pole of the Poincare sphere. 

The next version, (N.27b), originally proposed by Kennaugh [95], places the right-circular 
polarization at the upper pole of the Poincare sphere when using the ONP PP basis of natural order (x v) with 
2<^(*o) = _90  • Tne corresponding Stokes scattering matrix differs from the now being applied radar Stokes 

scattering matrix (and now called the 'Kennaugh matrix', K ) by opposite signs of elements of its fourth row 
and column, except of their common last element. 

The third version, (N.27c), applies different 'receiving' Stokes four-vectors, represented on the 
Poincare sphere by points which are of opposite handedness in comparison with four-vectors of incident waves 
of the same polarization (compare, e.g., [14], neglecting the 'modified form' of the Stokes reflection matrix). 
Their Kennaugh matrices have opposite signs of elements of the fourth row and analytically are formed from 
the Sinclair matrices the same way like the Mueller matrices from the Jones matrices. 

The last version, (N.27d), applies the Stokes four-vectors of the first version but the Kennaugh matrix 

of the third version. Therefore, it requires insertion of an additional transformation matrix, UU to the 
transmission equation (see, e.g., [100]). 

N7. Comparison of two simple forms of bistatic scattering matrices known as real diagonal and 
'canonical' (in the characteristic polarization basis) 

By applying special orthogonal polarization bases there appear possibilities of obtaining amplitude bistatic 
scattering matrices in particularly simple forms. 

One of such possibilities leads to real diagonal form, E, of the Sinclair matrix. Any Sinclair matrix S 
can be expressed by the Ematrix (see Lueneburg and Cloude [111], Section 5 ), 

S = V*ZW*: 
Ä1      0 
0    A, Ä{>Ä2>0,, (N.28) 

when using two 2x2 matrices, Fand W, both unitary though not necessarily unimodular. Each of them depends 
on three real parameters. With two real parameters of the E matrix, altogether eight real parameters are in use 
determining the nonsymmetrical S matrix. That E matrix denotes the S matrix transformed to two different 
orthogonal bases on its input and output, not necessarily the ONP bases. 

Another simple 'canonical' form, AK , takes on the Sinclair matrix expressed in the so-called 
characteristic ONP PP basis K corresponding to the so-called characteristic coordinate system (CCS) in the 
Stokes parameter space. In any other ONP PP basis B such a matrix, AB , can be written in terms of AK as 
follows, 
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Aß ~ CK AKCK;     AK - 
-Bi~jB2 

B,+jB2 ,jf (N.29) 
CCS 

with unitary unimodular 2x2 matrices, CK , dependent on three real parameters, and with five real parameters 

(altogether eight) in the^ matrix: A2 > Al > 0, B2 > 0 (if B1 * 0), Bl, and //. 
It may be interesting to compare scattering equations with matrices in these two notations, for 

S = AK.       Denoting:        JT = [>♦>,    w2],   V = [vx    v2], with column       vectors 

w\,2 =U
K'   »   vl,2 =UK '   ^and eigenvalues of power matrices cr\2 = (AMyN)2, the sets of power and 

amplitude scattering equations corresponding to each other in the two notations are: 

S *Swl2 = cr\2wX2       <=> 

S'»'l,2 =0"1,2 vu* o AKu^N=ÄM-Nuf'N'* 
M'jr _ (]Mjf ^2 „M'jr Ar*ArU?>N   =(XM-NYu% 

A,uf'N'=ÄM'Nu^N* *K"K 

(N.30) 

Of course, the form of equations on the right side will not change if the AT basis will be exchanged for 
any other ONP B basis. However, in case of the AT basis we may show a simple geometrical explanation of those 
equations using the Poincare sphere models of those scattering matrices. For example, consider the 
transmission equation in the K basis when the receiving antenna is polarimetrically matched to the scattered 
wave, 

Vr = «KAK^ = AMüfuf *=XM . (N.31) 

It should be stressed that local characteristic ONP bases, for transmitter and receiver, denoted by the same 
symbol K, have been determined for elements of scattering matrix corresponding to local spatial bases of 
arbitrarily chosen rotations about z axes (directed to the scatterer for the BSA or antenna alignment). Keeping 
that in mind we see that the same received voltage for transmission in opposite direction can be presented by 
the transposed equation, 

Vr = Vr = ü^ÄKuf = AMüj?u¥ * = ^ (N.32) 

That equation, without changing its form, can be rewritten in any ONP basis. Let us take the first vector of a 
new ONP basis, K", tangent to the polarization sphere at the same K point on the Qc axis but rotated about that 
axis by +180°. The PP vectors of the new basis can be written as: 

«'■=->* =[»' U Kx.1    J 

ur*=Jux* = 

what determines the change of basis matrix, 

and the Sinclair matrix in the new basis, 

AK-=CK AKCK   =-AK 

[»' .£*] 

-J o 
0    j 

-Bx-jB2 

A 
,J(.P±K) 

Bl+jB2 CCS 

(N.33a) 

(N.33b) 

(N.34) 



Z.H. Czyz, ONR-Report-3 (Final Version), April I, 2001 210 

That means rotation of the matrix polarization sphere model by -180° in the opposite direction versus the basis 
rotation (with the change of the phase // by n , see also (8.24) and (8.25)). 

?M 
For 28 K < 0 and the PP vector u   parallel to the eigencircle plane (see Fig.J. 1) we have 

M 2e™ = 20'-(26% +1*0°)    => (N.35) 

where from 

«? = 
_ [cosye-J(S+E) 

sinyeKS-£) 

nM 

= y'exp(-y<?£) 
cos^ 

Lsin/e7Wj^ 

M 

(N.36) 

The scattered wave PP vector in the same basis can be found when considering inversion, rotation and change 
of phase. Angular parameters of its phasor are, 

M" 
28 f =26% +180° 

let  = 2e% +180° = 28P
K -28% M 

^=> (*? + S%) = -90°-8p
K 

••AT M e™  = 90u+2£ M (N.37) 

The corresponding column vector, when taking into account the possible change of phase, £ (see (8.24)), is 

U
K   =y'exp(-y£) 

— rM" ,M 

-1    0 
0     1 

- CMX
U

K >    with    CMJC = exp(-y£) 
-1   0 
0     1 

(N.38) 

After change of basis 

irfT CW 
j   o 

-° -J. 
exp(-y^) 

"-1   0" 

0    1 
M 

-yexp(-y^)^ 

(N.39) 

On the other hand, 

AT"% 

= C£«p(+y0 
1     0 
0   -1 

.M" 

= yexp(+y£X A/" 

(N.40) 

Taking inverse formulae for the two last results: 

M < =J<xp(+jQu» M" 

M M u'Z  = -yexp(-./£)i/£ 

(N.41) 

(N.42) 
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and substituting them to the last equation of the set (N.30): 

AKuf=XMu%* (N.43) 

one obtains another equation of the same set (its form does not depend on the ONP PP basis) 

AK.u£=AMuf*. (N.44) 

The results obtained confirm correctness of the applied procedure of the polarization phasor's transformation 
when bistatic scattering by its inversion, rotation, and change of phase. They also show full agreement of that 
procedure with predictions of the existing literature. 
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APPENDIX O 

COMMENTS ABOUT RELATIONS TO THE EXISTING WORKS 

O.l. About representation of the complete polarization 

To define the complete polarization by the 'polarization ellipse' is a right way but rather in optics onlv For 
radarpurposes it is completely inadequate because then we have to deal wk waves propagatingTZo Z^l 

tT^lv     m,SUCh ^T**™ *" dMfcrent dlipseS define ** «** PolarizaL oolong from onTs de 

i^XSSÄTout80ing and incoming ™*identical,y ^lanzed)we obJ- ™™ 
u .^ J

IlW0Uld ^ an ül-advised suggestion to convince researchers or students that two different ellinses 
should define, or represent, the exactly the same polarization (for the oppositely propagating ^vesT SfZ 
especially^when there exists another way to define polarization whichomits tteabSSmentiZliffTSty 
™™. t i y I ? ?0Wn that' m radar applications, the only reasonable way to represent the 
complete polarization «through the polarization helix, being shifted along tiie propagation ax*TinZ> woZ 
dictions, instead of through the polarization ellipses. The handsel of L^Iarizaton hetiTdoTnot 
ÄnZt, T11 ^P^ation. Unfortunately, the right-handed polarization helix corr^nds to 2 
left-handed polanzation. From that point of view the 'optical' definition of the polarization handeta Lra 
to be more reasonable than the IEEE definition, but that is a separate problem. The 'spatialX?rfS 
polanzation hehx (and of the wave), for / = 0, can be uniquely determined by its shift al^g the prlgat^n 
a*s. we may speak about the spatial phase advance (lead) or retardation (delay) of the wfvelnS Mk°s 
SSSLmf ^ °r neg3tlVe <ÜreCti0n °f thC P^S^011 a™ ^t shift denotes also tiTtemiral pLe 
advanco for waves propagating in positive direction of the propagation axis, but temporal prTdelavfor 
oppositely propagating waves. An essential conclusion is that, in order to properly defined Si phase of 
tiie wave, we note i* shift along positive direction of the propagation axis inde^ndenüy of VtoZZ of 
SSPÜ0l(!)11ut ™* we arrive at «* nece^ to define logically, aTof course mo^SyVe 
SsÄnS 
O.2. About the local spatial coordinate systems (SCS) and their scattering alignments 

^^^S^^1 Sh°r * dCfined m0St Simply * an onh°Z™1 «* right-handed coordinate system, the>.xyz for example, with z as the propagation axis (instead of the wave number vector k indicating the 
direction of propagation when defining the propagation axis). mmcanng ine 

Some authors are using the names of an 'antenna' or 'wave' local SCS. These terms seem to be rather 
uruortunate ones, and not only because they bound the propagation axes with directions™ JÄFo 

T^ioS £S ^ Z T *? Z Pr0PaSati0n "* düeCted fr°m *> *** t0 ** **»=* « Such an xyz local SCS will be neither 'antenna' nor 'wave' coordinate system. Of course, you may call them a 
reversed antenna' or 'reversed wave' SCS, but it would sound strangely. Much simpler wlu beTcSVem Ae 

coordinate system 'with the z axis from the target' (at its side under consideration) 

CBSA') o?tard^FlA^dTa w^ C°mm0nly used_terms for ^ *"° ^«ering alignments: 'backward' 
thetJr rSZF* }" ? 5th °aSeS WC 3SSUme ^ sune z ^ for ^ ül"minating wave, directed 'to the target (though the opposite direction could be also applied). Therefore, the following terms have been 
proposed here for two 'scattering' and two 'propagation' alignments: 
• S1 or S2 scattering alignments for the z axes directed to or from the target and 

* l°l!!rPaÄ-5lmentS: fOT ^ Z axis t0ward the ^ for ^nation and from the target for scattering, or - both directions opposite ones. 
So, according to the above proposal, all four combinations are taken into account, with the SI alienment 
corresponding to the BSA and PI - to the FSA The spherical coordinate system centered aVthTtargefS S 
an example for a reasonable application of the S2 alignment. Any change of the alignment^^bl SZed 
J^tywhen using the here presented passive transformation of the z axis reversal by^uate i£Ä£ 

O.3. About polarization and spatial phase (PP) vectors 

a^5teml^^Uh^Vf°neS Ve?r (ln °P!iCS) °r thC <firective Jones vectors <in radar>t0 P^ent polarizations and temporal phases of waves (their complex amplitudes, CA's) or complex heights of antennas radiating and 
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optimally receiving those waves. All scattering, propagation, and passive transformation matrices operate on 
those CA vectors, forming also their power (Stokes', e.g.) counterparts. The CA vectors represent polarization 
ellipses and their temporal phases, and as such differently describe same polarizations and phases for oppositely 
propagating waves. The directive Jones vectors undergo different change of basis transformations and other 
passive and active transformations (also the Jones to Stokes' vector transformations) because their 'directivity' 
reflects the dependence of their transformation rules on the direction of propagation along the established 
propagation axis. Components of those Jones vectors correspond to the local SCS's. The polarimetric 
transmission equations are based on simple products of those complex Jones vectors satisfying however the 
condition of opposite directivity of the two vectors being multiplied, and another condition of the same local 
SCS in which their components must be expressed. A special care is needed when using the elliptical 
polarization bases which should be of the same directivity as the Jones vectors themselves. 

No doubt that the most advisable simplification of such an approach has been done here by 
introduction of the PP vectors in place of the CA's in the form of the directive Jones vectors. The CA vectors 
have been expressed by the PP vectors which are independent of direction of propagation and directly 
correspond to the polarization helices with their spatial phases. In the local SCS xyz, the CA's just equal the PP 
vectors for waves traveling in the positive z direction or are equal to their conjugate values for waves traveling 
in the opposite direction. Such a concept, based on the time symmetry of Maxwell equations, has been proposed 
as an extension of the Kennaugh's pseudo-eigenvector scattering equation in the SI alignment: from 
monostatic scattering and eigenpolarizations to bistatic scattering in each one of the four possible alignments 
and all possible incident PP vectors. Components of the PP vectors are expressed also in the PP bases, also 
independent on the direction of propagation, and the polarimetric transmission equations are based on the 
Hermitian products of the PP vectors expressed in the same basis of both vectors and related to the same local 
SCS. 

O.4. About the Poincare sphere representation of the PP vectors by the tangential polarization (TP) 
phasors 

The PP vectors have been represented on the Poincare polarization sphere by the TP phasors. In the earlier 
existing works the tangential phasors have been also proposed but they differ by the orientation angle, 
proportional to the temporal phase angle, while in this approach their orientation angles depend on the double 
spatial phase angles (compare, e.g., first [138], then [29]). Owing to that fact the addition of phasors 
representing waves propagating in the same direction but of different polarizations and spatial phases is 
possible. Phasors are uniquely determined for the time / = 0. In time, phasors corresponding to the oppositely 
propagating waves rotate in opposite directions. 

O.5. About the polarization bases 

In the existing literature the orthogonal polarization bases are being commonly applied but usually they are 
limited to the linear and circular bases of null-phase vectors. In this text the so-called characteristic bases are of 
special interest in which scattering matrices obtain a very simple, canonical form. Also labeling of bases is 
different. Instead of indicating both orthogonal basis vectors, only the first basis vector is being presented 
owing to the fact of existing the rule for uniquely defining the second one (in case of the so-called orthogonal 
null-phase polarization basis - the 'ONP PP basis'). Usually the lower index of the PP vectors and scattering 
matrices presents a symbol of the TP phasor corresponding to the first basis vector. 

In the existing literature the polarization bases are very often determined with an insufficient precision. 
For example, the (HV) linear basis of horizontal and vertical polarizations may correspond to two different 
orders of vector components: natural order, (xy), or reversed order, (yx) , in the right-handed xyz coordinate 
system. Establishing of that order is essential because it determines angular coordinates of the polarization 
sphere points. Also the phase differences between vector components are commonly defined in such a way that 
the first component is delayed versus the second one for positive arguments of the polarization ratios (ratios of 
the second versus the first component). These positive arguments correspond to the upper part of the Poincare 
sphere. Therefore that upper part, above the equator of linear polarizations, presents left-handed polarizations if 
natural order of components is being applied. In this text the order of basis vectors is always precisely 
determined by relation to the local right-handed xyz SCS. Usually it is the reversed order corresponding to the 
right-circular polarizations at the 'north* pole of the Poincare sphere. Then the first basis phasor H, of 
horizontal linear polarization, is being identified with the .y-component of the PP vector. Elliptical bases, as 
rotated versions of the original linear bases, preserve their order. 

The ONP PP bases are also called the collinear phasor bases and are most often used as linear or 
characteristic bases. The circular bases are usually of another type. They are called the parallel phasor bases. 
Their order can be deduced by inspection of their transformation from the original ONP bases. 
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O.6. About new problems here considered and their relations to the existing concepts 

Consideration of some new problems was possible mainly owing to 
•   the original concept of the PP vectors (independent of direction of propagation) and their especielly 

«mvenienlabeling with two indices, upper and lower , indicating the Wphasors representing^ PP 
™    ^ ^ ^P* PP ^ resPectiveIy; that concept was based on known pro^rtj oTLtLT symmetry of Maxwell equations, ^ y 

. simple forms with such a labeling, of scattering and transmission equations, and of the polarization ONP 
PP basis transformation by its rotation, leading to the original canonical expressions for scattering matrices 
in the characteristic coordinate systems (CCS), «-menng marnces 

' Ä0:!^6, ^fonnation of the propagation z-axis reversal by appropriate rotation of the 
local SCS, especially useful for changing the scattering matrices alignment 

'   ÄoftStnsSrir?gnCe^ iDtr0dUCed * Kem,aUgh f°r m°n0StatiC "**">** "* here extended to 

All that resulted in such important issues as: 
• formation of the Poincare sphere geometrical models for bistatic scattering matrices 
• determination of mutual locations of special polarization points on the polarization sphere for bistatic 

• developing geometrical constructions leading to designation of those points 

"   Se^i0nf°^C0Pelf d'S [i61,classification of monostatic scattering targets (linear, isotropic, general) to 
the case of bistatic scattering by location of the inversion point on its boundary surfaces in the CCS 

• developmg the theory of five-parameter lossless polarimetric two-ports 
• most simple decomposition of the partially depolarizing 16-parameter' Kennaugh bistatic scattering matrix 

into four non-depolarizing matrices depending on 7, 5, 3, and 1 parameters scarring matrix 
• the polarization four-sphere concept and its use for cancellation of the partially depolarized clutter. 

SWH^I!!? T^ <*? **> te appÜed to <""*"* seemin^y contradictory results of different 
authors by analyzing the admitted assumptions about local spatial coordinate systems, polarization bases (also 

ASS   }'  "*ofdefiningstokes'four'vectors**»«**«*£S£PSSSS 
. /f8?.00"1 ** nevr coöcepts applied and results obtained this text differs from other existing works bv 

precise definition of bases for all vectors and matrices involved and by simplified notation which drops aU 
coefficients and indices not essential for correct polarimetric presentation of scattering and transmission 
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APPENDIX P 

COMPARISON OF THE HERE APPLIED NOTATION WITH THAT OF 
INTERNATIONALLY ESTABLISHED NOMENCLATURE ON MATHEMATICAL 

FORMULATIONS 

PI. TP phasors and their use as necessary extension of the internationally accepted nomenclature 

In order to understand this Appendix an elementary knowledge about the Poincare sphere is necessary. 

Here admitted notation differs from the established international nomenclature on mathematical formulations 
in one point only. It uses the tangential polarization (TP) phasors to determine not only polarization but also 
phase of the elliptically polarized waves. Introduction of that new notion leads, and is necessary, to assure 
precise description of the Poincare sphere transformations. As a side effect, it causes an essential simplification 
of the form of many mathematical formulae presented in this monograph. 

P2. The way of introduction of the TP phasors to the established international nomenclature by the upper 
and lower indices for Jones vectors and their parameters 

In a standard manner, polarization is being determined on the Poincare sphere by a point, say, P at which a TP 
phasor, denoted as P, is tangent to the sphere. Many such phasors can be tangent to the sphere at the same 
point, precisely speaking - their 'continuum' number. Each one will differ in orientation versus some other 

phasor, H, considered as a 'basis' phasor, tangent to the Poincare sphere in another point, H, by an angle 2 VP
H 

being the 'double phase angle', as shown in Fig. Ml (Appendix M p. 157). 

Altogether, three real angular parameters determine the TP phasor (see Fig Ml): 

• 2yp
H, expressing angular distance between points H and P;    0 < 2yP

{ < 180°, 

• 2SH,    denoting    direction   to   the   point   P   versus    orientation    of   the   basis    phasor   H; 

-180° < 25P
H < +180°, 

• 2 vH, meaning orientation of the P phasor versus the phasor H shifted along the HP arc parallel, thus 

preserving its null-phase (or 'basis') orientation;   -360° < 2vP
H < +360°. 

The first two angles determine the wave's polarization (a point on the Poincare sphere). 

It should be observed that the third, double phase angle, may change in the range 47t. It means that two phasors 
tangent to the Poincare at the same point, and of the same geometrical orientation, may differ in phase by 180°. 
Therefore, it is strictly required always to indicate the way (direction) by which the phasor has been rotated 
from its null-phase orientation. 

Column vector of complex amplitude of the elliptically polarized wave, when using the e^0*-*^ time/space 
convention for waves propagating in the +z direction of a local right-handed coordinate system xyz, can be 
expressed in the established international nomenclature enriched with the 'TP phasor notation' as 

Eyj 

i E0ux = ■ 
V1+PP: 

(P.I) 

with magnitude of the complex amplitude, 
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with the complex polarization ratio, 
E0=J\Exf+\Eyf 

if- 

Px=~ = {^yeJ2S}P
x ^tanr£ expC/Wj) 

and with the phase delay of the first component, 

(P.2) 

(P.3) 

Vx = VPx- (P4) 

SS* t^ U3^^11?0? °f ^ P°larization P*35018 is necessary. Only enriched with the TP phasor 
nototion the estabhshed standard nomenclature allows one to precisely indicate both the wave's polarization 
and Phase OJ y, Ö, and ^parameters, determined by the P phasor), and the polarization and phase base of the 
wave s electnc column vector (m this example the (x,y) base, determined by theXphasor). 

P3. The use of the indexed vectors and column vectors. Two orders of the polarization bases 

As has been shown, the natural formal consequence of introduction of the new notion, the TP phasor is the use 
tT m,t°2 T* aDd l0Wf\determining wave's Polarization and phase by one phasor (in fc upper index) 
and amphtude column vector's basis by another phasor (in the lower index). 

ÜÜ^f? ?*?f"T f ^ C°mpIeX ampIitude 0f ^ electric vector> when ^"g such an enriched standard nomenclature, takes the form 

E = Ex{lx+pp
xly) 

(P5) 

= ^0«^. 

PrtfffCT^Sh0dd^h0™tetw^aenotiomofcoor'*/,fl^ x or y> andTPptasora, X or Xx the 
to orthogonal versus X by presentation of the first and second basis vector in a similar manner like the E 
vector has been presented above, 

-['■ €. ',=[', 

-[■ 
= M 

M" and -[■ 
:** AX 

'A 
ly]u Xx 

X (P6) 

Immediately it should be explained, why not to use T instead of Xx'. 

Observe please, that because the orientation angle of any phasor changes in the range An, the phase of the Y 
phasor may be undetermined without additional instruction indicating the way by which it has been shifted 

SS^i^i    vP°f °n t0 ? ^P0031 P0^ Y * ** to assumed ** the Xx phasor is bdng 
obtamed by shifting the X phasor m direction indicated by its arrow. By shifting in opposite direction it will 

^cl^lf11356' Ü* •Wffl corre?ond t0 ""^ vector   S0°' ^ «* assumption, the Xx phasor becomes umquely determined, contrary to the T phasor with the 180° phase ambiguity. 

t^l™?™ ^L^fT01,"56 ^ .^phasor at a"- Of course, we may apply the (y,x) linear basis, called the 
basis of the reversed order , always using the right-handed xyz coordinate system. In such a case we can write, 

"(j'^) E. 
:E0Uy 

1 

IVT 
1 

+ pp * \_p 
,-•/" (P7) 
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with 

and 

^=|^={tanre^}r=tanrf exp<j2<^), 
p v=vY (P8) 

E = Ev(ly+pp
Ylx) 

= Eo[!y      *X]
U (P.9) 

= EQu 

with 

= [*y   '*] 

= [/,    lx]u 

h=[ly      h] 

and = [/,    lx]u Yx 
¥ (RIO) 

= MJ .Yx 

again, with the Fx second basis phasor, exactly determined by its first phasor Y. 

P4. Unit Jones vectors u      and -«     expressed in terms of internationally established parameters 

It will be instructive to present both vectors, u      and -u    , by their column matrices employing p (or ^and 

8) and v parameters. We can write, applying the X - (x,y) polarization basis, for  y x  =90 ,and 

c>x ~vx ~° > 

«*=[!,    /,]«?=[i,    1,1° 

■['• Mlirr V
1+

PP
: 

, Xx 

-/" (P. 11) 

X 

=['* ',] 
cos90c 

-JO' 

_sin90V(2*°>. 

and, defining -Xx as a new phasor with the new phase parameter, e, by putting y=S + e   we obtain for 

Y-/* = 90°, and S~/* = -e~x
x* = 90°, 

-«iÄ-«TÄ=[lxI,]i*Ä=[lx    I,f° 

-['- 4^ 
= ['*      ',] 

Jl + pp* - 

cos90° 
sin90oey(2,9o«) 

)-Xx 

X 

-/[90°+(-900)] 

(P. 12) 

P5. The use of indexed transformation matrices 

Combining the two obtained results for presentation of vectors in bases of the reversed order we can write 
alternatively, 



Z.H. Czyz, ONR-Report-3 (Final Version), April 1, 2001 218 

E = E0[ux    uXx]ux 

= E,[uY    uY*]up
y 

= E0[uB    U^]UP 

(P.13) 

The last equality presents the electric column vector in the new basis determined by its first phasor B which 
corresponds to the first basis unit vector 

uB=[ux    u^]uB
x 

= [ur    un]uB 

= [uB    umjuB,    with u 

(P. 14) 

Fundamental internationally established transformations with the use of an additional phasor notation take the 
following forms: 

The orthogonality transformation. 

u?=- 1 

with 

Jl + ^p 
0 -1" 

1 0 

\        1 

-P' 
1 

04)* 

,JV 

X (P. 15) 

*x 
jl+pp' 

-Jv 

(P. 16) 

x 

Obser\>e, please, that here the orthogonal vector has been defined uniquely, what is not the common case in the 
international nomenclature but very convenient because it allows for exact determination of the orthogonal 
polarization (and phase/) basis by its first vector only. 

Without use of the phasor notation we had 

*(x,y) 
y/l + PP 

,JV 

(x,y) (P. 17) 
0 -1 

1 0 

with the unit vector being transformed, 

\*,y) f + PP' 

-jv (P. 18) 

(*,y) 

The disadvantage of such an incomplete notation is that polarization and phase of both vectors should be 
specified if they have to be used in scalar product with other PP vectors. 
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Change of basis (passive) transformation takes the form, 

-J  1 i 

p 

-P* 
yi+pp* i 

- cX 

e-A   up
A   .   [ui    uf\up

A 

or, without phasor notation, 

x 

U(x,y) -   Ul, (A,B)-*(x,y)U(A,B) 

(P. 19) 

(P.20) 

where problem appears with an unambiguous description of the unitary transformation matrix U2 because here 
the A and B symbols of basis vectors do not represent phasors and in each case ought to be precisely 
determined. 

Active transformation of the Jones unit vector corresponding to the tangential phasor P into similar vector 
corresponding to the tangential phasor A, in the circular (R,L) basis for example, takes the form (compare 
formula (5.23), p. 24): 

«i=- 
y/l + PP' 

1    -p> 

P      l 

- t-R ^P UR 

= CA  up 
- ^P,RUR 

RU
X+PP" 

1 

p 
-jv 

(P.21) 

The same transformation when using the 'international nomenclature' without phasor notation would be 

U(R,L) - Ui, (A,B)->(R,L)U2, (R,L)^(P,Q)U(R,L) ■ (P.22) 

That form is not only longer but involves more basis vectors (six: R,L,P,QA,B, instead of three: R,PJ) with the 
same problem of precise description of the unitary matrices U2. 

P6. Few convenient new symbols, C, D, and U 

Immediately the question arises why to use symbols C instead of U2 ? There are two reasons justifying such a 
modification. The first one is dictated by the possibility of simplification of formulae by using simpler symbols, 
C=U2 and then D=U4, the last for transformations in the Stokes parameter space. Another reason has appeared 
after applying the symbol U for transformation the Jones to Stokes vector, also in the 4-dimensional space of 

Stokes parameters. Such an unitary matrix used to be expressed by some authors through A = \2 U * (see 

Boerner in [13] and [23]), or Q - yflÜ * (see Mott in [38]). 
Those symbols have been used in this monograph to present other entities. Following van de Hülst in 

[83], the symbol A has been chosen to present amplitude matrices (2x2 complex matrices). However, not the 
Jones 'propagation' matrices are here denoted by A, what exactly has been proposed by van de Hülst, but the 
Sinclair 'scattering' matrices. The Jones matrices have been denoted by ^4° in order to strongly indicate the 
exact mutual dependence between the Sinclair and Jones matrices which can be expressed by the simple 
transformation equation in any orthogonal polarization B basis, 

(P.23) 

Such a transformation, presented in the (precisely named) 'orthogonal polarization and phase basis of collinear 
phasors' - see Section 7.5 , has been called the 'spatial coordinate system reversal by its rotation' and presents 
one of essential results of this work. Owing to it, the up to date existing problem of ambiguity in such a 
dependence (in any polarization basis) has been solved definitely. 

Similarly, the Q symbol has here been reserved rather to describe one of the Stokes parameters. 
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equality 
Moreover, the unitary U matrix here being applied has been chosen as strictly unitary, satisfying the 

U~l=U* and     UÜ* = diag(\,\,\,\) (P.24) 

what appears very convenient when introducing, e.g., definitions of Stokes vectors or Kennaugh matrices by 
proper modifications of transmission equations (for instance, see Section N6, formulae (N.27». 

P7. Other indexed transformation matrices 

For the Stokes parameter space one example will be given explaining the problem. 

Rotation matrices in the Stokes parameter space  Transformation matrices just mentioned, UmdA,ate: 

u 1 
^ 

"110 0 

0    0     1 -j 

0    0    1 j 

1-10 0 

A = 

10    0      1 

10     0-1 

0    110 

0   j   -j    0 

(P.25) 

Rotation matrices in the Stokes parameter space, when using international nomenclature enriched with the 
phasor notation, expressed in any orthogonal R basis of collinear phasors, take the following unambiguous 

DP=Ü*(C£®CP*)U . 

Without application of phasor notation, the corresponding expression is of the form, 

U4, (P,Q)^RJ,) = A (U2, (P,Q)^(R±) ®UA, *(P,Q)^(RJ,))A~1 

(P.26) 

(P.27) 

Bases vectors P, Q, R, and L here applied, not being phasors, need precise description which should take into 
account their phases (vectors always have phases, though sometimes assumed tacitly, whereas phasors are 
completely determined by three real parameters each - very simply!). 

Transformation by reversal of the spatial coordinate system Such transformation can be used, for example, to 
convert the Sinclair into Jones matrix. Using the international nomenclature with the TP phasors the following 
expression for the Jones versus Sinclair matrix has been presented above, 

A0 -C° * A (P.28) 

Such expression was never used without the phasor notation except of its presentation in orthogonal linear or 
circular bases of collinear phasors. In linear basis it reads (see, e.g., Mott [38], p.316, formula (6.88)) 

with T = A°x, S = Ax and 

T = 
"-1    0" 

0     1 

"-1   0" 

0     1 
= C°*; Xo(x 

(P.29) 

should be applied in which the Cx matrix undergoes similar transformation like the Sinclair matrix, and: 

CS* = (C?C£CJ)*. (P.30) 
In the circular L basis of collinear phasors and of natural order, with  Sx = yL

x = vx = 90°  (and 

ex = 0 ) one obtains 
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C°L* = (CXCXCXY = { 
"o  / "-1   o" "o  / 

)* = 
"-1   o" 

U   °J L°   l\ U  uj L° i\ c (P.31) 

In another circular Z, basis of collinear phasors and of natural order, with 8x - y x = -sx = 90    (and 

4 Vy =0  ) one obtains different matrix 

^* = (C^C^C^)* = ( 
"0 -l" "-1   0' "o  r 

)* = 
"l o" 

l_l oj L°     l\ [-1  oj [u -ij -c 0   * 
A' (P. 32) 

However, in the Stokes parameter space, these two amplitude transformation matrices produce the same 'power, 
polarimetric' transformation matrix of the form 

D°L = U(C°X ® Cx *)U = 

1 0 0    0 

0 1 0    0 

0 0 -1    0 

0 0 0     1 

(P.33) 

well known from the international literature and easily obtainable with the use of formulae employing the 
phasor notation. 
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APPENDIX Q 
POLARIMETRIC INTERPRETATION OF KNOWN MATHEMATICAL THEORIES 

This monograph has been written also for those readers who may be not familiar with 'higher mathematics' 
Only the knowledge of complex numbers and of fundamental rules of matrix calculus is sufficient to read this 
text. For other readers however, aquainted with the Riemann geometry and spinors ([130], [116], [117], [106], 
[125]), the following polarimetric interpretation of known mathematical theories mav be helpful in immediate 
understanding the way in which here the Poincare sphere transformations have been presented. 

Ql. Application of tangential planes on manifolds, flags, geodetics, parallel transport of vectors on 
manifolds, to definition of the TP phasors and PP vectors and their use in polarimetric transmission 
equations. 

Topologically, tangential phasors (or spinors) are considered as elements of the two-folded (complex) 
Riemann surface of constant curvature called here the polarization (Poincare) sphere of tangential phasors (TP 
phasors). Great circles of that TP phasors sphere, or their segments, are called geodetics on such a Riemann 
surface. Phasors 'shifted parallel', without rotation, along those geodetics by In (along one closed loop 
interpreted as a great circle of the Poincare sphere) take their initial value multiplied by -1, and only shifted by 
the An distance return to their initial value. Similarly phasors, only rotated in their tangential plane, take their 
initial value after rotation by the Wangle (or its multiple). Generally, one shift of the phasor along any closed 
loop on that Riemann surface, when remaining tangent to that loop, can be interpreted as a sum of 'parallel 
shifts' along elementary segments of great circles plus rotations at their nodes (on that loop) what results in the 
total change of phasor's orientation by In what consists of one half of the solid angle subtended by that loop 
plus the sum of angles of rotation at all nodes. This is also one half of the phasor's phase change equal to n. 
Orientations of the TP phasors can be presented on that two-folded Riemann surface of constant curvature by 
the so-called 'flags' (compare 'Gravitation' [116] by Misner, Thome and Wheeler), of orientations in the range 
of 4n. 

Complex amplitudes of waves propagating in the +z direction of the right-handed xyz local spatial 
coordinate system are equal to the polarization and phase (PP) vectors. They can be presented by the TP 
phasors on the Poincare sphere and represented, e. g, by nondotted contravariant spinors (or by dotted 
covariant spinors). Complex amplitudes of waves propagating in the -z direction can be represented by dotted 
contravariant spinors (or nondotted covariant spinors), accordingly, because they are equal to conjugate values 
of the PP vectors. However, their TP phasors always correspond to the PP vectors, not to their conjugate 
versions. The only difference between the TP phasors representing oppositely propagating waves (or oppositely 
oriented antennas) is that the received voltage, being expressed by the Hermitian product of the two PP vectors, 
has its phase argument equal to one half of the difference: of the orientation angle of the TP (TP+) phasor! 
corresponding to the '+z oriented' wave (antenna), minus the orientation angle of the TP (TP-) phasor of the '-z 
oriented' antenna (wave). That reflects the fact that, in the Hermitian product, the PP vector corresponding to 
the TP- phasor appears always in its complex conjugate form. 

So, the Sinclair scattering matrices transform the PP vectors of incident waves to complex conjugate 
PP vectors of scattered waves. This is because the incident waves are propagating in the +z direction of the 
local z-axis, oriented to the scatterer, and the scattered waves are propagating in the -z direction of their local z- 
axis, also oriented to the scatterer. Applying conventional nomenclature, Sinclair matrices transform complex 
amplitudes (CA's) of incident waves (alias: positively directed Jones vectors) into CA's of scattered waves 
(alias: negatively directed Jones vectors). 

The two-way transmission equation in the BSA with the Sinclair matrix of the scatterer, is being 
presented by the Hermitian product of two PP vectors, of an antenna and scattered wave, in which that of the 
scattered wave, oriented along -z direction of the propagation axis, takes the complex conjugate form. 

Direct transmission between two antennas is being presented as the two-way transmission with the so- 
called 'Sinclair scattering matrix of free space', otherwise called the matrix of transformation by reversal of the 
spatial coordinate system by 180° rotation about its axis perpendicular to the propagation axis. Such a matrix 
transforms the PP vector of a wave radiated by the transmit antenna, in the +z direction of its local coordinate 
system, to the conjugate PP vector of the 'scattered' wave, propagating in the -z direction of the receiving 
antenna. That matrix is of course symmetrical, to fulfill the requirements of reciprocity [53]. 
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Q2. Comparison with spinor notation 

Spinor notation may start with determination of the real numbers (see, e.g., 'Gravitation' [116], eqns. (41.64)) 
,12 

12"0    ~~°21 (Q.D 
sn - s 

en=e 

-s7 

22 e22=0 
defining the alternating symbols 

,AB 
-E 

BA 
■AB -e BA (Q.2) 

being used to define the rule of rising and lowering the spinor's index (in [116], eqns. (41.65) and (41.66)): 

( (£, =?SBA =-tB£AB) <* £*=&*** )  <*   {Zl=-Z2, $2 = £'}. (Q3) 
where the spinor itself can be considered as corresponding to the two-dimensional PP vector, elements of which 
are complex numbers. Two contravariat spinors can form a normalized basis (compare in [116] eqns. (41.96) 
and (41.97) for 2r = 1) consisting of the first basis spinor, corresponding to the unit PP vector, 

^O u   <*->   gA <=> 
-b ,x*. Cxu Cx = 

0 -1 
1 0 

(Q.4) 

and its 'mate', or second basis spinor, which corresponds to the uniquely determined orthogonal unit PP vector 

rjB o 
-fr- 

et 
= u    <->   r}B <=> 

-a 
. XX * 

= U       ■ 

They are linked by the equation (see [116], eqn. (41.84)) 

4 v -v 4 A zB       „AB   ..    *   . e    <=> det 
a   -b* 

a 
= det[w   wx] = +l. 

(Q5) 

(Q.6) 

A scalar product of spinors should be defined enabling one to express the received votage in a spinor 
language. That requires a special care because scalar product of any spinor with itself desappears: 

0 = €AZA=[a   b]~b = uux * 
(Q7) 

= uC*u = €Ae]UeB=-ZB€B 

and only scalar product of the two basis vectors equals one (see [116], eqns. (41.81)): 

\ = 4AVA=[-b   a\-b* ux*ux 

Therefore, taking (see also (Q.5)) 

-4AnA=\-a -b] 

4A^uR 

-b* 

(Q.8) 

= uu*. 

Toxxt__uTo * (Q.9) 

we arrive at the desired equation for the normalized received voltage (compare (6.13), (6.5) and, in [116], the 
definition (41.67) of scalar product for spinors): 

y -fiRuTo*_    ~^..roxx*_    eB, -uRuT0X**: -FCi 
lRCxC*uTo*    -*x 

rR/^o^.T       t-Aci     _B 

= üKCxCxuJ0*=üKX *uT0X=£A(
/ 

(Q.io) 

-u  C u   —g ojtfT  ; £A-SAB
T
  '■>     SAB-SBA^C   - C 

The 'coordinate system reversal by rotation matrix' transformed from the linear, H, to any ONP PP basis B, 
according to (6.14) is: 

fO — c° — r'B r° cB ■ ~"       — 
u

     ~^B -^H^H^H' 0     1 
(Q.lOa) 
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Q 3. Complex antenna height and complex antenna receiving height. The received voltage reciprocal equation 

Following Booker/Kales ([26], 1951), or Stutzman ([135], 1993, p. 138, (6.52)), and using concept of the PP 
vectors, the received voltage 

V = V0e>«-     V^V^C1 mi) 

can be expressed through its complex value F0by means of the equations 

V0=E0h(uR.C°*uT) 

= E0h{uR.uT°*) = E0h{uRo*.uT) (Q.12) 

= E0.h°* 
in which: 

• u and u are the unit PP vectors, and also the directional Jones vectors, of an antenna and wave 
respectively, oriented in +z directions in their own local right-handed xyz coordinate systems; by means of 
those vectors the antenna height complex vector, the antenna receiving height complex vector (compare 
with Holhs et al. in [80], Chapter 3, or/and with the IEEE Standard [90]). and the electric vectors of the 
incoming wave, propagating in two directions along the z-axes of the local coordinate svstems can be 
expressed in succession as follows: 

h+=h = hR=:hu\ 

h°-=h°* = hRo* = huRo*; uR0* = C° •uR=uR.C\ 

*+ = E0V«;       E;=E^EI=E()U
T, ' (Q13) 

E°- = 2?0°V";       E°Q- = /?• * s E?* = EQu
To*;      uTo* = C° • uT. 

These vectors are the directive Jones vectors [131, h+ , h°~ , Ej, E°~, expressed in terms of 

the corresponding unit PP vectors,   UR, uRo, uT, uTo , which are independent ofthe direction 
of wave propagation, or antenna orientation, versus the z-axes of their local coordinate systems. 
Such an independence is essential for presentation of the corresponding TP phasors on the same 
Pomcare sphere, what enables one to see the angle between phasors of the incoming wave and the 
receiving antenna; the cosine of one half of that angle is the magnitude of the normalized received 
voltage. The sign of the voltage's phase depends on which factor of the scalar product is conjugated. 

• C is an operator (dyadic) reversing: (1) direction of z-axis of the local coordinate system (by its 180° 
rotation) and (2) direction of time, or in other words: direction of propagation/orientation versus actual 
direction of the reversed z-axis, what has been expressed by conjugate value of the transformed vector In 
space, direction of propagation/orientation remains unchanged. 

(General remark: polarization and phase (PP) vectors are always related to their local spatial coordinate svstem 
in such a sense that they change under reversal of the propagation z-axis of that system, the reversal performed 
by 180 rotation of that system about an axis perpendicular to the z-axis. Such a change of the PP vector can 
be compared with transformation of that vector by a scattering matrix. In this case the matrix corresponds 

to the C° dyadic and can be considered as a Sinclair scattering matrix of 'free space' between antennas). 

C is a symmetric dyadic. This satisfies a demand which ensures full reciprocity (') of the first 
equation of (Q.12). The received voltage cannot depend on direction of propagation between antennas. Their 

complex heights can be presented by the positively directed Jones vectors hR+ = h uR and hT+ = h uT 

Antennas are looking at each other, but both vectors of their complex heights are expressed in their own local 
coordinate systems with the z-axes directed out of them. Therefore the free space between the antennas should 
be considered as a hypothetical 'target' in local coordinate systems on its both sides with z-axes directed to the 
target. Its Sinclair scattering matrix is given by (Q. 10a). 
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A comparison of the two approaches, employing the directive Jones vectors and polarization and 
spatial phase (PP) vectors, on the example of expression for the received voltage, can be presented by the two 
following equations, respectively, when assuming the propagation z-axis being oriented in the direction of 
wave's propagation or in the opposite direction: 

0 (Q.14) 
= E°- • h+ = E° * *h 
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Appendix R 
Maxwell Equations in Radar Polarimetry 

In radar polarimetry, solutions of Maxwell equations should lead to determination of complex amplitude 
vectors, electric and magnetic, of two plane electromagnetic waves propagating in opposite directions. Those 
vectors are functions of wave's polarization (two real parameters) and its spatial phase (one real parameter). 
Polarization and spatial phase parameters do not depend on wave's direction of propagation. However, 
complex amplitude vectors of waves propagating in opposite directions are different functions of those 
parameters. 

Consider the first two, real, time dependent Maxwell equations, for plane waves propagating in the 
isotropic, homogeneous, source-free, linear medium along the z-axis of an xyz coordinate system in both 
directions, +z or -z: 

VxV(t,z) = e^^,       e = const (R.i) 
at 

V x S{t,z) = -ft—^,     ft = const (R.2) 
ot 

where 

v=ix—+iv—+1. — x ck     y dy     z dz 

For the harmonic electric and magnetic vectors of those waves introduce their space-dependent complex 

amplitudes, E0 (z) and H0 (z) , defined as follows for waves propagating in the two directions: 

S(t,z) = S± (t,z) = Re{Et {z)eJM } 

V(t,z) = ^ (t,z) = Re{H± (z)eJ°* }. ^ 3) 

At first, consider electric vectors of waves propagating in the +z direction. Define also their complex 
amplitudes, E0 and H0, independent of the space coordinate z according to the equalities: 

E^(z) = E0(z)=E0e-^, (R.4) 

HZ(z) = H0(z) = H0e-Jkz. (R.5) 

The first of those complex amplitudes, ^o , called the 'Jones vector' (in its column matrix form), can be 
expressed in terms of a unit complex vector u and vector's magnitude E0 as follows, 

E0 = E0u = E0 (lx ux + ly uy );     uxux * +uyuy * = 1. (R.6) 

In turn, the unit u vector in its Jones vector form can be expressed in terms of 'analytical parameters' of 
polarization, fand 5, and phase, e, 

u(*,y) 
.V 

'cosre~KS+£) 

smyeJ{S-£) 
(R.7) 

Complex Maxwell equations for complex amplitudes dependent on spatial coordinate z are of the form 

VxH0(z) = jcosE0(z), (R.8) 

VxE0(z) = -ja)fiH0(z) . (R.9) 

In order to present the vector H0 in the form similar to that in (R.6) we should first observe that 
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k = coJep,       E0=H0J— 

what results in 
kE0 = H, o > 

kHn 

cos 

(R.10) 

(R.lla,b) 

Now, from (R.9) and making use of (R.6), we obtain 

V x E0 (z) = E0 

h ly h 
djdc       djdy     dl& 

uxe~jkz    uye-
Jb      0 

■ jkE0e-
Jkz(lxuy-lyux) 

(R.12) 

and with (R. 1 la) we have 

= -ja>/iH0(z) 

kE, 
H0(z) = -^e^(lxuy-lyux) 

COjU 

= HQe^(lx(-uy) + lyux) (R.13) 

where 

"x*=[^ M7" =[2* ^ 
0 -1 

1 0 
[h     ly]K,y)*)> (R14) 

and where the magnetic complex amplitude vector of the forward propagating electromagnetic plane wave is 

H0=H0(u**) = H0(lx(-uy) + lyux) (R.15) 

Also the Maxwell equation (R.8) is satisfied for vectors (R.4,6) and (R. 13): 

VxH0(z) = H0 

*x *y xz 
djdc        d/dy     dldz 

-uye-
Jla    uxe~jkz      0 

= jkH0e-Jkz(lxux+lyuy) 
(R.16) 

= jcoeE0 (z), 

where from, when using (R. 1 lb), 

E0(z) = ^e-^u = EQu e^b = E+(z), 
cos 

(R.17) 

according to (R.4) and (R.6). 
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For complex amplitudes (R.4), (R.6) and (R.5), (R.15), the 'polarimetric' expression for the Poynting 
vector of a wave propagating in the +z direction can be found as follows: 

h h h 
ux uy 0 

-U y          * U
X* 0 

S+ =\RQ{Et(z)xHt *(z)) = iRe(£0 xH0 *) 

= ±E0H0Re(uxu*) = ±E0Hc 

The corresponding real electric and magnetic vectors for t = z = 0 (see Fig. R. 1) are: 

S* (0,0) = E0RBH, 

»+(0,0) = #0Re(«x*). 

(R.18) 

(R.18a) 

Summarizing,   complex expressions  for  electric  and magnetic  vectors  of the   'forward'   propagating 
electromagnetic plane wave take forms 

E+ (t,z) = E0u em~^ = EQ e/((ar-fe) 

H+ (t,z) = H0(ux *)eJ«*-^ = H^-V. 

(R.19) 

(R.20) 

The corresponding expressions for waves propagating in the -z (backward) direction can be found 
when inspecting Maxwell equations which are conjugate versus (R.8)-(R.9), 

They can be rewritten in the form 

VxH0*(z) = -jtoeE0*(z) 

VxE0*(z) = j<onHQ*(z) . 

Vx(-H0*(z)) = jcoeE0*(z) 

VxEQ*(z) = -jcoju(-H0*(z)) 

Defining the following complex amplitudes for backward propagating waves 

E-(z) = E0*(z) = E0*e^ 

H-(z) = -H0*(z) = -H0*ejkz 

(R.21) 

(R.22) 

(R.21') 

(R.22') 

(R.4') 

(R5') 

we conclude that E0 * (z)and -H0 * (z)vectors fulfill equations (R.8)-(R9) when being used in place of 

vectors E0 (z) and H0 (z) Therefore, the new couple of vectors represents an electromagnetic wave too, 
though propagating in opposite direction because of the exponential term with the positive imaginary exponent, 
+jkz. The corresponding expressions for electric and magnetic complex vectors of that wave take the following 
forms, corresponding to those as in formulae (R. 19) and (R20) for forward propagating waves: 

E~ (t,z) = E0u * ej(0*+kz) = E0 * eJ{0*+kz) 

H~ (t,z) = H0(-ux) eJ(at+kz) = -H0 * eKat+kz). 

(R.23) 

(R.24) 

All that can be verified by direct inspection. Indeed, 
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VxE0*(z) = E0 

h       K 
d/dc        d/ty      dl& 

ux*eJKZ    uy*eJKZ      0 *e]kz    uy*"Jkz 

= -ja>fi(rH0*(z)), 

= -jkE0e
jk*(lxuy*-lyux*) 

(R.25a) 

what results in 

IrF 

(on (R.26) 

Similarly, 

Vx(-H0*(z)) = H0 

= ja>eE0*(z), 

= H-e^=H~(z) 

y 'z 

djäc djdy       djdz 

uy*ejkz    -ux*eJkz      0 

= jkH0e
fts(lxux*+lyuy*) 

(R.25b) 

and 

E0 * (z) = ^- eJkzu* = E0u * eJkz. 
COS 

(R.27) 

For complex amplitudes (R.4')-(R5') and (R.27)-(R.26), the 'polarimetric' expression for the Poynting 
vector of a wave propagating in the -z direction can be found as follows: 

S- =jRe(E-(z)xH-(z)*) = -^Re(E0 *xH0) 

= -jE0H0Re(u*xu* *) = -±EQH{ 

h h h 
ux* Uy            * 0 

-Uy Ux 0 

= -iE0HQls . 

The corresponding real electric and magnetic vectors for / = z = 0 (see Fig. R.2) are: 

5"(0,0) = £0Rei#*, 

^-(0,0) = //0Re(-iix). 

The most important results of those considerations are being expressed by the equalities: 

and 
E+ (t,z) = EQu eJ'ia*-h) = E0 eKa*-b) 

ET (t,z) = E0u * eI(at+kz) = E0 * eK°*+kz) 

(R.28) 

(R.28a) 

(R.19) 

(R.23) 

When neglecting the exponential wave terms, they present complex amplitudes of electric vectors and indicate 
that those amplitudes become conjugate for waves propagating in the -z direction. Complex amplitudes can be 
also expressed in terms of their directive Jones (column) vectors as in the following equalities (where the 
orthogonal wx vectors can be uniquely determined with the help of the (R. 14) transformation formula): 
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(R.29) 

The directive Jones vectors were for the first time introduced by Graves [79]. He indicated different (mutually 
conjugate) rules of their change under the basis transformation. Indeed: 

(R.30) 

By means of those directive Jones vectors the scattering equation which uses the Sinclair scattering 
matrix (in the back-scattering alignment, BSA) can be presented in the two following equivalent forms: 

or 
SB(ul)+=AT(ul)-, 

SBuT
B=AT(us

3)*. 

(R.31) 

(R.32) 

Complex amplitude of the received voltage (when neglecting the space attenuation) can be expressed by the 
two-way transmission equation 

Vr = ü$SBuT
B = A7"»/(»I) * (R.33) 

or by angular functions dependent on mutual locations and orientations of polarization phasors R and S tangent 
to the polarization (Poincare) sphere (compare with (4.19)). 

Jones electric vectors of forward propagating waves (along positive direction of the z-axis), or forward 
directed antennas, can be called 'polarization and spatial phase vectors' (the 'PP vectors'). Jones electric 
vectors for negative directions (-z) are being expressed by the conjugate PP vectors (!). 

A form similar to (R.33) one obtains for the 'reciprocal equation' for direct transmission between 
two antennas: 

(R34) 

with the z-reversal matrix by the spatial coordinate system rotation: 

uB u(*,y) 

u(*,y) 

-1    0 

0     1 \<y)    <y) ] = C°B= (C°B T1,   detC£ - -1 (R.35) 

Another modification of equation (R.33) 

vr ~UB ÖBUB -"B^B^B     üBUB~UB        JBU (R.36) 

leads to the definition of the 'receiving polarization' in the wave's coordinate system (compare IEEE Std. 
145-1983, p. 6 in [90], or p. 3D.7 in [80]) expressed through the conjugate PP vector of an antenna, or its Jones 
vector, for 'negative orientation' versus the z-axis, 

«5°* = CjttJ. CR.37) 

and to determination of mutual dependence between the corresponding Sinclair and Jones matrices 

JB=C°B*SB. (R.38) 

The 'full Stokes four-vector' of the completely polarized wave (or antenna), of the unit 'total power' 
represented by its first component, should possess the three remaining components being equal to rectangular 
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coordinates of the polarization point on the Poincare sphere of unit radius. That property should be independent 
of the direction of wave's propagation (or antenna orientation) in order to obtain the received power 
proportional to cosine square of half an angle between polarization points of the receiving antenna and the 
incident wave. Therefore, the full Stokes four-vector can best be presented with the use of the PP column 
vector as follows, 

8(x,y) - P<w) = V2U * (E0^y) 0 E^y) *) = V2U * El (ii(vrt <g> u, y) ^ "(x,y)  ) 

1    0 0 

10 0-1 

0    1 1 

0 j -j 

r MA* T 
-1 

0 

uxuy* 

UyUX         * 
-E2 q 

u 

0 UyUy     * V 

q2+u2+v2=l, 
(R.39) 

L  -W) 
with 

u= 
4i 

1100 

0 0 1 -j 

0 0 1 j 

1-100 

detU = -y (R.40) 

(R.41) 

That formula is valid for both incident and scattered waves (propagating in the +z or -z direction of each local 
xyz coordinate system). Here it is expressed in the orthogonal linear, (x,y), polarization basis. For any other 
orthogonal null-phase (ONP) PP basis, the change of basis transformations (R.30) can be applied. The 
development of expression (R.39) immediately follows the equation for the received power, also based on 
(R.33): 

pr^vr\
2 = vr®vr*={ü*sBu

T
B)®(ü*sBuT

By 

= (uB ® iiB *)U * \J(SB ® SB *)UU * (uT
B ® uT

B *) 

= ig2DlD0
BKBgT

B=ig«°MBgT
B. 

That equation determines both the Kennaugh and Mueller matrices, their mutual dependence: 

MB=D£K5; Dl=V(C°®C°*)V=D0
B=(J)0Br

l,   detD» =-1 

as well as the 'receiving full Stokes four-vector' in the wave's coordinate system, 

(R.42) 

(R.43) 

Rewriting the change of basis equation (R.30) in the new form with the unitary unimodular (amplitude) 
change of basis matrix, 

»£=[«£   U
B

H]U
P

B=C
B

HU
P

B-   detC*=+l,  ac*rl=(c*r = c2, 

its Stokes version can be found with the real (Stokes) change of basis matrix, 

(R.44) 

\B \-l H (R.45) 8H=K8B,     D£=U*(C£<8>C£*)U,   detD^=+l,   (D*)"1 =D^ =Di 

Observe, please, simple and easy to remember form of the change of basis formulae (R.44) and (R.45). 

The above presented formulae have shown how the polarimetric form of Maxwell equations, 
(R.8-9) and (R.21'-22'), through the definition of the PP vector E0 as in (R.6), appearing in expressions 
(R.19) and (R.23), enables one to develop fundamental equations of radar polarimetry. 
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5+(0,0) 

Fig. Rl. Real electric and magnetic vectors of a wave propagating in the +z direction 
for / = z = 0. 

•sr (o,o) 

H0 Re(!f *) 

S' (0,0) 

£0Re(O 

y 

Fig. R2. Real electric and magnetic vectors of a wave propagating in the -z direction 
for t = z = 0. 

The same spatial phase of the electric vector as in Fig. Rl. 



Z.H. Czyz, ONR - Final Report, 1 June 2001 233 

REFERENCES 

[I] Agrawal, A P., 'A Polarimetric Rain Back-scattering Model Developed for Coherent Polarization 
Diversity Radar Applications', Ph.D. thesis, UIC-GC, University of Illinois, Chicago, IL, December 
1986. 

[2]        Agrawal, A P., W-M. Boerner, 'Redevelopment of Kennaugh's target characteristic polarization state 
theory using the polarization transformation ratio formalism for the coherent case', IEEE Trans. 
Geosci. Remote Sensing, Vol. GRS-27(1) (1989) pp. 2-14. 

[3]        Azzam, R. M. A and N. M. Bashara, 'Elipsometry and Polarized Light', North-Holland Amsterdam, 
1977. 

[4]        Barnes, R.M.,Roll-Invariant Decompositions for the Polarization Covariance Matrix', Polarimetric 
Technology Workshop, Redstone Arsenal, Alabama, August 1988. 

[5]        Bebbington, D. H. O., 'Target vectors - spinorial concepts', Second International Workshop on Radar 
Polarimetry, IRESTE, Nantes, France, September 9-10, 1992, pp. 26-36. 

[6]        Bebbington, D. H. O., 'Geometrical concepts in optimal polarimetry: Stokes formalism in a 
Minkowski space', Radar Polarimetry, SPIE Vol. 1479, San Diego, 1992, pp. 126-136. 

[7]        Bebbington, D. H. O., G. Wanielik, M. C. Chandra, 'Target vector reality criteria', European 
Microwave Conference, Munich, October 1999. 

[8]        Bebbington, D. H. O., E. Krogager, M. Hellman,' Vectorial Generalization of Target Helicity', 
EUSAR 2000 - 3rd European Conference on Synthetic Aperture Radar, 23-25 May 2000, Munich, 
Germany, pp.531-534. 

[9]        Bebbington, D. H. O., 'Analytical foundations of polarimetry', I, to be published. 

[10]      Beckman, P., 'Depolarization of Electromagnetic Waves', The Golem Press, Boulder, Colorado, 1968. 

[II] Beran, M. J. and G. B. Parrent, Jr., 'Theory of partial coherence', Prentice-Hall, Inc., 1964. 

[12]       Boerner, W-M., 'Use of polarization in electromagnetic inverse problems' Radio Science, vol. 16 (6) 
(1981) pp. 1037-1045. 

[13]       Boerner W-M., H. Mott, E. Lueneburg, C. Livingstone, B. Brisco, R. Brown, J.S. Paterson (autors); 
S.R. Cloude, E.Krogager, J.S. Lee, D.L. Schüler, J.J. van Zyl, D. Randall and P. Budkewitsch 
(contributing authors) 'Polarimetry in remote sensing - Basic and applied concepts,' Chapter 5 (94 
p.) in R. A Reyerson, ed. 'The manual of remote sensing', 3rd Edition, ASPRS Publishing, Bethesda, 
MD, 1997. 

[14]      Boerner W-M., M. B. El-Arini, Ch-Y. Chan, and P. M. Mastoris, 'Polarization Dependence in 
Electromagnetic Inverse Problems," IEEE Trans. Antennas Propagat., vol. 29, pp. 262-271, 1981. 

[15]      Boerner W-M., B. Y. Foo, H. J. Eom, 'Interpretation of the Polarimetric Co-Polarization Phase Term 
(<pHH - <pyy) in High Resolution SAR Imaging Using the JPL CV-990 Polarimetric L-Band SAR 
Data', Special IGARSS Issue of IEEE Transactions on Geoscience and Remote Sensing, 25 (1): 77-82. 

[16 ]      Boerner W-M., et al. (eds.), 'Inverse Methods in Electromagnetic Imaging', Proceedings of 
NATO-ARW, (18-24 Sept. 1983, Bad Windsheim, FR Germany), Parts 1&2, NATOASI 
C-143, (1500 pages), D. Reidel Publ. Co., Jan. 1985. 

[ 17]     Boerner W-M., et al. (eds.), 'Direct and Inverse Methods in Radar Polarimetry', 
NATO-ARW, 18-24 Sept. 1988, Proa, Chief Editor, 1987-1991, (1,938 pages) NATO-ASI 
Series C: Math & Phys. Sciences, Vol. C-350, Parts 1&2, D. Reidel Publ. Co., Kluwer Aca. Publ., 
Dordrecht, NL, 1992 Feb. 15. Jan. 1985. 



Z.U. Czyz, ONR - Final Report, 1 June 2001 234 

[18]      Boerner, W-M., W. L. Yan, and A Q. Xi, 'Basic equations of radar polarimetry and its solutions: the 
characteristic radar polarization states for the coherent and partially polarized cases', Proc. SPIE Conf. 
on Polarimetry: Radar, Infrared, Visible, Ultraviolet, andX-Ray, Huntsville, Alabama vol 1317 
1990, pp. 16-79. 

[19]      Boerner, W-M., and A. Q. Xi, 'The characteristic radar target polarization state theory for the coherent 
monostatic and reciprocal case using the generalized polarization transformation formulation' AEU 
vol. 44(4) (1990) pp. 273-281. 

[20]      Boerner, W-M., Wei-Ling Yan, An- Qing Xi, and Yoshio Yamaguchi, 'Basic concepts of radar 
polarimetry', [17], pp. 155-245. 

[21]      Boerner, W-M., Chuan-Li Liu, Xin Zhang, 'Comparison of Optimization Procedures for 2x2 Sinclair, 
2x2 Graves, 3x3 Covariance, and 4x4 Mueller (Symmetric) Matrices in Coherent Radar Polarimetry 
and its Application to Target Versus Background Discrimination in Microwave Remote Sensing and 
Imaging', EARSeL, Int'l Journal in Advances in Remote Sensing, Vol. 2. No. 1 - 1, pp. 55-82, 1993. 

[22]      Boerner W-M., J. S.Verdi, H.Mott, E. A Lueneburg, M. Tanaka, Y. Yamaguchi, „Development of 
polarimetric vector signal and tensor image processing in wideband interferometric POL-RAD/SAR 
signature analysis'. 

[23]      Boerner W-M., 'Recent Advances in Polarimetric-Interferometric SAR Remote Sensing - Theory & 
Technology and its Application in Environmental Stress Assessment', MTKON-2000, XIIT 
International Conference on Microwaves, Radar and Wireless Communications, Wroclaw Poland, 
2000 May 22-24, SPECIAL POLARIMETRY WORKSHOP, Sunday, 2000 May 21, 125p! 

[24]       W-M. Boerner, E. Lueneburg, H. Mott, Z.H. Czyz, J. J. van Zyl, P. Dubois, S.R. Cloude, 
M. Tanaka, Y. Yamaguchi, AI. Kozlov [1995], "Formulation of Unique Sets of 
Polarimetric Radar Scattering Matrices for the Forward Propagation (Similarity) Versus 
Backward-Scattering (Con-Similarity) Arrangements and the Development of the 
Associated Optimal Polarimetric Contrast Enhancement Coefficients," Proceedings of the 
Third International Workshop on Radar Polarimetry - JBPR '95, Nantes, France March 
21-23, 1995, p. 115. 

[25]       W-M. Boerner, H. Mott, M. Tanaka, Y. Yamaguchi, 'Determination of optimal polarimetric contrast 
using the partially coherent Kennaugh, covariance, and Graves matrices in POL-SAR image analysis'. 

[26]       Booker, H. G, V. H. Rumsey, G. A Deschamps, M. I. Kales, and J. I. Bohnert, 'Techniques for 
Handling Elliptically Polarized Waves with Special Reference to Antennas', Proceedings of the IRE 
Vol. 39, May 1951, pp. 533-522. 

[27]       Born, M. and E. Wolf, 'Principles of Optics', 6th ed., Pergamon Press, 1980. 

[28] Brosseau, C, Fundamentals of Polarized Light - A Statistical Optics Approach, John Wilev/Sons New 
York, 1998. 

[29]      Carrea, L., and G Wanielik, 'Geometrical representation of a monochromatic electromagnetic wave 
using the tangential vector approach', MTKON'2000, Wroclaw, Poland, May 22-24, 2000, pp. 87-90. 

[30]      Chamberlain, N. F., 'Recognition and analysis of aircraft targets by radar, using structural pattern 
representations derived from polarimetric signatures', Ph. D. dissertation, The Ohio State University 
1989. 

[31]       Chandrasekhar, S., 'Radiative transfer', New York: Dover, 1960. 

[32] Cloude, S. R., 'The Physical Interpretation of Eigenvalue Problems in Optical Scattering Polarimetry', 
in Proceedings of SPIE '97 International Symposium, San Diego, California, 30 July - 1 August 1997. 
Vol. 3121: Polarization: Measurements, Analysis, and Remote Sensing, pp. 88-99. 

[33]       Cloude, S. R., 'Group theory and polarization algebra', Optik - Wissenschaftlige Verlagsgesellschaft 



Z.U. Czyz, ONR - Final Report, 1 June 2001 235 

mbH, Stuttgart, 75, No. 1 (1986), pp.26-36. 

[34]       Cloude, S. R, and E. Portier, 'A review of target decomposition theorems in radar polarimetry', IEEE 
Trans, on GRS, vol 34(2), pp. 498-518, Mar. 1996. 

[35]      Cloude, S. R, and E. Portier, 'An Entropy-Based Classification Scheme for Land Applications of 
Polarimetric SAR', IEEE Trans. GRS, vol. 35(1), pp. 68-78, 1997. 

[36]      Copeland, J. R., 'Radar target classification by polarization properties', Proc. IRE, Vol. 48, 1960, pp. 
1290-1296. 

[37] Courant, R. and D. Hubert, 'Methods of Mathematical Physics', Vol. I and II, Interscience Publishers, 
New York, 1953 and 1963. 

[38]       Czyz, Z.H., 'Analysis of chain connection of four-terminal networks using the method of multiple 
reflections' (in Polish), Prace PIT, No. 15, 1955, Warsaw, Poland, pp. 1-11. 

[39]      Czyz, Z. H., 'The utility of applying regulated elliptical polarization in radio detecting and ranging 
devices from the point of view of the effectivity of those devices', Ph.D. thesis in Polish, Warsaw 
University of Technology, Warsaw, Poland, 1967 (also translated into English by the ONR, USA 
1997). 

[40]       Czyz, Z. H, 'Amplitude and Power Representation of Elliptically Polarized Antennas and Waves' (in 
Polish), Prace PIT, Warsaw 1969, No. 63, pp. 11-22. 

[41]      Czyz, Z. H, 'Analysis of Polarization Properties of Nondepolarizing Targets' (in Polish), 
Prace PIT, Warsaw 1970, No.65, pp. 23-36. 

[42]       Czyz, Z. H, 'Detailed Reconstruction of Kennaugh's Geometrical Interpretation of Bistatic Scattering 
Dependence on Incident Polarization', ICAP85, TEE Conf. Publ. No. 248, pp. 375-378. 

[43]      Czyz, Z. H., 'Geometrical Interpretation of Polarization Transformation when Bistatic Scattering by a 
Stable Object' (In Polish), 7th National Microwave Conference - MKON86, Vol. I, pp. 144-146. 

[44]       Czyz, Z. H., 'On Some Properties of the Bistatic Power Scattering Matrix for the Stable Object in its 
Characteristic Orthogonal Polarization Basis', URSI Int. Symp. on Electromagnetic Theory, Budapest, 
Hungary, August 25-29, 1986, Part B, pp. 628-630. 

[45]       Czyz, Z. H, 'Polarization of Radar Scatterings' (in Polish), Prace PIT, Supplement No. 5, Warsaw, 
Poland, 1986, 154 p. 

[46]       Czyz, Z. H, 'Bistatic Radar Target Classification by Polarization Properties', ICAP87, IEE Conf. 
Publ. No. 274, Part 1, pp. 545-548. 

[47]      Czyz, Z. H, 'Addition of partially coherent waves using Stokes vector representation', ICAP'89, BEE 
Conf. Publ. No. 301, Part 2, pp.396-399. 

[48]       Czyz, Z. H, 'Reconstruction of Bistatic Scattering Matrix for Three Special Polarizations', 
MIKON91, Rydzyna, Poland, May 20-24, 1991, pp. 314-317. 

[49]      Czyz Z. H, 'Comparison of Polarimetric Radar Theories," ICEAA'91, Torino, Italy, 17-20 September 
1991, pp. 291-294 

[50] Czyz, Z. H., 'Polarization Properties of Nonsymmetrical Matrices - A Geometrical Interpretation', Part 
VII of Polish Radar Technology', IEEE Trans. Aerospace and Electronic Systems, vol. 27, pp. 771-777 
and 781-782, 1991. 

[51]      Czyz Z. H, 'Characteristic Polarization States for Nonreciprocal Coherent Scattering Case," ICAP'91, 
IEE Conf. Publ. No. 333, Part 1, pp. 253-256. 



Z.H. Czyz, ONR - Final Report, 1 June 2001 236 

[52]       CzyzZ. H., 'Comparison of fundamental Approaches to radar polarimetry', [129], pp. 99-116. 

[53]       Czyz Z. H, 'An Alternative Approach to 'Foundations of Radar Polarimetry', [129], pp.247-266. 

[54] Czyz, Z. H., 'The simplest decomposition of the Mueller bistatic scattering Matrix of a distributed 
target into point target components', Second International Workshop on Radar Polarimetry - JIPR 
'92, Nantes, France, Sept. 8-10, 1992, pp. 61-68. 

[55]      Czyz, Z. H.,' Synthesis of a Bistatic Scattering Matrix for a Point Target of Desired Polarimetric 
Properties', Second International Workshop on Radar Polarimetry - JIPR '92 Nantes France Sent 8- 
10, 1992, pp. 46-51. ' 

[56]      Czyz, Z. H., 'New Concept of Virtual Polarization Adaptation', ICAF93, IEE Conf Publ No 370 PII 
pp. 890-893. '   '  ' 

[57]      Czyz, Z. H., 'Complete Cancellation of an Unpolarized Clutter in a Mono- or Bistatic Radar' 
PIERS'93, Pasadena, CA My 12-16, 1993, p. 201. 

[58]      Czyz, Z. H., 'Alternative Approaches to Polarimetric Signal and Image Processing', 
PERS'94 - Proceedings of the 1994 Progress in Electromagnetics Research Symposium, 
European Space Agency, Noordwijk, The Netherlands, 11-15 July 1994 Kluwer 
CD-ROM edition. 

[59]      Czyz, Z. H., 'Fundamental Transformations and Decompositions in Radar Polarimetry', 
PrERS'94 - Proceedings of the 1994 Progress in Electromagnetics Research Symposium', European 
Space Agency, Noordwijk, The Netherlands, 11-15 July 1994, Kluwer, CD-ROM edition. 

[60]       Czyz, Z. H, ' 'Basic Theory of Radar Polarimetry - An Engineering Approach," 
MTKON '94 - X International Microwave Conference, Ksiaz, Poland, May 30 - June 2 
1994, vol. 3 - Invited Papers, pp. 69-86. 

[61]       Czyz, Z. H., 'Polarization properties of the coherent lossless TEM transmission channel' IGARSS'95 
Firenze, Italy, July 11-14, 1995, vol. in, pp. 2008-2011. 

[62]       Czyz, Z.H., 'Mutual Polarizations in Bistatic Radar Scattering', Prace PIT, Warsaw Poland 
Supplement 17/19, 1994, pp.45-49. (In Polish). 

[63]       Czyz, Z. H, 'Polarymetryczny odbioraik optymalny' ('Optimum polarimetric receiver') Polish Patent 
PL 169175 Bl. Approved 28.06.1996. 

[64]       Czyz, Z.H., 'Advances in the Theory of Radar Polarimetry', Prace PIT, No. 117, 
Vol.XLVI, Warsaw, Poland, 1996, pp.21-28. (In English). 

[65]       Czyz, Z.H., and W-M. Boerner, 'Scattering and cascading matrices of the lossless reciprocal 
polarimetric two-port in their general forms', Proc. of ISAP'96, Chiba, Japan Sept 24-27 1996 
pp. 1037-1040. ' 

[66]       Czyz, Z. H., 'Enginering Approach to Bistatic Radar Polarimetry - Summary of Results', MTKON '96, 
Warsaw, Poland, May 27-30, 1996. Conference Proceedings, Vol. 2, pp 519-522. 

[67]      Czyz, Z. H., "Basic Theory of Radar Polarimetry - An Engineering Approach' (in English) 
Prace PIT, No. 119, 1997, Warsaw, Poland, pp. 15-24. 

[68]      Czyz, Z. H, 'Fundamental properties of the polarimetric two-ports' (in Polish), Prace PIT No 119 
1997, Warsaw, Poland, pp. 25-37. 

[69]       Czyz, Z. H, W-M. Boerner, 'Scattering and cascading matrices of the lossless reciprocal polarimetric 
two-port in microwave versus millimeterwave and optical polarimetry', in: Proc. of SPIE, vol. 3120. 
'Wideband Interferometric Sensing and Imaging Polarimetry', San Diego, California, 28-29 July 1997 



Z.H. Czyz, ONR - Final Report, 1 June 2001 237 

pp. 373-384. 

[70]       Czyz, Z. H, 'Coherent and Noncoherent Polarimetric Radar Receivers Completely Canceling the 
Partially Polarized Clutter', 12th International Conference on Microwaves and Radar - MIKON'98, 
Krakow, Poland, May 20-22, 1998, pp. 128-132. 

[71] Czyz, Z. H., 'Suboptimum noncoherent polarimetric radar receiver completely canceling the partially 
polarized clutter', Workshop on Advances in Radar Methods, Baveno, Italy, July 20-22, 1998, pp.89- 
91, and in 'Collection of slides', end of Oral Session - Theme II, Ultra Wide Band and Multi Spectral 
Radars. 

[72]      Czyz, Z. H, 'Analysis of the Cascade Connection of the Polarimetric Two-Ports', 
Prace PIT, No. 122, 1998, Warsaw, Poland, pp.6-22. (In Polish, AE). 

[73]      Czyz, Z. H, 'Polarimetric radar receivers canceling partially polarized clutter', Fourth International 
Workshop on Radar polarimetry, Nantes, France, July 13-17, 1998, pp. 126-135. 

[74]      Czyz, Z. H., 'Constant co-polarization echo curves on the Poincare sphere', XIII International 
Conference on Microwaves, Radar, and Wireless Communications - MTKON 2000, Wroclaw Poland, 
May 22-24, Vol. 1, pp. 13-16. See also: Journal of Telecommunications and Information Technology. 

[75]      Davidovitz, M. and W-M. Boerner, 1986, 'Extension of Kennaugh's Optimal Polarization Concept to 
the Asymmetric Matrix Case, IEEE Trans, on Antennas and Propagation, Vol. AP-34 (4), pp. 569- 
574. 

[76] Deschamps, G. A and P. E. Mast, 1973, 'Poincare sphere representation of partially polarized fields', 
IEEE Trans, on Antennas and Propagation, Vol. AP-21 (4), pp. 474-478. 

[77] Germond, A-L., 'Theorie de la Polarimetrie Radar en Bistatique'. PhD Thesis, 28 Jan. 1999, IRESTE, 
Universite de Nantes, France. 

[78]       Giuli, D., 'Polarization Diversity in Radars', Proc. IEEE, Vol. 74, No.2, Feb. 1986, pp.245-269. 

[79]       Graves, C, 'Radar polarization power scattering matrix', Proc. IRE, Vol. 44, 1956, pp. 248-252. 

[80] Hollis, J. S., T. J. Lyon, andL. Clayton, 'Microwave Antenna Measurements', Scientific Atlanta Inc., 
Atlanta, 1970. 

[81] Holm, W. A and Barnes, R.M.,On Radar Polarization Mixed Target State Decomposition Techniques', 
IEEE 1988 National Radar Conference. 

[82]      Horton, M.C., and R.J. Wenzel, 'General theory and design of optimum quarter-wave TEM filters', 
IEEE Trans, on Microwave Theory and Techniques, vol. MTT 13, No. 3, pp. 316-327, 1965. 

[83]      van de Hülst, H. C, 'Light Scattering by Small Particles', Wiley, 1957. 

[84]       Huynen, J. R, 'Measurements of the target scattering matrix', Proc. IEEE, Vol. 53, 1965, pp. 936-946. 

[85] Huynen, J. R., 'Phenomenological theory of radar targets', Ph.D. dissertation, Technical Univ., Delft, 
The Netherlands, 1970. 

[86]      Huynen, J. R, 'Physical Reality of Radar Targets, Part I and Part II., P.Q. Research, 10531 
Blandor Way, Los Altos Hills, California 94024, Report P.Q.R No. 106, 20p., May 1992. 

[87] Huynen, J. R, 'Phenomenological theory of radar targets', in 'Electromagnetic Scattering', Academic 
Press, 1978, pp. 653-712. 

[88] Huynen, J. R., 'Lexicograthic Radar Target Analysis', P.Q. Research, 10531 Blandor Way, Los Altos 
Hills, California 94024, Report P.Q.R. No. 108, lip., March 1994. 



Z.H. Czyz, ONR - Final Report, 1 June 2001 238 

[89]       Huynen, J. R., ' A New Extended Target Decomposition Scheme', P.Q. Research, 10531 Blandor Way, 
Los Altos Hills, California 94024, Report P.Q.R. No. 109, 7p., March 1994. 

[90]       JEEE Standard Number 145-1983, „Definitions of Terms for Antennas', IEEE Transactions on 
Antennas and Propagation, AP-31 (6), November 1983. 

[91]      IEEE Standard Number 149-1979, 'Standard Test Procedures'. 

[92]      Jones, R. C, 'A new calculus for the treatment of optical systems', T. Description and discussion', 
J. Opt. Soc. Am., vol. 31 (July 1941), pp. 488-493; 'II. Proof of the three general equivalence 
theorems', ibid. pp. 493-499; Til. The Stokes theory of optical activity', ibid. pp. 500-503. 

[93]      Jones, R. C, 'A new calculus for the treatment of optical systems', V., 'A more general formulation 
and description of another calculus', J. Opt. Soc. Am. 37, Feb. 1947, pp. 107-112. 

[94]       Kanareykin, D. B., N. F. Pawlov and W. A Potekchin, 'Polarization of radar signals' (in Russian), 
Sov. Radio, Moscow, 1966. 

[95]      Kennaugh, E. M., 'Research studies on the Polarization Properties of Radar Targets'. The Ohio State 
University ElectroScience Laboratory, Commemorative Volumes I - II. 

[96]      Kennaugh, E.M., 'Polarization Dependence of RCS - A Geometrical Interpretation', 
IEEE Trans, on Antennas and Propagation, AP-29, March 1981, pp. 412-413. 

[97]      Ko, H. C, 'On the reception of quasi-monochromatic partially polarized radio waves' Proc IRE Vol 
50, Sept. 1962, pp. 1950-1957. 

[98]      Kong, J. A, 'Polarimetric Remote Sensing', Vol. 3 of PIER, Elsevier, 1990. 

[99]      Korn, G. A, and T. M. Korn, ' Mathematical Handbook for Scientists and Engineers', McGraw New 
York, 1961. 

[100]     Kostinsky, A B., and W-M. Boerner, 'On Foundations of Radar Polarimetry', IEEE Trans, on 
Antennas and Propagation, Vol. AP-34, No. 12, December 1986, pp. 1395-1403, with 'Comments' by 
H. Mieras, and 'Authors Reply', ibid., pp. 1470-1473. 

[101]     Kraus, John D., and K. R. Carver, 'Electromagnetics', Second Edition, McGraw-Hill, 1973. 

[102]     Krogager, E., 'Aspects of Polarimetric Radar Imaging', Ph.D. dissertation, Technical Univ., Lyngby, 
Denmark; Danish Defence Research Establishment, 1993. 

[103]     Krogager, E., Z. H. Czyz, 'Properties of the sphere, diplane, helix decomposition', in Proceedings of 
Third International Workshop on Radar Polarimetry (JTPR'95), Univ. Nantes, France IRESTE pp 
106-114, March 1995. 

[104]     Landau, L. D, and E. M. Lifschitz, 'The Classical Theory of Fields', 4thEdition, Pergamon Press 
(Oxford), 1975. 

[105]     Lindell, I. V, 'Coordinate-free representations of the polarisation of time harmonic vectors', Helsinki 
University of Technology, Radio Laboratory, Report S66, 1974. 

[106]    Lopuszanski J., Rachunek spinorow (Spinor Calculus), PWN, Warszawa, Poland 1985. 

[107]    Lueneburg E. and W.-M. Boerner, 'Optimal polarizations in radar polarimetry', PIERS'94, 
Noordwijk, The Netherlands, July 11-15, 1994, CD Kluwer Publishers, pp. 1813-1816. 

[108]    Lueneburg E., 'Optimal polarizations in radar polarimetry', Kleiheubacher Berichte Vol 38 (1995) 
pp. 635-645. 

[109]     Lueneburg E., 'Canonical bases and Huynen decomposition', Proc. Third International Workshop on 



Z.H. Czyz, ONR - Final Report, 1 June 2001 239 

Radar Polarimetry (JIPR), IRESTE, Nantas, France, March 21 - 23, 1995, pp. 75-83. 

[110]     Lueneburg, E., 'Comments on 'The Specular Null Polarization Theory', IEEE Trans. Geoscience and 
Remote Sensing, Vol. 35, 1997, pp. 1070-1071. 

[Ill]     Lueneburg, E. andR. S. Cloude, 'Bistatic Scattering', SPIE International Symposium on 
'Wideband Interferometric Sensing and Imaging', San Diego CA, 28-29 July, 1997, Vol. 3120, pp. 
58-68. 

[112]     Lueneburg, E. and S. R. Cloude, 'Radar versus optical polarimetry', SPIE International Symposium on 
'Wideband Interferometric Sensing and Imaging', San Diego CA, 28-29 July, 1997, Vol. 3120, pp. 
361-372. 

[113]    Lueneburg, E. and W.-M. Boerner, Homogeneous and inhomogeneous Sinclair and Jones matrices, 
SPIE International Symposium on 'Wideband Interferometric Sensing and Imaging', San Diego CA, 
28-29 July, 1997, Vol. 3120, pp. 45-54. 

[114]    Lueneburg, E., 'Polarimetric Target Matrix Decompositions and the Karhunen-Loeve Expansion', 
IGARSS'99, June 28-July 2, 1999, Hamburg, Germany. 

[115]    Lueneburg, E. and R. S. Cloude, 'Contractions, Hadamard Products and their Application to 
Polarimetric Radar Interferometry', IGARSS'99, June 28-July 2, 1999, Hamburg, Germany. 

[116]    Misner, Ch. W., K. S. Thorne, and J. A Wheeler, 'Gravitation', Chapter 41, W. H. Freeman and Co., 
New York, 1973. 
For the symplectic geometry see also: 
Shaw, R, 'Linear Algebra and Group representations', Vol. I, Chapter 4.4, Academic Press, 1982. 

[117] Morse, P. M., and H. Feshbach, 'Methods of theoretical physics', McGraw, New York 1953. 

[118] Mott, H., 'Antennas for Radar and Communications', John Wiley & Sons, New York 1992. 

[119] Mueller, H, J. Opt. Soc. Am., Vol. 38, 1948, p. 661. 

[120] O'Neil, E. L., 'Introduction to Statistical Optics', Addison-Wesley, Reading, Mass., 1963. 

[121]     Pancharatnam S., „Generalized Theory of Interference and Its Applications", Part 1: 'Coherent 
Pencils', Proc. Ind. Acad. Sei., 1956, 44A pp. 247-262.. 

[122]     Pancharatnam S., „Generalized Theory of Interference and Its Applications", Part 2: 'Partially 
Coherent Pencils', Proc. Ind. Acad. Sei., 1956, 44A PP 398-417. 

[123]    Pancharatnam S., „Partial Polarisation, Partial Coherence and their Spectral Description for 
Polychromatic Light" - Part I and II, Proc. Ind. Acad. Sei., pp. 218-243. 

[124]     Papathanassiou, K. P., Polarimetric SAR Interferometry, Ph. D. Thesis, Tech. Univ. Graz, 1999. 

[125]    Penrose, R, and W. Rindlar, 'Spinors and Space-Time', Vol. I and II, Cambridge University Press, 
1984. 

[126]    Perrin F., „Polarization of Light Scattered by Isotropie Opalescent Media", Journal of Chemica 
Physics, Vol. 10, July 1942, pp. 415-427. 

[127]    Poincare, H., 'Theorie Mathematique de la Lumiere, 11-12', Paris: Georges Carre Publ. Co., (1892, pp. 
282-285. 

[128]     Portier, E., 'Contribution a la polarimetrie radar: de l'approche fondamentale aux applications', 
Habilitation ä Diriger des Recherches, Universite de Nantes, France, 1998. 

[129]    Proceedings of the NATO Advanced Research Workshop on Direct and Inverse Methods in Radar 

i 



Z.H. Czyz, ONR - Final Report, 1 June 2001 240 

Polarimetry', W-M, Boerner et al (eds), Bad Windsheim, Germany, September 18-24, 1988 Kluwer 
Academic Publishers, Dordrecht 1992; NATO ASI Series C: Mathematical and Physical Sciences - 
vol. 350. 

[130]     Rashevskyj, P. K, 'Riemann geometry and tensor analysis', in Russian, Moskow, 1953. 
Polish translation: 
Raszewski, P. K., 'Geometria Riemanna i analiza tensorowa', PWN Warszawa, 1958. 
See also: 
Weber, H., 'B. Riemann: Gesammelte Matchematische Werke', 2nd ed., paperback reprint, 
Dover, New York, and 
Clifford, W. K., Nature, 8, 14 (1873). 

[131]     Sinclair, G,'The Transmission and Reception of Elliptically Polarized Waves' Proc of IRE Vol 38 
Feb. 1950, pp. 148-151. ' 

[132]     Shurcliff, W., 'Polarized Light: Production and Use', Harvard University Press, Cambridge, 1962. 

[133]     Stepanov, N. N., „Sfericzeskaja trigonometrija", OGIZ, Leningrad-Moskow, 1948. 

[134]     Stokes, G. G, 'On the composition and resolution of streams of polarized light from different sources' 
Trans. Cambridge Phyl. Soc., Vol. 9, 1852, pp. 399-416. 

[135]     Stutzman W.L., Polarization in Electromagnetic Systems. Artech House, Boston-London 1993. 

[136]    Tragl, K., E. Lueneburg and A Schroth,' Apolarimetric covariance matrix concept for random radar 
targets', Int'l Conf. Antennas and Propagation (ICAP'91), Warwick, UK, 15-18 April 1991. 

[137]     Ulaby F.T., Elachi Ch. (Editors), 'Radar Polarimetry for Geoscience Applications' Artech House 
1990. 

[138]     Wanielik, G, ' Signaturuntersuchungen an einem polarimetrischen Pulsradar' Fortschr -Ber VDI 
Reihe 10, Nr. 97., Duesseldorf YDI-Verlag 1988. 

[139]     Wanielik, G, and D. J. R. Stock, 'Radar polarization jamming using the superposition of two fully 
polarized waves', Int. Conf. RADAR'87, IEE Conf, Publ., No. 281, pp. 330-332. 

[140]     Wei, P.S., J. R Huynen and T. C. Bradley, 'Transformation of polarization bases for radar scattering' 
Electronics Letters, Vol. 22(1), 1985. 

[141]    Yang, J., Y. Yamaguchi, H. Yamada, M. Sengoku, S. M. Lin, 'Stable Decomposition of Mueller 
Matrix', IEICE Trans. Comm., Vol.E81-B(6), pp. 1261-1268, June 1998. 

[142]    Yang, J., 'On theoretical aspects of radar polarimetry', Doctoral Thesis, Niigata University Japan 
September 1999. ' 

[143]     Zebker H.A., and J. J. van Zyl, 'Imaging radar polarimetry', Chapter 5. in J. A Kong (Ed): 
Polarimetric Remote Sensing, New York: Elsevier 1990. 

[144]    van Zyl, J.J. and H. Zebker, 1990, 'Imaging Radar Polarimetry' in 'Polarimetric Remote Sensing' 
PIER3, Kong J. A, ed. Elsevier, New York: 277-326. 


