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1   EXECUTIVE SUMMARY 

The term "Smart Radio" is intended to capture the essence of a body of work devoted to the 

development of interoperable, modular, portable, network-aware, multiple-mode radios for 

military (and now commercial) deployment across all defense services - Army, Navy, Air 

Force, Marines, Coast Guard, Reserves, etc., and interoperable with force protection 

activities such as intelligence, reconnaissance, and surveillance equipment and personnel. 

While the Smart Radio obviously entails numerous design issues such as protocols, 

architectures, hardware, antennas, digital signal processing, analog electronics, etc., this 

effort specifically addresses integrated waveform algorithms (in a digital context) and 

transceiver designs. The goal is to develop waveforms and, by default, transmitters and 

receivers that generate and demodulate them, which incorporate the constraints of the 

implementation properties amenable to future Smart Radio Architectures. 

Within the past few years, wavelet transforms and filter banks have received considerable 

attention in the technical literature, prompting applications in a variety of disciplines 

including applied mathematics, speech and image processing and compression, medical 

imaging, geophysics, signal processing, and information theory. More recently, several 

researchers in the field of communications have developed theoretical foundations for 

applications of wavelets as well. Part one of this report surveys the connections of wavelets 

and filter banks to communication theory and summarizes current research efforts. 

This is followed by a discussion of work related to the mathematical development of a 

flexible, time-frequency-diverse waveform suitable for implementation on modern Smart 

Radios. Utilizing multidimensional signaling techniques, a generalized multirate wavelet- 

based modulation format for orthogonally multiplexed communication systems is presented. 

Wavelet Packet Modulation (WPM) employs the basis functions from an arbitrary pruning 

of a dyadic tree structured filter bank as orthogonal pulse shapes for conventional 

Quadrature Amplitude Modulation (QAM) symbols. This generalized framework affords 

an entire library of basis sets with increased flexibility in time-frequency partitioning. The 

bandwidth efficiency and power spectral density figures of merit for the general signal are 



derived and it is shown that the power spectral density for every case is equivalently that of 

standard QAM and hence directly applicable in existing systems employing this modulation 

format. 

Current transceiver designs for wavelet-based communication systems are typically reliant 

on analog waveform synthesis, however, digital processing is an important part of the 

eventual success of these techniques. An important part of this effort is a transceiver 

implementation for the WPM scheme which moves the analog processing as far as possible 

toward the antenna. The transceiver is based on the Discrete Wavelet Packet Transform 

(DWPT) which incorporates level and node parameters for generalized computation of 

wavelet packets. In this transform no particular structure is imposed on the filter bank save 

dyadic branching, and a maximum level specified apriori and dependent mainly on speed 

and/or cost considerations. The transmitter/receiver structure takes a binary sequence as 

input and, based on the desired time-frequency partitioning, processes the signal through 

demultiplexing, synthesis, analysis, multiplexing and data determination completely in the 

digital domain - with the exception of conversion in and out of the analog domain for 

transmission. 

A most important application of wavelet packet modulation is in direct sequence spread 

spectrum (DSSS) communications, where the chip symbols determined by the pseudo noise 

(PN) sequence are constructed with both time and frequency dimensionality. In traditional 

DSPN, the wide bandwidth of the symbols causes problems in the presence of frequency- 

domain noise where all chip symbols are corrupted, but the time-frequency dimensionality 

of spread spectrum wavelet packet modulation (SSWPM) has immediate advantages in 

mitigating the effects of narrowband jammers and time impulses, where only a fraction of 

the chip symbols are corrupted. 

The following report details the work accomplished for this project on the above topics - a 

survey of relevant work, including the investigator's, wavelet packet modulation, the 

discrete implementation of WPM, and the spread spectrum extension of WPM. These 

together form a strong body of basic research results which can be carried forth into an 



applied research program focusing on a prototype hardware implementation. At that stage, 

some of the unanswered questions can be addressed; namely synchronization, symbol 

timing, and acquisition of the highly orthogonality-dependent wavelet-based waveform. In 

addition, the multitudinous practical tangents like multiple access applications and 

embedded forward error correction can be explored. 



2    INTRODUCTION 

Research in electrical communications and signal processing historically utilizes the 

best and most recent advances in other fields, mathematics being the most drawn upon field 

since it provides the analytical framework for proof. Here, it is the fertile field of wavelets 

and filter banks which is called upon to provide novel approaches to communication 

problems; and it is a relatively recently developed field at that, having only recently been 

introduced around 1982 (Morlet, et. al.) The hybridization of perfect reconstruction 

subband filtering and transmultiplexers by Mallat, Smith, Barnwell, Vetterli, and others, 

along with the laudable comprehensive treatment given by Daubechies in 1992 has 

produced a well developed toolbox for the communications researcher. In particular, the 

time-frequency nature of the wavelet constructions (wavelets, wavelet packets, M-band 

wavelets, multiwavelets) is appealing, as are their very efficient implementations. The 

seamless transition from time to frequency dimensionality with a variety of choices in 

between, is one attraction. The ability of wavelet derived functions to more closely 

represent a larger class of signals is another attraction where time-frequency capabilities are 

crucial. From a purely mathematical analysis perspective, the wavelet theory provides a 

wonderful framework wherein all manner of stylish, and in some strange way artistic, 

relationships are utilized. Capitalizing on the construction becomes an enjoyable task in this 

setting, and motivates the researcher to explore. Consequently numerous articles have 

appeared, most within the last five years, treating communications problems from the 

multiresolution perspective. 

The body of the section presents the overview discussions and is divided into three 

main parts. The first part is a discussion of waveform design results, which is subdivided 

into coding, modulation, spread spectrum, multiple access and covert systems categories, 

reflecting the main themes of articles attacking the different objectives of this problem. 

Wavelet based channel coding methods, modulation techniques, multiple access (MA) 

applications, and spread spectrum and covert waveforms are discussed here. The second 

part is a discussion of interference mitigation results, categorized by transform domain 

processing and adaptive filtering. Section 2.3 deals with a few other aspects of the 

communication problem in which wavelet theory has shown promise.   Synchronization, 



which many of the results in waveform design assume, is addressed, as well as the 

modulation identification problem. Detection with wavelets and channel ID (system ID) via 

wavelets are also discussed here. In addition, an extensive (though certainly not exhaustive) 

reference section is included, listing the major contributions. From this source, one can 

trace the vast majority of literature tying communications to wavelets and filter banks. 

2.1   Waveform Design 

Fundamentally, what makes wavelet theory especially useful in communication 

systems is the broader class of signals available as "primitive" functions. Traditional 

Fourier bases, i.e. sines, cosines and their composites, comprise a very small class of 

functions constrained by periodicity on the interval [0, In ]. On the other hand, any L2(R) 

(square integrate on the infinite interval) function is a candidate basis function in the 

wavelet setting. The admissibility condition is certainly a strong constraint, but the real 

beauty is in the choice. Wavelets of all shapes and sizes have been put forth, each having 

certain properties useful for a particular application and superior to sinusoidal bases in many 

applications. 

In communication, the properties most called for are the ability to distinguish 

between desired and undesired signal components and the flexibility of adaptively 

improving some aspect of the signal representation. Frequency resolution is traded off for 

time resolution in a seamless and methodical manner. In addition, orthogonality across both 

scale and translation makes wavelets interesting to the communication community. Systems 

typically suffer from performance degradation due to intersymbol interference, where the 

overlapping of adjacent symbols in a given transmission (due to the spreading caused by 

spectral shaping to conserve bandwidth) causes complications at the receiver. The 

orthogonality of wavelets and scaling functions rectifies this problem, usually with the 

caveat that the modulation is done coherently. 

From the waveform design standpoint there are several major objectives that arise 

when applying wavelets to communications. First there is the channel coding of the bit 

stream, introducing redundancy so as to facilitate error correction at the receiver. 

Modulation is probably the most active area, where wavelets are in one way or another 

utilized for symbol transmission.    Spread spectrum receives a respectable amount of 



attention, where wavelets become a time-frequency spreading vehicle improving on 

traditional frequency-only schemes. Multiple access is a very active field of application 

capitalizing on the orthogonality properties and covert system design for military 

applications is also astir, though most of this work is classified. All of these areas are 

discussed in this section under separate headings. 

2.1.1 Coding 

In many communication systems, channel coding is employed as a means to 

enhance reliability of data transmission across an arbitrary channel. Using the orthogonality 

properties associated with the wavelet coefficient matrix (WCM), whose rows correspond to 

the underlying wavelet basis functions, Tzannes and Tzannes [60],[61] have developed a 

new method of channel coding designed for data transmission over burst noise and fading 

channels. To code the input signal, k information bits are mapped to n -bit codewords 

corresponding to the rows of the WCM. Since each row of the WCM is orthogonal to itself 

and all other rows over appropriate shifts, codewords corresponding to successive k -bit 

input sequences can be shifted and summed while maintaining their orthogonality with 

respect to one another. At the receiver, the original data sequence can be decoded using a 

bank of correlators matched to the codewords in the WCM. In comparison to traditional 

Hadamard codes, this technique yields a lower probability of symbol error over burst noise 

and fading channels. 

2.1.2 Modulation 

Based on the literature, it would seem that modulation is the most popular area of 

interest to people merging wavelets with communications, as the size of this section attests. 

Of the current research, about half is geared toward this area. Specific channel 

environments are generally considered for a given work, usually narrowband or impulsive 

noise or both.   The more general fractal noise processes of the yf type (which include 

gaussian noise) are also considered. 

Recent efforts utilizing wavelet theory for minimizing the effects of narrowband 

noise processes have been put forth by a number of people. Womell and Oppenheim's 

paper [65] appears to be one of the earliest to suggest the idea of using wavelets for data 

transmission with a modulation scheme that is very well grounded in theory and analysis. 



Starting with a tutorial on deterministically self-similar signals (invariant under scale within 

an amplitude factor, called homogeneous) and then generalizing the family to 

dyhomogeneous functions1 the connection to wavelets is established and a paradigm for data 

transmission is formed. The application of the theory is provided in a new waveform design 

algorithm introduced as fractal modulation, where the term fractal simply refers to the 

iterative process used to generate the waveform. The optimal receiver for this modulation is 

a matched filter (which is actually an analysis bank corresponding to the synthesis bank used 

for modulation) followed by a likelihood ratio test on the samples, which are assumed to be 

synchronized. However, even though the technique capitalizes on efficient computational 

implementations it is still a block oriented structure, and so, as the authors point out, it 

suffers from a significant buffering problem, especially for longer sequences. 

In a related work [62], dated slightly earlier, the same process is used to optimize 

communication over fractal channels, where the additive noise is not necessarily white, but 

can be characterized more generally by a fractal model, i.e., various degrees of invariance 

under scale. These random processes are typically referred to as x/f processes and are 

observed in a number of settings, including optical systems, turbulence flow models, 

underwater acoustics, electrical systems, natural topology, etc. This work proceeds to 

represent this fractal noise process with orthonormal wavelet bases and then addresses the 

problem of bit-by-bit signaling in this environment. With the optimal receiver for that case 

in place, a multirate modulation strategy for multiple-bit symbols naturally falls out. 

Ultimately, though the work is done with the gaussian fractal noise environment in mind, it 

is generally applicable to a much larger class of noise scenarios. 

The work just described was thought interesting and practical enough to be analyzed 

and simulated by Ptasinski and Fellman [49], bringing a certain degree of credibility to the 

idea of multi-rate modulation with wavelets. Two important figures of merit - power 

spectral density (PSD) and probability of bit error - are analytically derived for quadrature 

fractal modulation (QFM,) and it is observed that the PSD for QFM compares favorably 

with minimum shift keying (MSK) and offset quadrature phase shift keying (OQPSK.) The 

1 signals that need only satisfy the self-similarity property for dyadic scales, i.e., x(t) = 2    x{2 t), for all integers 

k and constant H, termed the degree of the signal. 



bit error probability is precisely the same as QPSK. It is suggested here that not only is 

practical implementation of the fractal modulation scheme feasible (while maintaining near- 

theoretical performance for the AWGN channel,) but that it also achieves a reasonable 

improvement over several existing modulation methods. 

Cochran [3],[6] suggests "coding" digital communication signals via wavelets. 

Gandhi [19] also showed that wavelets are useful for analog representation (continuous time 

waveforms) of data bits, where a conventional Binary Phase Shift Keyed (BPSK) system 

was modified with wavelet pulse shapes for the bits. This work showed an improvement in 

bandwidth efficiency2 over BPSK for all wavelets considered, with almost double 

improvement for the Battle-Lemarie wavelets. The extension from BPSK to Quadrature 

Phase Shift Keying (QPSK) was accomplished in [20] where the utilization of orthogonal 

pulse shapes on both the in-phase and quadrature channels at baseband combined with the 

well established orthogonality of the radio frequency carriers provides an effective 

bandwidth efficiency increase of Vh times that of BPSK. 

In an independent effort, Jones' [28] also establishes the very important analytical 

connection between wavelets and communication signals, paving the way for several future 

works. Actually, this work could be viewed as the next step in the progression from BPSK 

to QPSK and then on to M-ary QAM. Starting with a QAM symbol source, a 

transmultiplexer based on the ordinary wavelet transform is developed which provides time- 

frequency dimensionality for the transmitted symbols via wavelet pulse shaping. The 

modulation scheme is called Multi-scale Modulation (MSM) indicating the wavelet scale 

connection. However, the primary concern here is not bandwidth efficiency, but improved 

performance in the presence of joint impulsive and narrowband interference. In this 

framework, these anomalies become less of an influence on system performance since only 

data symbols in the affected time and/or frequency bands are corrupted. Further efforts [29] 

enhance the MSM scheme and introduce another wavelet related modulation called M-band 

Wavelet Modulation (MWM). Incidentally chapter 5 of that work proves a direct 

connection between Meyer's parametric wavelet construction and the spectral raised cosine 

nyquist pulse shaping filter.  This is perhaps the most unique and worthwhile result, since 

2 Bandwidth efficiency is defined as the bit rate per unit bandwidth, measured in   «£? the system is capable of 
achieving when the ratio of bit energy to noise power spectral density Eb/N0 , and bit error rate remain constant. 



the square root raised cosine is one of the most implemented pulse shapes in use today, with 

a parametric tradeoff between time and frequency support and linear phase (symmetry) to 

boot. As far as the authors know, there currently exists no better wavelet for this purpose. 

With the multirate modulation idea in place, it is natural then to extend the above 

MSM and MWM schemes to the more general case of wavelet packets [31] where the 

structure of the filter bank becomes flexible. In this way, a much broader library of bases 

upon which to impose M-ary data symbols is available with essentially arbitrary time- 

frequency tilings. If the block length is chosen to be 2N then the "supersymbols" contain as 

many cells, each cell containing the information for one symbol. The net effect is enhanced 

performance in certain types of channel environments - most notably those with joint 

narrowband and time-impulsive interferences, in which the narrowband tones are isolated to 

a few symbols as are the time domain impulses.  An algorithm that adaptively selects the 

optimal set of WPM basis functions for this environment is outlined in [32]. This proposed 

supersymbol tuning is based on a signal to noise ratio (SNR) objective function, which is 

desired to be maximized.  At each stage in an iterative process the new SNR is computed 

(measured in a real implementation) and a decision is made as to decomposition or 

composition of the basis functions.  If the SNR is improves then the algorithm progresses, 

but if not then no further processing is pursued in that direction. The decomposition is 

accomplished via a growing of children in the filter bank node that corresponds to the basis 

function in question, and a composition takes two children and prunes them to the parent. 

Ultimately the supersymbol tuning algorithm arrives at the best wavelet packet basis with 

respect to SNR. 

The optimal supersymbol actually represents a dyadic filter bank of hierarchical 

quadrature mirror filter pairs and down samplers which accomplishes the transform 

implementation digitally. It is important to note that the algorithm produces a potentially 

different tiling for the supersymbol for each block of 2N symbols. The correspondence 

between the filter bank outputs and the associated frequency support is shown to follow a 

gray-code relationship as opposed to a direct mapping because of the inherent aliasing in the 

downsamplers. In fact, the entire transceiver implementation, including the necessary 

analysis and explanation of certain nuances which arise, is outlined in [34]. All the results 

for bandwidth efficiency and spectral density established in [29] still apply but are proved 



for this more general setting. As a matter of fact, it is shown in [33] that no matter what 

wavelet packet decomposition is chosen, the power spectral density is the same for the 

combined waveform - being equivalent to that of standard quadrature amplitude modulation 

(QAM). 

Wavelet Packet Modulation (WPM) is then a generalized framework for developing 

communications transceivers with a variety of goals. The inherent noise immunity afforded 

by the time-frequency dimensionality gives rise to reliability-based or anti-jam (AJ) 

waveforms, and the potential for using the wavelet packet library as a code space admits low 

probability of intercept (LPI) waveforms. In addition, multiple access is directly available 

via the transmitter's demultiplexing and inverse transform stages (potentially each channel 

of the filter bank can support a single user with complete orthogonality in the combined 

waveforms.) Finally, since WPM signals are just decompositions of QAM signals, the 

scheme has an immediate port into existing systems utilizing QAM, with the added benefit 

of time-frequency dimensionality. Similar work suggesting the use of wavelets for 

modulation is presented by Erdol in [17]. The work of Wu [66] provides yet another source 

for results on wavelet packet based modulation, termed wavelet packet division 

multiplexing (WPDM,) only in this work some effort has been spent investigating the 

synchronization issue. In addition, multidimensional modulation schemes combined with 

trellis coding are proposed in [26]. 

A more practical problem of high performance communication networks is 

addressed in [53] where a form of multicarrier modulation called overlapped discrete 

multitone or discrete wavelet multitone (DWMT) modulation. For this scheme, which is 

based on the application of M-band wavelets, the pulses for different data symbols overlap 

in time, and are designed to achieve a combination of subchannel spectral containment and 

bandwidth efficiency that together establish DWMT as superior to other multicarrier 

modulation techniques. Ultimately. the DWMT strategy is geared toward robust 

performance in the presence of interchannel and narrowband disturbances. 

2.1.2.1    Multipurpose Modulation Techniques 

The references specifically outlined above are those which are primarily devoted to 

the idea of applying wavelets and/or filter banks for modulation in conventional single user 

10 



communication systems.   However, most if not all of them can be directly ported to the 

multiple access environment and/or the spread spectrum - LPI/D environment.  There are 

several authors whose work straddles the two and so is difficult to classify.  For instance, 

Daneshgaran [8], proposes coherent frequency hopped code division multiple access (FH- 

CDMA) via the use of scaling functions and wavelets as envelope functions for modulation 

and ISI-free orthogonally multiplexed transmission over the AWGN channel, and then 

immediately makes the connection to multiple access, capitalizing on the fact that the 

frequency supports of M-band wavelets and/or wavelet packets have overlapping frequency 

support.  The wavelet orthogonal frequency division multiplexing (WOFDM) scheme is a 

modulation format and so deserves mention in this section, but it is intended for multiple 

access.   The same authors in [12] combine WOFDM with frequency hopping and an 

interesting channel coding scheme rooted in the time-frequency partition defining the 

wavelet-based waveform (and an additional assumption of coherent demodulation) to get 

something they call FH/S-CDMA. It is natural at that point for the work to continue the idea 

into the LPI arena, which they do. 

Orr et al [46] combine modulation with other things - in this case spread spectrum 

and LPI/D. A "new" class of communication systems called wavelet transform domain 

(WTD) systems is introduced, essentially naming the family of wavelet related systems 

based on synthesis/analysis (transmultiplexer) implementations. All the potential 

applications, LPI, covert, bandwidth efficient, multiple access, spread spectrum, are 

mentioned with the concentration centered around spread spectrum. Though essentially an 

overview article, a significant amount of useful information is available. Other works which 

combine the modulation ideas with other features are discussed at greater length in the 

following sections, mainly because the thrust of the papers is more clearly devoted to a 

particular waveform design classification. 

2.1.3    Spread Spectrum and Covert Communications 

Spread spectrum systems are those which utilize spectral spreading techniques to 

essentially bury the signal in the ambient noise across a very wide bandwidth and then 

through correlation with the spreading codes, despread the signal at the receiver while the 

noise undergoes the opposite effect. And though not all spread spectrum waveforms are 

candidates for covert communication, the converse must be true - spread spectrum is an 

11 



integral and required part of a covert communication system. Hence, many of the articles 

which deal with spread spectrum from a wavelet standpoint will also venture into the 

covert/LPI arena. This section attempts to outline the contemporary works which apply 

wavelets with either goal. For a purely mathematical perspective the work by Benedetto [2] 

provides a theoretical foundation for secure communication. For another more 

comprehensive treatment of the connection between spread spectrum and filter banks, the 

reader is referred to [54] where much of the terminology and methodology of wavelets, filter 

banks, and spread spectrum communication systems are explained in greater detail. 

In addition to detailing MSM and MWM modulation results discussed above, [29] 

provides a practical extension of the MSM and MWM schemes to spread spectrum, where 

the MWM waveform is shown to be highly resistant to frequency domain narrowband noise 

and the MSM waveform is billed as a good compromise between conventional DSPN 

spreading and MWM when time domain impulsive jammers are also present in the channel. 

This work provides a comfortable framework in which to analyze orthogonally multiplexed 

communication systems and establishes a reasonable performance analysis method, if not 

somewhat constrained by assumption, for the spread spectrum systems which are amenable 

to that framework. The jump from standard wavelet and M-band decompositions is 

generalized in [34] to wavelet packets and the spread spectrum extension to this work is 

available in [35]. 

The work of Hetling et al [22] uses perfect reconstruction quadrature mirror filters 

(PR-QMF) for spread spectrum communications. A design framework is presented in [23] 

which allows for optimization of PR-QMF's subject to spread spectrum system constraints, 

which are determined by system requirements when operating in a narrowband noise 

environment. Using the waveform synthesis methodology, LPI/D waveforms with spectral 

characteristics similar to those of the ambient noise can be generated and used as spreading 

codes in direct sequence spread spectrum systems. By appropriately defining the constraints 

and objective functions reflecting the desired signal properties, two-channel PR-QMF banks 

can be optimized such that their recursive application yields a spreading code which 

sufficiently resembles the channel environment to render it virtually undetectable to 

unintended receivers. 
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Cochran's work on scale based techniques [3],[5],[6] which is discussed in more 

detail in the next section also has a significant amount of spread spectrum and covertness in 

the concept. Several noteworthy aspects of SDMA are: 1. Inherent security - those who 

know the filter sequences can demodulate easily, but without that knowledge it becomes 

difficult. 2. The previous immediately suggests the possibility of wavelet hopping spread 

spectrum, where the filters (wavelet pulse shapes) are changed at times known to the 

communicators only. 3. Compactly supported wavelets provide for LPD waveforms. 4. LPI 

waveforms are generated by wavelets that distribute the message energy across irregular 

subbands. 

Another approach put forth by Orr et al [45] to designing covert waveforms is to use 

a pseudo-noise (PN) binary sequence to address the WCM of Section 2.1.1.   The actual 

process used to generate covert waveforms using this technique does not lend itself to a brief 

summarization.   As a result, the interested reader is strongly encouraged to consult the 

article directly. The methodology presented therein leads to the development of a class of 

waveforms that can be characterized as energy efficient signals with few features that are 

detectable by conventional detection/intercept receivers.   Interestingly, comparisons with 

QPSK reveal a noticeable improvement in non-detectability using fourth power law 

detectors. Another paper with similar content [51] is authored by the same team and so will 

not be expounded upon here. It is worthwhile to note, however that in this paper an actual 

hardware testbed for demonstrating and implementing the LPI/D nature of this method is 

discussed.   A complete simulation has been developed using a commercially available 

simulation package.  The technology utilized for this covert waveform generation scheme 

has also been tested for its applicability to CDMA [47] and it is suggested that user capacity 

on a given channel can be increased. 

2.1.4   Multiple Users 

The time frequency flexibility afforded in wavelet constructions admits a framework 

for selecting or refining waveforms at intermediate time-frequency supports [21]. This 

allows a seamless transition from the time domain to the frequency domain that is well 

received in a communications setting. Time domain multiple access (TDMA) ideas easily 

migrate to Frequency division multiple access (FDMA) ideas within this theoretical 

framework offering a high degree of flexibility in multiple access signals.  The self noise 
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inherent in multiple access systems, the so-called multiple access interference (MAI), is 

more effectively controlled via the hierarchical nature of these multirate transforms in 

comparison to conventional techniques, and the exploitation of this structure affords a new 

state of the art in multiple access receiver design. 

Work applying wavelet modulations to the multiple access problem started with 

Cochran [3] where the scale-based coding ideas were first suggested to have application to 

this problem. Later articles [5],[6],[7] actually solidify the idea. A Scale division multiple 

access (SDMA) protocol is presented which assigns users to different scales of a mother 

wavelet. Separation of channels is based on scale as opposed to time or frequency, though 

a time-division multiplexing arrangement provides for more low-rate users on high rate 

channels. With the integral shift restriction on the Haar wavelet, all users must have 

synchronized clocks. This motivates the use of N-band wavelets, which do not have the 

restriction of integral shifts for orthogonality (they are orthogonal at arbitrary shifts). 

A class of bandlimited wavelet bases whose frequency domain "bands" do not 

overlap are constructed, though they do not (nor can they) come from a multiresolution 

analysis. The advantage of these wavelets is that due to the orthogonality of the waveforms 

at arbitrary time shifts, any phase shift in the waveforms on different channels (scales) is 

dealt with successfully at the decoder and hence does not introduce MAI. The result is the 

capability for asynchronous SDMA communication - at the cost of intersymbol 

interference due to non-time-limited wavelets. 

Learned [30] attacks the multiple access problem using wavelet packet derived 

signature waveforms for concurrent users. The wavelet packet "tableau" (a time-frequency 

tiling) acts as a design table upon which to assign users unique bins determining their 

"signature" waveform via the wavelet packet synthesis. All users with signatures from the 

same level are, by definition, orthogonal, but users at different levels in which one is a 

descendant of the other introduce MAI. A recursive joint detector handles this problem very 

well by recursively removing correlations until a very good guess at a bit decision can be 

made. The system is called wavelet packet multiple access. The method utilizes suboptimal 

joint detection with significant computational savings over optimal joint detection, and at a 

minimal performance cost. Also featured in this construction is concurrent signature 

waveform and receiver design as opposed to modern joint detectors which only consider the 
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receiver issues;  recursive bit estimation via wavelet packet structure;  partially correlated 

wavelet packet derived signatures instead of DSPN signatures. 

A conceptually similar strategy is put forth by Daneshgaran in [8],[12] where the 

idea is again to combine user waveforms via the inverse wavelet packet transform, thereby 

accomplishing a wavelet orthogonal frequency division multiplexed (WOFDM) 

transmission waveform for multipoint to point communications. A frequency-hopping 

extension to the concept is also presented and follows directly. Synchronization is assumed, 

based on currently reasonable GPS solutions. The key difference in this strategy is that no 

overpopulation of the channel is allowed (i.e. all users are orthogonal in the wavelet space), 

whereas in [30] nonorthogonality is permitted but at the cost of a more complicated receiver. 

In this work the receiver structure is not discussed but it is readily apparent that due to the 

similarity with wavelet packet modulation [34] the receiver presented there would apply. 

Hetling's approach to multiple access appears in [24] where wavelet based spreading 

codes take the place of the traditional pseudo-noise (PN) sequence. These wavelet based 

codes are directly related to the basis functions of a particular wavelet transform or its 

associated filter bank. Since the choice of available bases is much larger than that of PN 

sequences, better performance is theoretically attainable by choosing a "best basis" suited 

for the system requirements. Depending on the environment, the requirements change and 

thus the objective function that serves as the optimization criterion changes. In the case of 

the similar work outlined in section 2.1.3, these requirements were based on spread 

spectrum environments. In this case, multiple access is the objective, and as predicted, the 

simulation results showed an improvement over Gold codes for equivalent demand (number 

of users.) 

Asynchronous CDMA utilizing multirate filter banks is proposed in [58], with a 

small user cooperation requirement. In this work, linear decorrelating receivers (completely 

suppressing multiple access interference) are derived, with the introduction of a criterion 

that guarantees decorrelation and an optimal user extraction solution in the presence of 

additive noise. Also addressed in this work is synchronization in environments where both 

multipath and near-far effects are present. It would seem from the author's perspective that 

this work is a viable solution to the problems of multiple access interference and near-far 

power inequities. 
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2.2   Interference Mitigation 

Although the entire previous section would apply here, since all the systems 

mentioned had some form of interference mitigation in mind, there is a large amount of 

work specifically devoted to utilizing wavelets and filter banks for removing as much of the 

interference component in a received signal as possible [1]. These efforts are primarily 

concerned with spread spectrum signals and utilize transform domain processing techniques. 

One significant advantage of spread spectrum signaling is that it inherently provides 

some protection against interference. In fact, any level of interference protection can be 

obtained by designing the signal with sufficient processing gain. The price for greater 

protection, however, is an increase in the bandwidth of the transmitted signal for a given 

data bandwidth. Practical considerations such as transmitter/receiver complexity and 

available frequency spectrum can serve to limit the reasonably attainable processing gain. 

As a result, it is beneficial to apply signal processing techniques to augment the processing 

gain of the spread spectrum signal itself, allowing greater interference protection without an 

increase in bandwidth. In general, these interference suppression techniques discriminate 

between the desired spread spectrum signal and the interference and work to suppress the 

interference. 

The primary objective of the work presented in this section is to utilize the time and 

frequency localization afforded by the discrete wavelet transform DWT and multi-rate filter 

banks to obtain improved receiver performance in the presence of various types of 

interference. Clearly, the length of the basis functions directly affects both spectral 

resolution and computational complexity; as a result, the flexibility in the impulse response 

duration offered by wavelets and filter banks may be used to improve transform domain 

resolution. Most importantly, subband filter banks and discrete-time approximations to the 

(DWT) may be implemented in a manner consistent with the perfect reconstruction (PR) 

property, thus making it possible to recover the time domain signal without distortion. 

Although the following sections attempt to summarize some of the work performed to date 

using wavelets and filter banks, most of the work described is on-going and the results 

presented provide only a preliminary indication of the potential benefits to be gained 

through the application of the techniques. 
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2.2.1    Transform Domain Excision 

When a signal is transformed or mapped to a different "space" and processed, the 

signal processing is said to have been done in the transform domain, or, in other words, that 

one is using transform domain processing. Note that this mapping should be unique and 

unambiguous and that an inverse mapping or transformation, which can return the signal to 

the time domain, should exist. In communications and radar applications, particularly ones 

using spread spectrum techniques, transform domain processing can be utilized to suppress 

undesired interference and, consequently, improve performance. Here, the basic idea is to 

choose a transform such that the jammer or the undesired signal is nearly an impulse 

function in the transform domain, while the desired signal is transformed to a waveform that 

is very "flat" or "orthogonal," with respect to the transformed interference. A simple 

exciser, that sets the portions of the transform which are jammed to zero, can then remove 

the interferer without removing a significant amount of desired signal energy. An inverse 

transform then produces the nearly interference-free desired signal. 

Ideally, the interfering signal appears as an impulse function in the transform 

domain. In practice, however, transforms such as the Fast Fourier Transform (FFT) and 

short-time Fourier transform necessitate the use of windowing functions to localize the input 

data in time. These windowing operations result in frequency domain representations 

characterized by undesired sidelobes with the amount of energy contained therein directly 

related to the chosen window. Although the use of non-rectangular windows reduces the 

size of these sidelobes, it requires the processing of overlapping segments of the input signal 

in order to accurately reconstruct the time domain waveform, thus greatly increasing the 

computational requirements. 

2.2.2   Excision using Wavelet-based transforms and filter banks 

One approach to suppressing interference is to approximate the DWT or discrete 

wavelet packet using a binary subband tree structure consisting of hierarchical stages of 

two-channel paraunitary quadrature-mirror filter (QMF) banks [29],[36],[44]. The analysis 

portion of the overall tree structure consists of cascaded two-channel units which may form 

a full, dyadic or irregular subband tree. Clearly, different mother wavelets and subband 

filters yield different values for the corresponding QMF bank filter coefficients. The 

analysis tree produces transform domain coefficients which can be processed by an exciser 
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to remove any coefficients which are determined to be primarily interference. After 

excision is performed, a synthesis filter bank, constructed from complementary two-channel 

paraunitary QMF synthesis filters maybe used to perform the inverse subband transform. 

If the interfering signal is narrow-band, the full binary subband tree structure can be 

quite effective in localizing a significant amount of jammer energy to a small number of 

transform domain bins [41 ]. This method of subband decomposition recursively divides the 

input signal spectrum into separate lowpass and highpass components. Each resulting 

component is subsequently partitioned into finer resolution lowpass and highpass frequency 

bands until the desired level of frequency resolution is obtained. As a result, this method of 

signal analysis yields a uniform partition of the signal's frequency spectrum much like the 

DFT. However, unlike the DFT, the spectral sidelobes generated by the filter bank structure 

are dependent on the QMF filters that are used. Thus, depending on the FIR filter 

coefficients, the sidelobes may not be as large as those produced by non-windowed DFTs 

and, hence, fewer bins may need to be excised to remove a specific amount of interference 

energy. Consequently, given that the same number of bins are removed, subband 

decomposition of the received signal via hierarchical filter bank structures may yield 

improved receiver performance relative to that achieved using DFT-based techniques. 

From a more general perspective, the original proposition of interference 

suppression via multirate digital filter banks is usually credited to Jones and Jones [27]. In 

their work, it was demonstrated that DFT-based polyphase filter bank structures could be 

used as an efficient alternative to traditional analysis/synthesis techniques. In fact, 

compared to conventional excision schemes utilizing windowed FFTs, the polyphase 

structures were shown to improve BER performance without significantly increasing 

computational complexity. 

More recent research efforts have focused on the further development and analysis 

of transform domain excision schemes based on filter banks and subband transforms 

[42],[52]. In particular, in [42], modulated and extended lapped transforms were 

implemented using cosine-modulated filter banks and analyzed in terms of BER 

performance; similar analysis was also presented for excision schemes using conventional 

block transforms. It was demonstrated therein that with only modest increases in 

complexity, lapped transforms may be used to suppress narrowband interferers with 
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significant improvement in BER performance as compared to conventional block transform 

excision schemes. In [52] Sandberg, et. al. presented a similar analytical evaluation of 

excision schemes using cosine-modulated filter banks in place of time-weighted DFTs. 

2.2.3   Adaptive time-frequency excision 

Tazebay and Akansu [56] introduced the adaptive time-frequency (ATF) exciser as a 

novel transform domain excision algorithm that adaptively generates a signal dependent 

hierarchical subband tree using either two- or three-band prototype paraunitary FIR filter 

banks. This approach analyzes the received signal's energy distribution at each node during 

the hierarchical subband tree's development and determines whether to continue 

decomposition with additional filter bank stages or terminate the multi-level tree and process 

the received signal using the resulting filter bank structure. Since the interfering signal may 

vary in time, this process is repeated for each received data symbol, thus allowing adaptive 

reconfiguration of the subband filter bank. In the proposed algorithm, a subband node is 

decomposed only if its transform domain energy compaction measure exceeds the time 

domain compaction level and a predetermined decision threshold. As a result, unnecessary 

decomposition is avoided and, thus, transform complexity, in terms of the number of 

multiplications and additions, is reduced. In addition, since fewer subbands are 

decomposed, spectral leakage in the transform domain is minimized. 

One of the most promising attributes of the proposed ATF excision algorithm is its 

ability to perform signal dependent subband decomposition. In contrast to the fixed filter 

bank structures discussed in the previous section, the ATF excision algorithm adaptively 

reconfigures the hierarchical subband filter bank structure minimizing transform domain 

partitioning and improving spectral containment of the interfering signal. It presents a 

robust transformation technique that tailors the subband frequency responses to the spectrum 

of the received signal. Consequently, the ATF excision algorithm is less sensitive to jammer 

frequency than fixed block and subband transforms. Unlike fixed transformation 

techniques, which may be optimally designed for a given input, this adaptive approach 

generates a signal dependent subband decomposition capable of tracking and suppressing 

time-varying interferes. This adaptive quality makes the ATF exciser a valuable 

interference suppression technique under a variety of channel conditions. 
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Recent efforts [48],[59] explore an alternative means of incorporating wavelet 

transforms and time-frequency distributions into the excision process. In these works, 

adaptive narrowband interference excision is performed using wavelet and time-frequency 

distribution analyses of the received signal to drive an FIR notch filter. Here, excision is 

realized with a bandstop filter whose bandwidth, center frequency and stopband attenuation 

are adaptively updated in accordance with the jammer characteristics. Although only a few 

wavelet "primitives" have been tested, preliminary results indicate that this approach may 

converge faster than conventional linear prediction algorithms. 

2.2.4   Adaptive Filtering 

Although excision-based schemes are essentially adaptive, they are typically 

constrained to either keeping or removing an entire transform bin (weighting by zero or 

one). As a result, subsequent bit decisions are generally not based on a true optimization of 

any particular performance parameter such as output signal-to-interference ratio or BER. A 

better system could be formed by adaptively weighting each bin of the transform using 

continuously-variable tap weights which are determined based on maximizing performance. 

For a DS spread spectrum receiver, it may be desirable to minimize the difference 

between the detected symbols and the output of the correlator. A system that does this and 

makes use of transform domain correlation is developed in [41]. In this system no synthesis 

or reconstruction filter bank is required. The input signal and the reference PN spreading 

sequence are both processed by forward transforms and the results are multiplied point-by- 

point. This multiplication performs the despreading operation. The products are then 

weighted by the adjustable taps and then summed in order to produce an estimate of the 

transmitted data bit which is passed to the decision device to produce the recovered symbol. 

The error signal that is used to drive the adaptive algorithm is the difference between the 

transmitted and recovered data bits. If either the LMS or RLS adaptive algorithm is used, 

the tap weights will converge to minimize the error in the mean-squared sense. For initial 

startup, a preamble, known to the receiver, can be used in place of the data estimates to train 

the system, with a switch back to the estimates taking place after convergence. 

While the adaptive system outlined above can produce a set of optimal weights, it 

has the drawback that it may not be able to react as quickly to changes in the input as the 

simple exciser.   Most adaptive algorithms are either iterative, in which case they require 
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time to converge to the optimal solution, or require information about the statistics of the 

input signal, which the receiver must estimate when the channel has unknown (and 

changing) properties. Therefore, if the interference is changing rapidly, the algorithm may 

not be able to track these changes and will be ineffective at suppressing the interference. 

Although some algorithms are better at tracking changing conditions than others, there is 

generally a tradeoff between the tracking capability and the misadjustment noise, which is 

an indication of the variation of the weight values around the optimal values after 

convergence.   In the literature, the works of Erdol and Basbug [14],[15],[16] address the 

convergence issues associated with self-orthogonalizing wavelet transform domain LMS 

algorithms and their implementations.   In more recent publications [42],[43] the specific 

relationships between convergence, misadjustment and the subsequent BER performance of 

direct-sequence spread spectrum receivers operating in the presence of narrowband 

interference are analyzed. 

2.3   Other Communication Problems 

Several issues arising in communication research are yet to be addressed and only a 

small portion of the literature gives them attention. For instance, symbol synchronization is 

a requirement for the vast majority of wavelet-related modulation strategies and although the 

assumption of some form of symbol synchronization is common, even with modern 

technological conveniences like the global positioning system, the synchronization issue is 

not a trivial one. Daneshagaran addresses this issue with some success [11], deriving 

prefilters for the synchronizer which completely eliminate the self noise inherent in random 

data streams (pattern dependent jitter) and thereby reducing the timing error. 

Ho [25] addresses the important problem of modulation identification, where the 

desire is to determine the type of modulation used in a detected transmission - potentially for 

a variety of uses but most obviously surveillance. As it rums out, using the wavelet 

transform on a digitally modulated signal results in a distinctive pattern, at least for the four 

types of modulation used as test cases in this work. This makes intuitive sense when one 

contemplates that these signals are cyclostationary and exhibit amplitude, frequency, and/or 

phase transients which the wavelet representation is especially useful in identifying. The 

results indicate promise for high-reliability identification of digital modulation types. 
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Detection of weak or unknown signals is another issue which arises frequently. A 

few authors have contributed work in this area including Ehara [13] for weak radar signals, 

Frisch [18] for unknown transient signals, and Medley [40] for the detection of spread 

spectrum signals in the presence of high power narrowband jammers. In most of these 

cases, the use of wavelets improves upon existing methods. Finally, the problem of channel 

identification (or more generally system ID) has been looked at by at least one author [57]. 
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3  WAVELET PACKET MODULATION 

For some time in the communications field, multidimensional signals [29] have been 

successfully applied to the problems of improving implementation, channel exploitation, 

message reliability, covertness, etc.   Recent developments in multiresolution analysis and 

wavelet bases [36] have spawned a multitude of interesting applications (see [36] for a 

review of several related to communications,) so the extension of these results to the 

multidimensional signaling problem is appropriate [30].   At the beginning of the decade, 

Coifinan, Meyer, Wickerhauser and others introduced the notion of wavelet packets [29] 

which generalized the already well-grounded theory of wavelets and multiresolution 

analysis .   This theory, arising from the natural concept of "filling out" the nonuniform 

binary tree used in wavelet decompositions, established that any "arbitrary"3 pruning of the 

full binary tree would indeed give rise to a basis for l2(Z).    One of the obvious 

consequences of this construction was rapid computation of M-band wavelets [29] (hen 

M = 2k for some integer k) which have application in Jones' M-Band Wavelet Modulation 

(MWM) communication signals [28].    In this work the theory of wavelet packets is 

employed to develop a modulation scheme called, appropriately enough, wavelet packet 

modulation, or WPM.   This multidimensional scheme is shown to significantly improve 

communication performance over QAM [63], MultiScale Modulation (MSM) [28], and 

MWM  for certain  channel  disturbances while maintaining no less than equivalent 

performance in others, and this due to the fact that the modulations just mentioned are 

special cases of the generalized WPM scheme. By making available a library of basis sets a 

much wider selection of time-frequency tilings is admitted yielding a superior match of the 

transmission waveform with the channel. 

3.1   Construction of Wavelet Packet Bases 

In the following, the notation Z+ = {0,1,2,...} is used to denote the non-negative 

integers and Z_ = {0,-1,-2,...} is used to denote the non-positive integers. In like manner 

3The woni arbitrary is used rather loosely here, referring to a subset of branches that if decomposed to some maximum level 

for all, a uniform binary tree would result. I.e., this "arbitrary" pruning must be a valid one. 
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to [[29], a pair of quadrature mirror filters (QMF) of length L, hk and gk -(-1) hL_x_k , 

are utilized in the following recursive sequence of functions, 

P2nM=yl2^hkpH{2x-k) 
keZ , n e Z+ 

P2„+\(x) = yf2yZgkPnVx-k) 
keZ (1) 

which define the set of wavelet packet functions pn(x) arising from the given QMF pair. 

The function pQ(x) is the unique fixed point of the first two-scale equation above and is 

exactly the scaling function <|> from a MRA, i.e., the function which forms the basis for the 

subspace denoted K, in [36]. Similarly, P](x) is the corresponding wavelet function y by 

the second equation. Indeed, MRA and the wavelet transform (and M-band wavelets at the 

first decomposition, when M = 2k) are special cases of this general construction. The 

subspaces generated by these basis functions shall be defined as 

WJ"={2J,2pn(2Jx-k)),    j,keZ,    neZ+ (2) 

where (-) indicates closed linear span. From (1), both p2n and p2n+l are expansions in the 

scaled function pn(2x), implying that the spaces generated by these two functions are both 

subspaces of that generated by the parent. That is fl^and wf+X He in W?+x. 

Furthermore, the widely understood orthogonality properties of the wavelet packet functions 

are sufficient to admit the general decomposition relation, 

w"j+rw2jn®w2jn+l <3> 

where the symbol 0 indicates a subspace direct sum. The proof of (3) is provided in [3]. 

Thus every "parent" space is decomposed into orthogonal "child" subspaces - completely 

and without redundancy. 

It has been shown [8] that the set of wavelet packets, pn(x-k),k eZ,neZ+   form 

an orthonormal basis for L2(R). For the purposes of this discussion, however, a subset of 

L2(R) functions are of more practical interest; namely those that can be represented as 

expansions in the basis set of the scaling space <. Functions outside this space do not 

meet one or more of the criterion for practical communication signals, in particular the 
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bandwidth, which is intimately related to the sampling rate and defines the initial scaling 

space from the start. The theorem which establishes this arbitrary pruning of the infinite 

dyadic tree is also credited to Coifrnan. 

Theorem 1 

Let WQ C L2 (R) be equipped with orthonormal basis p0(x -k),keZ. If the 

collection p= {(l,n)},l e Z_,ne Z+ is such that the dyadic intervals 

Iln=  2l n, 2l (n + l)) form a disjoint covering of [0,1), then the set of wavelet 

packets 2l/2pn(2lx-k), keZ,(l,n)ep, form a complete orthonormal basis for 

wf. 
This theorem can be interpreted in terms of the direct sum of the subspaces spanned by each 

family of packets defined by the elements in the partition p. That is, 

W§=   0   W," (4) 
(/,n)ep 

(where it is important to emphasize once again that / e Z_ and ne Z+.) In particular, this 

interpretation clearly indicates that if p0(x) is a valid scaling function in W0 by (4) it can 

be written as a linear combination of the basis functions for the wavelet packet subspaces. It 

is precisely this nexus which admits the use of wavelet packets for communications. 

3.2     Waveform Development 

The issue to be dealt with in this manuscript is the design of a communication signal 

having "desirable" properties for a given transmission channel. A desirable signal is one 

which maximizes the information transferred from sender to observer with minimal 

distortion and in minimal time, where the distortion and time criterion translate into figures 

of merit for the signal. To accomplish the task described, the signal must stay within the 

frequency bandwidth allotted, filling it with as much information as possible while 

maintaining a relatively small number of erroneous info-atoms. A very good way to do this 

is to look at the time-frequency plane and see where interferences in the channel show up, 

whereby a variety of techniques which utilize time-frequency methods can be utilized to 

optimize communication. The focus of this work is to utilize functions with time-frequency 

flexibility to construct a signal that will minimize the effect of noise in the channel. Where 

most excision methods start at the receiver and do analysis first, followed by transform 
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domain modification and then synthesis for reconstruction, the modulation scheme 

developed here is intended to overcome channel disturbances at the transmitter (assuming 

some knowledge of the channel apriori,) synthesizing a signal for transmission first, with 

decomposition at the receiver. 

Jones' development of MWM and MSM was a substantial step in this direction, 

though these two methods are special cases of this more general scheme allowing for a 

variety of time-frequency representations. For MSM, a high frequency interferer will do 

more damage than a low frequency interferer due to the longer bandwidths of the basis 

functions in those subchannels. For MWM, any time-impulsive noise is bad because all the 

basis functions spread out over an entire super-symbol. Clearly, a signal with a T-F 

representation that can be specified arbitrarily (see footnote 3) would minimize the effects of 

a broader class of interference sources. 

Recall the standard QAM signal [63], 

*'>-#£ ««♦(;-»•) (5) 

where Es is the average T -second symbol energy of a QAM symbol am pulse-shaped by 

(j). Now suppose <f) e PF0°, i.e., the pulse shape is a wavelet scaling function. The W0 space 

can be decomposed, as per theorem 1, into a finite set of orthogonal subspaces defined by 

the collection p = {(/,,«,),(/2,«2),-,((/>"./)} as 

Wo = 0< • ^ 
i=\ 

The QAM signal, rewritten in terms of the basis functions of these decomposed spaces, 

becomes the multidimensional signal, 

J    h'iEs  ^    i 
SWPM (0 = ZJ-J     j       2-, <XmPni 

i=l "■ /w=-co 

r2i,t    ^ 
 m 
T       J 

(7) 

where a'm are the complex QAM signals on the  i'h channel of the associated filter bank 

which has scale 2l[ (i.e. the channel symbol rate is 2_/') with a spectrum concentrated at the 

band4 determined by «, Data placed on orthogonal functions arising from a wavelet packet 

4 The Gray-coding scheme that determines the bin number of the frequency band is rigorously detailed in [34],  It is not a 

straightforward mapping as is often erroneously assumed. 
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decomposition of the pulse shape, compels the name Wavelet Packet Modulation or WPM. 

The orthogonality across scales and within fixed scales of the constituent packets insures a 

zero ISI waveform, which is also free of cross channel interference. 

3.3   Dimensionality and Special Partitions 

It is very important to understand that the dimensionality, i.e. the number of T-F 

atoms in a WPM supersymbol, is fixed in advance as 2N for some N, and has nothing to 

do with the number of symbols in the QAM constellation in general. The number of 

channels Jupon which to multiplex the data can vary from 1 to 2N . Of course the original 

QAM signal, with no decomposition performed means each symbol occupies the entire 

bandwidth, but with smaller durations.   This corresponds to the partition pQAM =(0,0). 

The partition %>      = \J (-/,l)u(-(7-l),0)    is the decomposition defining Multiscale 

Modulation [28], where 27"1 is the number of QAM symbols occupying J = N + \ dyadic 

frequency bands in the T-F  diagram.     For the same dimensionality,  the partition 

p       = M (-N,i)  is the decomposition defining M-Band Wavelet Modulation [28], 

where M = J = 2N ,i.e. all symbols occur at the super-symbol rate, occupying equivalent 

bandwidths much smaller than the data bandwidth. Hence these formats are special cases of 

the more general WPM scheme. 

3.4   A Simple Example 

Obviously, because of the inherent flexibility of WPM, it will perform better in 

many types of interference environments, while keeping the utility of the two special cases 

MSM and MWM. I.e., there may be an environment which is optimally handled with 

MSM, and in that case, WPM will conform. The advantage of the WPM is demonstrated in 

environments where other T-F decompositions would be preferred over MSM or MWM. 

For instance, consider the case where a narrowband jammer is operating in the high 

frequency portion of the data bandwidth in conjunction with an impulsive time domain 
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interferer somewhere in the supersymbol duration. Let N=4, providing 24=16 T-F atoms 

in the decomposition. There will be N+\=5 dyadic frequency bands in MSM and 16 equal- 

width bands in MWM, illustrated by the top two blocks in Figure 1. The normal QAM 

construction is given in the bottom left and a Wavelet Packet construction is shown in the 

bottom right. 

Notice that for MSM, the tone jammer corrupts 8 of the coefficients and the impulse 

corrupts 5. One of these is affected by both, thus 12 of the 16 coefficients are noisy. The 

MWM case has all 16 coefficients affected by the impulse and QAM has all 16 affected by 

the tone. Thus none of these methods is ideal for these noise sources. However, the WPM 

diagram in the bottom right, which is optimized for this environment, isolates the interferers 

MSM MWM 

t 
QAM f 

WPM 

■_*> 

t t 
Figure 1. Comparison of modulation methods for a given interference 
environment consisting of time impulse and tone jammers. Shaded areas 
indicate corrupted symbols. 
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to 5 of the 16 coefficients - a significant improvement over the previous three. This 

flexibility to isolate certain channel impairments makes Wavelet Packet Modulation an 

attractive time-frequency method for multidimensional signaling. 

3.5   Waveform Figures of Merit 

In order to utilize WPM as a practical signaling strategy, several key properties of 

the waveform, namely bandwidth requirements (Power Spectral Density), bit error rate, and 

performance in a Gaussian noise environment, must be quantified. The cases of MSM and 

MWM are presented in detail in [28], where it was shown that both cases have exactly the 

same spectral density as conventional QAM. This is really no surprise as all the schemes 

are variations of the same time-frequency area. However, it is interesting that this property 

is a function solely of the scaling function and is not dependent on any wavelet function. 

This is true in the general case of wavelet packets as well. For bandwidth efficiency, the 

special cases were again shown to be equivalent to QAM, and indeed, since orthogonal 

pulse shapes are utilized, the results are expected to be consistent. Since the analysis for 

signals in the presence of noise (bit error rate probabilities) is prohibitive even for relatively 

simple waveforms, bounds and simulation should be used for quantifying this important 

signal property. This is not necessarily a problem however, since these are the measures 

that are used in the actual implementation. 

3.5.1     Power Spectral Density 

The conventional QAM signal has power spectral density [49] 

SQAM(f) = EsMfrf (8) 

where 0(/)is the Fourier Transform of ty(t), the normalized pulse shaping function, and 

Es  is the signal energy.    In order to derive the power spectral density of the WPM 

waveform, the following lemma is required: 

Lemma: Let p„(x) be a wavelet packetfunction and Pn(f) its corresponding Fourier 

transform. Then V« eZ+, 

Pn\L2 = I W)l2 + I'W/)!2 (9) 
Proof of Lemma: Taking the Fourier transform of the first equation in (1) gives, 
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Pm(f) = %H { 2"K2)P«\!l 
(10) 

where HU) is the half scale Discrete Fourier Transform of the hk sequence. Squaring the 

magnitudes of both sides gives 

H f 
\P2„(f)\   =i 

By a similar process, the second equation in (1) provides 

v2 

\P2n+\(f)\ 
f f 

ÖD 

(12) 

so that adding (11) and (12), and applying the well-known [62] "power complementary 

property", H f + G\{ 2, gives the desired result. 

The PSD of the wavelet packet modulated signal can now be derived. Consider the 

partition    p ={(/,,«,) (Ij.nj)},   and   introduce   the   notation   Tn(f) A\Pn(f)\     f<* 

convenience. WPM affords the capability of assigning to each channel (basis function) a 

completely different symbol constellation with possibly varying geometry and/or symbol 

energies - though they must have the same number of symbols. In this way it is possible for 

every channel to draw its symbols from different sources (a really attractive feature for 

coding.) However, the derivation of spectral density in this case is quite involved, and 

without a closed-form solution. Thus it is assumed that the source is generating independent 

data and the resulting symbols are then modulated onto J channels (wavelet packets) where 

the symbols on each channel are identically distributed from the same constellation. The 

PSD of the WPM waveform is 

Sm,u(f) = E^Tni(FT2,<) (13) 
j — i 

The proof of this step is exactly the same as that used to show the PSD of ordinary QAM as 

shown in numerous digital modulation texts, most notably . Now if p is sorted to facilitate 

manipulation such that the ordered pairs follow the rules 

l./,</2 <...</., (14) 

2.1f/,• = //+!, then«,-<w/+i, 

then because of this ordering and the dyadicity of the underlying structure, it must be true 

that /,_, = lj , and rtj = nJA +1. Thus (13) can be rewritten as 
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J-2 

SWPM (f) = ETnj   {fT21^) + ETnj (jr*) + E £ Tn> (fTl1*) 
i=\ 

= £7^, (/T^) + £ 7/,Vi+1 C/T2^) + E £ 7^ (/T2'<) (15) 

J-2 

where the last line is allowed by the lemma.  This relation is actually the PSD of another 

WPM        waveform        with        partition #/= {(/{.H,'),...,(/}_,,«)_))} where 

(/)_!,«j_i)=f/j -1, ^M , and this new partition can again be reordered as per (14). This 

process can be continued J-\ times, yielding a final partition p' = {(0,0)}.   Thus the 

expression for the PSD of WPM becomes 

S(VPM=ET0(fT20) = E\PQ(fr)\2. (16) 

Also, recalling that p0 is just the scaling function from an MRA at the same scale, yields 

,2 

which is precisely the power spectral density of the QAM signal. The significance of this 

result is that every WPM waveform has a bandwidth requirement equivalent to QAM, and 

may be utilized on channels currently supporting this traditional modulation. 

3.5.2      Bandwidth Efficiency 

For this figure of merit it is instructive to first consider the general case of separate 

constellations for each channel. Let the /"' channel carry symbols a'm from a 2 ' -QAM 

constellation, where Bt is the number of bits per symbol and /?, is the symbol rate. The 

PSD in (17) has some bandwidth 

W, = ^, (18) 

where T is the period of the pulse-shaping function <|>(0> md ß is me Percent excess 

bandwidth required beyond the Nyquist signaling bandwidth. So the general expression for 

the bandwidth efficiency of channel i is 

Pi 
RiBi _ RjBj (lg, 

7" *ß' 
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and therefore the bandwidth efficiency of WPM is 

J j    j 
p      =yp =^-YR.Bi. (20) 

I: 
Now, from the WPM waveform (7), the period for each symbol on channel i is 2  >T, so 

the /"' channel rate is/?, = ^ and hence (20) becomes T 

J 

P 
1 

WPM        1 + ß^ 
^2l'Bt. (21) 
i=\ 

This is as much simplification as is possible when considering the general case of different 

QAM constellations for each channel. However, for the case where B,, = B, i.e., all 

channels have the same symbol length (and therefore the same number of symbols in each 

constellation, although no constraint has been placed on the geometry,) the bandwidth 

efficiency becomes 

p       = -*L (22) 
rWPM 1   ,   ß 

because the /;'s come from a dyadic partition of the interval [0,1), forcing the constraint 

Y J_ I1' = 1. QAM using the same pulse shaping filter has precisely the same bandwidth 

efficiency. Hence, the theoretically expected result: increasing dimensionality by 

orthogonal decomposition of the pulse shaping function does not improve bandwidth 

efficiency. 
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4    DISCRETE IMPLEMENTATION OF WPM 

Wavelet Packet Modulation (WPM), a modulation scheme based on wavelet packets, has 

been developed in detail, but it remains to be seen how this format can be realized in a 

digital signal processing framework. It is certainly expected that a transceiver similar to that 

developed by Jones in [29] would accomplish the task, and it rums out that this is indeed the 

case. However, in order to justify the discrete implementation of WPM which will be 

developed in the next section, it is necessary that the Discrete Wavelet Packet Transform 

(DWPT) relative to some partition , and the corresponding inverse operation (IDWPT) be 

illuminated in sufficient detail. The reader is perhaps familiar with the standard wavelet 

transform and its associated non-uniform filter bank structure, or the M-Band wavelet (and 

fixed level wavelet packet) transform and the associated uniform filter bank structure. 

Presently not so widely understood is the generalized wavelet packet transform and the 

associated generalized filter bank. It is easy to deduce the heuristic operation of this 

structure, but a degree of mathematical exactitude is provided for completeness, and in the 

process, the additional notation needed for further developments is established. 

4.1   The Discrete Wavelet Packet Transform and its Inverse 

Consider the recursively defined wavelet packet functions , 

Pln{x) = 4l YjhkPnV-x~k"> 
keZ ,«G {0,1,2,...} (23) 

P2n+\ (*) = V2  £ SkPn (2x - k) 
k<EZ 

where the h andg sequences are discrete quadrature mirror filters (QMF) [8].   In the 

context of the current discussion, these sequences are interpreted as series coefficients for 

the functions  p2n(x) andp2n+](x)   cast in the basis of double-scaled, translated  pn 

functions. It is these functions which are used to build the WPM signal. In terms of inner 

products the series coefficients take the form 

5 The « = 0 case of (23) is the familiar two-scale multiresolution analysis equation set where 0and (etake the place of 

p0 and/?, respectively. 
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h(k) = (p2n (x), 4lpn (2x - k)) = V2 I" Pin (*)Pn (2x - W* 
\ i J co ^ (24) 

g(k) = (/>2„+i (*)> V2/>„(2x-Ar)) - V2 J^/>2*+i«A,(2*-k)dx 

Now, let  W"  represent the vector space generated by the wavelet packet functions 

2jl2pn{l
jx-k\ j,keZ, neZ+. Since the packet basis functions are orthonormal, 

any function / in this vector space has a plethora of corresponding wavelet packet series', 

each associated with a unique "partition"      of the unit interval.   A particular series is 

manifest as coefficients a"(i) in 

/(*) = !   I   a'/(i)^pn(2'x-i). (25) 
;'eZ (/,/?)ep 

These coefficients are computed via inner products with the basis functions, i.e., 

aUi) = (fMMpn(2'x-i)) = ^2liy(x)pn(2lx-iyx, (26) 

and constitute the Discrete Wavelet Packet Transform of / relative to . The following 

'single node decomposition' via the quadrature mirror filters 

a/2"(O=X^-2O0/+iW = 
keZ 

Hal, 

'Gal, 

(0 

(0 
(27) 

fl/2H+,(0=E*(*-20«/+i(*) = 
k<sZ 

provides for the efficient calculation of the transform coefficients without the costly inner 

product integration, where H and G represent the operations of filtering by h ox g 

respectively, followed by decimation by 2. These relations are proven in numerous 

references, e.g.[36]. The signal processing operations for the relations of (27) actually 

represent one stage in a wavelet packet decomposition as shown in Figure 2a where the 

signal lines are labeled with the relative coefficient sequences. 

a"j+i(k) 
h(k) |2 

a]"(k)_ 
|2 h(-k) 

g(k) *2 
a2r+\k) 

a"M(k) 

|2 *(-*) 

(a) (b) 

Figure 2. Single Stage of the (a) WPT and (b) IWPT 
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It should be noted that, in this general setting, the complete wavelet packet filter 

bank defined by the partition has no pre-programmable structure. I.e., the decomposition is 

not necessarily to some uniform level, nor is it necessarily a wavelet transform. Therefore 

the actual algorithm which computes the coefficients must be slightly more involved from a 

bookkeeping perspective, keeping track of when a particular terminating node has been 

reached, as well as the partition coordinates. If the current node is not one of the partition 

coordinates, then another stage of decomposition is performed at that node. The generalized 

composition (synthesis) result is 

aw (0=I w - 2k)aln (*)+E s(i - 2* W*' (*) 
kzZ keZ (28) 

= H*[afn](i)    +   G*[afn+l~\(i) 
and provides an equally efficient method of calculating the IDWPT for the given partition. 

This relation represents the signal processing of Figure 2b. 

In the communication signal design problem, this latter building block is used to 

generate the WPM signal, and the former is used for reception and detection. This is a twist 

on the vast majority of the literature for which the concentration is on signal analysis and/or 

compression by processing the wavelet coefficients or by thresholding them respectively. 

After the objectives are accomplished the signal is reconstructed - perfectly in the case of 

signal analysis and near-perfectly in the case of signal compression. However, in this 

application, the objective is to "build" a custom signal that exploits the channel properties 

and avoids non-Gaussian noise if possible. Hence, the operations are reversed. 

4.2   The original WPM Transceiver 

Now that the requisite concepts are understood, the actual generation of a WPM 

signal can be considered. For the sake of review, the original definition of WPM is 

J       l2li£        00 r2i,t   \ 
 m 
T V J 

(29) SWPM (0 ~ Zv      T S    Z amPns 
i=l V m=-oo V   ± J 

where al
m represents the complex QAM data indexed by m traversing the /th channel of 

the filter bank defined by the current partition p = {(/], "i), (^»n2 X •••>((/»nJ)} • ^ *s 

entirely plausible that WPM be implemented directly with analog pulse shaping filters for 

each partition coordinate, requiring a complex scheme for tracking the symbols, and their 
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different rates. Additionally the receiver would require matched filters for every pulse 

shape, which is exponentially significant for large dimensionality. The preferred method, 

however, is to take advantage of the structure in the inverse wavelet packet transform to 

construct a signal determined by the QAM symbols. Figure 3 shows how this is 

accomplished. 

The sequence of complex QAM data symbols, a{k), is used as the source for 

wavelet packet coefficients and after demultiplexing this symbol stream into J channels at 

appropriate rates, the substreams a' are applied to the synthesis process of the IDWPT. 

This forms a sequence of "coded" complex symbols, b{k), which are intimately related to 

the QAM data. These new symbols do not map to a QAM constellation but do retain the 

information for "decoding" via the inverse transform. The symbols become weights for 

dirac impulses which are then shaped by the scaling function pulse-shaping filter for 

transmission. At the receiver, a single filter matched to the scaling function followed by a 

sampler provides the reconstructed symbol estimates, y(k), and the analysis process of the 

DWPT (for the same partition as that used in the synthesis) expands these noisy symbols, 

resulting in estimates, a(k), of the original QAM data. 

The process can be shown mathematically starting with the b(k) sequence out of the 

IDWPT. The signal y(t) is a weighted train of impulses given by 

CO , 

(30) 

D 
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U 
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a(k) 

1 1 a' 
1) 
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U p 
X aJ 

T 

Pulse-Shape 
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n(t)- 

y(k)   >\yW 

T 

^Po 
r(t) 

Figure 3. WPM Transceiver Model 
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which after convolution with the pulse-shaping filter and gain factor becomes 

A =-00 

Changing variables as u = %
T =* rft = w« , gives 

^)-;£lwD(;-u-^o(")^^- <32> 
fc=-x 

yielding, by the sifting property of delta functions, 

*)-J!iwA>(H) <33) 

which looks a great deal like the original QAM signal 

•M-Jfz«« MM <34) 
A=-x 

In fact, the only difference in these two signals is the fact that the complex symbols b(k) 

can take on immensely more values than the 2k values a(k) of the original QAM symbol 

set. As a matter of record, the range for b(k) has cardinality 

r, . ,/V 
Nh = l2kf]   = 2kU (35) 

V    '   / 
where k is the number of bits per symbol in the QAM constellation, L is the length of the 

QMF filters, and J is the number of input channels in the filter bank. For example, with a 

BPSK constellation (only two symbols), 2-tap Daubechies QMF's, and a two-channel filter 

bank, the output sequence can take on any of 2122 = 16 values, which is a modest eight- 

times expansion of the original symbol set. For perspective however, a 16-QAM 

constellation (comparatively low for modern technology), 37-tap square-root raised cosine 

QMF's, and an 8-channel bank provide 2m6 =22368 >1071 possible output values - a 

virtual continuum! This has significance in certain applications where low probability of 

interception is important, since the symbol constellation is no longer nicely partitioned for 

easy decoding. 

At the receiver, the transmitted signal is corrupted additively by noise, n(t), in the 

channel so that the output of the matched filter is 
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r°° 1        ( —T ^ 

where «F(0 is the filtered noise. Substituting (33) and changing variables as above yields 

f * \ 
KO = J-Z*(»)>/77n)A) [j;-u-n W{~u)du    +   nF{t). (37) 

"      n=-cc ^ ' 

Sampling at j/L = k, 

00 

y(k) = yJ~E Y, b{n)^pQ(-u + {k-n))pQ(-u)du    +   nF{k) (38) 
/;=-oo 

which after incorporation of the orthonormality property of the scaling function at integer 

shifts gives 

00 

y(k) = s[EYJb(n?>(k-n)   +   nF{k) 
«=—00 ^ ' 

= jEb(k) + nF{k) 
which is a sequence of estimates of the original symbols out of the inverse wavelet packet 

transform.    Decoding these estimates is accomplished with a forward wavelet packet 

transform and demultiplexer, the result being a sequence resembling the original QAM data. 

Just how well these output symbols represent the original ones is a function of the noise and 

the partition chosen for the WPM expansion. 

4.3   Practical Modifications 

The design heretofore presented is fine in theory, but the reader may be concerned with the 

impracticality of the dirac delta function generator for digital to analog conversion. On this 

point the author concedes that more practical methods of accomplishing the pulse shaping 

for bandwidth efficiency must be incorporated for implementation of WPM. This problem 

was solved, at least for special cases of multi-scale modulation and M-band wavelet 

modulation, by Jones [29]. It will be shown that this same strategy can be applied to the 

general case of wavelet packet modulation. 

Consider the modulated signal in (33).    This expression can be interpreted as a series 

expansion of s{t) in the basis of translated functions p0 (f-•) •  In this interpretation, the 

series coefficients are represented by b(k). Using the relation for p0 in (23), this becomes 
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       00 CO 

*(0 = >ff Z Kn)4l £ Kk)po(lt-2n-k) 
n=-oo k=-co 

Making the variable substitution l = 2n + k gives 

       CO CO 

*(') = # Z b{n)42Y.hH-2n)p^t-l) 

(40) 

00 

/=-00 

/=—oo 

(41) 

^0 (*'-') V2 ^ b(n)h(l-2n) 
«=-00 

where the bracketed expression is the familiar upsample-and-filter interpolation operation 

shown in Figure 4. 

b(n) t2 h(n) 

Figure 4. Signal processing recursively hidden in WPM transmit signal. 

Thus the dirac impulse generator and the analog pulse shaping filter can be replaced by the 

digital processing above followed by a digital to analog converter and a simple image 

rejection filter with decent cutoff approximating the scaling function p0 scaled by two. The 

end result is a digitally implemented transmitter for wavelet packet modulation. 

The receiver portion of the transceiver model also has some analog processing due 

to the matched filter. Duality arguments allow this block to be replaced by discrete 

components as well, for it is obvious that reversing the last steps in the transmission process 

will "undo" that processing. Thus a moderately tight anti-aliasing filter followed by analog 

to digital conversion will give received samples resembling those at the transmitter prior to 

digital to analog conversion and filtering for image rejection. Then a deconvolution of the 

received samples to undo the effect of the final filter stage at the transmitter and 

downsampling by two provides the input to the inverse wavelet packet transform. 

There is however, the matter of the deconvolution, which should raise some flags for 

the astute reader. It is true that not any filter will suffice for the transmitter pulse shaping 

stage. One requirement is that the filter have a nonzero discrete Fourier transform. If this 

sequence has any zero at all, it will be impossible to invert the transform for equalization 

and the desired deconvolution filter at the receiver will not exist. In fact, even when the 

filter has a non-zero definite transform, the dynamic range can be a roadblock, since the 
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deconvolution sequence will have values with magnitudes in the range of the reciprocals of 

the pulse shaper sequence. For instance, in the case of a filter with h(l)=.001, the 

deconvolution filter will have values in the range 1000. This dynamic range problem is an 

issue that is best addressed by scaling the filter to straddle unity as close as possible and 

adjusting the gain stage accordingly. 

4.4   Translation Between Tiling Diagram and Filter Bank 

A tiling diagram is really just a graphical representation of the partition defining the 

actual basis functions utilized in the signal which generates it. In other words, the partition 

and the tiling diagram are equivalent ways of describing a signal composed of wavelet 

packet bases - the difference manifested mainly in the way the description is interpreted. A 

tiling diagram describes the basis functions in terms of their frequency localization and 

symbol rate, and the partition describes the basis functions directly as output nodes of a 

dyadic filter bank whose nodes are labeled as ordered pairs. The goal of this section is to 

establish a method of translating from one to the other, and in the course of this 

development, the concept of gray-coding is utilized. At this point it is necessary to review 

the notation and generation of gray-codes. 

4.4.1    Gray Coding of Frequency Bins 

Gray encoding is a binary coding scheme which was originally developed to 

circumvent the effects of large transient errors in electrical counters. Communication 

systems use the coding method for building in immunity to large bit error in certain 

signaling systems. The idea behind gray codes is that any symbol is only one bit different 

from its nearest neighbors in the code. Therefore, since most errors are due to the noise 

causing the data symbol estimate to stray into a neighboring symbol's detection region, there 

will only be one bit in error rather than two or more, thus providing lower bit error rates. 

However, reducing errors is not the only application of gray codes. It turns out that many 

situations which involving the use of binary notation and/or dyadic structure are ripe for a 

gray code application. In the case of dyadic perfect-reconstruction filter banks, the structure 

of the banks admits a natural application. 

Consider the sequence of sets, Gk , in which first three elements in the sequence are 
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G = 

"000" 

001 

"00" on 
"o~ 

1 
G2 = 

01 

11 
G3 = 

010 

110 

10 111 

101 

100 

(42) 

These three sets are the first three terms in the more general recursion 

0G*_,(0) 

0G,_,(1) 

G* = 

Gk(0) 

Gk{\) 

Alk-X) 

0Gft_,(2*-,-l) 

lG,_,(2^-l) 

0 Tk-\ 

Gflip 
(43) 

1GA_,(0) 

where Gjffi is the "upside down" version of GkA.   The set Gk is actually a bijective 

mapping from the set |o, • • •, 2k -1 j to the set of k -bit binary sequences. In this light, Gk 

has an inverse given by 

Gk
](dbase2)An   3   Gk{n) = dbasel (44) 

which follows from the definition. 

Now, the Paley or natural ordering for the labels of the filter bank nodes has already 

been chosen. At level k, the nodes are labeled in order from top to bottom, starting at 0 and 

proceeding through 2k -1. If the data bandwidth is divided into 2k subintervals and the nth 

bin is labeled (starting at 0) with the decimal equivalent of Gk{n), a direct mapping from 

the filter bank node n at level k to the nth frequency bin results. Figure 5 illustrates this 

important connection. 

4.4.2    Translation Computations 

Given the above information it is a simple task to translate a coordinate pair in some 

partition to its frequency bin in the bandwidth. To be very specific, if N is the maximum 
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level of the wavelet packet filter bank (MAXLEVELS) and B and T are the data 

bandwidth and QAM symbol duration respectively, then other important information such 

as bin width and symbol rate for the channel can be found. Clearly the supersymbol 

duration is Tss =2NT. Now consider the partition coordinate (/, n). For this coordinate the 

bandwidth is divided into 2l subintervals and the filter bank nodes are labeled according to 

the Gray coding procedure above. The packet described by this coordinate has the 

following frequency parameters 

index = G/~
1(«base2) ^ b 

width =4 <45) 
T 
2b + ln center rreq. = —7-7- D 
2/+I 

The time parameters of the T-F atoms generated at this node of the filter bank are 

T 1 
width = 4fr = 2/r       =>       cell rate = -r- (46) 

2N-l 2'T 
To complete the idea, consider a specific partition coordinate, say (-3,7), of a filter 

bank with N = 4. This coordinate is the last node at level 3 in the filter bank, and describes 

a set of T-F atoms with the following parameters 

6 = G3-1(7base2) = G3-1(lll) = 5 

.u      B     B 

width = —r = — 
23     8 

2(5)+ 1        11 (47> center freq. =—rn~B = — tf 
2 16 

24"3      2 
rate = = — 

T        T 
The translation from frequency bin to wavelet packet number is simple: The decimal 

representation of the gray code Gk (b) for the bin is the kth level wavelet packet number. Or 

more precisely, 

[G.WL,,,-- (48> 

The scale or level number / is directly associated with the atom-rate for the channel and the 

value of N, as seen from (46) so that 

l = N-\og2(rate-Tss) (49) 
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Thus a systematic method of moving from the tiling diagram to the filter bank (i.e. basis 

functions), and vice-versa, has been established. It is interesting to note that if the operators 

H and G are substituted for 0 and 1 respectively, in Gt(b), the resulting sequence, call it 

F[{b), is exactly the filter sequence necessary to obtain frequency localization in bin b at 

level /. 

4.5   Why Gray-coding? 

The answer to this excellent question is revealed through an important property of 

the decimation blocks in the filter bank6.  If hk and gk are discrete lowpass and highpass 

quadrature mirror filters with bandwidths 0, 
Fr and 

4'2 
for a given sampling rate 

Fs, then the decimation blocks cause a certain exploitable form of aliasing in which the 

lowpass and highpass bands of the output of a g -filter and decimator actually switch 
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' Jones calls it "band-shuffling." 
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positions relative to the original bandwidth.   Thus two consecutive G operations filter a 

signal to the bandpass region 
F.  3F„ and a GH operation filters the same signal to the 

highpass band 
2>F   F ~'J s       s The proof of this interesting phenomenon is provided in [9]. 

Since this only occurs at the output of the G-filters, and since the complete filter bank is 

made up of iterated two-channel filter banks, the gray coded frequency localization comes 

naturally. 
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5    EXTENSION OF WPM TO SPREAD SPECTRUM 

In this work, the time-frequency selective processing features inherent in wavelet 

packet modulation are extended to spread spectrum waveforms where redundancy created 

by large dimensionality is exploited at the receiver for interference mitigation. Actually, the 

work should probably be viewed as a generalized extension to that of Jones [28]. (It is noted 

here that efficient implementations are established for the system proposed, but these are not 

the subject of this work.) The most attractive feature of this spread spectrum wavelet packet 

modulation (SSWPM) system is the time-frequency flexibility which incorporates several 

methods as special cases. Indeed, DSPN, which has only time dimensionality (each data 

symbol waveform is decomposed in time with short "chips" utilizing the entire data 

bandwidth) is one special case, as is spread spectrum M-band wavelet modulation 

(SSMWM) which has only frequency dimensionality in a given symbol (each data symbol 

waveform is composed of separated narrowband pulses covering the entire symbol period). 

Other hybrid systems exist, all of which are special cases of this general SSWPM scheme. 

Notions recently introduced in support of the development of standard WPM [34] 

are useful. In particular the "supersymbol" and its associated "tiling diagram" (borrowed 

from multiresolution analysis theory) provide graphical justification for the unified approach 

to spread spectrum communications. From these diagrams it is plain to the reader how 

dimensionality in time or frequency or both are theoretically perceived. The viewpoint 

taken also allows for the wavelet packet modulation receiver to be viewed as a projection 

operator, where the wavelet packet basis functions defining the transmitted waveform are 

the target of the projection. The resulting projection coefficients can be optimally weighted 

for maximum received signal to noise ratio and hence minimum bit error rate. 

For SSMSM and SSMWM, these optimum weights have been shown to exhibit 

predictable behavior depending on the character of the interference. In the case of 

widespread influence where the interference is basically uniform across the supersymbol, a 

uniform weighting is shown to be most appropriate, whereas localized interference is best 

handled with excision of the corrupted coefficients. This latter case arises when an 

impulsive jammer is met by the appropriately partitioned supersymbol, for instance when a 

dirac impulse corrupts DSPN or a narrowband jammer corrupts SSMWM or multitone 

45 



modulation. In fact, the SSMSM signal which uses a standard wavelet basis for the pulse 

shapes and hence partitions the supersymbol in the very familiar dyadically related 

rectangles was shown to be a very good compromise for joint time and frequency jammers 

or when the character of the jammer was unknown but assumed impulsive in either domain. 

5.1   Signal development 

Traditional DSPN waveforms have the following form 

(50) 
lp   oo M-\ f / 

M 
V 

t    . 
 1 
T     ) 

-J 
v l 1=0    y=o 

where the a, 's are binary data, and the c, 's are binary "chips" from an M -chip sequence 

shaped by the functioncp which has energy E within the symbol duration T (this function is 

usually a square pulse.) From the work done on Wavelet Packet Modulation, it was 

established that asserting a MRA scaling function as the pulse shape provided significant 

benefits for system performance. In addition, since the scaling functions are shifted in time, 

the DSPN signal in (50) has complete dimensionality in time. 

Similarly, a spread spectrum signal having frequency domain dimensionality has the 

form 

r~w°°  M~*    ft  ^ 
*(o=J—X^Z^« T-* (51) 

MT
i=0      n=0 V- J 

where the \|/n's are (perhaps overlapping) pulse shaping functions each having (perhaps 

overlapping and/or orthogonal) spectral occupancy significantly smaller than the data 

bandwidth but which when taken together cover it completely. Since each of these 

functions has duration T, the symbol period, the signal has complete dimensionality in 

frequency. 

It is natural then, to pursue a trade-off between these two signals, having 

dimensionality in both time and frequency. A first step in this direction was taken with the 

Spread Spectrum Multiscale Modulation (SSMSM) signal, also by Jones. Unfortunately, 

this signal also suffers from a lack of flexibility, and the performance in the presence of 

narrowband interference varies widely depending on the frequency of the jammer. It is 

natural then to apply Wavelet Packet Modulation as a generalization of these cases where a 

hybrid time-frequency dimensionality is the goal. The SSWPM signal then takes the form 
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where E'- - ^#, the energy in the packet function associated with the/Ä frequency bin in 

the data bandwidth, and c'k = c  w+/.        , the complicated subscript on the chip variable 

arising from the subtleties involved in applying a coding sequence in a multirate system - in 

this case a filter bank with J output channels and a maximum of N levels. The pulse 

shapes pn. are wavelet packets defined by the (/y,«,) coordinate of the wavelet packet 

partition [34]. 

In Wavelet Packet Modulation, the waveform is generated via the decomposition of 

a QAM source [63] at some symbol rate into several sub-rate QAM signals followed by a 

synthesis procedure with a perfect reconstruction filter bank whose structure depends on the 

desired time-frequency partitioning of the transmitted signal. The spread spectrum 

modification to this signal involves the intelligent application of a pseudonoise spreading 

code to the pulse shaping functions carrying the information, just as in all direct sequence 

spread spectrum waveforms. 

5.2   Implementation 

The implementation of the SSWPM transceiver follows very similarly to that used 

for standard wavelet packet modulation [34], with the inclusion of the PN code application. 

First a bank of J multiplexers with a total of M inputs all receive the same input data 

symbol. Each multiplexer block also acts as a PN code applicator, so that each input is 

modulated by one chip of the M-chip sequence (which may come from a longer code.) The 

multiplexer outputs are then at the correct rate for each input on the inverse wavelet packet 

transform. The reader will notice that the only difference between the resulting signal and 

standard WPM is the symbol rate - WPM operates at M times the symbol rate of SSWPM. 

The intelligent multiplexing mentioned above is a consequence of the multirate 

nature of the filter bank. Specifically, the inputs to the synthesis bank in the transmitter 

operate at potentially different rates, depending on decomposition level. Larger levels 

(higher negative numbers) require lower rate input sequences, and vice versa. To account 

for this feature, a multiplexer dependent on the partition elements is incorporated. 
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At the receiver, the noisy input signal is processed by a filter matched to the wavelet 

packet scaling function pulse shape used to construct the transmitted signal, then the output 

is sampled at the appropriate time (timing and symbol synchronization are assumed, though 

this issue is not at all trivial.) The resulting real or complex (depending on whether the 

quadrature channel is also used in transmission or not) symbol sequence is transformed via 

the discrete wavelet packet transform defined by the partition used in the transmission. The 

output channels of this transform, just as in the transmitter's inverse transform, carry 

sequences whose rates depend on the level of decomposition for each channel. Again, this 

multirate character must be accounted for intelligently, hence the presence of demultiplexers 

which provide to the summer the appropriate M values from J channels every Ml sample 

instant. Figure 6 illustrates the process 

It should be noted that the demultiplexers in this diagram do more than just split out 

sequences into single values. Every output channel contains a multiplier that reapplies the 

corresponding PN chip applied at the transmitter, resulting in PN removal. The output of the 

summer then becomes the transmitted symbol. 
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Figure 6. Implementation of SSWPM - note similarity to standard Wavelet Packet Modulation 

5.3   Impulsive Noise Localization 

As mentioned above, the advantage of SSWPM is realized most clearly in the 

presence of joint time and frequency jammers. Figure 7 shows an example of the optimized 

supersymbol obtained for the jammer scenario consisting of a single tone and single dirac 
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impulse. The gray-shaded areas represent those "chips" in the symbol which are corrupted 

directly by the non-gaussian noise sources. In this case there are 128 chips per symbol and 

only eight are contaminated by the noise. In an excision system [36], where the Grey 

shaded areas are identified and canceled before reconstructing the signal, this tight 

localization would translate into much higher ratio of received signal to jammer power. 

In comparison, Figure 8 shows the fixed TF tiling of a SSMSM signal. Since the 

tone is in the lower half of the data bandwidth, SSMSM performs very poorly with well 

over half of the supersymbol (spread spectrum symbol) corrupted. The characteristic of 

straight SSMSM is the standard wavelet basis used for constructing the signal. This basis 

has a high rate lowpass component that occupies the entire lower half of the data bandwidth. 

This feature is detrimental when narrowband jammers operate in that range, corrupting half 

of the supersymbol without any help from a time domain impulse. In this case, of 128 

chips, 71 are a liability to the received SNR. Clearly, the flexibility afforded by the wavelet 

packet construction is useful for mitigating the effects of these types of jammers. 

5.4   Performance 

Figure 9 shows the BER for the four signals mentioned in section 1 - DSPN, 

SSMWM, SSMSM and SSWPM, as a function of signal to jammer energy7 (SJR.) Clearly, 

the spread spectrum Wavelet Packet Modulated waveform with an optimized supersymbol 
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Figure 7. Example of interference Figure 8. Example of interference 
localization in a 128-cell supersymbol.      localization for the SSMSM signal in a 
  128 cell supersymbol. 
7 Since the jammer is on for the entire duration, i.e. 100% duty cycle, energy and power ratios are equivalent. 
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tiling performs dramatically better in the aforementioned joint impulsive jammer scenario. 

The graph does require some explanation however. In this example, which does not 

correspond to the previous two figures (they were deliberately less complicated due to space 

and resolution limitations,) 1024 chips were applied to each transmitted symbol, and the 

ambient noise power was set to 9.6 dB. For all four modulation types (all special cases of 

the SSWPM waveform), in the absence of any jammer energy, the bit error rate for simple 

AWGN at 9.6dB SNR is expected to be exactly the same as the well known binary phase 

shift keyed (BPSK) system - approximately 1 error every 100,000 bits.  This is the "noise 

floor" for high SJR. 

Now, at very low SJR, jammer energy dominates, so the asymptotic behavior of the 

curves can be readily derived. It is straightforward to show that (based on the particular 

jamming scenario of one tone and one dirac impulse in the supersymbol,) 

lim    BER = /M 
2 

(53) 

where X is the number of corrupted chips and M is the total number of chips per symbol. 

For DSPN (high rate blocks occupying the entire data bandwidth) and SSMWM (blocks 

occupying the entire supersymbol duration but only a fraction of the data bandwidth,) the 
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Figure 9. BER Comparisons for DSPN, SSMWM, SSMSM, and SSWPM for a single 
tone/impulse jammer. 
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entire supersymbol is corrupted either by the tone or the dirac pulse. Thus the jammer will 

dominate the signal at low SJR and therefore the probability of correctly detecting a bit is 1 

in 2 - flipping a coin would work as well. For SSMSM, with the tone in the lower half of 

the bandwidth, and the dirac impulse anywhere in the supersymbol duration, there are 

X=512+log21024 =522 chips corrupted. Hence the asymptotic BER is around .255. For 

optimized SSWPM (again, optimized for this particular jamming scenario) which has a 

predictable corrupted chip count of l + log2M = ll, the asymptotic BER is about .0054, 

explaining the markedly improved performance in low SJR regions. 

Finally, it should be noted that the relative performance theoretically increases ad 

infinitum. That is, as the number of chips per symbol rises, the asymptotic BER decreases 

proportionally. However, a trade-off with frequency localization spreading due to increased 

filter bank decomposition keeps this performance increase within practical limits. 
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6  CONCLUSIONS 

6.1 Literature 

The application of wavelets and filter banks to communication systems has received 

a great deal of attention in the last 5 years, with many of the communication objectives, 

channel coding, modulation, spread spectrum and covertness, multiple access, interference 

mitigation, synchronization, detection, channel ID and modulation identification being 

addressed in particular articles. Though there is a significant amount of overlap among 

researchers in this field, it is encouraging to see the amount of activity and the promising 

results being developed. In addition, from the reference sections of many papers discussed 

in this summary article, it is easy to see a spirit of collaboration and sharing of information 

as well. 

6.2 Wavelet Packet Modulation 

The results presented here have established at least three important ideas. First, the 

connections between the mathematics of Coifrnan and Wickerhauser's wavelet packet 

constructions and Quadrature Amplitude Modulation via the decomposition of a scaling 

function pulse shape are openly revealed. Secondly, the bandwidth efficiency and power 

spectral density for the WPM signal are derived from first principles, showing the 

equivalence of the subject signaling strategy to ordinary QAM and hence portability into 

existing systems. Thirdly, the application of interference mitigation via flexible time- 

frequency tilings afforded by the generalized wavelet packet construction is attacked for 

joint time-frequency impulsive jammers and a significant improvement in SNR is shown to 

be obtainable. 

The work is not without its unsolved problems, however. In any communication 

system, the practical issues of acquisition and synchronization are fundamental to 

implementation. Since the goal of this work was to establish mathematical connections 

between wavelet packets and communications - thereby capitalizing on the 

programmability and efficiency of the digital filter bank for implementation, the 

assumptions of accurate timing are useful for the development, but they still must be 

addressed at some point for the WPM strategy to be utilized.   The acquisition part is not 
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difficult, since the PSD for the WPM system is equivalent to QAM, it is certainly plausible 

that a standard carrier tracking device would suffice. Symbol synchronization is the real 

problem, since the wavelet packet pulse shapes vary in scale (dilation). As it turns out, 

every communications signal that conveys information (non-degenerate signals) inherently 

possesses extractable features - one in particular is the nondifferentiability of the transmitted 

signal at certain points where the data cycles between bits. Minimum Shift Keyed (MSK) 

waveforms attempt to reduce this effect by smoothing the transitions, but a good feature 

detector will still reveal them. The WPM strategy is no different in this respect, since the 

data transitions generate "edges" in the transmitted signal which can be extracted for timing 

purposes. Work is currently being done to solve the timing problem by capitalizing on the 

edge-detection or discontinuity "alarm" capabilities of wavelets - potentially combining the 

synchronization and detection processes for increased computational efficiency. 

The transceiver for this waveform is very interesting, though space restrictions 

prohibit the detailed discussion here. Essentially, the waveform construction contained in 

this report affords a very efficient all digital filter bank transceiver incorporating a 

programmable demultiplexer followed by a synthesis filter bank which performs an inverse 

wavelet packet transform on the demultiplexed data streams. The resulting "coded" data 

then passes through a single pulse shaping filter before transmission. At the receiver, a 

matched filter and sampler (this is where the symbol timing becomes crucial) provide a data 

stream that is input to an analysis filter bank which mirrors that of the transmitter, 

performing a discrete wavelet packet transform on the input sequence. The output channels 

are intelligently multiplexed to produce an estimate of the original data sequence. 

6.3   Digital Implementation of WPM 

The main focus here is to optimize the performance and increase the implementability of 

this signaling scheme in order to engender practical development of transceivers which 

utilize the technology, and benefit from its jammer-avoidance properties as well as its 

channel-fitting adaptability in both the time and frequency domains. In the pursuit of this 

goal the discrete wavelet packet transform was reviewed and its application to WPM 

solidified. Specifically the difference between an analysis-first scheme that decomposes an 

incoming signal for analysis and processing, then synthesis for reconstruction and a 
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synthesis-first scheme (transmultiplexer) that composes a signal from data for transmission 

and then analysis for breaking out the data is addressed. After presenting the mathematical 

make-up of the WPM signal and its dependence on analog processing for pulse shaping, a 

modification for the transmitter was presented which replaces the continuous-time dirac 

function generator with a digital equivalent, capitalizing on the signal processing recursion 

hidden in the WPM structure. A dual modification for the receiver using an anti-aliasing 

filter followed by A/D conversion comprises the replacement for the analog matched filter. 

The problem of deconvolution of the transmitter filtering and associated problems with 

dynamic range are acknowledged - and have been addressed in a cursory fashion. In 

addition, the issue of frequency bin allocation and indexing was described and the problem 

of translating wavelet packet number to/from frequency bin solved analytically. The result 

is a completed work on the basic block-diagram-level implementation for Wavelet Packet 

Modulation. 

6.4   Spread Spectrum Wavelet Packet Modulation 

The SSWPM results are not surprising, for "matching" the signal to the channel 

characteristics intuitively means better performance. However complexity becomes an 

issue, since a full binary tree is very computationally intense depending on the order of the 

FIRs and the channel bandwidth. A practical feature of SSMSM is that the dyadic tree is 

linear in the number of FIRs, therefore trading performance for complexity. Robustness is 

another issue, since the performance degrades substantially with a mismatched waveform. 

The transmitter must have knowledge of the channel characteristics and, some mechanism 

must exist to dynamically adjust the transmitted signal. This problem has been dealt with in 

[32] but the solution requires either a reliable feedback channel from the receiver to the 

transmitter which will adjust the transmit waveform on a dynamic basis depending on 

channel conditions measured by the receiver (this has some obvious practical limitations) or 

the transmitter must sense the channel. These issues make for some interesting future 

research. 
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