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Foreword 

Notes on this section of the Z Standard 

Section title: Foreword 
Section editor: John Nicholls 
Source file: part of front.tex 
Most recent update: 7th June 1995 
Formatted: 3rd July 1995 

This document 

This is the current version of the Z Standard being developed as a BSI and ISO standard. It is the 
Working Draft (WD) of the Z Standards Panel, BSI Panel IST/5/-/19/2: Z Notation), ISO Panel 
SC22/WG19 (Rapporteur Group for Z). 

Document status 

Some sections of this document have been revised and others are under review. As a consequence, this 
version of the standard is neither complete nor internally consistent. It has been prepared and given 
limited distribution in this form so that those working on its revision can provide commments for its 
improvement. 

Comments on this document 

Comments may be sent to 

John Nicholls, Convener Z Standards Panel 
Oxford University Computing Laboratory 
Programming Research Group 
Wolfson Building 
Parks Road, Oxford 0X1 3QD 
United Kingdom. 
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0    Introduction 

Notes on this section of the Z Standard 

Section title: Introduction 
' Section editor: John Nicholls 

Source file: intro.tex 
Most recent update: 16th jan 95 
Formatted: 3rd July 1995 

Z was originally developed as a specification notation for preparing formal descriptions of systems, 
without necessarily indicating how they will be implemented. This section includes a description of the 
aims and objectives of formal specification notations, with special reference to Z. The design principles 
used in the development of the Z standard are described. 

0.1    Notations for system description 

It is widely acknowledged that natural languages and similar informal notations have many disad- 
vantages when used for writing technical descriptions. In using such languages it is difficult to write 
specifications with the required precision, clarity and economy of expression and to transform them 
systematically and reliably into code or hardware. Furthermore, it is impossible to carry out formal 
mathematical reasoning about informally written descriptions. 

In contrast, specifications written in formal notations can be made precise and clear. Inference rules 
derived from their mathematical foundations enable designers to carry out mathematical reasoning and 
construct proofs relating to the properties of system descriptions. 

The advantages of formal notations were recognised from an early stage in the history of computing, 
although it has taken considerable time for their practical application to become established. Many of 
the early large-scale applications of formal notation were for the specification of programming languages; 
formal descriptions of syntax are now widespread and for some languages there are formal descriptions 
of semantics. 

Formal notations are now being used in a wide and expanding variety of environments, especially in key 
areas where the integrity of systems is critical, or where there is high intensity of use. For a discussion 
of domains of application for formal methods, see [19]. 

Examples of the effective use of formal specification notations are found in the following areas: 

safety critical systems 
security systems 
the definition of standards 
hardware development 
operating systems 
transaction processing systems 
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0   INTRODUCTION 

Descriptions of case studies from these and other application areas for Z are listed in a Z Bibliography 
by Bowen [2]. 

0.2    Objectives of a specification notation 

The objectives of a formal specification notation are to assist in the production of descriptions that 
are complete, consistent and unambiguous. To achieve these objectives, a formal specification notation 
needs to be: 

usable by those who read and write formal documents; 

expressive, so that it can be used for a wide range of applications; 

precise, so that it is possible to write descriptions that mean exactly what is intended; 

given a mathematically sound meaning, since mathematical reasoning may be used in the devel- 
opment process; 

suitable for defining sufficiently abstract models of systems that specifications do not need to 
contain unnecessary implementation details. 

0.3    Characteristics of Z 

A central part of Z is taken from the mathematics of set theory and first order predicate calculus. For 
the purposes of system description additions have been made to conventional mathematics, including: 

a type system which requires each variable to be associated with a declared type. The ability to 
type-check a specification helps in assuring that it is accurate and consistent; 

the Z schema notation, which provides a technique for grouping together and re-using common 
forms; 

a deductive system which supports reasoning about Z specifications. 

In addition, the following have been developed to help in the pragmatic use of Z in development projects: 

the capability for writing explanatory text as an integral part of a Z document. 

the inclusion within the standard of an agreed method of representing text in computers and 
transmitting it. 

0.4    Design principles 

The following design principles have been used in the development of the standard and are based on 
those used, explicitly or implicitly, in the original design of Z. 
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0.5   Aims of standardisation 

Basis in mathematics. Z is based on a central core of mathematics and uses accepted mathematical 
concepts and notation. In addition, there are means of defining and checking the types of Z elements 
and, by means of the Z schema, for structuring specifications. 

Utility. All parts of Z included in the standard will have been shown to contribute to the main 
objectives of Z and will have been used in significant case studies or development projects. 

Simplicity. There is an objective to keep the Z notation as simple as possible, consistent with its 
overall objectives. 

0.5    Aims of standardisation 

The Z standard supports the following general aims of standardisation as listed in the British Standards 
Institution Standard for Standards [5]: 

provision of a medium for communication and interchangeability; 

support for the economic production of standardised products and services; 

the establishment of means for ensuring consistent quality and fitness for purpose of goods and 
services; 

promotion of international trade. 

0.6    Validation of the standard 

In order to validate the standard, it is necessary to ensure that it is is appropriate, consistent and 
complete, and is in accordance with the general understanding of the Z notation. In order to achieve 
this, the following steps have been taken: 

existing descriptions of the notation have been used as a basis for the document; 

alternative concepts and notations have been proposed where existing ones were considered defi- 
cient; 

the standard is being reviewed by the Z Standards Review Committee, which includes experts in 
formal methods, users and tool makers; 

the standard is being reviewed by the ZIP tools project to confirm that it can be supported by 
tools; 

the mathematical part of the standard is being checked for soundness. 
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1    Scope 

Notes on this section of the Z Standard 

Section title: Scope 
Section editor: John Nicholls 
Contributions by: 
Source file: scope.tex 
Most recent update: 16 January 1995 
Formatted: 3rd July 1995 

The Z standard defines the representation, structure and meaning of the formal part of specifications 
written in the Z notation. 

In addition to defining the formal part of the Z notation, the Z standard defines: 

a Library or Toolkit of mathematical functions for use in writing Z specifications; 

an Interchange Format for Z documents that enables them to be prepared, stored and transmitted 
within computer networks; 

a deductive system for formal reasoning about Z specifications. 

A Z document may contain both formal and informal text. The lexis of the standard does not define how 
the formal and informal parts are delimited; this is defined in the Interchange Format. The Interchange 
Format does not define the structure of the informal part of a Z document. 

The standard does not define a method of using Z. 

D 

Z Notation   Version 1.1 30th June 1995 



2    Normative references 

Notes on this section of the Z Standard 

Section title: Normative references 
Section editor: John Nicholls 
Source file: normref.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

BSI6154 BSI Standard BS 6154, Method of defining syntactic metalanguage, British Standards 
Institution, 1981. 

IS08879 ISO (International Organization for Standardization), ISO 8879-1986 (E) Information 
Processing - Text and Office systems - Standard Generalized Markup Language (SGML), 
Geneva: ISO, 1986. 

D 
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3    Conformity 

Notes on this section of the Z Standard 

Section title: Conformity 
Section editor: John Nicholls 
Source file: conform.tex 
Most recent update: 16 January 1995 
Formatted: 3rd July 1995 

A specification conforms to the standard for the Z notation if and only if the formal text is written in 
accordance with the syntax rules and is well typed. 

A deductive system for Z conforms to the standard if and only if its rules are sound with respect to the 
semantics. 
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4    Semantic metalanguage 

Notes on this section of the Z Standard 

Section title: Semantic metalanguage 
Section editor: Randolph Johnson 
Contributions by: Stephen Brien, Randolph Johnson, John Nicholls, Jim 
Woodcock, ... (others to be added) 
Updated by: Randolph Johnson 
Source file: math.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

4.1    Introduction 

This is the first of two chapters describing the mathematical framework used in the definition of Z. The 
chapter includes: 

the names of metalanguage symbols; 

the forms in which they are used; 

descriptions of their meaning. 

Many of the symbols used in this chapter are derived from conventional mathematics and are defined 
informally. Throughout the standard, the mathematical treatment is based on Zermelo-Fraenkel (ZF) 
set theory. An introduction to ZF theory can be found in text books such as Enderton [7] or Hamilton 
[10]. 

In addition to conventional mathematical symbols, special symbols are introduced which allow concise 
semantic definitions to be written. Where these have meanings similar to those of Z, Z-like symbols are 
used. Definitions of new symbols are given in terms of basic symbols (or other new symbols). 

Note that, although symbols similar to those of Z are used, the semantic metalanguage is not Z but 
mathematics based on classical (i.e. untyped) set theory. 

Naming conventions.    The following naming conventions are used: 

upper-case letters A, B, C (sometimes with subscripts) denote sets; 

upper-case letters R,S,T (sometimes with subscripts) denote relations; 

lower-case letters a, b, c (sometimes with subscripts) denote members of sets (which may also be sets 
themselves). 
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4    SEMANTIC METALANGUA GE 

Commuting diagrams. In several of the following descriptions commuting diagrams are used to 
illustrate relationships between the set constructors being defined. Commuting diagrams are graphs 
whose nodes are labelled with sets. Nodes are connected by arrows, each arrow being labelled with a 
relation between the sets at each end. A diagram is said to commute when any two composed routes 
between nodes yield the same result. 

Elision An expression such as ai,...,o„ indicates that intermediate members in the finite list are 
elided. Whenever such an expression is used, the minimum value that n is allowed to take (usually 0 or 
1) will be stated. An expression such as A1 U A2 U... indicates that all (finite) values of the superscript 
are to be included. 

4.2    Definitions and declarations 

Variables and notations are introduced and named as follows: 

Table 1: Declarations and definitions 

Name Symbol Example Description 

declaration 

definition = 

a : A 

A = B 

a is declared to be a member of the set A 

A is defined as B 

Note: A declaration of a in the form a : A introduces the object a and states that it is a 
member of the set A. Care has been taken to ensure that when such a declaration is used, 
the set A is non-empty. 
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4.3    Sets 

The following sets axe predefined: 

4.3   Sets 

Table 2: Predefined sets 

Name 

empty set 

integers 

strings 

Form 

0 

Description 

the set having no members 

...,-2,-1,0,1,2,... 

the set of all finite strings of characters 

Relationships between sets and their members are written as follows: 

Table 3: Relationships between sets and members 

Name 

membership 

subset 

equality 

Form 

a e A 

ACB 

A = B 

Description 

a is a member of A 

A is a subset of B i.e. all members of A are 
members of B 

sets A and B are equal i.e. A and B have the 
same members 
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4    SEMANTIC METALANGUA GE 

4.3.1    Set constructors 

The following set constructors define sets constructed from elements or from other sets: 

Table 4: Set constructors 

Name Form Description 

set extension {ai,...,an} the set comprising ai,..., an; if n = 0, the 
set is the empty set; if n = 1, the set is a 
singleton set 

union AUB the set comprising all the members of A and 
all the members of B 

intersection ADB the set comprising the members common to A 
and B 

set difference A\B the set comprising the members of A that are 
not members of B 

power set FA the set of all subsets of A 

finite power set FA the set of all finite subsets of A 
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4-4    Tuples and products 

4.4    Tuples and products 

The following constructors define tuples and products: 

Table 5: Tuples and products 

Name Form Definition 

tuple (oi,...,a„) ordered list of the elements a1;..., an, 
where n > 1 

Cartesian product Al X ...x An the set of tuples (ai,..., a„) such that 
a\ € Ai   and ...   and an e An 

enumerated product An 
the set of tuples (ai,..., an) such that 

ai,...,aneA 
iterated product A+ A1   U   A2   U   Az   U   ... 

Note: It is important in the metalanguage that the sets {A1, A2, A3,...} form a disjoint 
collection. Under the most common construction of tuples, this need not be the case. 
However, it is true if, for example, we view a tuple as a finite sequence so that (au..., an) 
is a function from {1,2,..., n} into A. 
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4    SEMANTIC METALANGUAGE 

4.5    Relations 

The following are defined: 

Table 6: Relations 

Name Form Definition 

relations A*->B F(A x B) 

identity relation IA (a,b) e IA <=> a = b A a € A 

domain domR a € domi? o 3 b • (a,b) € R 

range rani? b ev&nR <s> 3a • (a,b) e R 

converse R-1 (a,b) ER'1 &  (b,a) eR 

composition ä;5 (a, b)eR°,S & 
3c« (a,c) € RA(c,b) G S 

range restriction Rt> A R;IA 

range anti-restriction R& A Rt>(r&nR\A) 

domain restriction A<R U°,R 
domain anti-restriction A^R (dom.R\j4) <R 

Note: The composition operator binds more tightly than the set constructors. 
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4-6   Functions 

4.6    Functions 

A function is a relation with the property that to each element in its domain there corresponds exactly 
one element in its range. 

Table 7: Functions 

Name Form Description or definition 

partial functions A-H-B the set of functions from A into B whose do- 
mains are subsets of A 

total functions A->B the set of functions from A into B whose do- 
mains are the whole of A 

total injections A>-+ B the set of total functions from A into B which 
are one-to-one 

total surjections A-^B the set of total functions from A into B whose 
ranges are B 

bijections Ay^B A>-> B n A—»B 

finite partial functions A-^B    A -H- B n ¥(A x B) 

Name 

constant function 

relational image 

singleton image 

Table 8: Function constructors 

Form 

3(R) 
A(R) 

Description or definition 

maps all members in the set A to a 
(b,a)ea% <& be A 

(A, B) € 3(R) & B = ran(A < R) 

(a,B)£A(R) o B = ran({a} < R) 

Note: The subscript A may be omitted if the domain can be determined from the context. 

In the remainder of this section, the term function, when not otherwise specified, is taken to mean 
partial function. 
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4    SEMANTIC METALANGUAGE 

4.7    Set constructors as relations 

Membership, union, intersection etc. axe not sets, and therefore, a fortiori, not relations. However, the 
restriction of any of these to the members or subsets etc. of a particular set A, does indeed yield a 
relation. In general, the relation determined, e.g., by the membership function, will depend on the set 
A; however, it is convenient to use a notation which supresses this dependence when A is clear from the 
context of use. The notations used are defined in the following table. 

Table 9: Set constructors defined as relations 

Name Symbol Domain Range Definition 

union (u) (FA)2 FA ((01,02), 6) € (U) <£>  b = oiUa2 

intersection (n) (FA)2 FA ((ax> a2), 6) € (n) & b = 0l D a2 

set difference (\) (FA)2 FA ((01.02), 6) € (\) «• 6 = oi\a2 

containment (2) FA FA (a, b) e (D)  -&  bC a 

member 0) FA A (a,b) €(3) & b e a 

singleton set {-} A FA (a,b)€{-} & b = {a} 

tuple set {••} A+ PA ((ai,...,an),b) e {..} & 
b = {ai,...,an} 

power (P) FA PFA (a,b)<=(P) O b = Pa 

relational override (©) {A <-> B)2 A<r->B ((RuR2),S)e(®) & 

S = (domR2<Ri)UR2 

Cartesian product (x) (PJ4)+ F(A+) ((01,..., c), 6) e (x) «• 
b = ai x ... x an 

indexed product X A-++FB F(A -H. B) (a,b) e(X&)-&bCa;3 
where dorn a = dorn b. 

These relations will be used only when they have well-defined domains. 

The following diagram shows commuting properties of relational constructors: 
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4-8    Compatible functions. 

4.8    Compatible functions. 

Two functions are said to be compatible if their union is also a function.  That is, their values aeree 
whenever their domains overlap. 

The set of pairs of compatible functions from A to B is defined as follows: 

CAB = dom((u) > (A -H- B)) 

The functional forms of the set operators: union, intersection and set difference are defined only when the 
arguments are compatible functions. When defined, they have the same value as their set equivalents. 

Table 10: Constructors on compatible functions 

Name 

functional union 

functional intersection 

functional difference 

Symbol 

UAB 

nAB 

"—AB 

Definition 

CAB <(U) 

CAB <(n) 

CAB < (\) 

Z Notation   Version 1.1 30th June 1995 15 



4    SEMANTIC METALANGUA GE 

4.9    Diagonal and projection 

The following are defined: 

Table 11: Diagonal and projection operators 

Name Symbol Domain Range Definition 

diagonal A„ A An (a,(ai,...,an)) € A„ 
-& a\ = a A ... A an = a, 

where n > 1 

projection 7T,- Ai x ... x Ai x . • *An Ai ((ai,...,ai,...,an),a) e 7r; 
4=r> a = a,-, where 1 < i < n 

4.10    Pointwise product 

The pointwise product R\   ®   ...    ®   Rn is a relation from the Cartesian product of the domains of 
Ri,...,Rn to the Cartesian product of their ranges. 

Table 12: Pointwise product constructors 

Name 

pointwise product 

iterated pointwise product 

Form 

i?i   <g>   ...   ®   Rn 

R® 

Definition 

((ai,...,an), (6].,... ,&„))  G  Ri   <g>    ... 
Rn 
<& («!, h) G Rx A ... A (a„, 6„) e Ä„ 

R  U   (Ä  ®  i?)   U   (R   ®  i?  ®   Ä)   U 

The following diagram illustrates properties of the product constructors: 

Bxx...xBn ^  B{ 

R\   ®   ...   ®   Rn 

Ai x ... x An w. - Ai 

Ri 
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4-11    Relational tuple 

4.11    Relational tuple 

If A is the intersection of the domains of the relations Ru..., Rn, then the relational tuple (Ru...,Rn) 
is a relation from A to the Cartesian product of their ranges. This is defined in terms of the relational 
product operator and the diagonal operator A„. 

Table 13: Tuple constructor 

Name 

relational tuple 

Form 

(Ri,...,Rn) 

Definition 

A„ ? (Äi Rn), where n > 1 

If the relations Ri,...,Rn each have domain A and have range Bu respectively, then the following 
diagram shows the relationship between relational tuple (Rx,..., Rn) and projection: 

Bi x ... x Bn 

(.Ri,... ,Rn) 

Name 

Table 14: Relational tuple operator 

relational tupling 

Symbol 

O 

Domain 

(;4<->5i) x (A«-*£2) 

Range 

A <-> (Bi x B2) 

Definition 

((Ri,R2),S)€0 
<* S = {RUR2) 
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4.12    Promoted application 

In order to avoid generating potentially undefined terms, there is no function application in the meta- 
language (it is used only in explanatory notes). For the definition of function application in Z, it is 
necessary to define a form of promoted application. For any given a, the apply-to-a function takes 
as its argument a function and has as its result the application of that function to the element a. 
This function can be generalised to the promoted application operator (R • T), which is the relational 
analogue of the S combinator in combinatory logic. 

Table 15: Promoted application 

Name Form Domain Range Definition 

apply-to-a 

promoted application 

(_a) 

R»S 

A+-+B 

A*->(B^>C)x(A^B) 

B 

A^C 

((9) n (a0;^-1));^ 

((R p) n (S ; Trf1)); TT2 

Note: If p is a function and c is an member of the domain of p then the following equality 
holds: (_c) p   =   p c. So we have the following equivalence: 

(a, b) € (_c)   &   (c, b) e a 

If the relations R : A <-» (B <-> C) and S : A <-» B both have the element a in their domains, 
then the tuple (a, (b, c)) belongs to (R °,3) providing that (b, c) is a member of the set R(a) 
and it belongs to (S 5 7rf1) if b is S(a). The tuple (a, c) belongs to the whole relation exactly 
when for some b the tuple (a, (b, c)) belongs to the first part. If R and S are functions, then 
promoted application is defined so that the following equality holds: 

(R»S)(a)   =   (Ra)(Sa) 

Promoted application is disjunctive in both arguments. 

The apply-to-a function (_a) can be derived from promoted application as follows: 

(-«) /•ac 
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Notes on this section of the Z Standard 

Section title: Semantic universe 
Section editor: Randolph Johnson (ex: Jim Woodcock) 
Contributions by: Stephen Brien, Jim Woodcock, ... (others to be added) 
Source file: semdom.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

5.1 Introduction 

This section defines a semantic universe within which the meanings of Z specifications lie; it is based 
on the Zermelo-Praenkel axiomatisation of sets mentioned in the last section. 

The syntax of Z defines a set of specifications. The semantics of Z defines a function from these 
specifications to meanings within the semantic universe. This universe contains the meanings of names 
types, and values used in a specification, as well as the environment used to define the overall meaning 
of a specification. It should be noted that the meaning of a specification is further paramatrised by the 
assignment of sets to given set names in the specification. 

5.2 Names and types 

The first task in building the universe is to explain the use of names and the notion of types In Z a 
name is used to denote an element, which may be a set, a tuple, a binding, or an element of a given 
type. These names come in three varieties: they may be the names of Schemas, variables, or constants 
This partitioning of abstract names is dependent on the specification in question, the members of each 
set not being distinguishable in the concrete syntax. Abstractly, we have that, for any particular Z 
specification, our set of names, Name, is comprised of schema names, variable names, and constant 
names: 

SchemaName U Variable U Constant = Name 

Representation names can have different abstract forms for different specifications; there is assumed to 
be an infinite supply of each. 

In common with other specification and programming languages, but unlike ZF set theory, the rules of 
Z require that every name introduced in a Z specification is given a particular type which determines 
the possibilities for the values that it may take. 

The simplest types are given set names, which are used to introduce abstract objects into a specification, 
as the formal names of generic parameters or as expressions. Their names are drawn from the set 
Constant. 

GivenSetName   C   Constant 
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Note:   The names Z for the set of integers and § for the set of strings are members of the 
set of given set names. I.e., {Z, §} C   GivenSetName. 

Every type belongs to the set Type, which is partitioned into the four subsets Gtype, Ptype, Ctype, 
and Stype representing the given types, power set types, Cartesian product types, and schema types, 
respectively. 

Basic familiarity with elementary set theory leads one to view something of given type as an object, 
of power set type as a set, of Cartesian product type as a tuple, but what about something of schema 
type? It is a partial function from variable names to types; such a function is called a signature: 

Signature = Variable -tn- Type 

Now we have everything that we need in order to explain the structure of the set of types. Consider power 
set types. Prom every type represented by a, we can construct the unique type which is represented 
by Pa; every power set type is constructed in this way from a unique type. Thus, the power set 
type constructor is a bijection between Type and Ptype. Similar arguments apply to the other type 
constructors. We can sum this up by defining the following four bijections with the partitions of Type: 

givenT : GivenSetName >—»■ Gtype 
powerT : Type >-»• Ptype 
cproductT : (Type+ \ Type) >-»• Ctype 
schemaT : Signature >—» Stype 

Note: The signature parameter for the schemaT operator can be the empty signature. 

For each specification there is a set of distinct given types. All other types used are constructed from 
these given types using a unique combination of the type constructors. This uniqueness is guaranteed 
because the type constructors are in bijection with the partitions of the set Type. Therefore the set 
Type is the smallest set which is closed under these type constructors. In terminology from category 
theory, Type can be described as the initial algebra over the signature given by givenT, powerT, 
cproductT, schemaT. Using the notation for free types as defined in Z, we can sum this up by defining 
the set Type as follows: 

Type ::= givenT ((GivenSetName)) 
|   powerT ((Type)) 
j   cproductT(((Type+\ Type))) 
|   schemaT ((Signature)) 

5.3    Values in Z 

One of the purposes of ascribing a type to a variable is to determine which values the variable may 
take. To make this possible, each type has a (ZF) set of values associated with it, called its carrier set. 
The values in the carrier set of a given type are regarded as atomic objects. Each value in the carrier 
set of a non given type is modelled by a ZF set. The relationship between the types and values in a 
specification is defined by the function Carrier, whose definition we approach inductively by defining 
the carrier function for given types and then constructing the function for other types from this. 
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5.3    Values in Z 

Note: In Z a type is represented by its carrier set. 

A set Wwill be defined below to contain the values of all elements in Z. The carrier sets for each type 
in Z are subsets of W. The set WQ  is the set comprising the carrier sets for each of the given types. 

Definition 5.1 For each specification there is a carrier function which maps the given types to elements 
of W0. 

Carrier^ : Gtype —> Wo 

Note: The carrier sets (elements of W0) may be empty sets. This means that the types are 
not inhabited. 

Note: Suppose that 7 is a given type; what is the carrier set of the power set type 
powerT-y? It is simply the set P( Carrier 7). In general, if 7 is a power set type of a 
given type T, we must calculate the carrier set by stripping off the power set constructor, 
calculating the carrier set of this underlying given type, and then forming the power set of 
the result. This is given by the expression 

{powerT~l ; Carrier^ \ (P)) 7 

Similarly, if 7 is a Cartesian product of given types, then we should break it up into its 
constituent given types, determine their carrier sets, and then form their Cartesian product, 
so that we end up with a set of tuple values: 

{cproductT~l ? Carrier^ | (x))7 

Finally, if 7 is a schema type constructed from given types, then we should obtain the 
underlying signature; this yields a function from variable names to types, which we must 
turn into a function from variable names to the carrier sets of these types; finally, we must 
form the schema product, so that we end up with a set of functions from names to values: 

(schemaT-1 5 3(IVaHable   ®   Carrier0) ? X) 7 

The indexed product operator X is used to convert a function Variable HH- P W to a set of 
functions P( Variable -H-> W). 

In this discussion, we have assumed that the type constructors are applied to given types, but in general 
they are applied to arbitrary types. Since a type is made out of a finite sequence of applications of the 
constructors, we can define the depth of a type to be the length of this sequence. Now we can give our 
inductive definition using this notion of depth: 
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Definition 5.2 

Carrier i+\ = 
Carrier { 
U powerT'1 5 Carrier { ? (P) 
U cproductT'1 ? Carrierf | (x) 
U schemaT~x | 3(IVariable   ®   Carrieri) ? <V 

Note: The carrier set of the schema type constructed from the empty signature is the set 
containing the empty binding. 

In order to calculate the carrier set for a type 7, we must apply Carrieri, where i is the depth of type 
7. Notice that every carrier function whose domain contains 7 gives the same result for 7; this justifies 
our general definition. 

Definition 5.3 The general carrier function mapping elements of Typeto their carrier sets is defined 
as follows: 

Carrier = Carriero U Carrier\ U Carrier2 Li... 

The values which may be used in a Z specification are those that are in the carrier sets that are assigned 
to the types. This set is constructed from the elements of Wo using the type constructors. 

Definition 5.4 The set W of all values is the set of all the elements in each of the carrier sets for the 
elements of Type: 

W = 3l (Carrier p) Type 

Definition 5.5 A binding is a finite mapping from variables to values: 

Binding = Variable -tn- W 

The carrier function is a homomorphism between Type and W. 

Note: Thus, we have the equations for carrier 

Carrier (powerT 7) = P (Carrier 7) 
Carrier (cproductT (71,... ,7«)) = (Carrier 71) x ... x (Carrier 7„) 
Carrier (schemaTj) = X(3(I   <8>   Carrier) 7) 

5.4    Elements in Z 

Each element in Z is represented by the pair consisting of its type and its value. The semantic set Elm 
is a set of type-value pairs; this set may be considered as the relation between types and values in which 
a type is related to a value if and only if the value is a member of the carrier set of the type. 
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5.4    Elements in Z 

Editor's note:    The commuting diagram  "The type system" has been temporarily omitted from this 
section. 

Definition 5.6 The set Elmis a set of type-value pairs: 

Elm :P(Type x W) 

A value is an element of a type if and only if it is contained in the carrier set of the type: 

Elm = Carrier ; 9 

Note: The set Elm of all compatible type-value pairs is also a relation between types and 
elements of their carrier sets. If the carrier set for a type is empty, then the type will not 
be in the domain of Elm. 

The first and second projections on a tuple are used to extract the type and value respectively. 

Definition 5.7 The type and value functions are projections from the tuples in Elm: 

t = Elm < 7Ti 

v = Elm < 7T2 

Sets in Z are those elements which have a power type: 

Definition 5.8 The set Pelm contains all elements which have power type: 

Pelm = Ptype < Elm. 

Definition 5.9 The membership relation, 3, for elements in Z is a relation between Pelm and Elm: 

3    : Pelm <—y Elm 

This relation is the product of the relation between a power type and its underlying type and the relation 
between a set and its members: 

3 = (powerT~l   <g>    3) 

A Z specification consists of a number of definitions which introduce names. Each name may denote 
some value, and each name must have some type; that is, each name may be associated with an element. 
We dall such an assignment of elements to names a situation. 

Definition 5.10 A situation is a finite mapping from variables to elements: 

Situation = Variable -H-> Elm 
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A situation tells us two things about the names in a specification: their types and their values. If 
we think about the type projection of each name, then we obtain a mapping from names to types: a 
signature. If, on the other hand, we think about the value projection of each name, then we obtain a 
mapping from names to values: a binding. The signature and binding corresponding to a particular 
situation can be extracted by the functions T and V respectively. 

Definition 5.11 The Tand Vfunctions are defined as follows: 

T   =   3{IVariable    ®    0 

V   =   3 {I Variable    ®    «) 

The following commuting diagram, in which n is an arbitrary variable name, illustrates the relationship 
between types and values and their lifted forms as signatures and bindings: 

T                                        V 
Signature Situation «- Binding 

(_») (-») (_n) 

Type Elm W 

5.5    Generics 

A Z expression that involves a generic instantiation acquires a type and a value that depends upon the 
type and value of the expression used in the instantiation. Thus if we see 0™, we know this has a 

different type from 0rpZi. The various types that 0 may take are represented as a function from Type 

to Type. In the case of 0, this function takes an arbitrary powerset type to itself. In general, where 
a generic definition contains a list of identifiers, the various possible instantiations are a function from 
lists of elements to a type and value. The elements which may appear as actual parameters of a generic 

definition must be of powerset type. 

5.5.1    Generic types 

For each generic type the number of formal parameters is fixed, and every possible sequence of powerset 
types with the right number of formal parameters is given a type. So each generic type is a function 
from fixed-length sequences of power types to a type. In order to simplify the definition of generic types 
we consider first the case of the generic type with n parameters and then extend to the general case. 
This type is a function from an n-tuple of power types to a type. This function must be total as all 
possible combinations of parameters must be given a type. 
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5.5    Generics 

Definition 5.12 For any natural number n > 0, the set of all generic types with n parameters is 
defined as follows: 

Gen-Type„ = Ptypen —> Type 

Since the number of parameters for a generic type is fixed, the general generic type is an example of 
one of the specific fixed length generic types. So the set of all generic types is the union of all the fixed 
length types. 

Definition 5.13 The set of all generic types is the union of all the sets of finite length generic types: 

Gen-Type = GenJTypex U Gen-Type2 U ... 

Note: This models a set far bigger than that which can be constructed using generic defi- 
nitions in Z 

5.5.2    Generic elements 

As with generic types, for each generic element there is a fixed number of formal parameters that it 
can take; furthermore every possible sequence of the correct number of elements with powerset type is 
given a type and value. Generic elements are defined in a similar way to generic types: by defining the 
specific n-length case and generalising. 

For any natural number n > 0, the set of all generic elements with n parameters is a subset of the set 
of functions from n-tuples of set elements to elements: 

Gen_Elmn : F{Pelmn —* Elm) 

The functions representing generic elements are type consistent; a generic element, when instantiated 
with two sequences of elements of the same type, will give two elements of the same type. This is an 
important restriction on the functions used to model generic elements. In order to define this property 
it is necessary to characterise the type part of a generic element. 

Definition 5.14 The function rn takes a function from n-tuples of elements to elements and returns 
a relation from n-tuples of type to type: 

rn : {Pelmn —> Elm) —> {Ptypen <-> Type) 

rn = 3(r  ®  t) 

The functions which are to be characterised as generic elements are those whose type part is a generic 
type, i.e. those whose type part is functional. 

Definition 5.15 The set of generic elements with n parameters are those functions whose type part is 
functional, i.e. contained in Gen-Typen: 

Gen-Elmn = dom (rn > Gen^Type) 
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In the same way as for generic types, the general generic element is an example of a specific one for 

some fixed number of parameters. 

Definition 5.16 The set of all generic elements is the union of all the sets of finite length generic 

elements: 

Gen-Elm = Gen-Elmi U Gen-Elm2 U ... 

Definition 5.17 The generic type function can be generalised as follows: 

r = n U r2 U ... 

5.6    Environments 

In order to give a meaning to the constructs of Z, we need an environment to record the elements denoted 
by the names used in a Z specification. The meaning of a Z specification is a set of environments. This 
set contains those environments which map the names declared in the specification to a combination of 
values which correspond to the constraints within the specification. 

Definition 5.18 An environment is defined as a finite partial function from names to elements or f 

generic elements: 

Env = Name -tt-> (Elm U Gen-Elm) 

Whether a Z specification is well typed or not is a question that is independent of the values of the 
declared variables. To be able to answer this question it is simply necessary to have an environment in 

which the types of all names are recorded. 

Definition 5.19 A type-environment is defined as a finite function from names to types or generic 

types: 

Tenv = Name -tn- (Type U Gen-Type) 

The simple relationship between the richer environment, Env, and the one used just for type checking, 
Tenv, is given by the forgetful function T which 'throws away' the values. 

Definition 5.20 The function T maps the second element of each tuple in an environment onto its 

corresponding type or generic type: 

T=  3(lName    ®    (* U 7")) 

The following commuting diagram, in which n is an arbitrary name, illustrates the relationship between 

the environment and the type-environment: 
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5.6   Environments 

Tenv 

(-») 

Type U Gen-Type ■*- 

.Enu 

tÖT 

(_n) 

£/m U Gen-Elm 

Note:    If T is a set of type environments, then 3(T X)T is the corresponding set of full 
environments. 

D 
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Notes on this section of the Z Standard 

Section title: Language description 
Section editor: Randolph Johnson 
Contributions by: ... (to be added) 
Source file: lang.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

6.1    Introduction 

This section provides a general introduction to the following sections of the language definition, each 
of which defines a major syntactic category: expression, predicate, schema, paragraph, specification. 
Within each section there are subsections corresponding to the syntactic categories of the abstract 
syntax. These follow a consistent pattern, sub-divided as follows: Abstract syntax, Concrete form, 
Sample representation and transformation, Type, and Value/Meaning. 

A denotational style of semantic description is used, as described for example in [25] and, as in the 
customary style of writing denotational semantics* semantic brackets are used to delimit text for which 
denotations are given. The notation is extended by providing different shapes of brackets for different 
kinds of language elements as shown in the following table. Three types of semantic functions are 
used, for type, value and meaning. The different types are identified by, respectively, the superscripts 

T, V, M on the brackets. 

Bracket 

{-} 

(-) 

(-) 
?     ? 

Table 16: Brackets used for semantic functions 

Argument 

Expression 

Predicate 

Schema 

Paragraph 

Specification 

Forms 

i-ir, i-iM-r 

(-)T, (-r 
?       ?T    ?       ?M 
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6.2   Abstract syntax 

The following meta-variables are used for expressing the representation syntax, i.e., the visual form in 
which it appears. Similar symbols, in bold font, are used for expressing the abstract syntax. 

Table 17: Meta-variables used in the representation syntax 

Variables Sort 

E,x,y Expression 

n, m Name 

a String 

i Number 

t Tuple 

s, u Set-valued expression 

b Binding 

f Function 

P,Q Predicate 

C,D Declaration 

St Schema Text 

S,T Schema 

Par Paragraph 

6.2    Abstract syntax 

For each language element, its abstract syntax is defined in a form of BNF. The following example 
illustrates the style used. 

POWERSET = Pow EXP 

In some cases symbols such as 0 are used rather than key-words or other structures in the syntax to 
make reading of the abstract syntax easier. The abstract syntax is presented in Annex A. 

6.3    Concrete form, representation and transformation 

Editor's note:   This, and the next subsections, have been revised to account for the new concrete syntax 
and lexis. 

Check carefully! JEN 
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For each language element, there is an example of the concrete form showing a production or productions 
of the language element being defined, together with a table showing the relationship between the 
representation and abstract forms. 

Note: There may be more than one representation of an abstract syntax category; in such 
cases all forms are listed. In some cases the multiplicity of representations is due to the fact 
that some forms can be considered as abbreviations of others. 

Transformations are presented in a denotational style. Superscripts on brackets denote the type of the 
argument. 

Table 18: Transformation functions 

Brackets 

f 

l-f 

iPATl 

Argument 

Expression 

Predicate 

Declaration 

Schema 

Paragraph 

The following example illustrates how a sample form from the concrete syntax is presented, together 
with a metalanguage version of the representation and its corresponding abstract form: 

Concrete form 

PSET Expression 

Sample representation and transformation 

Representation Abstract 

Pow[tf 

In this example the production for power set shows how a power set is represented as an expression 
prefixed with the power set symbol. The first column in the table gives an example of the representation 
form. In this case s is some expression for a set in representational form. The second column gives the 
abstract form of this expression. In this case the form is an (abstract) powerset symbol, followed by 
the abstract form of the expression s. 
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6.4    Type 

These two columns can be read as an equation in the form: 

[P5f    =    Pow[5f 

The concrete syntax is presented in Annex B. 

6.4    Type 

The definition of the Z type system is by structural induction over the abstract representation of a Z 
specification. The well-typedness of a Z specification can be determined independently of the values 
of the declared variables. So we see that the following definition of the Z type system is entirely 
self-contained: given a Z specification, the type definitions determine whether that specification is 
well-typed. 

Note: Determining whether a given specification is well-typed is a decidable question. Sim- 
ilarly, the determination of the type of any term, within a given environment, is decidable. 
This is in contrast with evaluation - determining whether a term has a certain value is, in 
general, undecidable. 

Table 19: Type functions of major forms 

Name Form Sort 

Expression Type lEf Tenv -H- Type 

Predicate Type {PV P Tenv 

Schema Type isy Tenv -+» Signature 

Paragraph Type {Par Y Tenv -H» Tenv 

The following example illustrates the description of the type of a powerset: 

Type The type of the power set Pow s is the power set type of the type of the set s. 

| Pow s ]r   =   ([ s ]r > Ptype) ; powerT 

Note: A power set Pow s is well typed only if s has power set type. 

The type description contains an informal description, the mathematical definition of the type function 
for the powerset and an explanation of when it is well-typed. This last explanation is derived directly 
from the domain of the type function. 
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Table 20: Meaning functions of major forms 

Name 

Expression Meaning 

Predicate Meaning 

Schema Meaning 

Paragraph Meaning 

Form 

[E]M 

(Par }M 

Sort 

Env -+» Elm 

FEnv 

Env +-> Situation 

Env <—>■ Env 

6.5    Meaning 

The meanings of expression, predicate, schema and paragraph are given by the functions in the following 
table: 

Note: There is a need to explain that the definition of Env is paramaterised by the assigne- 
ment of values to the given sets. 

The meanings of expression, predicate, and schema are combined to provide a meaning for a paragraph. 
This meaning is a relation between environments. The meaning of a specification is defined as the 
image of the empty environment through the composition of the relations for all the paragraphs in the 
specification. 

Note: Now that declarations are no longer in the abstract syntax, the example below should 
be replaced. 

The following example illustrates the description of the meaning of a simple declaration: 

Meaning The meaning of a compound declaration is the set of situations that, when re- 
stricted to the alphabet of each component, satisfy that component: 

{Sl',Sa} M <(SI]TM<M">?I-J. 

Note: A compound declaration Dx; D2 is value-defined only if both the decla- 
rations £>! and D2 are value-defined and if repeated declarations are value com- 
patible. 

The meaning description contains an informal description, the mathematical definition of the meaning 
function for the declaration and an explanantion of when it is value-defined. This last explanation is 
derived directly from the domain of the meaning function. 

The meanings of pairs of expressions, predicates, etc., can be compared. For example, two expressions 
ei and e2 are said to be semantically equivalent, written e\ = e2, when f ex JM = [ e2 J^. 
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6.6    Value 

6.6    Value 

The meaning functions for expressions and predicates are defined in terms of their type and value So 
the value functions are the primitives defined in the following sections and have the structure shown in 
the following table: 

Table 21: Value functions of major forms 

Name 

Expression Value 

Predicate Value 

Form Sort 

Env -+¥ W 

FEnv 

The following example illustrates the description of the value of a powerset: 

Value The value of the power set Pow s is the set of all the subsets of the value of s: 

iPowsf   =   [8JV;(P) 

Note:   A powerset Pow s is value-defined only if the expression s is value-defined. 

The value description contains an informal description, the mathematical definition of the value function 
for the powerset and an explanation of when it is value-defined. This last explanation is derived directlv 
from the domain of the value function. 

Editor's note:    The following subsections need to be revised and possibly moved.   In Version 1 1   the 
discussion of free variables has been moved to Annex F, The logical theory of Z. 

6.7    Free variables 

Ordinarily the definition of the free variables of an expression can be considered as a function on the 
names of identifiers appearing in the text of the expression and the variables bound by the declarations 
In Z however, the case is somewhat more complicated. The use of schema references as declarations 
means that there is an implicit declaration. The names introduced by the declaration S where S is a 
schema reference are related not to the name S but to its value in the particular environment within 
which it is being evaluated. In other words the free variables of an expression depend on the text of the 
expression and the environment in which the expression is evaluated. 

We define the free variables of an expression to be a function from environments to sets of names: 

<f>e(E) : Env -H-FName 

The set of names defined as the free variables for an expression for a particular environment is the 
smallest set of names which must be in the environment in order for the expression to be well-defined. 
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However since local declarations do not introduce schema references, the free variables of an expression 
are unchanged by a local declaration. So in the definitions we omit the environment parameter as it 
has no effect on the value of the free variables. 

Table 22: Free variable functions 

Function Argument 

<l>€ 

<t>v 

4>s 

Expression 

Predicate 

Schema 
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6.7   Free variables 

At the end of each section there is a table defining the free variables for each construct within that 
category. The following example illustrates the definition of the free variables of a power set: 

Table 23: Extract from table of free variables 

Expression 

Pows 

Free Variables 

<t>£S 

This can also be read as an equation in the following form: 

^Pow s    =    <ß£s 

Z Notation   Version 1.1 30th June 1995 35 



6   LANGUAGE DESCRIPTION 

6.8    Alphabet 

The syntactic categories of schema is used to introduce new names. These new names are called the 
alphabet. The alphabet is the set of the names in the signature as defined by the type rules (where 
applicable). 

Table 24: Alphabet function 

Function Argument 

a 

a 

a 

Schema 

Schema-text 

Substitution 

Table 25: Extract from table of alphabets 

Declaration Alphabet 

n.1?... ? Tim : s \Ti\,..., nmj 

This can also be read as an equation in the following form: 

a(n1,...,nm: s)     =    {n1,...,nm} 
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6.9    Substitution 

The table of semantic equivalences for substituted expressions axe given at the end of each section 
These tables indicate when one expression can be replaced by another without changing the meaning 
Substitution is defined using a binding, which asssigns values to variable names. These new vXes are 
substituted for the variables in the expression. 

The following example illustrates the semantic equivalence of substitution into a power set: 

Table 26: Extract from table of semantic equivalences 

Substitution 

6©P u 

Equivalence 

F(bou) 

This can also be read as an equation in the following form: 

beFu    =    P(6oti), 

where the symbol = denotes semantic equivalence. 

Note: The following is an example of substitution: 

4 x-^5,y^N, a ^7} o(x £ y f] z)    =    5eNf)z 

Since the variable name a is not free in the expression, there is no substitution for it. 

D 
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7    Expression 

Notes on this section of the Z Standard 

Section title: Expression 
Section editor: This version edited by JEN. 
Note : This version reflects comments by Jon Hall, and has been restruc- 
tured for the proposed concrete syntax. 
Contributions by:   Stephen Brien, Randolph Johnson, ... (others to be 
added) 
Source file: exp.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

7.1    Introduction 

Expression is a general form for defining values in Z. 

In the abstract syntax given below, the different kinds of Z expression are listed. 

Abstract Syntax 

EXP = IDENT 
GENINST 
NUMBERL 
STR.INGL 
SETEXTN 
SETCOMP 
POWERSET 
TUPLE 
PRODUCT 
TUPLESELECTION 
BINDINGEXTN 
THETAEXP 
SCHEMAEXP 
BINDSELECTION 
FUNCTAPP 
DEFNDESCR 
IFTHENELSE 
EXPSUBSTITUTION 

Identifier 
Generic Instantiation 
Number Literal 
String Literal 
Set Extension 
Set Comprehension 
Power Set 
Tuple 
Cartesian Product 
Tuple Selection 
Binding Extension 
Theta Expression 
Schema Expression 
Binding Selection 
Application 
Definite Description 
Conditional Expression 
Substitution 
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7.2    Method of definition 

Somt W T' definitiT T bUÜt ? *? StaS6S: faSt " tm funCtWn is defined' then a «*" Inchon. *rom these, a meaning function can be derived according to rules given below. 

Type function.    For any expression E, its type function [ E f is a recursively defined partial function 
from type-environments to types: ™n 

[ -E ]r : Tenv -H- Type 

The expression E is wett-foped in exactly those type-environments contained in dorn f £ F  The tvoe of 
an expression in a type-environment is the result of applying its type function to that type-environment. 

Value function. For any expression E, its value function [ E f is a partial function from environ- 
ments to values: 

[ E ]v : Env -t-> W 

The expression E is value-defined in exactly those environments contained in dom[ E ]v. 

The value of an expression in an environment is the result of the application of its value function to 
that environment. 

For some expressions the semantics is loosely defined. That is to say, a lower bound on the meaning 
is given This provides the possibility of various interpretations, in circumstances where the semantics 
does not explicitly give a meaning. 

Note: An example is the definition of Application. For example, in function application 
when the argument is outside the domain of the function, then no meaning is explicitly 
given. Different interpretations of Z can ascribe different meanings to an ill-formed function 
application. 

Meaning function.    The meaning function [ E }M is a function from environments to elements: 

I E lM : Env -+» Elm 

The meaning of an expression in an environment is the pair consisting of its type and its value in that 
environment. The type of an expression in an environment is its type evaluated in the corresponding 
type-environment, which is a restriction of the environment. 

The function T ? [ E Jr corresponds to the type function for E in the full meaning environment, 
where T is the function that restricts an environment to its corresponding type-environment Thus the 
meaning function is constructed as follows: 

\E}M = (TilEf , [25]v> 
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7   EXPRESSION 

The expression E is well-defined in exactly those environments contained in dorn [ E \M which is equal 
to: 

domT?|^|r D doml-Ef 

An expression is said to be well-typed in an environment if it is well-typed in the corresponding type 
environment. Thus, an expression is well-defined in those environments in which it is well-typed and 
value-defined. 

A result of this definition is that the type of the meaning of an expression in an environment is always 
the same as the type part of the expression when evaluated in the corresponding type-environment: 

\-[E}M;t   C   T?[£]r 

Note: This relationship is not an equality because it is possible to have well-typed expres- 
sions which are not value-defined. 
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7.5   Identifier 

7.3    Identifier 

An identifier is a name used to refer to a variable or a constant, and it denotes 
on its environment. a value which depends 

Abstract syntax 

IDENT =  NAME 

Note:   A NAME   is composed of a base-name suffixed by any number of decorations. 

Concrete form 

Sample representation and transformation 

Representation Abstract 

n Inf 

Type   The type of an identifier is the type to which the identifier is mapped in the type-environment: 

I n Y   =   (_n) > Type 

Note:   An identifier is well-typed if and only if it is in the domain of the type-environment. 

e^roenmInte: ^ ^ ^ ^^ * ^ ^ ^ °f ^ ***"** mapPed t0 the identifier in the 

[nf   =   (_„);„ 

Note:   An identifier is value-defined in an environment if and only if it is in the domain of 
tne environment. 
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7.4    Generic instantiation 

The generic instantiation n[Sl)...)Sm] (m > 0), is the instantiation of the generic variable n with the list 
of set expressions s15..., sm. The number m must be equal to the number of formal parameters of 
n. Each element of the instantiation list gives a value to the corresponding generic parameter of the 
generic variable. 

If the list of generic parameters is omitted in the representation form, it is inferred from the typing 
information in the context of use; in this case, the values of the implicit parameters are the maximal 
sets of the appropriate type, which must be uniquely determined by the typing rules. 

Abstract syntax A generic instantiation is constructed from a variable name and a list of one or 
more expressions. 

GENINST =  NAME [EXP, EXP,..., EXP] 

Concrete form 

NAME SQBRA ExpressionListl SQKET 

Expressionl, InGen , Expression 

PreGen, Expression5 

Sample representation and transformation    Generic variables can be instantiated by providing a 
parameter list, or by infix or prefix means. 

Representation Abstract 

n[»i %] 

(j)S 

lnf[lsif,...,bmf] 
[(_*.)]« [M£,{s2f] 

K<i>-)fM£} 

Note: The expression «1^*2, where ip is an infix generic symbol is the variable (-ip-) when 
instantiated with the parameter list [si,s2]. When <j> is a prefix generic symbol then <j>s is 
the variable declared as (</>_) when instantiated with the parameter list [s]. 

Type The type of a generic instantiation n[Sii...)Sm] is obtained by applying to the types of the actual 
parameters s1,...,sm the function corresponding to the generic type of the variable name n in the 
type-environment: 

I «•[*1,...,Sm] r (_n).([Sir,...,Isml
r) 

Note:   A generic instantiation is well-typed if and only if the variable name is in the domain 
of the type environment and there is a correct number of set-typed parameters. 
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7.4    Generic instantiation 

Value The value of a generic instantiation ri[Si v..Sm] is obtained by applying the function corresponding 
to the generic meaning of the variable name n in the environment to the meanings of the actual 
parameters «,,... sm and then taking the value part: 

[»[*,....«] ]v = ((-»)•<[«! ]?,.-.,[ *ml"»;» 

Note:   A generic instantiation is value-defined if and only if it is well-typed and all its 
parameters are value-defined. 
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7.5    Number literal 

A number literal denotes an integer. 

Abstract syntax 

NUMBERL =  NUMBER 

Concrete form 

NUMBER 

Sample representation and transformation 

Representation Abstract 

i bf 

Type    The type of a number literal is the given set type of the integers. 

{if   =   Z°°,givenT 

Note: A number literal is always well-typed. 

Value    The value of a number literal is the integer it denotes. 

[if   =   i° 

Note: A number literal is always value-defined. 
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7.6   String literal 

7.6    String literal 

A string literal denotes a string. 

Abstract syntax 

STRINGL =  STRING 

Concrete form 

STRING 

Sample representation and transformation 

Representation Abstract 

a Me 

Type    The type of a string literal is the given set type of the set § of strings. 

{a\T   =   §°°9givenT 

Note: A string literal is always well-typed. 

Value    The value of a string literal is the string it denotes. 

Note: A string literal is always value-defined. 
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7.7    Set extension 

A non-empty set extension {x„..., xm} is a set containing exactly those elements denoted by 

x1,...,xrn (m > 0). 

Note:    Since a set is characterised by its members, the order and duplication of elements 
in xu ..., xm is of no consequence. 

Abstract syntax    A set extension is constructed from a list of one or more expressions. 

SETEXTN  =  {EXP, EXP,..., EXP} 

Concrete form 

SETBRA ExpressionList SETKET 

'(' , ExpressionO ,{',', ExpressionO} , ')' 

'I' ,ExpressionO,{',',ExpressionO} , '1' 

Sample representation and transformation   There are three kinds of sets which can be con- 
structed by extension: simple sets, sequences, and bags. 

Representation 

{xi,...,xm} 

\X\, ..., xm) 

\xi,...,xm\ 

Abstract 

[{(l,*l),..-,(™,Zm)}f 

[{(*!, l)}ö...ö{(W)}f 

Note: The expression fa,..., xm), (m > 0) defines an explicit construction of a sequence, 
which can be regarded as an ordered collection of its constituents. A sequence is modelled as 
a partial function mapping the numbers 1,..., m to the expressions xx,..., xm respectively. 

Note: The expression fa,..., xmj, (m > 0) defines an explicit construction of a bag. A 
bag is a collection of possibly multiply-occurring elements. A bag is modelled as a partial 
function mapping its constituents to the number of times they occur within the bag. 

set extension {Xl,...,xm} is the power set type of the common type of 

l{x1,...,xm}}T   =   (lx1fn...nlxm}r)'9poWerT 

Type   The type of a 
xx,. • •, xm. 
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Note:   A set extension {aj1?... ,xm} is well typed if and only if all of the expressions 
xt,..., xm are well-typed with the same type. 

Note: If a represents the common type of zi,..., xm, then Per represents the type of the 
set extension {x\,..., xm}, P(Z x a) represents the type of the sequence (x\,..., xm) and 
P(cr x Z) represents the type of the bag [zi,..., xm}. 

Value   The value of a set extension {x15..., xm} is the set of the values of xlt..., xm: 

{{x1,...1xm}]v  =  (Ix1]
v,...)[xml

v);{..} 

Note: A set extension {xx,..., xm} is value-defined if and only if all of £c15..., xm are 
value-defined. 

Note:    Two sets {x\,..., xm} and { j/i, J/2, • • • > J/m } are equal if and only if for all i there 
exists j such that Xi = yj,   1 < i < n 
and for all j there exists k such that yj = %,   1 < j < m 
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7.8    Set comprehension 

The set comprehension {St • x} is the set that contains exactly those elements denoted by the expres- 
when evaluated in each enrichment of the current environment by the schema text St. sion x 

Abstract syntax   A set comprehension is constructed from a schema text and an expression. 

SETCOMP =  {SCHEMA • EXP} 

Concrete form 

SETBRA TextOrExpression DOT Expression SETKET 

'{' ,SchemaText, '}' 

'A' ,SchemaText, '•' ,Expression 

Sample representation and transformation   There are two ways of constructing a set by compre- 
hension: a simple set (for which the expression part is optional) and a lambda expression. 

Representation 

{St • x} 

{St} 

XSt»x 

Abstract 

{{StfT*lxf} 
{{stfT*i(stn£} 
{istfT* (i(stn\ixf)} 

Note: If the expression part of the set comprehension is omitted then the default is the 
characteristic tuple of the schema text. 

Note- A lambda expression denotes a function. The parameter is the characteristic tuple 
of the SchemaText. The domain is defined by the SchemaText. The value of the function for 
a given parameter is defined by the value of the Expression for the value of that parameter. 

Editor's note: A definition of % is needed here. 

Type   The type of a set comprehension {St . x} is the power set type of the type of x in the type- 
environment enriched by the declaration St: 

l{Sfx}f   =   {St }T ; I x f ; powerT 

Note: A set comprehension {St . x} is well-typed if and only if St is well-typed, and x is 
well-typed in the type-environment enriched by St. 
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7.8   Set comprehension 

Value   The value of a set comprehension {St • a;}, is the set of the values denoted by the expression 
x in each of the enrichments of the environment by the schema text St: 

{{Sfx}f  =   A(«st T ; [ * ]v) 

Note: A set comprehension is always value-defined. 
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7.9    Power set 

The power set P s is the set of all subsets of the set s. 

Abstract syntax    A power set is constructed from an expression. 

POWERSET = PowEXP 

Concrete form 

PSET Expression 

Sample representation and transformation 

Representation Abstract 

Paw[tf 

Type    The type of the power set P s is the power set type of the type of the set s. 

I Pow s}T   =   ([ s lr > Ptype) ? powerT 

Note: A power set P s is well-typed if and only if s has power set type. 

Note:   If P a represents the type of the set 5, then P P a represents the type of P s, a set of 

sets. 

Value    The value of the power set P s is the set of all the subsets of the value of s: 

[Powaf   =   [s]V?(P) 

Note:   A power set P s is value-defined if and only if the expression s is value-defined. 
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7.10    Tuple 

7.10    Tuple 

A tuple (a;!,...,xm) (m > 1) is an ordered collection of the elements xlv 

x1,..., xm are not required to have the same type. 
,xm.   The elements 

Note:    The tuples (a, b, c) and ((a, b), c) are distinct: the first contains three components 
a, b, c whereas the second has components (a, b) and c. 

Note:   The expression (a) is not a tuple; it is the expression a within parentheses. 

Abstract syntax   A tuple is constructed from a list of two or more expressions. 

TUPLE = (EXP, EXP,..., EXP) 

Concrete form 

BRA Expression COMMA ExpressionListl KET 

Sample representation and transformation 

Representation Abstract 

(X\,..., xm) ([<*]',...,[a*.]5) 

Type   The type of a tuple (x1,...,xm) is the Cartesian product type formed from the types of 
3J15 . . . , Xm'. 

l{x1,...,xm)f   =   (I a?1 l
r,..., [ xm Jr) ; cproductT 

Note:   A tuple (xx,..., xm)(m > 1) is well-typed if and only if all of xx,..., xm are 
well-typed. 

Value   The value of a tuple (xlr..., xm)(m > 1) is the tuple formed from the values of x1,..., xm: 

[(x1,...,xm)f   =   ([x1]
v,...,|[aJmf> 

Note:  A tuple (x1,..., xm) is value-defined if and only if all of x,,..., xm are value- 

defined. 
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7.11     Cartesian product 

The expression sx X .. • X sm (m > 1) is the Cartesian product of the sets «„ ..., sm. 

The sets s1?..., sm are not required to have the same type. 

Note:   As with tuples, the Cartesian products a x b x c and (o x b) x c are distinct. 

Abstract syntax   A Cartesian product is constructed from two or more expressions. 

PRODUCT =  EXP X EXP x ... X EXP 

Concrete form 

Expression CROSS Expression CROSS Expression 

Sample representation and transformation 

Representation Abstract 

Si x ... x sm iSlfx...x{smf 

Type    The type of a Cartesian product st X ... X sm(m > 1) is the power set type of the Cartesian 
product type of the list of the underlying types of the sets s1,...,am. 

I Sl X ... X sm lr   =   ([ s, lr ? powerT'1,..., f sm ]r ? powerT'1) ; cproductT ? powerT 

Note:    A Cartesian product sx X ... X sm is well-typed if and only if all of the elements 
(«!,..., sm) have power set types. 

Value    The value of a Cartesian product s1 X ... X sm(m > 1) is the Cartesian product of the values 
of the sets (s15..., sm): 

[Slx...x*m]
v   =   ([Slf,...,l5m]

v);x 

Note:     A Cartesian product s1 X ... X sn is value-defined if and only if all of the sets 
s1}..., sn are value-defined. 

Note:   If Xi € Sj for 1 < i < m, then the tuple (a*,..., xm) is an element of sx x ... x sm. 
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7.12    Tuple selection 

7.12    Tuple selection 

The tuple selection t.i is the ith. element in the tuple t. 

Abstract syntax   A tuple selection is constructed from an expression and a number literal. 

TUPLESELECTION  =  EXP . NUMBERL 

Note: The syntactic category NUMBERL   is used to ensure well-typedness of selection. 

Concrete form 

Expression SELECT NUMBER 

Sample representation and transformation 

Representation Abstract 

t.i MM»']' 

Type   The type of a tuple selection t.i is the type of the ith element of the tuple t. 

| t.i ]r   =   11 Y 5 cproductT~l ; TT; 

Note: The tuple selection t.i is well-typed if and only if t has a Cartesian product type 
with at least i elements. 

Value   The value of a tuple selection t.i is the value of the ith element of the tuple t. 

lt.i}v  =   lt}vim 

Note: The tuple selection t.i is value-defined if and only if t has the value of a tuple with 
at least i elements. 
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7.13    Binding extension 

A binding extension ^ nt ~» xt,..., nm ~> xm}  (m > 0) is the binding that maps the names n15 

to the values of the expressions x1,..., xm respectively. 
nr 

Abstract syntax    A binding extension is constructed from a list of names and expressions. 

BINDINGEXTN  =   <\ NAME := EXP,..., NAME := EXP} 

Concrete form 

BINDERBRA BindList BINDERKET 

Sample representation and transformation 

Representation 

4 ni ~> xi,...,nm ~> xm) 

Abstract 

4Kf ^M£> • • • . i"rnf ^Wf ) 

Type    The type of a binding extension <\ nx ~» x±,..., nm ~*- xm)   (m > 0) 
is the schema type of the signature constructed from the mapping of the names n1?..., nm to the types 
of the expressions x x,..., xm. 

Hn1^xl,...,nm-*xrn)  l
r   =   {(n1

0,lx1f),...,(nm
o,lxm}T))',{..}',schemaT 

Note:    A binding extension <\ nx ~> xlt..., nm -v* xm)   is well-typed if and only if the 
expressions xx,..., xm are all well-typed, and the names are distinct. 

Value   The value of a binding extension <\ n1 ~>- xx,...,nm ~> xm)   (m > 0) is the binding con- 
structed from the mapping of the names n1,...,nmto the values of the expressions xx,..., xm. 

l<\n1^x1,...,nm^xm)   f   =   ((n°i,lxll
v),.:.,(n0

m,[xmY))',{..} 

Note: A binding extension <\ n1 ~> x„ ..., nm ^ xm)  is value-defined if and only if the 
expressions xx,..., xm are all value-defined. 
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7.14    Theta expression 

The theta expression 9 S is the binding whose type is constructed from the signature of S and whose 
value is the binding constructed from the mapping of the names of the signature to their values in the 
environment. The theta expression 9 S q is the binding whose type is constructed from the signature of 
S and whose value is the binding constructed from the mapping of the names of the signature to the 
values in the environment of those names when decorated by q. 

Abstract syntax   A theta expression is constructed from a schema and an optional decoration. 

THETAEXP = 9 SCHEMA DECOR 

Note: The schema may itself be decorated.  Thus the following are permitted: 0 S q and 
e(sq)q. 

Note:   Only non-generic Schemas may be used in theta expressions. 

Concrete form 

THETA Expression 

Sample representation and transformation 

Representation Abstract 

9 Sq 

e S 

eisfbf 
e{sf 

Type The type of 9 S {9 Sq) is the schema type constructed from the signature of S whose com- 
ponents (when decorated by q) have the same non-generic type as the corresponding variable in the 
type-environment: 

J 9S lr   =   ({SfflD); schemaT 

I 9Sq ]r   =   (( S DT n Q; 3(( q }"   ®   1))) 5 schemaT 

Note: A theta expression is well-typed if and only if each of the decorated versions of the 
names of the signature of the schema is assigned a non-generic type in the type-environment 
which is the same as the type of that name in the signature. 
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Note: The type of a theta expression 6 S q is not the type taken from S decorated by q. 
The decoration q does not necessarily appear in the resulting type. The use of the schema 
is to identify the type of the resulting binding. Decoration is used only to identify which 
names to look up in the type-environment; thus 9 S r and 6 S q are of the same type even 
if r and q are different decorations. 

Value    The value of the theta expression 6 S (0 S q) is a binding of the names of the components of 
S to the values of the names (when decorated by q) in the environment: 

[ eS T   =   T ; ( S ¥ ? schemaT ; Elm D ' DJ V 
lOSqf   =   T ; ( S }T ; schemaT ; Elm n D; 3(( q }M   ®   v) 

Note: A well-typed theta expression is always value-defined. The value of the theta- 
expression does not have to satisfy the property of the schema. 
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7.15    Schema expression 

A schema expression S is the set of bindings defined by the schema S. 

Abstract syntax    A schema expression is constructed from a schema. 

SCHEMAEXP = SCHEMA 

Concrete form 

SCHEMA (NB add to syntax) 

Sample representation and transformation 

Representation Abstract 

S isf 

Type    The type of a schema expression S is the power set type of the schema type constructed from 
the signature of the schema S: 

I S lr   =   { S Dr ; schemaT ; powerT 

Note: A schema expression S is well-typed if and only if the schema S is well-typed. 

Note: The type of a schema expression is not in the range of schemaT: it is in the range 
of schemaT ? powerT. The relationship between ( }T and [ ]r is that of schemaT 5 
powerT. 

Value    The value of a schema expression S is the set of bindings defined by the schema S: 

[S]v   =   A((S)wiV) 

Note: A schema expression S is always value-defined. 
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7.16    Binding selection 

The binding selection b.n is the element to which the name n is mapped in the binding b. 

Abstract syntax   A binding selection is constructed from a binding and a name. 

BINDSELECTION  =  EXP . NAME 

Concrete form 

Expression SELECT NAME 

Sample representation and transformation 

Representation Abstract 

b.n Ibf-tnf 

Type    The type of a binding selection b.n is the type to which the name n is mapped in the signature 
used to construct the schema type of the binding b: 

I b. n ]r   =   [ b ]r ; schemaT-1 ; (_n) 

Note:   A binding selection b.n is well-typed if and only if the type of b is a schema type and 
the name n is in the domain of the signature from which the schema type is constructed. 

Value   The value of a binding selection b.n is the value to which the name n is mapped in the 
binding b: 

lb.n}v   =   [b]v?(_n) 

Note: A binding selection b.n is value-defined if and only if the binding b is value-defined 
and the name n is in its domain. 

Note:    Two bindings x and y with components ni,..., nm are equal if and only if x.rii = 
y.rii, 1 < i < m. 
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7.17    Application 

The application / x is the result of applying / to the argument x. 

Abstract syntax 

FUNCTAPP  =  EXP ( EXP ) 

Sample representation and transformation There are four ways of representing an application: 
a prefix form, an infix form, a superscript form and a postfix form. For applications declared for use in 
postfix or infix form, underscores indicate the positions of the operands. The complete name includes 
the underscores and surrounding parentheses which are omitted when the operands are supplied in the 
form defined in the declaration. 

Concrete form 

Prefix Expression 

xx 

XXX 

XXXX 

Representation Abstract 

fx 

x<t>y 

Rx 

x§ 

Uflxf 

(iterlxf)lRf 

( - 4>){xf 

Note: The application x <p y is the infix application of the relation ( _ <j> _ ) applied to the 
pair of arguments (x, y). 

Note:    The application Rx denotes the ^-iteration of the relation R; it is an abbreviation 
of the expression iter x R. 

Note: The application x<j) is the postfix application of the relation ( _ <f) applied to the 
argument x. 
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Type In the expression / x the type of / must be the power set type of the Cartesian product type 
of a pair of types, and the type of the argument x must be the first type in this pair; the type of / x 
is the second type in the pair. 

[ / * ]T   =   (l / lr » PowerT-1 ; cproductT'1 ; {-}) • [ x ]r 

Note: The application / x is well-typed only if the type of / is a power set type of a pair 
of types with the first type in the pair the same as the type of x. 

Note: If we evaluate the type of /, we get essentially a set of pairs, where each pair 
comprises the type of an argument and the type of its result. If we next evaluate the type 
of the particular argument x, then we can simply use the type of / as a function to look up 
the type of the result corresponding to x. We say the the type of / is essentially a set of 
pairs, because we must 'undo' the type constructors. 

Value    The value of an application / x is given by applying the value of / to the value of the argument 
x: 

-l 
ifxf D 

A([/lv.[*]v);{-} 

Note: A well-typed application / x is value-defined if both / and x are value-defined and 
if there is a unique w such that (a;, w) G /• 

Note: A relation is a set of pairs; the first element of each pair represents an argument, 
and the second the result for that argument. For the application / x to be defined, / must 
be functional at x. Providing that x evaluates in the environment p to a value v, and the 
value of / in p contains (v, w), and no other pair starting with v, then the expression (/ x) 
evaluates tow. So for a well-defined function application we would expect an equality of 
the following form: 

if xfp = lf}v
P   ([x]v

p) 

The promoted application I/]v»[a;]v provides a satisfactory meaning when the applica- 
tion is value-defined. It is necessary to decide what to do with / x when / is not functional 
at x. This arises if there are several pairs in the value of /, each having the same first ele- 
ment equal to the value of x or if there is none. The definition provided does not prescribe 
a value for a relation applied outside its domain or where it is non-functional. 
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7.18   Definite description 

7.18    Definite description 

The definite description ß St • x is the element denoted by x in the unique enrichment of the 
ment by the schema text St. 

environ- 

Abstract syntax   A definite description is constructed from a schema text and an expression. 

DEFNDESCR = ß SCHEMA • EXP 

Concrete form 

BRA MU TextOrExpression KET 

Sample representation and transformation   In the representation form for definite description, 
the expression part is optional. 

Representation 

ßSt • x 

ßSt 

Abstract 

ß{StfT*lxf 

Note: If the expression part of the definite description is omitted then the default is the 
characteristic tuple of the schema text. 

Type    The type of the term ß St • x is the type of x in the type-environment enriched by St: 

IßStmxf   =   (St}T°,lx}T 

Note: The expression ß St • x is well-typed if and only if St is well-typed, and x is 
well-typed in the type-environment enriched by St. 

Value    The value of a definite description ß St • x is the value of x in the unique enrichment of the 
environment by St: 

IßSt.xf   D  A((s* D ? {-}"1 5 [ x F 

Note: A well-typed definite description ß St • x is value-defined if there is exactly one 
defined enrichment of the environment by the schema text St and the expression x is value- 
defined in that enriched environment. 

Note: This definition is not specific about the value of an improper definite description. If 
there is no unique enrichment of the environment then the value is not prescribed; hence 
the use of D in the definition. 
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7.19    Conditional expression 

The conditional expression if P then x else y denotes an expression which is equal to x if the 
predicate P is true, otherwise it is equal to the expression y. 

Abstract syntax   A conditional expression is constructed from a predicate and two expressions. 

IFTHENELSE =  if PRED then EXP else EXP fi 

Concrete form 

IF Predicate THEN Expression ELSE Expression 

Sample representation and transformation 

Representation 

If P  Then x Else y 

Abstract 

iflPfthenixfelselyf 

Type   The type of the conditional expression if P then x else y is the common type of the expres- 
sions x and y when the predicate P is well-typed: 

[ if P then x else y f   =   {P }T < ([ x ]r n [ y f) 

Note: The expression if P then x else y is well-typed if and only if the predicate P is 
well-typed and the expressions x and y are both well-typed with the same type. 

Value   The value of the conditional expression if P then x else y is the value of the expression x 
when the predicate P is true, otherwise it is the value of the expression y: 

[if P then x else yf   =   ({P }M < I * f) U (fPf < [ y F) 

Note: The expression if P then x else y is value-defined if and only if the predicate P 
is true and the expression x is value-defined or the predicate ->P is true and the expression 
y is value-defined. 
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7.20    Substitution 

The expression 60a; denotes an expression equal to x in the environment enriched by the binding b. 

Abstract syntax    An expression substitution is constructed from a binding and an expression. 

EXPSUBSTITUTION  =  EXP o EXP 

Concrete form 

Expression SUBST Expression 

Sample representation and transformation 

Representation Abstract 

box ibfolxf 

Type    The type of the substitution box is the type of the expression x in the type-environment 
enriched by the binding b. 

lbox}T   =   (1, [ b }T ; schemaT-1) ; © ; [ x }T 

Note: The substitution box is well-typed if and only if b has schema-type and the expression 
x is well-typed in the type-environment enriched by the binding b. 

Value    The value of the substitution 60a: is the value of the expression x in the environment enriched 
by the binding b. 

IboxY = <i,|[6r;o>;©;[*r 

Note: The substitution box is value-defined if and only if b is value-defined and the expres- 
sion x is value-defined in the environment enriched by the binding b. 
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Editor's note: Revised versions of the following subsections have been included in Annex F, The logical 

theory of Z. 

Free variables 

Substitution 

D 
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8    Predicate 

Notes on this section of the Z Standard 

Section title: Predicate 
Section editor: this version, edited by JEN 
Original text by: Stephen Brien 
Contributions by: Stephen Brien, ... (others to be added) 
Source file: pred.tex 
Notes: Updated for new syntax 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

8.1    Introduction 

A Predicate is the general form for expressing properties of the environment, 
relationships between the values of the variables in the environment. 

In the abstract syntax below the different kinds of predicate are listed. 

These properties are 

Abstract syntax 

PRED  =  EQUALITY 
MEMBERSHIP 
TRUTH 
FALSEHOOD 
NEGATION 
DISJUNCTION 
CONJUNCTION 
IMPLICATION 
EQUIVALENCE 
UNIVERSALQUANT 
EXISTSQUANT 
UNIQUEQUANT 
SPRED 
PREDSUBSTITUTION 

Equality 
Set Membership 
Truth Literal 
False Literal 
Negation 
Disjunction 
Conjunction 
Implication 
Equivalence 
Universal Quantification 
Existential Quantification 
Unique Existential Quantification 
Schema Predicate 
Substitution 

Strategy for definition 

The description of the meaning of a predicate is split into two parts. The first part gives rules for 
determining whether it is well-typed or not. The second determines whether the predicate is ZF-true 

in the environment. 

A predicate is ZF-true in an environment if the values of the sub-expressions in the predicate are such 

Z Notation    Version 1.1 30th June 1995 65 



8   PREDICATE 

that the predicate is true in that environment, without necessarily considering whether the predicate is 

well-typed. 

8.1.1    Type 

Since in the abstract syntax we already know that a certain construct is a predicate, when considering 
the type of a predicate the only matter of concern is whether it is well-typed. For this reason we 
represent the type function of a predicate as the set of type-environments in which it is well-typed. 

{[PRED]}r : VTenv 

Note: The predicate x = y is meaningless if the expressions x and y are not of the same 
type. There is no meaningful way of comparing them. 

Note: A predicate that is not well-typed in any environment has a type function that 

evaluates to the empty set. 

8.1.2 Value 

The value function maps a predicate to the set of environments in which it is ZF-true: 

{PREDJV  : FEnv 

Note- The predicate -.(a: G x) is ZF-true in all environments. This is so because, within the 
semantic universe, the axiom of regularity ensures that x G x is false and hence -,(* G x) 
is true. On the other hand, in Z, the type-system ensures that x G x is not well-typed so 
therefore ->(x G x) is not well-typed. 

8.1.3 Meaning 

The environments in which a predicate is true are exactly those environments in which the predicate is 

well-typed and is ZF-true. 

flPRED]}" : FEnv 

{[PRED }M == ^T^HPRED }T   n   {[PRED }v 

Note- As indicated in the note above, the predicate -,{x G x) is ZF-true but not well-typed, 
hence it is not true in any environment. The meaning of the predicate is the empty set: 

{x e x }M = 0. 
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8.2    Equality 

Two expressions are equal if and only if they have the same value and type. 

Abstract syntax    An equality is constructed from two expressions. 

EQUALITY =  EXP   =   EXP 

Concrete form 

Expression EQUALS Expression 

Note:   This form is derived from Relation and Inf ixRel 

Sample representation and transformation 

Representation Abstract 

I* = yf M£=bf 

Type   An equality x = y is well-typed in those environments in which the expressions x and y have 
the same type. 

{x = y }T   =   dom([ xjT nlyf) 

Value    An equality x — y is ZF-true in those environments in which the expressions x and y have the 
same values. 

{x = y f   =   dom([ x ]v n   | y f) 
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8.3    Membership 

The predicate x € y is true if and only if the expression x is a member of the set denoted by the 

expression y. 

Abstract syntax   A membership predicate is constructed from two expressions. 

MEMBERSHIP =  EXP   €    EXP 

Concrete form 

Expression MEMBER Expression 

Note:   This form is derived from Relation and Inf ixRel 

Sample representation and transformation   There are three ways in which the membership pred- 
icate can be written: using the membership sign, using an infix relation and using a prefix relation. 

Representation Abstract 

x e y 

xpy 

p  X 

[*]*€ bf 
l(x,y)}£e l(-p-)f 
{xfe l(P-)f 

Note:   The infix relation predicate xpy is true if the expression x is related to the expression 
y by the relation (_/9_), i.e. if the tuple (x, y) is a member of the relation (_p_). 

Note:   The prefix relation predicate px is true if (p_) is true for x, i.e. if x is a member of 

the set (p_). 

Type    A predicate xgyis well-typed if and only if the type of the expression y is the power set type 

of that of the expression x. 

{xey}T   =   dom(I x Ir ? powerT n [ y jT) 

Value    A predicate x € y is ZF-true in exactly those environments in which the value of the expression 
x is a member of the value of the expression y. 

{x€yY   =   dom(I x F n   I y f p) 
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8.4    Truth literal 

8.4    Truth literal 

The truth literal true represents the predicate that is always true. 

Abstract syntax 

TRUTH  =  true 

Concrete form 

TRUE 

Sample representation and transformation 

Representation Abstract 

true true 

Type    The truth literal true is well-typed in all type-environments. 

{true}T   =   Tenv 

Value    The truth literal true is ZF-true in all environments. 

{true }v   =   Env 
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8.5    False literal 

The false literal false represents the predicate that is never true. 

Abstract syntax 

FALSEHOOD  = false 

Concrete form 

FALSE 

Sample representation and transformation 

Representation Abstract 

false false 

Type    The false literal false is well-typed in all type-environments. 

{falseY   =    Tenv 

Value    The false literal false is not ZF-true in any environment. 

lfalse}v   =   0 
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8.6    Negation 

The negation ->P is true if and only if the predicate P is not. 

Abstract syntax    A negation is constructed from a predicate. 

NEGATION  = -i PRED 

Concrete form 

NOT Predicate 

Sample representation and transformation 

Representation Abstract 

^P w 
Type   The negation -\P is well-typed exactly when the predicate P is well-typed. 

Value   The negation ->P is ZF-true in those environments in which the predicate P is not ZF-true. 

{-, P Y   =   Env \ {P Y 
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8.7    Disjunction 

The disjunction PVQis true if and only if at least one of the predicates P and Q is true. 

Abstract syntax   A disjunction is constructed from two predicates. 

DISJUNCTION = PRED   V   PRED 

Concrete form 

Predicate DISJ Predicate 

Editor's note: This production seems to have been omitted in the Concrete Syntax document. JEN 

Sample representation and transformation 

Representation Abstract 

PVQ IPfvlQf 

Type   The disjunction PVQis well-typed in exactly those type-environments in which both predi- 
cates P and Q are well-typed. 

{PVQ}T  =  |P}Tn {Q V 

Value   The disjunction P V Q is ZF-true in exactly those environments in which one or both of the 

predicates P , Q are ZF-true. 

fFVQf   =   {PfulQf 
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8.8    Conjunction 

8.8    Conjunction 

The conjunction P A Q is true if both the predicates P and Q are true. 

Abstract syntax    A conjunction is constructed from two predicates. 

CONJUNCTION  =  PRED   A    PRED 

Concrete form 

Predicate CONJ Predicate 

Sample representation and transformation   There are three ways of constructing a conjunction: 
by a simple conjunction, by a compound relation, and by separating two or more predicates. 

Representation Abstract 

PA Q 

X\   p\   X2   P2    ■■■Pn-1   Xn 

Pi Sep...SepP„ 

[xi  pi  abfAlx2  P2   ■■■Pn-l  xnf 

[PlfA...A[PBf 

Note:      In predicates Sep is a conjunction; such a conjunction has the lowest possible 
precedence and is equivalent to parenthesising the separate predicates and conjoining them. 

Note: Generic emtyset problem. 

Editor's note:  Review this section! 

Type    The conjunction P A Q is well-typed in exactly those type-environments in which both the 
predicates P and Q are well-typed. 

IPAQV = {P}T n {Q}r 

Value    The conjunction of two predicates P A Q is ZF-true in exactly those environments in which 
both the predicates P and Q are ZF-true. 

{PAQV   =   fPfn {Q F 
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8.9    Implication 

The implication P => Q is true if and only if the predicate P is false or the predicate Q is true. 

Abstract syntax   An implication is constructed from two predicates. 

IMPLICATION  =  PRED   =>    PRED 

Concrete form 

Predicate IMPLIES Predicate 

Sample representation and transformation 

Representation Abstract 

P=>Q {Pf=>lQf 

Type    The implication P => Q is well-typed in exactly those type-environments in which both the 
predicates P and Q are well-typed. 

{P^QY   =   {PV n {QY 

Value   The implication P => Q is true in exactly those environments in which the predicate P is not 
ZF-true or the predicate Q is ZF-true. 

{P^QV   =   (Env   \   {P }v) U {Q V 
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8.10    Equivalence 

An equivalence P -O- Q is true if and only if both predicates P and Q are true or neither is true. 

Abstract syntax    An equivalence is constructed from two predicates. 

EQUIVALENCE =  PRED   O . PRED 

Concrete form 

Predicate IFF Predicate 

Sample representation and transformation 

Representation Abstract 

P&Q {Pf^lQf 

Type   The equivalence P •«> Q is well-typed in exactly those type-environments in which both the 
predicates P and Q are well-typed. 

{P^Q}T =  |Pf n IQf 

Value    The equivalence P -<=>■ Q is ZF-true in exactly those environments in which the predicates P 
and Q are both ZF-true or neither are ZF-true. 

{P&QV = {py ® {Qy 
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8.11    Universal quantification 

The universally quantified predicate V St • P is true if the predicate P is true for all possible combi- 
nations of values of the components of the schema text St. 

Abstract syntax    A universal quantification is constructed from a schema text and a predicate. 

UNIVERSALQUANT = VSCHEMA • PRED 

Concrete form 

FORALL TextOrExpression DOT Predicate 

Sample representation and transformation 

Representation Abstract 

VSf • P VlStfT.{Pf 

Type    A universal quantification V St • P is well-typed in a type-environment if and only if the 
predicate P is well-typed in that type-environment enriched by the schema text St. 

{VSt»P}T   =   dom((St )T > {P }T) 

Meaning    A universal quantification V St • P is ZF-true in an environment if and only if the predicate 
P is ZF-true in all enrichments of that environment by the schema text St. 

{vsfpy = *({st)M){py 

Note:   This semantic definition rests on the properties of de Morgan's Laws. 
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8.12    Existential quantification 

The existentially quantified predicate 3 St • P is true if the predicate P is true for at least one possible 
combination of values of the components of the schema text St. 

Abstract syntax    An existential quantification is constructed from a schema text and a predicate. 

EXISTSQUANT = 3 SCHEMA • PRED 

Concrete form 

EXISTS TextOrExpression DOT Predicate 

Sample representation and transformation 

Representation Abstract 

3St*P 3{Stfr.iPf 

Type    An existential quantification 3 St • P is well-typed in a type-environment if and only if the 
predicate P is well-typed in that type-environment enriched by the schema text St. 

{3St»P}T   =   dom((St }T > {P }T) 

Value    An existential quantification 3 St • P is ZF-true in an environment if and only if the predicate 
P is ZF-true in at least one enrichment of that environment by the schema text St. 

{BStmPy   =   dom((St }M > {P }v) 
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8.13    Unique existential quantification 

The unique existentially quantified predicate 31St»P is true if the predicate P is true for exactly one 
possible combination of values of the components of the schema text St. 

Abstract syntax   A unique existential quantification is constructed from a schema text and a predi- 
cate. 

UNIQUEQUANT =  3X SCHEMA • PRED 

Concrete form 

EXISTS1 TextOrExpression DOT Predicate 

Sample representation and transformation 

Representation Abstract 

3l St • P 3jStfT.lPf 

Type   A unique existential quantification 3X St • P is well-typed in a type-environment if and only 
if the predicate P is well-typed in that type-environment enriched by the schema text St. 

{31St»P}r   =   dom({St }T > {P }T) 

Value    A unique existential quantification 31 St • P is ZF-true in an environment if and only if the 
predicate P is ZF-true in exactly one enrichment of that environment by the schema text St. 

^st.pr = dom(A((str>{[p]}v)?{-r1) 
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8.14    Schema predicate 

A schema predicate S is true if and only if the values of the components of the schema S are contained 
in the environment and their values satisfy the property of the schema. 

Abstract syntax   A schema predicate is constructed from a schema. 

SPRED = SCHEMA 

Concrete form 

?? — to be defined 

Sample representation and transformation 

Representation Abstract 

S isf 

Type   A schema predicate S is well-typed in a type-environment if and only if the schema S is well- 
typed and the signature of S is contained in the environment. 

{S }T   =   dom(( SfnD) 

Value    A schema predicate S is ZF-true in an environment if and only if the environment contains a 
situation of the schema S. 

{S }v   =   dom(( SfflD) 
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8.15    Substitution 

The predicate beP is true if and only if the predicate P is true in the environment enriched by the 
binding b. 

Abstract syntax   A substitution instance is constructed from an expression and a predicate. 

PREDSUBSTITUTION =  EXPoPRED 

Concrete form 

Expression SUBST Predicate 

Sample representation and transformation 

Representation Abstract 

beP IbfelPf 

Type   A predicate beP is well-typed in an type-environment if and only if b is well-typed with a 
schema type and the predicate P is well typed in.the environment enriched by the binding. 

{beP}T   =   dom((l, I b f j schemaT'1) ; (0) > {P }T) 

Value   The predicate boP is ZF-true in exactly those environments in which the binding 6 is value- 
defined and, when enriched by b make the predicate P ZF-true. 

{bopy  =  dom((l,[o]r;0>;(©)i>iP]}v) 
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8.15   Substitution 

Editor's note: Revised versions of the following subsections have been included in Annex F   The logical 
theory of Z. 

Free variables 

Substitution 

D 
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Notes on this section of the Z Standard 

Section title: Schema 
Source file: sch.tex 
Section editor: this version edited by John Nicholls (pro tern) 
Original text by: Stephen Brien 
Contributions by: Stephen Brien, ... (to be added) 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

9.1    Introduction 

Editor's note:   The following note is taken from the proposal by Rob Arthan (dated 27th June 1992) to 
allow schemas to be regarded as expressions. 

A schema is an expression whose value is a set of bindings. 

A schema can be used in the following ways: 

as a declaration 

as a predicate 

as an operand of certain operators which construct schemas from other schemas. 
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9.1    Introduction 

Abstract syntax 

SCHEMA SDECL 
SCONSTRUCTION 
SNEGATION 
SDISJUNCTION 
SCONJUNCTION 
SIMPLICATION 
SEQUIVALENCE 
SPROJECTION 
SHIDING 
SUNIVQUANT 
SEXISTSQUANT 
SUNIQUEQUANT 
SRENAMING 
SCOMPOSITION 
SDECORATION 
SSUBSTITUTION 
EXPSCHEMA 

Strategy for definition 

When making Schemas, the problem is not so much whether it is well defined (although a schema may 
fail to be defined). The problem is more to record the possible meanings of the declared names. The 
definition is built up in two stages. The type function defines the signature of a schema. The meaning 
relation relates the environment to those possible situations defined by the schema. 

A schema can be also used to introduce new variables to the environment, A type and meaning enrich- 
ment function is given for this purpose. 

9.1.1     Type function 

For any schema S its type function is a recursively defined partial function from type-environments to 
signatures which record the types of the elements denoted by the variables introduced: 

{ S ])r :   Tenv -+-» Signature 

The schema S is well-typed in exactly those type-environments contained in dom { S ])r. The signature 
of a schema in a type-environment is the result of applying its type function to that type-environment. 

For any schema S its type enrichment function is a partial function from a type-environment to a new 
one in which the names of the constituent schema are known: 

{sy Tenv -H- Tenv 

{sy = <i,(sjr>; 
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9.1.2    Meaning relation 

A schema introduces names to the environment which can assume certain values. These values are not 
fixed. We can consider the meaning of a schema as a set of situations, each one recording one set of 
values for the new names. However, it is more convenient to consider the meaning of a schema as a 
relation between environments and situations. For any schema S, its meaning relation is a relation 
from environments to situations: 

{ S }M  : Env <—> Situation 

The meaning of a schema in an environment is any one of the situations related to that environment 
by the meaning function. The meaning of a schema is partial because some Schemas may fail - for 
example n : s where s is undefined, or if s is an empty set. A schema S is well-defined in exactly those 
environments contained in dorn ( S ])   . 

The meaning enrichment is represented as a relation between environments, for the same reason as the 
meaning of a schema as represented by a relation. 

{S)M  : Env <-> Env 

(s }M  = (i,{s }M); © 
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9.2    Schema designator 

9.2    Schema designator 

A schema designator is a schema name used to refer to schema. It may also contain a list of generic 
paramaters which instantiate a generically defined schema. 

Note:   Since schema names have global scope there cannot be any overlap between the base 
names of variables and schema names in a specification. 

Abstract syntax    A schema designator is constructed from a schema name. 

SDES = WORD 

Concrete form 

Nofix 

Sample representation and transformation 

Representation Abstract 

S S 

Type   The signature of a schema reference is the signature of the type of the reference in the type- 
environment. 

{ S ])r   =   (1 • 5°) ? powerT'1 ; schemaT'1 

Note: A schema reference is well-typed only if it is in the domain of the type-environment. 

Meaning   The meaning of a schema reference is the relation constructed from the meaning of the 
reference in the environment. 

{S}M   =   (1.5°)p 

Note:   A schema reference is well-defined only if it is in the domain of the environment. 

Z Notation    Version 1.1 30th June 1995 85 



9   SCHEMA 

9.3    Generic schema designator 

A generic schema designator S [as1}..., xn] is reference to a generically defined schema S instantiated 
by the set paramaters [cc15..., xn]. 

Abstract syntax   A generic schema designator is constructed from a schema name and a list of 
expressions. 

SGENDES  = WORD [EXP,..., EXP] 

Concrete form 

NAME SQBRA ExpressionListl SQKET 

Sample representation and transformation 

Representation Abstract 

^[xi xn] s[[xd£,...,Me] 

Type 

{S[x1,...,xn])T   =   ((l*S°)*(x1,...,xn))°,powerT-1°,schemaT-1 

Meaning 

{S[Xl,...,xn]}M   =   {{l»S°)»(xl,...,xn))',3 

Note:   Generically defined Schemas must be instantiated. 
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9.4    Simple schema 

9.4    Simple schema 

A simple schema n1?... nm : s introduces variables named n15... nm whose values are drawn from 
the set s. 

Abstract syntax   A simple schema is constructed from a list of names and an expression. 

SDECL =  NAME, NAME,..., NAME: EXP 

Concrete form 

NameListl COLON Expression 

Sample representation and transformation 

Representation Abstract 

ni,ri2,...,nm : s Tl^Tla,.. . ,Tlfc :   \s\ 

Type The type of the simple schema n1,...nm : s is the signature constructed from the names 
n15... nm and the underlying type of the set expression s. 

(nl,...,nm:*])r   =   [ s f | ({n.^powerT-1},..., (n^powerT-1)) ; {...} 

Note: The simple schema n15... nm : s is well-typed if and only if the expression s has 
power set type. 

Meaning The meaning of the simple schema n1,... nm : s is a relation from the environment to those 
situations which associate each of the names n15... nm with one of the elements of the set expression 
s: 

{n1,...nm:s}M   =   [sf ;K,3),...,(nm°,3));{...} 

Note: The simple schema n1?... nm : s is well-defined if and only if the expression s is a 
non-empty set. 

Note: Suppose G is defined to be a given set. The type system defines the type of G 
to be powerT(givenTN). In this way a schema such as x : G defines the type of x to be 
givenT(G), as required. 
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9.5    Schema construction 

A schema construction S \ P is a schema whose signature is that of the schema S and whose components 
satisfy the constraint of the schema S and the predicate P. 

Abstract syntax   A schema construction is composed from a schema and a predicate. 

SCONSTRUCTION  = SCHEMA | PRED 

Concrete form 

DeclPart [VBAR Predicate] 

SQBRA Text SQKET 

Sample representation and transformation 

Representation Abstract 

D\P 

[D\P] 

[D] 

IDfllPf 
(IDfllPf) 
<[2>f|true> 

Type   The signature of (D \ P) is the same as that of the schema D. 

{S\P)Y   =   |Sfn({D|P)rQ) 

Meaning   The value of the schema expression constructed from (£> | P) is a set of bindings.  The 
bindings are constructed in all enrichments of the environment by D which satisfy P: 

{(D\P))M   =   (D}Mn({D\P}M°,D) 

This is defined only in those environments in which the schema D is defined and when enriched by it 
result in the predicate P being well-typed. 
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9.6   Schema negation 

9.6    Schema negation 

A schema negation -iS is a schema which contains all the bindings of the same signature as those of 
the schema S but which are not contained in S. 

Abstract syntax    A schema negation is composed of a schema 

SNEGATION  =  -.SCHEMA 

Concrete form 

NOT Expression 

Sample representation and transformation 

Representation Abstract 

-.5 -*s\8 

Type    The signature of a negated schema -iS is the same signature as that of the schema S: 

hS}T   =   {S}r 

Meaning   The bindings of a negated schema —iS are those bindings which have the same signature as 
S but are not bindings of S: 

{^S} M IsfT\fs} M 

Note: This is simpler than in (Spivey, 1988), where this complement had to be combined 
with the global part of the environment. This was necessary in the original semantics, 
because the meaning of a schema involved not only the components of the schema, but also 
the global variables to which the schema might refer. 
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9.7    Schema disjunction 

The schema disjunction Sx V S2 is a schema whose signature is the join of the signatures of the two 
Schemas Sx and S2 and whose property is the disjunction of the two Schemas' properties. 

Abstract syntax   A schema disjunction is composed of two schemas. 

SDISJUNCTION  = SCHEMA   V   SCHEMA 

Concrete form 

Expression OR Expression 

Sample representation and transformation 

Representation Abstract 

Si V52 MM«,]5 

Type   The signature of a schema disjuinction St V S2 is the join of the two schemas 5X and S2 : 

{S1VS2}
r =  {(-MM^DJU 

Note:      The schema disjunction St V S2 is well-typed only if the signature of the two 
schemas Sx and S2 are type compatible. 

Meaning   The bindings of a disjoined schema are all those with its signature which are extensions of 
bindings in one or other of the operand schemas: 

c^vs.r = ««Sirr.c^nu<«Sir,csar
r»;u 
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9.8   Schema conjunction 

9.8    Schema conjunction 

Abstract syntax   A schema conjunction is composed of two Schemas 

SCONJUNCTION  = SCHEMA   A   SCHEMA 

Concrete form 

DeclElem SEMICOLON DeclElem {SEMICOLON DeclElem} 

Expression AND Expression 

Sample representation and transformation 

Representation Abstract 

DV,D2; ...;£>„ 

Si A 52 

Pif;p2f;...;P„f 
lSifA{S2f 

Variables may be introduced in local Schemas more than once, provided that they have the same type. 
Repeated Schemas do not add anything to the signature; however the constraint of the repeated schema 
is conjoined with the constraints of all the other Schemas. 

Type   The signature of a schema conjunction S± A S2 is the join of the two Schemas St and S2: 

(SiAS,f   =   ((S1}
r,(S2}

T)',li 

Note:    The schema conjunction S± A S2 is well-typed only if the two Schemas Sx and S2 

are well-typed and their signatures are type compatible. 

Meaning The bindings of a conjoined schema are all those with its signature which are extensions of 
bindings in both of the operand Schemas: 

{S1ASa^
M   =   ((S1}

M,(S2])M}°,U 

Note:     Spivey (1988) has already remarked on the similarity with the semantics of the 
parallel composition operator in the traces model of CSR 

Note:   Duplicated Schemas are significant in the evaluation of the characteristic tuple. The 
representative term can be a list of terms which form part of the top level tuple. 
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9.9    Schema implication 

Abstract syntax   A schema implication is composed of two Schemas. 

SIMPLICATION  = SCHEMA   =>-   SCHEMA 

Concrete form 

Expression IMPLIES Expression 

Representation Abstract 

Si=>S2 [5i]5=Hfc]5 

Type   The signature of a schema implication Sx =£- S2 is the join of the two Schemas S± and S2 : 

Note:    The schema implication St =>• S2 is well-typed only if the two Schemas S± and 52 

are well-typed and their signatures are type compatible. 

Meaning   The meaning of the schema implication St =>■ S2 is the same as the meaning of the schema 
disjunction -iS± V S2: 

{S1^S2}
M   =   {n^V^I M 
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9.10   Schema equivalence 

9.10    Schema equivalence 

Abstract syntax    A schema equivalence is composed of two Schemas. 

SEQUIVALENCE = SCHEMA   <£►   SCHEMA 

Concrete form 

Expression IFF Expression 

Sample representation and transformation 

Representation Abstract 

Si & S2 rsifo[s2j
5 

Type    The signature of a schema equivalence Sj -£>• S2 is the join of the two Schemas Sx and S2 

Note:    The schema equivalence Sx •£>■ S2 is well-typed only if the two Schemas St and S2 

are well-typed and their signatures are type compatible. 

Meaning   The bindings axe all those with this signature which are extensions of bindings in neither 
or both of the operand schema expressions: 

S1 <£► 52 ]T   =   ( Sx => S2 A S2 =► St } M 
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9.11    Schema projection 

The schema projection operator (\) hides all the components of its first argument except those which 
are also components of its second argument. 

Abstract syntax   A schema projection is composed of two schemas. 

SPROJECTION  = SCHEMA Proj  SCHEMA 

Concrete form 

Expression PROJECTION Expression 

Sample representation and transformation 

Representation Abstract 

S r T iS]8\{Tf 

Type The signature of a projection St \ S2 includes those names in both the domains of the signatures 
of Sj and S2. The type given to each such name is taken from Sx. Note that if names are given types 
by both ■*>! and S2 those types must be the same (that is, the signatures must be consistent): 

{S, \s2}
T =  ({s1}

T,{Sa}
T)',n 

Meaning   The value of the projection Sx \ S2 is the set of bindings which satisfy S^, restricted to the 
alphabet of S2: 

(s, r s2 D M <( Si ru sa r
r> 5 n 

Note: Spivey (1988) gives two forms of projection operator used in a schema expression 
such as S± T S2. The weak operator hides those components of Sx which are not in the 
signature of S2. The strong form requires the components to satisfy the axioms of S2 as 
well. We give the semantics for the weak operator. 
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9.12   Schema hiding 

9.12    Schema hiding 

The hiding operator (\) takes a schema expression as its first operand and an identifier list as its 
second operand. The result is a schema expression whose components are those of the operand schema 
excluding those named in the list. 

Abstract syntax   A hidden schema is composed of a schema and a list of names. 

SHIDING = SCHEMA   \    [NAME,..., NAME] 

Concrete form 

Expression HIDING BRA NameListl KET 

Sample representation and transformation 

Representation Abstract 

S \ ( ni,n2,...,nm ) {S}s\ <  ni,n2,...,nm  > 

Type   The signature of a schema hiding expression is the signature of S with the names from (nx,, 
removed. Note that (n1,..., nm) may contain names not in the signature of se: 

{S\(n1,...,nm)}T   =   (5JT?({n1,...,nmH) 

iTOr 

Meaning   The value of the schema S in which the components (n15 

set of bindings which satisfy S, with those components removed: 
, nm) have been hidden is the 

Note:   If all the variables are hidden the result is a schema with an empty signature. 
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9.13    Schema universal quantification 

Abstract syntax    A schema quantification is constructed from a schema text and a schema. 

SUNIVQUANT = VSCHEMA • SCHEMA 

Concrete form 

EXISTS TextOrExpression DOT Expression 

Sample representation and transformation 

Representation Abstract 

\tst*s V{StfT*lSf 

Type   The signature of a universally quantified schema expression V St • S is the signature of S with 
the names from the signature of St removed: 

(VSfS])T   =   ((S])T,{{St)}T)^ 

Note: The signature is well-typed only when St and S is are well-typed and their signatures 
are compatible. 

Meaning The value of a universally quantified schema expression V St • S is the set of bindings with 
the defined signature such that, for all bindings of St, the union of the two bindings is an extension of 
S: 

{VSt*S])M   =   (-.3 5t«--S \M 

Note:' Note that this definition takes advantage of de Morgan's Law. 
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9.14    Schema existential quantification 

9.14    Schema existential quantification 

Abstract syntax    A schema quantification is composed of a schema text and a schema. 

SEXISTSQUANT = 3 SCHEMA • SCHEMA 

Concrete form 

EXISTS TextOrExpression DOT Expression 

Sample representation and transformation 

Representation Abstract 

3St*S 3lStfT.iSf 

Type    The signature of an existentially quantified schema expression 3 St • S is the signature of S 
with the names from the signature of St removed: 

{isfsy = ({sy,((st)V)^ 

Note: The signature is well-typed only when St and S is are well-typed and their signatures 
are compatible. 

Meaning The value of an existentially quantified schema expression 3 St • S is the set of bindings 
with signature of S less St, such that there is a binding of St so that the union of the two bindings is 
an extension of S: 

3 St • S \M ((S])M,{(St)}MV 

Note:    This definition should be contrasted with the analogous expression for predicates 
(3 St • p) where the well-typing of the predicate is decided in the modified environment. 
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9.15    Schema unique existential quantification 

Abstract syntax   A schema quantification is composed of a schema text and a schema. 

SUNIQUEQUANT =  31 SCHEMA • SCHEMA 

Concrete form 

EXISTS1 TextOrExpression DOT Expression 

Sample representation and transformation 

Representation Abstract 

3X St • S 3dStfT.{Sf 

Type 

(B.StmSy   =   ({S)T,l<St)y);<- 

Note: The signature is well-typed only when St and S is are well-typed and their signatures 
are compatible. 

Meaning The value of an existentially quantified schema expression 31 St • S is the set of bindings 
with signature of S less St, such that there exists a unique binding of St so that the union of the two 
bindings is an extension of S: 

{ 3t St • S D M To be defined 
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9.16   Schema renaming 

9.16    Schema renaming 

The renaming operation S[new/old] substitutes the new variable name for the old in the schema. 

Abstract syntax   A schema renaming consists of a schema and a renaming list. 

SRENAMING = SCHEMA [NAME/NAME,..., NAME/NAME] 

Concrete form 

Expression SQBRA RenameList SQKET 

Sample representation and transformation 

Representation Abstract 

S[xi/yi,x2/y2,-.-xn/yn} IS]   < x1/y1,x2/y2,...xn/yn > 

Type    Schema renaming changes the names of the elements in the bindings, and hence the signature. 

(S[iV7]])r   =   ( S Y ; 3({ Nl)M  <g>  1) 

Meaning 

(S[Nl]])M   =   ( S }M 5 3(( Nl)"  ®   1) 

Note: When more than one variable is to be substituted, the substitution is simultaneous. 
Any substitutions for non-existent names are ignored. Each old name can only be substituted 
by one new name. Likewise, each new name can be a substitute for only one old name. 
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9.17    Substituted schema 

The meaning of the substituted schema beS is the same as the meaning of the schema S in the 
environment enriched by the binding b. 

Abstract syntax    A substituted schema is composed of an expression and a schema. 

SSUBSTITUTION =  EXP © SCHEMA 

Concrete form 

Expression,'©' ,Schema 

Sample representation and transformation 

Production Representation Abstract 

beS 

boSt 

beD 

lbfeiStfT 

IbfelDf 

Type   The signature of the substituted schema beS is the signature of the schema S in the type- 
environment enriched by the binding b. 

(beS}T   =   (1, [ b ]r ; schemaT-1) ? © ? ( S }r 

A substituted schema is well-typed if and only if the binding is well-typed and the schema is well-typed 
in the enriched environment. 

Meaning   The situations of the substituted schema 60S are the situations of the schema S in the 
environment enriched by the binding b. 

(beS}M = (i,[br;U);©;{5r 
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9.17   Substituted schema 

Editor's note: Revised versions of the following subsections have been included in Annex F, The logical 
theory of Z. 

Free variables 

Substitution 
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10    Paragraph 

Notes on this section of the Z Standard 

Section title: Paragraph 
Section editor: Peter Lupton (this version edited by JEN) 
Original text by: Stephen Brien 
Contributions by: Stephen Brien, ... (others to be added) 
Source file: par.tex 
Most recent update: 21st June 1995 
Formatted: 3rd July 1995 

Editor's note:    This is a revision of the Paragraph section, incorporating the proposed new Concrete 
Syntax in a provisional form. The section will be updated and revised by Peter Lupton. 

10.1    Introduction 

Each paragraph of Z can do two things: Augment the environment by a declaration and strengthen the 
property by a predicate. Each paragraph is considered as a relation between environments. The domain 
of this relation contains all the environments in which the paragraph is well-typed and any predicates 
contained within it are true. These environments are related to those which include the new variables 
declared in their signature and which satisfy any property denoted by the paragraph. 

(PAR y Tenv -+» Tenv 

(PAR)"  : Env<^Env 

We can prove the following 

h (Par }M°,T C  T ; {Par }T 

Abstract Syntax 

PAR = GIVENSETDEF 
GLOBALPRED 
GLOBALSCHEMA 
GENERICSCHEMA 
GLOBALDEF 
GENERICDEF 
CONJECTURE 
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10.2    Given sets 

10.2    Given sets 

The given set definition [ Xu X2,..., Xn ] introduces the sets    Xx, X2,..., Xn    without determining 
their elements. 

Note: Distinctly named given sets have distinct types and hence are incomparable. 

Abstract syntax 

GIVENSETDEF = given  [NAME, NAME,..., NAME] 

Concrete form 

SQBRA NameListl SQKET 

Sample representation and transformation 

Representation Abstract 

[ Xi,X2,...,Xn ] given (X11...1Xn) 

Type The declaration of given sets given[X\,...,Xn] causes the type environment to be suitably 
enriched. Each name is given the power set type of the given type of that name. These declarations 
over-ride the environment. 

Note that a given set definition of N results in N having the type powerT givenT W 

{gWen(X1,...,Xn)}
T   =   {l,({Xli...,Xn}< givenT; powerT)0) ;© 

Meaning To enrich the meaning environment, we construct a binding of the given set names (those 
in rans) to typed values in the world of sets - for this to be correct, the bindings must be such that 
the given sets do indeed have power set type. The environment is updated with this binding. 

(given(X15..., Xn) }M   =   (1, ({X1,..., Xn} < givenT ; (powerT, Carrier))0) ; © 
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10.3    Constraint 

A constraint is a predicate appearing on its own as a paragraph. It denotes a property of the values of 
variables declared elsewhere with global scope. This property is conjoined to the global property. 

Abstract syntax 

GLOBALPRED  =  where  PRED 

Concrete form 

Predicate 

Sample representation and transformation 

Representation Abstract 

P whereof 

Type    A constraint adds nothing to the environment, so it is that subset of the identity relation 
restricted to the environments in which the predicate is true. 

For the type environment: 

{P)T  =   \Py 

Meaning   For meaning environment: 

(P) M 
1{P} 

M 
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10.4    Global declaration 

10.4    Global declaration 

An axiomatic definition introduces variables and specifies further properties of the elements denoted by 
them. 

Abstract syntax 

GLOBALSCHEMA =  def SCHEMA 

Concrete form 

AX  [DeclPart  I  Expression]   [ST Predicate]  END 

'AX' ,DeclPart, 'END' 

Sample representation and transformation 

Representation Abstract 

'AX' D 'ST'    P'END' 

'AX' D 'END' 

defpf    \{Pf 

def[Z>f   | true 

The abstract form of an axiomatic definition is a pair of paragraphs, one containing a declaration and 
the other a predicate. If the Axiom Part is omitted the the abstract form is one declaration paragraph. 

Type When new variables are declared the environment is enriched by a function from their names 
to one from their empty generic parameter list to their meaning. We give as its value a set of bindings, 
one for each name declared. In obtaining the binding, we enrich the environment with the declaration 
in such a way that the constraint is satisfied. The names in the declaration are bound to their values 
in this enriched environment. Formally: 

(defZ> \P}' (D\py 

Meaning 

(defD \P)M   =   {D\P)M 

Note:   The sets from which the elements denoted by the variables can be drawn are defined 
by the conjunction of the constraint of the DeclPart and the property in the Axiom Part. 

The signature of the DeclPart is joined to the global signature.   The constraint in the 
DeclPart and the property of the Axiom Part are conjoined to the global property. 
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10.5    Generic declarations 

A generic declaration of variables adds these variables to the dictionary and maps them to a function 
from all possible instantiations of their generic parameters to the values of the variables with these 
instantiations. 

Abstract syntax 

GENERICSCHEMA  = gendef [NAME, NAME,..., NAME] const SCHEMA 

Concrete form 

GEN  [Formals]  BAR  [DeclPart   I  Expression]   [ST Predicate]  END 

'GEN'. Gen Form a Is,'BAR', DeclPart.'END' 

Sample representation and transformation 

Representation 

'GEN' [XUX2, ...,*„]' BAR'     D 'ST'   P'END' 

' GEN' [ Xi, X2t ■ ■ ■, Xn ]' BAR' D ' END' 

Abstract 

gendef ( X„ X2,..., Xn > ctmstlDf    where {Pf 

gendef ( X1,X2,..., Xn ) cons v where true 

Type 

Value    A generic declaration introduces a family of variables, parametrised by the generic parameters 
of the list Gen Form a Is. 

Note:     In a GenericDef, the DeclPart declares the names of the generic variables whose 
types can be determined upon instantiation of the formal parameters. The predicate in the 
Axiom Part determines the elements denoted by the variables for each value of the formal 

parameters. 

Recursive generic declarations are not allowed. The generic declaration must not place any 
restriction on the generic parameters. 

A generic variable has global scope, excluding the declaration list in which it is declared and 
any construct in which its name is re-used for a local variable. 

The parameters of a generic declaration are local to the declaration, but they can be instan- 
tiated by elements of set type when the generic variable is used. 
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10.5    Generic declarations 

A generic declaration does not give a single type: rather, a function from the generic pa- 
rameters to types is defined. 

Let X and Y be generic formal parameters and consider a generic declaration which declares 
x : X; y : Y. Then an expression such as i G y or i = y would impose a mutual constraint 
on the types that could be used to instantiate X and Y. For x € y, we have the constraint 
that the types that Y may take are the powerset of the types that X may take; for x = y, 
we have the constraint that the types that Y may take must be the same as the types that 
X may take. 

The definition of generic types as total functions imposes the constraint that generic dec- 
larations do not create relationships between the type of their formal parameters. Such 
relationships can always be eliminated within a specification. 

Since all the type constructors are bijections, any relationship between the types of generic 
parameters is functional. Therefore any dependent parameters are redundant since they can 
be uniquely determined as functions of the other parameters. For instance, for x e y the 
relationship can be eliminated by removing Y as a formal generic parameter and defining 
y : FX; for x = y we can eliminate Y and define y : X. 
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10.6    Global definitions 

Abstract syntax 

GLOBALDEF = abbr  NAME   :=    EXP 

Concrete form 

SCH NAME  [Formals]   IS   [DeclPart   I  Expression]   [ST Predicate]  END 

'SCH' , SchemaName, 'IS' , DeclPart, 'ST', Axiom Part, 'END' 

'SCH' , SchemaName, 'IS' ,DeclPart, 'END' 

Ident, ' ==' , Expression 

Sample representation and transformation 

Note: A Global Definition defines a new schema. There are two forms for a schema 
definition. The horizontal is the primary form. The vertical form, using a schema box, is 
given a meaning in terms of an equivalent horizontal definition. 

Representation Abstract 

Type    When a schema or variable is declared the name is added to the type-environment and is 
mapped to the type of the schema or expression. 

(abbriV = X)r   =   (1, (N°, { X f) ?{-})?© 

Meaning   When a schema or variable is declared the name of the schema is added to the environment 
and is mapped to the meaning of the schema or expression. 

{*bbTN = x)M = (i,(JV°,lxn ;{-});© 

Note: 

The horizontal form of the definition defines the schema with name  SchemaName as 
the schema denoted by the SchemaExpr. 
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10.6    Global definitions 

• The vertical form of the definition defines the schema with name SchemaName as the 
schema denoted by the schema expression constructed from the schema text comprising 
the horizontal equivalents of the DeclPart and the AxiomPart (see Vertical Form). 

A SchemaName may be used to define only one schema within a specification. 

A Schema has global scope except within the text of its definition. Recursive schema def- 
initions are not allowed. The scope of variables introduced in the DeclPart is local to the 
SchemaDef and includes the AxiomPart. 
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10.7    Generic definition 

A generic definition of variables adds these variables to the environment and maps them to a function 
from all possible instantiations of their generic parameters to the values of the variables with these 
instantiations. 

Abstract syntax 

GENERICDEF = abbr  NAME[NAME, NAME,..., NAME]    :=   EXP 

Concrete form 

NAME  [Formals]  DEFINE_EQUAL Expression 

Sample representation and transformation 

Representation Abstract 

Type 

(abbriV[51,...,Sm] = X) M 

{ 

A«l, ((SS, Ptype* p),..., (Sm°, Ptype° p)> ? {...})) j 3(«[ S, ]r,...,[ Sm ]r), [ X f)) 
)?© 

Value 

Note: 

In a Generic Definition, the DeclPart declares the names of the generic variables whose types 
can be determined upon instantiation of the formal parameters. 

An abbreviation definition can be used to define a possibly generic variable which is named 
by an identifier Abbrev. 

The variable defined by the expression can take three forms: 
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10.7    Generic definition 

• Possibly Generic Variable Ident. 

• Prefix Generic Symbol PreGen. 

• Infix Generic Symbol In Gen. 

In the latter two cases, the names of the generic parameters, Word indicate the posi- 
tions of the actual parameters which can be supplied when the variables are used. 
A schema may be defined with generic parameters and when used it must be always 
instantiated. 
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10   PARAGRAPH 

10.8    Conjecture 

A new section - text to be added. 

Abstract syntax 

CONJECTURE  =  conj  SCHEMAf ... fSCHEMA  |   PRED,..., PRED   h PRED,..., PRED 

D 
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11    Specification 

Notes on this section of the Z Standard 

Section title: Specification 
Source file: spc.tex 
Section editor: 
Original text by: Stephen Brien 
Contributions by: 
Most recent update: 30th June 1995 
Formatted: 3rd July 1995 

Editor's note: 

This section has not been revised.  It will be re-written when the current discussions on semantics, which 
affect this section and the section on Paragraph, have been completed. 

11.1    Introduction 

A specification is constructed from a sequence of paragraphs: 

Abstract syntax 

SPEC  =  PAR  ,...,   PAR 

Sample representation and transformation 

Production Representation Abstract 

[Paragraph]   , 
{Narrative, Paragraph}, 
[Narrative] 

Pi Narrative...   Narrative Pn [P1]
w4Äand...and[PBf^ 

Type    A specification is well-typed if the empty type environment is in the domain of the typing 
relation. 
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11    SPECIFICATION 

Meaning The meaning of a specification is the set of environments which are related to the empty 
environment by the paragraphs of the text. These are all the environments which are enrichments of the 
empty environment by the specification. A sequence of paragraphs can be composed together. They 
denote a relation between environments. This relation is the sequential composition of the relations 
denoted by the individual paragraphs. 

.zmnPiand... andP„   =   A({P1 }M ; ... ; {Pn }M)0 

Note A Z specification consists of a sequence of paragraphs separated by paragraph separators. These 
paragraph separators may include explanatory text. The global signature and property are constructed 
from the meanings of these paragraphs. 

A paragraph is either a definition or a constraint. 

A definition introduces Basic types, schemas, or variables (named elements, sets tuples or bindings) 
together with constraints on them. The effect of a definition is to augment the global signature and to 
conjoin its constraint with the global property. 

A constraint denotes a property on variables and schemas declared elsewhere. The effect of a constraint 
is to conjoin its property with the global property. 

A specification is well typed if every term and predicate within the paragraphs is well typed. 

D 
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A    Abstract syntax - Normative Annex 

Notes on this section of the Z Standard 

Section title: Abstract syntax 

Note: This version of the Abstract syntax is based on ZSRC Document 
z-159v2.tex, with amendments agreed at Meeting 23 of the Z Standards 
Panel on 27th September 1994. 

Section editor: John Nicholls 
Contributions by: (to be added) 
Source file: absyn.tex 
Most recent update: 29th May 1995 (minor update) 
Formatted: 3rd July 1995 

A.l    Introduction 

Basis of definition. The abstract syntax is central to the definition of Z. It stands between the 
concrete representations of Z documents - as marks on paper and images on screens - and the abstract 
entities, semantic relations and semantic functions used for defining their meaning. 

There are many possible ways of constructing an abstract syntax for Z, and the choice of the form 
given below is a matter of judgement, taking into account the somewhat conflicting aims of simplicty 
and economy of semantic definition, and the maintenance of a clear relationship with the concrete 
representation. 

The abstract syntax has the following objectives: . 

to identify and separately name the distinct categories of the notation. 

to simplify and unify the underlying concepts of the notation, putting like things with like, and 
reducing unnecessary duplication. 

The syntax is presented as a set of production rules, in which each entity is defined in terms of its 
constituent parts. For each of the entities defined in the abstract syntax, there is a subsection in the 
main part of the Base Standard, defining its representation and meaning. 
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A    ABSTRA CT SYNTAX - NORMATIVE ANNEX 

Metalanguage.    The definition uses the following notation: 

::= definition symbol 
| disjunction symbol 

Several definitions contain lists of entities, separated by commas or other separating characters. Where 
there may be an arbitrary number of entities in such a list, the following notation is used: 

ellipsis, denoting a finite (possibly zero) number of occurrences of the preceding entity, 
together with appropriate separators 

Terminal entities. The terminal entities of the definition are semantic entities, written in uppercase 
sans-serif font. 

In addition, the syntax definitions contain operators, symbols and keywords similar to those used in the 
concrete syntax. These are written in this way to indicate the relationship of each abstract definition 
with the concrete form of the notation. 

The relationship between the abstract and concrete forms of each entity is indicated in the entity 
definitions in the main body of the standard, under the headings "Representation and transformation". 

Changes in this version. The following changes have been made to the Abstract Syntax since the 
version published in Version 1.0. 

Structural changes: 

the previously separate entity Schematext has been removed and merged with Schema. 

a new rule has been introduced allowing an expression to be written wherever a schema (or what 
was previously called schematext) is allowed. Such an expression must be suitably typed; it should 
be noted that type information is not expressed in the Abstract Syntax. 

the entity Compound Schema has been removed from the Abstract Syntax. The semantics of 
Compound Schema is defined in terms of Schema Conjunction. 

the entities Schema Designator (SDES) and Generic Schema Designator (SGENDES) have been 
removed. 

Changes in presentation: 

a more uniform convention for naming syntactic entities has been introduced, 

the order of presentation has been modified. 

12.6 Z Notation    Version 1.1  30th June 1995 



A. 2    Specification 

SPEC  =  PAR  ,...,   PAR 

A. 2   Specification 

A.3    Paragraph 

PAR =  GIVENSETDEF 
GLOBALPRED 
GLOBALSCHEMA 
GENERICSCHEMA 
GLOBALDEF 
GENERICDEF 
CONJECTURE 

GIVENSETDEF 

GLOBALPRED 

GLOBALSCHEMA 

GENERICSCHEMA 

GLOBALDEF 

GENERICDEF 

CONJECTURE 

given [NAME, NAME,..., NAME] 

where PRED 

def SCHEMA 

gendef [NAME, NAME,..., NAME] const SCHEMA 

abbr  NAME    :=    EXP 

abbr  NAME[NAME, NAME,..., NAME]    :=    EXP 

conj  SCHEMAt... fSCHEMA  |   PRED,..., PRED   h PRED, ,PRED 
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A    ABSTRACT SYNTAX - NORMATIVE ANNEX 

A.4    Schema 

SCHEMA =  SDECL 
SCONSTRUCTION 
SNEGATION 
SDISJUNCTION 
SCONJUNCTION 
SIMPUCATION 
SEQUIVALENCE 
SPROJECTION 
SHIDING 
SUNIVQUANT 
SEXISTSQUANT 
SUNIQUEQUANT 
SRENAMING 
SCOMPOSITION 
SDECORATION 
SSUBSTITUTION 
EXPSCHEMA 

SDECL 

SCONSTRUCTION 

SNEGATION 

SDISJUNCTION 

SCONJUNCTION 

SIMPUCATION 

SEQUIVALENCE 

SPROJECTION 

SHIDING 

SUNIVQUANT 

SEXISTSQUANT 

SUNIQUEQUANT 

SRENAMING 

SCOMPOSITION 

SDECORATION 

SSUBSTITUTION 

EXPSCHEMA 

NAME, NAME,..., NAME : EXP 

SCHEMA | PRED 

-. SCHEMA 

SCHEMA   V   SCHEMA 

SCHEMA   A   SCHEMA 

SCHEMA   =>-   SCHEMA 

SCHEMA   O-   SCHEMA 

SCHEMA Proj  SCHEMA 

SCHEMA   \    [NAME,..., NAME] 

VSCHEMA» SCHEMA 

3 SCHEMA »SCHEMA 

3± SCHEMA «SCHEMA 

SCHEMA [NAME/NAME,..., NAME/NAME] 

SCHEMA   5   SCHEMA 

SCHEMA  DECOR 

EXP © SCHEMA 

EXP 
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A. 5   Predicate 

A.5    Predicate 

PRED =  EQUALITY 
MEMBERSHIP 
TRUTH 
FALSEHOOD 
NEGATION 
DISJUNCTION 
CONJUNCTION 
IMPLICATION 
EQUIVALENCE 
UNIVERSALQUANT 
EXISTSQUANT 
UNIQUEQUANT 
SPRED 
PREDSUBSTITUTION 

EQUALITY 

MEMBERSHIP 

TRUTH 

FALSEHOOD 

NEGATION 

DISJUNCTION 

CONJUNCTION 

IMPLICATION 

EQUIVALENCE 

UNIVERSALQUANT 

EXISTSQUANT 

UNIQUEQUANT 

SPRED 

PREDSUBSTITUTION 

EXP   =    EXP 

EXP    e    EXP 

true 

false 

-i PRED 

PRED   V    PRED 

PRED   A    PRED 

PRED   =>    PRED 

PRED   <£►   PRED 

VSCHEMA.PRED 

3 SCHEMA «PRED 

3X SCHEMA »PRED 

SCHEMA 

EXPoPRED 
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A. 6    Expression 

EXP IDENT 
GENINST 
NUMBERL 
STRINGL 
SETEXTN 
SETCOMP 
POWERSET 
TUPLE 
PRODUCT 
TUPLESELECTION 
BINDINGEXTN 
THETAEXP 
SCHEMAEXP 
BINDSELECTION 
FUNCTAPP 
DEFNDESCR 
IFTHENELSE 
EXPSUBSTITUTION 

IDENT 

GENINST 

NUMBERL 

STRINGL 

SETEXTN 

SETCOMP 

POWERSET 

TUPLE 

PRODUCT 

TUPLESELECTION 

BINDINGEXTN 

THETAEXP 

SCHEMAEXP 

BINDSELECTION 

FUNCTAPP 

DEFNDESCR 

IFTHENELSE 

EXPSUBSTITUTION 

NAME 

NAME [EXP, EXP,..., EXP] 

NUMBER 

STRING 

{EXP, EXP,..., EXP} 

{SCHEMA • EXP} 

Pow EXP 

(EXP, EXP,..., EXP) 

EXP x EXP X ... X EXP 

EXP . NUMBERL 

4 NAME := EXP,..., NAME := EXP} 

6 SCHEMA DECOR 

SCHEMA 

EXP . NAME 

EXP ( EXP ) 

ji SCHEMA «EXP 

if PRED then EXP else EXP fi 

EXP 0 EXP 
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A. 7   Name 

A.7    Name 

NAME  = WORD DECOR, ... , DECOR 

D 
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B    Concrete syntax - Normative Annex 

Notes on this section of the Z Standard 

Section title: Concrete syntax 
Note: This version of the syntax is based on the proposal by Will Harwood 
and Pete Steggles (Document 173 dated 6th March 1995). 
Section editor: John Nicholls 
Contributions by:   Will Harwood, Pete Steggles,  Chris Sennett, Rob 
Arthan, Stephen Brien, ... (more to be added) 
Source file: concrete.tex 
Most recent update: 30th June 1995 
Formatted: 3rd July 1995 

B.l    Introduction 

Editor's note: This Annex and the Lexis (Annex C), replace the section previously called Representation 

Syntax. 

The relationships between the different forms of syntax, and the metalanguages used for their description, 

need further revision. 

The concrete syntax and lexis are designed to meet the following requirements: 

• to be as close as possible to 'traditional' Z; 

• to permit the substitution of equals for equals; 

• to make unparsing injective (i.e. different legal ASTs should have different unparsed forms) and 
total (i.e. there should be a concrete syntax for every legal AST); 

• to make it convenient to project representations of Z and enter text by keyboard. 

Editor's note:   Further notes to be added here . . 
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B.S   Syntactic metalanguage 

B.2    Syntactic metalanguage 

The concrete syntax and lexis are denned using a BNF notation based on: 

BSI Standard BS 6154, Method of defining syntactic metalanguage, British Standards In- 
stitution, 1981. 

The following symbols are used: 

, concatenate symbol 
= define symbol 
| definition separator symbol 
[ ] enclose optional syntactic items 
{ } enclose syntactic items which may occur zero or more times 
' ' enclose terminal symbols 
; terminator symbol denoting the end of a rule 
— subtraction from a set of terminals 
? ... ? User defined rule 

Precedence.    The concatenate symbol has a higher precedence than the definition separator symbol. 

Naming conventions.    The following naming conventions are used: 

• terminals are fully capitalized, e.g. ELSE. 

• non-terminals are partly capitalized, e.g. DeclPart. 

Editor's note:   Discuss the use of tt typeface here. 

Editor's note:   The following comment is taken from D-173 and needs to be noted in future revisions: 

The abstract syntax onto which this syntax is targetted is a slightly modified version of the one in ZSRC 
Document z-159. The changes are as follows: 

• EXP can be an option of SCHEMA. 

• The decoration is removed from THETAEXP. 

• The SCHEMASUBSTITUTION, SDES, GENSDES options are removed. 
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B    CONCRETE SYNTAX - NORMATIVE ANNEX 

B.3    Paragraph 

Paragraph    = 
SQBRA NameListl SQKET 
Predicate 
AX [DeclPart I Expression] [ST Predicate] END 
GEN [Formals] BAR [DeclPart I Expression] [ST Predicate] END 
SCH NAME [Formals] IS [DeclPart I Expression] [ST Predicate] END 
NAME [Formals] DEFINE_EQUAL Expression 
TURNSTILE Predicate 
NAME FREEEQUALS Branch {VBAR Branch} 
Fixity 

Formals        = SQBRA NameListl SQKET 

Branch = NAME  [FREEBRA Expression FREEKET] 

The top level paragraph syntax includes given set definitions, top level predicates, all the boxes, inline 
definitions, goals and operator template definitions. 

The tokens:   AX, BAR,  END, GEN,  IS,  SCH,  ST have special graphical conventions associated with 
them. 

Informal text is treated as whitespace by the lexer. 

Editor's note:   The syntax for Specification has been (temporarily) omitted. 
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B.4    Fixity 

B.4    Fixity 

Editor's note:    In later versions, the descriptions of templates and fixity may be moved to a different 
place. 

Fixity = SYNTAX Category Template 

Operator definitions consist of a Category definition and Template definition. 

Category      = REL 
I  LEFT.FUN Precedence 
I  RIGHT_FUN Precedence 

The Category definition indicates whether the defined operator is a relation (REL), a left associative 
function (LEFT_FUN) or a right- associative function (RIGHT_FUN). Functions also have a numeric prece- 
dence defined. 

Precedence     = NUMBER 

The Precedence definition defines the precedence of the declared operator. There are at least 10000 
precedence levels, numbered 0 to 9999. Higher numbers denote higher precedences. 

Template      =  [Arg]  NAME {SeqArg NAME}  [Arg] 

Arg = NORMAL 
I  TYPE 

SeqArg = Arg 
I   SEQUENCE BRA Expression COMMA Expression COMMA Expression KET 

The Template definition is an alternating sequence of names and argument slots. There are three 
types of argument slots: NORMAL, which corresponds to the argument slots in current Z infix and prefix 
declarations; TYPE, which declares that the appropriate argument is also an actual generic parameter (so 
that a sequence of TYPE parameters corresponds to the same-order sequence of formal generic parameters 
of the operator being declared); SEQUENCE, which is an argument slot for a comma-separated list of 
expressions. 

The effect of a syntactic template definition is: 

• to assign suitable lexical status to the tokens which occur in the template. 

• to assert the existence of a 'compound symbol' which represents the template. 

• to assign an appropriate precedence and associativity to this compound symbol. 

• to retain information about this symbol sufficient to identify it as a relation or function and to 
cope with its generic instantiation (if it has TYPE argument slots). 
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B    CONCRETE SYNTAX - NORMATIVE ANNEX 

The following token categories are defined (where names postfixed with P represent the relational version 
of the token used in Predicate) 

I, IP infix token 
PRE, PREP prefix token 
POST, POSTP postfix token 
L, LP initial token 
EL, ELP initial token preceded by expression 
ES separator token preceded by expression 
SS separator token preceded by expression commalist 
ER, ERP final token preceded by expression 
SR, SRP final token preceded by expression commalist 
ERE, EREP final token preceded by expression and 

followed by expression 
SRE, SREP final token preceded by expression commalist and 

followed by expression 

Any attempt to redefine the lexical status of a token is an error. 

Here are some example templates with descriptions of their effects. 

SYNTAX REL small NORMAL (small => PREP) 
SYNTAX REL NORMAL isodd (isodd => POSTP) 
SYNTAX 100 add NORMAL to TYPE (add => L;  to => ERE) 
SYNTAX 50    add SEQUENCE (O.makeSet.setUnion) to TYPE  (add => L;  to => SRE) 
SYNTAX RIGHT 900 ARG a_normal_infix ARG (a_normal_infix => I) 

The sequence argument slot includes a triple of a zero, unit injection, and 'union' function, which 
are used at parse-time to construct the appropriate expression from the list of parsed elements. We 
choose the triple including union because the three constituents are generally defined for most generic 
collections anyway. 
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B.5    Predicate 

B.5   Predicate 

Predicate    = 
Expression 

Predicate CONJ Predicate 
PRED Expression 
EXISTS TextOrExpression DOT Predicate 
EXISTS1 TextOrExpression DOT Predicate 
FORALL TextOrExpression DOT Predicate 
Predicate IFF Predicate 
Predicate IMPLIES Predicate 
Predicate OR Predicate 

Predicate AND Predicate 

NOT Predicate 

Relation 

Expression SUBST Predicate 
BRA Predicate KET 
TRUE 
FALSE 

Any ambiguity in the above grammar is resolved by alloting precedences to productions. The prece- 
dences of productions increase as we go down the page. All relevant operators are left-associative apart 
from IMPLIES and SUBST which are right-associative. 

The operators should all be familiar except CONJ. This is a low-precedence conjunction operator which 
the lexer may return as the result of applying some layout rule. 

B.5.1     Schemas as predicates 

Because the schema expression connectives AND, OR, NOT etc. are lexically identical to the predicate 
connectives, we need a way of clarifying our intentions in ambiguous cases. The precedence rules above 
ensure that any expression involving these connectives will be parsed as a predicate if it can be; to force 
interpretation as a schema expression, we simply prefix an expression with the PRED coercion operator. 

B.5.2    Relation application 

Relation      = PrefixRel Expression 
I  Expression PostfixRel 
I  Expression InfixRel Expression {InfixRel Expression} 
I  NofixRel 

Relation applications are parsed as above, using the extended 'grammar for operators' which uses the 
tokens defined by the template mechanism. 
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B.5.3    Relations 

PrefixRel = LP {Expression ES I ExpressionList SS} 
(Expression EREP I ExpressionList SREP) 

I PREP 

PostfixRel = ELP {Expression ES I ExpressionList SS} 
(Expression ERP I ExpressionList SRP) 

I POSTP 

InfixRel  = ELP {Expression ES I ExpressionList SS} 
(Expression EREP I ExpressionList SREP) 

I IP 
I MEMBER 
I EQUALS 

NofixRel  = LP {Expression ES I ExpressionList SS} 
(Expression ERP I ExpressionList SRP) 

For a detailed explanation of the relation 'grammar for operators' refer to the appendix. 

128 z Notation   Version 1.1 30th June 1995 



B.6   Expression and schema expression 

B.6    Expression and schema expression 

Expression = 

IF Predicate THEN Expression ELSE Expression 

EXISTS TextOrExpression DOT Expression 

EXISTS1 TextOrExpression DOT Expression 

FORALL TextOrExpression DOT Expression 

MU TextOrExpression DOT Expression 

LAMBDA TextOrExpression DOT Expression 

Expression IFF Expression 

Expression IMPLIES Expression 

Expression OR Expression 

Expression AND Expression 

NOT Expression 

Expression COMPOSE Expression 

Expression HIDING BRA NameListl KET 

Expression PROJECTION Expression 

Expression SUBST Expression 

Expression CROSS {Expression CROSS} Expression 

PSET Expression 

Prefix Expression 

Expression Postfix 

Expression Infix Expression 

Expression Expression {Expression} 

Expression DECORATION 

Expression SQBRA RenameList SQKET 

Expression SELECT NAME 

Expression SELECT NUMBER 

THETA Expression 

Nof ix 

NAME SQBRA ExpressionListl SQKET 

SETBRA ExpressionList SETKET 

SETBRA TextOrExpression DOT Expression SETKET 

SETBRA Text SETKET 

BINDERBRA BindList BINDERKET 

BRA Expression COMMA ExpressionListl KET 

BRA MU TextOrExpression KET 
BRA Expression KET 

STRING 

NUMBER 

SQBRA Text SQKET 

Again, precedences increase as we go down the page, and all operators are left-associative except IMPLIES 
and SUBST which are right-associative. 

In Standard Z Schemas are expressions and expressions are Schemas. There are two advantages to this: 

• in proof, it upholds the substitutivity of equals for equals. 
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• in specification, it allows perfectly sensible idioms which are currently banned (for example, if I 
have a function which returns sets of some binding, why can't I use the result of an application 
of the function in a normal schema expression?). 

We can decide whether something should be evaluated in a 'declaration' way or in a 'set of bindings' 
way by looking at where it occurs. (We presume that for all x,y (eval-as-set-of-bindings x) = (eval-as- 
set-of-bindings y) iff (eval-as-declaration x) = (eval-as-declaration y)). 

Notice that now we can decorate an arbitrary expression and rename an arbitrary expression (although 
these only make sense in type terms when the expression involves bindings). 

Notice that mu expressions with no dot are bracketed because the schema text objects inside are very 
low precedence. 

Templates use an extended 'grammar for operators' similar to the one used by relations: 

Prefix    = L {Expression ES  I  ExpressionList SS} 
(Expression ERE  I  ExpressionList SRE) 

I  PRE 

Postfix = EL {Expression ES   I  ExpressionList SS} 
(Expression ER  I  ExpressionList SR) 

I  POST 

Infix      = EL {Expression ES   I  ExpressionList SS} 
(Expression ERE  I  ExpressionList SRE) 

I   I 

Nofix      = L {Expression ES   I   ExpressionList SS} 
(Expression ER  I  ExpressionList SR) 

I  NAME 

The template application is similar to that in the predicate section, but here we obviously don't have the 
same kind of chaining; when a chain of templates is parsed the resulting syntax tree must be rearranged 
to a form consistent with the precedence and associativity figures using a leftmost derivation using an 
algorithm such as [16]. Thus if we have a juxtaposition of a right associative operator _p_ and a left 
associative operator _<?_ of equal precedence, the formula x p y q z parses as (x p y) q z. 

Note that the precedences defined on templates only work with respect to other templates - other 
schemes are hard to process for user and machine. 

The traditional grammar for set comprehensions and displays has an ambiguity - the distinction of 
comprehensions with no DOT Expression part from one-element displays; the traditional 'solution' 
would be to put brackets in like this: {(Expression)}; this is a crime against brackets. Our proposal 
has no ambiguity, and relies on the distinction between a Schema Text and a Schema Expression; given 
any Schema Expression S, {S} is a display and {SItrue} is a comprehension. 
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B. 7   Lists 

B.6.1    Schema texts 

TextOrExpression = 
Text 

I  Expression 

Text = DeclPart   [VBAR Predicate] 

DeclPart      = DeclElem SEMICOLON DeclElem {SEMICOLON DeclElem} 
I  BasicDecl 

DeclElem      = BasicDecl 
I  Expression 

BasicDecl    = NameListl COLON Expression 

There is no explicit abstract syntax for schema texts but it is important to still have things which look 
like schema texts at the level of concrete syntax. 

We use a grammar for inline schema texts which can have any schema in a declaring position. Notice 
that for an arbitrary schema expression S the inline schema text [S] is not allowed - instead the user 
should write simply S. 

B.6.2    Binding and renaming 

Bind = NAME DEFINE.EQUAL Expression 
Rename = NAME RENAME NAME 

There should be no surprises here - this is exactly the same as the traditional Z grammar. 

B.7    Lists 

ExpressionList   = [ExpressionListl] 
ExpressionListl  = Expression {COMMA Expression} 

NameList  = [NameListl] 
NameListl = NAME {COMMA NAME} 

BindList  = [BindListl] 
BindListl = Bind {COMMA Bind} 

RenameList = Rename {COMMA Rename} 
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B.8    Interface to the lexical analyzer 

B.8.1    Layout rules 

Layout information is used in traditional Z specifications 

• to replace the semicolons in the declaration parts of vertical boxes. 

• to replace the conjunctions in the predicate parts of vertical boxes. 

The parser relies on the lexer to find out when layout information is being used and to insert the 
appropriate separators (and brackets in the case of predicate conjunctions) into the token stream (the 
traditional approach to dealing with layout questions is to resolve them at the lexical analysis stage (cf 
Occam, Haskell)). 

B.8.2    Decorations, words and names 

The parser relies on the lexer to recognise DECORATION and NAME. Note that the parser has no idea 
whether a name has any decorations in it; there is no notion of Word in the abstract syntax (and hence 
in the parser). 

Note that some care needs to be shown to distinguish between the decorated expression 

(decorate  (name  "f")   "'") 

and the name 

(name  "f") 

With a normal treatment of whitespace, the string "f '" would parse as the former and the string "f'" 
would parse as the latter. 

132 Z Notation    Version 1.1  30th June 1995 



B.9    Operator definition using templates 

B.9    Operator definition using templates 

B.9.1    Prefix, Postfix, Infix, Nofix 

A token / corresponding to a Word in traditional Z can have one of four lexical categories: 

Nofix tokens just correspond to ordinary Words. 

Prefix tokens must be followed by an expression. The prefix token / has a corresponding nofix token 
/- 

Postfix tokens must be preceded by an expression.   The postfix token / has a corresponding nofix 
token _/. 

Infix tokens must be followed and preceded by expressions.  The infix token / has a corresponding 
nofix token _/_. 

Prefix, postfix and infix tokens can be declared by declaring the corresponding nofix tokens (though nor- 
mally only at top-level in support tools because parsing would otherwise require typechecker services). 
This provides a simple mechanism for coping with the common mathematical operators, allowing the 
abstract syntax to ignore fixity issues by simply using the appropriate nofix tokens. 

We can define a grammar for this kind of operator definition: 

Fixity =  [_]  Word  [_] 

(where square brackets denote an optional expression). In a conventional implementation of a parser 
for Z fixity definitions will pass appropriate token information to the lexical analyser. For example, the 
statement 

would define / as a postfix token and _/ as a nofix token. The parser would then be able to parse a 
postfix application 

x f 

generating the abstract syntax 

(functapp (name "_f") x) 

so all fixity issues are a matter for the lexer and the parser, and may be ignored at the level of abstract 
syntax. 

But this regime is not sufficiently powerful to handle even basic Z toolkit operators such as relational 
image, which is of the form -/1-/2. Traditionally, specifiers have got round these problems by defining 
combinations of tokens; for example, _/i_/2 can be mimicked by defining two tokens _/i_, and _/2j this 
is not a nice solution because the correspondence with a single nofix token is lost and so the abstract 
syntax contains excess structure. 
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B.9.2    Adding structure to token bodies 

To get round this problem we can consider adding internal structure to the (ex-) token / so that / now 
corresponds to the structure /1--/2; /1 and fa are a pair of tokens which must stand either side of an 

expression. 

The new operator definition syntax is then 

Fixity = [_] Word {_ Word} [_] 

(where curly brackets denote zero or more occurrences of an expression). We could then define a token 

like relational image thus: 

_ f 1 _ f2 

which would define /1 and /2 suitably, and -h-h as a nofix token. 

So how can /1 and /2 be suitably defined, such that we can generate a grammar for the more complex 

operator applications? 

B.9.3    Parsing structured tokens 

Our approach is to define an additional set of token types. As well as INFIX, PREFIX, POSTFIX and 

NAME we now add 

L tokens at the start of a 'structured token' which are not preceded by an expression. 

EL tokens at the start of a 'structured token' which are preceded by an expression. 

S tokens inside a 'structured token'. 

R tokens at the end of a 'structured token' which are not followed by an expression. 

RE tokens at the end of a 'structured token' which are followed by an expression. 

and provide a 'grammar for operators' thus: 

Prefix    = L {Expression S} Expression RE 
I  PREFIX 

Postfix = EL {Expression S} Expression R 
I  POSTFIX 

Infix      = EL {Expression S} Expression RE 
I   INFIX 

Nofix      = L {Expression S} Expression R 
I  NAME 
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B.10    Generics 

Some section of the Z grammar which previously looked like this: 

Expression = PREFIX Expression 
I Expression POSTFIX 
I Expression INFIX Expression 
I NAME 

would now look like this: 

Expression = Prefix Expression 
I Expression Postfix 

I Expression Infix Expression 

I Nofix 

This gives us a unified mechanism for defining operators which is powerful enough to define the basic 
forms of all the toolkit operators. In order to handle more subtle conditions we need to add a few 
complications to the basic scheme. 

B.10    Generics 

In Z there is a notion of 'infix generics'. For example, the function arrow operator is a function which 
uses its arguments as generic instantiations: 

X -> Y 

actually equals 

(->[X,Y])(X,Y) 

We could add another kind of argument slot, #, for an argument which is used as a generic instantiation, 
so that we could write the template: 

# -> # 

This has the advantage that we can also say things like: 

add _ to # 

add x to xs =  (add_to_  [xs])(x,xs) 

where the above operator puts items into sets. 

Z Notation    Version 1.1 30th June 1995 135 



B    CONCRETE SYNTAX - NORMATIVE ANNEX 

B.ll    Precedence and associativity 

In order to resolve ambiguities, we need to use precedence and associativity information. The ap- 
proach adopted in the standard is to supply one numeric precedence value and a choice of left or right 

associativity. 

B.ll.l    Relations 

Relations can be defined using the same kinds of mechanism as functions, but their instances are 
interpreted as set membership statements rather than function applications. 

To provide an analogous grammar for relational operators, we use the same scheme as for functional 
operators, with minor modifications. 

L tokens become LP tokens. 

EL tokens become LP tokens. 

S tokens stay the same. 

R tokens become LP tokens. 

RE tokens become LP tokens. 

and the grammar for operators becomes: 

PrefixRel    = LP {Expression S} Expression REP 
I  PREFIXREL 

PostfixRel = ELP {Expression S} Expression RP 
I  POSTFIXREL 

InfixRel      = ELP {Expression S} Expression REP 
I   INFIXREL 

NofixRel      = LP {Expression S} Expression RP 

The basic grammar for Relation application would look like this: 

Relation = PrefixRel Expression 
I  Expression PostfixRel 
I   Expression InfixRel Expression 
I  NofixRel 

Most versions of Z allow iterated infix relations: 
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Relation = PrefixRel Expression 
I   Expression PostfixRel 
I  Expression InfixRel Expression {InfixRel Expression} 
I  NofixRel 

We could, of course, go further down this road, giving us: 

Relation =  ([PrefixRel]  Expression {InfixRel Expression}  [PostfixRel]) 
- Expression 

I   NofixRel 

(where 'A - B' denotes subtraction of the production set B from A) but popular opinion seems to 
consider this a step too far. 

B.ll. 2    Sequences 

When an expression is enclosed on both sides by tokens, we have an opportunity; we could also permit 
a comma-separated list of expressions to occur in this situation. This is useful in defining display 
operators. 

To do this, we provide more tokens: 

S splits into ES and SS. 

R splits into ER and SR. 

RE splits into ERE and SRE. 

RP splits into ERP and SRP. 

REP splits into EREP and SREP. 

The prefixed E indicates that a single expression is expected before the token; while the prefixed S 
indicates that a sequence of expressions (separated by commas) is expected before the token. 

The grammars for operators change in the obvious way, giving us the final scheme which is used in the 
Z Standard syntax definition. 

In the template definition syntax, the sequence argument slot includes a triple of a zero, unit injection, 
and 'union' function, which are used at parse-time to construct the appropriate expression from the list 
of parsed elements. We choose the triple including union because the three constituents are generally 
defined for most generic collections anyway. Here is how one might go about defining the syntax of a 
sequence display operator (where the constituents of the triples have the obvious meanings). 

fixity lseq  ...   (emptyList.makeSingletonSequence,concatenate) rseq 

So that 
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lseq x,y,z rimg 

parses as 

(functapp (name "lseq_rseq") 
(functapp (name "concatenate") 

(functapp (name "concatenate") 
(functapp (name "makeSingletonSequence) (name "x")) 
(functapp (name "makeSingletonSequence) (name "y"))) 

(functapp (name "makeSingletonSequence) (name "z")))) 

and 

lseq rimg 

parses as 

(functapp (name "lseq_rseq") (name "emptyList")) 

^3g Z Notation   Version 1.1 30th June 1995 



C    Lexis — Normative Annex 

Notes on this section of the Z Standard 

Section title: Lexis 
Note: Based on D-167 v2 and D-177, with comments from syntax sub- 
committee meeting 18 May 1995; also comments from Meeting 27 of the Z 
Standards Panel. 
Section editor: Susan Stepney (this version re-edited by JEN) 
Contributions by: Chris Sennett, Rob Arthan, Trevor King, ... (more to 
be added) 
Source file: lexis.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

Editor's note:   This Annex, though it has been revised, has not yet been fully updated to bring it into 
line with the toolkit Annex. The revision will be completed in the next version. JEN 

C.l    Introduction 

The Concrete Syntax (Annex B), uses named tokens to define its terminal symbols. This section 
defines the lexical grammar of those tokens in terms of Z glyphs (defined in section C.4). This section 
describes a typical rendering of the tokens, showing how they might be displayed on a printed page 
or a graphics screen. The detailed appearance of the tokens is device-dependent. A character-based, 
machine-representable format, and the Interchange Format representation based on SGML are defined 
in sections C.4.3 and Annex D. 

C.2    Soft newlines 

Most white space is not recognized by a lexical analyzer, but is used as a separator when recognis- 
ing tokens. In two special contexts some white space (called a 'hard new line') is recognized: as a 
SEMICOLON in a DeclPart, as a CONJ in a Pred. The rule for distinguishing 'soft' (white space) and 
'hard' (recognised) newlines in these contexts is given in the following rules. 

1. Tokens that can appear in these contexts are assigned to a 'soft newline category', based on 
whether the token could start or end a declaration or predicate. 

• BOTH: new lines are soft before and after the token, because it can neither start nor end a 
declaration or predicate. (It is 'infix', for example, ':') 

• AFTER: new lines are soft after the token, because it cannot end a declaration or predicate. 
(It is 'prefix', for example, '[') 
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• BEFORE: new lines are soft before the token, because it cannot start a declaration or pred- 
icate. (It is 'postfix', for example, ']') 

• NEITHER: no new lines are soft, because such a token could start or end a declaration or 
predicate. (It is 'nofix', for example, '£rue') 

2. When a new line appears between two tokens in the relevant context, the newline categories of 
both are examined. If either allows the newline to be soft in that position, it is soft, otherwise it 
is hard (and hence recognised). 

3. All newlines are soft outside a DeclPart or a Pred. So tokens that cannot appear in these contexts 
can be considered to be in category BOTH. 

The Fixity paragraph allows the definition of various mixfix names, which are placed in the appropriate 
newline category (see section C.3.3). Other (ordinary) user declared names are 'nofix', and so are placed 
in NEITHER. 

C.3    Tokens 

ZToken = SIMPLE 
BOX 
MIXFIX 

DECORATION 

NAME 

NUMBER 

C.3.1    Simple tokens 

SIMPLE = AND | ... | VBAR; 

A typical rendering of these literal tokens is given below. 

The third column defines the soft newline category of those tokens that can appear in the context of a 
DeclPart or Pred. The fourth column notes the representation syntax productions where they occur. 

Token 

AND 
BRA 
COLON 
COMMA 
COMPOSE 

CONJ 

CROSS 
DEFINEEQUAL 

DOT 

EQUALS 

Representation 

A 

(newline) 

Newline Production 

BOTH Exp, Pred 
AFTER Exp, Pred, SeqArg 
BOTH BasicDecl 
BOTH Exp, SeqArg, XListl 
BOTH Exp 

Pred 
BOTH Product 
BOTH Bind, Paragraph 
BOTH Exp 
BOTH Relation 
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ELSE else BOTH Exp 
EXISTS 3 AFTER Exp, Pred 
EXISTS1 3i AFTER Exp, Pred 
FALSE false NEITHER Pred 
FIXITY fixity Fixity 
FORALL V AFTER Exp, Pred 
FREEBRA (( Branch 
FREEEQUALS ::= FreeType 
FREEKET )) Branch 
HIDING \ BOTH Exp 
IF if AFTER Exp 
IFF •a BOTH Exp, Pred 
IMPLIES =*> BOTH Exp, Pred 
KET ) BEFORE Exp, Pred, SeqArg 
LAMBDA A AFTER Exp 
LEFTFUN leftfun Category 
LET let Exp, Pred 
MEMBER € BOTH Relation 
MU ß AFTER Exp 
NORMAL _ Arg 
NOT —1 AFTER Exp, Pred 
OR V BOTH Exp, Pred 
PRED pred AFTER Pred 
PRESCH pre AFTER Pred 
PROJECTION r BOTH Exp 
PSET p AFTER Exp 
REL rel Category 
RENAME /m 

BOTH Rename 
RIGHTFUN rightfun ?? Category 
SEMICOLON BOTH DeclElem, DeclPart 
SEQUENCE SeqArg 
SELECT BOTH Exp 
SETBRA AFTER Exp 
SETKET BEFORE Exp 
SQBRA AFTER Exp, Formals, Paragraph 
SQKET BEFORE Exp, Formals, Paragraph 
THEN then BOTH Exp 
THETA e AFTER Exp 
TRUE true NEITHER Pred 
TURNSTILE h ?? Paragraph 
TYPE $ ?? Arg 
VBAR | BOTH Paragraph, Text 
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C.3.2    Box tokens 

BOX = AX | SCH | GEN AFTER 
| IS | ST | BAR BOTH 
I END BEFORE 

A typical rendering of these BOX tokens is lines drawn around the Z text. 

(Editor's note: add three examples.) 

The Interchange Format (Annex E) defines a textual form. 

C.3.3    Mixfix token categories 

MIXFIX = I | ... | SREP 

For the base language, these token categories are empty. They are populated by definitions using the 
template structure of the fixity paragraph, such as toolkit definitions. 

The second column defines the soft newline category of names declared in these token categories. The 
third column notes the representation syntax productions where these tokens occur. 

Token Newline Production 

I.  IP BOTH Infix 
POST,  POSTP BEFORE Postfix 
PRE,  PREP AFTER Prefix 

EL,  ELP BOTH Postfix, Infix 
ER,  ERP BEFORE Postfix, Nofix 
ERE,  EREP BOTH Prefix, Infix 
ES BOTH Prefix, Postfix, Infix, Nofix 
L,  LP AFTER Prefix, Nofix 
SR,  SRP BEFORE Postfix, Nofix 
SS BOTH Prefix, Postfix Infix 
SRE,  SREP BOTH Prefix, Infix 

C.3.4    Decoration, name and number tokens 

DECORATION = STROKE, {STROKE}; 
NAME = WORD,{STROKE}; 
NUMBER = '0'|DIGIT1, {DIGIT}; 

All these tokens are in the soft newline category NEITHER. 

Notice that the lexis allows a NAME to include STROKES, and that the concrete syntax allows an expression 
to be decorated with STROKES.   When the expression is a NAME, the two cases are disambiguated by 
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C.4    Glyphs 

white space: x\ is the undecorated NAME consisting of the WORD V followed by the STROKE '!'; x! is 

the decorated expression consisting of the NAME V decorated with the STROKE '!'; x\! is the decorated 
expression consisting of the WORD 'a;!' decorated with the STROKE '!'. 

STROKE       = '" | '!' | '?' | SUBSCRIPT; 

SUBSCRIPT = DOWN, GLYPH, {DOWN, GLYPH}, UP 

The DOWN and UP subscript delimiter tokens could be presented as in-line literals, or they could indicate 

a lowering/raising of the text, and possible size change. Such rendering details are not defined here. 

ALPHASTRING   = {LETTER | DIGIT} 

SYMBOLSTRING = {SYMBOL} 

WORDPART = '_', (ALPHASTRING | SYMBOLSTRING) 

WORD = WORDPART, {WORDPART} 

I LETTER, ALPHASTRING, WORDPART 

I SYMBOL,SYMBOLSTRING,{WORDPART} 

C.4    Glyphs 

GLYPH = DIGIT | LETTER | SYMBOL | SPECIAL 

The glyph sets forming GLYPH are disjoint. SYMBOL is a user-extensible glyph set for making new symbolic 
identifiers: this is where characters from other alphabets (such as Japanese or Russian) can be added. 

DIGIT1 

DIGIT 

LETTER 

SYMBOL      = 

SPECIAL = BOX 

V | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'; 

0' | DIGIT1; 

a' | '6' | <c' | 'd' |'e' | '/' | y |'A' | V | 'j' | 'jfc' | T | <m' 
v | v | y | y i v I v | iv | v | v \ '«>' \ v \ y | v 
M' I '£' I 'C I '£>' I '£' I (F' | 'G' | lH' | '/' | T \ lIC | 'L' | 'M' 
'iV' | '0' | 'P' | (Q' | '£' | '5' | 'T' I 'W | '7' | 'W | 'X' | lY' | 'Z' 
T' | 'A' | '6' | 4A' | 'S' | «IT | '£' | 'T' | '$' | '*' | (fi' 
'a' j '/?' | y | T | V | 'C' | y | 'Ö' | 't' | '«' I 'A' | V 
V I '£' | V | y | 'a' | V | V | '0' | 'x' | (v IV 

$T, T-'I 7'I': T; T = TNTIT N T}' 
cx , j (p, | «•'|«(('|«))'|«h' 

' I'lT'l'V 
any toolkit glyphs, including MIXFIX (as supported) 
any user glyphs, including MIXFIX 

'(' I ')' I '-' 
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C.4.1    Examples 

A glyph in the LETTER or DIGIT class may be rendered differently for reasons of emphasis or aesthetics, 
but it still represents the same glyph. For example, id\ 'd', 'd' and 'd' are all the same glyph. This 
explains why those Greek characters that are identical in appearance to Roman characters do not appear 
twice in the list of letters. 

A glyph in the SYMBOL class, which includes user-defined glyphs, must appear the same wherever it occurs 
in a specification. For example, schema composition 9 and the toolkit glyph relational composition ? 
are different glyphs. 

Once a NAME has been recognised, if it consists of the glyph string corresponding to a SIMPLE token, 
it is recognised as that token instead. For example, P is recognised as PSET, but Px ('P', DOWN, '1', 
UP) and P45 ('P', DOWN, '4', UP, DOWN, '5', UP) are recognised as NAMEs. For example, 3X ('3', DOWN, '1', 
UP) is recognised as EXISTS!, but 30 ('3', DOWN, '0', UP) is recognised as a NAME. 

Underscore, '_', is used in words to separate strings of alphanumerics from strings of symbols. For 
example, 'i_oo_j' is a single word, whereas lx 003/' consists of the three words 'z', '00' and ly\ For 
example, 'P_JT is a single word, whereas 'PX' is the token PSET followed by the word 'X\ 

(Editor's note: more examples here?) 

C.4.2    Glyph representations 

We present the glyphs of the Base language in a variety of formats, designed for different purposes. 

Spoken name A suggested form for reading the glyph out loud, designed for use in reviews, or for 
discussing specifications over the telephone. (An English language form only is given; other natural 
languages may well use other forms.) 

Interchange The format for use with the SGML interchange format (chapter ????) 

Email The format for rendering the glyph on a low resolution device, such as a character-based ter- 
minal, or e-mail conversation. (The email form for digits and the Roman alphabet is the obvious 
one, and is not given explitily.) 

The character '/. is used to flag a special string, for example x as %x, and disambiguate it from, for 
example the name x, to ease machine processing. This flag character may be omitted to reduce 
clutter, if there is no intention to machine-process the text. 

Mathematical The format for rendering the glyph on a high resolution device, such as a bit-mapped 
screen, or on paper (either hand-written, or printed). 

Other formats may be used for other purposes, as required. 

Toolkit glyphs are described in the toolkit chapter. 

144 Z Notation    Version 1.1 30th June 1995 



C.4    Glyphs 

C.4.3    Base language glyphs 

Spoken name Interchange Email Mathematical 

and &and A A 
left [parenthesis] ( ( ( 
colon : ; 
comma > j 5 

schema compose &scomp VI* /o/o ] 
O 
9 

cross &times °/.x X 
define equal == == === 

fat dot | spot &bull @ • 
equals = = z= 

else else else else 
exists &exist •/.E 3 
unique exists &existl •/.EI 3i 
false false false false 
fixity fixity fixity fixity 
for all fcforall '/.A V 
left chevron [bracket] &lchev « (( 
free equals ::= : : = 
right chevron [bracket] &rchev » >) 
hide &hide y.\ \ 
if if if if 
equivalent | if and only if &iff <=> <$ 
implies &rArr ==> =4> 
right [parenthesis] ) ) ) 
left function leftfun leftfun leftfun 
let let let let 
member | in &isin °/.e e 
not &not "" » —i 

argument _ 
or &or \/ V 
coerce predicate &pred pred pred 
pre [condition] &pre pre pre 
project &proj y.i\ r 
power [set] &pset y.p p 
relation rel rel rel 
rename / / / 
right function rightfun rightfun rightfun 
semifcolon] ! i 

sequence argument ... . . . 
select | dot . 
left set [bracket] &lcub { 
right set [bracket] &rcub } 
left square [bracket] &lsqb [ 
right square [bracket] &rsqb ] 
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then 
true 
turnstile 
type argument 
bar 

then then then 
true true true 
&vdash 1- h 
&num $ $ 
&verbar 1 1 

C.4.4    Greek alphabet glyphs 

Spoken name   Interchange    Email Mathematical 

alpha &alpha '/.alpha a 
beta &beta '/.beta ß 
gamma fegamma '/.gamma 7 
delta &delta '/.delta 6 
epsilon &epsi '/.epsilon e 
zeta &zeta '/.zeta c 
eta &;eta '/.eta V 
theta &thetas '/.theta e 
iota &iota '/.iota i 

kappa &kappa '/.kappa K 

lambda &lambda '/.lambda X 
mu &mu '/.mu P 
nu &nu '/.nu V 

xi &xi %xi £ 
Pi &pi '/.pi 7T 

rho &rho '/.rho P 
sigma . &sigma '/.sigma a 
tau &tau '/.tau T 

upsilon &upsi '/.upsilon V 

phi &phis '/.phi <f> 
chi &chi '/.chi X 
psi &;psi '/.psi 1> 
omega Iomega '/.omega UJ 

big delta &Delta •/Delta A 
big gamma & Gamma '/.Gamma r 
big theta &Theta '/.Theta e 
big lambda &Lambda '/.Lambda A 
big xi &Xi '/.Xi " 

big pi &Pi '/.Pi n 
big sigma fcSigma '/.Sigma s 
big upsilon &Upsi '/.Upsilon T 
big phi &Phi '/.Phi $ 
big psi &Psi '/.Psi * 
big omega &;Omega '/.Omega n 
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C.5    Toolkit glyphs 

Glyph representations are provided for the new glyphs introduced in the Toolkit. 

Editor's note:   The precise contents of this list depends on the chosen Tookit, and hence is subject to 
change. 

Spoken name 

not equal 
non in 
empty [set] 
subset 
not subset 
proper subset 
not proper subset 
[set] union 
[set] intersection 
set difference 
set symmetric difference 
generalised union 
generalised intersection 
finite sets 

relation 
maplet 
[relational] compose 
functional compose 
domain restrict 
range restrict 
domain subtract 
range subtract 
inverse 
left relational image bracket 
right relational image bracket 
transitive closure | plus 
reflexive transitive closure | star 
[relational] override 

[partial] function 
total function 
[partial] injection 
total injection 

Interchange Emai 

&ne /= 
&notin X/e 
&empty (/) 
&sube */.c_ 
&nsube %/c_ 
&sub %c 
&nsub %/c 
&;cup 7.u 
&cap %n 
fesdiff \ 
fessdiff \\ 
&Bigcup %uu 
&Bigcap •/,nn 
&feet %F 

&rel <—> 
&map |-> 
&rcomp •/.; 
&compfn 7.0 
&dres <: 

&rres :> 

&dsub <-: 
&rsub :-> 
fctilde ~ 

&limg (1 
&rimg 1) 
&tcl 1 + 
&rtcl 1* 
&oplus (+) 

&pfun -|-> 
&rarr —> 

&pinj >-|-> 

&rarrtl >--> 

Mathematical 

i 
0 
c 
% 
c 
£ 
u 
n 
\ 
\\ 
U 
n 
F 

o 
? 

o 

< 

> 

<3 

+ 

>+¥ 
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[partial] surjection 
total surjection 
bijection 
finite function 
finite injection 

nat[ural number] 
integer 
rational 
real [number] 
less than 
less than or equal to 
greater than 
greater than or equal to 
up to 
plus 
[unary] minus 
[binary] minus 
times 
cardinality | hash 
[real] divide 

left seqfuence bracket] 
right seq[uence bracket] 
filter 
co-filter 
extract 
co-extract 
concatenate 

&psur 
&Rarr 
&bij 
&fpfun 
&fpinj 

&nat 
&int 
&xat 
&real 
&lt 
&le 

&gt 
&ge 
&nldr 
+ 
&uminus 
&bminus 
* 
&num 
&divide 

&lang 
&xang 
&filter 
&cofilter 
&extract 
&coextract 
&frown 

—» 
>—» 
-M-> 
>-M-> 

•/.N 

%Z 

7.Q 

°/.R 
< 

<= 

> 

>= 

* 
# 

•/.< 
'/.> 
I\ 
1/ 
/I 
\l 

—» 

-tB- 

N 

< 
< 
> 
> 

+ 

* 

# 
div 

left bag [bracket] 
right bag [bracket] 

Mbag 
&rbag 

[I 
I] 

D 
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D    Mathematical toolkit - Normative Annex 

Notes on this section of the Z Standard 

Section title: Mathematical toolkit 
Section editor: John Wordsworth 
Contributions by: John Wordsworth, 
Source file: toolkit.tex 
Most recent update: 30th June 1995 
Formatted: 3rd July 1995 

(others to be added) 

Editor's note:    In this version, the only major change to this Annex has been the addition of fixity 
definitions to some of the definitions. 

Introduction 

This section defines a Mathematical Toolkit or Library for use with the Z notation. The principle is 
that those constructions that can be defined in terms of others are included in the Toolkit rather than 
in the core notation—this simplifies the core notation. 

Most users will want to make use of the constructions defined in this section. This can therefore be 
regarded as a basic Toolkit, which users may augment with their own definitions, or replace if these 
definitions are not suitable for their use. 

In this version of the Z Standard, the list of defined items follows the customary list of Toolkit items. 
Later versions of the Standard may include further definitions and explanations, and will link the Toolkit 
to related work on the semantics and proof system for Z. 

Definitions of the Mathematical Toolkit are informally explained and illustrated. In some cases an 
illustration for one part of the Toolkit may rely on terms defined earlier in the toolkit. Many of the 
definitions given here are generic with respect to one or more sets. 

Editor's note:   The following note appeared an an earlier version. It is retained for possible use. 

Instantiation of a generic definition can be performed with any appropriate sets, not necessarily 
the maximal sets of their types. However the informal descriptions of these definitions are often 
here expressed as if the sets used for instantiation were in fact types, since that is the way in 
which these definitions are commonly instantiated in Z specifications. 

Reviewers of the draft standard are invited to comment on this approach. 
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D.l    Sets 

Name 

^   — Inequality 

^ .— Non-membership 

Definition 

fixity rel _ ^ _ 
fixity rel _ ^ _ 

Vz, y : A" • x ^ y <=> -< (a; = y) 

Vi:I;5:PI.^S«-n(a;G5) 

Description 

Inequality is a relation between values of the same type. The predicate x ^ y denotes true when x = y 
denotes false. 

Non-membership is a relation between values of a certain type and sets of values of that type.  The 
predicate x £ S denotes true when x G S denotes false. 
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Name 

0 - Empty Set 

C — Subset relation 

C — Proper subset relation 

Pj — Non-empty subsets 

Definition 

0[X] == { x : X | false } 

fixity rel  _ C _ 
fixity rel  _ C _ 

-[X] 
-C_,_C-:PX^PI 

VS,T:FX • 

(5CT#(Vi:I.ie5^ier))A 

5cT#5CTA5^r) 

P1Z=={5:PX|5^0} 

Description 

The empty set of values of a certain type is the set of values of that type that has no members. 

If S and T are sets of values of the same type, then S C T is a predicate denoting true if and only if 
every member of 5 is a member of T. The empty set of values of a certain type is a subset of every set 
of values of that type. 

If 5" and T are sets of values of the same type, then S C T is a predicate denoting true if and only if 
every member of 5 is a member of T and S and T are not equal. If 5 is a proper subset of T, then it 
is also a subset of T. The empty set of values of a certain type is a proper subset of every non-empty 
set of values of that type. 

If X is a set, then Px X is the set of all non-empty subsets of X. Px X is a proper subset of T X. 
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D   MATHEMATICAL TOOLKIT - NORMATIVE ANNEX 

Name 

U — Set union 

n — Set intersection 

\ — Set difference 

Definition 

fixity leftfun 0 _U_ 
fixity leftfun 0 _f~l_ 
fixity leftfun  0 _ \ _ 

:[X]: 
.U_,_n_,_\_:PXxPX—>PX 

V5, T:FX • 
SllT = {x:X\xeSVx€T}A 
SHT = {x:X \x€S Axe T} V 
S\T = {x:X\xeS Ax<£T} 

Description 

The union of two sets of values of the same type is the set of values that are members of either set. 

The intersection of two sets of values of the same type is the set of values that are members of both 
sets. 

The difference of two sets of values of the same types is the set of values that are members of the first 
set but not members of the second. 
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D.I    Sets 

Name 

U   — Generalized union 

n — Generalized intersection 

Definition 

-[X] 
u,n:P(Pi)->Pi 
V4:P(PX)» 

UA = {x:X\(3S:A*xeS)}A 
r\A = {x : X \(ys : A» x € S)} 

Description 

The generalised union of a set of sets of values of the same type is the set of values of that type that 
are members of at least one of the sets. 

The generalised intersection of a set of sets of values of the same type is the set of values of that type 
that are members of every one of the sets. 
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Name 

first, second   — Projection functions for ordered pairs 

Definition 

r.v vi 
L" '       J                ■■ 

first :X xY-+ 
second : X x Y - 

X 
-> Y 

Vx:X;y:Y» 
first(x, y) = 
second(x,y) 

x A 
= y 

Description 

For any ordered pair (x, y), first(x, y) is x and second(x, y) is y. 

If p is of type X x Y, then p = (first p, second p). 
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D.2   Relations 

D.2    Relations 

Name 

*-*■   — Binary relations 

H->   — Maplet 

Definition 

fixity leftfun  0 _<—>_ 
fixity leftfun  0 _ >-> _ 

X^Y==F(X xY 

MX>Yh 
.4.:Ix Y-+X x Y 

Vx:X;y:Y» 
x H-> y = (x, y) 

Description 

X <—» y is the set of all sets of ordered pairs whose first members are members of X and whose second 
members are members of Y. To declare R : X <—> Y is to say that R is such a set of ordered pairs. 

The maplet forms an ordered pair from two values, so if x is of type X and y is of type Y, then x \-¥ y 
is of type X x Y. x n-f y is thus just another notation for (re, y). 

Z Notation    Version 1.1 30th June 1995 155 



T 
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Name 

dom, ran   — Domain and range of a relation 

Definition 

dorn :(X*->Y) 
ran : {X <-> Y) - 

YX 
FY 

VR:X^ Y • 
domi? = {x: X; y: Y \ (x ^ y) e R • x} A 
ran R = { x : X; y : Y\(x>-^y)eR»y} 

Description 

The domain of a relation R is the set of first members of the ordered pairs in R. If R is of type X •<—> Y, 
the domain of R is of type PI. If R is an empty relation, then its domain is an empty set. 

The range of a relation R is the set of second members of the ordered pairs in R. If R is of type X <—> Y, 
the domain of R is of type F Y. If R is an empty relation, then its range is an empty set. 

156 Z Notation    Version 1.1 30th June 1995 



D.2   Relations 

Name 

id — Identity relation 

5 — Relational composition 

o — Backward relational composition 

Definition 

id X == {x : X • x H» X} 

fixity leftfun  0 _ 5 _ 
fixity leftfun  0 _o_ 

f=[X, Y,X] 
_; _ : (X <-> Y) x (Y <-> Z) -> {X <-+ Z) 
_o_:(Y<-+Z)x(X+-±Y)^(X<->Z) 

VR:X*->Y;S:Y<-+Z» 
R°,S = SoR = {x :X;y: Y; z : Z \ 

{x>->y)€RA(yt->z)eS»xi-+z} 

Description 

The identity relation on a set X is the relation that relates every member of X to itself. Its type is 
X <r-¥ X. The identity relation on an empty set is an empty relation. 

The relational composition of a relation R : X <-> Y and S : Y <-> Z is a relation of type X «-»• Z 
formed by taking all the pairs (x,y) of R whose second members are in the domain of S, and relating 
x to every member of Z that y is related to by S. 

The backward composition of S and R is the same as the composition of R and S. 
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Name 

<   — Domain restriction 

>  — Range restriction 

Definition 

fixity leffcfun  0 _<_ 
fixity leftfun   0 _ £> _ 

F=[X, Y] 
_<_:Pix(if4y)^(iHy) 
_>_:(*<->• Y) x P Y -*• {X <-> y)' 

VS:PX;Ä:X<-> y» 
5<Ä = {j:I;y:7|i€5A(Ii-ys/)ei?#my} 

VR:X*^ Y; T :FY • 
R>T = {x:X;y: Y\(x^y)eRAyeT»x>^y} 

Description 

The domain restriction of a relation R : X <—>• Y by a set S : P X is the set of pairs in Ä whose first 
members are in S. S < R is a subset of R, and its domain is a subset of S. 

The range restriction of a relation R : X <—> Y by a set T :F Y is the set of pairs in R whose second 
members are in T. R > T is a subset of R, and its range is a subset of T. 
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D.2   Relations 

Name 

<   — Domain anti-restriction 

^ — Range anti-restriction 

Definition 

fixity leftfun  0 _<3_ 
fixity leftfun  0 _ £► _ 

-.[X, Y] 
_<i_:FXx{X+->Y)->(X^Y) 
->-:(X<-+Y)xFY—*(X*->Y) 

VS:FX;R:X^ 7. 
S 4 R = {x : X; y : Y \ x <£ S A (x >-+ y) e R • x ^ y} 

VR-.X+-* Y; T:FY • 
Rfr T = {x : X; y : Y | (x .-> y) G R A y $ T • x H- y} 

Description 

The domain anti-restriction of a relation R : X <-» Y by a set S : P X is the set of pairs in R whose 
first members are not in S.        S < R is a subset of R, and its domain contains no members of S. 

The range anti-restriction of a relation R : X <-> Y by a set T : P Y is the set of pairs in R whose 
second members are not in T.       R E> T is a subset of R, and its range contains no members of T. 
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Name 

— relational inversion 

Definition 

fixity leftfun  0 _~_ 

=rx yi —i/1-'i J - 
_~:(X <-» y) 

X 

(Y 

y- 

*-+X) 

Y | (an-* »)€Ä« 
VR:X 

RT 
<-> y • 
= {*: y >-»z} 

Description 

The inverse of a relation is the relation obtained by reversing every ordered pair in the relation. 
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D.2   Relations 

Name 

_d_D   — Relational image 

Definition 

fixity leftfun  0 _fl_D 

P=[X, Y] 
_y :(i^y)xPi4Py 

VR:X*-> Y;S:FX» 
RW = {x : X; y: Y \ x e S A (x ^ y) e R • y} 

Description 

The relational image of a set S : FX under a relation R : X <-» Y is the set of values of type Y that 
are related under R to a value in S. 
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D   MATHEMATICAL TOOLKIT - NORMATIVE ANNEX 

Name 

_+   — Transitive closure 

_*   — Reflexive-transitive closure 

Definition 

fixity leftfun   0 _+_ 
fixity leftfun  0 _*_ 

MX] 
_+,_* : (X <-» X) —> (X <-> X) 

VR:X<->X • 
R+ = n{Q : X <-> X \ R C Q A Q °, Q C Q} A 
R* = n{Q:X^X\idXCQARCQAQsQCQ} 

Description 

The transitive closure of a relation R : X 4-+ X is the relation obtained by relating each member of 
the domain of R to its images under R, and to anything related to any of its images under R by any 
number of steps of application of R. 

The reflexive transitive closure of a relation R : X<->X is the relation formed by extending the transitive 
closure of R by the identity relation on X. 

162 Z Notation   Version 1.1 30th June 1995 
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D.3    Functions 

Name 

— Partial functions 

— Total functions 

Definition 

fixity leftfun  0 -+■» 
fixity leftfun   0 —> 

X-++Y== 
{f:X^Y\(Vx:X;yuy2:Y. 

(x H- j/i) € / A {x t-> y2) e f =* V! = y2) } 
X -» Y == {/ : X -+■> Y | dorn/ = X } 

Description 

The partial functions from Z to Y are a subset of the relations X *->Y. They are distinguished by the 
property that each x in X is related to at most one y in Y. X -H- Y is the set of all partial functions 
from X to Y, and to declare / : X -+¥■ Y is to say that / is one such partial function. 

The total functions from X to Y are a subset of the partial functions X -+■> Y. They are distinguished 
by the property that each x in X is related to exactly one y in Y. X —> Y is the set of all total 
functions from X to Y, and to declare / : X —> Y is to say that / is one such total function. The 
domain of / : X —> Y is X. 
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D   MATHEMATICAL TOOLKIT - NORMATIVE ANNEX 

Name 

H-»   — Partial injections 

>—>   — Total injections 

Definition 

fixity leftfun  0 >+> 
fixity leftfun  0   >—» 

X>+± Y == 
{/ : X -H- Y | (Vzi, x2 : dom/ • f(xi) = f(x2) => xx = x2) } 

x ^ Y == (x H-> Y) n (z —> y) 

Description 

The partial injections from X to Y are a subset of the partial functions X -+* Y". They axe distinguished 
by the property that each y in F is related to at most one x in X. Thus the inverse of a partial injection is 
also a partial injection. X H-> Y is the set of all partial injections from X to Y, and to declare / : X >-+-» Y- 

is to say that / is one such partial injection. 

The total injections from X to Y are a subset of the partial injections X H-» Y. They are distinguished 
by the property that each x in X is related to exactly one y in Y. X >—> Y is the set of all total 
injections from X to Y, and to declare / : X >—> Y is to say that / is one such total injection. 
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D. 3   Functions 

Name 

-+-» — Partial surjections 

—* — Total surjections 

>-»• — Bijections 

Definition 

fixity leftfun 0 -+» 
fixity leftfun 0 —» 
fixity leftfun  0 >-» 

X -+*• Y == {/ : X -H. 7 | ran/ = 7 } 
A" -» y == (x -w. y) n (x -> y) 
x >-* y == (A -* Y) n (A >-» y) 

Description 

The partial surjections from X to Y are a subset of the partial functions X-++Y. They are distinguished 
by the property that each y in Y is related to at least one linl. X -+» y is the set of all partial 
surjections from X to Y, and to declare / : X -+» Y is to say that / is one such partial surjection. 

The total surjections from X to Y are a subset of the partial surjections X-+*Y. They are distinguished 
by the property that each x in X is related to exactly one y'mY. X—* Y is the set of all total surjections 
from X to y, and to declare / : X —» y is to say that / is one such total surjection. 

The bijections from X to Y are a subset of the total surjections X —» y. They are distinguished by 
the property that each y in y is related to exactly one x in X. X >-» y is the set of all bijections from 
X to y, and to declare / : X >-* y is to say that / is one such total bijection. 
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D   MATHEMATICAL TOOLKIT - NORMATIVE ANNEX 

D.3.1    Name 

©   - Functional overriding 

D.3.2    Definition 

fixity leftfun  0 © 

:[X,Y].. 
: (X -+► F) x (X -++ y) -> (X -+* Y) 

Vf,g:X-»Y. 
/©ff = ((dom?)</)U^ 

Description 

If/ and 3 are both functions from I to 7, then the functional overriding of / by g is the function g 
together with such pairs of / as have first elements different from the first element of any pair in g. 
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D.4    Numbers and finiteness 

D.4    Numbers and finiteness 

Name 

N — Natural numbers 

Z — Integers 

+,— ,*,div, mod — Arithmetic operations 

<,<,>,> - Numerical comparison 

Definition 

fixity leftfun  0 _ + _ 
fixity leftfun 0 _ — _ 
fixity leftfun  1 _*_ 
fixity leftfun   1 -div- 
fixity leftfun   1 -mod- 
fixity leftfun  3 _— 
fixity rel  _ < _ 
fixity rel  _ < _ 
fixity rel  _ > _ 
fixity rel  _ <> _ 

[Z] 

. + _,_-_,_*_:ZxZ —>Z 

.div_,_mod_:Zx (Z\{0})~ 

.-:Z-+Z 

N={n:Z| n>0} 

... other definitions omitted... 

Description 

The natural numbers are the integers from zero upwards.   The type of N is PZ, since N is a set of 
integers. The declaration n : N makes Z the type of n, and entails the property n > 0. 
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Name 

NL      — Strictly positive integers 

succ — Successor function 

Definition 

N, == N \ {0} 

succ : N —> N 

V n : N • succ(n) = n + 1 

Description 

The strictly positive numbers N are the natural numbers except zero. 

The successor of any natural number is the next natural number in ascending order. 

168 Z Notation    Version 1.1  30th June 1995 



D-4    Numbers and finiteness 

Name 

Rk   — Iteration 

Definition 

:[X} = 
iter (X <-* X)-* (X ^ X) 

VR:X^>X • 
iter 0 R = id X A 
(Vk : N• iter(h + l)R = R$ (iterkR)) A 
(V& : N • iter (-k)R = iter k (R~)) 

Description 

The iteration of a relation R : X <-» X by zero is the identity relation on the set X. 

The iteration of a relation R : X <—> X by one is the relation Ä. 

The iteration of a relation R : X <-► X by an integer greater than one is the composition of R with its 
iteration by the next lower integer. 

The iteration of a relation R : X <->• X by an integer less that zero is the iteration of the inverse of R 
by the corresponding positive integer. Thus the iteration of R by -1 is the inverse of R. 

The form: iter k R is usually written Rk. 
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Name 

..   — Number range 

Definition 

fixity leftfun  0   — 

 :ZxZ-»PZ 

Va,&:Z» 
a .. b = { k : Z | a < k < b } 

Description 

If a and b are integers, and a is less than b, the number range a..b contains a, b and any integers 
between. 

If a is equal to b, the number range a..b is a singleton set containing a only. 

If a is greater than b, the number range a..b is an empty set of integers. 

The number range a..b is always finite, and if b > a its size is b — a + 1. 
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D.4    Numbers and finiteness 

Name 

F — Finite sets 

Fx — Non-empty finite sets 

# — Number of members of a set 

Definition 

FX   == {S :P X \3n :N • 3/ : 1.. n -> S • ran/ = S } 
F1I==FI\{0} 

#:WX-*N 

V5:FX. 
#5 = Oi n : N | (3/ : 1.. n >-» 5 • ran/ = S)) 

Description 

A set is finite if its members can be put into one-to-one correspondence with the natural numbers from 
1 up to some limit. FX is the set of all finite subsets of X. FX is a subset of FX. If X is finite, then 
it is a member of F X. 

The non-empty finite subsets of X are the finite subsets of X except the empty set. 

The number of members of a finite set is the upper limit of the number range starting with 1 that can 
be put into one-to-one correspondence with the members of the set. 
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D   MATHEMATICAL TOOLKIT - NORMATIVE ANNEX 

Name 

-H->   — Finite partial functions 

HB- — Finite partial injections 

Definition 

fixity leftfun  0 -» 
fixity leftfun  0 Ht* 

X -+> Y == {/ : X -+» Y | dorn/ € FX } 
X >#> Y == (X-»+Y) n (X y» Y) 

Description 

The finite partial functions from I to F are the partial functions from X to Y whose domains are 
finite sets. 

The finite partial injections from X to Y are the partial injections from X to Y whose domains are 
finite sets. 
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D.4    Numbers and finiteness 

Name 

min, max   — Minimum and maximum of a set of numbers 

Definition 

min : P, Z -H- Z 

min = { S : F1Z; m : Z | 
m G S A (Vn : S • m < n) • Si-> m} 

max ={S :F1Z;m:Z\ 
m € S A (V n : S • m > n) • S i-> m} 

Description 

The minimum of a non-empty set of integers that has a least member is the least member.  Sets of 
integers that have no least member are not in the domain of min. If a < b, min a..b = a. 

The maximum of a non-empty set of integers that has a greatest member is the greatest member. Sets 
of integers that have no greatest member are not in the domain of max. If a < b, max a..b = b. 
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D.5    Sequences 

Name 

seq — Finite sequences 

seq! — Non-empty finite sequences 

iseq — Injective sequences 

Definition 

seqX =={/:N-**X|dom/ = l..#/} 
seqi     =={/:seqX|#/>0} 
iseq X == seq X n (N H+ X) 

Description 

A sequence is a finite aggregate of values of the same type in which each value can be identified by 
its position in the sequence. The formal definition establishes a sequence as a partial function relating 
the numbers from the set l..n for some n (the domain of the sequence) to the values (the range of 
the sequence). seqZ is the set of all finite sequences of values of type X. The declaration S : seqX 
says that S is one such finite sequence. Since a sequence is a function (i.e. a set of ordered pairs), a 
sequence might be empty, and the function application notation S i can be used to denote the element 
at position i, provided that i is in the domain of the sequence. 

seqx X is the set of all non-empty finite sequences of values of type X. The declaration s : seqx X says 
that s is such a non-empty finite sequence.     seq! X is a subset of seqX. 

iseqZ is the set of all injective finite sequences of values of type X. A sequence is injective if no value 
appears more than once in the sequence. The declaration S : iseqX says that S is such an injective 
finite sequence.     iseqX is a subset of seqX. 
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D. 5   Sequences 

Name 

<>   — Sequence brackets 
~      — Concatenation 

Definition 

_ ~ _ : seq X x seq X —> seq X 

Vs, t : seqX • 
s~£ = sU{n: dom t • n + #s >->■ i(n) } 

Description 

The brackets < > can be used for enumerated sequences. The empty enumeration is the empty function. 
A singleton enumeration is the function that maps 1 to the element in the enumeration. The function 
that extends an enumeration is the concatenation function. 

Concatenation is a function of a pair of sequences of values of the same type that denotes a sequence 
that begins with the first sequence and continues with the second. Either or both of the sequences 
might be empty. If either sequence is empty, the result is the other sequence. 
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D   MATHEMATICAL TOOLKIT - NORMATIVE ANNEX 

Name 

head, last, tail, front   - Sequence decomposition 

Definition 

MX]  
head, last : seqx X —> X 
tail , front : seq! X —> seqX 

Vs : se<\i X 

head s =5(1) A 
last s ■ = *(#*) A 
tail s - = (A n : 1. #5-1. s(n + 1))A 
front s = (1..#6 - 1) <s 

Description 

If 5 is a non-empty sequence of values of type X, then head S is the value of type X that is first in the 
sequence. Empty sequences are not in the domain of head. 

If S is a non-empty sequence of values of type X, then last S is the value of type X that is last in the 
sequence. Empty sequences are not in the domain of last. 

If S is a non-empty sequence of values of type X, then tail S is the sequence of values of type X obtained 
from S by discarding the first member. Empty sequences are not in the domain of tail. 

If S is a non-empty sequence of values of type X, then front S is the sequence of values of type X 
obtained from S by discarding the last member. Empty sequences axe not in the domain of front. 
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D.5   Sequences 

Name 

rev   — reverse 

Definition 

F=[*] — 
rev : seq X —> seq X 

V s : seq X • 
revs = (An : doms • s(#s — n + 1)) 

Description 

The reverse of a sequence is the sequence obtained by taking its members in the opposite order. 
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Name 

f   - Filtering 

Definition 

— l/M 
-r- _:seqXxPX —» seqX 

VK :FX • 
()\V = ()A 
(Vz : X • 

(xev=> (x)\V = <*» A 
(x<£V=i> (x)\V = <»)A 

(V s,t : seqX • 
{(s~t)\V = {s\V)~(t\V)) 

Description 

The filter of a sequence of values of type X by a set of values of type X is the sequence obtained from 
the original by discarding any members that are not in the set. 
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D. 5    Sequences 

Name 

~/   — Distributed concatenation 

Definition 

~l: seq(seq X) —> seq X 

~/<> = 0 
Vs : seqX • ~/(s) = * 
Vg, r : seq(seqZ) • 

-7(<rr) = r/<?rr/r) 

Description 

The distributed concatenation of a sequence of sequences of values of type X is a sequence of values of 
type X obtained by concatenating the lesser sequences in the order in which they appear in the greater 
sequence. 
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Name 

disjoint     — Disjointness 

partition   — Partitions 

Definition 

disjoint- :P(/^PI) 
-partition.: (I-t+FX) 

:domS»S(i)} = 

VS:I-+*FX; T:FX • 
(disjoint S & 

(V i,j : domS | i 
(S partition T & 

disjoint«S A U{ i 

= 0))A 

T) 

Description 

An indexed family of sets is disjoint if no two members having distinct indexes have any members in 
common. 

An indexed family S of sets partition a set T if S is disjoint and the union of all the members of S is 
T. 
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D. 6   Bags 

D.6    Bags 

Name 

bag — Bags 

count — Multiplicity 

E — Bag membership 

Definition 

bagX==X+*Ni 

count : bag X >-» (X —> N) 
_ E _ : X <-> bag X 

Vx:X;B:b&gX» 
countB = (\x : X • 0) © 5 A 
x E B & x e dorn B 

Description 

A bag represents an aggregate in which order is not important, but in which a given value can occur 
several times. A bag of values of type X is a function whose domain is a subset of X and whose range 
is a set of strictly positive natural numbers. 

The count of a bag of values of type X is a function that extends the bag function by relating every 
member of X that is not is the domain of the bag to zero. 

A value x : X is said to be in B : bagX if and only if x is in the domain of B. 
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Name 

tt)   — Bag union 

Definition 

MX]- 
_ Ö _ : bag X x bag X —> bag X 

V5, C :ba,gX;x:X • 
count (B ö C)x = count B x + count C x 

Description 

The bag union of two bags is the bag that relates every member of the domain of either bag to the sum 
of its occurrences in the two bags. 
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D. 6   Bags 

Name 

items   — Bag of elements of a sequence 

Definition 

-[X] 
items : seq X —> bag X 

Vs : seqX; x : X • 
count (items s)x = #{ i : dorn s \ s(i) = x } 

Description 

The items of a sequence of values of type X is a bag such that the range of the sequence and the domain 
of the bag are the same, and the each value in the domain of the bag is related to the number of indexes 
in the sequence at which that value occurred. 

D 
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E    Interchange format — Normative Annex 

Notes on this section of the Z Standard 

Section title: Interchange format 
Section editor: Jonathan Hammond (Trevor King) 
Contributions by: Trevor King, ... (others to be added) 
Notes: Conforms to new syntax, lexis and toolkit. 
Source file: icformat.tex 
Most recent update: 30th June 1995 
Formatted: 3rd July 1995 

E.l    Introduction 

The Interchange Format defines a portable representation of Z, allowing Z documents to be trans- 
mitted between different products or machines. The most suitable means of communication is the use 
of text files in which the character set is limited for portability reasons. The Interchange Format defines 
a syntax for such text files. 

The basis for the Interchange Format is the ISO Standard Generalized Markup Language (SGML). 
SGML permits the structure of texts to be represented and encoded in a standard form, convenient for 
storage, editing, retrieval and processing. The SGML Standard is defined in [12]. A general description 
of the aims and principles of SGML, together with an annotated version of the standard, is included in 
The SGML Handbook by C. F. Goldfarb [9]. Case studies and applications in SGML are described in 
the work of the Text Encoding Initiative reported in [22]. 

The structure of this Appendix is as follows: 

• section E.2 describes the scope of the Interchange Format — i.e.   the facilities offered by the 
Format; 

• section E.3 contains an informal description of SGML; 

• section E.4 defines the Interchange Format; 

• section E.5 presents explanatory material and examples of the use of the Interchange Format. 

E.2    Scope of the Interchange Format 

The Interchange Format allows a distinction to be made between formal text and other text included in 
a Z document. The Interchange Format does not prescribe the structure of all parts of a Z document; 
in particular it does not define the internal structure of informal text. 

As one possible application of the Interchange Format is to transmit a Z document for Z syntax checking, 
the format is sufficiently liberal to permit syntactically-incorrect Z to be written. The format thus 
prescribes markup only for the higher levels of the Z syntax hierarchy.   In most cases this is at the 
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level of a Z paragraph, although for axiomatic and 'boxed' definitions there is scope for creating a more 
detailed markup if desired (e.g. in order to indicate a presentation format). 

For a Z document to be syntactically correct when written in the Interchange Format, it must conform 
at the higher levels to the markup defined in this Appendix, and at the lower levels (e.g. predicate or 
expression level) to the Z Concrete Syntax, with all mathematical symbols replaced by the alphanumeric 
representations discussed in Section E.4.3. 

The Interchange Format also provides markup for requirements which are additional to the prime 
requirement for encoding the structure of the Z in a document. The following additional requirements 
are accommodated: 

• identification of informal Z fragments, i.e. Z fragments which do not belong to the formal part of 
a Z document; 

• indication of particular presentation formats, e.g. whether a vertical or horizontal style should be 
employed for a schema definition; 

• allocation of identifiers to Z paragraphs, e.g. so that associations between Z operation Schemas 
and data-flow diagrams can be made, or so that Z definitions can be indexed; 

• logical grouping of Z paragraphs independently of the positions they occupy in the document, 
e.g. so that the group can be considered as a unit for type-checking purposes, or that 'units of 
conservative extension' can be identified for subsequent processing by a proof tool; 

• labelling of 'stacked' predicates in an axiomatic or 'boxed' definition. 

E.3    Introduction to SGML 

This section provides an introduction to SGML, sufficient for the understanding of the definition of the 
Interchange Format in Section E.4. More comprehensive descriptions of SGML are given in [121 and 
[9]. l   J 

Examples of text written in SGML are printed with a fixed-width font (the tt font in I?TEX) as follows: 

<tag> text  </tag> 

E.3.1     SGML Element Definitions 

Structures are described in the Interchange Format by means of SGML elements. Elements are delim- 
ited by start-tags and end-tags. A start-tag is of the form <name>, where name is the generic identifier 
of the delimited element. The end-tag is of the form </name>. For example, a particular Z given set 
definition may be written in the Interchange Format as: 

<givendef> NAME,  DATE </givendef> 

The internal structure of a general SGML element is itself defined in SGML by means of a formal SGML 
element declaration. The components of an element declaration are: 
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1. the name of the element; 

2. two characters (separated by a space) which specify the minimisation rules for the element; 

3. the content model of the element. 

The minimisation rules indicate whether the start-tags or end-tags may be omitted in instances of the 
element. The first character in the pair corresponds to the start-tag and the second to the end-tag. The 
character '-' or 'o' indicates that the corresponding tag respectively must be present or may be omitted. 

The content model specifies what any occurrences of the element may legitimately contain. Contents 
may be specified in terms of other elements and special reserved words. Ultimately all elements consist 
of 'parsed character data' (represented in element declarations by the reserved word #PCDATA), which 
contains any valid character data but not further elements. Further structural information concern- 
ing elements which are constituents of the declared element is provided by the use of occurrence 
indicators and group connectors. 

Occurrence indicators define how many times a constituent element may occur in instances of the defined 
element and are placed at the end of the constituent element. The following occurrence indicators are 
used in this Appendix: 

• a question mark (?) indicates that the preceding element occurs at most once; 

• an asterisk (*) indicates that the preceding element may be absent or occurs one or more times; 

• a plus sign (+) indicates that the preceding element occurs one or more times. 

Group connectors specify the ordering of constituent elements. The following connectors are used in 
this Appendix: 

• a vertical bar (|) indicates that only one of the components it connects may appear; 

• a comma (,) indicates that the components must appear in that order. 

For example the element definition for a Z schema declaration is given as: 

<!ELEMENT schemadef 
((#PCDATA |  sub | mixedname)+,  formals?,  decpart?,  axpart?)  > 

Occurrences of this element thus consist of a sequence of parsed character data, subscript and mixed 
name elements (representing the name of the schema), followed by an optional element which holds 
the formal parameters of the definition, followed by elements representing the optional declaration and 
axiomatic parts of the schema definition. The start-tag and end-tag of the schema definition must both 
be present. 
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E.3.2    SGML attribute declarations 

In SGML, attributes are used to provide information associated with elements. The Interchange 
Format employs attributes to encode layout information and other information which is not considered 
to be part of the structure of a Z specification. For example, the Interchange Format defines a 'style' 
attribute for schema definitions which permits an indication of whether the definition should be in 
vertical or horizontal form. An occurrence of a 'schemadef' element may thus contain an attribute- 
value pair inside the element's start-tag; for example: 

<schemadef style=vert> S  . . .     </schemadef> 

are An SGML attribute declaration specifies the name(s) of the element(s) to which the attributes _ 
attached, followed by a list of rows, each of which consists of the name of the attribute being declared 
its type, and an optional default value. A type may be given as a collection of explicit values, or as one 
of the following special keywords: 

CDATA the attribute value may contain any valid character data and must be delimited by 
double quotation marks; 

ID indicates that a unique identifying value will be supplied for each instance of the 
element; 

NMTOKEN the attribute value is a name token (i.e. any alphanumeric string); 

NUMBER the attribute value is a number. 

The default value for an attribute may be denoted as one of the set of explicit values defined for an 
attribute; alternatively it may be one of the following special values: 

»IMPLIED a value need not be supplied; 

»REQUIRED a value must be supplied. 

E.3.3    SGML entities 

An SGML entity is a named part of a marked-up document. An example of an entity declaration is: 

<!ENTITY    ZBS 'Z Standard,  version 1.0' > 

References to entities are contructed by prefixing the name of the entity with an ampersand character 
(&) and delimiting the end of the name with a semicolon, space or end-of-file. Here is an example of 
an entity reference: 

We are now in a position to issue the &ZBS;. 
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The entity reference in this document fragment would be expanded by an SGML parser as: 

We are now in a position to issue the Z Standard, version 1.0. 

In the Interchange Format, SGML entities are used to represent certain Z symbols or words. The 
associations between the alphanumeric representation of mathematical symbols or words and their local 
codes should be defined in SGML entity declarations. However - since local word processor codes may 
differ - section E.4.3 presents a scheme in which the entity names used in the Interchange Format are 
listed against the usual presentation format of the corresponding Z symbols or words. 
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E.4    Definition of the Interchange Format 

This section presents the definition of the Interchange Format as a collection of SGML declarations 
Explanatory material and examples of the use of the Interchange Format are also given in Section E.5.' 

An SGML Document Type Definition (DTD) defines the syntax of SGML-conformant documents in a 
style which is readable by SGML parsers. The Interchange Format does not warrant a full DTD for 
two reasons: 

• the format does not specify the structure of the informal text in a Z document; 

• the entity declarations are implementation-dependent. 

A DTD consists of a header, followed by a body containing the element declarations, attribute dec- 
larations and entity declarations. The definition of the Interchange Format presented in this Section 
may be considered as the partial body of a DTD {partial because the entity declarations are not given 
explicitly); it is also equivalent to a definition in BNF of the structure of the Interchange Format 
Newhnes in a Z document are not significant in the translation to the Interchange Format except where 
they serve to separate predicates or declarations. 

It is unlikely that this Interchange Format could ever accommodate every function required by its users 
However, any collection of SGML declarations (such as those which define this Interchange Format) may 
be replaced or enhanced by the pre-insertion of additional SGML declarations. Such a 'customisation' 
of the Interchange Format would be acceptable by SGML parsers. 

E.4.1    Element declarations 

These declarations define the higher-level structure of the Z paragraphs in a Z document written in the 
Interchange Format. They correspond closely to the appropriate constructs of the Z Concrete Syntax 
Note that no element minimisation options are offered; the start and end tags must both be present for 
each element instance. 

There are two top-level elements: 

• the Z element represents a sequence of Z paragraphs; 

• the inf ormalZ element represents a fragment of mathematics which does not belong to the formal 
part of the specification document. 

The Z element contains a (possibly empty) sequence of individual Z paragraph elements which constitute 
(part of) a formal specification. 

<!ELEMENT Z 

(fixity | givendef | axdef | constraint 

| schemadef | gendef | abbrevdef 

| goal | structsetdef)* > 
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The inf ormalZ element defines a fragment of mathematics which is not to be considered as a formal 
part of the specification; these fragments may be Z elements, declaration elements, or a sequence of 
parsed character data, subscript elements and mixed name elements (corresponding to unstructured 
fragments of mathematics). 

<!ELEMENT informalZ 
(Z | declaration |   (#PCDATA | sub | mixedname)+)  > 

Elements representing goals, top-level constraints, declarations, abbreviation definition bodies, predi- 
cates, fixity template expressions, given set definitions, declarations of formal parameters, subscripts 
and operator names in fixity template definitions all consist of an unstructured sequence of parsed 
character data, subscript elements and mixed name elements. 

<!ELEMENT (goal |  constraint | declaration 
| body | predicate |exp | givendef 
| formals | sub | namearg)        - - 

(#PCDATA |  sub | mixedname)+ > 

Elements representing axiomatic definitions, schema definitions and generic definitions contain decpart 
and axpart elements; the latter element is optional, as is also the decpart element for schema defi- 
nitions. Schema definitions and generic definitions may contain a formals element (representing the 
declaration of formal parameters). The name introduced by a schema definition is modelled as an 
unstructured sequence of parsed character data, subscript elements and mixed name elements. 

<!ELEMENT axdef          (decpart,  axpart?)  > 

<!ELEMENT schemadef 
((#PCDATA |  sub | mixedname)+,  formals?,  decpart?,  axpart?)  > 

<!ELEMENT gendef          (formals?,  decpart,  axpart?)  > 

The element representing an abbreviation definition consists of the name introduced by the definition 
(which is modelled as an unstructured sequence of parsed character data, subscript elements and mixed 
name elements), an optional formals element which represents the declaration of formal parameters, 
and a body element which represents the right-hand side of the abbreviation definition. 

<!ELEMENT abbrevdef        - - 
((#PCDATA |  sub | mixedname)+,  formals?, body)  > 

The element representing a structured set definition consists of the name introduced by the definition 
(which is modelled as an unstructured sequence of parsed character data, subscript elements and mixed 
name elements) and a non-empty sequence of branch elements. 

<!ELEMENT structsetdef     
((«PCDATA | sub | mixedname)+, branch+) > 
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The element representing a branch of a structured set definition consists of a constructor name (which 
is modelled as an unstructured sequence of parsed character data, subscript elements and mixed name 
elements) and an exp element. 

<!ELEMENT branchf        - -       ((#PCDATA |  sub | mixedname)+,  exp)  > 

The element representing the axiomatic part of a 'boxed' definition consists of a sequence of predicate 
elements, representing the predicates which are intended to be separated by the weakly-binding con- 
junction denoted by significant newlines. 

<!ELEMENT axpart        - -        (predicate+)  > 

The element representing the declaration part of a 'boxed' definition consists of asequence of declaration 
elements each representing a collection of declarations which is separated from other such collections 
by significant newlines. 

<! ELEMENT decpart        - - (declaration)  > 

The element which represents a fixity statement consists of an unstructured sequence of parsed character 
data subscript elements and mixed name elements (modelling the first part of the operator name 
introduced by the statement) and a (possibly empty) sequence of namearg and exparg elements which 
represents the rest of the fixity template. Each exparg element consists of three exp elements followed 
by an unstructured sequence of parsed character data, subscript elements and mixed name elements 
which models part of the operator name. 

<!ELEMENT fixity 

((#PCDATA | sub | mixedname)+,   (namearg | exparg)*)  > 

<!ELEMENT exparg        - - 

(exp,  exp,  exp,   (#PCDATA | sub | mixedname)+)  > 

The element which represents a mixed name consists of parsed character data. A mixed name element 
must be employed in cases where a Z name consists of more than one entity reference or of a mixture 
of entity references and normal characters. 

<!ELEMENT mixedname        - - #PCDATA > 

E.4.2    Attribute declarations 

The attribute declarations permit the association of additional information with occurrences of elements 
in a Z document written in the Interchange Format. 

The attributes id and group permit identification and logical grouping of Z paragraphs respectively. 
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<!ATTLIST 
(givendef |  axdef  |  constraint | schemadef | gendef 

| goal | abbrevdef |  structsetdef) 
id        ID        «IMPLIED 
group        NMTOKEN        «IMPLIED > 

The attributes style and purpose define the layout and intended use of a schema definition respectively. 

<!ATTLIST    schemadef 
style (vert | horiz)        vert 
purpose (state | operation | datatype)        «IMPLIED > 

The attribute label permits informal annotation of each member of the 'stack' of predicates which 
constitutes the axiomatic part of a boxed definition. 

<!ATTLIST    predicate label        CDATA        «IMPLIED > 

The following attributes are used with the fixity element: 

• the attribute category indicates whether the defined operator is a relation, left-associative func- 
tion or right-associative function; 

• the attribute prec indicates the binding priority of the defined function (this attribute is not 
required if the value of category is rel); 

• the attributes firstarg and lastarg indicate the kind of first and last argument (if any) respec- 
tively in the fixity statement. 

<!ATTLIST    fixity 
category (leftfun | rightfun | rel) «REQUIRED 
prec        «NUMBER «IMPLIED 
(firstarg |  lastarg) (normal | type) «IMPLIED > 

The attribute midarg of the namearg element indicates the kind of argument which appears just before 
the part of the operator name presented in the namearg element. 

<!ATTLIST    namearg 
midarg (normal | type) «REQUIRED > 

E.4.3    Entity declarations 

Editor's note:   This subsection lists examples of entity definitions that might be required for the toolkit. 

It will be updated when a final version of the toolkit has been developed. 
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Entity declarations are used to define alphanumeric denotations for certain Z symbols and words. The 
entity declarations for the Interchange Format are not presented in the conventional SGML format 
because of the dependence of the internal representation of mathematical symbols or words on the 
implementation of each user's Z document processor. The mode of declaration used in this Standard is 
to present tables which record the association of each entity name with the corresponding mathematical 
symbol or word. These tables are presented in the Lexis Section of this Standard. 

Many of the entity names used in the tables have already been defined as standard in Appendix D of 
[12]. 

In order to encode names which consist of more than one entity reference, or of a mixture of entity 
references and normal text, "mixed name" elements must be employed. For example, the application 
of the function A to the variable State (ie A State) is encoded as feDelta; State (or feDelta; State or 
feDelta State), but the schema name AState must be encoded as any of these alternatives enclosed 
within mixedname element tags. The use of the mixedname element indicates that the contents are to 
be considered as a single name. 

Z users may create additional entity declarations to cater for new symbols introduced in their specifi- 
cation documents. For example, assume that the new symbol 0 is to be used in a Z document. The 
author of the document must create an entity declaration of the form 

<!ENTITY      oslash        SDATA    "  oslash" 
—o enclosing a solidus—> 

This declaration gives the name oslash to the entity which represents the symbol and identifies the 
local code which generates the presentation format 0 of the symbol. As it is unlikely that other systems 
possess this code, a description of the presentation format of the symbol is given as a comment in the 
entity declaration. Any receivers of the Z document may then establish a suitable local code for this 
symbol in their respective systems. 

Entity definitions for the toolkit 

Entity definitions are provided only for the following classes of toolkit member: 

• non-alphanumeric members (apart from the addition (+) and multiplication (*) symbols, as it is 
assumed that these symbols are reasonably portable); 

• relations with alphanumeric names (as these are customarily presented in sans-serif font); 

• 'type constructors' (ie generic constants with set values) with alphanumeric names (as these are 
customarily presented in Roman font); 

• the functions dorn and ran (as these are customarily presented in Roman font). 
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E.5    Examples 

This section presents examples of the use of the Interchange Format. Thses examples are carefully chosen 
to cover the more obscure aspects of the Format. The areas covered are indicated in the subsection 
headings. 

E.5.1    Declaring infix identifiers 

Consider the following axiomatic definition, which declares a relation isTwice which is intended to be 
used in an infix manner: 

SYNTAX REL NORMAL isTwice NORMAL 

-isTwice- : N <-> N 

Vi,j : N« i isTwice j 4» i = 2 *j 

This can be encoded in the Interchange Format as 

<Z> 
<fixity    category=rel    firstarg=normal    lastarg=normal> 
isTwice </fixity> 

<axdef > 
<decpart> 
<declaration> 

_isTwice_:  &Nat;  ferel;  Mat; 
</declaration> </decpart> 
<axpart> 

<predicate> 
feforall;  i,  j:  &Nat;  febull;  i isTwice j  feiff;   i = 2*j 

</predicate> </axpart> 
</axdef> 
</Z> 

E.5.2    Subscripts 

The axiomatic definition 

ai, 03 : N 

03 isTwice a\ 

is encoded in the Interchange Format as: 
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<Z>  <axdef> 
<decpart> 

<declaration> 
a<sub>  1  </sub>,  a<sub> 3 </sub>:  &Nat; 

</declaration> </decpart> 
<axpart> 

<predicate> 
a<sub> 3 </sub>  isTwice a<sub> 1  </sub> 

</predicate> </axpart> 
</axdef> </Z> 

E.5.3    Schema definitions and predicate labelling 

Consider the following definitions: 

[PERSON, HOUSE] 

^_ Street  
inhabits : PERSON -in- HOUSE 
houses : PHOUSE 

houses — ran inhabits 

VÄ : houses • #inhabits~ \{h}) < 4 
/ * No house may be occupied by more than 4 persons * / 

The author of this specification intends to accomplish the following objectives: 

• to attach a label to the second predicate in the schema definition; 

• to indicate that the schema definition should be displayed in vertical form; 

• to indicate (to a specification checker, for example) that the schema Street defines the state of a 
system. 

These objectives can be attained in the Interchange Format with the following encoding: 

<Z> 
<givendef> PERSON,  HOUSE </givendef> 

<schemadef style=vert purpose=state> Street 
<decpart> 
<declaration> 

inhabits:  PERSON fefpfun;  HOUSE </declaration> 
<declaration> 

houses:  fepset;  HOUSE </declaration> 
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<axpart> 
<predicate> 

houses = &ran;   inhabits    </predicate> 
<predicate 

label='No house may be occupied by more than 4 persons'> 
feforall;  h:  houses ftbull; 

fenum;  inhabits fttilde;  felimg;  ftlcub;  h fercub;  ferimg;     &le;  4 
</predicate> </axpart> 
</schemadef> 
</Z> 

E.5.4    Symbols in top-level definitions 

Note that in the Interchange Format there are no entity representations of the symbols immediately 
associated with top-level definitions such as structural set definitions and abbreviation definitions. These 
symbols are subsumed by the element tags for those definitions. For example, consider the following 
abbreviation definition: 

n == 5 + x 

This definition is encoded in the Interchange Format as: 

<Z>  <abbrevdef> n 
<body> 5 + x </body>  </abbrevdef> </Z> 

i.e. there is no need in the Interchange Format for an SGML entity which represents the == symbol 
(although this symbol would of course be employed in the presentation format for instances of the 
abbreviation element). 

D 
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Notes on this section of the Z Standard 

Section title: The Logical Theory of Z 
Section editor: Andrew Martin 
Original text by: Stephen Brien 
Contributions by: Peter Lupton ...(to be added) 
Source file: logical.tex 
Most recent update: 29th June 1995 
Formatted: 3rd July 1995 

Editor's note: Draft—comments and questions in" boxes! 

F.l    Preamble 

Editor's note: To be supplied by Peter Lupton. This chapter defines what the theorems of Z are, 
discusses the relationship between logic, deductive system, semantics; and soundness. It also describes how 
other deductive systems (and logics?) are to be derived; what it means for them to be conformant/sound 
and complete. 

Editor's note: This chapter presents a deductive system for Z, a deductive type system for Z and equa- 
tions for free variables and substitution of terms in Z. 

old text: 

The deductive system is a Gentzen-style sequent calculus in which sequents are composed of paragraphs 
and predicates. The rules of the logic are presented in a simplified form. The meta-theorems of the logic 
(theorems about the rules) permit the extension of the rules into a more practical form. 

The loose definition of function application and definite description in the semantics permits a number 
of interpretations of their meanings. This deductive system is sound with respect to a model in which all 
well-typed expressions have a value. 

F.2    Meta-language 

The deductive system will be expressed using the abstract syntax. Some simplifications will be used. 
In particular, the paragraph keywords given, gendef, abbr etc. will be omitted. The concrete syntax 
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apparently now has a let a; := u in t construction. 
^ x := u\ et. 

The deductive system is better expressed with 

Editor's note: Stephen has ^ b} P for substitution in predicates, and b © e for substitution in expressions. 
Our abstract syntax doesn't permit the first, BUT some of the semantic equivalences need predicate and 
expression substitution to be distinguished. I've used b © P for the former, for the time being. 

F.2.1    Meta-Variables 

The meta-variables used in what follows are members of the following syntactic categories: 

n : PAR 
r : PAR $.. 4 PAR 

P,Q,R : PRED 
X : NAME 

b,e,f,s,v : EXP 
S,T : SCHEMA 

9 : DECOR 

F.2.2    Sequent 

Editor's note:   We assume that the Abstract Syntax has been updated so that 
CONJECTURE = conj PAR J • • • J PAR h PRED. 

Editor's note:   The abstract syntax for PAR is unclear. It doesn't seem to cater for all possibilities. For 
the time being, this chapter uses Stephen's paragraphs. 

The abstract syntax has a paragraph form CONJECTURE, which is a sequent: 

nit"-flI„r-P 

The meaning of this paragraph (in terms of the semantics) is described elsewhere. For the sequent to 
be well-formed, the free variables of P must be declared in IIif • • • tUn. The preamble above describes 
what it means for a sequent to be a theorem of Z; the deductive system defines which sequents may be 
deduced from which other sequents. 

This chapter also presents type judgements of the form 

rh en  . 

This sequent means that, in the specification T, the expression e is well-typed with type r. The 
following proof rules assume that r is arbitrary, it should be established by pattern matching. For 
predicates (which do not have a type) we write \-P s/ to mean that the predicate P is well typed. 
For paragraphs we write \- P :: to indicate that they are well-typed. Though the turnstile is the same 
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as for the deduction rules, it is used to represent different kinds of relations. These assertions can be 
distinguished by the syntax of the consequent (the antecedent in both cases being a specification). 

Editor's note:   What about provisos-as-judgements? (See Section F.I.) 

F.2.3    Rules 

The deductive systems consist of a number of rules for manipulating sequents. Inference rules will be 
written 

Rule a   Premises   Name /prot^0) 
Conclusion v ' 

The premises are a (possibly empty) list of sequents: 

Premises = Sequent... Sequent 

The conclusion is always a single sequent: 

Conclusion = Sequent 

The Proviso is a decidable condition on the free variables of the expressions and predicates in the rule. 
The annotation |4- indicates that the rule can be applied in both directions—that is, the rule 

denotes both of the following inference rules 

ri-tt     and     _r$_ 
r'H$     and     FF¥     • 

A rule is sound if whenever it is applied to valid premisses, a valid conclusion results. This is defined 
in the semantics by saying that the set of environments supporting the premisses is a subset of those 
supporting the conclusion. The rule 

is sound if and only if 

P    =»    {S1}
MD...n{Sm}

MC{Seq}M 

The following meta-theorem holds for rules in the deductive system: 

Theorem F.l  (Sequent-lifting) 

The rule   p |_ p   is sound if and only if the sequent   Th P   is a theorem. 
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This meta-theorem states that a theorem can be deduced from no premisses. 

The semantic equivalences for substitution are given in tables in later sections. These tables state the 
semantic equality of various expressions. A theorem which permits the use of semantic-equivalences in 
proofs is the following. 

Theorem F.2 (Semantic-equivalence-lifting) Given the semantic-equivalence for any predicates 
or expressions 

A = B 

the following inference rule is sound: 

AQ4) 
A(B) 

F.2.4    wf 

The proviso wf(par) is an abbreviation stating that (par) is well-formed in that 

<t>(par) n a(par) = 0 

F.2.5    Proofs 

Proofs in the deductive system proceed in the way that is usual for sequent calculi: proofs are developed 
backwards, starting from the sequent which is to be proved. A rule is applied, resulting in fresh sequents 
which must be proved. This process continues until there are no more sequents requiring proof, in which 
case the original sequent is now proved. 

A completed proof may thus be represented as a tree, with the proved sequent as the root node, and 
every leaf node containing an empty list of sequents. However, if some of these lists in the leaves are 
non-empty, then the derivation tree is still useful, although it does not represent a proof, it represents 
a partial proof. 

Theorem F.3 (Tree-squashing) Suppose that we have the derivation tree: 

sa  ...  sim [Rj](Pj) a_^ *_ ^_£ [R]{P) 

where each of the rules R and R{ are sound rules, then the derived rule 

 Se~q lR]{P,Pi) 

is also sound. 
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F.3   Inference rules 

F.3    Inference rules 

F.3.1    Structural rules 

Assumption rules 

p |_ p AssumPred 

———r——— AssumDefin(-wf(x :— e)) 

 ;  AssumDecl(vjf(x : s)) x : s t- x € s K       " 

c ,   q SchemaAss(aS D (f>S = 0) 

Paragraph and thinning rules 

P AR\- Q 
P\R\-Q 

Y\-P 
TIXTY-P 

TY-P 
r$ni-p 

tl PredConj 

Thinl 

Thinr(aR C\(pP = 0) 

ritr2pi H P       ( aT2 n <^n = 0 
rantr21- P    ^ \ann^r2 = 0 

rhP    £>i(arn</>p = 0) rtfsjTHP 

F.3.2    Equality and substitution 

rhe = e 1W"J i 

T\-u = e  <?„.. 

rhe = 

rju = « :hti = = e 
i> = < ; 1- v = = u 

rtO} HP 
tl r H 4 6> ©P 

r^fej hu = e < 
rh« = öee 

TVans 

tl UseBind 

tl EquBind(ab f~l 0u = 0) 
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F.3.3    Propositional calculus 

ri-p     r\- Q 

T\-P A Q 

ThP AQ 

Andl 

rhP AndEr 

ThPAQ   t   JTII —p,   Q— AndEl 

T\-P 
r\-p v Q 

r\-Q 

Orlr 

Orll T\-P V Q 

r h P v Q     rtPt-R     rtQ\-R 
ThR OrE 

impl 
T\-P=> Q 

T\-P       T\-P^ Q  .     „ 
 fFg mpE 

r \- false 
r\- p falseE 

rj-i P \- false 
 pp-p  notE 

P& Q = P=> Q AQ^P 

-iP = P =$> false 

false =*► P 

P =*> true 
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F.3   Inference rules 

Editor's note:   Hence, derivec 

T\- P=> false tl noiDe/ 

r 1- false => P 
falseDef 

r 1- P =► true 
trueDef 

F.3.4    Quantifier rules 

TI-V5.P *'" 

ri-V5«P       rn fee 5 
rh|6) OP 

AUE 

ri-35«P 

rh3S*p     iwi-Q 
Tr-Q 

ExistsI 

ExistsE 

Editor's note: UNIQUEQUANT ? 

F.3.5    Expression rules 

Sets 

Tt[x]Tt-e = {\x:=s)oT»y}       D2 
r$[x]Tr-y[s]ee 0/ € a(wf T)) 

(Vi:i«ie«)A 

^X:t9Xe$^nSeteq{xi<i>S\J4>t) 
TV- s = t 
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F   THE LOGICAL THEORY OF Z - NORMATIVE ANNEX 

Thv = ei\/...Vv = en 

TY-ve {ei,...,e„} 
14- Extmem 

T\-3S »e = u 

n-ee{s•«} 
|4 Setcomp(<pu f~l aS = 0) 

Cartesian products 

ri-Vs: hies tl Powerset(x £ <f>s) 

T\-v = ej 
rh»= (ci,...,e„).i 

: Tupleequ(l < i < n) 

T h u.l € Si A ■ ■. A u.n € sn 

r h u € si X • • • x s„ 
f4 Prodmem 

rhti = (ei,...,en) t| TVese/ 

r h u.l = ei A ... A u.n = en 

Labelled products 

BindEqu 

r H xi := ei,... ,3* := e»> ■* = ei (1 - * ~ n) 

T h u.X! = ei A ■ ■ ■ A u.x» = en   ^ 5 -nd5e/ 

rh u = 4 xi := ei,...,x„ := en) 

TU b)  \~x = b.x 
D6(x e ab,wfb) 

Schemas 

ri- e.xi = xi A ••• A e.xn = xw       r h S 
T h e = ÖS 

£20 

h ( x::=xi,. ■ ■, xn:=xn)   € S fl £8 
P^ aS={xi,..., x„} 
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Description 

Th(e,u)ef 
Tty-f   I-   (y-1 = e)=»(y.2 = ey) D18 

T\-u=f{e) (y<t<j)eU<t>u) 

F.3   Inference rules 

Y\- e G s 
T\-\ x:=e) ®P 

T$y:s\-$x:=y)P=>y = e 

rhe = |ii: s\P 
£19 

Editor's note: IF THEN ELSE 

Substitution 

TU b\  \-u = e 
ri-M = | b) ee 

U D7b{ab D<f>u = 0) 

T I- v = § x := u) ee 
T$x := u \- v = e 

t| Usedef(x £ $v) 

F.3.6    Schema calculus 

r h u e [si : si; ■ ■ ■; xn : 5n] 
T h u.Zi G si A ... A u.a;n G s„ 

ti BindProd 

T\-beS        \-\b\ ®P 
T\-be[S\P] 

■\\P.SchemaMem 

T\-\b) OS 
T\-beS 

t; £>14(wf 5) 

rh|i>)  0 [beS] 
Thb€S 

t|D15(wf6) 

r H -■ { 6} 0 5 
rh6e-5 

tl SNot(wiS) 

n-\b)QSA\b)®T 
Thbe{SAT) l+ v 
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T)r\b)eSV\b)®T v 

rh&€(5vr) 

rHft)Qg=H6)or (wf 5 ^ T) 

rHHQ^<^Qf ti siffWS * T) 

rh3SH&) QT f| Sßrisfe 
rh&€3S«T    (4>m(a&Ua5)) = 0 

rhV5»| 6} er ti SAH 
ri-&GV5«r   (^T n («6 u aS)) = 0 

Editor's   note: SHIDING,   SPROJECTION,   SCOMPOSITION,   SDECORATION,   SSUBSTITUTION, 

SUNIQUEQUANT  
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F.4    Type inference 

F.4    Type inference 

F.4.1    Structural rules 

rne 
ntrne T21 

T22 rtnne 

T\- X %T 

Tt[y] \-XZT 

T\- x %T 
Y\y := e h x % r 

ri-isT 

T23a 

T236 

rjy : s 1- x % T 

T\- y%T 
T\[x)T\-y%T 

T23c 

T25{y i a[x]T) 

F.4.2    Paragraphs 

T\-SSVT 
T\-x:s:: 

rh egr 
rhi:=e 

T18a 

T18& 

ThP:: T19 

HIT:: r h II :: 
hrtn   :: T20 

T24(z not given set of T) 
rr-[i]r:: 

r i- b g s(xi *v* n,..., x„ ~~> Tn) 
Y\-\b)  :: 

T h 5 g VT,(xi ^Ti,...,xn^>Tn) 
F\- S :: 

TZO 

T34 
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F.4.3    Predicates 

T h ex g r       T h e2 g r 
T h ei = e2 A/ 

Thegr       r h s %VT 

rt- e es y/ 

T3a 

Tl 

T2 

TU 

T4-i 

rhtrue j 

rh false V 

T\-P V 
rh-p V 

rhPv Q V 

r\-p y/    rhgy 

T4A 

T4V 

T4=^ 

r h e g T       rfc := e h P 
r h ^ x := e) eP y/ 

r y- s::      rts r- P V 
ri-v5»p V 

r h 5 •■:      rt? h P V 
r\-3S»p V 

r H 5 :: TjS H P V 
rh3x5»P y 

T6 

T36V 

T363 

T363x 

r H 5 g PE(xi ~» n, • • •. Zn ~» T„) 

r *" Xl ° n    '''    r h ^ S T" T33 

T\-^b) ©P V 
T32a 
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F.4.4    Expressions 

rjrr : s\- x %T 
Tla 

rheST 
T\x := e h x g r 

T7& 

rt[a:]T h y[s] g {I5x ^T'}
T

T 
T26 

rj[x] h i g P(UJC) 
T8 

r h ei g T     ...     rhengT 
n-{ei,...,en}gPr 

T9 

TjS I- e g T 

rh{5.e}s?r 
T37 

T h s g PT 

ri-Psg'P(7?T) 
Til 

T h ei g Ti 1   r" en o Tn 

T h (ei,...,e„) SX(TI,...,T„) 
T13 

T h sx g Pn r h s„ g PT„ 

r I- si x • • • x sn g "PX(ri,..., r„) 
ri4 

Th egX(Ti,...,Tj,...,Tn) 

r I- e.z g Tj 
T15(l < * < n) 

r i-1\ g TI t- en o Tn 

Th ^ ii := ei,...,s„ := e„ D g 
S(a;i~*Ti,...,ar„~> r„) 

T27 

r h x\ % T\ rhi„ST„      T44 

r h 05 g E(a;i ~» n, • • • i *n ~» T„) a5={a?i,. ..,*„} 

F.^    Type inference 

Editor's note: NUMBERL, STRINGL 
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F    THE LOGICAL THEORY OF Z - NORMATIVE ANNEX 

ri-ns(si~Ti,...>s»'v»TW) r28(1 <i<n) 

r\-f°0VX(T',T)    rhegr' 
rh/(e)sr 

T42 

T\- [ix : s\ P %T 
T43 

Editor's note: IF THEN ELSE 

rh b gE(£i~>Ti,..., 
Xi~~>Tj,...,Xn^>Tn)     T31 

TU b)  \- Xi g n (!<»<») 

TX\b) l-egr 
rh bee %T 

T32& 

n-5g-PS(xi^ri,..., 
Xi^Tj,...,xn^*Tn)    T35 

TtS \-Xi°0Ti (1 < i < n) 

TXx:=uh e%T     Tl^ < j < n) 
T\- {x := u) ®e%T 

F.4.5    Schema 

r i- 3i g ^TI   • • •   r h Sn g Vrn 

rhxi : si; • • •; xn : s„ g 
■P£(a;i~>Ti,...,a:n~»Tn) 

 rh5|Pgr T38 

T29 

r h ->s g T 
T39 

T h 5 g VHQ        \-T°0VX<; 
T40A 

r h 5 g psg     i-Tgrac 
ri-5vTs VY,{Q U o T40V 
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F. 4    Type inference 

r h S g VSg        \- T § VEq 
  TdC\=*> r h S =*> T g PEfe U <;)       J 4U^ 

r H s g rap      h r g ps? 
ri-so TgpEteuo T40<s> 

Editor's note: SPROJECTION , SHIDING 

n-v5.r8ra(e\\o 

rh35.rgra(^\\?) 

ri-a^.rgratew?) x 

Editor's note: SCOMPOSITION, SDECORATION, SSUBSTITUTION 
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F.5    Free variables and alphabets 

F.5.1    Paragraphs 

4>[x\ = 0 

<j>P = $P 

<t>s = 

<f>(x : s) = (f)S 

4>{x := e) = <f>e 

<K[x]T) = <t>T\{x} 

^(nitn2) = <^niu(^n2\ani) 

a[x] = {x} 
aP = 0 

aS = 

a(x : s) = {x} 

a(x := e) = {x} 

a([x]T) = aT 

a{Ui % n2) = alii U aÜ2 

F.5.2    Predicates 

$(e e s) = (f>e\J(j>s 

<&(e = v) = <f>eU<f>v 

$true = 0 

$false = 0 

*hP) = $P 

$(P A Q) = $PU$<? 

$(P V Q) = $PU$Q 

$(P =» Q) = $PU$Q 

$(P «*• Q) = $PU$<? 

$VS»P = 0Su($P \ aS) 
$35.P = ^5U($P\a5) 

^S.P = <£SU($P \ aS) 

$(5) = aSU<t>S 

$4 i := e) 0P = </>eö($P\{x}) 

$(4 ft) ©P) = $P \ ab    (?) 
(?) 
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F. 5   Free variables and alphabets 

F.5.3    Schemas 

<j)[xi : si; •••; xn : s„] = 0(ai)U"-U^(s„) 

fl5 | P] = <f>S U ($P \ ctS) 

4>hS) = 4>s 
(j>{S A T) = 4>S\J(f)T 

(f>{S V T) = cj)S\J4>T 

^.(5 =4> T) = 4>SU<j)T 

<£(S «» T) = 4>S\J4>T 

^(SProjT) = 

(ß(S\[xi,...,xn]) = 

<£(VS«T) = (ßSLS(j)T 

0(3 S« T) = <t>SU<j>T 

<^(3i 5 • T) = <j)S\J<t)T 

<ßis[xi/yu •••,xn/yn]) = 

<f>(S°gT) = 

HS") = 

<j){boS) :rr 

a[xi : si,...,xn : sn] = \X\, .. . , Xnj 

a[S | P] = aS 

<*hS) = aS 

a(S A T) = aSöaT 

a(5 V T) = aSUaT 

a(5 =>- T) = aSUaT 

a(5 «*• T) = aSUaT 
a(5 Proj T) = 

a(5\[a;i,...,a;n]) = 
o(V5» T) = aT\aS 

a(3 5« T) = aT\aS 

a(31 S • r) = aT\aS 

a(5[ii/yi,...,aJn/yn]) = 
a(S | T) = 

a(5«) = 

a(6©5) = 

a\ xi := ei,...,xn := en) = \X\, . . . , Xnj- 
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F.5.4    Expressions 

<f>{x) = {x} 

<Kx[v\) = 

4>(i) = 

4>(z) = 
0{ei,...,e„} = ^(ei)U---U</.(e„) 

<j,{S • e} = <f)SU(<l)e\aS) 

#P  s) = </>($) 

<£(ei,...,e„) = ^(ci)U---U^(c») 

(f>(si x • • • x sn) = (f>{si)l)---U<t>{sn) 

</>(e.i) = 4>{e) 

(f>t\xi:=ei,...,xn:=en\) = (f>(ei) U • •• U 0(e„) 

<£(0S) = $5 

#6.z) = <t>(b)    (?) 

<K/(e)) = #U^e 
<p(fiS»e) = (f)SU$(ei\aS) 

0(if P then e\ else e2 fi) = 
<j>(bee) = 4>e\ab    (?) 

M.z:=u)0e) = ^(ti)U^(e) \ {1}    (?) 
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F. 6   Substitution 

F.6    Substitution 

F.6.1    Predicates 

6© (e = u) = boe = beu 

6©(e€  s) = bee G   beu 
b © true = true 

b © false = false 

bO^P = -ibQP 

bQ(PAQ) = bQPAbQQ 

6©(P V Q)   = bOPV bQQ 

bQ(P^Q)   = bQP =» bQQ 

bQ(P&Q)   = bQP&bQQ 

When ab n $PQaS: 

6©VS«P   = V&oS^P 

6©3S»P   = 3beS»P 

bQ3lS • P   = 3lbeS • P 

When abnaSn $P= 0 and aS n ^6=0: 
6©VS«P   = V6oS»6©P 

6©3S«P   = 36oS«6©P 

603^ «P   = 3^05 «6©P 
When a6 f~l aS = 0: 

60S   = [60S] 
When wf 6: 

6 0S   = 6 © [60S] 

4 y := 4 0 (4 y:= u) P) — i y:= \ y ~v) eu) © P 

§ x :=v)  0(4 y := u} P)    = 

^ y := 4 z := 1/) ©u}  Q (§ x := v)  © P) 

where y $. <}>v 
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F.6.2     Schema predicates 

bO[S\P]   =    bQSAbQP 

bQ[->S]   =   -.6 0 5 

bQ [S AT]   =   bQS AbQT 

bQ[SV T]   =    bQSV bQT 

bQ[S =» T]   =    6©5=^6©T 

ft © [5 <S> T]   =   bQS &bQT 

6©[5ProjT]   = 

6©5\[si,...,a;„]   = 

When aSf\((t>boT U aft) = 0: 

bQ[JS»T]   =   VboS*bQT 

b 0 [3 5 • T]   =   3 6©5 • & 0 T 
b © [3X 5 • T]   =   3lboS»bQT 

bQ[S[xi/y1,...,xn/yn]]   = 

bQ[S°9T]   = 

bQ[S<]   = 

bi 0 [beS]   = 
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F.6.3    Expressions 

box = b.x    when x £ ab 

box = x   when x ^ ab 

bex[y] = 

bei = 

6©{ei,...,en} = {6oei,...,ioen} 

When ab f~l (j>eCaS: 

&©{.?• e} = {6o5»e} 

When ab D aS D <f>e= 0 and aS D <f>b=0: 

bo{S • e} = {&©£ • &©e} 

6©P 5   =   Fbos 

&©((ei,...,e„))   =   (6oei,...,6©e„) 

bo(si x ■■• x sn)   =   besi x ■■■ x 6©sn 

be(e.i)   =   (bee).i 

bet\ xi := eu...,xn := en }    = 

4 xi := 6oei,...,a:n := 6oen} 

6o0S   =   0&©S 

when aö n a5 = 0 

&00S   =   b 

when aö = aS 

bi@b.x   =   (bieb).x 

be(f(e))   =   (bef)(bee) 

be(ßS • e)   =   Agh. Look at Stephen's Fig 9.1 

£>©(if P then e\ else e^ fi)    = 

biQ(bee)   = 

^ x :— v) ©(^ x := u) ©e)    =    ^ x := ^ x := v) eu} oe 

^ j/ :— v\ ©(^ i := u\ ©e)    =    ^ ^ :=M !/ := w) euf © 

(4 2/ := 4 ©e) 

when x £ (j>v. 
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F.6.4    Schema expressions 

be[S | P 

be[S | P 

bo[-^S' 

be[S A T 

bo[S V T 

be[S =» T 

be[S <3> T 

be[S Proj T 

beS\[xi,...,xn 

be^/S* T 

be[3 S • T 

60p! S • T 

be[S[xi/y1,...,xn/yn 

be[S § T 

be[Sq 

bio[beS 

[beS \b&P] 

when ab D aS = 0 

[6©S | P] 

when aft D $PCaS 

[-^beS] 

[beS A 6©T] 

[6©5 V boT] 

[boS^boT] 

[beS&beT] 

[V6©5»6oT] 

P&QS.&OT] 

P^QS« boT] 
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F. 7   Provisos as judgements 

F.7    Provisos as judgements 

ri-P (aS _ s) r\-p     T'y-as = s 

T\-.<l>VS*P = x\J(y\z) 
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