
ARMY RESEARCH LABORATORY 

'&£S*&I&. täM&&sl'J&hC--!<**Jn*4*-flr-n»*l!*i -Vi *>•'■ &• * ■ •.-^■iiv 

111 

RESTRAN: Residual Strength 
Analysis of Impact Damaged 

Composite Laminates 
Volume I: Theoretical Manual 

by Erik Saether 

ARL-TR-2549 July 2001 

Approved for public release; distribution is unlimited. 

20010820 054 



The findings in this report are not to be construed as an official 
Department of the Army position unless so designated by other 
authorized documents. 

Citation of manufacturer's or trade names does not constitute an 
official endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it 
to the originator. 



Army Research Laboratory 
Aberdeen Proving Ground, MD 21005-5069 

ARL-TR-2549  July 2001 

RESTRAN: Residual Strength 
Analysis of Impact Damaged 
Composite Laminates 
Volume I: Theoretical Manual 

Erik Saether 
Weapons and Materials Research Directorate, ARL 

Approved for public release; distribution is unlimited. 



Abstract 

The use of composite material systems in structural design has yielded 
significant improvements in material efficiency by minimizing weight while 
meeting static and dynamic strength requirements. The complexity of composite 
materials, however, has presented a spectrum of additional design 
considerations in the areas of fabrication, strength tailoring, failure mechanisms, 
and damage tolerance. Laminated composites exhibit a variety of damage and 
failure modes which include matrix cracking, fiber breakage, delamination 
propagation, and instability. Of prime concern is the predication of residual 
strength in composite structures subjected to damage-causing impact threats in 
the intended service environment. The present effort aims to account for many 
of the salient damage mechanisms utilizing a numerical, finite element-based 
approach. Such an approach permits a broad range of failure modes to be 
accounted for while allowing the modeling of complex geometries, support 
conditions, and applied loading. This report details the theoretical and 
algorithmic basis of a developed computer program denoted RESTRAN 
(REsidual STRength ANalysis), incorporating both material and structural failure 
modes in the prediction of residual strength in composite structures containing 
internal damage. 
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1    Introduction 

Modern structural design is making increasing use of advanced composite material systems 
to improve material efficiency by minimizing structural weight while meeting static and 
dynamic design strength criteria. While maximizing structural efficiency, these materials ex- 
hibit complex elastic and failure response under loading such as anisotropy and multimode 
failure mechanisms. Of particular interest is the susceptibility of these material systems to 
impact damage. In aerospace, submersible, and armored military vehicle design, the accurate 
prediction of residual strength due to impact damage is important for assessing survivability 
and damage tolerance to projected damage causing impact threats in the intended service 
environment. With an increasing need to reduce production costs associated with experi- 
mental testing, numerical simulation is being emphasized to assess evolving design concepts. 
A robust analytical approach is thus required to ensure a viable structure by accurately 
assessing the effect of assumed internal damage on residual strength. 

The study of impact involves the complex dynamics between colliding bodies which poten- 
tially entails high energy transfer rates, stress wave phenomena, large deformations, material 
phase/property change, large strains, fragmentation, fracture, and a multitude of additional 
failure mechanisms many of which are material specific. Common analytical approaches de- 
fine high- and low-velocity regimes to characterize the impact event and in which to apply 
various simplifying assumptions. In low energy impact, damage can be distributed signifi- 
cantly away from the contact zone due to longer contact duration in which large fractions 
of the impact energy can be transferred into elastic deflections within the target. In high 
energy regimes, through-penetration, explosive spalling, and diffuse fragmentation can char- 
acterize the material damage. If the ensuing material damage has compromised structural 
integrity, under subsequent loading, damage modes will propagate until total structural fail- 
ure is precipitated. In laminated, fiber-reinforced composites, the heterogeneous, layered 
characteristics of the material system exhibit a highly complex combination of microscopic 
and macroscopic damage modes. These damage modes are pronounced in low velocity impact 
events and interact in a complex manner under subsequent loading. Damage modes include 
material failure through matrix cracking, fiber breakage, debonding along fiber-matrix in- 
terfaces and ply groups, and structural failure modes associated with sublaminate buckling 
due to delaminations. Depending on the geometric complexity of the problem being stud- 
ied, various approaches have been used to model the problem. Mathematical models have 
utilized exact formulations based on elasticity theory, engineering approximations such as 
beam, plate and shell assemblages, and numerical approaches such as finite element analysis 
[1-16]. For a complete analysis, both the local and global response of the component to ap- 
plied loading is required. This response includes the basic displacement and internal stress 
distribution from which local material failure modes and sublaminate instabilities may be 
predicted and the residual strength determined. 

Of the myriad of analytical and numerical approaches that have hitherto been used to pre- 
dict residual strength in composites, these analyses have generally been restricted to selected 
damage modes and idealized geometric configurations. Although these efforts have been im- 
portant in elucidating an understanding of failure phenomenon in composites, they have not 



permitted a direct application to the analysis of actual structural designs due to inherent 
simplifications. The current effort has been directed towards incorporating advanced analyt- 
ical representations of composite damage/failure phenomena in a general analysis tool which 
can be applied to actual structural geometries and realistic damage states. 

The finite element method provides a completely generic numerical approach to potentially 
incorporate all salient material behavior and failure modes while allowing arbitrary geome- 
tries, applied loads, and support conditions to be modeled in the analysis [17]. Prior efforts 
directed towards predicting residual strength using a finite element-based approach have 
fallen short of the development of a comprehensive analysis tool [18-25]. Limitations include 
restriction to two-dimensional problems, limited selection of failure criteria, and inability to 
assess both material and structural failure modes in a combined progressive analysis. 

This report details a numerical finite element-based approach for predicting residual strength 
in general three-dimensional structures containing internal damage. The contribution of this 
effort to the prediction of residual strength is the development of a viable solution algorithm 
accounting for the coupled effects of nonlinear material response and both material and insta- 
bility failure mechanisms which has not been presented in the literature. While emphasizing 
the analysis of progressive failure in laminated composites, the support of a layered media 
permits additional material systems to be modeled, such as sandwich-type constructions, 
piecewise linear approximations to homogeneous materials with varying properties along a 
thickness direction, and isotropic materials modeled as a single layer. This methodology has 
been incorporated into a computer program designated RESTRAN (REsidual STRength 
ANalysis) for determining the ultimate strength of composite structures with arbitrary ge- 
ometric configurations and general loading and support conditions. The flow of execution 
is based on determining a sequence of scale factors to the initial applied loads to cause a 
series of incremental failures leading to ultimate collapse of the structure. The sequence of 
scale factors is not, in general, a monotonically increasing function; thus, the highest load 
multiplier attained during the course of the analysis is used to provide a measure of the resid- 
ual strength. User-defined subroutine interfaces have been incorporated to allow alternative 
theoretical approaches to be applied in the assessment of residual strength, which thereby 
generalizes RESTRAN as a versatile research tool. 

The following sections detail the finite element basis, failure modes, damage laws, analy- 
sis algorithms, and capabilities of the RESTRAN computer program. 

2      Finite Element Formulation 

RESTRAN has been developed as a specialized code to model sequential multimode failure 
in three-dimensional composites. The development of an extensive library of solid elements 
was excluded in favor of a single eight-node hexahedral element to model most expected 
geometries of interest. Higher-order hexahedrals were also avoided in the present effort be- 
cause of the expected use to discretize the through-thickness resolution down to small ply 
groups or even local regions at the ply level such that a local linear displacement field was 



deemed sufficient. The element formulation utilizes the hybrid stress technique in which 
both stresses and displacements are assumed as independent quantities to calculate elastic 
stiffness coefficients. Incompatible displacement modes are introduced to complete quadratic 
terms associated with bending and condensed into the element formulation to enhance el- 
ement performance. This element is commonly referred to as the Pian-Tong Hexahedral 
[26]. To model geometric nonlinear response, differential stiffnesses are computed based 
on higher-order strain components and purely displacement-based shape functions. Within 
a finite element framework, structural failure through sublaminate buckling is accounted 
through a specialized eigenanalysis of instability modes and algorithmic processing of mul- 
tiple delaminations in which contact constraints are enforced. The exceptional accuracy of 
stress recovery provided by the hybrid formulation yields highly accurate differential stiffness 
coefficients which lead to rapid convergence of buckling loads. Material degradation due to 
progressive ply failures is determined using selected failure criteria and specialized ply dam- 
age laws which are simulated through degradations made to element stiffness coefficients. 

Basic geometric conventions, elastic and differential stiffness formulations, and nonlinear 
material and buckling solution algorithms are presented in the following subsections. 

2.1    Coordinate Systems and Nomenclature 

The finite element formulation in RESTRAN incorporates several conventions pertaining to 
coordinate system, laminate description, and tensor notation. 

2.1.1    Global and Local Coordinates 

The global Cartesian (x,y,z) coordinate system is used for describing the geometry and finite 
element discretization of the structural model. At a particular element, without the specifi- 
cation of a user-defined local coordinate system, a local (x',y'z') element coordinate system 
is assumed, which is offset and congruent to the global system in which to define laminate 
orientation. This coordinate system is depicted in Figure 1. 

Figure 1. Global and local coordinate systems. 



The description of the laminate layup assumes that ply layers are parallel to the local x'y'- 
plane and that the stacking sequence is a function of the local z'-coordinate, as shown in 
Figure 2(a). The principal ply directions (1,2,3) are defined by the offset angle from the x'- 
axis and are referred to as the longitudinal, transverse, and normal coordinates, respectively. 
These quantities are depicted in Figures 2(b) and 2(c). 

Figure 2(a). Laminate layup description. 

Normal (3) 

Transverse (2) 

Longitudinal (1) 

X 

Figure 2(b). Principal ply directions. 



Figure 2(c). Ply orientation angle convention. 

Components of the stress and strain tensors are labeled with respect to the global (x,y,z) 
or local (x',y',z') coordinates, as shown in Figure 3. When transformed to principal axes, 
the principal (1,2,3) coordinate designations are designated as longitudinal, transverse, and 
normal directions, respectively. Stress and strain vectors are ordered as 

{*} 
{e} 

\0: xxi Gyyi ®zzt ®yzt ®zxi ®xy\ 

l^zx) j tyyi t-zzi (yzi (-zxi ^xyj 

which are related through the material constitutive law expressed in general as 
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The [C] matrix is assumed to be constituted by orthotropic lamina which possess the x-y 
plane as a plane of symmetry and are described by nine independent material moduli. With 
arbitrary orientation of the constituent layers, the assembled material stiffness matrix may 
assume a general monoclinic form given by 

[C] = 

Cu Cyi C\z 0 0 C16 

C21 C22 C23 0 0 C26 

C31 C32 C33 0 0 C36 
0 0 0 C44 C45 0 
0 0 0 C54 C55 0 

Cei C$2 ^63 0 0 Cm 

(3) 



Figure 3. Stress and strain tensor notation. 

2.1.2      Coordinate Transformations 

A local material coordinate system (x, y, z) may be specified for each element in RESTRAN 
to map element stresses, strains, and material properties, to account for any laminate ori- 
entation with respect to the local element (x',y',z') system. These Cartesian coordinate 
systems are depicted in Figure 4. 

z' 
z" 

l£- 
x' 

X 

Figure 4. Local (x',y',z') and (x, y, z) coordinate systems. 

Transformation matrices are defined as 
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[Tq] = 
I2 

L  l3 

Tq   Tr 

Ts   Tt 

m{ 
ml 

n{ 

n. 3 J 

fTJ = 

[Tr] = 

Tq    2Tr 

L |Ts     Tt 

2    2 m{n{ n\l\ Z2m2 

2    2 
n2>*2 Z^mf 

2    2 mfnf 77.3/3 Z3
2mf 

(4) 

(5) 

Ts = 
2/|/| 2m|m| 2n|n| 
2Z|^2 2mfm2 2nfn2 

2/fZf   2m2mf   2nx
2n| 

mfnf + nfmf wf/f + ^2 nf Hmz + m2^3 
mfn2 4- n\m\ n\l\ + l2n2 l\m\ + m\l\ 
m\n\ + n\m\   n2^ + tfw|   Zfmf + ml% . 

(6) 

and where I, m, and n are the direction cosines between the two Cartesian systems defined 
as 
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The transformation matrices have the property that 

[T,]-1   =   [T„]r [T0 

which yield the relations for stress transformations 

1-1 [Te 

{ä}   =   [Ta]{cr'} 

and relations for strain transformations 

{e}   =   [T£]{6'} 

and finally, for material transformations as 

[C]   =   [TCT][C'][T/] 

2.2      Elastic Stiffness Formulation 

{a'}   =   [Ten«x} 

{e'}   =   [T,He} 

[C]   =   [T/][C][T£] 

(7) 

(8) 

(9) 

(10) 

(11) 

The hybrid stress technique is utilized to form elastic stiffness coefficients. Details on the 
hybrid method may be found in References [26-30]. The structure of element matrices are 
defined by the Hellinger-Reissner functional given by 

UR = f[(-l/2)aTSa + aT(Lu,) - {J,Ta)Tnx}dv 
Jv 

(12) 

where a is the assumed stress field, S is the material compliance matrix, uq and u^ are the 
assumed compatible and incompatible displacement fields, and L is the differential operator 
relating strains to displacements. 



The assumed stresses are assumed as 

a = Pß (13) 

where P is a matrix of polynomial terms, and ß is a vector of undetermined expansion 
coefficients. The displacement field is assumed over the element domain as 

u = uq + uA (14) 

in which compatible and incompatible displacement components are given by 

u9 = Nq (15) 

uA = MA (16) 

where N and M are compatible and incompatible displacement shape functions, respectively, 
q are nodal displacements, and A are Lagrange multipliers which enforce internal constraints. 
In the form of equation (12), performing the variation with respect to u>, the incompatible 
displacements may be used to variationally enforce a priori the field equilibrium conditions 
through the last term in equation (12) which requires that 

5 f(LTafuxdv = 0 (17) 
Jv 

or 
LTa = 0 (18) 

Applying the constraints to the stress modes results in the reduced functional 

J[R = /[(-1/2)O-
T

S(T + aT(Luq)]dv (19) 
Jv 

Substituting equations (13), (15), and (16) into (12) yields 

nÄ = f[(-l/2)ßTPTSI>ß + ßTPT(LN)q]dv (20) 
Jv 

or 
UR = (-l/2)ßTHß + ßTGq (21) 

where 
H   =   fvP

TSPdv (22) 

G   =   fvP
T(LN)dv = fvP

TBdv (23) 

Seeking a stationary value of the functional by taking the first variation with respect to ß 
yields 

ß = H_1Gq (24) 

Substituting the resulting expression for ß into equation (21), the variation with respect to 
q yields the element stiffness matrix as 

K = GrH-JG (25) 



The element geometry and node numbering are depicted in Figure 5. 

Figure 5. Hexahedral element configuration. 

The displacement functions u„ are given by 

u„ 
u„ 

Wn 

Ui 

Vi 

Wi 

(26) 

The isoparametric mapping between physical and natural coordinates is given by 

x   =   a0 + cti€ + a2r) + a3( + a^rj + a5£C + a6r)( + a7£r]( 

y  =  bo + hZ + bzri + hC + hfr + hZC + hvC + bTZvC 
z   =   c0 + ci£ + c2T) + c3C + c4£r) + c5£C + c6r)C + c7^C 

where 

(27) 
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(28) 

The stress field is initially assumed as complete quadratic expansions in natural or tensor 
coordinates given by 

9 



[Po] 
[Po] 

p = [Po] 
[Po] 

(29) 

[Po] 
[Po] 

where 
[Po]  =  [U,7?,C,£?7,?7C,C£,£W,C2] (30) 

As detailed in by Pian and Tong [26], incompatible displacement functions are assumed such 
that the polynomial order the total displacement field is cubic thereby yielding a resultant 
quadratic strain field of the same order as the assumed stresses. The assumed stress modes 
are then subjected to the constraint given by equation (18), yielding an element stress field 
with 18 independent stress modes given by 

r 

.11   _ 

22     _ 

r 

-33 _ 

-23 _ 

.31 _ 

12 _ 

ßl + ß2V + ßzC + ß*v( 
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(31) 

To preserve the constant stress terms, the natural stresses are mapped to physical space 
through a contravariant transformation using Jacobians computed at the element centroid 

akl = (JO)?(JO)JT« 

The stress field expressed in physical or Cartesian coordinates is given by 

P=[[Pi]   [P2]   [Ps]] 

where 

[Pi] = 

[P2 

a\r\ 

c\r) 

1.0 0.0 0.0 0.0 0.0 0.0 
0.0 1.0 0.0 0.0 0.0 0.0 
0.0 0.0 1.0 0.0 0.0 0.0 
0.0 0.0 0.0 1.0 0.0 0.0 
0.0 0.0 0.0 0.0 1.0 0.0 
0.0 0.0 0.0 0.0 0.0 1.0 

afC 
b\C 
4C 

hew   &1C1C 
4i 
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4c 
bit 
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(32) 

(33) 

(34) 

(35) 
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(36) 

The eight-node hexahedral element formulation based on hybrid element theory is a robust 
element with excellent behavior in normal stretching and bending deformation modes. 

2.3     Modeling Material Nonlinearity 

The RESTRAN analysis program supports nonlinear elastic material properties and nonlin- 
ear inelastic behavior due to ply-level failures. The combined elastic and inelastic nonlin- 
earities are accommodated in the solution algorithm by assuming that the nonlinear elastic 
response is independent of material failure and maintains the same differential stress/strain 
relationship at each point during unloading. As depicted in Figure 6, any reduction in mod- 
uli due to the occurrence of a partial failure mode is assumed to result in a stress/strain 
relation self-similar to the initial nonlinear elastic curve. These two forms of material nonlin- 
earity are processed sequentially. The primary unknown in the overall RESTRAN solution 
algorithm is the scale factor applied to the initial set of external loads to cause the next 
failure event. For material failure, this factor is determined by a linear extrapolation using 
the selected failure criteria and is thus a function of the current stress-strain state. If buck- 
ling failure is included, scale factors are also computed to cause the next instability failure. 
Thus, convergence to the desired equilibrium state requires stationarity of the scaled applied 
load to cause next failure and force equilibrium between external and internal loads as a 
function of the nonlinear stress-strain relations. Therefore, the algorithmic implementation 
in RESTRAN first converges the nonlinear elastic state to obtain the vector of external loads 
to cause the next failure. This set of loads is then used to compute stresses for evaluation 
in selected failure criteria. A typical cascade of element material failures is subsequently 
accounted, and convergence is assumed when no additional ply failures occur due to internal 
stress redistribution at the current load level. 

Assuming small strains, at some applied load level, Fk, the stress/strain relationship may 
be expressed as 

crk = Ck(e)ek (37) 

where Cfc(e) is the strain dependent material stiffness matrix, and crk and ek are the stress 
and strain vectors at the kth load level. For greatest generality, the particular nonlinear 
stress-strain relation is input into RESTRAN via a user-defined subroutine as described in 
the user's manual [31]. 

11 



Figure 6. Partial failure in nonlinear elastic material. 

To solve the nonlinear system of equations, an iterative scheme is employed to obtain the 
equilibrium state. Because convergence is sought to the load at which the next failure event 
will occur, the overall nonlinearity is due to contributions from the nonlinear stress/strain 
relations, the extrapolations of the selected material failure criteria which may be quadratic, 
and the calculation of eigenvalues associated with bifurcation buckling states. The potential 
volatility of the solution suggests a simple iterative approach using updated secant stiffnesses 
as opposed to more involved tangent matrix methods such as Newton-Rahpson iteration or 
matrix update schemes such as the BFGS technique. For the kth analysis cycle, iterations 
are performed such that the sequence of loads, Fi, converge in the limit: Fx, F2, F3, —», Pk. 
In the current implementation, at the ith iteration, the calculated load multiplier, Aj, is used 
to scale loads converged at the last kth analysis cycle to obtain a new set of external loads 
as 

Fi = A,Pfc (38) 

The ith approximation to the total displacements, Di, and stress dependent secant stiffness 
are used to compute the internal load, Qi, as 

Qi = K;Di (39) 

The residual load vector measuring the difference between external and internal loads, Ri, 
is obtained from 

AR, = Fi - Qi (40) 

The increment in displacements is calculated using the residual as 

AD!+1 = K^AR,- (41) 

12 



and the new estimate for total displacements satisfying equilibrium is given by 

Di+1 = D; + ADl+1 (42) 

In the course of determining a sequence of scale factors to precipitate the next failure, the 
secant moduli act to stabilize convergence for the case of changing external loads which may 
increase or decrease during iterations due to extapolations made from nonlinear failure cri- 
teria. This scheme is depicted in Figure 7. 

Figure 7. Iterative solution for nonlinear materials. 

This nonlinear solution procedure is sufficient for weakly to moderately nonlinear systems. 
The extrapolated scale factors obtained from material failure criteria and the eigenvalues ob- 
tained from linear stability analysis function as line searches towards the desired minimum 
scale factor to cause the next failure event. 

Iterations are continued until the vector norm of the residual load vector is less than a 
prescribed tolerance 

| AR* | < Tol (43) 

Because nonlinearities present in the system may shift the target applied load to cause the 
next failure, a modification of the current scale factor is made to damp out oscillations and 
speed convergence. At the ith iteration, the scale factor, A2-, is formed as a product accounting 
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for the previous estimate for the next failure Aj_i and the scale factor obtained directly from 
the selected failure criteria, o^. This relationship is expressed as 

Xi = Xi-iat (44). 

The estimate for a* is modified using a biasing factor, ßi: to speed convergence. This 
modification is given by 

fAM[l+(|+%,-l)]   for   at>l .    . 
Äi     {^[oi + Q-ßXl-Oi)]   for   Oi<l l4öj 

where the biasing factor is formed as an accumulated sum based on all previous estimates 
for oti as 

and subjected to the restriction that 0.1 < /% < 0.9. When the nonlinear system of equations 
has converged to an equilibrim state corresponding to the applied load Pk, ply failures or 
sublaminate instabilities are then processed. 

2.4      Modeling Geometric Nonlinearity 

Geometric instability in impact damaged laminated structures constitutes an important and 
common failure mode which results in local or global buckling failure. These modes become 
prevalent when the damage state contains significant regions of reduced stiffness due to ma- 
terial failure or extended planes of delaminations between ply groups. Buckling defines an 
unstable equilibrium state at which the structure cannot elastically resist an infinitesimal 
departure from the current configuration under the applied loads. This condition is charac- 
terized by the change in the total potential energy associated with an arbitrary displacement, 
6q, from equilibrium is an extremum or equivalently, that the total potential satisfies the 
Trefftz criterion [32] given by 

n = U + V (47) 

and 

in which II is the total potential, U is the strain energy, V is the potential energy, and <j> 
is the generalized displacement. In the linear theory of buckling, a solution is sought at the 
point where the locus of equilibrium states bifurcate, as depicted in Figure 8. 
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Figure 8. Bifurcation of equilibrium states. 

In order to approximate the nonlinear geometric buckling behavior, higher-order strain terms 
are used to compute the differential or geometric stiffness matrix Ka. The geometric stiffness 
matrix is formulated using the assumed displacement fields in (26) and is given by 

[K„] = f[BNL]T[T}[BNL}dv 
Jv 

(49) 

where 

[r] 

and 

[S] 0 0 
0 [S] 0 
0     0    [S] 

(50) 

[S] = 
&xxO      7~xy0       7~zx0 

7~xy0     &yyO     TyzO 
TxzO      TyzO     &zzO 

(51) 
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The B/vx matrix is given by 

[B NL\ 

where 

[G] 
NM 

N hy 

Ni,2 

[G]     0      0 
0     [G]     0 
0      0     [G] 

0   0   N2)X   ... 
0   0   N2>y   ... 
0   0   N2i,   ... 

N8iI 

N8>, 

(52) 

(53) 

The resulting nonlinear equilibrium relationship is given by 

(K + K„)X = R (54) 

Determining the load level at which bifurcation occurs requires the solution to the following 
generalized eigenvalue problem 

(K - XKa)X = 0 (55) 

The critical buckling load is then given by 

"R-crit = AR (56) 

where A corresponds to the lowest positive eigenvalue of the global system. 

For large systems wherein a small set of eigenvalues are sought, algorithms have been incor- 
porated into RESTRAN based on subspace iteration [33-40]. The basic subspace iteration 
utilizes an initial set of iteration vectors, X^, which are selected to span the space defined 
by the desired eigenvectors, 3>, with the corresponding eigenvalues, A. Iterations are then 
performed to converge the eigenvectors and eigenvalues in the limit 

A  and Xfc —> <&  as k oo 

The subspace mapping is defined by 

KX jfc+i KaXfc 

(57) 

(58) 

The mapping or iteration vectors are selected in accordance with procedures outlined by 
Bathe [33]. The selection is specified such that the first column in X is taken as the diagonal 
in KQ, while remaining columns are assigned a unit value in the row position corresponding 
to min(kii/kaii). The global elastic and differential stiffness matrices are then mapped into 
the subspace as 

Kfc+i = Xfc+1KXA;+i (59) 

Kak+1 = X[+1KÄ+1 (60) 

resulting in the reduced eigenvalue problem given by 

Kfc+iQ/t+i — K0.fc+1Qfc+1AA;+i (61) 
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where A is a diagonal matrix of the system eigenvalues. Because the initial iteration vectors 
are usually approximate, an improvement to the system eigenvectors is given by 

Xfc+i = Xfc+1Qfc+1 (62) 

and an iteration of the subspace is continued until the desired set of eigenvalues at the 
(k + l)si iteration reach a stationary value defined by a tolerance as 

\\k+1 — Xk\ 
*   fc+1| '   <tol  ,   i = l,2,3,...,n (63) 
W    I 

During iterations, a check is made to ensure that the smallest eigenvalues are being obtained 
by using the Sturm sequence property of the characteristic polynomials of eigensystems. If 
a shift ß is introduced slightly greater than the current estimate of A„, the factorization 

Ks = K - ^K, = LDLT (64) 

yields a diagonal matrix D, in which the number of negative diagonals is equal to the number 
of eigenvalues smaller than /J. 

An additional eigenvalue extraction technique has been implemented in RESTRAN, which 
is based on the Arnoldi method and is a powerful extension of subspace iteration [34,35]. 
After reducing the generalized eigenvalue problem definition to a standard format through 
a Cholesky reduction of K = LTL, pre- and post-multiplying K^ such that 

A = L-XKCL (65) 

yields a symmetric A matrix. Arnoldi's method for finding a few eigenvalues of A proceeds 
as follows: given an initial vector Xj with unit norm, at each step m construct an orthonormal 
basis Xm = [xi,x2, ...,xm] for the Kyrlov subspace Km spanned by [x1? Axi,..., Am_1x1] 
by computing w = Axml and orthonormalizing w with respect to xx,x2, ...,xm_i to obtain 
xm. The matrix H = XTAX is upper Hessenberg, and its eigenvalues provide approxima- 
tions to m eigenvalues of A. The main steps in the basic Arnoldi algorithm for finding Aj 
may be summarized as follows: 

1. Initialization: Choose the number of steps m and an initial vector xj. with unit norm. 

2.Arnoldi steps for j = 1, 2, ... , m: 

(a) Wj = AXJ- 

(b) hij = x?:wj,   i=l,2,...,j. 
(c) Sj = WJ - Ej=i Xihy 
(d) hj+1J = ||SJ||2,   xj+1 = Sj/hj+1J. 

Set X= [xi,x2,...,xm] 

3.  Eignevalue computation: Reduce the upper Hessenberg matrix H = {hy} to real Schur 
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form T = ZTHZ, where T is a block triangular matrix with the eigenvalues, A;, ordered in 
descending order of their absolute values along the diagonal. Set X = XZ. 

4.   Convergence test:  If the first column Xj of X satisfies the convergence criteria for the 
residual 

reSi = 
||(AX-XT)i||a (66) 

then accept Ai; otherwise, return to step 2 and repeat. 

In a complex structure, the various load paths will yield positive and negative eigenvalues 
corresponding to load multipliers to cause a buckling failure. For the automated interpreta- 
tion of instability failure, if all eigenvalues are negative or complex, no reversal of input loads 
is considered; it is assumed that either the initial set of applied loads preclude a buckling 
response or that element failures have progressed to a terminal failure state. In the event of 
severe numerical difficulty in obtaining eigenvalues due to widespread material degradation, 
the stability analysis is bypassed, and any further failure events prior to prediction of catas- 
trophic collapse are accounted through material failure modes. 

3      Laminated Material Representation 

RESTRAN is formulated to represent layered materials such as laminated composites. In 
such a representation, the material is assumed to consist of an assemblage of orthotropic 
laminae or plies. The discretization of the model into finite elements associates the element 
properties with a single ply or with a number of plies forming a local sublaminate group. 

3.1      Effective Material Moduli 
An effective approximation to the the mechanical properties of an assembled sublaminate is 
obtained by averaging ply properties. For thin, plate-like structures under long-wavelength 
loading, classical lamination theory (CLT) has been adequate for obtaining overall mechan- 
ical response [41,42]. For thick laminates, however, more accurate formulations for effective 
three-dimensional properties have been developed [43-45] of which the formulation of Sun 
and Liao [45] has been incorporated into RESTRAN. 

The sublaminate constitutive relationship is assumed as 

Cxx £xx 

ayy eyy 

zz 

Oyz 
> = [C] < £zz     1 

O'zx €zx 

.   axy   . k   exy   j 

(67) 
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where the [C] matrix is assumed to be constituted by lamina which may be generally or- 
thotropic and described by nine independent material moduli. In general, the assembled 
material stiffness matrix may possess only symmetry about z = 0 and assume an anisotropic 
monoclinic form given by 

[C] 

Cn Cyi Cys 0         0 Ci6 
C21 C22 C23 0      0 C26 

C31 C32 C33 0      0 C36 

0      0      0 C44 C45 0 

0      0 _0 C54 C55 0 
^61 C"62 ^63 0 0 CQQ 

The effective three-dimensional components Cy are given by 

fc=l fc=2 

C12 = E i/fc% + E(% - AisM<& - %)/<& 
fc=l fc=2 

Ö13 = E »*<3l3 + E(<?33 " *ZzH(Qlz - Qiz)/Qlz 
fc=l fc=2 

_iV_iV_ 

Cl6 = E ^^16 + E((3l3 ~~ Mz)Vk{Qzs - Qz&)IQzZ 
fc=l fc=2 

_iV_Ar_ 

C22 = E ^<?22 + E(^23 ~ ^23)^(^26 ~~ Q2e)/QsZ 
fc=l fc=2 

N _ N 

C23 = E ukQ23 + ZKQM ~ ^S3)uk{Q23 ~ Q2z)IQz3 
Jfe=l k=2 

N N 

C26 = E ukQ26 + E(^23 ~~ ^2z)^k{Qz6 ~~ Qz&)/QzZ 
Jfe=l fc=2 

TV 033 -(£ 4 
C36 = E vkQzs + E(^33 "~ ^Zz)^k{Qz6 _ Qz$)/QzZ 

N 

I 
k=2 

N 

C44=fE^44j/A 

(68) 

(69) 

(70) 

(71) 

(72) 

(73) 

(74) 

(75) 

(76) 

(77) 

(78) 

(79) 
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C55=(YvkQ
k

5)/A (80) 

where 
Ai3 —   Ciz   A23   — C23   A33 —   C33   A36   — C36 (81) 

V*ti ^ ) >-(£#)' (82) 

Afc   =   Q44O55 -Q\s vk   =   hk/H (83) 

The transformed stiffnesses for the kth ply are given by 

Qk
n = Qk

ncos*ek + Qk
22sin49k + 2Qk

2sin29kcos29k + 4Qk
6cos29ksin29k 

Qk
2 = Qk

nsinA9k + Qk
22cos49k + 2(Qk

2 + 2Qk
6)sin29kcos29k 

Q33 = Q33 

Q44 = Qk
ucos29k + Qk

5sin29k 

Qk
5 = Qk

5cos29k + Qk
usin29k 

Qk
6 = Qk, + (Qk

1 + Qk
22-2Qk

2-4Qk
6)sin20kcos29k (84) 

Q12 = Qku + (Qn + Q22-^Qi2-^Qee>in29kcos29k 

Qk
3 = Qk

3cos29k + Qk
zsin29k 

Qk
z = Qk

zsin29k + Qk
23cos29k 

Qk
6 = (Qk

ncos29k - Qk
22sin29k - cos29k(Qk

2 + 2Qk
m))cos9ksin9k 

Qk
6 = (Qk

nsin29k-Qk
]2cos29k + cos29k{Qk

2 + 2Qk
66))sin9kcos9k 

Qle = (Qk
lz-Qk2z>in9kcos9k 

Qk
5 = {Qk

b-Qk
i)sin9kcos9k 

in which 

and 

Qk
n = Ek{\   -vk

3v
k

2)/{EkEknk) 

Qk
2 = Ek(uk

12 + uk
2u

k
3)/(EkEkQk) 

Qiz = Ek(vk
3 + vk

2v
k

3)/{EkEkQk) 

Qk
22 = Ek(l   -vk

nv
k

31)/(EkEknk) 

Qk2z = Eltä + v&ti/iE'E^)                                                           (85) 

Qk
z = Ek(l   -vk

2v
k

2l)/{EkEkQk) 
r\k         s~ik 
V44 — ^23 
r\k         /~ik 
V55 — ^31 
/~\k        /~tk 
^66 — U'12 

vk
2l   =   v\2{E

kIE\) 
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{Ei/Ek
2) 

4   =   4 {El/El) 
V%2     =     » 

nk = (i - 44 V2ZyZ2 44 2444) 
(86) 

Eij, Gij, Uij and 9 are the Young's normal and shear moduli, Poisson ratios and fiber orien- 
tation angle, respectively. 

In the case of a composite material system with a balanced [±0] layup, the effective material 
properties reduce to those obtained using classical three-dimensional lamination theory in 
which the material stiffnesses coefficients, Cy, are obtained simply as 

1 N 

(87) 

where H is the local sublaminate thickness, hk are the individual ply thicknesses and N is 
the total number of plies in the sublaminate. 

The assumption of a layered medium permits the modeling of a large class of material 
systems: laminated composites, sandwich-type constructions, piecewise linear approxima- 
tions to homogeneous materials with varying properties, and isotropic materials represented 
as a single ply. 

3.2      Ply-Level Stress and Strain Recovery 

The effective material constitutive relationship developed by Sun and Liao [45] is based on 
the assumption of long wavelength loading and that the thickness of the sublaminate is small 
compared to the total laminate thickness. This leads to the consequence that in the recovery 
of average or effective stresses and strains at the element level using 

{e}   =   [B]{u} {*}[C]   =   {<=} (88) 

where [B] is the strain-displacement matrix and {u} is the displacement vector, the inplane 
strains and transverse normal stresses are assumed constant. This condition may be stated 
as 

cr2 

=   ek 

=   a. 

"■yy 

°y 
Jh 

=     O. 

yy 

k 

zxy 

o,x   —   a 

xy 

k 

Using the constitutive relation for the kth ply given by 

{**} = [Ck){ek] 

the following equation for the out-of-plane stresses results in 

Ozz (?zz C31 C32 C36 

Oyz >   = < °yz >  = Ql C42 C46 
°xz   , k .   &xz   , Col C52 C56 

'-yy 

£xy 

> + 
C33 

C43 

C53 

C34 
C44 

C54 

C35 ^■zz 

C45 < (■yz    } 

c55\ k .   ezx   , 

(89) 

(90) 

(91) 
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and the unknown out-of-plane strain components may then be calculated from 

-i -1 

e2Z C33 C34 C35 
eyz >   = C43 C44 C45 

tzx   „ b C53 C54 C55 

0"22 ^31 C"32 C36 C e« 
°VZ >    — C41 C42 C46 S    Cyz 

Oxz   { k C5I C52 C56 fe I ^^ A;^ 

(92) 

With the complete strain vector for the kth ply layer determined, the remaining stress com- 
ponents are obtained using equation (90). 

3.3      Nonlinear Elastic Moduli 

As shown in Figure 9, nonlinear elastic materials are those which exhibit a nonlinear stress/ 
strain response under applied loads. Many nonlinear materials exhibit an elastic response 
below the fracture or yield limit in which deflections follow the same load-displacment curve 
without permanent deformation under unloading. The material moduli for these materials 
may therefore be expressed as continuous functions of the stress or strain state as 

Cu = Cu(aV) (93) 

where a* and e* represent individual stress or strain components or combined measures that 
represent unit potential energy or strain energy density. 

Ot 
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STRAIN 

Figure 9. Nonlinear elastic stress-strain relation. 
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For greatest generality in defining nonlinear properties, nonlinear stress/strain relations are 
input as secant moduli from a required user-defined subroutine. This subroutine may be writ- 
ten in FORTRAN or C, and then compiled to link with the main RESTRAN executable. 
Through a standardized arqument interface, RESTRAN provides stresses and strains inter- 
polated to each ply and at element integration or Guass points. The user-defined routine 
must calculate reduction factors, tpi, which are used to obtain current measures of the secant 
material moduli depicted in Figure 10. The secant moduli are computed as 

Ek 
=    tflE? 

E\ =   il*E% 

Ekz =   lfeJ5$ 

^23 =    ^4<?23 

^31 =  VÄ 
fik 
^12 =   AGk

12 

(94) 

A full description of this subroutine is contained in the RESTRAN User's Manual [31]. 
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Figure 10. Secant moduli depiction. 
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4      Material Failure Modes 

Composite materials exhibit a wide range of failure modes including microscopic fiber break- 
age, shear-out failure, kink band formation, and microbuckling, matrix tensile cracking and 
compressive failure, and macroscopic multilayered delamination growth. The RESTRAN 
analysis code models various material failure modes at the element ply level using selected 
failure criteria and associated damage laws. The current implementation of material failure 
prediction is restricted to criteria defined at a point. Nonlocal failure criteria based on av- 
eraged stress or strain values necessarily require the definition of characteristic integration 
paths which would extend over many element domains and is difficult to automate in a 
progressive failure analysis without introducing some degree of problem specificity. In ad- 
dition, failure modes associated with delamination extension are currently not accounted for. 

In order to maximize versatility by allowing specialized tailoring of the analysis, RESTRAN 
incorporates user-defined subroutine interfaces to allow any material failure criterion and 
damage law to be applied. The format for these subroutines are discussed in detail in the 
RESTRAN User's Manual [31]. 

4.1    Material Failure Criteria 

A primary consideration in the analysis of residual strength in composite structures is the 
accurate prediction of ply failure due to a specific state of stress. In composite materials, the 
micromechanical complexity of the ply material makes the analysis of local failure difficult. 
Under applied external loading, the local stresses contribute to a large number of identifiable 
failure interactions and damage modes, any one of which can become a critical 'weak-link' in 
the prediction of ply failure. A large number of criteria have been derived to relate internal 
stresses and experimental measures of material strength to the onset of failure [46-58]. All 
criteria may be classed as degenerate cases of the general tensor polynomial failure criterion 
which has been developed with the general form given by 

FI = FiOi + FijOiOj + FijkOiOjOk + ... (95) 

where az- are stress tensor components in principal material directions, Fj, F^, Fijk are 
components of the strength tensors, and FI is the failure index which predicts failure when 
FI > 1. For practical applications, the terms in equation (95) higher than quadratic are usu- 
ally set to zero due to the diminishing returns of including higher-order polynomial terms 
in predicting failure together with the increased cost of experimentally determining these 
higher-order strength components. 

Developed failure criteria exhibit a wide range of predictive capability. The simplest utilize 
individual stress or strain component relations in which each component is assumed to act 
independently while other criteria account for coupling and interactions in the stress/strain 
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State. In addition, many criteria simply predict an unidentified failure state, while others 
differentiate between competing failure modes. For use in failure criteria, principal ten- 
sor components are computed for each layer in laminated composites along longitudinal, 
transverse, and normal ply coordinates. For laminates exhibiting monoclinic, orthotropic, 
or transversely isotropic material properties, global stresses in the local (x',y',z') coordinate 
system are first mapped into the local material (x,y,z) coordinate system if the laminate 
is arbitrarily oriented in space. Next, principal ply stresses in the lamina (1,2,3) coordi- 
nate system are obtained using direction cosines which are determined soley by the fiber 
orientation angle. This transformation is given by 

0\ 

02 

03 

on 

012 

If 
0 m{ 0 0 0 

% 
2 0 0 0 

0 0 1 0 0 
0 0 0 m2 h 
0 0 0 mi k 

hk mim2 0 0 0 

2/iTOi 0xx 

2^ "22 0yy 

0 

0 
< 0zz 

0yz 

0 0zx 

/l77Z2 + fcmi _ .   0xy   , 

(96) 

Principal strains are obtained similarily as 

C2 

^3 

£23 

^31 

ei2 J       L %hk   2mi7722   000   lim2 + hi^i 

The direction cosines are given by 

II 
2 ra{ 0 0 0 llTTli 

% m\ 0 0 0 km? 
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/2   —   —sinß 

mi   =   sinß 
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cyy 
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(97) 

(98) 

where ß is the fiber orientation angle. 

For homogeneous isotropic materials, the principal stresses are determining by projecting 
the six components of stress onto a plane where the shear stress components vanish. This 
leads to the relation 

{a - ax)      -r. xy 

-T, xy (0 - 0y)       -T% yz 

iyz (a - az) 

r / ] r o ] 
< m > = < o \ 

n L o J 
(99) 

from which principal stresses and principal planes may be determined. An additional geo- 
metric constraint relates the direction cosines l,m,n as 

/2 + m2 + n2 = 1 (100) 
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For a nontrivial solution, the determinant of the system given in equation (99) must vanish, 
which leads to a cubic equation for the principal stresses given by 

a3 + X2a
2 + Xxa + A0 = 0 (101) 

where 

A2     —     &xx + &yy + &z 
Al   O'xxCyy   -j-   OyyUZZ   +   <JZZ^XX 1~Xy TXZ TyZ \X\jZi) 

^0     =     Gxx@yy@zz   >   £TXyTxzTyZ       CTxx^yz Gyy^xz 0'zzTXy 

To obtain the solution, the following quantities are defined 

q   =   ^i-^22 (103) 

r   =   g(AiA2-3A0)- — A2
3 

Sl   =   [r + tf + r2)']' (104) 

il 
S2   =   [r-tf + r2)*} 

in which, for stress and strain tensor transformations, the quantity q3 + r2 > 0 thus guaran- 
teeing that all roots are real. The principal normal stresses are then given by 

ox    =    (Si + s2) - — 

a2   =   -i(Sl + S2)-| + !^(Sl-S2) (105) 

1 .      a2      iy/3. . 
a3   =   --(s! + s2)-y-—(si-s2) 

Principal shear stresses may be expressed in terms of the principal normal stresses as 

04 =     102—031 

05 =   I01-03I (106) 

06 =     101 — 021 

A variety of failure criteria have been incorporated into the RESTRAN analysis code to 
predict ply failures under external applied loads and are described in the following subsec- 
tions. These criteria have been used to form the central material failure analysis capability 
in other state-of-the-art analysis codes [59]. Strains are recovered at the Gauss points and 
interpolated to each ply at the centroid from which layer stresses are obtained. It is at these 
locations that the available failure criteria are applied. For greatest generality, a user-defined 
subroutine may be used to incorporate any specific failure criterion. Both interpolated and 
Gauss point stresses and strains are passed into the routine. This subroutine is described in 
the RESTRAN User's Manual [31]. 
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4.1.1      Maximum Stress Criterion 

Of the various anisotropic failure criteria, the maximum stress criterion combines early inves- 
tigations into failure mechanisms due to Rankine and Tresca. The failure strength, 07, may 
be based on fracture strength, yield strength, proportional limit, endurance limit, maximum 
working stress or some other scalar parameter, depending on the expected failure mode or 
design criterion. The failure modes predicted by this criterion are each dependent on only 
one stress component and are summarized in Table 1. In general, for ductile materials, 
the maximum normal stress criterion yields poor failure predictions, while the maximum 
shearing stress predictions produce good results. For brittle materials, the maximum stress 
criterion generally produces good predictions of failure strength. In applying this criterion, 
ultimate ply failure is predicted when any one of the following conditions are satisfied 

0i   >   Xu     en   <   Xc; 
02   >   Yt;      a2   <   Yc; 
03   >   Zt; 03   S <   Zr 

|<74|     >     R 
N > s 
|cr6|   >   T 

(107) 

where CTI, a2, and a3 are the principal normal stress components and 04, 05, and a& are the 
principal shear stress components. The strength measures are given by Xt, Xc, Yt, Yc, Zt, 
and Zc, which are the normal tensile and compressive strengths in the principal 1, 2 and 3 
directions, respectively, and R, S, and T are the shear strengths defined in the 23, 13, and 
12 planes, respectively. Expressed in tensor polynomial form, the maximum stress criterion 
may be written as 

(a1-Xt)(a1+Xc)(a2-Yt)(a2 + Yc)(a3-Zt)(a3 + Zc)(\ai\-R)(\a5\-S)(\a6\-T) = 0 (108) 

Table 1. Maximum stress criterion failure modes. 

Condition Failure Mode 
0i > Xt and oi > 0 Fiber failure in tension 
0i < Xc and (7i < 0 Fiber failure in compression 
a2>Yt and a2 > 0 Matrix failure in tension 
02 < Yc and o2 < 0 Matrix failure in compression 
03 > Zt and 03 > 0 Matrix failure in tension 
03 < Zc and 03 < 0 Matrix failure in compression 
|04| > 1 Interlaminar shear failure 

N > 1 Interlaminar shear failure 

N > 1 Inplane shear failure 

4.1.2      Maximum Strain Criterion 

The maximum strain criterion is of identical form as the above with stresses replaced by cor- 
responding strains and strength measures replaced by associated ultimate strain measures. 
This criterion is founded on early developments made by St. Venant. As with the maximum 
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stress criterion, a number of failure modes may be identified as listed in Table 2. Ultimate 
ply failure is predicted when any one of the following conditions are satisfied 

< 
< 
< 

X, C! 

Zc'i 

M > 
M > 
M  > 

R 
S 
T 

(109) 
ci > Xt; ex 

£2 > Yt; e2 

C3   >   Z%\      e3 

where ei, e2, and e3 are the principal normal strain components and e4, e5, and e6 are the 
principal shear strain components. The ultimate strain measures are given by Xu Xc, Yt, Yc, 
Zt, and Zc which are the normal tensile and compressive strains in the principal 1,2, and 3 
directions, respectively, and R, S, and T are the shear strains in the 23, 13, and 12 planes, 
respectively. 

Table 2. Maximum strain criterion failure modes. 

Condition Failure Mode 
t\ > Xt and ei > 0 Fiber failure in tension 
€i < Xc and t\ < 0 Fiber failure in compression 
e2 > Yt and e2 > 0 Matrix failure in tension 
e2 < ^c and e2 < 0 Matrix failure in compression 
e3 > Z< and e3 > 0 Matrix failure in tension 
e3 < Zc and e3 < 0 Matrix failure in compression 
M > i Interlaminar shear failure 
k5| > i Interlaminar shear failure 
|e6| > 1 Inplane shear failure 

4.1.3      Beltrami Criterion 

The Beltrami failure criterion assumes material isotropy and is based on comparing the total 
strain energy per unit volume of a multiaxial stress state with the strain energy produced 
by a uniaxial test at failure. This criterion is given by 

Oc = [Cl2 + C2
2 + CT3

2 - 2z/(<JiCT2 + <72C73 + 0-3<7i)]: (110) 

and failure is predicted when the combined stress measure equals or exceeds the critical 

(111) 

stress, Oy, to cause failure in a uniaxial test 

ac > cry 

4.1.4      Von Mises Criterion 

The Von Mises failure criterion assumes material isotropy and is based on a decomposition 
of the strain energy density into volumetric or dilatational energy and distortional energy. 
This combined stress measure assumes that failure in a multiaxial stress state is due solely 
to the distortional energy of the system.   The resulting failure criterion may be expressed 
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using principal stresses as 

v2r/ \2   ,   / \2   ,   / \2if Oc = -y[(ai - o2y + (a2 - a3)' + ((73 - aO"]2 (112) 

wherein failure is predicted when the combined stress measure exceeds the ultimate yield 
strength of the material or 

ac > Oy (113) 

4.1.5      Hoffman Criterion 

The three-dimensional Hoffman criterion [52,57] is given by 

FI   =   Fiai + F2o2 + F3a3 + Fna2 + Fi2axa2 + Fi3axa3 + F22a\ + 

F23a2a3 + F33a
2

3 + Fuaj + F55af + F66a
2

6 (114) 

where 
F -   l         l 

1    xt    Xc 
■   F2 = i-i 
'     2     Yt     Yc 

Fn=     l    ■ 11    XtXe' 
F   -    1   ■ 22     YtYc' 

Fu = ^; F55 = i. M 55         C2 ' 

•     3     Z,     Zr 

F33 — 

-^66 = 

ZtZc 

1 
J>2 

Fn = ~1{YT + VY ~Y7] (115) 

2 XfXc     ZtZc     YfYc 

1/1 1 1    , 
F23 = -ö(^T + 2 .Z^c     ^t^     XtXc 

For two-dimensional plane problems, assuming a3 = aX3 = cr23 = 0 and due to symmetry 
about the 2,3 axis, Y = Z, the Hoffman criterion reduces to 

TPT     i1        ! \      , ^1       !\      ,    ai2    ,   a22   , v\2      (?\o2 .     . FI={xt-x-)ai + {Y,-Y)°> + xjrc
+wM*-iörc      

(116) 

4.1.6      Hill Criterion 

The three-dimensional Hill criterion [50] is based on exclusively quadratic terms given by 

FI = Fna2 + FX2oxa2 + Fl3axa3 + F22o\ + F23a2a3 + F33aj + Fua2 + F^a2. + F^a\ (117) 

where _   1 _ J_ 1 
— ~X^: 2 ~ Y^: 3 _ ~ZP- 
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—■ -— - — 

1111 
F12=--(-^+yt--rp) (118) 

1   1      1      1 
13~~2^X2 + Z2~~W 

l(—   — - l 

23 — ~2 ~Z^     Y2 ~ X2 

in which the value for the normal strengths X, Y, and Z are taken as compressive or tensile, 
depending on the sign of the corresponding normal stresses. For two-dimensional plane 
problems, assuming a3 = <?i3 = c23 = 0 and due to symmetry about the 2,3 axis, Y = Z, 
the Hoffman criterion reduces to 

FI = Fuo* + F12GXG2 + F22o\ + F66a
2 (119) 

4.1.7     Tsai-Wu Criterion 

The three-dimensional Tsai-Wu criterion [53] is given by 

FI   =   Fieri + F2a2 + F3a3 + Fuo2 + FX2GXO2 + F13GiG3 + F22o\ + 

^23^3 + F33G\ + F44aj + F55a
2

5 + F66a
2 (120) 

where 
__1 l_    p_J__J_.   F-l L 

1 —   y Y '       2 ~ V        v '       3 _   7 7 

Fu = ;      F22 = -TTTT'I      F33 ~ XY  ) ■* ■"         VV ' 7 7 
t-A-c                          Xtl-c £>t£>c 

1 „             1 „ 1  . jp __  . jp     __   
r>2'                   55          C2' 66        J>2 

Fl2 = -\/(^XtXcYtYc) (121) 

F13 = -\/{yJXtXcZtZc) 

F23 = ~/(y/YtYcZtZc) 

For two-dimensional plane problems, assuming a slightly different form for the interaction 
term Fi2, the Tsai-Wu criterion reduces to 

FI=ixrY^+{Yrv^+w-c
+wc

+^-xtYt+xcYc     
(122) 

30 



4.1.8      Christensen Criterion 

The Christensen failure criterion differentiates failure into three possible modes [48]. These 
are fiber tension, fiber compression, and matrix failure. Fiber failure in tension is predicted 
when 

Xt 

CTi - Vi2U2 - ^1303 

Fiber failure in compression is predicted when 

Xc 

< 1 for  (CTI - v12o2 - v13a3) > 0 (123) 

< 1 for (ai - ul2a2 - Jyna3) < 0 (124) 
G\ — VX202 - ^13Ö"3 

Matrix failure is predicted when the following condition is satisfied 

Mo-i + A2(a2 + a3) + A3ax
2 + AA{a2

2 + a3
2) + (125) 

Mo-x (a2 + o-3) + A6a2a3 + A7a
2 + A8(a5

2 + a6
2)   >   1 

where the constants Ai —>• A8 are given by 

A, = a(l-2v12)/(ß2E1) 

A2 = a{l-v2l-y23)/{ß2E2) 

A3 = 2(l + z,12)7(3/?2£1
2) 

A4 = 2[{l + v2l+v2l
2) + v2Z(\-v2l) + v2Z

2]/{Zß2E2
2) (126) 

Ab = 2[(2v21+v23)(l + v12)]/(3ß2E1E2) 

A6 = 2[(-l + 2v21 + 2v21
2)-2v23{2 + v2l)-v23

2]/(3ß2E2
2) 

A? = l/(2ß2G23
2) 

A8 = l/(2ß2G12
2) 

and where the constants a and ß are determined experimentally for the particular material 
system being used. 

4.1.9      Feng Criterion 

The Feng failure criterion is based on strain invariants and predicts fiber breakage and matrix 
cracking failure modes [47]. Matrix failure is predicted when 

A^ + A2Ji2 + A3J2 > 1 (127) 

and fiber failure is predicted when 
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A4J5 + A5J5
2 + A6J4> 1 (128) 

In the above equations, A\ —> A& are experimentally determined constants, and J; are strain 
invariants given by 

J\   =   ci + £2 + e3 

^2   =   g[(«i -e2)2 + (e3-e2)
2 + (e1 - e3)

2 + e4
2 + e5

2 + e6
2] 

J4   =   e4
2 + e5

2 (129) 

^5     =     Cl 

4.1.10     Modified Hashin Criterion 

The modified Hashin failure criterion [49] differentiates between fiber and matrix failure 
modes. Fiber failure is predicted on the basis of whether the fiber or longitudinal stresses 
exceed the maximum fiber directional strength. Thus, fiber failure in tension is predicted 
when 

£ > 1 for cx > 0 (130) 

and fiber failure in compression is predicted when 

£■ > 1  for a, < 0 (131) 

Matrix failure is predicted using maximum normal and transverse stress components in the 
2-3 plane defined by 

onn   =   (^^) + (^^)cos(2ß) + a23sin(2ß) 

°nt   =   -(^^)sin(2ß) + a23cos(2ß) (132) 

o-ni   =   aizsin{ß) + a12cos(ß) 

in which ß defines the principal direction. Matrix failure in tension is given by 

o^ + ^\1^\1  for Gnn > 0 (133) 

and matrix failure in compression is given by 

^2 + °-f2 > 1  for ann < 0 (134) 
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4.2      Progressive Material Failure Prediction 

Estimating the required load to cause the next material failure is performed by calculating 
scale factors for each ply in each element to precipitate material failure using selected failure 
criteria and assuming a linear load-deflection response. These scale factors, a, are defined 
as the linear multiplier to the current stresses to reach the critical value given by 

acr = aa (135) 

such that the failure index, FI, is equal to unity or 

FI = ffrj) = 1 (136) 

In the general tensorial criteria described previously, this leads to determining roots to an 
nth order polynomial of the form 

Sna
n + Sn^a"-1 + ... + S0 = 0 (137) 

The suite of failure criteria available in RESTRAN are limited to linear and quadratic expres- 
sions involving stresses and material strengths such that the highest order failure criterion 
requires only the roots to a second-order equation of the form 

S2a
2 + Si a + S0 = 0 (138) 

to be determined to yield the minimum positive multiplier, a. This factor is calculated for 
each ply in each element and is stored in an external file. The lowest factor to cause the 
next material failure is selected as 

a — rmnla. 1    ~,2 „.k afj, ...,a&) (139) 

where i is the element number, j is the element ply number, and k is the failure mode. 
To speed convergence, a factor s is applied to the determined load multiplier to provide a 
scaling slightly above the minimum predicted. This factor may be input to override the 
default value of 1.01. These factors multiply the vector of input loads yielding the next set 
of applied loads as 

F = säP (140) 

In the case when nonlinear material properties are specified, the linear or quadratic extrapo- 
lation used to determine ä will introduce an additional nonlinear effect and cause the estimate 
for the next failure load to vary during the iterative solution of the nonlinear equilibrium 
equations. 

4.3      Material Damage Models 

Once ply failure is predicted, various damage laws have been incorporated into RESTRAN to 
account for material degradation. The simplest damage law reduces all lamina properties to 
zero regardless of damage mode. Thus, for the ith ply, a null constitutive relation is assumed 
as 

[C]i = [0]    . (141) 
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This assumption is regarded as extreme, and more specialized property reductions models 
have been advanced for the representation of ply damage in the attempt to refine failure 
predictions. 

Extending the model developed by Reddy and Pandey [56] to three-dimensional for com- 
pressive or tensile matrix failure, the in-plane transverse modulus, £2, C23, and Poisson's 
ratios ^ in the damaged ply is set to zero while all other elastic constants are unchanged. 
This results in the ply stiffness matrix for the ith ply given by 

[C]i = 

£1 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
Es 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

Gl3 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 

&12 

(142) 

Similarily, for fiber failure, E1, Gx2, G13, and //y, = 0, yielding 

[C]< = 

0.0 0.0 0.0 0.0 0.0 
0.0 Ei 0.0 0.0 0.0 
0.0 0.0 Ez 0.0 0.0 
0.0 0.0 0.0 G23 0.0 
0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

(143) 

A more specialized damage law is presented by Chang and Chang [18]. This law is based on 
an interactive degradation model using the Tsai-Wu failure criterion expressed as 

FI = FiOi + FijOiGj (144) 

where FI is the failure index. Specific failure modes are determined by calculating the failure 
index using selected stress components. The implementation in RESTRAN generalizes this 
approach to any selected quadratic failure criterion. A stiffness reduction coefficient, a, is 
utilized to degrade material properties. This coefficient is experimentally determined and 
is assumed as a material property constant for the composite material system being used. 
Fiber breakage is assumed if max{FI(ai)} is due to o\. The damage law for this mode is 
given by 

£1 =   aEx 

G\z =   OLGIZ 

G\2 =     OLG\2 

V\Z -    OU/13 

V\2 = OCV12 

(145) 
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with all other moduli left unaltered. Matrix cracking is assumed if max{FI(oi)} is due to 
a2 or (76; the corresponding damage law for this mode is given by 

(146) 

Delamination failure is assumed if max{FI(ai)} is due to cr3, «74, or <r5, and the corresponding 
damage law for this mode is given by 

E2   -- =   aE2 

G23   - =   aG23 

G12   - =     OiG\2 

V2\     - =     OLV2\ 

»23     = =    OH/23 

£3 =   aE3 

G23 =    OcG23 

G13 =   aGi3 

*31 =   av3x 

^32 =   ojz/32 

(147) 

For partial failure, the material constitutive matrix will generally be rank deficient, which 
will lead to an nth-order singularity during inversion. This is processed through an element- 
level condensation of the indefinite moduli prior to the inversion. The reduced constitutive 
matrix is subsequently expansed to the original material matrix dimension and is then used 
in forming element stiffness coefficients. The resulting element stiffness matrix will possess 
zero-energy modes in addition to those associated with rigid body modes. After assembly 
of elements into a global system, any degrees of freedom associated with zero stiffness are 
statically condensed out of the system prior to analysis. 

The failure and damage models built into RESTRAN reflect both those in common use 
and those that are the result of current research into modeling failure mechanisms in com- 
posites. However, RESTRAN incorporates a standardized subroutine interface described 
in the user's manual [31] which allows any additional material failure/damage model to be 
applied through the creation of a user-defined subroutine linked into the RESTRAN code. 

5      Structural Failure Modes 

Structural members exhibit a variety of buckling responses to applied loads. Long, slender 
members such as beams or columns tend to displace in a simple fundamental mode with a 
single wavelength deflection pattern. Plate-like components demonstrate various numbers of 
longitudinal and transverse wavelength deflection patterns which depend on geometry and 
material aspect ratios. Thick composite laminates with delaminations show global, local, and 
mixed instability modes as depicted in Figure 11. In complex geometries, instability modes 
can preclude any clear categorization. The algorithmic treatment of delamination buckling 
in RESTRAN allows the specification of any number of delaminations to contribute to. local 
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and mixed instability modes. Each delamination may be defined with arbitrary configura- 
tion and location at ply interface planes. The growth of delaminations prior to buckling 
is currently not calculated in RESTRAN. This exclusion is based in part on the necessary 
limitation of the current developmental effort, together with the observed behavior of actual 
delminated composites undergoing buckling. Due to imperfections, misalignments, and loss 
of load symmetry, predictions of delamination growth prior to or concurrent with buckling 
using an idealized mathematical model tend to give way to growth occurring subsequent to 
buckling and being a phenomenon in the post-buckled regime [11]. 

For a computationally viable analysis, buckling failure is predicted through a linear eige- 
nanalyis to obtain critical load multipliers to cause local sublaminate and overall instability. 
As will be discussed in the following sections, issues arise in modeling contact constraint 
effects and in representing post-buckled material behavior. To fully simulate these phenom- 
ena, an iterative nonlinear large displacement solution procedure is required which would 
present an impractical computational cost in processing multiple delaminations. Thus, var- 
ious simplifications have been incorporated to provide a tractable analysis. 

The interpretation of buckling modes has been automated for delaminations defined along 
ply interface planes. For more complicated states of delamination damage, RESTRAN incor- 
porates user-defined subroutine interfaces to allow problem-specific interpretation of buckling 
failure modes for complicated delamination profiles in three-dimensional geometries. 

LOCAL GLOBAL MIXED-MODE 

Figure 11. Global, local, and mixed buckling modes in thick laminates. 
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5.1      Multiple Delaminations 

The analysis of multiple delaminations in composites has not been widely investigated [60]. 
In RESTRAN, delamination damage is idealized as an array of planes of discontinuity; this 
is schematically depicted in Figure 12. In low-velocity impacts of plate-like geometries, the 
location of internal delaminations is highly dependent on the relative orientation of ply pairs 
through the layup. Other effects such as bending and stress wave interactions tend to con- 
centrate the creation of fracture surface or delamination planes towards the opposite face of 
the panel [61-66]. In high velocity, through-penetration type impact events, delaminations 
may be uniformly distributed through the laminate thickness concentric about a removed 
hollow core. 

Figure 12. Laminate with multiple embedded delaminations. 

The stability analysis of multiply-delaminated laminates is complicated by the number of 
potential instability modes. If delaminations are simply modeled as planes of element dis- 
continuity and a linear buckling analysis is performed with out enforcing contact constraints, 
predicted buckling modes may include both physical modes and nonphysical modes in which 
the instability failure of interior sublayers deform into surrounding laminate material. This 
behavior is depicted in Figure 13. 

Figure 13. Example of a nonphysical sublaminate buckling mode. 
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With the possible presence of numerous delaminations with arbitrary location and configura- 
tion, several assumptions have been used in the development of a general analysis capability 
in RESTRAN to make the analysis of multiple delaminations tractable. The first assumption 
is that each sublaminate buckling instability can be considered individually. Experimental 
results have shown that with the presence of multiple delaminations, instability behavior is 
typically dependent on the most critical delamination, while the other delaminations remain 
closed [11]. This procedure assumes that during instability of a particular delamination, all 
other delamination planes have infinite frictional contact and are, as a consequence, con- 
densed out of the model. This is depicted in Figure 14. This process is repeated sequentially 
for all delaminations in the model, and the delamination with the lowest critical load is 
assumed to exhibit the next failure due to buckling. The task reduces to automating the 
analysis of single buckling mode shapes and ultimately determining which particular sublam- 
inate layer is most critical to instability and determining which elements are involved in the 
buckled sublaminate. This procedure eliminates the difficulty of automatically screening out 
nonphysical buckling modes and replaces simultaneous buckling of multiple delaminations 
with a sequence of individual local instability failures. The sequential processing of individ- 
ual local delamination failures will provide overall estimates for the maximum applied load to 
cause local failure via sublaminate buckling. In a study of local buckling in laminated com- 
posites, the presence of additional, symmetrically located delaminations have only a slight 
effect on the predicted buckling load over those predicted with other delaminations removed 
from the model [12].   A schematic of sequential buckling failure is depicted in Figure 15. 

Figure 14. Condensation of multiple delaminations. 
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SUBLAMINATE BUCKLING 
FAILURES 

Figure 15. Sequential buckling failure. 

Although sequentially processing individual delaminations removes the possibility of predict- 
ing embedded sublaminates to undergo buckling deformation and deforming through other 
layers, as depicted in- Figure 13, contact constraints must be imposed on isolated delami- 
nations to correct for local interpenetration of the buckling mode, as shown in Figure 16. 
RESTRAN incorporates an effective iterative procedure for satisfying contact or compata- 
bility constraints on the buckling mode shape. This feature is explained in detail in the 
following subsection. 

Figure 16. Local compatability violation in layer buckling. 

5.2      Algorithmic Assessment of Local Buckling Failure 

Delaminations are assumed to exist on distinct planes which may be of arbitrary shape and 
extent. Each delamination is defined by a declared set of nodes through which the fracture 
surface extends. For each node set, RESTRAN automatically generates a set of coincident 
nodes and redefines the element connectivity to provide a kinematic freedom of motion be- 
tween the upper and lower surfaces. Each element is accessed, and the nodes forming the 
element faces F2, F3: and F$ (as defined in Figure 17) are scanned for inclusion in the delam- 
ination node set. Once determined, the elements are scanned, and those containing nodes on 
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the opposing F4, i<\, or F$ faces, which are a subset of the nodes defining the delamination, 
are assigned the coincident nodes. The resulting placement of coincident nodes is depicted 
in Figure 18. 

8 /l 
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F5 

Figure 17. Designation of element faces. 
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Figure 18. Generation of coincident nodes. 

The global elastic and differential stiffness matrices are then formed containing all generated 
coincident node planes simulating the required delaminations. A sequential processing of 
each delamination is performed, and a condensation is performed to temporarily remove all 
but the current delamination. An eigenanalysis of the condensed global system is then in- 
voked. Each fundamental mode shape is subjected to an automated interpretation. The first 
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test determines the type of buckling mode. Simple global buckling is identified if no delam- 
inations have been input or after all delaminations have been failed. A mixed global-local 
buckling mode is detected if the maximum normalized modal displacement occurs outside 
the domain of the delamination plane. This mode is predicted when the ratio between the 
maximum modal deflection in the delamination plane and the maximum overall deflection 
is less than an input tolerance or 

srmax /rmax    < rp   j 
0local/0global ^ -L 01 (148) 

If these modes are not exhibited, the default mode is local sublaminate buckling. These 
buckling modes are depicted in Figure 11. 

Global or mixed global-local buckling modes are assumed to cause catastrophic failure if 
the corresponding critical load is less than the predicted load to cause material failure at the 
current progressive failure cycle. 

For local sublaminate buckling modes, an iterative procedure can be invoked to satisfy 
contact constraints. The automated analysis of the buckling mode is based entirely on the 
mode shape which is arbitrary in magnitude and sign. An estimate for the amplitude of 
the buckling mode within a linear solution scheme can be made by assuming the area of the 
delaminated section remains constant and that the membrane stress in the buckled laminate 
is the same as the buckling stress [6]. For assessing contact, however, the actual magnitude 
is not needed, and the pattern of the normalized eigenmode is used to determine modal 
displacements and modal stresses and strains. Iterations begin by first checking whether the 
buckling mode is demonstrating a physical opening mode or nonphysical closing mode, as 
shown in Figure 19. 

CLOSING MODE 

OPENING MODE 
Figure 19. Opening and closing buckling modes. 
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If a closing mode is detected, the arbitrary signs of the modal displacements are flipped. A 
test is performed to assess the degree of interpenetration of the buckling layer into the upper 
or lower substrate. The inital processing of interpenetrating delaminations is to remove the 
coincident nodes where contact conditions are violated. This has, as a first approximation, 
the effect of fitting an opening half wavelength to the delamination plane. A minimum energy 
surface may, however, extend beyond this border, and further computations are performed 
to refine the inital estimate of constrained layer buckling. This is performed by repeating 
the eigenanalysis with the augmented connectivity and utilizing the recovered mode shape 
which, although arbitrary in magnitude and sign, provides the necessary qualitative infor- 
mation. After testing for interpenetrating nodes and accumulating these in an exclusion set, 
prior nodes included in this set are tested for possible release due to predicted normal tensile 
strains at the node location. This estimate is based on tensile stresses associated with nodes, 
or equivalently, nodal displacements above and below the delamination plane moving apart, 
thereby generating tensile strains normal to the plane which act to open that portion of the 
delamination. These nodes are restored in the delamination node set and the linear analysis 
rerun. The nodes used for estimating modal strains about a particular coincident node are 
shown in Figure 20. 

Figure 20. Nodes used to calculate normal modal strain. 

The coordinates X{ and modal deflections Si are then used to calculate a measure of normal 
strain as a stretch factor given by 

Si - S0     [EU4 + 6t - xr - S-)2f2 - DÖUCtf - x-f}1'2 

So [E?=i(tf-*r)2]1/2 
(149) 

If the criteria en > Tol is satisfied, the coincident node previously removed through con- 
densation is reintroduced.   Other approaches, such as using iterative conjugate gradient 
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methods, have been applied to satisfy buckling layer contact with linear constraints [67,68]. 
The present approach within the context of linear bifurcation buckling provides a similar 
solution in a small number of iterations. To perform an iterative contact solution for ac- 
ceptable mode shapes, user input to RESTRAN specifies the maximum number of iterations 
together with a tolerance which is a normalized measure of overall contact above which the 
compatibility is acceptable. This measure is given by 

1 
N: ip 

NT 

>Tol (150) 

where NIP is the number of interpenetrating nodes, and NT is the total number of nodes in 
the delamination set. If convergence is not obtained, the mode is assumed impossible and is 
excluded from consideration in the current analysis cycle. 

For a physically acceptable local sublaminate buckling mode, the next procedure is to de- 
termine whether the sublaminate layer undergoing buckling is along the positive or negative 
normal to the delamination plane. As shown in Figure 21, the nodes defining the element 
face and contained in the delamination node set are used to form two local vectors, Vx and 
V2, which define the local positive normal to the delamination surface as 

n = 
VixV2 

\Vi x V2| 
(151) 

Figure 21. Definition of positive normal to delamination plane. 

The buckling surface is determined by forming displacement vectors from nodes in the de- 
lamination plane to the upper and lower surfaces and computing vector norms. The surface 
which demonstrates the greatest magnitude of displacement then determines which sublam- 
inate is undergoing buckling. Figure 22 shows a depiction of an opening delamination with 
local displacement vectors at node points. 
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Figure 22. Opening mode in delamination buckling. 

The direction of opening with respect to the delamination surface normal is determined by 
computing the angle between the nodal displacement vectors and the surface normal. The 
individual angles are summed, and an average opening angle ä is computed. 

N 
a —y^ cos -i n-w, 

n   W,; 
(152) 

The direction d is thus determined as 

d 
+n   :   ä < 7T/2 

—n   :   ö > 7r/2 
(153) 

In the event of a centrally located delamination (Figure 23) wherein both surfaces are 
moving symmetrically apart, ä may be identically equal to ir/2, and the positive normal 
direction is taken by default. This will cause the proper critical applied load to be ac- 
counted, but only one of the layers will be failed. The other layer will remain and be as- 
sessed during the next analysis cycle. Again, this suggests that sequencing failures through 
sublaminate buckling compared with attempting to account for simultaneous failures will 
alter the progression of failure while maintaining an accurate estimate for failure loads. 
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Figure 23. Buckling failure in a centrally located delamination. 

As each delamination is processed, a continuous update is made keeping account of the 
delamination with the lowest predicted critical buckling load, associated mode shape, and 
direction of failure. If no other material failures are predicted at a lower load level, the 
selected critical delamination is then designated as the next failure event. Processing the 
failed delamination consists of performing a search through the sublaminate undergoing 
buckling and determining what elements are involved in the instability failure. Once de- 
termined, a selected damage law is applied to each of the elements. An additional search 
is performed to determine if any other delaminations are contained in the buckled sub- 
laminate. This is depicted in Figure 24. All delaminations involved in the current buck- 
ling failure are then removed from the node set and removed from the model by elimi- 
nating the involved coincident nodes.   An internal node renumbering is then performed. 

DELAMINATIONS INTERIOR TO 
BUCKLED SUBLAMINATE 

ELEMENTS DEGRADED DUE TO 
BUCKLING FAILURE 

Figure 24. Failure assessment of buckled sublaminate. 
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5.3    Distributed Delaminations and Simultaneous Local Buckling 

The algorithms incorporated into RESTRAN for automatically processing delamination 
buckling can be used to analyze more complicated delamination configurations. For ex- 
ample, a traversing-type delamination which progresses along several ply interfaces can be 
modeled. As shown in Figure 25, the user must initially create the model with connectivity 
removed between elements along the perpendicular segments where the delamination jumps 
between different ply interfaces. The remaining portions of the delamination can be defined 
by specifying a delamination node set. Additionally, as shown in Figure 26, delaminations 
do not have to be similarity oriented. Each independent delamination may be arbitrarily po- 
sitioned in different areas of the structural model. The only restriction is that each separate 
delamination must form a planar surface for proper interpretation of buckling motion. To 
allow the capability of analyzing general, nonplanar delamination surfaces or the simultane- 
ous buckling of multiple delaminations, RESTRAN provides user-defined subroutine options 
to interpret buckling in non-plate-type geometries. Delaminations are defined in RESTRAN 
by inputting node sets which are used to automatically generate coincident nodes to redefine 
element connectivity. Thus, any discontinuous inner surface may be simulated, and multiple 
delaminations may be considered simultaneously by including the participating nodes in the 
same delamination node set. A user-defined subroutine which is compiled and linked into 
the RESTRAN executable must then be provided to interpret the resulting mode shapes 
and assess associated element failures. 

COINCIDENT NODES 

TRAVERSING DELAMINATION 

Figure 25. Modeling traversing delaminations. 
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Figure 26. Arbitrarily oriented delaminations. 

5.4      Post-Buckled Failure Modeling 

The stability analysis incorporated into RESTRAN is linear. However, because local buckling 
is predicted during the progressive failure analysis, some approximation to post-buckled layer 
response must be applied while failure of the remaining laminate is being calculated. Towards 
this aim, after the prediction of local buckling is made, the coincident nodes defining the 
failed delamination are removed through condensation from the model, and assumptions are 
made regarding the remaining strength of the elements participating in the buckling mode. 
As depicted in Figure 27, different structures exhibit a range of post-buckled load-deflection 
response. As shown, a plate-type structure can exhibit significant further load carrying 
capability with possible transition to higher-order mode shapes with an effective reduction 
in material stiffness. To approximate post-buckled material behavior, RESTRAN permits an 
inelastic reduction in moduli to be applied. This implies a permanent reduction in properties; 
no elastic recovery of properties is assumed possible with unloading of the buckled layer. 
Several assumptions on post-buckled material behavior may be specified in RESTRAN. 
In the extreme case, moduli may be set to zero to remove any load carrying capability 
in the buckled layer and thus redistribute the applied loads to the remaining structure. 
An alternative assumption is that the buckled layer can further absorb load - and exhibit 
possible subsequent or additional material failure modes - but at a reduced modulus. Finally, 
the intermediate assumption of carrying the constant load in the post-buckled sublaminate 
corresponding to the critical load is approximated in RESTRAN through the option of a 
scaling procedure of element stiffness coefficients. This scaling for maintaining a constant 
load in a buckled sublaminate is accurate to the degree that the resulting layer deformations 
at subsequent loading remain similar to the pattern existing at the buckling failure load. 
This may be formulated by considering the initial element-level equilibrium expressed as 

{F0} = [K]{U0} (154) 
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where {F0} are internal forces due to the initial set of external applied loads. For a linear 
structure, the equilibrium relation at a critical multiple of the initial loads can be given by 

acr{F0} = {K]acr{V0} (155) 

If the displacement field remains similar such that at a higher load scale factor on yielding a 
set of displacement {U;}, it remains true that 

{u0}« !{uj 
on 

(156) 

Then, for any applied load, a scaling of the element stiffness matrices for those elements 
involved in the buckled sublaminate given by 

ctcAFo} = 0[K]{UJ (157) 

will fix the equilibrium element forces at the level at which buckling was predicted with ß 
given by 

ß 
OLi 

Or, to allow increasing loads, ß is implemented in RESTRAN as 

(158) 

(159) 

where C\ may be varied between 0 and 1. Thus, representing post-buckled behavior in a 
linear analysis is highly approximate, and the selection of a plausible post-buckled elastic 
response is important to guarantee a conservative estimate of the overall residual strength. 

P* 

5 

FLAT PLATE 

5 

CYLINDRICAL SHELL 

Figure 27. Post-buckling load carrying capability. 
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6    Solution Algorithms 

Four different analysis procedures have been incorporated into RESTRAN. As depicted 
schematically in Figure 28, the available options are Prespass, Linear Static Analysis, Linear 
Buckling Analysis, and Residual Strength Analysis. 

MODEL INPUT AND INITIAL 
PROCESSING 

1 r                                                                   ' ' ^' ^ r 

PREPASS STATIC 
ANALYSIS 

BUCKLING 
ANALYSIS 

RESIDUAL 
STRENGTH 
ANALYSIS 

Figure 28. RESTRAN solution control options. 

6.1      Prepass 

Selecting prepass invokes assembling and checking the inputted model after which the pro- 
gram is terminated. This causes numerous tests on the finite element model to be performed 
which are written to the standard output file. The internal tests performed include checks 
on element connectivity and geometry, boundary conditions, applied point or pressure loads, 
and material property assignments. In addition, RESTRAN provides an optional feature 
which creates an output file containing graphics information to view the input model. RE- 
STRAN supports output formats for MATHEMATICA [69] or TECPLOT [70] and has the 
option for a user-defined subroutine to format graphics data as required. This feature is 
used as an additional test to check for possible modeling errors prior to performing a de- 
tailed residual strength analysis. The graphical depiction is particularly useful in complex 
geometries which may have been created using general preprocessing codes such as PATRAN 
[71], or using the node and element generation option available in RESTRAN. The flowchart 
of execution in Prepass is depicted in Figure 29. 
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PARSE INPUT FILE 

i ' 

GENERATE MODEL 

^r 

PERFORM ERROR CHECKING 

i r 

OUTPUT GRAPHICS 

i T 

TERMINATE EXECUTION 

Figure 29. Prepass flow chart. 

6.2     Static and Buckling Analysis 

The single-pass displacement and buckling solutions are made available to obtain the linear 
elastic response of the model under applied loads. Schematic flow charts of these solution 
sequences are presented in Figures 30 and 31. The displacement solution yields the basic 
deformation pattern together with optional stress and strain output at ply layers or Gauss 
points. In addition, requesting a ply failure output will cause additional computations of 
failure indices within elements. This information is used to output the minimum predicted 
scale factor to the applied loads to cause the next material failure. Within the context of 
a linear static analysis, this scale factor may be considered as a residual strength measure 
based on an overall first-ply failure prediction. The buckling solution may be used as a pre- 
liminary check on single-layer buckling response or the simultaneous instability of multiple 
delaminations as a comparison to running a residual strength analysis in which multiple 
delaminations are automatically analyzed individually. In both displacement and buckling 
solutions, graphical output may be requested that is generated in the form of an external file 
which may be directly inputted into a selected graphics program such as MATHEMATICA 
or TECPLOT to view deformed geometry or buckling mode shape. 
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ASSEMBLE GLOBAL STIFFNESS 
MATRIX AND FORCE VECTOR 
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NODE FACE 
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SOLVE FOR SYSTEM DISPLACEMENTS 
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{e}=[B]{U} 

OUTPUT {U}, {G}, AND {£} 

OUTPUT DEFORMED SHAPE GRAPHICS 

TERMINATE EXECUTION 

Figure 30. Flow chart of static analysis. 
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Figure 31. Flow chart of buckling analysis. 

52 



6.3      Residual Strength Analysis Algorithm 

In representing realistic structural geometries and support and load conditions, a viable al- 
gorithmic treatment in simulating material behavior and failure modes under increasing load 
is critical to the success of the analysis. In real structures, the progression of local failure 
modes are not independent, but tend to be coupled and occur simultaneously. A sequen- 
tial algorithm, however, to be tractable, requires that these effects be considered separately. 
The important structural behaviors simulated by RESTRAN are nonlinear material moduli, 
material ply-level failure differentiated into various modes, local instability of delaminated 
sublaminates and global buckling of the entire model, and approximate post-buckled mate- 
rial response. The primary variable is the scale factor applied to the vector of initial loads 
to determine a sequence of failure in a combined incremental and iterative fashion. The esti- 
mated scale factor for causing material failure is obtained from linear extrapolations for each 
ply using selected failure criteria. The scale factor for minimum buckling loads are obtained 
from eigenanalysis. The effects of material nonlinearity due to stress/strain relationship 
and post-buckled behavior of delaminated layers are considered separately from failure pre- 
diction. Thus, at the ith failure cycle, iterations are first performed to converge both the 
incremental displacements and the minimum positive buckling eigenvalue. At convergence, 
the load multipliers are compared, and the minimum dictates whether the next failure event 
is predicted to be a material mode or a buckling mode. For buckling failure, the element 
set involved is computed, selected post-buckled failure assumptions imposed, and the failed 
delamination is condensed out of the model. For material failure, iterations are performed at 
fixed load to update element properties due to applied damage laws, stress redistribution is 
calculated, and additional element failures are processed. Convergence is established when 
no additional element failures are predicted at the current load. A flowchart of the residual 
strength prediction algorithm is contained in Figure 32. The residual strength solution anal- 
ysis combines a number of available options. These options modify the solution algorithm to 
assess assumed modes of failure or to tailor the analysis for specialized failure/damage laws 
or complicated geometries. Table 3 shows the analysis options. 

Table 3. RESTRAN solution options. 

• Predict progressive material failures only. 
• Predict sequential buckling failures only. 
• Predict combined material and instability failures. 
• Apply standard material failure criteria. 
• Apply user-defined material failure criteria. 
• Apply standard material damage laws. 
• Apply user-defined material damage laws. 
• Access user-defined subroutine to interpret complex buckling 

modes such as simultaneous multiple delamination buckling. 
• Process nonlinear elastic material behavior. 
• Apply specific post-buckled material behavior.  
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Figure 32. Flow chart of residual strength solution algorithm. 
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7    Ultimate Failure Prediction 

The residual strength of a damaged laminated composite is obtained when catastrophic or 
ultimate failure is predicted. During execution of the solution sequence in which incremental 
failures are assessed, a running account of the maximum scale factor to the applied loads is 
maintained. A typical failure sequence may initially demonstrate low loads to cause local 
failures such as near-surface delamination buckling or material failure in an area of high 
stress concentration. Subsequent failures may involve simultaneous buckling of thick sub- 
laminate ply groups or large regions of material damage. Final failure may be precipitated 
through global buckling of remaining layers or through a catastrophic cascade of element 
material failures as loads are redistributed at each iteration. Specific checks performed in 
RESTRAN are listed in Table 4. 

Table 4. Tests for catastrophic failure. 

• Existence of 'soft' deformation or rigid body displacement modes. 
• Prediction of global or mixed-mode buckling. 
• Stiffness loss exceeding 90% due to material and structural failure. 
• Failure at nodes at which external loads have been applied. 

If the lowest load multiplier in a particular analysis cycle predicts global buckling, no fur- 
ther load-carrying capability in the post-buckled regime is assumed, and ultimate failure 
is predicted. As element material properties are degraded due to material or local buckling 
failure, possible fragmentation is assessed by testing for positive indefiniteness by performing 
an LTDL decomposition. Related to this, if the percentage of individual degrees of freedom 
with no associated stiffness exceeds 90%, ultimate failure is assumed, regardless if the re- 
maining model is unfragmented. Finally, if failure has occurred at nodal degrees of freedom 
to which external loads are applied, total failure is assumed because subsequent scalar load 
multipliers lose definition as the initial vector of applied loads has been changed. An input 
parameter is available to preclude elements associated with applied loads from exhibiting 
failure. 

8      Computer Implementation of RESTRAN 

RESTRAN is written in FORTRAN 77. In the development of the various algorithms, no 
special features dependent on specific computer platforms have been exploited to speed exe- 
cution in order to guarantee portability of the code. The finite element basis of RESTRAN 
naturally leads to the generation of large, sparse, banded matrices in representing the global 
elastic and differential stiffness properties of the complete model. Internal algorithms have 
been created to process matrix storage modes in various formats. These include full matrix 
storage for small problems, half-bandwidth storage format (default), and out-of-core storage 
for large problems that exceed internal RAM memory capacity or user stacksize limits and 
require most data storage to be placed in external files. These features were incorporated as- 
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suming that not all platforms on which RESTRAN would be installed would support internal 
virtual memory swap operations. Setting the internal memory parameters and selecting the 
algorithmic path are discussed in the RESTRAN User's Manual [31]. The choice of internal 
operation is entirely dependent on execution speed, which is determined by the amount of 
data that can be held in high-speed in-core memory. Thus, the out-of-core solution mode is 
slowest due to the high I/O overhead of transfering data between core and external files. Al- 
though different algorithmic approaches are sometimes used for the different memory storage 
modes to perform various operations, excluding I/O operations, they are computationally 
competitive in terms of operation counts. 

After parsing the input file, element connectivity information is used in a modified Sloan's 
bandwidth minimization procedure [72] to obtain internal equation numbers. The band- 
width is determined as the maximum of the bandwidth resulting from considering only the 
initial input connectivity and from that determined by considering the coincident nodes due 
to all input delamination planes. These operations are performed in a preface section of 
the RESTRAN code which liberally allocates memory to various arrays used in input file 
processing. After basic model characteristics are determined, such as the number of degrees 
of freedom, nodes, elements, and connectivity as represented by the bandwidth, the internal 
memory is reconfigured such that array dimensions are streamlined to the required job size. 

The global elastic and differential stiffness matrices are formed using a direct assembly 
approach. For in-core operation, the entire global stiffness matrix is accumulated before 
being written out to disk. In an out-of-core operational mode, blocks of eight rows of the 
global stiffness matrix are read in and element contributions are added based on the internal 
equation numbering of element degrees of freedom (DOF). This block is then written to an 
external file and the process repeated until all stiffnesses have been assembled. 

During execution, degrees of freedom are removed from the active analysis set through 
applied zero displacement boundary conditions, failed DOF's at which material failure has 
reduced the stiffness to zero, and eliminated DOF's associated with coincident nodes removed 
when failed delaminations are removed from the model. The condensation procedure utilizes 
a direct row/column elimination on the global matrices. Disk space utilization requires that 
in addition to the elastic and differential stiffness terms stored externally, decompositon and 
reduction of these data blocks are written to separate files. This leads to the requirement 
that four global matrices need to be stored externally in scratch files; thus, care must be 
given to configuring an adequate size of the disk partition in which RESTRAN is to be 
executed. Internally, as soon as a matrix is no longer needed, the external file in which it is 
resident is closed to free up disk space. 

The solution for displacements is obtained using different equation solvers depending on 
storage mode. For full matrix storage a Gaussian elimation scheme with full pivoting is em- 
ployed. For band storage, the sparse symmetric banded solver routines DPBCO and DPBSL, 
available from the LINPACK [73] linear algebra library, are used. The solution is based on 
a Cholesky decomposition followed by a back substitution using the triangular Cholesky 
factor.   A variation of this algorithm is used for out-of-core solution and is implemented 
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in RESTRAN based on the program SESOL presented by Wilson et al. [74]. This solver 
calculates the maximum equation block size that can be held in core. Upon completing the 
decomposition of each block, the solution vector is formed by sequentially accessing each 
block contained on direct storage. The minimum memory requirements of this routine is for 
at least two equations being held in memory per equation block. The number of blocks is 
dictated by the amount of high-speed RAM memory available. 

Eigenanalysis using full and band storage modes can be performed using a subspace it- 
eration method detailed in section 2.4. The current implementation uses the implicitly 
restarted Arnoldi iteration method for band and out-of-core storage modes. A robust im- 
plementation of this method is contained in the routines DSAUPD and DSEUPD available 
in the ARPACK distribution [75]. In turn, these routines are dependent on basic operations 
and algorithms provided by the BLAS and LAPACK libraries [76,77]. As implemented in 
RESTRAN, minimum memory requirements are approximately 12 x Nj, where Nr is the 
order of the eigenproblem. In forming iteration vectors, (/>, it is required to repeatedly solve 
a linear system of the form 

{0} = [K-A[Ka]]-1{KV} (160) 

where V is an iteration vector. This is accomplished using an appropriate solver discussed 
above and constitutes the major computational expense in performing the eigenanalysis. 

A single large working array is used in RESTRAN to perform computations. Total memory 
requirements for in-core storage modes are essentially dictated by the size of this array. In 
a full matrix storage mode used for small problems, core memory is essentially ND x ND 

double precision words, where ND is greater or equal to the number of input DOF. For band 
storage, in-core memory is on the order of ND x MB, where MB is the half bandwidth of 
the global matrix. Finally, using the out-of-core algorithm reduces the size of the working 
array such that the collective size of the numerous other small arrays used in RESTRAN 
become dominant in setting the program memory size. In the current program release, this 
requirement is approximately equal to 21 x Np. 

9      Numerical Studies 

An initial set of benchmark problems were solved to assess the accuracy and convergence 
properties of the hexahedral element incorporated into RESTRAN, and to suggest a degree 
of discretization required to adequately simulate local laminate behavior. Of particular in- 
terest is in quantifying the effect of the incompatible modes incorporated into the Pian-Tong 
element in accurately supporting bending behavior within a three-dimensional continuum 
element formulation. The Pian-Tong element is well known to be insensitive to geomet- 
ric distortion and has a superior accuracy over displacement-based elements in predicting 
stresses. These features yield an ideal element for modeling three-dimensional stress states 
for local failure prediction, and thereby yield accurate differential stiffnesses which are evi- 
denced by the rapid convergence of buckling load predictions. A first illustration of the basic 
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element performance is the prediction of Euler column buckling loads. Three models shown 
in Figure 33 were selected using 3, 5, and 10 elements, repectively. The column dimensions 
are 10 x 1 x 1, and material properties are given by E = 1.0E9 and v = 0.3. The results 
presented in Table 5 show a rapid convergence to the exact solution. 

Figure 33. Models for Euler column buckling load determination. 

Table 5. Convergence of column buckling loads. 

Model A % error 
3-Element 
5-Element 
10-Element 

2187.00 
2099.67 
2060.65 

6.363 
2.126 
0.218 

Exact 2056.17 

The modeling of plates using three-dimensional solid elements has been demonstrated to 
generate accurate results with large element aspect ratios while representing full three- 
dimensional elasticity [78-81]. To illustrate the capability of the current three-dimensional 
continuum element to predict plate-like behavior, a simply supported square plate was se- 
lected with dimensions 10 x 10 x 0.1 and isotropic material properties given by 

E = 1.0000£9 
G = 0.3846£9 
v   =   0.3 

(161) 
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This plate was analyzed statically to determine maximum deflections due to a uniform ap- 
plied surface pressure, and instability was analyzed by considering the plate subjected to 
end-loading in compression and determining the fundamental buckling load. The geometry 
and loading conditions are depicted in Figure 34. The convergence of the solution with in- 
creasing discretization is presented in Table 6. 

NORMAL PRESSURE 
LOADING 

Po 

INPLANE LOADING 

Figure 34. Geometry and loading of a flat plate. 

Table 6. Convergence study for an isotropic plate model. 

Model* Wmaxi A 
2x2^ 
4x4ftt 

4x4sb 

8 x8s6 

-.0003707 
-.0004391 
-.0004431 
-.0004441 

5.0569E4 
3.8996E4 
3.6791E4 
3.6252E4 

Exact -.0004443 3.6152E4 
0 A full plate was used in generating results. 

A symmetric quarter plate was used in generating results. 

To assess the effect of aspect ratio in the solution for plate deflections, the isotropic plate 
used above was analyzed with different thickness ratios. The solutions are presented in Ta- 
ble 7 and are compared with the exact solution for a thin plate in plane stress given by 
Timoshenko and Woinowsy-Krieger [82] by 

Wr, = 4.433 x 10" 
-l 

(162) 
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Table 7. Effect of element aspect ratio. 

a/h Wuax/WcPT 
10 1.1293 
100 1.0017 
1000 1.0000 
10000 0.9194 
100000 0.0035 

In comparison with a classical plate solution (CPT), an element aspect ratio of 10 - which 
is considered in the regime of thick plates - shows an increased flexibility attributed to 
transverse normal and shear deformation effects. In the thin plate regime where a/h > 100, 
the maximum deflections are shown to agree with the classical solution for several reduced 
orders of magnitude in plate thickness. Above a/h = 104, the solution deteriorates due to 
locking which is clearly evident at a/h = 105. Thus, with the present use of the Pian-Tong 
hexahedral, most expected layer aspect ratios can be accurately simulated. 

In modeling composite laminates, as the number of plies being modeled in a single layer 
increases, the effects of membrane-bending and twisting coupling diminish [42]. As these 
coupling phenomena vanish, the behavior of the ply group tends towards the behavior of 
a single equivalent homogenous specially orthotropic layer. To demonstrate convergence, a 
highly orthotropic layer with properties listed below is analyzed. 

Ex     =    40.0E6 
G23    =    5.0E5 
^23     =    0.25 

E2 

^13 

= 1.0E6 
= 2.0E5 
=    0.25 

G\2 
V\1 

=    1.E6 
=    5.0E5 
=    0.25 

Plate dimensions were selected as 10 x 10 x 0.05, and a uniform normal pressure was applied. 
Comparison to the exact solution yields a rapidly convergent solution, as shown in Table 8. 

Table 8. Deflections of an equivalent homogeneous orthotropic plate. 

Model WMax [WExact 
2x2f 0.7911 
8x8f 0.9968 

10 x lOf 0.9981 
16 x 16f 1.0002 

To assess the behavior of the present element in the case of significant coupling between 
membrane and bending deformations, a cross ply [0/90] ply group is analyzed. The finite 
element model was composed of two layers to assign the different ply properties to each 
layer.   Using the orthotropic material with a material aspect ratio of 40 and analyzing a 
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thin rectangular plate with a/b = 2 and h = 0.01 under a uniform load, Table 9 shows the 
convergence of the solution compared to a classical solution presented by Jones [42]. 

Table 9. Deflections of a cross-ply [0/90] laminate. 

Model WM ax IWExact 
2x2f 0.8220 
4x4f 0.9601 
8x8f 0.9598 

10 x lOf 0.9599 
16 x 16f 0.9604 

The results show that the three-dimensional formulation converges rapidly to a maximum 
deflection 4% less than the series solution derived utilizing two-dimensional plane stress as- 
sumptions for the maximum center deflections in a highly coupled, cross-ply [0/90] ply group. 
For multiple cross-ply or angle-ply groups modeled in a single effective layer, the combined 
ply properties exhibit diminishing coupling and behave increasingly as a homogeneous or- 
thotropic layer. 

The essential behavior of the solid continuum element incorporated into RESTRAN has 
been shown in a variety of plate configurations which have investigated solution accuracy as 
a function of element aspect ratio, material orthotropy, coupling effects, and the prediction 
of instability buckling. These results have been quantified through comparison with exact 
solutions. 

The following illustration in modeling composite sublaminates is presented without com- 
parison to any known exact solution. A rectangular laminated plate with a central el- 
liptical delamination is selected to demonstrate convergence and contact constraints in a 
more complicated case of instability. All models were generated using the RESTRAN 
*MODEL GENERATION feature with the parameter NDIV used to determine the level 
of discretization. The laminate contains 96 plies of nominal thickness 0.0052 in with a 
near surface delamination between the eighth and ninth plies. The layup is given by 
[±45/06||(±45)5/9012/(±45)5/06/± 45/(±45/06/(±45)5/906)5], where || indicates the lo- 
cation of the delamination. The plate dimensions are 15 in x 15 in x 0.4992 in, and the 
elliptical delamination is centrally located with semimajor axis given by a = 10.0 in and 
semiminor axis by b = 7.5 in. Undamaged ply properties are given by 

Ex     =    181.0E9    E2 

G23    =    7.17E9      G13 

l/23      =    0.28 u13 

10.3E9    E3     =    10.3E9 
1.0E9      Gl2    =    1.0E9 
0.28        u12     =    0.28 

Reduced, isotropic properties were assigned to the elements above the delamination to sim- 
ulate impact damage. These properties are given by 
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E = 1.0E9       G = 3.846E8       v = 0.3 

The entire plate model is shown in Figure 35. 

Figure 35. Laminated plate with elliptical delamination. 

The full model is reduced to a half model by assuming that the buckling modes will have the 
x-axis as a plane of symmetry. The tolerance for assessing relative motion of the opposing 
delamination surfaces was set to zero. Figure 36 shows the convergence of the unconstrained 
and constrained buckling modes and the associated eigenvalues. 

Buckling Mode 

Figure 36(a). NDIV = 4. No constraints applied. A = 2.0525E5. 

62 



Figure 36(b). NDIV = 4. Compatibilty constraints enforced. A = 3.1637£5. 

Figure 36(c). NDIV = 8. No constraints applied. A = 1.4667E5. 

Figure 36(d). NDIV = 8. Compatibility constraints enforced. A = 2.1523E5. 
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Figure 36(e). NDIV = 12. No constraints enforced. A = 1.3864E5. 

Figure 36(f). NDIV = 12. Compatibiity constraints enforced. A = 1.9803Ü75. 

Figure 36(g). NDIV = 16. No constraints applied. A = 1.3956£5. 
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Figure 36(h). NDIV = 16. Compatibility constraints applied. A = 2.0527E5. 

The eigenvalues show a rapid convergence and are tabulated in Table 10. In a linear analysis, 
the mode shapes are of arbitrary sign and magnitude and can, thus, alternate between equiv- 
alent configurations. The minimum energy state corresponding to the fundamental buckling 
mode is a function of geometry, loading, and material properties. For plate geometries, the 
buckling mode can be described by the number of half waves lengths exhibited by the mode 
shape along each inplane coordinate, (n,m). Depending on the value of the independent 
plate variables, different modal buckling patterns can be elicited. In a finite element analy- 
sis the degree of discretization becomes a variable in resolving the mode shape, and in the 
example, for the first three levels of model refinement, the mode shapes demonstrate a (2,1) 
pattern. At the highest level of discretization however, a mode crossover is seen in Figure 
36(g), where the mode shape changes from a (2,1) to a (3,1) pattern at essentially the same 
critical load as that determined in the model shown in Figure 36(e). 

Table 10. Convergence of unconstrained and constrained critical buckling loads. 

NDIV Unconstrained Constrained 
4 2.0525E+5 3.1637E+5 
8 1.4667E+5 2.1523E+5 
12 1.3864E+5 1.9803E+5 
16 1.3956E+5 2.0527E+5 

The above set of standard deformation and buckling problems demonstrate an accurate 
simulation of plate-like bending and instability behavior using the incorporated hexahedral 
element while calculating three-dimensional stress states for material failure to be predicted 
using the same model. 
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10    Practical Analysis of Residual Strength 

Because of the complex state of internal damage in impacted composites, the practical ap- 
plication of any residual strength predictive methodology requires a simplified definition of 
the type of damage and its spatial distribution. This definition is required to analyze ex- 
isting structures exposed to impact and new design concepts with assumed internal damage 
states. The accuracy in predicting residual strength is entirely dependent on the accuracy in 
which internal damage can be resolved. For in-service structural components, a depot-level 
inspection must be capable of discerning interal damage accurately enough to safely assess 
repair/no-repair options for continued service applications. For design, specific characteri- 
zations of maximum sustained impact damage need to be developed to assess survivability 
and damage tolerance of structures to expected impact threats. 

10.1    Damage Characterization 

For a given impact event, the extent of impact damage can be determined from a simulation of 
the impact event based on first principles in elastodynamics, nonlinear material constitutive 
relations, and contact dynamics. A basic measure is the amount of energy absorbed due to 
impact. This may be expressed as 

U = v.ftm + 9ftFt*-±(£F*)' (163) 

where v0 is the velocity of the impactor, M is the mass of the impactor, F is the impact 
force, g is the acceleration due to gravity, and t is the time duration of the impact event. In 
turn, this energy can be differentiated into components, UE and UD, where UE is the energy 
converted into elastic deformation of the specimen, and UD is the component of energy 
absorbed in irreversible daqmage causing mechanisms. Assuming basic damage modes in 
composite materials, the damage energy may be further decomposed as 

UD = UM + UF + UC (164) 

where UM is the energy absorbed in matrix cracking, UF is the energy consumed in figer 
breakage, and Uc is the energy required to cause the creation of fracture surfaces in the 
form of interlaminar delaminations and transverse cracks. The apportioning of energy to 
each damage mode must be assumed, measured, or calculated to analytically predict the 
three-dimensional spatial distribution of damage [63]. 

The increasing development and application of health monitoring technologies such as em- 
bedded fiber optic sensors will permit an increasingly accurate characterization of internal 
damage states due to sustained impacts. Continued improvements in established nonde- 
structive evaluation methods such as acoustics/ultrasonics [83-89], thermography [90,91], 
and computed tomography [92-95] are providing increasingly accurate resolutions of internal 
damage states and the ability to distinguish different damage modes. 
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The increasing ability to characterize internal damage states in existing composite struc- 
tures exposed to impact will better define damage tolerant design objectives and provide 
more accurate initial damage conditions for input to analytical methodologies such as RE- 
STRAN for predicting residual strength. 

10.2      Demonstration Problem 

To illustrate the execution of the RESTRAN analysis program, a model of an elastically 
supported laminated composite face plate is analyzed. Due to the lack of data of sufficient 
resolution regarding the spatial distribution of specific internal damage modes and subse- 
quent experimental determination of residual strength, a specific state of internal damage is 
assumed for the following example. The geometry and applied loading is shown in Figure 
37. 

38 Lb / in 

76 Lb / in 76 Lb / in 

38 Lb / in 

R = 3.25 

Figure 37. Geometry and loading of an elastically supported composite plate. 

Material properties were selected as S2-Glass/3501 Epoxy tape with a nominal ply thickness 
of 0.0052 in. The material elastic properties are given by 

Ei     =    7.150E6Psi E2 

G23    =    0.71E6Psi da 
u23     =    0.499 un 

with strengths given by 

2.13E6Psi E3 = 2.13E6Psi 
0.98E6Psi Gn = 0.98E6Psi 
0.306 i/i2     =    0.296 

XTen = 2.43E5Psi Xcomp = 1.77E5 Psi YTen = 7.0E3 Psi 
Ycomp = 3.06E4Psi ZTen = 7.03E3 Psi ZComP = 3.5E4 Psi 
R =    1.7E4 Psi     S =    1.57E4 Psi    T =    1.57E4 Psi 
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The face plate is composed of 96 plies and is assumed to have been subjected to a normal 
impact leading to an inner circular region where two delaminations exist located eight plies 
or 0.0416 in from the outer and inner laminate surface. Furthermore, the material proper- 
ties of these outer two layers are assumed to have experienced fiber damage such that the 
longitudinal modulus has been reduced to the matrix-dominated properties of the transverse 
moduli. The layup and location of these delaminations, indicated by '||' in the layup descrip- 
tion, is given by [±45/06 || ±455/906±455/06±452/08/T452/06=F455/906/T455 || 06/T45]. 

A residual strength analysis is performed, which is selected to evaluate both delamination 
instability and material failure. For this example, the maximum stress failure criteria is used 
with a nonspecific damage law that assigns zero modulus to plies experiencing failure with- 
out regard to failure mode. Abbreviated input and output files are shown in the following 
subsections, followed by a graphical presentation of the progression of failure. 

10.2.1    Input Data File for a Residual Strength Problem 

♦HEADING 
MODEL OF AN ELASTICALLY SUPPORTED COMPOSITE PLATE 

** 
** [45/-45/0_6||(45/-45)_5/90_6/(45/-45)_5/0_6/(45/-45)_2/0_8/ 

** (-45/45)_2/0_6/(-45/45)_5/90_6/(-45/45)_5||0_6/-45/45] 

♦ ♦ 

**        LAYUP TAPE THICKNESS = 0.0052" 
** 

♦ ♦    TWO INTERIOR DELAMINATIONS MODELLED AT 
**    LAYER INTERFACES 2|3 AND 3|4 
** 

♦SOLUTION, METH = CMB 
6,15,1.05 

♦♦ECHO 
♦♦PREPASS 
♦♦NODE PRINT 
** D,M 

*PLY FAILURE PRINT 

♦parameter directory = current 
♦parameter lapfail 
♦parameter status 
♦MEMORY ALLOCATION 
BAND 

♦GRAPHICS, format = mathematica 
2, 2, 1.0 

*♦ 

♦♦  NODE DEFINITIONS 
♦ ♦ 

♦NODE 
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** TOP FRONT COMPONENT 

1 5.0      -10.0 

2 5.8      -10.0 

3 6.3     -10.0 

10.0 

10.0 

10.0 

3511  9.3375 10.0 -5.9189 

3512  9.4375 10.0 -5.9189 

3513  9.5 10.0 -5.9189 
** 

** BOTTOM, FRONT COMPONENT 
** 

3601  5.0 -10.0 -10.0 

3602  5.8 -10.0 -10.0 

3603  6.3 -10.0 -10.0 

4711 

4712 

4713 
** 

** 
** 

** 

** 
** 

** 

** 

** 
** 

** 

** 

** 

** 

** 

** 

** 

** 
** 

** 

*N0DE 

5001 

5002 

5003 

9.3375 

9.4375 

9.5 

-8.6396 

-8.6396 

-8.6396 

-5.9189 

-5.9189 

-5.9189 

NODES, ELEMENTS, AND NODE SETS FOR DELAMINATED VERTICAL 

COMPONENT OBTAINED FROM THE FOLLOWING *MODEL GENERATION 

STATEMENT: 

♦MODEL GENERATION 
8,4,10.0,10.0,4,4,4,4 

2.0,1,1,1,1,1 

0.0, 0.0, 1.0 

0.0, 1.0, 0.0 

1.0, 0.0, 0.0 

1.0,10.0 

1,5,250,5000,5000 

0.95,9.875 

2,6,255,7000,7000 

0.85,9.625 

3,7,265,11000,11000 

0.8,9.50 

4,8,270,13000,13000 

0.1000000E+02 

0.1000000E+02 

0.1000000E+02 

O.OOOOOOOE+OO 

0.3750000E+00 

0.3750000E+00 

O.OOOOOOOE+OO 

O.OOOOOOOE+OO 

0.3750000E+00 
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13519 0.9500000E+01  0.lOOOOOOE+02 
13520 0.9500000E+01  0.1000000E+02 
13521 0.9500000E+01  0.1000000E+02 

** 

**  DEFINE GENERATOR ELEMENTS 
** 
♦ELEMENT, LAYUP = 7, eiset = 300 
** 

** top front elastic support 
** 

0.7279306E+01 
0.8639653E+01 
0.1000000E+02 

1, 401, 402, 902, 901, 1, 2, 102, 101 
101, 501, 502, 802, 801, 401, 402, 902, 901 
201, 601, 602, 702, 701, 501, 502, 802, 801 
301, 901, 902, 1002, 1001, 101, 102, 202, 201 
401, 1001, 1002, 1102, 1101, 201, 202, 302, 301 

** top back elastic support 

501, 1601, 1602, 1702, 1701, 1201, 1202, 1302, 1301 
601, 1701, 1702, 1802, 1801, 1301, 1302, 1402, 1401 
701, 1801, 1802, 1902, 1901, 1401, 1402, 1502, 1501 
801, 2001, 2002, 2102, 2101, 1801, 1802, 1902, 1901 
901, 2201, 2202, 2302, 2301, 2001, 2002, 2102, 2101 

** 
** bottom front elastic support 
** 

3601, 3602, 3702, 3701, 4001, 4002, 4102, 4101 
4001, 4002, 4102, 4101, 4401, 4402, 4502, 4501 
4401, 4402, 4502, 4501, 4601, 4602, 4702, 4701 
3701, 3702, 3802, 3801, 4101, 4102, 4202, 4201 

1001, 
1101, 
1201, 
1301, 
1401, 3801, 3802, 3902, 3901, 4201, 4202, 4302, 4301 
** 

** bottom back elastic support 
** 
1501,  2401,  2402, 2502, 2501, 2801, 2802, 2902, 2901 

2502, 2602, 2601, 2901, 2902, 3002, 3001 
2602, 2702, 2701, 3001, 3002, 3102, 3101 

1801,  3001, 3002, 3102, 3101, 3201, 3202, 3302, 3301 
1901,  3201,  3202, 3302, 3301, 3401, 3402, 3502, 3501 

1601,  2501, 
1701,  2601, 

** ELEMENT GENERATION FOR ELASTIC SUPPORTS 

*ELGEN, ELID = 300 
±j    ±Z , 1   y   1   J y    y    y    J  J 

101, 12,1,1,,,,,, 
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201, 12,1,1,,,,,, 

1701, 12,1,1,,,,,, 
1801, 12,1,1,,,,,, 
1901, 12,1,1,,,,,, 
** 

** CREATE NODE SETS FOR EQUIVALENCING 
** 

*NSET, NSID = 10 
13,  113,  213,  313,  413,  913,  1013, 1113 

513,  813,  613,  713 
*NSET, NSID = 20 
13300, 13319, 13338, 13357, 13299, 13318, 13337, 13356 
13298, 13317, 13297, 13316 
*NSET, NSID = 30 
1213,  1313,  1413, 1513,  1613,  1713,  1813, 1913 
2013, 2113,  2213, 2313 

*NSET, NSID = 40 
13464, 13483, 13502, 13521, 13463, 13482, 13501, 13520 
13500, 13519, 13499, 13518 
*NSET, NSID = 50 
4613, 4713, 4413, 4513, 4013, 4113, 4213, 4313 
3613, 3713, 3813, 3913 

*NSET, NSID = 60 
13285, 13304, 13284, 13303, 13283, 13302, 13321, 13340 
13282, 13301, 13320, 13339 
*NSET, NSID = 70 
3413, 3513,  3213, 3313, 2813, 2913, 3013, 3113 
2413, 2513,  2613, 2713 

*NSET, NSID = 80 
13487, 13506, 13486, 13505, 13447, 13466, 13485, 13504 
13446, 13465, 13484, 13503 
** 

** EQUIVALENCE NODE SETS 
** 
♦EQUIVALENCE 
10, 20 
30, 40 
50, 60 
70, 80 

** 
** ELEMENTS IN VERTICAL COMPONENT FROM PRIOR *MODEL GENERATION RUN 
** 

♦ELEMENT, LAYUP =        1 ORIENTATION =        1 
5001   7001   7004   7003   7002   5001   5004   5003   5002 
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5002 7006 7005 7004 7001 5006 5005 5004 5001 
5003 7007 7006 7001 7008 5007 5006 5001 5008 

5126 7111 7112 
5127 7112 7113 
5128 7113 7082 

♦ELEMENT, LAYUP = 
5129 7114 7115 
5130 7115 7116 
5131 7116 7117 

7144 7143 5111 
7145 7144 5112 
7114 7145 5113 
4 ORIENTATION = 
7147 7146 5114 
7148 7147 5115 
7149 7148 5116 

5112 5144 5143 
5113 5145 5144 
5082 
1 

5115 

5114 5145 

5147 5146 
5116 5148 5147 
5117 5149 5148 

5482 7499 7500 
5483 7500 7501 
5484 7501 7502 

♦ELEMENT, LAYUP = 
7001 11001 11004 
7002 11006 11005 
7003 11007 11006 

7519 7518 5499 
7520 7519 5500 
7521 7520 5501 
2 ORIENTATION = 
11003 11002 7001 
11004 11001 7006 
11001 11008 7007 

5500 5519 5518 
5501 5520 5519 
5502 
1 

7004 

5521 5520 

7003 7002 
7005 7004 7001 
7006 7001 7008 

7126 11111 11112 
7127 11112 11113 
7128 11113 11082 

♦ELEMENT, LAYUP = 
7129 11114 11115 
7130 11115 11116 
7131 11116 11117 

11144 11143 7111 
11145 11144 7112 
11114 11145 7113 
5 ORIENTATION = 

11147 11146 7114 
11148 11147 7115 
11149 11148 7116 

7112 7144 7143 
7113 7145 7144 
7082 
1 

7115 

7114 7145 

7147 7146 
7116 7148 7147 
7117 7149 7148 

7482 11499  11500  11519  11518 7499 
7483 11500  11501 
7484 11501  11502 

♦ELEMENT, LAYUP = 
11001 13001  13004 
11002 13006  13005 
11003 13007  13006 

11520 11519   7500 
11521 11520   7501 
3 ORIENTATION = 
13003 13002  11001 
13004 13001  11006 
13001  13008  11007 

7500 7519 7518 
7501 7520 7519 
7502 
1 

11004 

7521 7520 

11003 11002 
11005 11004 11001 
11006 11001 11008 

11126 13111 13112 13144 13143 11111 11112 11144 11143 
11127 13112 13113 13145 13144 11112 11113 11145 11144 
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11128 13113 13082 
♦ELEMENT, LAYUP = 

11129 13114 13115 
11130 13115 13116 
11131 13116 13117 

13114  13145  11113 
6 ORIENTATION = 
13147 13146  11114 
13148 13147  11115 
13149 13148  11116 

11082 
1 

11115 

11114 11145 

11147 11146 
11116 11148 11147 
11117 11149 11148 

11482  13499  13500  13519  13518 11499 11500 11519 11518 

11483  13500  13501  13520  13519 11500 11501 11520 11519 

11484  13501  13502  13521  13520 11501 11502 11521 11520 
♦♦ 

♦♦ RELAX TOLERANCE OF DEFORMED GEOMETRY CHECKS 
*♦ 

♦DEFORMED GEOMETRY 
20.0 
♦♦ 

** LAMINATE DESCRIPTION 
♦ ♦ 

♦LAYER, LAYUP = 1 
3, 0.0052, 45.0 
3, 0.0052, -45.0 
3, 0.0312, 0.0 

♦LAYER, LAYUP = 2 
1, 0.0260, 45.0 
1, 0.0260, -45.0 
1, 0.0312, 90.0 
1, 0.0260, 45.0 
1, 0.0260, -45.0 
1, 0.0312, 0.0 
1, 0.0104, -45.0 
1, 0.0104, 45.0 
1, 0.0416, 0.0 
1, 0.0104, -45.0 
1, 0.0104, 45.0 
1, 0.0312, 0.0 
1, 0.0260, -45.0 
1, 0.0260, 45.0 
1, 0.0312, 90.0 
1, 0.0260, -45.0 
1, 0.0260, 45.0 

♦LAYER, LAYUP=3 
3, 0.0312, 0.0 
3, 0.0052, -45.0 
3, 0.0052, 45.0 

♦LAYER, LAYUP = 4 
1, 0.0052, 45.0 
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1, 0.0052, -45.0 

1, 0.0312, 0.0 

*LAYER, LAYUP = 5 

1, 0.0260,  45.0 

1, 0.0260, -45.0 

1, 0.0312,  90.0 

1, 0.0260, 45.0 

1, 0.0260, -45.0 

1, 0.0312,  0.0 

1, 0.0104, -45.0 

1, 0.0104, 45.0 

1, 0.0416,  0.0 

1, 0.0104, -45.0 

1, 0.0104, 45.0 

1, 0.0312,  0.0 

1, 0.0260, -45.0 

1, 0.0260,  45.0 

1, 0.0312,  90.0 

1, 0.0260, -45.0 

1, 0.0260, 45.0 

*LAYER, LAYUP=6 

1, 0.0312,  0.0 

1, 0.0052, -45.0 

1, 0.0052, 45.0 

♦LAYER, LAYUP = 7 
2, 1.0, 0.0 

** 
♦ ♦      MATERIAL DEFINITIONS 
*♦ 

** COMPOSITE PLY PROPERTIES   (S2-GLASS/3501 EPOXY) 
♦ ♦ 

♦MATERIAL, MATID = 1 

7.150E6, 2.13E6, 2.13E6, 0.98E6, 0.71E6, 0.98E6 

0.306, 0.499, 0.296 

♦FAILURE CRITERIA, FCID = 1 

MAX-STRESS 

2.43E5, 1.77E5, 7.0E3, 3.06E4, 7.0E3, 3.5E4 

1.7E4, 1.57E4, 1.57E4 

♦DAMAGE LAW, DLID = 1 

NULL 
♦ ♦ 

♦♦ REDUCED PROPERTIES WITHIN INNER REGION 
*♦ 

♦MATERIAL,  MATID = 3 
2.13E6,   2.13E6,  2.13E6,  8.15E5,   8.15E5,  8.15E5 
0.306,   0.306,   0.306 

♦FAILURE CRITERIA,  FCID = 3 
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MAX-STRESS 
2.43E5, 1.77E5, 7.0E3, 3.06E4, 7.0E3, 3.5E4 
1.7E4, 1.57E4, 1.57E4 

♦DAMAGE LAW, DLID = 3 
NULL 

** 

** METALLIC PROPERTIES 
** 

♦MATERIAL, MATID = 2 
1.0E8, 1.0E8, 1.0E8, 0.3846E8, 0.3846E8, 0.3846E8 
0.3, 0.3, 0.3 

♦FAILURE CRITERIA, FCID = 2 
MAX-STRESS 
5.3E5, 2.2E6, 5.3E5, 2.2E6, 5.3E5, 2.2E6 
4.8E5, 4.8E5, 4.8E5 

♦DAMAGE LAW, DLID = 2 
NULL 

** 

♦♦ ESTABLISH LOCAL COORDINATE SYSTEM 
** 

♦ORIENTATION 
1, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 

** 

♦♦ NODE SET DEFINITION FOR BOUNDARY CONSTRAINT INPUT 
** 

♦NSET, NSID =100 
1,  101,  201, 301, 401,  501, 601, 701, 801 

901, 1001, 1101 
♦NSET, NSID =110 
1201, 1301, 1401, 1501, 1601, 1701, 1801, 1901, 2001 
2101, 2201, 2301 

♦NSET, NSID = 120 
2401, 2501, 2601, 2701, 2801, 2901, 3001, 3101, 3201 
3301, 3401, 3501 

♦NSET, NSID = 130 
3601, 3701, 3801, 3901, 4001, 4101, 4201, 4301, 4401 
4501, 4601, 4701 

♦BOUNDARY2 
100, 1, 1 
110, 1, 2 
120, 1, 3 
130, 1, 3 

** 
♦♦ INPUT NODE SETS USED TO DEFINE DELAMINATION PLANES 
** 
♦NSET, NSID =    955 

7001   7002   7003   ...   7143   7144  7145 
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*NSET, NSID =     960 

11001  11002  11003  ...  11143  11144 11145 
** 

**  INPUT DELAMINATIONS AS SPECIFIED NODE SETS 
** 

*DELAMINATION 

955 960 
** 

** EXCLUDE ELEMENTS COMPRISING ELASTIC SUPPORTS 

** FROM FAILURE PREDICTION 
** 

♦EXCLUDE ELEMENT 
300 

** 

** biaxial y-z plane loading 
** 

*CLOAD 
** 

** normal z-direction loads 
** 

5300, 3, -.1000000E+02 

5319, 3, -.1000000E+02 

5338, 3, -.1000000E+02 

13465, 3, 0.1000000E+02 

13484, 3, 0.1000000E+02 

13503, 3, 0.1000000E+02 
** 

** transverse y-direction loads 
** 

5282, 2, 0.2000000E+02 

5283, 2, 0.2000000E+02 

5284, 2, 0.2000000E+02 

13519, 2, -.2000000E+02 
13520, 2, -.2000000E+02 

13521, 2, -.2000000E+02 

*ENDDATA 
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10.2.2    Output Data File for a Residual Strength Problem 

U.S.  ARMY RESEARCH LABORATORY 

R E S T R A N 

RESIDUAL STRENGTH ANALYSIS OF IMPACT 

DAMAGED COMPOSITE LAMINATES 

VERSION 1.0 

*** MESSAGE: ELEMENT NODE ORDER IS BEING CONVERTED TO RESTRAN FORMAT 

*** WARNING: MATERIAL ID     1 HAS A MIXED MODE FAILURE CRITERIA 

ASSOCIATED WITH A SINGLE MODE DAMAGE LAW (NULL). 

NULL ACCEPTED 

*** WARNING: MATERIAL ID     3 HAS A MIXED MODE FAILURE CRITERIA 

ASSOCIATED WITH A SINGLE MODE DAMAGE LAW (NULL). 

NULL ACCEPTED 

*** WARNING: MATERIAL ID     2 HAS A MIXED MODE FAILURE CRITERIA 

ASSOCIATED WITH A SINGLE MODE DAMAGE LAW (NULL). 

NULL ACCEPTED 

###################################### 

### ### 
### MODEL DEFINITION ### 

### ### 
###################################### 

FORCE/MOMENT RESULTANTS AT ORIGIN: 

|R| = 0.400E+02   IMI = 0.456E+03 

Rx = O.OOOE+00 Ry = O.OOOE+00 Rz.= -.400E+02 

Mx = 0.237E+03 My = -.390E+03 Mz = O.OOOE+00 
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Xo = 0.975E+01 Yo = 0.592E+01 Zo = 0.000E+00 

***END OF MODEL DEFINITION*** 

MODEL SIZE PARAMETERS 

NUMBER OF ELEMENTS = 1692 
NUMBER OF NODES   = 2950 
DEGREES OF FREEDOM = 8850 
SYSTEM BANDWIDTH  = 2892 

############################################### 

## ## 

## BEGIN FAILURE ANALYSIS ## 
## ## 
############################################### 

00    PRIMARY ANALYSIS CYCLE. PASS NUMBER 

<« ANALYZING DELAMINATION SET:    1  >» 
.<« CONTACT ITERATION NUMBER:      1 >» 

CONVERGED EIGENVALUES: 

NUMBER    LAMBDA 

1 0.1825575E+02 
2 0.1482253E+02 
3 0.1040733E+02 
4 0.6461659E+01 

DELAMINATION   1 AT ITERATION   1 IS EXHIBITING 
A CONTACT COMPATIBILITY OF 100.00 PERCENT 

<« ANALYZING DELAMINATION SET:    2 >» 
<« CONTACT ITERATION NUMBER:      1 >» 

CONVERGED EIGENVALUES: 

NUMBER    LAMBDA 
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1 0.1826281E+02 

2 0.1488730E+02 

3 0.1037982E+02 

4 0.6463456E+01 

DELAMINATION   2 AT ITERATION   1 IS EXHIBITING 

A CONTACT COMPATIBILITY OF 100.00 PERCENT 

************************************************* 

** ** 

** ALGORITHMIC PATH FOR MINIMUM LOAD INCREMENT ** 

** TO NEXT FAILURE: DELAMINATION INSTABILITY ** 
** ** 

**        MATERIAL       BUCKLING        ** 
**                      ** 

** SCALE: 0.540E+02 0.646E+01 ** 
** ** 
************************************************* 

******************************************* 

** ** 

** SUBLAMINATE BUCKLING FAILURE ANALYSIS ** 
** ** 
******************************************* 

* DELAMINATION DEFINED BY NODE SET  955 

IS PREDICTED TO BUCKLE AT AN APPLIED 

LOAD FACTOR OF 0.646E+01 

* FAILURE IS PREDICTED TO INCLUDE ALL ELEMENTS ALONG 

POSITIVE NORMAL TO THE DELAMINATION PLANE. 

* THE FOLLOWING ELEMENTS HAVE BEEN DEGRADED 

OR FAILED VIA LOCAL SUBLAMINATE BUCKLING: 

5001   5002   5003   5004   ...  5157   5158   5159  5160 

* LOCAL SUBLAMINATE BUCKLING IS PREDICTED. 

ELEMENT PLY FAILURE STATUS AT CYCLE NO   1 

ELEMENT PLY FAILURE MODES: 

ID '/.FIBER '/.MATRIX  '/.BUCKLING '/.TOTAL 

5001 0 0 100 100 

5002 0 0 100 100 

5003 0 0 100 100 
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5158 0 0 49 49 
5159 0 0 49 49 
5160 0 0 49 49 

* THE FOLLOWING DELAMINATION NODE SET(S) WILL 
BE REMOVED DUE TO BUCKLING FAILURE: 

955 

66    PRIMARY ANALYSIS CYCLE. PASS NUMBER   2     66 

66 66 

6666666666666666666666666666666666666666666666666666666 

339 DEGREES OF FREEDOM ARE CURRENTLY ASSOCIATED WITH 

ZERO STIFFNESS AND HAVE BEEN REMOVED 

<« ANALYZING DELAMINATION SET:    1  >» 
<« CONTACT ITERATION NUMBER:      1  >» 

CONVERGED EIGENVALUES: 

NUMBER    LAMBDA 

1 0.2931583E+01 

2 0.2453289E+01 

3 0.1653048E+01 

4 0.1043609E+01 

DELAMINATION        1 AT ITERATION 1  IS EXHIBITING 
A CONTACT COMPATIBILITY OF    100.00 PERCENT 

************************************************* 

** ** 

** ALGORITHMIC PATH FOR MINIMUM LOAD INCREMENT ** 

** TO NEXT FAILURE: DELAMINATION INSTABILITY ** 
** ** 

** MATERIAL BUCKLING ** 
**           ** 

** SCALE: 0.536E+02 0.674E+01 ** 
** ** 
************************************************* 
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** ** 

** SUBLAMINATE BUCKLING FAILURE ANALYSIS ** 
** ** 

* DELAMINATION DEFINED BY NODE SET  960 

IS PREDICTED TO BUCKLE AT AN APPLIED 

LOAD FACTOR OF 0.674E+01 

* FAILURE IS PREDICTED TO INCLUDE ALL ELEMENTS ALONG 

NEGATIVE NORMAL TO THE DELAMINATION PLANE. 

* THE FOLLOWING ELEMENTS HAVE BEEN DEGRADED 

OR FAILED VIA LOCAL SUBLAMINATE BUCKLING: 

11001  11002  11003  11004  ... 11157  11158  11159 11160 

* LOCAL SUBLAMINATE BUCKLING IS PREDICTED. 

ELEMENT PLY FAILURE STATUS AT CYCLE NO   2 

ELEMENT        PLY FAILURE MODES: 

ID    '/.FIBER  '/.MATRIX  '/.BUCKLING  '/.TOTAL 

5001 0 0 100 100 
5002 0 0 100 100 
5003 0 0 100 100 

11158 0 0 49 49 
11159 0 0 49 49 
11160 0 0 49 49 

* THE FOLLOWING DELAMINATION NODE SET(S) WILL 

BE REMOVED DUE TO BUCKLING FAILURE: 

960 

PRIMARY ANALYSIS CYCLE. PASS NUMBER 
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<« ANALYZING DELAMINATION SET: 1     >» 
<« CONTACT ITERATION NUMBER: 1     >» 

CONVERGED EIGENVALUES: 

NUMBER LAMBDA 

1 0.2200270E+02 
2 0.1958573E+02 
3 0.1437475E+02 
4 0.8520247E+01 

************************************************* 

** ** 

** ALGORITHMIC PATH FOR MINIMUM LOAD INCREMENT ** 
** TO NEXT FAILURE:  MATERIAL DEGRADATION ** 
** ** 
** MATERIAL BUCKLING ** 
sjc*     ** 

** SCALE:       0.535E+02 0.575E+02 ** 
** ** 
************************************************* 

********************************* 

* * 

* MATERIAL FAILURE ANALYSIS       * 

* * 
* ITERATION NO.     SCALE FACTOR    * 

* 1 0.535E+02       * 
* * 
********************************* 

* NUMBER OF ELEMENTS DEGRADED = 

********************************* 

* * 

* MATERIAL FAILURE ANALYSIS       * 

* * 

* ITERATION NO.     SCALE FACTOR    * 
*          * 

* 2 0.535E+02      * 
* * 

********************************* 

* NUMBER OF ELEMENTS DEGRADED = 

82 



********************************* 

* * 

* MATERIAL FAILURE ANALYSIS  * 
* * 

* ITERATION NO.  SCALE FACTOR * 
*    * 
* 3 0.535E+02  * 
* * 
********************************* 

* NUMBER OF ELEMENTS DEGRADED =     30 

********************************* 

* * 

* MATERIAL FAILURE ANALYSIS  * 
* * 

* ITERATION NO.  SCALE FACTOR * 
*    * 

* 4 0.535E+02  * 
* * 
********************************* 

* NUMBER OF ELEMENTS DEGRADED =    111 

********************************* 

* * 

* MATERIAL FAILURE ANALYSIS      * 
* * 

* ITERATION NO.  SCALE FACTOR * 
*    * 

* 5 0.535E+02  * 
* * 
********************************* 

* NUMBER OF ELEMENTS DEGRADED =    211 

* ELEMENT FAILURE HAS ALTERED MODEL STABILITY SUCH 

THAT RIGID BODY MODES HAVE BEEN DETECTED. 

TOTAL FAILURE IS ASSUMED. 

ELEMENT PLY FAILURE STATUS AT CYCLE NO   3 

ELEMENT        PLY FAILURE MODES: 

ID    '/.FIBER  '/.MATRIX  '/.BUCKLING  '/.TOTAL 
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5001 0 0 100 100 
5002 0 0 100 100 
5003 0 0 100 100 

11462 0 0 0 33 
11463 0 0 0 100 
11464 0 0 0 100 

############################################### 

## ## 
## ANALYSIS PREDICTS CATASTROPHIC FAILURE OF ## 
## THE MODEL AT AN ULTIMATE LOAD GIVEN BY: ## 
## ## 
##      P(ULT)  =   (0.53468E+02)   * P(INITIAL) ## 
## ## 
############################################### 

FAILURE    ANALYSIS    COMPLETED 

10.2.3    Graphical Output Using MATHEMATICA 

Preface graphic pages are generated to show the color codes used to display various element 
failure modes. In the specific demonstration problem analyzed, complete element failure is 
indicated by a wireframe depiction, and because no specific failure modes were predicted 
using the maximum stress criterion, material failure is shown as using the general material 
failure color coding scheme. 
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GRAPHICAL DEPICTION OF FAILURE MODES 

Fiber and matrix damage are shown using 

a bichromatic color code. Nonspecific 

material failure is indicated using a 

monochrome scheme. Buckling failure is 

shown in grayscale. Complete failure 

Ls indicated by a wireframe depiction. 

! Clolor  Codes  For Material  Failure Modes i 

fHf slftäfs 
1 

«^ 
I lÄ ■-S--T- 
!     [ 

0 
>     U iHfl j^Siv 1:3 f 
i A $&.': $Ä< fe 1   * 3EHUKB9I tea US 
x—Ml Stl? Al A 

!   u 

! s Hi ^> 

Fib or   Pai1 urn   -> 

Nonspecific Material Damage -> 

1 
Buckling Damage -> 

Both delaminations are analyzed separately for critical buckling load. These are compared 
to the load required to cause first ply failure, and it is determined that the outer surface 
delamination is the first failure to occur. Material properties for the elements involved in 
the sublaminate buckling are set to zero such that they appear in a wireframe depiction in 
the failure state graphic. This is followed by a magnified view of the buckling mode shown 
in the following illustration. 
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ANALYSIS CYCLE     1 

Buckling Failure at Scale = 0.646E+01 

Failure State Buckling Mode 

The next predicted failure is buckling of the layer on the inner plate surface, as shown 
next. 
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ANALYSIS CYCLE     2 

Buckling Failura at Seals = 0.674E+01 

Failure State Buckling Mode 

The final sequence of failure events as fully described in the output file involve a cascade 
of material ply failures. These occured during the third global analysis cycle which, after 
five iterations, had reduced the overall stiffness such that rigid body modes were detected 
and the analysis terminated. The final failure state is shown next, in which total element 
failures essentially created an opening through the inner region of the face plate. Mediating 
element failures are shown to have progressed to the outer plate boundary. Failure in the 
line of elements comprising the outer boundary have been precluded using the LAPFAIL 
parameter which prevents elements to which applied external loads have been applied from 
exhibiting failure. 
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ANALYSIS CYCLE     3 

Material Failure at Scale = 0.535E+02 

Failure State 

The final residual strength prediction yields the ultimate load carrying capability of the 
face plate containing the assumed damage as a factor of the initial biaxial loads equal to 
53.47. 

11     Conclusion 

A general predictive methodology for determining residual strength in impact damaged com- 
posite laminates has been developed and incorporated into a computer code designated RE- 
STRAN (i?£sidual STitength A Analysis). RESTRAN can be used to analyze composite 
structures with arbitrary three-dimensional geometry, loading and support conditions, ma- 
terial properties, and initial material and delamination damage. Material failure modes are 
predicted using a robust suite of failure criteria and damage laws. Structural failure due 
to sequential sublaminate buckling of delaminated layers is also accounted. A progressive 
failure analysis is performed until ultimate structural failure is predicted yielding an estimate 
of the residual strength. 
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