
Z Notation

Version 1.1

30th June 1995

Prepared by members of the Z Standards Panel

BSI Panel IST/5/-/19/2 (Z Notation)
ISO Panel JTC1/SC22/WG19 (Rapporteur Group for Z)

Project editor: John Nicholls

This is the first issue of a major revision of the Z Standard, replacing Version 1.0 and interim
versions numbered l.Ox, and is circulated for review by the Z Standards Panel.

Virtually all sections of the Standard have been revised. When this version has been re-
viewed and updated, it will be given wider distribution and prepared for submission as an
ISO Committee Draft.

20010817 063 /{Q FÖHf-o?35Z>

© The University of Oxford 1991, 1992, 1993, 1994, 1995

This document may be reproduced provided copies are not sold for profit and provided this copyright
notice and acknowledgement of the source of the material is included with each copy, together with the
version number of the document from which it has been copied.

Published in the United Kingdom

Document history:

Version 0.1 (19th March 1991): First Version of ZIP Deliverable Dl.3.1. Distributed for review and
approval by ZIP Standards Review Committee.

Version 0.2 (15th May 1991): Prepared for a meeting of the ZIP Standards Review Committee on
10th May, 1991. Approved for public issue as the current Z Base Standard. Incorporates minor
changes to version 0.1.

Version 0.3 (25th November 1991): Produced for a meeting of the Standards Review Committee in
December 1991 and incorporating many changes proposed and decided by the committee.

Version 0.4 (9th December 1991): Substantially the same as Version 0.3, incorporating corrections
to minor typographical errors.

Version 0.5 (20th March 1992): Revision and extension of Version 0.4, with new introductory sections,
an extensive revision of the definition of expression, and many other corrections and improvements.

Version 0.6 (21st October 1992): Major revision, in which sections containing the language description
are restructured and updated, and all other sections revised.

Version 1.0 (30th November 1992): A version prepared for distribution at the 7th Z User Meeting and
subsequent general distribution, incorporating changes made by the Z Standards Review Committee.
Adopted as Working Draft of the Z Standards Panel.

Version l.Ox: Version numbers of this form denote revisions of the Working Draft, updates of Version
1.0.

Acknowledgement. Preparation of earlier versions of this document was supported as part of the
ZIP project. ZIP — A unification initiative for Z Standards, Methods and Tools was partially funded
by the Department of Trade and Industry and the Science and Engineering Council under their joint
Information Engineering Advanced Technology Programme.

Editor's note: Further acknowledgements may be added here.

Z Notation

Version 1.1

30th June 1995

Prepared by members of the Z Standards Panel

BSI Panel IST/5/-/19/2 (Z Notation)
ISO Panel JTC1/SC22/WG19 (Rapporteur Group for Z)

Project editor: John Nicholls

This is the first issue of a major revision of the Z Standard, replacing Version 1.0 and interim
versions numbered l.Ox, and is circulated for review by the Z Standards Panel.

Virtually all sections of the Standard have been revised. When this version has been re-
viewed and updated, it will be given wider distribution and prepared for submission as an
ISO Committee Draft.

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect ot this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 2050i.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

30 June 1995

3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Z-NotationVl.l

6. AUTHOR(S)

Z Standards Panel Members, BSI, Panel, ISO Panel
Editor: John Nicholls

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Oxford University Computing Laboratory
Wolfson Building
Parks Road
Oxford OX1 3QD

~9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES

EOARD
PSC 802 Box 14
FPO 09499-0200

5. FUNDING NUMBERS

Unknown

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

SPC 95-4004

11. SUPPLEMENTARY NOTES

Minutes are appendices. Use the letter as the first page of "Z-Notation VI. 1".

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release: distribution is unlimited.

12b. DISTRIBUTION CODE

A

ABSTRACT (Maximum 200 words)

This is the first issue of a major revision of the Z Standard, replacing Version 1.0 interim versions numbered l.Ox, and is
circulated for review by the Z Standards Panel. Virtually all sections of the Standard have been revised. When this version
has been reviewed and updated, it will be given wider distribution and prepared for submission as an ISO Committee Draft.

14. SUBJECT TERMS

EOARD, Standard, Specification, Notation

15. NUMBER OF PAGES

227

16. PRICE CODE
N/A

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19, SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

OXFORD UNIVERSITY COMPUTING LABORATORY £
Programming Research Group

James Martin Professor of Computing: C. A. R. Hoare FRS
Professor of Computing Science J- A. Goguen

Tel: +44 1865 273840
Tel: +44 1865 283504

&

95~- </6öCJ

10 August 1995

Major Michael S. Markow
European Office of Aerospace
Research & Development
223/231 Old Marylebone Road
London UK NW1 5TH

Dear Michael,

I enclose a copy of Version 1.1 of the Z Standard, as part of the
deliverables of the contract. I also include a copy of the minutes of our
most recent meeting, giving an idea of the current status of the project.

For more information and advice on the progress of the work, please contact
Randolph Johnson, whose email address is drj@tycho.ncsc.mil.

Yours sincerely,

Encl: Version 1.1 of Z Notation
Minutes of Meeting 28

cc: Randolph Johnson, Mike Field

Wolfson Building
Parks Road
Oxford. OXl 3QD

Enquiries: +44 1865 273838
FAX: +44 1865 273839

or +44 1865 273819

Email: car/i@comlab.ox.ac.uk
poguen@comlab.ox.ac.uk

$Q fO\"(t -23SO

Contents
Foreword vii

Z Standards Panel ix

0 Introduction 1
0.1 Notations for system description 1
0.2 Objectives of a specification notation 2
0.3 Characteristics of Z 2
0.4 Design principles 2
0.5 Aims of standardisation 3
0.6 Validation of the standard 3

1 Scope 4

2 Normative references 5

3 Conformity 6

4 Semantic metalanguage 7
4.1 Introduction 7
4.2 Definitions and declarations 8
4.3 Sets • • • 9
4.4 Tuples and products 11
4.5 Relations 12
4.6 Functions 13
4.7 Set constructors as relations 14
4.8 Compatible functions 15
4.9 Diagonal and projection 16
4.10 Pointwise product 16
4.11 Relational tuple 17
4.12 Promoted application 18

5 Semantic universe 19
5.1 Introduction . 19
5.2 Names and types I9

5.3 Values in Z 20
5.4 Elements in Z 22
5.5 Generics 24
5.6 Environments 26

6 Language description 28
6.1 Introduction 28
6.2 Abstract syntax 29
6.3 Concrete form, representation and transformation 29
6.4 Type 31

6.5 Meaning • 32
6.6 Value 33

6.7 Free variables 33
6.8 Alphabet 36

6.9 Substitution 37

7 Expression 3°
7.1 Introduction • 38

Z Notation Version 1.1 30th June 1995 m

CONTENTS

E.l Introduction Ig4
E.2 Scope of the Interchange Format Ig4
E.3 Introduction to SGML 135
E.4 Definition of the Interchange Format 189
E.5 Examples 194

F The logical theory of Z - Normative Annex 197
F.l Preamble 197
F.2 Meta-language 197
F.3 Inference rules 201
F.4 Type inference 207
F.5 Free variables and alphabets 212
F.6 Substitution 215
F.7 Provisos as judgements 219

G References — Informative Annex 220

VI Z Notation Version 1.1 30th June 1995

Foreword

Notes on this section of the Z Standard

Section title: Foreword
Section editor: John Nicholls
Source file: part of front.tex
Most recent update: 7th June 1995
Formatted: 3rd July 1995

This document

This is the current version of the Z Standard being developed as a BSI and ISO standard. It is the
Working Draft (WD) of the Z Standards Panel, BSI Panel IST/5/-/19/2: Z Notation), ISO Panel
SC22/WG19 (Rapporteur Group for Z).

Document status

Some sections of this document have been revised and others are under review. As a consequence, this
version of the standard is neither complete nor internally consistent. It has been prepared and given
limited distribution in this form so that those working on its revision can provide commments for its
improvement.

Comments on this document

Comments may be sent to

John Nicholls, Convener Z Standards Panel
Oxford University Computing Laboratory
Programming Research Group
Wolfson Building
Parks Road, Oxford 0X1 3QD
United Kingdom.

Z Notation Version 1.1 30th June 1995 Vll

Foreword

Contributors

Note: The following lists axe provisional

This version of the Z Base Standard has been written and edited as follows:

Project editor:

Section authors and editors:

John Nicholls

Stephen Brien
Randolph Johnson
Trevor King
Peter Lupton
John Nicholls
Susan Stepney
Jim Woodcock
John Wordsworth

Additional contributions by: Rob Arthan
Paul Gardiner
Roger Jones
Jon Hall
Will Harwood
Ian Hayes
Steve King
Chris Sennett
lb S0rensen
Pete Steggles
Sam Valentine

Other contributors

The Z notation and its mathematical foundations have been developed by many people. A selected list
of papers tracing a history of Z development is included in the References at the end of this document
(see page 220). In addition to the listed contributors to the mathematical foundations of Z, many
programmers, systems designers and architects have provided support by using Z and giving feedback
to the designers of the notation.

Vlll Z Notation Version 1.1 30th June 1995

Foreword

Z Standards Panel

Development of the Z Base Standard has benefited from contributions and reviews by the Z Standards
Panel, previously known as the Z Standards Review Committee.

The following list shows the current members of the Z Standards Panel, together with their alternates
or deputies.

D

Derek Andrews
Rob Arthan
Peter Baumann
Cinzia Bonini
Stephen Brien
Colin Champion
John Dawes
Susan Gerhart
Jon Hall
Jonathan Hammond
Will Harwood
Ian Hayes
Kees van Hee
Randolph Johnson
Roger Jones
Steve King
Trevor King
Peter Lupton
Peter Mataga
Silvio Meira
Akira Nakamura
John Nicholls
Colin Parker
Jan Peleska
Brian Ritchie
Gordon Rose
Mark Saaltink
Mayer Schwartz
Jane Sinclair
Alf Smith
Makoto Someya
Pete Steggles
Susan Stepney
Mitsukazu Uchiyama
Sam Valentine
Jim Woodcock
John Wordsworth
Pete Young

University of Leicester UK
ICL Winnersh UK
University of Zurich Switzerland
INTECS Pisa Italy
Oxford University PRG UK
CESG Cheltenham UK
ICL Reading UK
University of Houston USA
University of York UK
Praxis pic Bath UK
Imperial Software Technology Cambridge UK
University of Queensland Australia
Eindhoven University of Technology Netherlands
DoD Fort Meade USA
ICL Winnersh UK
Oxford University PRG UK
Praxis pic Bath UK (up to Meeting 27)
IBM United Kingdom Laboratories Hursley UK
AT k T Bell Laboratories Naperville USA
University of Pernambuco Brazil
Toshiba Corporation Kawasaki Japan
Oxford University PRG UK (Convener)
British Aerospace Warton UK
DST Kiel Germany
Rutherford Appleton Laboratories Chilton UK
University of Queensland Australia
ORA Ottowa Canada
Tektronix Oregon USA
Open University UK
DRA Malvern UK
Unisys Nihon Tokyo Japan
Imperial Software Technology Cambridge UK
Logica Cambridge UK
FDT-SWG Japan
Brighton University UK
Oxford University PRG UK
IBM United Kingdom Laboratories Hursley UK
British Telecom UK

Z Notation Version 1.1 30th June 1995 IX

0 Introduction

Notes on this section of the Z Standard

Section title: Introduction
' Section editor: John Nicholls

Source file: intro.tex
Most recent update: 16th jan 95
Formatted: 3rd July 1995

Z was originally developed as a specification notation for preparing formal descriptions of systems,
without necessarily indicating how they will be implemented. This section includes a description of the
aims and objectives of formal specification notations, with special reference to Z. The design principles
used in the development of the Z standard are described.

0.1 Notations for system description

It is widely acknowledged that natural languages and similar informal notations have many disad-
vantages when used for writing technical descriptions. In using such languages it is difficult to write
specifications with the required precision, clarity and economy of expression and to transform them
systematically and reliably into code or hardware. Furthermore, it is impossible to carry out formal
mathematical reasoning about informally written descriptions.

In contrast, specifications written in formal notations can be made precise and clear. Inference rules
derived from their mathematical foundations enable designers to carry out mathematical reasoning and
construct proofs relating to the properties of system descriptions.

The advantages of formal notations were recognised from an early stage in the history of computing,
although it has taken considerable time for their practical application to become established. Many of
the early large-scale applications of formal notation were for the specification of programming languages;
formal descriptions of syntax are now widespread and for some languages there are formal descriptions
of semantics.

Formal notations are now being used in a wide and expanding variety of environments, especially in key
areas where the integrity of systems is critical, or where there is high intensity of use. For a discussion
of domains of application for formal methods, see [19].

Examples of the effective use of formal specification notations are found in the following areas:

safety critical systems
security systems
the definition of standards
hardware development
operating systems
transaction processing systems

Z Notation Version 1.1 30th June 1995

0 INTRODUCTION

Descriptions of case studies from these and other application areas for Z are listed in a Z Bibliography
by Bowen [2].

0.2 Objectives of a specification notation

The objectives of a formal specification notation are to assist in the production of descriptions that
are complete, consistent and unambiguous. To achieve these objectives, a formal specification notation
needs to be:

usable by those who read and write formal documents;

expressive, so that it can be used for a wide range of applications;

precise, so that it is possible to write descriptions that mean exactly what is intended;

given a mathematically sound meaning, since mathematical reasoning may be used in the devel-
opment process;

suitable for defining sufficiently abstract models of systems that specifications do not need to
contain unnecessary implementation details.

0.3 Characteristics of Z

A central part of Z is taken from the mathematics of set theory and first order predicate calculus. For
the purposes of system description additions have been made to conventional mathematics, including:

a type system which requires each variable to be associated with a declared type. The ability to
type-check a specification helps in assuring that it is accurate and consistent;

the Z schema notation, which provides a technique for grouping together and re-using common
forms;

a deductive system which supports reasoning about Z specifications.

In addition, the following have been developed to help in the pragmatic use of Z in development projects:

the capability for writing explanatory text as an integral part of a Z document.

the inclusion within the standard of an agreed method of representing text in computers and
transmitting it.

0.4 Design principles

The following design principles have been used in the development of the standard and are based on
those used, explicitly or implicitly, in the original design of Z.

2 Z Notation Version 1.1 30th June 1995

0.5 Aims of standardisation

Basis in mathematics. Z is based on a central core of mathematics and uses accepted mathematical
concepts and notation. In addition, there are means of defining and checking the types of Z elements
and, by means of the Z schema, for structuring specifications.

Utility. All parts of Z included in the standard will have been shown to contribute to the main
objectives of Z and will have been used in significant case studies or development projects.

Simplicity. There is an objective to keep the Z notation as simple as possible, consistent with its
overall objectives.

0.5 Aims of standardisation

The Z standard supports the following general aims of standardisation as listed in the British Standards
Institution Standard for Standards [5]:

provision of a medium for communication and interchangeability;

support for the economic production of standardised products and services;

the establishment of means for ensuring consistent quality and fitness for purpose of goods and
services;

promotion of international trade.

0.6 Validation of the standard

In order to validate the standard, it is necessary to ensure that it is is appropriate, consistent and
complete, and is in accordance with the general understanding of the Z notation. In order to achieve
this, the following steps have been taken:

existing descriptions of the notation have been used as a basis for the document;

alternative concepts and notations have been proposed where existing ones were considered defi-
cient;

the standard is being reviewed by the Z Standards Review Committee, which includes experts in
formal methods, users and tool makers;

the standard is being reviewed by the ZIP tools project to confirm that it can be supported by
tools;

the mathematical part of the standard is being checked for soundness.

Z Notation Version 1.1 30th June 1995

1 Scope

Notes on this section of the Z Standard

Section title: Scope
Section editor: John Nicholls
Contributions by:
Source file: scope.tex
Most recent update: 16 January 1995
Formatted: 3rd July 1995

The Z standard defines the representation, structure and meaning of the formal part of specifications
written in the Z notation.

In addition to defining the formal part of the Z notation, the Z standard defines:

a Library or Toolkit of mathematical functions for use in writing Z specifications;

an Interchange Format for Z documents that enables them to be prepared, stored and transmitted
within computer networks;

a deductive system for formal reasoning about Z specifications.

A Z document may contain both formal and informal text. The lexis of the standard does not define how
the formal and informal parts are delimited; this is defined in the Interchange Format. The Interchange
Format does not define the structure of the informal part of a Z document.

The standard does not define a method of using Z.

D

Z Notation Version 1.1 30th June 1995

2 Normative references

Notes on this section of the Z Standard

Section title: Normative references
Section editor: John Nicholls
Source file: normref.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

BSI6154 BSI Standard BS 6154, Method of defining syntactic metalanguage, British Standards
Institution, 1981.

IS08879 ISO (International Organization for Standardization), ISO 8879-1986 (E) Information
Processing - Text and Office systems - Standard Generalized Markup Language (SGML),
Geneva: ISO, 1986.

D

Z Notation Version 1.1 30th June 1995

3 Conformity

Notes on this section of the Z Standard

Section title: Conformity
Section editor: John Nicholls
Source file: conform.tex
Most recent update: 16 January 1995
Formatted: 3rd July 1995

A specification conforms to the standard for the Z notation if and only if the formal text is written in
accordance with the syntax rules and is well typed.

A deductive system for Z conforms to the standard if and only if its rules are sound with respect to the
semantics.

Z Notation Version 1.1 30th June 1995

4 Semantic metalanguage

Notes on this section of the Z Standard

Section title: Semantic metalanguage
Section editor: Randolph Johnson
Contributions by: Stephen Brien, Randolph Johnson, John Nicholls, Jim
Woodcock, ... (others to be added)
Updated by: Randolph Johnson
Source file: math.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

4.1 Introduction

This is the first of two chapters describing the mathematical framework used in the definition of Z. The
chapter includes:

the names of metalanguage symbols;

the forms in which they are used;

descriptions of their meaning.

Many of the symbols used in this chapter are derived from conventional mathematics and are defined
informally. Throughout the standard, the mathematical treatment is based on Zermelo-Fraenkel (ZF)
set theory. An introduction to ZF theory can be found in text books such as Enderton [7] or Hamilton
[10].

In addition to conventional mathematical symbols, special symbols are introduced which allow concise
semantic definitions to be written. Where these have meanings similar to those of Z, Z-like symbols are
used. Definitions of new symbols are given in terms of basic symbols (or other new symbols).

Note that, although symbols similar to those of Z are used, the semantic metalanguage is not Z but
mathematics based on classical (i.e. untyped) set theory.

Naming conventions. The following naming conventions are used:

upper-case letters A, B, C (sometimes with subscripts) denote sets;

upper-case letters R,S,T (sometimes with subscripts) denote relations;

lower-case letters a, b, c (sometimes with subscripts) denote members of sets (which may also be sets
themselves).

Z Notation Version 1.1 30th June 1995

4 SEMANTIC METALANGUA GE

Commuting diagrams. In several of the following descriptions commuting diagrams are used to
illustrate relationships between the set constructors being defined. Commuting diagrams are graphs
whose nodes are labelled with sets. Nodes are connected by arrows, each arrow being labelled with a
relation between the sets at each end. A diagram is said to commute when any two composed routes
between nodes yield the same result.

Elision An expression such as ai,...,o„ indicates that intermediate members in the finite list are
elided. Whenever such an expression is used, the minimum value that n is allowed to take (usually 0 or
1) will be stated. An expression such as A1 U A2 U... indicates that all (finite) values of the superscript
are to be included.

4.2 Definitions and declarations

Variables and notations are introduced and named as follows:

Table 1: Declarations and definitions

Name Symbol Example Description

declaration

definition =

a : A

A = B

a is declared to be a member of the set A

A is defined as B

Note: A declaration of a in the form a : A introduces the object a and states that it is a
member of the set A. Care has been taken to ensure that when such a declaration is used,
the set A is non-empty.

Z Notation Version 1.1 30th June 1995

4.3 Sets

The following sets axe predefined:

4.3 Sets

Table 2: Predefined sets

Name

empty set

integers

strings

Form

0

Description

the set having no members

...,-2,-1,0,1,2,...

the set of all finite strings of characters

Relationships between sets and their members are written as follows:

Table 3: Relationships between sets and members

Name

membership

subset

equality

Form

a e A

ACB

A = B

Description

a is a member of A

A is a subset of B i.e. all members of A are
members of B

sets A and B are equal i.e. A and B have the
same members

Z Notation Version 1.1 30th June 1995

4 SEMANTIC METALANGUA GE

4.3.1 Set constructors

The following set constructors define sets constructed from elements or from other sets:

Table 4: Set constructors

Name Form Description

set extension {ai,...,an} the set comprising ai,..., an; if n = 0, the
set is the empty set; if n = 1, the set is a
singleton set

union AUB the set comprising all the members of A and
all the members of B

intersection ADB the set comprising the members common to A
and B

set difference A\B the set comprising the members of A that are
not members of B

power set FA the set of all subsets of A

finite power set FA the set of all finite subsets of A

10 Z Notation Version 1.1 30th June 1995

4-4 Tuples and products

4.4 Tuples and products

The following constructors define tuples and products:

Table 5: Tuples and products

Name Form Definition

tuple (oi,...,a„) ordered list of the elements a1;..., an,
where n > 1

Cartesian product Al X ...x An the set of tuples (ai,..., a„) such that
a\ € Ai and ... and an e An

enumerated product An
the set of tuples (ai,..., an) such that

ai,...,aneA
iterated product A+ A1 U A2 U Az U ...

Note: It is important in the metalanguage that the sets {A1, A2, A3,...} form a disjoint
collection. Under the most common construction of tuples, this need not be the case.
However, it is true if, for example, we view a tuple as a finite sequence so that (au..., an)
is a function from {1,2,..., n} into A.

Z Notation Version 1.1 30th June 1995 11

4 SEMANTIC METALANGUAGE

4.5 Relations

The following are defined:

Table 6: Relations

Name Form Definition

relations A*->B F(A x B)

identity relation IA (a,b) e IA <=> a = b A a € A

domain domR a € domi? o 3 b • (a,b) € R

range rani? b ev&nR <s> 3a • (a,b) e R

converse R-1 (a,b) ER'1 & (b,a) eR

composition ä;5 (a, b)eR°,S &
3c« (a,c) € RA(c,b) G S

range restriction Rt> A R;IA

range anti-restriction R& A Rt>(r&nR\A)

domain restriction A<R U°,R
domain anti-restriction A^R (dom.R\j4) <R

Note: The composition operator binds more tightly than the set constructors.

12 Z Notation Version 1.1 30th June 1995

4-6 Functions

4.6 Functions

A function is a relation with the property that to each element in its domain there corresponds exactly
one element in its range.

Table 7: Functions

Name Form Description or definition

partial functions A-H-B the set of functions from A into B whose do-
mains are subsets of A

total functions A->B the set of functions from A into B whose do-
mains are the whole of A

total injections A>-+ B the set of total functions from A into B which
are one-to-one

total surjections A-^B the set of total functions from A into B whose
ranges are B

bijections Ay^B A>-> B n A—»B

finite partial functions A-^B A -H- B n ¥(A x B)

Name

constant function

relational image

singleton image

Table 8: Function constructors

Form

3(R)
A(R)

Description or definition

maps all members in the set A to a
(b,a)ea% <& be A

(A, B) € 3(R) & B = ran(A < R)

(a,B)£A(R) o B = ran({a} < R)

Note: The subscript A may be omitted if the domain can be determined from the context.

In the remainder of this section, the term function, when not otherwise specified, is taken to mean
partial function.

Z Notation Version 1.1 30th June 1995 13

4 SEMANTIC METALANGUAGE

4.7 Set constructors as relations

Membership, union, intersection etc. axe not sets, and therefore, a fortiori, not relations. However, the
restriction of any of these to the members or subsets etc. of a particular set A, does indeed yield a
relation. In general, the relation determined, e.g., by the membership function, will depend on the set
A; however, it is convenient to use a notation which supresses this dependence when A is clear from the
context of use. The notations used are defined in the following table.

Table 9: Set constructors defined as relations

Name Symbol Domain Range Definition

union (u) (FA)2 FA ((01,02), 6) € (U) <£> b = oiUa2

intersection (n) (FA)2 FA ((ax> a2), 6) € (n) & b = 0l D a2

set difference (\) (FA)2 FA ((01.02), 6) € (\) «• 6 = oi\a2

containment (2) FA FA (a, b) e (D) -& bC a

member 0) FA A (a,b) €(3) & b e a

singleton set {-} A FA (a,b)€{-} & b = {a}

tuple set {••} A+ PA ((ai,...,an),b) e {..} &
b = {ai,...,an}

power (P) FA PFA (a,b)<=(P) O b = Pa

relational override (©) {A <-> B)2 A<r->B ((RuR2),S)e(®) &

S = (domR2<Ri)UR2

Cartesian product (x) (PJ4)+ F(A+) ((01,..., c), 6) e (x) «•
b = ai x ... x an

indexed product X A-++FB F(A -H. B) (a,b) e(X&)-&bCa;3
where dorn a = dorn b.

These relations will be used only when they have well-defined domains.

The following diagram shows commuting properties of relational constructors:

14 Z Notation Version 1.1 30th June 1995

4-8 Compatible functions.

4.8 Compatible functions.

Two functions are said to be compatible if their union is also a function. That is, their values aeree
whenever their domains overlap.

The set of pairs of compatible functions from A to B is defined as follows:

CAB = dom((u) > (A -H- B))

The functional forms of the set operators: union, intersection and set difference are defined only when the
arguments are compatible functions. When defined, they have the same value as their set equivalents.

Table 10: Constructors on compatible functions

Name

functional union

functional intersection

functional difference

Symbol

UAB

nAB

"—AB

Definition

CAB <(U)

CAB <(n)

CAB < (\)

Z Notation Version 1.1 30th June 1995 15

4 SEMANTIC METALANGUA GE

4.9 Diagonal and projection

The following are defined:

Table 11: Diagonal and projection operators

Name Symbol Domain Range Definition

diagonal A„ A An (a,(ai,...,an)) € A„
-& a\ = a A ... A an = a,

where n > 1

projection 7T,- Ai x ... x Ai x . • *An Ai ((ai,...,ai,...,an),a) e 7r;
4=r> a = a,-, where 1 < i < n

4.10 Pointwise product

The pointwise product R\ ® ... ® Rn is a relation from the Cartesian product of the domains of
Ri,...,Rn to the Cartesian product of their ranges.

Table 12: Pointwise product constructors

Name

pointwise product

iterated pointwise product

Form

i?i <g> ... ® Rn

R®

Definition

((ai,...,an), (6].,... ,&„)) G Ri <g> ...
Rn
<& («!, h) G Rx A ... A (a„, 6„) e Ä„

R U (Ä ® i?) U (R ® i? ® Ä) U

The following diagram illustrates properties of the product constructors:

Bxx...xBn ^ B{

R\ ® ... ® Rn

Ai x ... x An w. - Ai

Ri

16 Z Notation Version 1.1 30th June 1995

4-11 Relational tuple

4.11 Relational tuple

If A is the intersection of the domains of the relations Ru..., Rn, then the relational tuple (Ru...,Rn)
is a relation from A to the Cartesian product of their ranges. This is defined in terms of the relational
product operator and the diagonal operator A„.

Table 13: Tuple constructor

Name

relational tuple

Form

(Ri,...,Rn)

Definition

A„ ? (Äi Rn), where n > 1

If the relations Ri,...,Rn each have domain A and have range Bu respectively, then the following
diagram shows the relationship between relational tuple (Rx,..., Rn) and projection:

Bi x ... x Bn

(.Ri,... ,Rn)

Name

Table 14: Relational tuple operator

relational tupling

Symbol

O

Domain

(;4<->5i) x (A«-*£2)

Range

A <-> (Bi x B2)

Definition

((Ri,R2),S)€0
<* S = {RUR2)

Z Notation Version 1.1 30th June 1995 17

4 SEMANTIC METALANGUA GE

4.12 Promoted application

In order to avoid generating potentially undefined terms, there is no function application in the meta-
language (it is used only in explanatory notes). For the definition of function application in Z, it is
necessary to define a form of promoted application. For any given a, the apply-to-a function takes
as its argument a function and has as its result the application of that function to the element a.
This function can be generalised to the promoted application operator (R • T), which is the relational
analogue of the S combinator in combinatory logic.

Table 15: Promoted application

Name Form Domain Range Definition

apply-to-a

promoted application

(_a)

R»S

A+-+B

A*->(B^>C)x(A^B)

B

A^C

((9) n (a0;^-1));^

((R p) n (S ; Trf1)); TT2

Note: If p is a function and c is an member of the domain of p then the following equality
holds: (_c) p = p c. So we have the following equivalence:

(a, b) € (_c) & (c, b) e a

If the relations R : A <-» (B <-> C) and S : A <-» B both have the element a in their domains,
then the tuple (a, (b, c)) belongs to (R °,3) providing that (b, c) is a member of the set R(a)
and it belongs to (S 5 7rf1) if b is S(a). The tuple (a, c) belongs to the whole relation exactly
when for some b the tuple (a, (b, c)) belongs to the first part. If R and S are functions, then
promoted application is defined so that the following equality holds:

(R»S)(a) = (Ra)(Sa)

Promoted application is disjunctive in both arguments.

The apply-to-a function (_a) can be derived from promoted application as follows:

(-«) /•ac

18 Z Notation Version 1.1 30th June 1995

5 Semantic universe

Notes on this section of the Z Standard

Section title: Semantic universe
Section editor: Randolph Johnson (ex: Jim Woodcock)
Contributions by: Stephen Brien, Jim Woodcock, ... (others to be added)
Source file: semdom.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

5.1 Introduction

This section defines a semantic universe within which the meanings of Z specifications lie; it is based
on the Zermelo-Praenkel axiomatisation of sets mentioned in the last section.

The syntax of Z defines a set of specifications. The semantics of Z defines a function from these
specifications to meanings within the semantic universe. This universe contains the meanings of names
types, and values used in a specification, as well as the environment used to define the overall meaning
of a specification. It should be noted that the meaning of a specification is further paramatrised by the
assignment of sets to given set names in the specification.

5.2 Names and types

The first task in building the universe is to explain the use of names and the notion of types In Z a
name is used to denote an element, which may be a set, a tuple, a binding, or an element of a given
type. These names come in three varieties: they may be the names of Schemas, variables, or constants
This partitioning of abstract names is dependent on the specification in question, the members of each
set not being distinguishable in the concrete syntax. Abstractly, we have that, for any particular Z
specification, our set of names, Name, is comprised of schema names, variable names, and constant
names:

SchemaName U Variable U Constant = Name

Representation names can have different abstract forms for different specifications; there is assumed to
be an infinite supply of each.

In common with other specification and programming languages, but unlike ZF set theory, the rules of
Z require that every name introduced in a Z specification is given a particular type which determines
the possibilities for the values that it may take.

The simplest types are given set names, which are used to introduce abstract objects into a specification,
as the formal names of generic parameters or as expressions. Their names are drawn from the set
Constant.

GivenSetName C Constant

Z Notation Version 1.1 30th June 1995 19

5 SEMANTIC UNIVERSE

Note: The names Z for the set of integers and § for the set of strings are members of the
set of given set names. I.e., {Z, §} C GivenSetName.

Every type belongs to the set Type, which is partitioned into the four subsets Gtype, Ptype, Ctype,
and Stype representing the given types, power set types, Cartesian product types, and schema types,
respectively.

Basic familiarity with elementary set theory leads one to view something of given type as an object,
of power set type as a set, of Cartesian product type as a tuple, but what about something of schema
type? It is a partial function from variable names to types; such a function is called a signature:

Signature = Variable -tn- Type

Now we have everything that we need in order to explain the structure of the set of types. Consider power
set types. Prom every type represented by a, we can construct the unique type which is represented
by Pa; every power set type is constructed in this way from a unique type. Thus, the power set
type constructor is a bijection between Type and Ptype. Similar arguments apply to the other type
constructors. We can sum this up by defining the following four bijections with the partitions of Type:

givenT : GivenSetName >—»■ Gtype
powerT : Type >-»• Ptype
cproductT : (Type+ \ Type) >-»• Ctype
schemaT : Signature >—» Stype

Note: The signature parameter for the schemaT operator can be the empty signature.

For each specification there is a set of distinct given types. All other types used are constructed from
these given types using a unique combination of the type constructors. This uniqueness is guaranteed
because the type constructors are in bijection with the partitions of the set Type. Therefore the set
Type is the smallest set which is closed under these type constructors. In terminology from category
theory, Type can be described as the initial algebra over the signature given by givenT, powerT,
cproductT, schemaT. Using the notation for free types as defined in Z, we can sum this up by defining
the set Type as follows:

Type ::= givenT ((GivenSetName))
| powerT ((Type))
j cproductT(((Type+\ Type)))
| schemaT ((Signature))

5.3 Values in Z

One of the purposes of ascribing a type to a variable is to determine which values the variable may
take. To make this possible, each type has a (ZF) set of values associated with it, called its carrier set.
The values in the carrier set of a given type are regarded as atomic objects. Each value in the carrier
set of a non given type is modelled by a ZF set. The relationship between the types and values in a
specification is defined by the function Carrier, whose definition we approach inductively by defining
the carrier function for given types and then constructing the function for other types from this.

20 Z Notation Version 1.1 30th June 1995

5.3 Values in Z

Note: In Z a type is represented by its carrier set.

A set Wwill be defined below to contain the values of all elements in Z. The carrier sets for each type
in Z are subsets of W. The set WQ is the set comprising the carrier sets for each of the given types.

Definition 5.1 For each specification there is a carrier function which maps the given types to elements
of W0.

Carrier^ : Gtype —> Wo

Note: The carrier sets (elements of W0) may be empty sets. This means that the types are
not inhabited.

Note: Suppose that 7 is a given type; what is the carrier set of the power set type
powerT-y? It is simply the set P(Carrier 7). In general, if 7 is a power set type of a
given type T, we must calculate the carrier set by stripping off the power set constructor,
calculating the carrier set of this underlying given type, and then forming the power set of
the result. This is given by the expression

{powerT~l ; Carrier^ \ (P)) 7

Similarly, if 7 is a Cartesian product of given types, then we should break it up into its
constituent given types, determine their carrier sets, and then form their Cartesian product,
so that we end up with a set of tuple values:

{cproductT~l ? Carrier^ | (x))7

Finally, if 7 is a schema type constructed from given types, then we should obtain the
underlying signature; this yields a function from variable names to types, which we must
turn into a function from variable names to the carrier sets of these types; finally, we must
form the schema product, so that we end up with a set of functions from names to values:

(schemaT-1 5 3(IVaHable ® Carrier0) ? X) 7

The indexed product operator X is used to convert a function Variable HH- P W to a set of
functions P(Variable -H-> W).

In this discussion, we have assumed that the type constructors are applied to given types, but in general
they are applied to arbitrary types. Since a type is made out of a finite sequence of applications of the
constructors, we can define the depth of a type to be the length of this sequence. Now we can give our
inductive definition using this notion of depth:

Z Notation Version 1.1 30th June 1995 91

5 SEMANTIC UNIVERSE

Definition 5.2

Carrier i+\ =
Carrier {
U powerT'1 5 Carrier { ? (P)
U cproductT'1 ? Carrierf | (x)
U schemaT~x | 3(IVariable ® Carrieri) ? <V

Note: The carrier set of the schema type constructed from the empty signature is the set
containing the empty binding.

In order to calculate the carrier set for a type 7, we must apply Carrieri, where i is the depth of type
7. Notice that every carrier function whose domain contains 7 gives the same result for 7; this justifies
our general definition.

Definition 5.3 The general carrier function mapping elements of Typeto their carrier sets is defined
as follows:

Carrier = Carriero U Carrier\ U Carrier2 Li...

The values which may be used in a Z specification are those that are in the carrier sets that are assigned
to the types. This set is constructed from the elements of Wo using the type constructors.

Definition 5.4 The set W of all values is the set of all the elements in each of the carrier sets for the
elements of Type:

W = 3l (Carrier p) Type

Definition 5.5 A binding is a finite mapping from variables to values:

Binding = Variable -tn- W

The carrier function is a homomorphism between Type and W.

Note: Thus, we have the equations for carrier

Carrier (powerT 7) = P (Carrier 7)
Carrier (cproductT (71,... ,7«)) = (Carrier 71) x ... x (Carrier 7„)
Carrier (schemaTj) = X(3(I <8> Carrier) 7)

5.4 Elements in Z

Each element in Z is represented by the pair consisting of its type and its value. The semantic set Elm
is a set of type-value pairs; this set may be considered as the relation between types and values in which
a type is related to a value if and only if the value is a member of the carrier set of the type.

22 Z Notation Version 1.1 30th June 1995

5.4 Elements in Z

Editor's note: The commuting diagram "The type system" has been temporarily omitted from this
section.

Definition 5.6 The set Elmis a set of type-value pairs:

Elm :P(Type x W)

A value is an element of a type if and only if it is contained in the carrier set of the type:

Elm = Carrier ; 9

Note: The set Elm of all compatible type-value pairs is also a relation between types and
elements of their carrier sets. If the carrier set for a type is empty, then the type will not
be in the domain of Elm.

The first and second projections on a tuple are used to extract the type and value respectively.

Definition 5.7 The type and value functions are projections from the tuples in Elm:

t = Elm < 7Ti

v = Elm < 7T2

Sets in Z are those elements which have a power type:

Definition 5.8 The set Pelm contains all elements which have power type:

Pelm = Ptype < Elm.

Definition 5.9 The membership relation, 3, for elements in Z is a relation between Pelm and Elm:

3 : Pelm <—y Elm

This relation is the product of the relation between a power type and its underlying type and the relation
between a set and its members:

3 = (powerT~l <g> 3)

A Z specification consists of a number of definitions which introduce names. Each name may denote
some value, and each name must have some type; that is, each name may be associated with an element.
We dall such an assignment of elements to names a situation.

Definition 5.10 A situation is a finite mapping from variables to elements:

Situation = Variable -H-> Elm

Z Notation Version 1.1 30th June 1995 23

5 SEMANTIC UNIVERSE

A situation tells us two things about the names in a specification: their types and their values. If
we think about the type projection of each name, then we obtain a mapping from names to types: a
signature. If, on the other hand, we think about the value projection of each name, then we obtain a
mapping from names to values: a binding. The signature and binding corresponding to a particular
situation can be extracted by the functions T and V respectively.

Definition 5.11 The Tand Vfunctions are defined as follows:

T = 3{IVariable ® 0

V = 3 {I Variable ® «)

The following commuting diagram, in which n is an arbitrary variable name, illustrates the relationship
between types and values and their lifted forms as signatures and bindings:

T V
Signature Situation «- Binding

(_») (-») (_n)

Type Elm W

5.5 Generics

A Z expression that involves a generic instantiation acquires a type and a value that depends upon the
type and value of the expression used in the instantiation. Thus if we see 0™, we know this has a

different type from 0rpZi. The various types that 0 may take are represented as a function from Type

to Type. In the case of 0, this function takes an arbitrary powerset type to itself. In general, where
a generic definition contains a list of identifiers, the various possible instantiations are a function from
lists of elements to a type and value. The elements which may appear as actual parameters of a generic

definition must be of powerset type.

5.5.1 Generic types

For each generic type the number of formal parameters is fixed, and every possible sequence of powerset
types with the right number of formal parameters is given a type. So each generic type is a function
from fixed-length sequences of power types to a type. In order to simplify the definition of generic types
we consider first the case of the generic type with n parameters and then extend to the general case.
This type is a function from an n-tuple of power types to a type. This function must be total as all
possible combinations of parameters must be given a type.

24 Z Notation Version 1.1 30th June 1995

5.5 Generics

Definition 5.12 For any natural number n > 0, the set of all generic types with n parameters is
defined as follows:

Gen-Type„ = Ptypen —> Type

Since the number of parameters for a generic type is fixed, the general generic type is an example of
one of the specific fixed length generic types. So the set of all generic types is the union of all the fixed
length types.

Definition 5.13 The set of all generic types is the union of all the sets of finite length generic types:

Gen-Type = GenJTypex U Gen-Type2 U ...

Note: This models a set far bigger than that which can be constructed using generic defi-
nitions in Z

5.5.2 Generic elements

As with generic types, for each generic element there is a fixed number of formal parameters that it
can take; furthermore every possible sequence of the correct number of elements with powerset type is
given a type and value. Generic elements are defined in a similar way to generic types: by defining the
specific n-length case and generalising.

For any natural number n > 0, the set of all generic elements with n parameters is a subset of the set
of functions from n-tuples of set elements to elements:

Gen_Elmn : F{Pelmn —* Elm)

The functions representing generic elements are type consistent; a generic element, when instantiated
with two sequences of elements of the same type, will give two elements of the same type. This is an
important restriction on the functions used to model generic elements. In order to define this property
it is necessary to characterise the type part of a generic element.

Definition 5.14 The function rn takes a function from n-tuples of elements to elements and returns
a relation from n-tuples of type to type:

rn : {Pelmn —> Elm) —> {Ptypen <-> Type)

rn = 3(r ® t)

The functions which are to be characterised as generic elements are those whose type part is a generic
type, i.e. those whose type part is functional.

Definition 5.15 The set of generic elements with n parameters are those functions whose type part is
functional, i.e. contained in Gen-Typen:

Gen-Elmn = dom (rn > Gen^Type)

Z Notation Version 1.1 30th June 1995 25

5 SEMANTIC UNIVERSE

In the same way as for generic types, the general generic element is an example of a specific one for

some fixed number of parameters.

Definition 5.16 The set of all generic elements is the union of all the sets of finite length generic

elements:

Gen-Elm = Gen-Elmi U Gen-Elm2 U ...

Definition 5.17 The generic type function can be generalised as follows:

r = n U r2 U ...

5.6 Environments

In order to give a meaning to the constructs of Z, we need an environment to record the elements denoted
by the names used in a Z specification. The meaning of a Z specification is a set of environments. This
set contains those environments which map the names declared in the specification to a combination of
values which correspond to the constraints within the specification.

Definition 5.18 An environment is defined as a finite partial function from names to elements or f

generic elements:

Env = Name -tt-> (Elm U Gen-Elm)

Whether a Z specification is well typed or not is a question that is independent of the values of the
declared variables. To be able to answer this question it is simply necessary to have an environment in

which the types of all names are recorded.

Definition 5.19 A type-environment is defined as a finite function from names to types or generic

types:

Tenv = Name -tn- (Type U Gen-Type)

The simple relationship between the richer environment, Env, and the one used just for type checking,
Tenv, is given by the forgetful function T which 'throws away' the values.

Definition 5.20 The function T maps the second element of each tuple in an environment onto its

corresponding type or generic type:

T= 3(lName ® (* U 7"))

The following commuting diagram, in which n is an arbitrary name, illustrates the relationship between

the environment and the type-environment:

„_ Z Notation Version 1.1 30th June 1995
ZKi

5.6 Environments

Tenv

(-»)

Type U Gen-Type ■*-

.Enu

tÖT

(_n)

£/m U Gen-Elm

Note: If T is a set of type environments, then 3(T X)T is the corresponding set of full
environments.

D

Z Notation Version 1.1 30th June 1995 27

6 Language description

Notes on this section of the Z Standard

Section title: Language description
Section editor: Randolph Johnson
Contributions by: ... (to be added)
Source file: lang.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

6.1 Introduction

This section provides a general introduction to the following sections of the language definition, each
of which defines a major syntactic category: expression, predicate, schema, paragraph, specification.
Within each section there are subsections corresponding to the syntactic categories of the abstract
syntax. These follow a consistent pattern, sub-divided as follows: Abstract syntax, Concrete form,
Sample representation and transformation, Type, and Value/Meaning.

A denotational style of semantic description is used, as described for example in [25] and, as in the
customary style of writing denotational semantics* semantic brackets are used to delimit text for which
denotations are given. The notation is extended by providing different shapes of brackets for different
kinds of language elements as shown in the following table. Three types of semantic functions are
used, for type, value and meaning. The different types are identified by, respectively, the superscripts

T, V, M on the brackets.

Bracket

{-}

(-)

(-)
? ?

Table 16: Brackets used for semantic functions

Argument

Expression

Predicate

Schema

Paragraph

Specification

Forms

i-ir, i-iM-r

(-)T, (-r
? ?T ? ?M

28
Z Notation Version 1.1 30th June 1995

6.2 Abstract syntax

The following meta-variables are used for expressing the representation syntax, i.e., the visual form in
which it appears. Similar symbols, in bold font, are used for expressing the abstract syntax.

Table 17: Meta-variables used in the representation syntax

Variables Sort

E,x,y Expression

n, m Name

a String

i Number

t Tuple

s, u Set-valued expression

b Binding

f Function

P,Q Predicate

C,D Declaration

St Schema Text

S,T Schema

Par Paragraph

6.2 Abstract syntax

For each language element, its abstract syntax is defined in a form of BNF. The following example
illustrates the style used.

POWERSET = Pow EXP

In some cases symbols such as 0 are used rather than key-words or other structures in the syntax to
make reading of the abstract syntax easier. The abstract syntax is presented in Annex A.

6.3 Concrete form, representation and transformation

Editor's note: This, and the next subsections, have been revised to account for the new concrete syntax
and lexis.

Check carefully! JEN

Z Notation Version 1.1 30th June 1995 29

6 LANGUAGE DESCRIPTION

For each language element, there is an example of the concrete form showing a production or productions
of the language element being defined, together with a table showing the relationship between the
representation and abstract forms.

Note: There may be more than one representation of an abstract syntax category; in such
cases all forms are listed. In some cases the multiplicity of representations is due to the fact
that some forms can be considered as abbreviations of others.

Transformations are presented in a denotational style. Superscripts on brackets denote the type of the
argument.

Table 18: Transformation functions

Brackets

f

l-f

iPATl

Argument

Expression

Predicate

Declaration

Schema

Paragraph

The following example illustrates how a sample form from the concrete syntax is presented, together
with a metalanguage version of the representation and its corresponding abstract form:

Concrete form

PSET Expression

Sample representation and transformation

Representation Abstract

Pow[tf

In this example the production for power set shows how a power set is represented as an expression
prefixed with the power set symbol. The first column in the table gives an example of the representation
form. In this case s is some expression for a set in representational form. The second column gives the
abstract form of this expression. In this case the form is an (abstract) powerset symbol, followed by
the abstract form of the expression s.

30 Z Notation Version 1.1 30th June 1995

6.4 Type

These two columns can be read as an equation in the form:

[P5f = Pow[5f

The concrete syntax is presented in Annex B.

6.4 Type

The definition of the Z type system is by structural induction over the abstract representation of a Z
specification. The well-typedness of a Z specification can be determined independently of the values
of the declared variables. So we see that the following definition of the Z type system is entirely
self-contained: given a Z specification, the type definitions determine whether that specification is
well-typed.

Note: Determining whether a given specification is well-typed is a decidable question. Sim-
ilarly, the determination of the type of any term, within a given environment, is decidable.
This is in contrast with evaluation - determining whether a term has a certain value is, in
general, undecidable.

Table 19: Type functions of major forms

Name Form Sort

Expression Type lEf Tenv -H- Type

Predicate Type {PV P Tenv

Schema Type isy Tenv -+» Signature

Paragraph Type {Par Y Tenv -H» Tenv

The following example illustrates the description of the type of a powerset:

Type The type of the power set Pow s is the power set type of the type of the set s.

| Pow s]r = ([s]r > Ptype) ; powerT

Note: A power set Pow s is well typed only if s has power set type.

The type description contains an informal description, the mathematical definition of the type function
for the powerset and an explanation of when it is well-typed. This last explanation is derived directly
from the domain of the type function.

Z Notation Version 1.1 30th June 1995 31

6 LANGUAGE DESCRIPTION

Table 20: Meaning functions of major forms

Name

Expression Meaning

Predicate Meaning

Schema Meaning

Paragraph Meaning

Form

[E]M

(Par }M

Sort

Env -+» Elm

FEnv

Env +-> Situation

Env <—>■ Env

6.5 Meaning

The meanings of expression, predicate, schema and paragraph are given by the functions in the following
table:

Note: There is a need to explain that the definition of Env is paramaterised by the assigne-
ment of values to the given sets.

The meanings of expression, predicate, and schema are combined to provide a meaning for a paragraph.
This meaning is a relation between environments. The meaning of a specification is defined as the
image of the empty environment through the composition of the relations for all the paragraphs in the
specification.

Note: Now that declarations are no longer in the abstract syntax, the example below should
be replaced.

The following example illustrates the description of the meaning of a simple declaration:

Meaning The meaning of a compound declaration is the set of situations that, when re-
stricted to the alphabet of each component, satisfy that component:

{Sl',Sa} M <(SI]TM<M">?I-J.

Note: A compound declaration Dx; D2 is value-defined only if both the decla-
rations £>! and D2 are value-defined and if repeated declarations are value com-
patible.

The meaning description contains an informal description, the mathematical definition of the meaning
function for the declaration and an explanantion of when it is value-defined. This last explanation is
derived directly from the domain of the meaning function.

The meanings of pairs of expressions, predicates, etc., can be compared. For example, two expressions
ei and e2 are said to be semantically equivalent, written e\ = e2, when f ex JM = [e2 J^.

32 Z Notation Version 1.1 30th June 1995

6.6 Value

6.6 Value

The meaning functions for expressions and predicates are defined in terms of their type and value So
the value functions are the primitives defined in the following sections and have the structure shown in
the following table:

Table 21: Value functions of major forms

Name

Expression Value

Predicate Value

Form Sort

Env -+¥ W

FEnv

The following example illustrates the description of the value of a powerset:

Value The value of the power set Pow s is the set of all the subsets of the value of s:

iPowsf = [8JV;(P)

Note: A powerset Pow s is value-defined only if the expression s is value-defined.

The value description contains an informal description, the mathematical definition of the value function
for the powerset and an explanation of when it is value-defined. This last explanation is derived directlv
from the domain of the value function.

Editor's note: The following subsections need to be revised and possibly moved. In Version 1 1 the
discussion of free variables has been moved to Annex F, The logical theory of Z.

6.7 Free variables

Ordinarily the definition of the free variables of an expression can be considered as a function on the
names of identifiers appearing in the text of the expression and the variables bound by the declarations
In Z however, the case is somewhat more complicated. The use of schema references as declarations
means that there is an implicit declaration. The names introduced by the declaration S where S is a
schema reference are related not to the name S but to its value in the particular environment within
which it is being evaluated. In other words the free variables of an expression depend on the text of the
expression and the environment in which the expression is evaluated.

We define the free variables of an expression to be a function from environments to sets of names:

<f>e(E) : Env -H-FName

The set of names defined as the free variables for an expression for a particular environment is the
smallest set of names which must be in the environment in order for the expression to be well-defined.

Z Notation Version 1.1 30th June 1995
33

6 LANGUAGE DESCRIPTION

However since local declarations do not introduce schema references, the free variables of an expression
are unchanged by a local declaration. So in the definitions we omit the environment parameter as it
has no effect on the value of the free variables.

Table 22: Free variable functions

Function Argument

<l>€

<t>v

4>s

Expression

Predicate

Schema

34 Z Notation Version 1.1 30th June 1995

6.7 Free variables

At the end of each section there is a table defining the free variables for each construct within that
category. The following example illustrates the definition of the free variables of a power set:

Table 23: Extract from table of free variables

Expression

Pows

Free Variables

<t>£S

This can also be read as an equation in the following form:

^Pow s = <ß£s

Z Notation Version 1.1 30th June 1995 35

6 LANGUAGE DESCRIPTION

6.8 Alphabet

The syntactic categories of schema is used to introduce new names. These new names are called the
alphabet. The alphabet is the set of the names in the signature as defined by the type rules (where
applicable).

Table 24: Alphabet function

Function Argument

a

a

a

Schema

Schema-text

Substitution

Table 25: Extract from table of alphabets

Declaration Alphabet

n.1?... ? Tim : s \Ti\,..., nmj

This can also be read as an equation in the following form:

a(n1,...,nm: s) = {n1,...,nm}

36 Z Notation Version 1.1 30th June 1995

6.9 Substitution

6.9 Substitution

The table of semantic equivalences for substituted expressions axe given at the end of each section
These tables indicate when one expression can be replaced by another without changing the meaning
Substitution is defined using a binding, which asssigns values to variable names. These new vXes are
substituted for the variables in the expression.

The following example illustrates the semantic equivalence of substitution into a power set:

Table 26: Extract from table of semantic equivalences

Substitution

6©P u

Equivalence

F(bou)

This can also be read as an equation in the following form:

beFu = P(6oti),

where the symbol = denotes semantic equivalence.

Note: The following is an example of substitution:

4 x-^5,y^N, a ^7} o(x £ y f] z) = 5eNf)z

Since the variable name a is not free in the expression, there is no substitution for it.

D

Z Notation Version 1.1 30th June 1995
37

7 Expression

Notes on this section of the Z Standard

Section title: Expression
Section editor: This version edited by JEN.
Note : This version reflects comments by Jon Hall, and has been restruc-
tured for the proposed concrete syntax.
Contributions by: Stephen Brien, Randolph Johnson, ... (others to be
added)
Source file: exp.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

7.1 Introduction

Expression is a general form for defining values in Z.

In the abstract syntax given below, the different kinds of Z expression are listed.

Abstract Syntax

EXP = IDENT
GENINST
NUMBERL
STR.INGL
SETEXTN
SETCOMP
POWERSET
TUPLE
PRODUCT
TUPLESELECTION
BINDINGEXTN
THETAEXP
SCHEMAEXP
BINDSELECTION
FUNCTAPP
DEFNDESCR
IFTHENELSE
EXPSUBSTITUTION

Identifier
Generic Instantiation
Number Literal
String Literal
Set Extension
Set Comprehension
Power Set
Tuple
Cartesian Product
Tuple Selection
Binding Extension
Theta Expression
Schema Expression
Binding Selection
Application
Definite Description
Conditional Expression
Substitution

38 Z Notation Version 1.1 30th June 1995

7.2 Method of definition

7.2 Method of definition

Somt W T' definitiT T bUÜt ? *? StaS6S: faSt " tm funCtWn is defined' then a «*" Inchon. *rom these, a meaning function can be derived according to rules given below.

Type function. For any expression E, its type function [E f is a recursively defined partial function
from type-environments to types: ™n

[-E]r : Tenv -H- Type

The expression E is wett-foped in exactly those type-environments contained in dorn f £ F The tvoe of
an expression in a type-environment is the result of applying its type function to that type-environment.

Value function. For any expression E, its value function [E f is a partial function from environ-
ments to values:

[E]v : Env -t-> W

The expression E is value-defined in exactly those environments contained in dom[E]v.

The value of an expression in an environment is the result of the application of its value function to
that environment.

For some expressions the semantics is loosely defined. That is to say, a lower bound on the meaning
is given This provides the possibility of various interpretations, in circumstances where the semantics
does not explicitly give a meaning.

Note: An example is the definition of Application. For example, in function application
when the argument is outside the domain of the function, then no meaning is explicitly
given. Different interpretations of Z can ascribe different meanings to an ill-formed function
application.

Meaning function. The meaning function [E }M is a function from environments to elements:

I E lM : Env -+» Elm

The meaning of an expression in an environment is the pair consisting of its type and its value in that
environment. The type of an expression in an environment is its type evaluated in the corresponding
type-environment, which is a restriction of the environment.

The function T ? [E Jr corresponds to the type function for E in the full meaning environment,
where T is the function that restricts an environment to its corresponding type-environment Thus the
meaning function is constructed as follows:

\E}M = (TilEf , [25]v>

Z Notation Version 1.1 30th June 1995 QQ

7 EXPRESSION

The expression E is well-defined in exactly those environments contained in dorn [E \M which is equal
to:

domT?|^|r D doml-Ef

An expression is said to be well-typed in an environment if it is well-typed in the corresponding type
environment. Thus, an expression is well-defined in those environments in which it is well-typed and
value-defined.

A result of this definition is that the type of the meaning of an expression in an environment is always
the same as the type part of the expression when evaluated in the corresponding type-environment:

\-[E}M;t C T?[£]r

Note: This relationship is not an equality because it is possible to have well-typed expres-
sions which are not value-defined.

40 Z Notation Version 1.1 30th June 1995

7.5 Identifier

7.3 Identifier

An identifier is a name used to refer to a variable or a constant, and it denotes
on its environment. a value which depends

Abstract syntax

IDENT = NAME

Note: A NAME is composed of a base-name suffixed by any number of decorations.

Concrete form

Sample representation and transformation

Representation Abstract

n Inf

Type The type of an identifier is the type to which the identifier is mapped in the type-environment:

I n Y = (_n) > Type

Note: An identifier is well-typed if and only if it is in the domain of the type-environment.

e^roenmInte: ^ ^ ^ ^^ * ^ ^ ^ °f ^ ***"** mapPed t0 the identifier in the

[nf = (_„);„

Note: An identifier is value-defined in an environment if and only if it is in the domain of
tne environment.

Z Notation Version 1.1 30th June 1995
41

7 EXPRESSION

7.4 Generic instantiation

The generic instantiation n[Sl)...)Sm] (m > 0), is the instantiation of the generic variable n with the list
of set expressions s15..., sm. The number m must be equal to the number of formal parameters of
n. Each element of the instantiation list gives a value to the corresponding generic parameter of the
generic variable.

If the list of generic parameters is omitted in the representation form, it is inferred from the typing
information in the context of use; in this case, the values of the implicit parameters are the maximal
sets of the appropriate type, which must be uniquely determined by the typing rules.

Abstract syntax A generic instantiation is constructed from a variable name and a list of one or
more expressions.

GENINST = NAME [EXP, EXP,..., EXP]

Concrete form

NAME SQBRA ExpressionListl SQKET

Expressionl, InGen , Expression

PreGen, Expression5

Sample representation and transformation Generic variables can be instantiated by providing a
parameter list, or by infix or prefix means.

Representation Abstract

n[»i %]

(j)S

lnf[lsif,...,bmf]
[(_*.)]« [M£,{s2f]

K<i>-)fM£}

Note: The expression «1^*2, where ip is an infix generic symbol is the variable (-ip-) when
instantiated with the parameter list [si,s2]. When <j> is a prefix generic symbol then <j>s is
the variable declared as (</>_) when instantiated with the parameter list [s].

Type The type of a generic instantiation n[Sii...)Sm] is obtained by applying to the types of the actual
parameters s1,...,sm the function corresponding to the generic type of the variable name n in the
type-environment:

I «•[*1,...,Sm] r (_n).([Sir,...,Isml
r)

Note: A generic instantiation is well-typed if and only if the variable name is in the domain
of the type environment and there is a correct number of set-typed parameters.

42 Z Notation Version 1.1 30th June 1995

7.4 Generic instantiation

Value The value of a generic instantiation ri[Si v..Sm] is obtained by applying the function corresponding
to the generic meaning of the variable name n in the environment to the meanings of the actual
parameters «,,... sm and then taking the value part:

[»[*,....«]]v = ((-»)•<[«!]?,.-.,[*ml"»;»

Note: A generic instantiation is value-defined if and only if it is well-typed and all its
parameters are value-defined.

Z Notation Version 1.1 30th June 1995 43

7 EXPRESSION

7.5 Number literal

A number literal denotes an integer.

Abstract syntax

NUMBERL = NUMBER

Concrete form

NUMBER

Sample representation and transformation

Representation Abstract

i bf

Type The type of a number literal is the given set type of the integers.

{if = Z°°,givenT

Note: A number literal is always well-typed.

Value The value of a number literal is the integer it denotes.

[if = i°

Note: A number literal is always value-defined.

44 Z Notation Version 1.1 30th June 1995

7.6 String literal

7.6 String literal

A string literal denotes a string.

Abstract syntax

STRINGL = STRING

Concrete form

STRING

Sample representation and transformation

Representation Abstract

a Me

Type The type of a string literal is the given set type of the set § of strings.

{a\T = §°°9givenT

Note: A string literal is always well-typed.

Value The value of a string literal is the string it denotes.

Note: A string literal is always value-defined.

Z Notation Version 1.1 30th June 1995 45

7 EXPRESSION

7.7 Set extension

A non-empty set extension {x„..., xm} is a set containing exactly those elements denoted by

x1,...,xrn (m > 0).

Note: Since a set is characterised by its members, the order and duplication of elements
in xu ..., xm is of no consequence.

Abstract syntax A set extension is constructed from a list of one or more expressions.

SETEXTN = {EXP, EXP,..., EXP}

Concrete form

SETBRA ExpressionList SETKET

'(' , ExpressionO ,{',', ExpressionO} , ')'

'I' ,ExpressionO,{',',ExpressionO} , '1'

Sample representation and transformation There are three kinds of sets which can be con-
structed by extension: simple sets, sequences, and bags.

Representation

{xi,...,xm}

\X\, ..., xm)

\xi,...,xm\

Abstract

[{(l,*l),..-,(™,Zm)}f

[{(*!, l)}ö...ö{(W)}f

Note: The expression fa,..., xm), (m > 0) defines an explicit construction of a sequence,
which can be regarded as an ordered collection of its constituents. A sequence is modelled as
a partial function mapping the numbers 1,..., m to the expressions xx,..., xm respectively.

Note: The expression fa,..., xmj, (m > 0) defines an explicit construction of a bag. A
bag is a collection of possibly multiply-occurring elements. A bag is modelled as a partial
function mapping its constituents to the number of times they occur within the bag.

set extension {Xl,...,xm} is the power set type of the common type of

l{x1,...,xm}}T = (lx1fn...nlxm}r)'9poWerT

Type The type of a
xx,. • •, xm.

46
Z Notation Version 1.1 30th June 1995

7.7 Set extension

Note: A set extension {aj1?... ,xm} is well typed if and only if all of the expressions
xt,..., xm are well-typed with the same type.

Note: If a represents the common type of zi,..., xm, then Per represents the type of the
set extension {x\,..., xm}, P(Z x a) represents the type of the sequence (x\,..., xm) and
P(cr x Z) represents the type of the bag [zi,..., xm}.

Value The value of a set extension {x15..., xm} is the set of the values of xlt..., xm:

{{x1,...1xm}]v = (Ix1]
v,...)[xml

v);{..}

Note: A set extension {xx,..., xm} is value-defined if and only if all of £c15..., xm are
value-defined.

Note: Two sets {x\,..., xm} and { j/i, J/2, • • • > J/m } are equal if and only if for all i there
exists j such that Xi = yj, 1 < i < n
and for all j there exists k such that yj = %, 1 < j < m

Z Notation Version 1.1 30th June 1995 47

7 EXPRESSION

7.8 Set comprehension

The set comprehension {St • x} is the set that contains exactly those elements denoted by the expres-
when evaluated in each enrichment of the current environment by the schema text St. sion x

Abstract syntax A set comprehension is constructed from a schema text and an expression.

SETCOMP = {SCHEMA • EXP}

Concrete form

SETBRA TextOrExpression DOT Expression SETKET

'{' ,SchemaText, '}'

'A' ,SchemaText, '•' ,Expression

Sample representation and transformation There are two ways of constructing a set by compre-
hension: a simple set (for which the expression part is optional) and a lambda expression.

Representation

{St • x}

{St}

XSt»x

Abstract

{{StfT*lxf}
{{stfT*i(stn£}
{istfT* (i(stn\ixf)}

Note: If the expression part of the set comprehension is omitted then the default is the
characteristic tuple of the schema text.

Note- A lambda expression denotes a function. The parameter is the characteristic tuple
of the SchemaText. The domain is defined by the SchemaText. The value of the function for
a given parameter is defined by the value of the Expression for the value of that parameter.

Editor's note: A definition of % is needed here.

Type The type of a set comprehension {St . x} is the power set type of the type of x in the type-
environment enriched by the declaration St:

l{Sfx}f = {St }T ; I x f ; powerT

Note: A set comprehension {St . x} is well-typed if and only if St is well-typed, and x is
well-typed in the type-environment enriched by St.

48
Z Notation Version 1.1 30th June 1995

7.8 Set comprehension

Value The value of a set comprehension {St • a;}, is the set of the values denoted by the expression
x in each of the enrichments of the environment by the schema text St:

{{Sfx}f = A(«st T ; [*]v)

Note: A set comprehension is always value-defined.

Z Notation Version 1.1 30th June 1995 49

7 EXPRESSION

7.9 Power set

The power set P s is the set of all subsets of the set s.

Abstract syntax A power set is constructed from an expression.

POWERSET = PowEXP

Concrete form

PSET Expression

Sample representation and transformation

Representation Abstract

Paw[tf

Type The type of the power set P s is the power set type of the type of the set s.

I Pow s}T = ([s lr > Ptype) ? powerT

Note: A power set P s is well-typed if and only if s has power set type.

Note: If P a represents the type of the set 5, then P P a represents the type of P s, a set of

sets.

Value The value of the power set P s is the set of all the subsets of the value of s:

[Powaf = [s]V?(P)

Note: A power set P s is value-defined if and only if the expression s is value-defined.

50
Z Notation Version 1.1 30th June 1995

7.10 Tuple

7.10 Tuple

A tuple (a;!,...,xm) (m > 1) is an ordered collection of the elements xlv

x1,..., xm are not required to have the same type.
,xm. The elements

Note: The tuples (a, b, c) and ((a, b), c) are distinct: the first contains three components
a, b, c whereas the second has components (a, b) and c.

Note: The expression (a) is not a tuple; it is the expression a within parentheses.

Abstract syntax A tuple is constructed from a list of two or more expressions.

TUPLE = (EXP, EXP,..., EXP)

Concrete form

BRA Expression COMMA ExpressionListl KET

Sample representation and transformation

Representation Abstract

(X\,..., xm) ([<*]',...,[a*.]5)

Type The type of a tuple (x1,...,xm) is the Cartesian product type formed from the types of
3J15 . . . , Xm'.

l{x1,...,xm)f = (I a?1 l
r,..., [xm Jr) ; cproductT

Note: A tuple (xx,..., xm)(m > 1) is well-typed if and only if all of xx,..., xm are
well-typed.

Value The value of a tuple (xlr..., xm)(m > 1) is the tuple formed from the values of x1,..., xm:

[(x1,...,xm)f = ([x1]
v,...,|[aJmf>

Note: A tuple (x1,..., xm) is value-defined if and only if all of x,,..., xm are value-

defined.

Z Notation Version 1.1 30th June 1995 51

.7 EXPRESSION

7.11 Cartesian product

The expression sx X .. • X sm (m > 1) is the Cartesian product of the sets «„ ..., sm.

The sets s1?..., sm are not required to have the same type.

Note: As with tuples, the Cartesian products a x b x c and (o x b) x c are distinct.

Abstract syntax A Cartesian product is constructed from two or more expressions.

PRODUCT = EXP X EXP x ... X EXP

Concrete form

Expression CROSS Expression CROSS Expression

Sample representation and transformation

Representation Abstract

Si x ... x sm iSlfx...x{smf

Type The type of a Cartesian product st X ... X sm(m > 1) is the power set type of the Cartesian
product type of the list of the underlying types of the sets s1,...,am.

I Sl X ... X sm lr = ([s, lr ? powerT'1,..., f sm]r ? powerT'1) ; cproductT ? powerT

Note: A Cartesian product sx X ... X sm is well-typed if and only if all of the elements
(«!,..., sm) have power set types.

Value The value of a Cartesian product s1 X ... X sm(m > 1) is the Cartesian product of the values
of the sets (s15..., sm):

[Slx...x*m]
v = ([Slf,...,l5m]

v);x

Note: A Cartesian product s1 X ... X sn is value-defined if and only if all of the sets
s1}..., sn are value-defined.

Note: If Xi € Sj for 1 < i < m, then the tuple (a*,..., xm) is an element of sx x ... x sm.

52 Z Notation Version 1.1 30th June 1995

7.12 Tuple selection

7.12 Tuple selection

The tuple selection t.i is the ith. element in the tuple t.

Abstract syntax A tuple selection is constructed from an expression and a number literal.

TUPLESELECTION = EXP . NUMBERL

Note: The syntactic category NUMBERL is used to ensure well-typedness of selection.

Concrete form

Expression SELECT NUMBER

Sample representation and transformation

Representation Abstract

t.i MM»']'

Type The type of a tuple selection t.i is the type of the ith element of the tuple t.

| t.i]r = 11 Y 5 cproductT~l ; TT;

Note: The tuple selection t.i is well-typed if and only if t has a Cartesian product type
with at least i elements.

Value The value of a tuple selection t.i is the value of the ith element of the tuple t.

lt.i}v = lt}vim

Note: The tuple selection t.i is value-defined if and only if t has the value of a tuple with
at least i elements.

Z Notation Version 1.1 30th June 1995 53

7 EXPRESSION

7.13 Binding extension

A binding extension ^ nt ~» xt,..., nm ~> xm} (m > 0) is the binding that maps the names n15

to the values of the expressions x1,..., xm respectively.
nr

Abstract syntax A binding extension is constructed from a list of names and expressions.

BINDINGEXTN = <\ NAME := EXP,..., NAME := EXP}

Concrete form

BINDERBRA BindList BINDERKET

Sample representation and transformation

Representation

4 ni ~> xi,...,nm ~> xm)

Abstract

4Kf ^M£> • • • . i"rnf ^Wf)

Type The type of a binding extension <\ nx ~» x±,..., nm ~*- xm) (m > 0)
is the schema type of the signature constructed from the mapping of the names n1?..., nm to the types
of the expressions x x,..., xm.

Hn1^xl,...,nm-*xrn) l
r = {(n1

0,lx1f),...,(nm
o,lxm}T))',{..}',schemaT

Note: A binding extension <\ nx ~> xlt..., nm -v* xm) is well-typed if and only if the
expressions xx,..., xm are all well-typed, and the names are distinct.

Value The value of a binding extension <\ n1 ~>- xx,...,nm ~> xm) (m > 0) is the binding con-
structed from the mapping of the names n1,...,nmto the values of the expressions xx,..., xm.

l<\n1^x1,...,nm^xm) f = ((n°i,lxll
v),.:.,(n0

m,[xmY))',{..}

Note: A binding extension <\ n1 ~> x„ ..., nm ^ xm) is value-defined if and only if the
expressions xx,..., xm are all value-defined.

54 Z Notation Version 1.1 30th June 1995

7.14 Theta expression

7.14 Theta expression

The theta expression 9 S is the binding whose type is constructed from the signature of S and whose
value is the binding constructed from the mapping of the names of the signature to their values in the
environment. The theta expression 9 S q is the binding whose type is constructed from the signature of
S and whose value is the binding constructed from the mapping of the names of the signature to the
values in the environment of those names when decorated by q.

Abstract syntax A theta expression is constructed from a schema and an optional decoration.

THETAEXP = 9 SCHEMA DECOR

Note: The schema may itself be decorated. Thus the following are permitted: 0 S q and
e(sq)q.

Note: Only non-generic Schemas may be used in theta expressions.

Concrete form

THETA Expression

Sample representation and transformation

Representation Abstract

9 Sq

e S

eisfbf
e{sf

Type The type of 9 S {9 Sq) is the schema type constructed from the signature of S whose com-
ponents (when decorated by q) have the same non-generic type as the corresponding variable in the
type-environment:

J 9S lr = ({SfflD); schemaT

I 9Sq]r = ((S DT n Q; 3((q }" ® 1))) 5 schemaT

Note: A theta expression is well-typed if and only if each of the decorated versions of the
names of the signature of the schema is assigned a non-generic type in the type-environment
which is the same as the type of that name in the signature.

Z Notation Version 1.1 30th June 1995 55

7 EXPRESSION

Note: The type of a theta expression 6 S q is not the type taken from S decorated by q.
The decoration q does not necessarily appear in the resulting type. The use of the schema
is to identify the type of the resulting binding. Decoration is used only to identify which
names to look up in the type-environment; thus 9 S r and 6 S q are of the same type even
if r and q are different decorations.

Value The value of the theta expression 6 S (0 S q) is a binding of the names of the components of
S to the values of the names (when decorated by q) in the environment:

[eS T = T ; (S ¥ ? schemaT ; Elm D ' DJ V
lOSqf = T ; (S }T ; schemaT ; Elm n D; 3((q }M ® v)

Note: A well-typed theta expression is always value-defined. The value of the theta-
expression does not have to satisfy the property of the schema.

_.„ Z Notation Version 1.1 30th June 1995
ob

7.15 Schema expression

7.15 Schema expression

A schema expression S is the set of bindings defined by the schema S.

Abstract syntax A schema expression is constructed from a schema.

SCHEMAEXP = SCHEMA

Concrete form

SCHEMA (NB add to syntax)

Sample representation and transformation

Representation Abstract

S isf

Type The type of a schema expression S is the power set type of the schema type constructed from
the signature of the schema S:

I S lr = { S Dr ; schemaT ; powerT

Note: A schema expression S is well-typed if and only if the schema S is well-typed.

Note: The type of a schema expression is not in the range of schemaT: it is in the range
of schemaT ? powerT. The relationship between (}T and []r is that of schemaT 5
powerT.

Value The value of a schema expression S is the set of bindings defined by the schema S:

[S]v = A((S)wiV)

Note: A schema expression S is always value-defined.

Z Notation Version 1.1 30th June 1995 57

7 EXPRESSION

7.16 Binding selection

The binding selection b.n is the element to which the name n is mapped in the binding b.

Abstract syntax A binding selection is constructed from a binding and a name.

BINDSELECTION = EXP . NAME

Concrete form

Expression SELECT NAME

Sample representation and transformation

Representation Abstract

b.n Ibf-tnf

Type The type of a binding selection b.n is the type to which the name n is mapped in the signature
used to construct the schema type of the binding b:

I b. n]r = [b]r ; schemaT-1 ; (_n)

Note: A binding selection b.n is well-typed if and only if the type of b is a schema type and
the name n is in the domain of the signature from which the schema type is constructed.

Value The value of a binding selection b.n is the value to which the name n is mapped in the
binding b:

lb.n}v = [b]v?(_n)

Note: A binding selection b.n is value-defined if and only if the binding b is value-defined
and the name n is in its domain.

Note: Two bindings x and y with components ni,..., nm are equal if and only if x.rii =
y.rii, 1 < i < m.

58 Z Notation Version 1.1 30th June 1995

7.17 Application

7.17 Application

The application / x is the result of applying / to the argument x.

Abstract syntax

FUNCTAPP = EXP (EXP)

Sample representation and transformation There are four ways of representing an application:
a prefix form, an infix form, a superscript form and a postfix form. For applications declared for use in
postfix or infix form, underscores indicate the positions of the operands. The complete name includes
the underscores and surrounding parentheses which are omitted when the operands are supplied in the
form defined in the declaration.

Concrete form

Prefix Expression

xx

XXX

XXXX

Representation Abstract

fx

x<t>y

Rx

x§

Uflxf

(iterlxf)lRf

(- 4>){xf

Note: The application x <p y is the infix application of the relation (_ <j> _) applied to the
pair of arguments (x, y).

Note: The application Rx denotes the ^-iteration of the relation R; it is an abbreviation
of the expression iter x R.

Note: The application x<j) is the postfix application of the relation (_ <f) applied to the
argument x.

Z Notation Version 1.1 30th June 1995 59

7 EXPRESSION

Type In the expression / x the type of / must be the power set type of the Cartesian product type
of a pair of types, and the type of the argument x must be the first type in this pair; the type of / x
is the second type in the pair.

[/ *]T = (l / lr » PowerT-1 ; cproductT'1 ; {-}) • [x]r

Note: The application / x is well-typed only if the type of / is a power set type of a pair
of types with the first type in the pair the same as the type of x.

Note: If we evaluate the type of /, we get essentially a set of pairs, where each pair
comprises the type of an argument and the type of its result. If we next evaluate the type
of the particular argument x, then we can simply use the type of / as a function to look up
the type of the result corresponding to x. We say the the type of / is essentially a set of
pairs, because we must 'undo' the type constructors.

Value The value of an application / x is given by applying the value of / to the value of the argument
x:

-l
ifxf D

A([/lv.[*]v);{-}

Note: A well-typed application / x is value-defined if both / and x are value-defined and
if there is a unique w such that (a;, w) G /•

Note: A relation is a set of pairs; the first element of each pair represents an argument,
and the second the result for that argument. For the application / x to be defined, / must
be functional at x. Providing that x evaluates in the environment p to a value v, and the
value of / in p contains (v, w), and no other pair starting with v, then the expression (/ x)
evaluates tow. So for a well-defined function application we would expect an equality of
the following form:

if xfp = lf}v
P ([x]v

p)

The promoted application I/]v»[a;]v provides a satisfactory meaning when the applica-
tion is value-defined. It is necessary to decide what to do with / x when / is not functional
at x. This arises if there are several pairs in the value of /, each having the same first ele-
ment equal to the value of x or if there is none. The definition provided does not prescribe
a value for a relation applied outside its domain or where it is non-functional.

60 Z Notation Version 1.1 30th June 1995

7.18 Definite description

7.18 Definite description

The definite description ß St • x is the element denoted by x in the unique enrichment of the
ment by the schema text St.

environ-

Abstract syntax A definite description is constructed from a schema text and an expression.

DEFNDESCR = ß SCHEMA • EXP

Concrete form

BRA MU TextOrExpression KET

Sample representation and transformation In the representation form for definite description,
the expression part is optional.

Representation

ßSt • x

ßSt

Abstract

ß{StfT*lxf

Note: If the expression part of the definite description is omitted then the default is the
characteristic tuple of the schema text.

Type The type of the term ß St • x is the type of x in the type-environment enriched by St:

IßStmxf = (St}T°,lx}T

Note: The expression ß St • x is well-typed if and only if St is well-typed, and x is
well-typed in the type-environment enriched by St.

Value The value of a definite description ß St • x is the value of x in the unique enrichment of the
environment by St:

IßSt.xf D A((s* D ? {-}"1 5 [x F

Note: A well-typed definite description ß St • x is value-defined if there is exactly one
defined enrichment of the environment by the schema text St and the expression x is value-
defined in that enriched environment.

Note: This definition is not specific about the value of an improper definite description. If
there is no unique enrichment of the environment then the value is not prescribed; hence
the use of D in the definition.

Z Notation Version 1.1 30th June 1995 61

7 EXPRESSION

7.19 Conditional expression

The conditional expression if P then x else y denotes an expression which is equal to x if the
predicate P is true, otherwise it is equal to the expression y.

Abstract syntax A conditional expression is constructed from a predicate and two expressions.

IFTHENELSE = if PRED then EXP else EXP fi

Concrete form

IF Predicate THEN Expression ELSE Expression

Sample representation and transformation

Representation

If P Then x Else y

Abstract

iflPfthenixfelselyf

Type The type of the conditional expression if P then x else y is the common type of the expres-
sions x and y when the predicate P is well-typed:

[if P then x else y f = {P }T < ([x]r n [y f)

Note: The expression if P then x else y is well-typed if and only if the predicate P is
well-typed and the expressions x and y are both well-typed with the same type.

Value The value of the conditional expression if P then x else y is the value of the expression x
when the predicate P is true, otherwise it is the value of the expression y:

[if P then x else yf = ({P }M < I * f) U (fPf < [y F)

Note: The expression if P then x else y is value-defined if and only if the predicate P
is true and the expression x is value-defined or the predicate ->P is true and the expression
y is value-defined.

_0 Z Notation Version 1.1 30th June 1995

7.20 Substitution

7.20 Substitution

The expression 60a; denotes an expression equal to x in the environment enriched by the binding b.

Abstract syntax An expression substitution is constructed from a binding and an expression.

EXPSUBSTITUTION = EXP o EXP

Concrete form

Expression SUBST Expression

Sample representation and transformation

Representation Abstract

box ibfolxf

Type The type of the substitution box is the type of the expression x in the type-environment
enriched by the binding b.

lbox}T = (1, [b }T ; schemaT-1) ; © ; [x }T

Note: The substitution box is well-typed if and only if b has schema-type and the expression
x is well-typed in the type-environment enriched by the binding b.

Value The value of the substitution 60a: is the value of the expression x in the environment enriched
by the binding b.

IboxY = <i,|[6r;o>;©;[*r

Note: The substitution box is value-defined if and only if b is value-defined and the expres-
sion x is value-defined in the environment enriched by the binding b.

Z Notation Version 1.1 30th June 1995 63

7 EXPRESSION

Editor's note: Revised versions of the following subsections have been included in Annex F, The logical

theory of Z.

Free variables

Substitution

D

64
Z Notation Version 1.1 30th June 1995

8 Predicate

Notes on this section of the Z Standard

Section title: Predicate
Section editor: this version, edited by JEN
Original text by: Stephen Brien
Contributions by: Stephen Brien, ... (others to be added)
Source file: pred.tex
Notes: Updated for new syntax
Most recent update: 29th June 1995
Formatted: 3rd July 1995

8.1 Introduction

A Predicate is the general form for expressing properties of the environment,
relationships between the values of the variables in the environment.

In the abstract syntax below the different kinds of predicate are listed.

These properties are

Abstract syntax

PRED = EQUALITY
MEMBERSHIP
TRUTH
FALSEHOOD
NEGATION
DISJUNCTION
CONJUNCTION
IMPLICATION
EQUIVALENCE
UNIVERSALQUANT
EXISTSQUANT
UNIQUEQUANT
SPRED
PREDSUBSTITUTION

Equality
Set Membership
Truth Literal
False Literal
Negation
Disjunction
Conjunction
Implication
Equivalence
Universal Quantification
Existential Quantification
Unique Existential Quantification
Schema Predicate
Substitution

Strategy for definition

The description of the meaning of a predicate is split into two parts. The first part gives rules for
determining whether it is well-typed or not. The second determines whether the predicate is ZF-true

in the environment.

A predicate is ZF-true in an environment if the values of the sub-expressions in the predicate are such

Z Notation Version 1.1 30th June 1995 65

8 PREDICATE

that the predicate is true in that environment, without necessarily considering whether the predicate is

well-typed.

8.1.1 Type

Since in the abstract syntax we already know that a certain construct is a predicate, when considering
the type of a predicate the only matter of concern is whether it is well-typed. For this reason we
represent the type function of a predicate as the set of type-environments in which it is well-typed.

{[PRED]}r : VTenv

Note: The predicate x = y is meaningless if the expressions x and y are not of the same
type. There is no meaningful way of comparing them.

Note: A predicate that is not well-typed in any environment has a type function that

evaluates to the empty set.

8.1.2 Value

The value function maps a predicate to the set of environments in which it is ZF-true:

{PREDJV : FEnv

Note- The predicate -.(a: G x) is ZF-true in all environments. This is so because, within the
semantic universe, the axiom of regularity ensures that x G x is false and hence -,(* G x)
is true. On the other hand, in Z, the type-system ensures that x G x is not well-typed so
therefore ->(x G x) is not well-typed.

8.1.3 Meaning

The environments in which a predicate is true are exactly those environments in which the predicate is

well-typed and is ZF-true.

flPRED]}" : FEnv

{[PRED }M == ^T^HPRED }T n {[PRED }v

Note- As indicated in the note above, the predicate -,{x G x) is ZF-true but not well-typed,
hence it is not true in any environment. The meaning of the predicate is the empty set:

{x e x }M = 0.

Z Notation Version 1.1 30th June 1995
66

8.2 Equality

8.2 Equality

Two expressions are equal if and only if they have the same value and type.

Abstract syntax An equality is constructed from two expressions.

EQUALITY = EXP = EXP

Concrete form

Expression EQUALS Expression

Note: This form is derived from Relation and Inf ixRel

Sample representation and transformation

Representation Abstract

I* = yf M£=bf

Type An equality x = y is well-typed in those environments in which the expressions x and y have
the same type.

{x = y }T = dom([xjT nlyf)

Value An equality x — y is ZF-true in those environments in which the expressions x and y have the
same values.

{x = y f = dom([x]v n | y f)

Z Notation Version 1.1 30th June 1995 67

8 PREDICATE

8.3 Membership

The predicate x € y is true if and only if the expression x is a member of the set denoted by the

expression y.

Abstract syntax A membership predicate is constructed from two expressions.

MEMBERSHIP = EXP € EXP

Concrete form

Expression MEMBER Expression

Note: This form is derived from Relation and Inf ixRel

Sample representation and transformation There are three ways in which the membership pred-
icate can be written: using the membership sign, using an infix relation and using a prefix relation.

Representation Abstract

x e y

xpy

p X

[*]*€ bf
l(x,y)}£e l(-p-)f
{xfe l(P-)f

Note: The infix relation predicate xpy is true if the expression x is related to the expression
y by the relation (_/9_), i.e. if the tuple (x, y) is a member of the relation (_p_).

Note: The prefix relation predicate px is true if (p_) is true for x, i.e. if x is a member of

the set (p_).

Type A predicate xgyis well-typed if and only if the type of the expression y is the power set type

of that of the expression x.

{xey}T = dom(I x Ir ? powerT n [y jT)

Value A predicate x € y is ZF-true in exactly those environments in which the value of the expression
x is a member of the value of the expression y.

{x€yY = dom(I x F n I y f p)

68
Z Notation Version 1.1 30th June 1995

8.4 Truth literal

8.4 Truth literal

The truth literal true represents the predicate that is always true.

Abstract syntax

TRUTH = true

Concrete form

TRUE

Sample representation and transformation

Representation Abstract

true true

Type The truth literal true is well-typed in all type-environments.

{true}T = Tenv

Value The truth literal true is ZF-true in all environments.

{true }v = Env

Z Notation Version 1.1 30th June 1995 69

8 PREDICATE

8.5 False literal

The false literal false represents the predicate that is never true.

Abstract syntax

FALSEHOOD = false

Concrete form

FALSE

Sample representation and transformation

Representation Abstract

false false

Type The false literal false is well-typed in all type-environments.

{falseY = Tenv

Value The false literal false is not ZF-true in any environment.

lfalse}v = 0

70
Z Notation Version 1.1 30th June 1995

8.6 Negation

8.6 Negation

The negation ->P is true if and only if the predicate P is not.

Abstract syntax A negation is constructed from a predicate.

NEGATION = -i PRED

Concrete form

NOT Predicate

Sample representation and transformation

Representation Abstract

^P w
Type The negation -\P is well-typed exactly when the predicate P is well-typed.

Value The negation ->P is ZF-true in those environments in which the predicate P is not ZF-true.

{-, P Y = Env \ {P Y

Z Notation Version 1.1 30th June 1995 71

8 PREDICATE

8.7 Disjunction

The disjunction PVQis true if and only if at least one of the predicates P and Q is true.

Abstract syntax A disjunction is constructed from two predicates.

DISJUNCTION = PRED V PRED

Concrete form

Predicate DISJ Predicate

Editor's note: This production seems to have been omitted in the Concrete Syntax document. JEN

Sample representation and transformation

Representation Abstract

PVQ IPfvlQf

Type The disjunction PVQis well-typed in exactly those type-environments in which both predi-
cates P and Q are well-typed.

{PVQ}T = |P}Tn {Q V

Value The disjunction P V Q is ZF-true in exactly those environments in which one or both of the

predicates P , Q are ZF-true.

fFVQf = {PfulQf

72
Z Notation Version 1.1 30th June 1995

8.8 Conjunction

8.8 Conjunction

The conjunction P A Q is true if both the predicates P and Q are true.

Abstract syntax A conjunction is constructed from two predicates.

CONJUNCTION = PRED A PRED

Concrete form

Predicate CONJ Predicate

Sample representation and transformation There are three ways of constructing a conjunction:
by a simple conjunction, by a compound relation, and by separating two or more predicates.

Representation Abstract

PA Q

X\ p\ X2 P2 ■■■Pn-1 Xn

Pi Sep...SepP„

[xi pi abfAlx2 P2 ■■■Pn-l xnf

[PlfA...A[PBf

Note: In predicates Sep is a conjunction; such a conjunction has the lowest possible
precedence and is equivalent to parenthesising the separate predicates and conjoining them.

Note: Generic emtyset problem.

Editor's note: Review this section!

Type The conjunction P A Q is well-typed in exactly those type-environments in which both the
predicates P and Q are well-typed.

IPAQV = {P}T n {Q}r

Value The conjunction of two predicates P A Q is ZF-true in exactly those environments in which
both the predicates P and Q are ZF-true.

{PAQV = fPfn {Q F

Z Notation Version 1.1 30th June 1995 73

8 PREDICATE

8.9 Implication

The implication P => Q is true if and only if the predicate P is false or the predicate Q is true.

Abstract syntax An implication is constructed from two predicates.

IMPLICATION = PRED => PRED

Concrete form

Predicate IMPLIES Predicate

Sample representation and transformation

Representation Abstract

P=>Q {Pf=>lQf

Type The implication P => Q is well-typed in exactly those type-environments in which both the
predicates P and Q are well-typed.

{P^QY = {PV n {QY

Value The implication P => Q is true in exactly those environments in which the predicate P is not
ZF-true or the predicate Q is ZF-true.

{P^QV = (Env \ {P }v) U {Q V

74 Z Notation Version 1.1 30th June 1995

8.10 Equivalence

8.10 Equivalence

An equivalence P -O- Q is true if and only if both predicates P and Q are true or neither is true.

Abstract syntax An equivalence is constructed from two predicates.

EQUIVALENCE = PRED O . PRED

Concrete form

Predicate IFF Predicate

Sample representation and transformation

Representation Abstract

P&Q {Pf^lQf

Type The equivalence P •«> Q is well-typed in exactly those type-environments in which both the
predicates P and Q are well-typed.

{P^Q}T = |Pf n IQf

Value The equivalence P -<=>■ Q is ZF-true in exactly those environments in which the predicates P
and Q are both ZF-true or neither are ZF-true.

{P&QV = {py ® {Qy

Z Notation Version 1.1 30th June 1995 75

8 PREDICATE

8.11 Universal quantification

The universally quantified predicate V St • P is true if the predicate P is true for all possible combi-
nations of values of the components of the schema text St.

Abstract syntax A universal quantification is constructed from a schema text and a predicate.

UNIVERSALQUANT = VSCHEMA • PRED

Concrete form

FORALL TextOrExpression DOT Predicate

Sample representation and transformation

Representation Abstract

VSf • P VlStfT.{Pf

Type A universal quantification V St • P is well-typed in a type-environment if and only if the
predicate P is well-typed in that type-environment enriched by the schema text St.

{VSt»P}T = dom((St)T > {P }T)

Meaning A universal quantification V St • P is ZF-true in an environment if and only if the predicate
P is ZF-true in all enrichments of that environment by the schema text St.

{vsfpy = *({st)M){py

Note: This semantic definition rests on the properties of de Morgan's Laws.

76 Z Notation Version 1.1 30th June 1995

8.12 Existential quantification

8.12 Existential quantification

The existentially quantified predicate 3 St • P is true if the predicate P is true for at least one possible
combination of values of the components of the schema text St.

Abstract syntax An existential quantification is constructed from a schema text and a predicate.

EXISTSQUANT = 3 SCHEMA • PRED

Concrete form

EXISTS TextOrExpression DOT Predicate

Sample representation and transformation

Representation Abstract

3St*P 3{Stfr.iPf

Type An existential quantification 3 St • P is well-typed in a type-environment if and only if the
predicate P is well-typed in that type-environment enriched by the schema text St.

{3St»P}T = dom((St }T > {P }T)

Value An existential quantification 3 St • P is ZF-true in an environment if and only if the predicate
P is ZF-true in at least one enrichment of that environment by the schema text St.

{BStmPy = dom((St }M > {P }v)

Z Notation Version 1.1 30th June 1995 77

8 PREDICATE

8.13 Unique existential quantification

The unique existentially quantified predicate 31St»P is true if the predicate P is true for exactly one
possible combination of values of the components of the schema text St.

Abstract syntax A unique existential quantification is constructed from a schema text and a predi-
cate.

UNIQUEQUANT = 3X SCHEMA • PRED

Concrete form

EXISTS1 TextOrExpression DOT Predicate

Sample representation and transformation

Representation Abstract

3l St • P 3jStfT.lPf

Type A unique existential quantification 3X St • P is well-typed in a type-environment if and only
if the predicate P is well-typed in that type-environment enriched by the schema text St.

{31St»P}r = dom({St }T > {P }T)

Value A unique existential quantification 31 St • P is ZF-true in an environment if and only if the
predicate P is ZF-true in exactly one enrichment of that environment by the schema text St.

^st.pr = dom(A((str>{[p]}v)?{-r1)

78 Z Notation Version 1.1 30th June 1995

8.14 Schema predicate

8.14 Schema predicate

A schema predicate S is true if and only if the values of the components of the schema S are contained
in the environment and their values satisfy the property of the schema.

Abstract syntax A schema predicate is constructed from a schema.

SPRED = SCHEMA

Concrete form

?? — to be defined

Sample representation and transformation

Representation Abstract

S isf

Type A schema predicate S is well-typed in a type-environment if and only if the schema S is well-
typed and the signature of S is contained in the environment.

{S }T = dom((SfnD)

Value A schema predicate S is ZF-true in an environment if and only if the environment contains a
situation of the schema S.

{S }v = dom((SfflD)

Z Notation Version 1.1 30th June 1995 79

8 PREDICATE

8.15 Substitution

The predicate beP is true if and only if the predicate P is true in the environment enriched by the
binding b.

Abstract syntax A substitution instance is constructed from an expression and a predicate.

PREDSUBSTITUTION = EXPoPRED

Concrete form

Expression SUBST Predicate

Sample representation and transformation

Representation Abstract

beP IbfelPf

Type A predicate beP is well-typed in an type-environment if and only if b is well-typed with a
schema type and the predicate P is well typed in.the environment enriched by the binding.

{beP}T = dom((l, I b f j schemaT'1) ; (0) > {P }T)

Value The predicate boP is ZF-true in exactly those environments in which the binding 6 is value-
defined and, when enriched by b make the predicate P ZF-true.

{bopy = dom((l,[o]r;0>;(©)i>iP]}v)

80 Z Notation Version 1.1 30th June 1995

8.15 Substitution

Editor's note: Revised versions of the following subsections have been included in Annex F The logical
theory of Z.

Free variables

Substitution

D

Z Notation Version 1.1 30th June 1995 81

9 Schema

Notes on this section of the Z Standard

Section title: Schema
Source file: sch.tex
Section editor: this version edited by John Nicholls (pro tern)
Original text by: Stephen Brien
Contributions by: Stephen Brien, ... (to be added)
Most recent update: 29th June 1995
Formatted: 3rd July 1995

9.1 Introduction

Editor's note: The following note is taken from the proposal by Rob Arthan (dated 27th June 1992) to
allow schemas to be regarded as expressions.

A schema is an expression whose value is a set of bindings.

A schema can be used in the following ways:

as a declaration

as a predicate

as an operand of certain operators which construct schemas from other schemas.

82 Z Notation Version 1.1 30th June 1995

9.1 Introduction

Abstract syntax

SCHEMA SDECL
SCONSTRUCTION
SNEGATION
SDISJUNCTION
SCONJUNCTION
SIMPLICATION
SEQUIVALENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCOMPOSITION
SDECORATION
SSUBSTITUTION
EXPSCHEMA

Strategy for definition

When making Schemas, the problem is not so much whether it is well defined (although a schema may
fail to be defined). The problem is more to record the possible meanings of the declared names. The
definition is built up in two stages. The type function defines the signature of a schema. The meaning
relation relates the environment to those possible situations defined by the schema.

A schema can be also used to introduce new variables to the environment, A type and meaning enrich-
ment function is given for this purpose.

9.1.1 Type function

For any schema S its type function is a recursively defined partial function from type-environments to
signatures which record the types of the elements denoted by the variables introduced:

{ S])r : Tenv -+-» Signature

The schema S is well-typed in exactly those type-environments contained in dom { S])r. The signature
of a schema in a type-environment is the result of applying its type function to that type-environment.

For any schema S its type enrichment function is a partial function from a type-environment to a new
one in which the names of the constituent schema are known:

{sy Tenv -H- Tenv

{sy = <i,(sjr>;

Z Notation Version 1.1 30th June 1995 83

9 SCHEMA

9.1.2 Meaning relation

A schema introduces names to the environment which can assume certain values. These values are not
fixed. We can consider the meaning of a schema as a set of situations, each one recording one set of
values for the new names. However, it is more convenient to consider the meaning of a schema as a
relation between environments and situations. For any schema S, its meaning relation is a relation
from environments to situations:

{ S }M : Env <—> Situation

The meaning of a schema in an environment is any one of the situations related to that environment
by the meaning function. The meaning of a schema is partial because some Schemas may fail - for
example n : s where s is undefined, or if s is an empty set. A schema S is well-defined in exactly those
environments contained in dorn (S]) .

The meaning enrichment is represented as a relation between environments, for the same reason as the
meaning of a schema as represented by a relation.

{S)M : Env <-> Env

(s }M = (i,{s }M); ©

04 Z Notation Version 1.1 30th June 1995

9.2 Schema designator

9.2 Schema designator

A schema designator is a schema name used to refer to schema. It may also contain a list of generic
paramaters which instantiate a generically defined schema.

Note: Since schema names have global scope there cannot be any overlap between the base
names of variables and schema names in a specification.

Abstract syntax A schema designator is constructed from a schema name.

SDES = WORD

Concrete form

Nofix

Sample representation and transformation

Representation Abstract

S S

Type The signature of a schema reference is the signature of the type of the reference in the type-
environment.

{ S])r = (1 • 5°) ? powerT'1 ; schemaT'1

Note: A schema reference is well-typed only if it is in the domain of the type-environment.

Meaning The meaning of a schema reference is the relation constructed from the meaning of the
reference in the environment.

{S}M = (1.5°)p

Note: A schema reference is well-defined only if it is in the domain of the environment.

Z Notation Version 1.1 30th June 1995 85

9 SCHEMA

9.3 Generic schema designator

A generic schema designator S [as1}..., xn] is reference to a generically defined schema S instantiated
by the set paramaters [cc15..., xn].

Abstract syntax A generic schema designator is constructed from a schema name and a list of
expressions.

SGENDES = WORD [EXP,..., EXP]

Concrete form

NAME SQBRA ExpressionListl SQKET

Sample representation and transformation

Representation Abstract

^[xi xn] s[[xd£,...,Me]

Type

{S[x1,...,xn])T = ((l*S°)*(x1,...,xn))°,powerT-1°,schemaT-1

Meaning

{S[Xl,...,xn]}M = {{l»S°)»(xl,...,xn))',3

Note: Generically defined Schemas must be instantiated.

86 Z Notation Version 1.1 30th June 1995

9.4 Simple schema

9.4 Simple schema

A simple schema n1?... nm : s introduces variables named n15... nm whose values are drawn from
the set s.

Abstract syntax A simple schema is constructed from a list of names and an expression.

SDECL = NAME, NAME,..., NAME: EXP

Concrete form

NameListl COLON Expression

Sample representation and transformation

Representation Abstract

ni,ri2,...,nm : s Tl^Tla,.. . ,Tlfc : \s\

Type The type of the simple schema n1,...nm : s is the signature constructed from the names
n15... nm and the underlying type of the set expression s.

(nl,...,nm:*])r = [s f | ({n.^powerT-1},..., (n^powerT-1)) ; {...}

Note: The simple schema n15... nm : s is well-typed if and only if the expression s has
power set type.

Meaning The meaning of the simple schema n1,... nm : s is a relation from the environment to those
situations which associate each of the names n15... nm with one of the elements of the set expression
s:

{n1,...nm:s}M = [sf ;K,3),...,(nm°,3));{...}

Note: The simple schema n1?... nm : s is well-defined if and only if the expression s is a
non-empty set.

Note: Suppose G is defined to be a given set. The type system defines the type of G
to be powerT(givenTN). In this way a schema such as x : G defines the type of x to be
givenT(G), as required.

Z Notation Version 1.1 30th June 1995 87

9 SCHEMA

9.5 Schema construction

A schema construction S \ P is a schema whose signature is that of the schema S and whose components
satisfy the constraint of the schema S and the predicate P.

Abstract syntax A schema construction is composed from a schema and a predicate.

SCONSTRUCTION = SCHEMA | PRED

Concrete form

DeclPart [VBAR Predicate]

SQBRA Text SQKET

Sample representation and transformation

Representation Abstract

D\P

[D\P]

[D]

IDfllPf
(IDfllPf)
<[2>f|true>

Type The signature of (D \ P) is the same as that of the schema D.

{S\P)Y = |Sfn({D|P)rQ)

Meaning The value of the schema expression constructed from (£> | P) is a set of bindings. The
bindings are constructed in all enrichments of the environment by D which satisfy P:

{(D\P))M = (D}Mn({D\P}M°,D)

This is defined only in those environments in which the schema D is defined and when enriched by it
result in the predicate P being well-typed.

88 Z Notation Version 1.1 30th June 1995

9.6 Schema negation

9.6 Schema negation

A schema negation -iS is a schema which contains all the bindings of the same signature as those of
the schema S but which are not contained in S.

Abstract syntax A schema negation is composed of a schema

SNEGATION = -.SCHEMA

Concrete form

NOT Expression

Sample representation and transformation

Representation Abstract

-.5 -*s\8

Type The signature of a negated schema -iS is the same signature as that of the schema S:

hS}T = {S}r

Meaning The bindings of a negated schema —iS are those bindings which have the same signature as
S but are not bindings of S:

{^S} M IsfT\fs} M

Note: This is simpler than in (Spivey, 1988), where this complement had to be combined
with the global part of the environment. This was necessary in the original semantics,
because the meaning of a schema involved not only the components of the schema, but also
the global variables to which the schema might refer.

Z Notation Version 1.1 30th June 1995 89

9 SCHEMA

9.7 Schema disjunction

The schema disjunction Sx V S2 is a schema whose signature is the join of the signatures of the two
Schemas Sx and S2 and whose property is the disjunction of the two Schemas' properties.

Abstract syntax A schema disjunction is composed of two schemas.

SDISJUNCTION = SCHEMA V SCHEMA

Concrete form

Expression OR Expression

Sample representation and transformation

Representation Abstract

Si V52 MM«,]5

Type The signature of a schema disjuinction St V S2 is the join of the two schemas 5X and S2 :

{S1VS2}
r = {(-MM^DJU

Note: The schema disjunction St V S2 is well-typed only if the signature of the two
schemas Sx and S2 are type compatible.

Meaning The bindings of a disjoined schema are all those with its signature which are extensions of
bindings in one or other of the operand schemas:

c^vs.r = ««Sirr.c^nu<«Sir,csar
r»;u

90 Z Notation Version 1.1 30th June 1995

9.8 Schema conjunction

9.8 Schema conjunction

Abstract syntax A schema conjunction is composed of two Schemas

SCONJUNCTION = SCHEMA A SCHEMA

Concrete form

DeclElem SEMICOLON DeclElem {SEMICOLON DeclElem}

Expression AND Expression

Sample representation and transformation

Representation Abstract

DV,D2; ...;£>„

Si A 52

Pif;p2f;...;P„f
lSifA{S2f

Variables may be introduced in local Schemas more than once, provided that they have the same type.
Repeated Schemas do not add anything to the signature; however the constraint of the repeated schema
is conjoined with the constraints of all the other Schemas.

Type The signature of a schema conjunction S± A S2 is the join of the two Schemas St and S2:

(SiAS,f = ((S1}
r,(S2}

T)',li

Note: The schema conjunction S± A S2 is well-typed only if the two Schemas Sx and S2

are well-typed and their signatures are type compatible.

Meaning The bindings of a conjoined schema are all those with its signature which are extensions of
bindings in both of the operand Schemas:

{S1ASa^
M = ((S1}

M,(S2])M}°,U

Note: Spivey (1988) has already remarked on the similarity with the semantics of the
parallel composition operator in the traces model of CSR

Note: Duplicated Schemas are significant in the evaluation of the characteristic tuple. The
representative term can be a list of terms which form part of the top level tuple.

Z Notation Version 1.1 30th June 1995 91

9 SCHEMA

9.9 Schema implication

Abstract syntax A schema implication is composed of two Schemas.

SIMPLICATION = SCHEMA =>- SCHEMA

Concrete form

Expression IMPLIES Expression

Representation Abstract

Si=>S2 [5i]5=Hfc]5

Type The signature of a schema implication Sx =£- S2 is the join of the two Schemas S± and S2 :

Note: The schema implication St =>• S2 is well-typed only if the two Schemas S± and 52

are well-typed and their signatures are type compatible.

Meaning The meaning of the schema implication St =>■ S2 is the same as the meaning of the schema
disjunction -iS± V S2:

{S1^S2}
M = {n^V^I M

92 Z Notation Version 1.1 30th June 1995

9.10 Schema equivalence

9.10 Schema equivalence

Abstract syntax A schema equivalence is composed of two Schemas.

SEQUIVALENCE = SCHEMA <£► SCHEMA

Concrete form

Expression IFF Expression

Sample representation and transformation

Representation Abstract

Si & S2 rsifo[s2j
5

Type The signature of a schema equivalence Sj -£>• S2 is the join of the two Schemas Sx and S2

Note: The schema equivalence Sx •£>■ S2 is well-typed only if the two Schemas St and S2

are well-typed and their signatures are type compatible.

Meaning The bindings axe all those with this signature which are extensions of bindings in neither
or both of the operand schema expressions:

S1 <£► 52]T = (Sx => S2 A S2 =► St } M

Z Notation Version 1.1 30th June 1995 93

9 SCHEMA

9.11 Schema projection

The schema projection operator (\) hides all the components of its first argument except those which
are also components of its second argument.

Abstract syntax A schema projection is composed of two schemas.

SPROJECTION = SCHEMA Proj SCHEMA

Concrete form

Expression PROJECTION Expression

Sample representation and transformation

Representation Abstract

S r T iS]8\{Tf

Type The signature of a projection St \ S2 includes those names in both the domains of the signatures
of Sj and S2. The type given to each such name is taken from Sx. Note that if names are given types
by both ■*>! and S2 those types must be the same (that is, the signatures must be consistent):

{S, \s2}
T = ({s1}

T,{Sa}
T)',n

Meaning The value of the projection Sx \ S2 is the set of bindings which satisfy S^, restricted to the
alphabet of S2:

(s, r s2 D M <(Si ru sa r
r> 5 n

Note: Spivey (1988) gives two forms of projection operator used in a schema expression
such as S± T S2. The weak operator hides those components of Sx which are not in the
signature of S2. The strong form requires the components to satisfy the axioms of S2 as
well. We give the semantics for the weak operator.

94 Z Notation Version 1.1 30th June 1995

9.12 Schema hiding

9.12 Schema hiding

The hiding operator (\) takes a schema expression as its first operand and an identifier list as its
second operand. The result is a schema expression whose components are those of the operand schema
excluding those named in the list.

Abstract syntax A hidden schema is composed of a schema and a list of names.

SHIDING = SCHEMA \ [NAME,..., NAME]

Concrete form

Expression HIDING BRA NameListl KET

Sample representation and transformation

Representation Abstract

S \ (ni,n2,...,nm) {S}s\ < ni,n2,...,nm >

Type The signature of a schema hiding expression is the signature of S with the names from (nx,,
removed. Note that (n1,..., nm) may contain names not in the signature of se:

{S\(n1,...,nm)}T = (5JT?({n1,...,nmH)

iTOr

Meaning The value of the schema S in which the components (n15

set of bindings which satisfy S, with those components removed:
, nm) have been hidden is the

Note: If all the variables are hidden the result is a schema with an empty signature.

Z Notation Version 1.1 30th June 1995 95

9 SCHEMA

9.13 Schema universal quantification

Abstract syntax A schema quantification is constructed from a schema text and a schema.

SUNIVQUANT = VSCHEMA • SCHEMA

Concrete form

EXISTS TextOrExpression DOT Expression

Sample representation and transformation

Representation Abstract

\tst*s V{StfT*lSf

Type The signature of a universally quantified schema expression V St • S is the signature of S with
the names from the signature of St removed:

(VSfS])T = ((S])T,{{St)}T)^

Note: The signature is well-typed only when St and S is are well-typed and their signatures
are compatible.

Meaning The value of a universally quantified schema expression V St • S is the set of bindings with
the defined signature such that, for all bindings of St, the union of the two bindings is an extension of
S:

{VSt*S])M = (-.3 5t«--S \M

Note:' Note that this definition takes advantage of de Morgan's Law.

96 Z Notation Version 1.1 30th June 1995

9.14 Schema existential quantification

9.14 Schema existential quantification

Abstract syntax A schema quantification is composed of a schema text and a schema.

SEXISTSQUANT = 3 SCHEMA • SCHEMA

Concrete form

EXISTS TextOrExpression DOT Expression

Sample representation and transformation

Representation Abstract

3St*S 3lStfT.iSf

Type The signature of an existentially quantified schema expression 3 St • S is the signature of S
with the names from the signature of St removed:

{isfsy = ({sy,((st)V)^

Note: The signature is well-typed only when St and S is are well-typed and their signatures
are compatible.

Meaning The value of an existentially quantified schema expression 3 St • S is the set of bindings
with signature of S less St, such that there is a binding of St so that the union of the two bindings is
an extension of S:

3 St • S \M ((S])M,{(St)}MV

Note: This definition should be contrasted with the analogous expression for predicates
(3 St • p) where the well-typing of the predicate is decided in the modified environment.

Z Notation Version 1.1 30th June 1995 97

9 SCHEMA

9.15 Schema unique existential quantification

Abstract syntax A schema quantification is composed of a schema text and a schema.

SUNIQUEQUANT = 31 SCHEMA • SCHEMA

Concrete form

EXISTS1 TextOrExpression DOT Expression

Sample representation and transformation

Representation Abstract

3X St • S 3dStfT.{Sf

Type

(B.StmSy = ({S)T,l<St)y);<-

Note: The signature is well-typed only when St and S is are well-typed and their signatures
are compatible.

Meaning The value of an existentially quantified schema expression 31 St • S is the set of bindings
with signature of S less St, such that there exists a unique binding of St so that the union of the two
bindings is an extension of S:

{ 3t St • S D M To be defined

98 Z Notation Version 1.1 30th June 1995

9.16 Schema renaming

9.16 Schema renaming

The renaming operation S[new/old] substitutes the new variable name for the old in the schema.

Abstract syntax A schema renaming consists of a schema and a renaming list.

SRENAMING = SCHEMA [NAME/NAME,..., NAME/NAME]

Concrete form

Expression SQBRA RenameList SQKET

Sample representation and transformation

Representation Abstract

S[xi/yi,x2/y2,-.-xn/yn} IS] < x1/y1,x2/y2,...xn/yn >

Type Schema renaming changes the names of the elements in the bindings, and hence the signature.

(S[iV7]])r = (S Y ; 3({ Nl)M <g> 1)

Meaning

(S[Nl]])M = (S }M 5 3((Nl)" ® 1)

Note: When more than one variable is to be substituted, the substitution is simultaneous.
Any substitutions for non-existent names are ignored. Each old name can only be substituted
by one new name. Likewise, each new name can be a substitute for only one old name.

Z Notation Version 1.1 30th June 1995 99

9 SCHEMA

9.17 Substituted schema

The meaning of the substituted schema beS is the same as the meaning of the schema S in the
environment enriched by the binding b.

Abstract syntax A substituted schema is composed of an expression and a schema.

SSUBSTITUTION = EXP © SCHEMA

Concrete form

Expression,'©' ,Schema

Sample representation and transformation

Production Representation Abstract

beS

boSt

beD

lbfeiStfT

IbfelDf

Type The signature of the substituted schema beS is the signature of the schema S in the type-
environment enriched by the binding b.

(beS}T = (1, [b]r ; schemaT-1) ? © ? (S }r

A substituted schema is well-typed if and only if the binding is well-typed and the schema is well-typed
in the enriched environment.

Meaning The situations of the substituted schema 60S are the situations of the schema S in the
environment enriched by the binding b.

(beS}M = (i,[br;U);©;{5r

100 Z Notation Version 1.1 30th June 1995

9.17 Substituted schema

Editor's note: Revised versions of the following subsections have been included in Annex F, The logical
theory of Z.

Free variables

Substitution

Z Notation Version 1.1 30th June 1995 101

10 Paragraph

Notes on this section of the Z Standard

Section title: Paragraph
Section editor: Peter Lupton (this version edited by JEN)
Original text by: Stephen Brien
Contributions by: Stephen Brien, ... (others to be added)
Source file: par.tex
Most recent update: 21st June 1995
Formatted: 3rd July 1995

Editor's note: This is a revision of the Paragraph section, incorporating the proposed new Concrete
Syntax in a provisional form. The section will be updated and revised by Peter Lupton.

10.1 Introduction

Each paragraph of Z can do two things: Augment the environment by a declaration and strengthen the
property by a predicate. Each paragraph is considered as a relation between environments. The domain
of this relation contains all the environments in which the paragraph is well-typed and any predicates
contained within it are true. These environments are related to those which include the new variables
declared in their signature and which satisfy any property denoted by the paragraph.

(PAR y Tenv -+» Tenv

(PAR)" : Env<^Env

We can prove the following

h (Par }M°,T C T ; {Par }T

Abstract Syntax

PAR = GIVENSETDEF
GLOBALPRED
GLOBALSCHEMA
GENERICSCHEMA
GLOBALDEF
GENERICDEF
CONJECTURE

102 Z Notation Version 1.1 30th June 1995

10.2 Given sets

10.2 Given sets

The given set definition [Xu X2,..., Xn] introduces the sets Xx, X2,..., Xn without determining
their elements.

Note: Distinctly named given sets have distinct types and hence are incomparable.

Abstract syntax

GIVENSETDEF = given [NAME, NAME,..., NAME]

Concrete form

SQBRA NameListl SQKET

Sample representation and transformation

Representation Abstract

[Xi,X2,...,Xn] given (X11...1Xn)

Type The declaration of given sets given[X\,...,Xn] causes the type environment to be suitably
enriched. Each name is given the power set type of the given type of that name. These declarations
over-ride the environment.

Note that a given set definition of N results in N having the type powerT givenT W

{gWen(X1,...,Xn)}
T = {l,({Xli...,Xn}< givenT; powerT)0) ;©

Meaning To enrich the meaning environment, we construct a binding of the given set names (those
in rans) to typed values in the world of sets - for this to be correct, the bindings must be such that
the given sets do indeed have power set type. The environment is updated with this binding.

(given(X15..., Xn) }M = (1, ({X1,..., Xn} < givenT ; (powerT, Carrier))0) ; ©

Z Notation Version 1.1 30th June 1995 103

10 PARAGRAPH

10.3 Constraint

A constraint is a predicate appearing on its own as a paragraph. It denotes a property of the values of
variables declared elsewhere with global scope. This property is conjoined to the global property.

Abstract syntax

GLOBALPRED = where PRED

Concrete form

Predicate

Sample representation and transformation

Representation Abstract

P whereof

Type A constraint adds nothing to the environment, so it is that subset of the identity relation
restricted to the environments in which the predicate is true.

For the type environment:

{P)T = \Py

Meaning For meaning environment:

(P) M
1{P}

M

104 Z Notation Version 1.1 30th June 1995

10.4 Global declaration

10.4 Global declaration

An axiomatic definition introduces variables and specifies further properties of the elements denoted by
them.

Abstract syntax

GLOBALSCHEMA = def SCHEMA

Concrete form

AX [DeclPart I Expression] [ST Predicate] END

'AX' ,DeclPart, 'END'

Sample representation and transformation

Representation Abstract

'AX' D 'ST' P'END'

'AX' D 'END'

defpf \{Pf

def[Z>f | true

The abstract form of an axiomatic definition is a pair of paragraphs, one containing a declaration and
the other a predicate. If the Axiom Part is omitted the the abstract form is one declaration paragraph.

Type When new variables are declared the environment is enriched by a function from their names
to one from their empty generic parameter list to their meaning. We give as its value a set of bindings,
one for each name declared. In obtaining the binding, we enrich the environment with the declaration
in such a way that the constraint is satisfied. The names in the declaration are bound to their values
in this enriched environment. Formally:

(defZ> \P}' (D\py

Meaning

(defD \P)M = {D\P)M

Note: The sets from which the elements denoted by the variables can be drawn are defined
by the conjunction of the constraint of the DeclPart and the property in the Axiom Part.

The signature of the DeclPart is joined to the global signature. The constraint in the
DeclPart and the property of the Axiom Part are conjoined to the global property.

Z Notation Version 1.1 30th June 1995 105

10 PARAGRAPH

10.5 Generic declarations

A generic declaration of variables adds these variables to the dictionary and maps them to a function
from all possible instantiations of their generic parameters to the values of the variables with these
instantiations.

Abstract syntax

GENERICSCHEMA = gendef [NAME, NAME,..., NAME] const SCHEMA

Concrete form

GEN [Formals] BAR [DeclPart I Expression] [ST Predicate] END

'GEN'. Gen Form a Is,'BAR', DeclPart.'END'

Sample representation and transformation

Representation

'GEN' [XUX2, ...,*„]' BAR' D 'ST' P'END'

' GEN' [Xi, X2t ■ ■ ■, Xn]' BAR' D ' END'

Abstract

gendef (X„ X2,..., Xn > ctmstlDf where {Pf

gendef (X1,X2,..., Xn) cons v where true

Type

Value A generic declaration introduces a family of variables, parametrised by the generic parameters
of the list Gen Form a Is.

Note: In a GenericDef, the DeclPart declares the names of the generic variables whose
types can be determined upon instantiation of the formal parameters. The predicate in the
Axiom Part determines the elements denoted by the variables for each value of the formal

parameters.

Recursive generic declarations are not allowed. The generic declaration must not place any
restriction on the generic parameters.

A generic variable has global scope, excluding the declaration list in which it is declared and
any construct in which its name is re-used for a local variable.

The parameters of a generic declaration are local to the declaration, but they can be instan-
tiated by elements of set type when the generic variable is used.

106 Z Notation Version 1.1 30th June 1995

10.5 Generic declarations

A generic declaration does not give a single type: rather, a function from the generic pa-
rameters to types is defined.

Let X and Y be generic formal parameters and consider a generic declaration which declares
x : X; y : Y. Then an expression such as i G y or i = y would impose a mutual constraint
on the types that could be used to instantiate X and Y. For x € y, we have the constraint
that the types that Y may take are the powerset of the types that X may take; for x = y,
we have the constraint that the types that Y may take must be the same as the types that
X may take.

The definition of generic types as total functions imposes the constraint that generic dec-
larations do not create relationships between the type of their formal parameters. Such
relationships can always be eliminated within a specification.

Since all the type constructors are bijections, any relationship between the types of generic
parameters is functional. Therefore any dependent parameters are redundant since they can
be uniquely determined as functions of the other parameters. For instance, for x e y the
relationship can be eliminated by removing Y as a formal generic parameter and defining
y : FX; for x = y we can eliminate Y and define y : X.

Z Notation Version 1.1 30th June 1995 107

10 PARAGRAPH

10.6 Global definitions

Abstract syntax

GLOBALDEF = abbr NAME := EXP

Concrete form

SCH NAME [Formals] IS [DeclPart I Expression] [ST Predicate] END

'SCH' , SchemaName, 'IS' , DeclPart, 'ST', Axiom Part, 'END'

'SCH' , SchemaName, 'IS' ,DeclPart, 'END'

Ident, ' ==' , Expression

Sample representation and transformation

Note: A Global Definition defines a new schema. There are two forms for a schema
definition. The horizontal is the primary form. The vertical form, using a schema box, is
given a meaning in terms of an equivalent horizontal definition.

Representation Abstract

Type When a schema or variable is declared the name is added to the type-environment and is
mapped to the type of the schema or expression.

(abbriV = X)r = (1, (N°, { X f) ?{-})?©

Meaning When a schema or variable is declared the name of the schema is added to the environment
and is mapped to the meaning of the schema or expression.

{*bbTN = x)M = (i,(JV°,lxn ;{-});©

Note:

The horizontal form of the definition defines the schema with name SchemaName as
the schema denoted by the SchemaExpr.

108 Z Notation Version 1.1 30th June 1995

10.6 Global definitions

• The vertical form of the definition defines the schema with name SchemaName as the
schema denoted by the schema expression constructed from the schema text comprising
the horizontal equivalents of the DeclPart and the AxiomPart (see Vertical Form).

A SchemaName may be used to define only one schema within a specification.

A Schema has global scope except within the text of its definition. Recursive schema def-
initions are not allowed. The scope of variables introduced in the DeclPart is local to the
SchemaDef and includes the AxiomPart.

Z Notation Version 1.1 30th June 1995 109

10 PARAGRAPH

10.7 Generic definition

A generic definition of variables adds these variables to the environment and maps them to a function
from all possible instantiations of their generic parameters to the values of the variables with these
instantiations.

Abstract syntax

GENERICDEF = abbr NAME[NAME, NAME,..., NAME] := EXP

Concrete form

NAME [Formals] DEFINE_EQUAL Expression

Sample representation and transformation

Representation Abstract

Type

(abbriV[51,...,Sm] = X) M

{

A«l, ((SS, Ptype* p),..., (Sm°, Ptype° p)> ? {...})) j 3(«[S,]r,...,[Sm]r), [X f))
)?©

Value

Note:

In a Generic Definition, the DeclPart declares the names of the generic variables whose types
can be determined upon instantiation of the formal parameters.

An abbreviation definition can be used to define a possibly generic variable which is named
by an identifier Abbrev.

The variable defined by the expression can take three forms:

110 Z Notation Version 1.1 30th June 1995

10.7 Generic definition

• Possibly Generic Variable Ident.

• Prefix Generic Symbol PreGen.

• Infix Generic Symbol In Gen.

In the latter two cases, the names of the generic parameters, Word indicate the posi-
tions of the actual parameters which can be supplied when the variables are used.
A schema may be defined with generic parameters and when used it must be always
instantiated.

Z Notation Version 1.1 30th June 1995 W\

10 PARAGRAPH

10.8 Conjecture

A new section - text to be added.

Abstract syntax

CONJECTURE = conj SCHEMAf ... fSCHEMA | PRED,..., PRED h PRED,..., PRED

D

112 Z Notation Version 1.1 30th June 1995

11 Specification

Notes on this section of the Z Standard

Section title: Specification
Source file: spc.tex
Section editor:
Original text by: Stephen Brien
Contributions by:
Most recent update: 30th June 1995
Formatted: 3rd July 1995

Editor's note:

This section has not been revised. It will be re-written when the current discussions on semantics, which
affect this section and the section on Paragraph, have been completed.

11.1 Introduction

A specification is constructed from a sequence of paragraphs:

Abstract syntax

SPEC = PAR ,..., PAR

Sample representation and transformation

Production Representation Abstract

[Paragraph] ,
{Narrative, Paragraph},
[Narrative]

Pi Narrative... Narrative Pn [P1]
w4Äand...and[PBf^

Type A specification is well-typed if the empty type environment is in the domain of the typing
relation.

Z Notation Version 1.1 30th June 1995 113

11 SPECIFICATION

Meaning The meaning of a specification is the set of environments which are related to the empty
environment by the paragraphs of the text. These are all the environments which are enrichments of the
empty environment by the specification. A sequence of paragraphs can be composed together. They
denote a relation between environments. This relation is the sequential composition of the relations
denoted by the individual paragraphs.

.zmnPiand... andP„ = A({P1 }M ; ... ; {Pn }M)0

Note A Z specification consists of a sequence of paragraphs separated by paragraph separators. These
paragraph separators may include explanatory text. The global signature and property are constructed
from the meanings of these paragraphs.

A paragraph is either a definition or a constraint.

A definition introduces Basic types, schemas, or variables (named elements, sets tuples or bindings)
together with constraints on them. The effect of a definition is to augment the global signature and to
conjoin its constraint with the global property.

A constraint denotes a property on variables and schemas declared elsewhere. The effect of a constraint
is to conjoin its property with the global property.

A specification is well typed if every term and predicate within the paragraphs is well typed.

D

114 Z Notation Version 1.1 30th June 1995

A Abstract syntax - Normative Annex

Notes on this section of the Z Standard

Section title: Abstract syntax

Note: This version of the Abstract syntax is based on ZSRC Document
z-159v2.tex, with amendments agreed at Meeting 23 of the Z Standards
Panel on 27th September 1994.

Section editor: John Nicholls
Contributions by: (to be added)
Source file: absyn.tex
Most recent update: 29th May 1995 (minor update)
Formatted: 3rd July 1995

A.l Introduction

Basis of definition. The abstract syntax is central to the definition of Z. It stands between the
concrete representations of Z documents - as marks on paper and images on screens - and the abstract
entities, semantic relations and semantic functions used for defining their meaning.

There are many possible ways of constructing an abstract syntax for Z, and the choice of the form
given below is a matter of judgement, taking into account the somewhat conflicting aims of simplicty
and economy of semantic definition, and the maintenance of a clear relationship with the concrete
representation.

The abstract syntax has the following objectives: .

to identify and separately name the distinct categories of the notation.

to simplify and unify the underlying concepts of the notation, putting like things with like, and
reducing unnecessary duplication.

The syntax is presented as a set of production rules, in which each entity is defined in terms of its
constituent parts. For each of the entities defined in the abstract syntax, there is a subsection in the
main part of the Base Standard, defining its representation and meaning.

Z Notation Version 1.1 30th June 1995 115

A ABSTRA CT SYNTAX - NORMATIVE ANNEX

Metalanguage. The definition uses the following notation:

::= definition symbol
| disjunction symbol

Several definitions contain lists of entities, separated by commas or other separating characters. Where
there may be an arbitrary number of entities in such a list, the following notation is used:

ellipsis, denoting a finite (possibly zero) number of occurrences of the preceding entity,
together with appropriate separators

Terminal entities. The terminal entities of the definition are semantic entities, written in uppercase
sans-serif font.

In addition, the syntax definitions contain operators, symbols and keywords similar to those used in the
concrete syntax. These are written in this way to indicate the relationship of each abstract definition
with the concrete form of the notation.

The relationship between the abstract and concrete forms of each entity is indicated in the entity
definitions in the main body of the standard, under the headings "Representation and transformation".

Changes in this version. The following changes have been made to the Abstract Syntax since the
version published in Version 1.0.

Structural changes:

the previously separate entity Schematext has been removed and merged with Schema.

a new rule has been introduced allowing an expression to be written wherever a schema (or what
was previously called schematext) is allowed. Such an expression must be suitably typed; it should
be noted that type information is not expressed in the Abstract Syntax.

the entity Compound Schema has been removed from the Abstract Syntax. The semantics of
Compound Schema is defined in terms of Schema Conjunction.

the entities Schema Designator (SDES) and Generic Schema Designator (SGENDES) have been
removed.

Changes in presentation:

a more uniform convention for naming syntactic entities has been introduced,

the order of presentation has been modified.

12.6 Z Notation Version 1.1 30th June 1995

A. 2 Specification

SPEC = PAR ,..., PAR

A. 2 Specification

A.3 Paragraph

PAR = GIVENSETDEF
GLOBALPRED
GLOBALSCHEMA
GENERICSCHEMA
GLOBALDEF
GENERICDEF
CONJECTURE

GIVENSETDEF

GLOBALPRED

GLOBALSCHEMA

GENERICSCHEMA

GLOBALDEF

GENERICDEF

CONJECTURE

given [NAME, NAME,..., NAME]

where PRED

def SCHEMA

gendef [NAME, NAME,..., NAME] const SCHEMA

abbr NAME := EXP

abbr NAME[NAME, NAME,..., NAME] := EXP

conj SCHEMAt... fSCHEMA | PRED,..., PRED h PRED, ,PRED

Z Notation Version 1.1 30th June 1995 117

A ABSTRACT SYNTAX - NORMATIVE ANNEX

A.4 Schema

SCHEMA = SDECL
SCONSTRUCTION
SNEGATION
SDISJUNCTION
SCONJUNCTION
SIMPUCATION
SEQUIVALENCE
SPROJECTION
SHIDING
SUNIVQUANT
SEXISTSQUANT
SUNIQUEQUANT
SRENAMING
SCOMPOSITION
SDECORATION
SSUBSTITUTION
EXPSCHEMA

SDECL

SCONSTRUCTION

SNEGATION

SDISJUNCTION

SCONJUNCTION

SIMPUCATION

SEQUIVALENCE

SPROJECTION

SHIDING

SUNIVQUANT

SEXISTSQUANT

SUNIQUEQUANT

SRENAMING

SCOMPOSITION

SDECORATION

SSUBSTITUTION

EXPSCHEMA

NAME, NAME,..., NAME : EXP

SCHEMA | PRED

-. SCHEMA

SCHEMA V SCHEMA

SCHEMA A SCHEMA

SCHEMA =>- SCHEMA

SCHEMA O- SCHEMA

SCHEMA Proj SCHEMA

SCHEMA \ [NAME,..., NAME]

VSCHEMA» SCHEMA

3 SCHEMA »SCHEMA

3± SCHEMA «SCHEMA

SCHEMA [NAME/NAME,..., NAME/NAME]

SCHEMA 5 SCHEMA

SCHEMA DECOR

EXP © SCHEMA

EXP

118 Z Notation Version 1.1 30th June 1995

A. 5 Predicate

A.5 Predicate

PRED = EQUALITY
MEMBERSHIP
TRUTH
FALSEHOOD
NEGATION
DISJUNCTION
CONJUNCTION
IMPLICATION
EQUIVALENCE
UNIVERSALQUANT
EXISTSQUANT
UNIQUEQUANT
SPRED
PREDSUBSTITUTION

EQUALITY

MEMBERSHIP

TRUTH

FALSEHOOD

NEGATION

DISJUNCTION

CONJUNCTION

IMPLICATION

EQUIVALENCE

UNIVERSALQUANT

EXISTSQUANT

UNIQUEQUANT

SPRED

PREDSUBSTITUTION

EXP = EXP

EXP e EXP

true

false

-i PRED

PRED V PRED

PRED A PRED

PRED => PRED

PRED <£► PRED

VSCHEMA.PRED

3 SCHEMA «PRED

3X SCHEMA »PRED

SCHEMA

EXPoPRED

Z Notation Version 1.1 30th June 1995 119

A ABSTRACT SYNTAX - NORMATIVE ANNEX

A. 6 Expression

EXP IDENT
GENINST
NUMBERL
STRINGL
SETEXTN
SETCOMP
POWERSET
TUPLE
PRODUCT
TUPLESELECTION
BINDINGEXTN
THETAEXP
SCHEMAEXP
BINDSELECTION
FUNCTAPP
DEFNDESCR
IFTHENELSE
EXPSUBSTITUTION

IDENT

GENINST

NUMBERL

STRINGL

SETEXTN

SETCOMP

POWERSET

TUPLE

PRODUCT

TUPLESELECTION

BINDINGEXTN

THETAEXP

SCHEMAEXP

BINDSELECTION

FUNCTAPP

DEFNDESCR

IFTHENELSE

EXPSUBSTITUTION

NAME

NAME [EXP, EXP,..., EXP]

NUMBER

STRING

{EXP, EXP,..., EXP}

{SCHEMA • EXP}

Pow EXP

(EXP, EXP,..., EXP)

EXP x EXP X ... X EXP

EXP . NUMBERL

4 NAME := EXP,..., NAME := EXP}

6 SCHEMA DECOR

SCHEMA

EXP . NAME

EXP (EXP)

ji SCHEMA «EXP

if PRED then EXP else EXP fi

EXP 0 EXP

120 Z Notation Version 1.1 30th June 1995

A. 7 Name

A.7 Name

NAME = WORD DECOR, ... , DECOR

D

Z Notation Version 1.1 30th June 1995 121

B Concrete syntax - Normative Annex

Notes on this section of the Z Standard

Section title: Concrete syntax
Note: This version of the syntax is based on the proposal by Will Harwood
and Pete Steggles (Document 173 dated 6th March 1995).
Section editor: John Nicholls
Contributions by: Will Harwood, Pete Steggles, Chris Sennett, Rob
Arthan, Stephen Brien, ... (more to be added)
Source file: concrete.tex
Most recent update: 30th June 1995
Formatted: 3rd July 1995

B.l Introduction

Editor's note: This Annex and the Lexis (Annex C), replace the section previously called Representation

Syntax.

The relationships between the different forms of syntax, and the metalanguages used for their description,

need further revision.

The concrete syntax and lexis are designed to meet the following requirements:

• to be as close as possible to 'traditional' Z;

• to permit the substitution of equals for equals;

• to make unparsing injective (i.e. different legal ASTs should have different unparsed forms) and
total (i.e. there should be a concrete syntax for every legal AST);

• to make it convenient to project representations of Z and enter text by keyboard.

Editor's note: Further notes to be added here . .

122 Z Notation Version 1.1 30th June 1995

B.S Syntactic metalanguage

B.2 Syntactic metalanguage

The concrete syntax and lexis are denned using a BNF notation based on:

BSI Standard BS 6154, Method of defining syntactic metalanguage, British Standards In-
stitution, 1981.

The following symbols are used:

, concatenate symbol
= define symbol
| definition separator symbol
[] enclose optional syntactic items
{ } enclose syntactic items which may occur zero or more times
' ' enclose terminal symbols
; terminator symbol denoting the end of a rule
— subtraction from a set of terminals
? ... ? User defined rule

Precedence. The concatenate symbol has a higher precedence than the definition separator symbol.

Naming conventions. The following naming conventions are used:

• terminals are fully capitalized, e.g. ELSE.

• non-terminals are partly capitalized, e.g. DeclPart.

Editor's note: Discuss the use of tt typeface here.

Editor's note: The following comment is taken from D-173 and needs to be noted in future revisions:

The abstract syntax onto which this syntax is targetted is a slightly modified version of the one in ZSRC
Document z-159. The changes are as follows:

• EXP can be an option of SCHEMA.

• The decoration is removed from THETAEXP.

• The SCHEMASUBSTITUTION, SDES, GENSDES options are removed.

Z Notation Version 1.1 30th June 1995 123

B CONCRETE SYNTAX - NORMATIVE ANNEX

B.3 Paragraph

Paragraph =
SQBRA NameListl SQKET
Predicate
AX [DeclPart I Expression] [ST Predicate] END
GEN [Formals] BAR [DeclPart I Expression] [ST Predicate] END
SCH NAME [Formals] IS [DeclPart I Expression] [ST Predicate] END
NAME [Formals] DEFINE_EQUAL Expression
TURNSTILE Predicate
NAME FREEEQUALS Branch {VBAR Branch}
Fixity

Formals = SQBRA NameListl SQKET

Branch = NAME [FREEBRA Expression FREEKET]

The top level paragraph syntax includes given set definitions, top level predicates, all the boxes, inline
definitions, goals and operator template definitions.

The tokens: AX, BAR, END, GEN, IS, SCH, ST have special graphical conventions associated with
them.

Informal text is treated as whitespace by the lexer.

Editor's note: The syntax for Specification has been (temporarily) omitted.

124 Z Notation Version 1.1 30th June 1995

B.4 Fixity

B.4 Fixity

Editor's note: In later versions, the descriptions of templates and fixity may be moved to a different
place.

Fixity = SYNTAX Category Template

Operator definitions consist of a Category definition and Template definition.

Category = REL
I LEFT.FUN Precedence
I RIGHT_FUN Precedence

The Category definition indicates whether the defined operator is a relation (REL), a left associative
function (LEFT_FUN) or a right- associative function (RIGHT_FUN). Functions also have a numeric prece-
dence defined.

Precedence = NUMBER

The Precedence definition defines the precedence of the declared operator. There are at least 10000
precedence levels, numbered 0 to 9999. Higher numbers denote higher precedences.

Template = [Arg] NAME {SeqArg NAME} [Arg]

Arg = NORMAL
I TYPE

SeqArg = Arg
I SEQUENCE BRA Expression COMMA Expression COMMA Expression KET

The Template definition is an alternating sequence of names and argument slots. There are three
types of argument slots: NORMAL, which corresponds to the argument slots in current Z infix and prefix
declarations; TYPE, which declares that the appropriate argument is also an actual generic parameter (so
that a sequence of TYPE parameters corresponds to the same-order sequence of formal generic parameters
of the operator being declared); SEQUENCE, which is an argument slot for a comma-separated list of
expressions.

The effect of a syntactic template definition is:

• to assign suitable lexical status to the tokens which occur in the template.

• to assert the existence of a 'compound symbol' which represents the template.

• to assign an appropriate precedence and associativity to this compound symbol.

• to retain information about this symbol sufficient to identify it as a relation or function and to
cope with its generic instantiation (if it has TYPE argument slots).

Z Notation Version 1.1 30th June 1995 125

B CONCRETE SYNTAX - NORMATIVE ANNEX

The following token categories are defined (where names postfixed with P represent the relational version
of the token used in Predicate)

I, IP infix token
PRE, PREP prefix token
POST, POSTP postfix token
L, LP initial token
EL, ELP initial token preceded by expression
ES separator token preceded by expression
SS separator token preceded by expression commalist
ER, ERP final token preceded by expression
SR, SRP final token preceded by expression commalist
ERE, EREP final token preceded by expression and

followed by expression
SRE, SREP final token preceded by expression commalist and

followed by expression

Any attempt to redefine the lexical status of a token is an error.

Here are some example templates with descriptions of their effects.

SYNTAX REL small NORMAL (small => PREP)
SYNTAX REL NORMAL isodd (isodd => POSTP)
SYNTAX 100 add NORMAL to TYPE (add => L; to => ERE)
SYNTAX 50 add SEQUENCE (O.makeSet.setUnion) to TYPE (add => L; to => SRE)
SYNTAX RIGHT 900 ARG a_normal_infix ARG (a_normal_infix => I)

The sequence argument slot includes a triple of a zero, unit injection, and 'union' function, which
are used at parse-time to construct the appropriate expression from the list of parsed elements. We
choose the triple including union because the three constituents are generally defined for most generic
collections anyway.

126 Z Notation Version 1.1 30th June 1995

B.5 Predicate

B.5 Predicate

Predicate =
Expression

Predicate CONJ Predicate
PRED Expression
EXISTS TextOrExpression DOT Predicate
EXISTS1 TextOrExpression DOT Predicate
FORALL TextOrExpression DOT Predicate
Predicate IFF Predicate
Predicate IMPLIES Predicate
Predicate OR Predicate

Predicate AND Predicate

NOT Predicate

Relation

Expression SUBST Predicate
BRA Predicate KET
TRUE
FALSE

Any ambiguity in the above grammar is resolved by alloting precedences to productions. The prece-
dences of productions increase as we go down the page. All relevant operators are left-associative apart
from IMPLIES and SUBST which are right-associative.

The operators should all be familiar except CONJ. This is a low-precedence conjunction operator which
the lexer may return as the result of applying some layout rule.

B.5.1 Schemas as predicates

Because the schema expression connectives AND, OR, NOT etc. are lexically identical to the predicate
connectives, we need a way of clarifying our intentions in ambiguous cases. The precedence rules above
ensure that any expression involving these connectives will be parsed as a predicate if it can be; to force
interpretation as a schema expression, we simply prefix an expression with the PRED coercion operator.

B.5.2 Relation application

Relation = PrefixRel Expression
I Expression PostfixRel
I Expression InfixRel Expression {InfixRel Expression}
I NofixRel

Relation applications are parsed as above, using the extended 'grammar for operators' which uses the
tokens defined by the template mechanism.

Z Notation Version 1.1 30th June 1995 127

B CONCRETE S YNTAX - NORM A TIVE ANNEX

B.5.3 Relations

PrefixRel = LP {Expression ES I ExpressionList SS}
(Expression EREP I ExpressionList SREP)

I PREP

PostfixRel = ELP {Expression ES I ExpressionList SS}
(Expression ERP I ExpressionList SRP)

I POSTP

InfixRel = ELP {Expression ES I ExpressionList SS}
(Expression EREP I ExpressionList SREP)

I IP
I MEMBER
I EQUALS

NofixRel = LP {Expression ES I ExpressionList SS}
(Expression ERP I ExpressionList SRP)

For a detailed explanation of the relation 'grammar for operators' refer to the appendix.

128 z Notation Version 1.1 30th June 1995

B.6 Expression and schema expression

B.6 Expression and schema expression

Expression =

IF Predicate THEN Expression ELSE Expression

EXISTS TextOrExpression DOT Expression

EXISTS1 TextOrExpression DOT Expression

FORALL TextOrExpression DOT Expression

MU TextOrExpression DOT Expression

LAMBDA TextOrExpression DOT Expression

Expression IFF Expression

Expression IMPLIES Expression

Expression OR Expression

Expression AND Expression

NOT Expression

Expression COMPOSE Expression

Expression HIDING BRA NameListl KET

Expression PROJECTION Expression

Expression SUBST Expression

Expression CROSS {Expression CROSS} Expression

PSET Expression

Prefix Expression

Expression Postfix

Expression Infix Expression

Expression Expression {Expression}

Expression DECORATION

Expression SQBRA RenameList SQKET

Expression SELECT NAME

Expression SELECT NUMBER

THETA Expression

Nof ix

NAME SQBRA ExpressionListl SQKET

SETBRA ExpressionList SETKET

SETBRA TextOrExpression DOT Expression SETKET

SETBRA Text SETKET

BINDERBRA BindList BINDERKET

BRA Expression COMMA ExpressionListl KET

BRA MU TextOrExpression KET
BRA Expression KET

STRING

NUMBER

SQBRA Text SQKET

Again, precedences increase as we go down the page, and all operators are left-associative except IMPLIES
and SUBST which are right-associative.

In Standard Z Schemas are expressions and expressions are Schemas. There are two advantages to this:

• in proof, it upholds the substitutivity of equals for equals.

Z Notation Version 1.1 30th June 1995 129

B CONCRETE SYNTAX - NORMATIVE ANNEX

• in specification, it allows perfectly sensible idioms which are currently banned (for example, if I
have a function which returns sets of some binding, why can't I use the result of an application
of the function in a normal schema expression?).

We can decide whether something should be evaluated in a 'declaration' way or in a 'set of bindings'
way by looking at where it occurs. (We presume that for all x,y (eval-as-set-of-bindings x) = (eval-as-
set-of-bindings y) iff (eval-as-declaration x) = (eval-as-declaration y)).

Notice that now we can decorate an arbitrary expression and rename an arbitrary expression (although
these only make sense in type terms when the expression involves bindings).

Notice that mu expressions with no dot are bracketed because the schema text objects inside are very
low precedence.

Templates use an extended 'grammar for operators' similar to the one used by relations:

Prefix = L {Expression ES I ExpressionList SS}
(Expression ERE I ExpressionList SRE)

I PRE

Postfix = EL {Expression ES I ExpressionList SS}
(Expression ER I ExpressionList SR)

I POST

Infix = EL {Expression ES I ExpressionList SS}
(Expression ERE I ExpressionList SRE)

I I

Nofix = L {Expression ES I ExpressionList SS}
(Expression ER I ExpressionList SR)

I NAME

The template application is similar to that in the predicate section, but here we obviously don't have the
same kind of chaining; when a chain of templates is parsed the resulting syntax tree must be rearranged
to a form consistent with the precedence and associativity figures using a leftmost derivation using an
algorithm such as [16]. Thus if we have a juxtaposition of a right associative operator _p_ and a left
associative operator _<?_ of equal precedence, the formula x p y q z parses as (x p y) q z.

Note that the precedences defined on templates only work with respect to other templates - other
schemes are hard to process for user and machine.

The traditional grammar for set comprehensions and displays has an ambiguity - the distinction of
comprehensions with no DOT Expression part from one-element displays; the traditional 'solution'
would be to put brackets in like this: {(Expression)}; this is a crime against brackets. Our proposal
has no ambiguity, and relies on the distinction between a Schema Text and a Schema Expression; given
any Schema Expression S, {S} is a display and {SItrue} is a comprehension.

130 Z Notation Version 1.1 30th June 1995

B. 7 Lists

B.6.1 Schema texts

TextOrExpression =
Text

I Expression

Text = DeclPart [VBAR Predicate]

DeclPart = DeclElem SEMICOLON DeclElem {SEMICOLON DeclElem}
I BasicDecl

DeclElem = BasicDecl
I Expression

BasicDecl = NameListl COLON Expression

There is no explicit abstract syntax for schema texts but it is important to still have things which look
like schema texts at the level of concrete syntax.

We use a grammar for inline schema texts which can have any schema in a declaring position. Notice
that for an arbitrary schema expression S the inline schema text [S] is not allowed - instead the user
should write simply S.

B.6.2 Binding and renaming

Bind = NAME DEFINE.EQUAL Expression
Rename = NAME RENAME NAME

There should be no surprises here - this is exactly the same as the traditional Z grammar.

B.7 Lists

ExpressionList = [ExpressionListl]
ExpressionListl = Expression {COMMA Expression}

NameList = [NameListl]
NameListl = NAME {COMMA NAME}

BindList = [BindListl]
BindListl = Bind {COMMA Bind}

RenameList = Rename {COMMA Rename}

Z Notation Version 1.1 30th June 1995 131

B CONCRETE SYNTAX - NORMATIVE ANNEX

B.8 Interface to the lexical analyzer

B.8.1 Layout rules

Layout information is used in traditional Z specifications

• to replace the semicolons in the declaration parts of vertical boxes.

• to replace the conjunctions in the predicate parts of vertical boxes.

The parser relies on the lexer to find out when layout information is being used and to insert the
appropriate separators (and brackets in the case of predicate conjunctions) into the token stream (the
traditional approach to dealing with layout questions is to resolve them at the lexical analysis stage (cf
Occam, Haskell)).

B.8.2 Decorations, words and names

The parser relies on the lexer to recognise DECORATION and NAME. Note that the parser has no idea
whether a name has any decorations in it; there is no notion of Word in the abstract syntax (and hence
in the parser).

Note that some care needs to be shown to distinguish between the decorated expression

(decorate (name "f") "'")

and the name

(name "f")

With a normal treatment of whitespace, the string "f '" would parse as the former and the string "f'"
would parse as the latter.

132 Z Notation Version 1.1 30th June 1995

B.9 Operator definition using templates

B.9 Operator definition using templates

B.9.1 Prefix, Postfix, Infix, Nofix

A token / corresponding to a Word in traditional Z can have one of four lexical categories:

Nofix tokens just correspond to ordinary Words.

Prefix tokens must be followed by an expression. The prefix token / has a corresponding nofix token
/-

Postfix tokens must be preceded by an expression. The postfix token / has a corresponding nofix
token _/.

Infix tokens must be followed and preceded by expressions. The infix token / has a corresponding
nofix token _/_.

Prefix, postfix and infix tokens can be declared by declaring the corresponding nofix tokens (though nor-
mally only at top-level in support tools because parsing would otherwise require typechecker services).
This provides a simple mechanism for coping with the common mathematical operators, allowing the
abstract syntax to ignore fixity issues by simply using the appropriate nofix tokens.

We can define a grammar for this kind of operator definition:

Fixity = [_] Word [_]

(where square brackets denote an optional expression). In a conventional implementation of a parser
for Z fixity definitions will pass appropriate token information to the lexical analyser. For example, the
statement

would define / as a postfix token and _/ as a nofix token. The parser would then be able to parse a
postfix application

x f

generating the abstract syntax

(functapp (name "_f") x)

so all fixity issues are a matter for the lexer and the parser, and may be ignored at the level of abstract
syntax.

But this regime is not sufficiently powerful to handle even basic Z toolkit operators such as relational
image, which is of the form -/1-/2. Traditionally, specifiers have got round these problems by defining
combinations of tokens; for example, _/i_/2 can be mimicked by defining two tokens _/i_, and _/2j this
is not a nice solution because the correspondence with a single nofix token is lost and so the abstract
syntax contains excess structure.

Z Notation Version 1.1 30th June 1995 133

B CONCRETE SYNTAX - NORMATIVE ANNEX

B.9.2 Adding structure to token bodies

To get round this problem we can consider adding internal structure to the (ex-) token / so that / now
corresponds to the structure /1--/2; /1 and fa are a pair of tokens which must stand either side of an

expression.

The new operator definition syntax is then

Fixity = [_] Word {_ Word} [_]

(where curly brackets denote zero or more occurrences of an expression). We could then define a token

like relational image thus:

_ f 1 _ f2

which would define /1 and /2 suitably, and -h-h as a nofix token.

So how can /1 and /2 be suitably defined, such that we can generate a grammar for the more complex

operator applications?

B.9.3 Parsing structured tokens

Our approach is to define an additional set of token types. As well as INFIX, PREFIX, POSTFIX and

NAME we now add

L tokens at the start of a 'structured token' which are not preceded by an expression.

EL tokens at the start of a 'structured token' which are preceded by an expression.

S tokens inside a 'structured token'.

R tokens at the end of a 'structured token' which are not followed by an expression.

RE tokens at the end of a 'structured token' which are followed by an expression.

and provide a 'grammar for operators' thus:

Prefix = L {Expression S} Expression RE
I PREFIX

Postfix = EL {Expression S} Expression R
I POSTFIX

Infix = EL {Expression S} Expression RE
I INFIX

Nofix = L {Expression S} Expression R
I NAME

■toA Z Notation Version 1.1 30th June 1995

B.10 Generics

Some section of the Z grammar which previously looked like this:

Expression = PREFIX Expression
I Expression POSTFIX
I Expression INFIX Expression
I NAME

would now look like this:

Expression = Prefix Expression
I Expression Postfix

I Expression Infix Expression

I Nofix

This gives us a unified mechanism for defining operators which is powerful enough to define the basic
forms of all the toolkit operators. In order to handle more subtle conditions we need to add a few
complications to the basic scheme.

B.10 Generics

In Z there is a notion of 'infix generics'. For example, the function arrow operator is a function which
uses its arguments as generic instantiations:

X -> Y

actually equals

(->[X,Y])(X,Y)

We could add another kind of argument slot, #, for an argument which is used as a generic instantiation,
so that we could write the template:

-> #

This has the advantage that we can also say things like:

add _ to #

add x to xs = (add_to_ [xs])(x,xs)

where the above operator puts items into sets.

Z Notation Version 1.1 30th June 1995 135

B CONCRETE SYNTAX - NORMATIVE ANNEX

B.ll Precedence and associativity

In order to resolve ambiguities, we need to use precedence and associativity information. The ap-
proach adopted in the standard is to supply one numeric precedence value and a choice of left or right

associativity.

B.ll.l Relations

Relations can be defined using the same kinds of mechanism as functions, but their instances are
interpreted as set membership statements rather than function applications.

To provide an analogous grammar for relational operators, we use the same scheme as for functional
operators, with minor modifications.

L tokens become LP tokens.

EL tokens become LP tokens.

S tokens stay the same.

R tokens become LP tokens.

RE tokens become LP tokens.

and the grammar for operators becomes:

PrefixRel = LP {Expression S} Expression REP
I PREFIXREL

PostfixRel = ELP {Expression S} Expression RP
I POSTFIXREL

InfixRel = ELP {Expression S} Expression REP
I INFIXREL

NofixRel = LP {Expression S} Expression RP

The basic grammar for Relation application would look like this:

Relation = PrefixRel Expression
I Expression PostfixRel
I Expression InfixRel Expression
I NofixRel

Most versions of Z allow iterated infix relations:

136 Z Notation Version 1.1 30th June 1995

B.ll Precedence and associativity

Relation = PrefixRel Expression
I Expression PostfixRel
I Expression InfixRel Expression {InfixRel Expression}
I NofixRel

We could, of course, go further down this road, giving us:

Relation = ([PrefixRel] Expression {InfixRel Expression} [PostfixRel])
- Expression

I NofixRel

(where 'A - B' denotes subtraction of the production set B from A) but popular opinion seems to
consider this a step too far.

B.ll. 2 Sequences

When an expression is enclosed on both sides by tokens, we have an opportunity; we could also permit
a comma-separated list of expressions to occur in this situation. This is useful in defining display
operators.

To do this, we provide more tokens:

S splits into ES and SS.

R splits into ER and SR.

RE splits into ERE and SRE.

RP splits into ERP and SRP.

REP splits into EREP and SREP.

The prefixed E indicates that a single expression is expected before the token; while the prefixed S
indicates that a sequence of expressions (separated by commas) is expected before the token.

The grammars for operators change in the obvious way, giving us the final scheme which is used in the
Z Standard syntax definition.

In the template definition syntax, the sequence argument slot includes a triple of a zero, unit injection,
and 'union' function, which are used at parse-time to construct the appropriate expression from the list
of parsed elements. We choose the triple including union because the three constituents are generally
defined for most generic collections anyway. Here is how one might go about defining the syntax of a
sequence display operator (where the constituents of the triples have the obvious meanings).

fixity lseq ... (emptyList.makeSingletonSequence,concatenate) rseq

So that

Z Notation Version 1.1 30th June 1995 137

B CONCRETE S YNTAX - NORM A TIVE ANNEX

lseq x,y,z rimg

parses as

(functapp (name "lseq_rseq")
(functapp (name "concatenate")

(functapp (name "concatenate")
(functapp (name "makeSingletonSequence) (name "x"))
(functapp (name "makeSingletonSequence) (name "y")))

(functapp (name "makeSingletonSequence) (name "z"))))

and

lseq rimg

parses as

(functapp (name "lseq_rseq") (name "emptyList"))

^3g Z Notation Version 1.1 30th June 1995

C Lexis — Normative Annex

Notes on this section of the Z Standard

Section title: Lexis
Note: Based on D-167 v2 and D-177, with comments from syntax sub-
committee meeting 18 May 1995; also comments from Meeting 27 of the Z
Standards Panel.
Section editor: Susan Stepney (this version re-edited by JEN)
Contributions by: Chris Sennett, Rob Arthan, Trevor King, ... (more to
be added)
Source file: lexis.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

Editor's note: This Annex, though it has been revised, has not yet been fully updated to bring it into
line with the toolkit Annex. The revision will be completed in the next version. JEN

C.l Introduction

The Concrete Syntax (Annex B), uses named tokens to define its terminal symbols. This section
defines the lexical grammar of those tokens in terms of Z glyphs (defined in section C.4). This section
describes a typical rendering of the tokens, showing how they might be displayed on a printed page
or a graphics screen. The detailed appearance of the tokens is device-dependent. A character-based,
machine-representable format, and the Interchange Format representation based on SGML are defined
in sections C.4.3 and Annex D.

C.2 Soft newlines

Most white space is not recognized by a lexical analyzer, but is used as a separator when recognis-
ing tokens. In two special contexts some white space (called a 'hard new line') is recognized: as a
SEMICOLON in a DeclPart, as a CONJ in a Pred. The rule for distinguishing 'soft' (white space) and
'hard' (recognised) newlines in these contexts is given in the following rules.

1. Tokens that can appear in these contexts are assigned to a 'soft newline category', based on
whether the token could start or end a declaration or predicate.

• BOTH: new lines are soft before and after the token, because it can neither start nor end a
declaration or predicate. (It is 'infix', for example, ':')

• AFTER: new lines are soft after the token, because it cannot end a declaration or predicate.
(It is 'prefix', for example, '[')

Z Notation Version 1.1 30th June 1995 139

C LEXIS - NORMATIVE ANNEX

• BEFORE: new lines are soft before the token, because it cannot start a declaration or pred-
icate. (It is 'postfix', for example, ']')

• NEITHER: no new lines are soft, because such a token could start or end a declaration or
predicate. (It is 'nofix', for example, '£rue')

2. When a new line appears between two tokens in the relevant context, the newline categories of
both are examined. If either allows the newline to be soft in that position, it is soft, otherwise it
is hard (and hence recognised).

3. All newlines are soft outside a DeclPart or a Pred. So tokens that cannot appear in these contexts
can be considered to be in category BOTH.

The Fixity paragraph allows the definition of various mixfix names, which are placed in the appropriate
newline category (see section C.3.3). Other (ordinary) user declared names are 'nofix', and so are placed
in NEITHER.

C.3 Tokens

ZToken = SIMPLE
BOX
MIXFIX

DECORATION

NAME

NUMBER

C.3.1 Simple tokens

SIMPLE = AND | ... | VBAR;

A typical rendering of these literal tokens is given below.

The third column defines the soft newline category of those tokens that can appear in the context of a
DeclPart or Pred. The fourth column notes the representation syntax productions where they occur.

Token

AND
BRA
COLON
COMMA
COMPOSE

CONJ

CROSS
DEFINEEQUAL

DOT

EQUALS

Representation

A

(newline)

Newline Production

BOTH Exp, Pred
AFTER Exp, Pred, SeqArg
BOTH BasicDecl
BOTH Exp, SeqArg, XListl
BOTH Exp

Pred
BOTH Product
BOTH Bind, Paragraph
BOTH Exp
BOTH Relation

140 Z Notation Version 1.1 30th June 1995

C.3 Tokens

ELSE else BOTH Exp
EXISTS 3 AFTER Exp, Pred
EXISTS1 3i AFTER Exp, Pred
FALSE false NEITHER Pred
FIXITY fixity Fixity
FORALL V AFTER Exp, Pred
FREEBRA ((Branch
FREEEQUALS ::= FreeType
FREEKET)) Branch
HIDING \ BOTH Exp
IF if AFTER Exp
IFF •a BOTH Exp, Pred
IMPLIES =*> BOTH Exp, Pred
KET) BEFORE Exp, Pred, SeqArg
LAMBDA A AFTER Exp
LEFTFUN leftfun Category
LET let Exp, Pred
MEMBER € BOTH Relation
MU ß AFTER Exp
NORMAL _ Arg
NOT —1 AFTER Exp, Pred
OR V BOTH Exp, Pred
PRED pred AFTER Pred
PRESCH pre AFTER Pred
PROJECTION r BOTH Exp
PSET p AFTER Exp
REL rel Category
RENAME /m

BOTH Rename
RIGHTFUN rightfun ?? Category
SEMICOLON BOTH DeclElem, DeclPart
SEQUENCE SeqArg
SELECT BOTH Exp
SETBRA AFTER Exp
SETKET BEFORE Exp
SQBRA AFTER Exp, Formals, Paragraph
SQKET BEFORE Exp, Formals, Paragraph
THEN then BOTH Exp
THETA e AFTER Exp
TRUE true NEITHER Pred
TURNSTILE h ?? Paragraph
TYPE $?? Arg
VBAR | BOTH Paragraph, Text

Z Notation Version 1.1 30th June 1995 141

C LEXIS - NORMATIVE ANNEX

C.3.2 Box tokens

BOX = AX | SCH | GEN AFTER
| IS | ST | BAR BOTH
I END BEFORE

A typical rendering of these BOX tokens is lines drawn around the Z text.

(Editor's note: add three examples.)

The Interchange Format (Annex E) defines a textual form.

C.3.3 Mixfix token categories

MIXFIX = I | ... | SREP

For the base language, these token categories are empty. They are populated by definitions using the
template structure of the fixity paragraph, such as toolkit definitions.

The second column defines the soft newline category of names declared in these token categories. The
third column notes the representation syntax productions where these tokens occur.

Token Newline Production

I. IP BOTH Infix
POST, POSTP BEFORE Postfix
PRE, PREP AFTER Prefix

EL, ELP BOTH Postfix, Infix
ER, ERP BEFORE Postfix, Nofix
ERE, EREP BOTH Prefix, Infix
ES BOTH Prefix, Postfix, Infix, Nofix
L, LP AFTER Prefix, Nofix
SR, SRP BEFORE Postfix, Nofix
SS BOTH Prefix, Postfix Infix
SRE, SREP BOTH Prefix, Infix

C.3.4 Decoration, name and number tokens

DECORATION = STROKE, {STROKE};
NAME = WORD,{STROKE};
NUMBER = '0'|DIGIT1, {DIGIT};

All these tokens are in the soft newline category NEITHER.

Notice that the lexis allows a NAME to include STROKES, and that the concrete syntax allows an expression
to be decorated with STROKES. When the expression is a NAME, the two cases are disambiguated by

142 Z Notation Version 1.1 30th June 1995

C.4 Glyphs

white space: x\ is the undecorated NAME consisting of the WORD V followed by the STROKE '!'; x! is

the decorated expression consisting of the NAME V decorated with the STROKE '!'; x\! is the decorated
expression consisting of the WORD 'a;!' decorated with the STROKE '!'.

STROKE = '" | '!' | '?' | SUBSCRIPT;

SUBSCRIPT = DOWN, GLYPH, {DOWN, GLYPH}, UP

The DOWN and UP subscript delimiter tokens could be presented as in-line literals, or they could indicate

a lowering/raising of the text, and possible size change. Such rendering details are not defined here.

ALPHASTRING = {LETTER | DIGIT}

SYMBOLSTRING = {SYMBOL}

WORDPART = '_', (ALPHASTRING | SYMBOLSTRING)

WORD = WORDPART, {WORDPART}

I LETTER, ALPHASTRING, WORDPART

I SYMBOL,SYMBOLSTRING,{WORDPART}

C.4 Glyphs

GLYPH = DIGIT | LETTER | SYMBOL | SPECIAL

The glyph sets forming GLYPH are disjoint. SYMBOL is a user-extensible glyph set for making new symbolic
identifiers: this is where characters from other alphabets (such as Japanese or Russian) can be added.

DIGIT1

DIGIT

LETTER

SYMBOL =

SPECIAL = BOX

V | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9';

0' | DIGIT1;

a' | '6' | <c' | 'd' |'e' | '/' | y |'A' | V | 'j' | 'jfc' | T | <m'
v | v | y | y i v I v | iv | v | v \ '«>' \ v \ y | v
M' I '£' I 'C I '£>' I '£' I (F' | 'G' | lH' | '/' | T \ lIC | 'L' | 'M'
'iV' | '0' | 'P' | (Q' | '£' | '5' | 'T' I 'W | '7' | 'W | 'X' | lY' | 'Z'
T' | 'A' | '6' | 4A' | 'S' | «IT | '£' | 'T' | '$' | '*' | (fi'
'a' j '/?' | y | T | V | 'C' | y | 'Ö' | 't' | '«' I 'A' | V
V I '£' | V | y | 'a' | V | V | '0' | 'x' | (v IV

$T, T-'I 7'I': T; T = TNTIT N T}'
cx , j (p, | «•'|«(('|«))'|«h'

' I'lT'l'V
any toolkit glyphs, including MIXFIX (as supported)
any user glyphs, including MIXFIX

'(' I ')' I '-'

Z Notation Version 1.1 30th June 1995 143

C LEXIS - NORMATIVE ANNEX

C.4.1 Examples

A glyph in the LETTER or DIGIT class may be rendered differently for reasons of emphasis or aesthetics,
but it still represents the same glyph. For example, id\ 'd', 'd' and 'd' are all the same glyph. This
explains why those Greek characters that are identical in appearance to Roman characters do not appear
twice in the list of letters.

A glyph in the SYMBOL class, which includes user-defined glyphs, must appear the same wherever it occurs
in a specification. For example, schema composition 9 and the toolkit glyph relational composition ?
are different glyphs.

Once a NAME has been recognised, if it consists of the glyph string corresponding to a SIMPLE token,
it is recognised as that token instead. For example, P is recognised as PSET, but Px ('P', DOWN, '1',
UP) and P45 ('P', DOWN, '4', UP, DOWN, '5', UP) are recognised as NAMEs. For example, 3X ('3', DOWN, '1',
UP) is recognised as EXISTS!, but 30 ('3', DOWN, '0', UP) is recognised as a NAME.

Underscore, '_', is used in words to separate strings of alphanumerics from strings of symbols. For
example, 'i_oo_j' is a single word, whereas lx 003/' consists of the three words 'z', '00' and ly\ For
example, 'P_JT is a single word, whereas 'PX' is the token PSET followed by the word 'X\

(Editor's note: more examples here?)

C.4.2 Glyph representations

We present the glyphs of the Base language in a variety of formats, designed for different purposes.

Spoken name A suggested form for reading the glyph out loud, designed for use in reviews, or for
discussing specifications over the telephone. (An English language form only is given; other natural
languages may well use other forms.)

Interchange The format for use with the SGML interchange format (chapter ????)

Email The format for rendering the glyph on a low resolution device, such as a character-based ter-
minal, or e-mail conversation. (The email form for digits and the Roman alphabet is the obvious
one, and is not given explitily.)

The character '/. is used to flag a special string, for example x as %x, and disambiguate it from, for
example the name x, to ease machine processing. This flag character may be omitted to reduce
clutter, if there is no intention to machine-process the text.

Mathematical The format for rendering the glyph on a high resolution device, such as a bit-mapped
screen, or on paper (either hand-written, or printed).

Other formats may be used for other purposes, as required.

Toolkit glyphs are described in the toolkit chapter.

144 Z Notation Version 1.1 30th June 1995

C.4 Glyphs

C.4.3 Base language glyphs

Spoken name Interchange Email Mathematical

and &and A A
left [parenthesis] (((
colon : ;
comma > j 5

schema compose &scomp VI* /o/o]
O
9

cross × °/.x X
define equal == == ===

fat dot | spot &bull @ •
equals = = z=

else else else else
exists &exist •/.E 3
unique exists &existl •/.EI 3i
false false false false
fixity fixity fixity fixity
for all fcforall '/.A V
left chevron [bracket] &lchev « ((
free equals ::= : : =
right chevron [bracket] &rchev » >)
hide &hide y.\ \
if if if if
equivalent | if and only if &iff <=> <$
implies &rArr ==> =4>
right [parenthesis])))
left function leftfun leftfun leftfun
let let let let
member | in &isin °/.e e
not ¬ "" » —i

argument _
or &or \/ V
coerce predicate &pred pred pred
pre [condition] &pre pre pre
project &proj y.i\ r
power [set] &pset y.p p
relation rel rel rel
rename / / /
right function rightfun rightfun rightfun
semifcolon] ! i

sequence argument
select | dot .
left set [bracket] &lcub {
right set [bracket] &rcub }
left square [bracket] &lsqb [
right square [bracket] &rsqb]

Z Notation Version 1.1 30th June 1995 145

C LEXIS - NORMATIVE ANNEX

then
true
turnstile
type argument
bar

then then then
true true true
&vdash 1- h
&num $ $
&verbar 1 1

C.4.4 Greek alphabet glyphs

Spoken name Interchange Email Mathematical

alpha &alpha '/.alpha a
beta &beta '/.beta ß
gamma fegamma '/.gamma 7
delta &delta '/.delta 6
epsilon &epsi '/.epsilon e
zeta &zeta '/.zeta c
eta &;eta '/.eta V
theta &thetas '/.theta e
iota &iota '/.iota i

kappa &kappa '/.kappa K

lambda &lambda '/.lambda X
mu &mu '/.mu P
nu &nu '/.nu V

xi &xi %xi £
Pi &pi '/.pi 7T

rho &rho '/.rho P
sigma . &sigma '/.sigma a
tau &tau '/.tau T

upsilon &upsi '/.upsilon V

phi &phis '/.phi <f>
chi &chi '/.chi X
psi &;psi '/.psi 1>
omega Iomega '/.omega UJ

big delta &Delta •/Delta A
big gamma & Gamma '/.Gamma r
big theta &Theta '/.Theta e
big lambda &Lambda '/.Lambda A
big xi &Xi '/.Xi "

big pi &Pi '/.Pi n
big sigma fcSigma '/.Sigma s
big upsilon &Upsi '/.Upsilon T
big phi &Phi '/.Phi $
big psi &Psi '/.Psi *
big omega &;Omega '/.Omega n

146 Z Notation Version 1.1 30th June 1995

C.5 Toolkit glyphs

C.5 Toolkit glyphs

Glyph representations are provided for the new glyphs introduced in the Toolkit.

Editor's note: The precise contents of this list depends on the chosen Tookit, and hence is subject to
change.

Spoken name

not equal
non in
empty [set]
subset
not subset
proper subset
not proper subset
[set] union
[set] intersection
set difference
set symmetric difference
generalised union
generalised intersection
finite sets

relation
maplet
[relational] compose
functional compose
domain restrict
range restrict
domain subtract
range subtract
inverse
left relational image bracket
right relational image bracket
transitive closure | plus
reflexive transitive closure | star
[relational] override

[partial] function
total function
[partial] injection
total injection

Interchange Emai

&ne /=
¬in X/e
&empty (/)
&sube */.c_
&nsube %/c_
&sub %c
&nsub %/c
&;cup 7.u
&cap %n
fesdiff \
fessdiff \\
&Bigcup %uu
&Bigcap •/,nn
&feet %F

&rel <—>
&map |->
&rcomp •/.;
&compfn 7.0
&dres <:

&rres :>

&dsub <-:
&rsub :->
fctilde ~

&limg (1
&rimg 1)
&tcl 1 +
&rtcl 1*
&oplus (+)

&pfun -|->
&rarr —>

&pinj >-|->

&rarrtl >-->

Mathematical

i
0
c
%
c
£
u
n
\
\\
U
n
F

o
?

o

<

>

<3

+

>+¥

Z Notation Version 1.1 30th June 1995 147

C LEXIS - NORMATIVE ANNEX

[partial] surjection
total surjection
bijection
finite function
finite injection

nat[ural number]
integer
rational
real [number]
less than
less than or equal to
greater than
greater than or equal to
up to
plus
[unary] minus
[binary] minus
times
cardinality | hash
[real] divide

left seqfuence bracket]
right seq[uence bracket]
filter
co-filter
extract
co-extract
concatenate

&psur
&Rarr
&bij
&fpfun
&fpinj

&nat
&int
&xat
&real
<
&le

>
&ge
&nldr
+
&uminus
&bminus
*
&num
÷

&lang
&xang
&filter
&cofilter
&extract
&coextract
&frown

—»
>—»
-M->
>-M->

•/.N

%Z

7.Q

°/.R
<

<=

>

>=

*

•/.<
'/.>
I\
1/
/I
\l

—»

-tB-

N

<
<
>
>

+

*

div

left bag [bracket]
right bag [bracket]

Mbag
&rbag

[I
I]

D

148 Z Notation Version 1.1 30th June 1995

D Mathematical toolkit - Normative Annex

Notes on this section of the Z Standard

Section title: Mathematical toolkit
Section editor: John Wordsworth
Contributions by: John Wordsworth,
Source file: toolkit.tex
Most recent update: 30th June 1995
Formatted: 3rd July 1995

(others to be added)

Editor's note: In this version, the only major change to this Annex has been the addition of fixity
definitions to some of the definitions.

Introduction

This section defines a Mathematical Toolkit or Library for use with the Z notation. The principle is
that those constructions that can be defined in terms of others are included in the Toolkit rather than
in the core notation—this simplifies the core notation.

Most users will want to make use of the constructions defined in this section. This can therefore be
regarded as a basic Toolkit, which users may augment with their own definitions, or replace if these
definitions are not suitable for their use.

In this version of the Z Standard, the list of defined items follows the customary list of Toolkit items.
Later versions of the Standard may include further definitions and explanations, and will link the Toolkit
to related work on the semantics and proof system for Z.

Definitions of the Mathematical Toolkit are informally explained and illustrated. In some cases an
illustration for one part of the Toolkit may rely on terms defined earlier in the toolkit. Many of the
definitions given here are generic with respect to one or more sets.

Editor's note: The following note appeared an an earlier version. It is retained for possible use.

Instantiation of a generic definition can be performed with any appropriate sets, not necessarily
the maximal sets of their types. However the informal descriptions of these definitions are often
here expressed as if the sets used for instantiation were in fact types, since that is the way in
which these definitions are commonly instantiated in Z specifications.

Reviewers of the draft standard are invited to comment on this approach.

Z Notation Version 1.1 30th June 1995 149

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

D.l Sets

Name

^ — Inequality

^ .— Non-membership

Definition

fixity rel _ ^ _
fixity rel _ ^ _

Vz, y : A" • x ^ y <=> -< (a; = y)

Vi:I;5:PI.^S«-n(a;G5)

Description

Inequality is a relation between values of the same type. The predicate x ^ y denotes true when x = y
denotes false.

Non-membership is a relation between values of a certain type and sets of values of that type. The
predicate x £ S denotes true when x G S denotes false.

150 Z Notation Version 1.1 30th June 1995

D.l Sets

Name

0 - Empty Set

C — Subset relation

C — Proper subset relation

Pj — Non-empty subsets

Definition

0[X] == { x : X | false }

fixity rel _ C _
fixity rel _ C _

-[X]
-C_,_C-:PX^PI

VS,T:FX •

(5CT#(Vi:I.ie5^ier))A

5cT#5CTA5^r)

P1Z=={5:PX|5^0}

Description

The empty set of values of a certain type is the set of values of that type that has no members.

If S and T are sets of values of the same type, then S C T is a predicate denoting true if and only if
every member of 5 is a member of T. The empty set of values of a certain type is a subset of every set
of values of that type.

If 5" and T are sets of values of the same type, then S C T is a predicate denoting true if and only if
every member of 5 is a member of T and S and T are not equal. If 5 is a proper subset of T, then it
is also a subset of T. The empty set of values of a certain type is a proper subset of every non-empty
set of values of that type.

If X is a set, then Px X is the set of all non-empty subsets of X. Px X is a proper subset of T X.

Z Notation Version 1.1 30th June 1995 151

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

U — Set union

n — Set intersection

\ — Set difference

Definition

fixity leftfun 0 _U_
fixity leftfun 0 _f~l_
fixity leftfun 0 _ \ _

:[X]:
.U_,_n_,__:PXxPX—>PX

V5, T:FX •
SllT = {x:X\xeSVx€T}A
SHT = {x:X \x€S Axe T} V
S\T = {x:X\xeS Ax<£T}

Description

The union of two sets of values of the same type is the set of values that are members of either set.

The intersection of two sets of values of the same type is the set of values that are members of both
sets.

The difference of two sets of values of the same types is the set of values that are members of the first
set but not members of the second.

152 Z Notation Version 1.1 30th June 1995

D.I Sets

Name

U — Generalized union

n — Generalized intersection

Definition

-[X]
u,n:P(Pi)->Pi
V4:P(PX)»

UA = {x:X\(3S:A*xeS)}A
r\A = {x : X \(ys : A» x € S)}

Description

The generalised union of a set of sets of values of the same type is the set of values of that type that
are members of at least one of the sets.

The generalised intersection of a set of sets of values of the same type is the set of values of that type
that are members of every one of the sets.

Z Notation Version 1.1 30th June 1995 153

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

first, second — Projection functions for ordered pairs

Definition

r.v vi
L" ' J ■■

first :X xY-+
second : X x Y -

X
-> Y

Vx:X;y:Y»
first(x, y) =
second(x,y)

x A
= y

Description

For any ordered pair (x, y), first(x, y) is x and second(x, y) is y.

If p is of type X x Y, then p = (first p, second p).

154 Z Notation Version 1.1 30th June 1995

D.2 Relations

D.2 Relations

Name

-■ — Binary relations

H-> — Maplet

Definition

fixity leftfun 0 _<—>_
fixity leftfun 0 _ >-> _

X^Y==F(X xY

MX>Yh
.4.:Ix Y-+X x Y

Vx:X;y:Y»
x H-> y = (x, y)

Description

X <—» y is the set of all sets of ordered pairs whose first members are members of X and whose second
members are members of Y. To declare R : X <—> Y is to say that R is such a set of ordered pairs.

The maplet forms an ordered pair from two values, so if x is of type X and y is of type Y, then x \-¥ y
is of type X x Y. x n-f y is thus just another notation for (re, y).

Z Notation Version 1.1 30th June 1995 155

T
D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

dom, ran — Domain and range of a relation

Definition

dorn :(X*->Y)
ran : {X <-> Y) -

YX
FY

VR:X^ Y •
domi? = {x: X; y: Y \ (x ^ y) e R • x} A
ran R = { x : X; y : Y\(x>-^y)eR»y}

Description

The domain of a relation R is the set of first members of the ordered pairs in R. If R is of type X •<—> Y,
the domain of R is of type PI. If R is an empty relation, then its domain is an empty set.

The range of a relation R is the set of second members of the ordered pairs in R. If R is of type X <—> Y,
the domain of R is of type F Y. If R is an empty relation, then its range is an empty set.

156 Z Notation Version 1.1 30th June 1995

D.2 Relations

Name

id — Identity relation

5 — Relational composition

o — Backward relational composition

Definition

id X == {x : X • x H» X}

fixity leftfun 0 _ 5 _
fixity leftfun 0 _o_

f=[X, Y,X]
_; _ : (X <-> Y) x (Y <-> Z) -> {X <-+ Z)
o:(Y<-+Z)x(X+-±Y)^(X<->Z)

VR:X*->Y;S:Y<-+Z»
R°,S = SoR = {x :X;y: Y; z : Z \

{x>->y)€RA(yt->z)eS»xi-+z}

Description

The identity relation on a set X is the relation that relates every member of X to itself. Its type is
X <r-¥ X. The identity relation on an empty set is an empty relation.

The relational composition of a relation R : X <-> Y and S : Y <-> Z is a relation of type X «-»• Z
formed by taking all the pairs (x,y) of R whose second members are in the domain of S, and relating
x to every member of Z that y is related to by S.

The backward composition of S and R is the same as the composition of R and S.

Z Notation Version 1.1 30th June 1995 157

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

< — Domain restriction

> — Range restriction

Definition

fixity leffcfun 0 _<_
fixity leftfun 0 _ £> _

F=[X, Y]
<:Pix(if4y)^(iHy)
>:(*<->• Y) x P Y -*• {X <-> y)'

VS:PX;Ä:X<-> y»
5<Ä = {j:I;y:7|i€5A(Ii-ys/)ei?#my}

VR:X*^ Y; T :FY •
R>T = {x:X;y: Y\(x^y)eRAyeT»x>^y}

Description

The domain restriction of a relation R : X <—>• Y by a set S : P X is the set of pairs in Ä whose first
members are in S. S < R is a subset of R, and its domain is a subset of S.

The range restriction of a relation R : X <—> Y by a set T :F Y is the set of pairs in R whose second
members are in T. R > T is a subset of R, and its range is a subset of T.

158 Z Notation Version 1.1 30th June 1995

D.2 Relations

Name

< — Domain anti-restriction

^ — Range anti-restriction

Definition

fixity leftfun 0 _<3_
fixity leftfun 0 _ £► _

-.[X, Y]
<i:FXx{X+->Y)->(X^Y)
->-:(X<-+Y)xFY—*(X*->Y)

VS:FX;R:X^ 7.
S 4 R = {x : X; y : Y \ x <£ S A (x >-+ y) e R • x ^ y}

VR-.X+-* Y; T:FY •
Rfr T = {x : X; y : Y | (x .-> y) G R A y $ T • x H- y}

Description

The domain anti-restriction of a relation R : X <-» Y by a set S : P X is the set of pairs in R whose
first members are not in S. S < R is a subset of R, and its domain contains no members of S.

The range anti-restriction of a relation R : X <-> Y by a set T : P Y is the set of pairs in R whose
second members are not in T. R E> T is a subset of R, and its range contains no members of T.

Z Notation Version 1.1 30th June 1995 159

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

— relational inversion

Definition

fixity leftfun 0 _~_

=rx yi —i/1-'i J -
_~:(X <-» y)

X

(Y

y-

*-+X)

Y | (an-* »)€Ä«
VR:X

RT
<-> y •
= {*: y >-»z}

Description

The inverse of a relation is the relation obtained by reversing every ordered pair in the relation.

160 Z Notation Version 1.1 30th June 1995

D.2 Relations

Name

_d_D — Relational image

Definition

fixity leftfun 0 _fl_D

P=[X, Y]
_y :(i^y)xPi4Py

VR:X*-> Y;S:FX»
RW = {x : X; y: Y \ x e S A (x ^ y) e R • y}

Description

The relational image of a set S : FX under a relation R : X <-» Y is the set of values of type Y that
are related under R to a value in S.

Z Notation Version 1.1 30th June 1995 161

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

_+ — Transitive closure

_* — Reflexive-transitive closure

Definition

fixity leftfun 0 _+_
fixity leftfun 0 _*_

MX]
+,* : (X <-» X) —> (X <-> X)

VR:X<->X •
R+ = n{Q : X <-> X \ R C Q A Q °, Q C Q} A
R* = n{Q:X^X\idXCQARCQAQsQCQ}

Description

The transitive closure of a relation R : X 4-+ X is the relation obtained by relating each member of
the domain of R to its images under R, and to anything related to any of its images under R by any
number of steps of application of R.

The reflexive transitive closure of a relation R : X<->X is the relation formed by extending the transitive
closure of R by the identity relation on X.

162 Z Notation Version 1.1 30th June 1995

D.3 Functions

D.3 Functions

Name

— Partial functions

— Total functions

Definition

fixity leftfun 0 -+■»
fixity leftfun 0 —>

X-++Y==
{f:X^Y\(Vx:X;yuy2:Y.

(x H- j/i) € / A {x t-> y2) e f =* V! = y2) }
X -» Y == {/ : X -+■> Y | dorn/ = X }

Description

The partial functions from Z to Y are a subset of the relations X *->Y. They are distinguished by the
property that each x in X is related to at most one y in Y. X -H- Y is the set of all partial functions
from X to Y, and to declare / : X -+¥■ Y is to say that / is one such partial function.

The total functions from X to Y are a subset of the partial functions X -+■> Y. They are distinguished
by the property that each x in X is related to exactly one y in Y. X —> Y is the set of all total
functions from X to Y, and to declare / : X —> Y is to say that / is one such total function. The
domain of / : X —> Y is X.

Z Notation Version 1.1 30th June 1995 163

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

H-» — Partial injections

>—> — Total injections

Definition

fixity leftfun 0 >+>
fixity leftfun 0 >—»

X>+± Y ==
{/ : X -H- Y | (Vzi, x2 : dom/ • f(xi) = f(x2) => xx = x2) }

x ^ Y == (x H-> Y) n (z —> y)

Description

The partial injections from X to Y are a subset of the partial functions X -+* Y". They axe distinguished
by the property that each y in F is related to at most one x in X. Thus the inverse of a partial injection is
also a partial injection. X H-> Y is the set of all partial injections from X to Y, and to declare / : X >-+-» Y-

is to say that / is one such partial injection.

The total injections from X to Y are a subset of the partial injections X H-» Y. They are distinguished
by the property that each x in X is related to exactly one y in Y. X >—> Y is the set of all total
injections from X to Y, and to declare / : X >—> Y is to say that / is one such total injection.

164 Z Notation Version 1.1 30th June 1995

D. 3 Functions

Name

-+-» — Partial surjections

—* — Total surjections

>-»• — Bijections

Definition

fixity leftfun 0 -+»
fixity leftfun 0 —»
fixity leftfun 0 >-»

X -+*• Y == {/ : X -H. 7 | ran/ = 7 }
A" -» y == (x -w. y) n (x -> y)
x >-* y == (A -* Y) n (A >-» y)

Description

The partial surjections from X to Y are a subset of the partial functions X-++Y. They are distinguished
by the property that each y in Y is related to at least one linl. X -+» y is the set of all partial
surjections from X to Y, and to declare / : X -+» Y is to say that / is one such partial surjection.

The total surjections from X to Y are a subset of the partial surjections X-+*Y. They are distinguished
by the property that each x in X is related to exactly one y'mY. X—* Y is the set of all total surjections
from X to y, and to declare / : X —» y is to say that / is one such total surjection.

The bijections from X to Y are a subset of the total surjections X —» y. They are distinguished by
the property that each y in y is related to exactly one x in X. X >-» y is the set of all bijections from
X to y, and to declare / : X >-* y is to say that / is one such total bijection.

Z Notation Version 1.1 30th June 1995 165

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

D.3.1 Name

© - Functional overriding

D.3.2 Definition

fixity leftfun 0 ©

:[X,Y]..
: (X -+► F) x (X -++ y) -> (X -+* Y)

Vf,g:X-»Y.
/©ff = ((dom?)</)U^

Description

If/ and 3 are both functions from I to 7, then the functional overriding of / by g is the function g
together with such pairs of / as have first elements different from the first element of any pair in g.

Ißß Z Notation Version 1.1 30th June 1995

D.4 Numbers and finiteness

D.4 Numbers and finiteness

Name

N — Natural numbers

Z — Integers

+,— ,*,div, mod — Arithmetic operations

<,<,>,> - Numerical comparison

Definition

fixity leftfun 0 _ + _
fixity leftfun 0 _ — _
fixity leftfun 1 _*_
fixity leftfun 1 -div-
fixity leftfun 1 -mod-
fixity leftfun 3 _—
fixity rel _ < _
fixity rel _ < _
fixity rel _ > _
fixity rel _ <> _

[Z]

. + _,_-_,_*_:ZxZ —>Z

.div_,_mod_:Zx (Z\{0})~

.-:Z-+Z

N={n:Z| n>0}

... other definitions omitted...

Description

The natural numbers are the integers from zero upwards. The type of N is PZ, since N is a set of
integers. The declaration n : N makes Z the type of n, and entails the property n > 0.

Z Notation Version 1.1 SflWi June 1995 167

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

NL — Strictly positive integers

succ — Successor function

Definition

N, == N \ {0}

succ : N —> N

V n : N • succ(n) = n + 1

Description

The strictly positive numbers N are the natural numbers except zero.

The successor of any natural number is the next natural number in ascending order.

168 Z Notation Version 1.1 30th June 1995

D-4 Numbers and finiteness

Name

Rk — Iteration

Definition

:[X} =
iter (X <-* X)-* (X ^ X)

VR:X^>X •
iter 0 R = id X A
(Vk : N• iter(h + l)R = R$ (iterkR)) A
(V& : N • iter (-k)R = iter k (R~))

Description

The iteration of a relation R : X <-» X by zero is the identity relation on the set X.

The iteration of a relation R : X <—> X by one is the relation Ä.

The iteration of a relation R : X <-► X by an integer greater than one is the composition of R with its
iteration by the next lower integer.

The iteration of a relation R : X <->• X by an integer less that zero is the iteration of the inverse of R
by the corresponding positive integer. Thus the iteration of R by -1 is the inverse of R.

The form: iter k R is usually written Rk.

Z Notation Version 1.1 30th June 1995 169

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

.. — Number range

Definition

fixity leftfun 0 —

 :ZxZ-»PZ

Va,&:Z»
a .. b = { k : Z | a < k < b }

Description

If a and b are integers, and a is less than b, the number range a..b contains a, b and any integers
between.

If a is equal to b, the number range a..b is a singleton set containing a only.

If a is greater than b, the number range a..b is an empty set of integers.

The number range a..b is always finite, and if b > a its size is b — a + 1.

170 Z Notation Version 1.1 30th June 1995

D.4 Numbers and finiteness

Name

F — Finite sets

Fx — Non-empty finite sets

— Number of members of a set

Definition

FX == {S :P X \3n :N • 3/ : 1.. n -> S • ran/ = S }
F1I==FI\{0}

#:WX-*N

V5:FX.
#5 = Oi n : N | (3/ : 1.. n >-» 5 • ran/ = S))

Description

A set is finite if its members can be put into one-to-one correspondence with the natural numbers from
1 up to some limit. FX is the set of all finite subsets of X. FX is a subset of FX. If X is finite, then
it is a member of F X.

The non-empty finite subsets of X are the finite subsets of X except the empty set.

The number of members of a finite set is the upper limit of the number range starting with 1 that can
be put into one-to-one correspondence with the members of the set.

Z Notation Version 1.1 30th June 1995 171

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

-H-> — Finite partial functions

HB- — Finite partial injections

Definition

fixity leftfun 0 -»
fixity leftfun 0 Ht*

X -+> Y == {/ : X -+» Y | dorn/ € FX }
X >#> Y == (X-»+Y) n (X y» Y)

Description

The finite partial functions from I to F are the partial functions from X to Y whose domains are
finite sets.

The finite partial injections from X to Y are the partial injections from X to Y whose domains are
finite sets.

172 Z Notation Version 1.1 30th June 1995

D.4 Numbers and finiteness

Name

min, max — Minimum and maximum of a set of numbers

Definition

min : P, Z -H- Z

min = { S : F1Z; m : Z |
m G S A (Vn : S • m < n) • Si-> m}

max ={S :F1Z;m:Z\
m € S A (V n : S • m > n) • S i-> m}

Description

The minimum of a non-empty set of integers that has a least member is the least member. Sets of
integers that have no least member are not in the domain of min. If a < b, min a..b = a.

The maximum of a non-empty set of integers that has a greatest member is the greatest member. Sets
of integers that have no greatest member are not in the domain of max. If a < b, max a..b = b.

Z Notation Version 1.1 30th June 1995 173

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

D.5 Sequences

Name

seq — Finite sequences

seq! — Non-empty finite sequences

iseq — Injective sequences

Definition

seqX =={/:N-**X|dom/ = l..#/}
seqi =={/:seqX|#/>0}
iseq X == seq X n (N H+ X)

Description

A sequence is a finite aggregate of values of the same type in which each value can be identified by
its position in the sequence. The formal definition establishes a sequence as a partial function relating
the numbers from the set l..n for some n (the domain of the sequence) to the values (the range of
the sequence). seqZ is the set of all finite sequences of values of type X. The declaration S : seqX
says that S is one such finite sequence. Since a sequence is a function (i.e. a set of ordered pairs), a
sequence might be empty, and the function application notation S i can be used to denote the element
at position i, provided that i is in the domain of the sequence.

seqx X is the set of all non-empty finite sequences of values of type X. The declaration s : seqx X says
that s is such a non-empty finite sequence. seq! X is a subset of seqX.

iseqZ is the set of all injective finite sequences of values of type X. A sequence is injective if no value
appears more than once in the sequence. The declaration S : iseqX says that S is such an injective
finite sequence. iseqX is a subset of seqX.

174 Z Notation Version 1.1 30th June 1995

D. 5 Sequences

Name

<> — Sequence brackets
~ — Concatenation

Definition

_ ~ _ : seq X x seq X —> seq X

Vs, t : seqX •
s~£ = sU{n: dom t • n + #s >->■ i(n) }

Description

The brackets < > can be used for enumerated sequences. The empty enumeration is the empty function.
A singleton enumeration is the function that maps 1 to the element in the enumeration. The function
that extends an enumeration is the concatenation function.

Concatenation is a function of a pair of sequences of values of the same type that denotes a sequence
that begins with the first sequence and continues with the second. Either or both of the sequences
might be empty. If either sequence is empty, the result is the other sequence.

Z Notation Version 1.1 30th June 1995 175

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

head, last, tail, front - Sequence decomposition

Definition

MX]
head, last : seqx X —> X
tail , front : seq! X —> seqX

Vs : se<\i X

head s =5(1) A
last s ■ = *(#*) A
tail s - = (A n : 1. #5-1. s(n + 1))A
front s = (1..#6 - 1) <s

Description

If 5 is a non-empty sequence of values of type X, then head S is the value of type X that is first in the
sequence. Empty sequences are not in the domain of head.

If S is a non-empty sequence of values of type X, then last S is the value of type X that is last in the
sequence. Empty sequences are not in the domain of last.

If S is a non-empty sequence of values of type X, then tail S is the sequence of values of type X obtained
from S by discarding the first member. Empty sequences are not in the domain of tail.

If S is a non-empty sequence of values of type X, then front S is the sequence of values of type X
obtained from S by discarding the last member. Empty sequences axe not in the domain of front.

176 Z Notation Version 1.1 30th June 1995

D.5 Sequences

Name

rev — reverse

Definition

F=[*] —
rev : seq X —> seq X

V s : seq X •
revs = (An : doms • s(#s — n + 1))

Description

The reverse of a sequence is the sequence obtained by taking its members in the opposite order.

Z Notation Version 1.1 30th June 1995 177

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

f - Filtering

Definition

— l/M
-r- _:seqXxPX —» seqX

VK :FX •
()\V = ()A
(Vz : X •

(xev=> (x)\V = <*» A
(x<£V=i> (x)\V = <»)A

(V s,t : seqX •
{(s~t)\V = {s\V)~(t\V))

Description

The filter of a sequence of values of type X by a set of values of type X is the sequence obtained from
the original by discarding any members that are not in the set.

178 Z Notation Version 1.1 30th June 1995

D. 5 Sequences

Name

~/ — Distributed concatenation

Definition

~l: seq(seq X) —> seq X

~/<> = 0
Vs : seqX • ~/(s) = *
Vg, r : seq(seqZ) •

-7(<rr) = r/<?rr/r)

Description

The distributed concatenation of a sequence of sequences of values of type X is a sequence of values of
type X obtained by concatenating the lesser sequences in the order in which they appear in the greater
sequence.

Z Notation Version 1.1 30th June 1995 179

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

disjoint — Disjointness

partition — Partitions

Definition

disjoint- :P(/^PI)
-partition.: (I-t+FX)

:domS»S(i)} =

VS:I-+*FX; T:FX •
(disjoint S &

(V i,j : domS | i
(S partition T &

disjoint«S A U{ i

= 0))A

T)

Description

An indexed family of sets is disjoint if no two members having distinct indexes have any members in
common.

An indexed family S of sets partition a set T if S is disjoint and the union of all the members of S is
T.

180 Z Notation Version 1.1 30th June 1995

D. 6 Bags

D.6 Bags

Name

bag — Bags

count — Multiplicity

E — Bag membership

Definition

bagX==X+*Ni

count : bag X >-» (X —> N)
_ E _ : X <-> bag X

Vx:X;B:b&gX»
countB = (\x : X • 0) © 5 A
x E B & x e dorn B

Description

A bag represents an aggregate in which order is not important, but in which a given value can occur
several times. A bag of values of type X is a function whose domain is a subset of X and whose range
is a set of strictly positive natural numbers.

The count of a bag of values of type X is a function that extends the bag function by relating every
member of X that is not is the domain of the bag to zero.

A value x : X is said to be in B : bagX if and only if x is in the domain of B.

Z Notation Version 1.1 30th June 1995 181

D MATHEMATICAL TOOLKIT - NORMATIVE ANNEX

Name

tt) — Bag union

Definition

MX]-
_ Ö _ : bag X x bag X —> bag X

V5, C :ba,gX;x:X •
count (B ö C)x = count B x + count C x

Description

The bag union of two bags is the bag that relates every member of the domain of either bag to the sum
of its occurrences in the two bags.

182 Z Notation Version 1.1 30th June 1995

D. 6 Bags

Name

items — Bag of elements of a sequence

Definition

-[X]
items : seq X —> bag X

Vs : seqX; x : X •
count (items s)x = #{ i : dorn s \ s(i) = x }

Description

The items of a sequence of values of type X is a bag such that the range of the sequence and the domain
of the bag are the same, and the each value in the domain of the bag is related to the number of indexes
in the sequence at which that value occurred.

D

Z Notation Version 1.1 30th June 1995 183

E Interchange format — Normative Annex

Notes on this section of the Z Standard

Section title: Interchange format
Section editor: Jonathan Hammond (Trevor King)
Contributions by: Trevor King, ... (others to be added)
Notes: Conforms to new syntax, lexis and toolkit.
Source file: icformat.tex
Most recent update: 30th June 1995
Formatted: 3rd July 1995

E.l Introduction

The Interchange Format defines a portable representation of Z, allowing Z documents to be trans-
mitted between different products or machines. The most suitable means of communication is the use
of text files in which the character set is limited for portability reasons. The Interchange Format defines
a syntax for such text files.

The basis for the Interchange Format is the ISO Standard Generalized Markup Language (SGML).
SGML permits the structure of texts to be represented and encoded in a standard form, convenient for
storage, editing, retrieval and processing. The SGML Standard is defined in [12]. A general description
of the aims and principles of SGML, together with an annotated version of the standard, is included in
The SGML Handbook by C. F. Goldfarb [9]. Case studies and applications in SGML are described in
the work of the Text Encoding Initiative reported in [22].

The structure of this Appendix is as follows:

• section E.2 describes the scope of the Interchange Format — i.e. the facilities offered by the
Format;

• section E.3 contains an informal description of SGML;

• section E.4 defines the Interchange Format;

• section E.5 presents explanatory material and examples of the use of the Interchange Format.

E.2 Scope of the Interchange Format

The Interchange Format allows a distinction to be made between formal text and other text included in
a Z document. The Interchange Format does not prescribe the structure of all parts of a Z document;
in particular it does not define the internal structure of informal text.

As one possible application of the Interchange Format is to transmit a Z document for Z syntax checking,
the format is sufficiently liberal to permit syntactically-incorrect Z to be written. The format thus
prescribes markup only for the higher levels of the Z syntax hierarchy. In most cases this is at the

184 Z Notation Version 1.1 30th June 1995

E.3 Introduction to SGML

level of a Z paragraph, although for axiomatic and 'boxed' definitions there is scope for creating a more
detailed markup if desired (e.g. in order to indicate a presentation format).

For a Z document to be syntactically correct when written in the Interchange Format, it must conform
at the higher levels to the markup defined in this Appendix, and at the lower levels (e.g. predicate or
expression level) to the Z Concrete Syntax, with all mathematical symbols replaced by the alphanumeric
representations discussed in Section E.4.3.

The Interchange Format also provides markup for requirements which are additional to the prime
requirement for encoding the structure of the Z in a document. The following additional requirements
are accommodated:

• identification of informal Z fragments, i.e. Z fragments which do not belong to the formal part of
a Z document;

• indication of particular presentation formats, e.g. whether a vertical or horizontal style should be
employed for a schema definition;

• allocation of identifiers to Z paragraphs, e.g. so that associations between Z operation Schemas
and data-flow diagrams can be made, or so that Z definitions can be indexed;

• logical grouping of Z paragraphs independently of the positions they occupy in the document,
e.g. so that the group can be considered as a unit for type-checking purposes, or that 'units of
conservative extension' can be identified for subsequent processing by a proof tool;

• labelling of 'stacked' predicates in an axiomatic or 'boxed' definition.

E.3 Introduction to SGML

This section provides an introduction to SGML, sufficient for the understanding of the definition of the
Interchange Format in Section E.4. More comprehensive descriptions of SGML are given in [121 and
[9]. l J

Examples of text written in SGML are printed with a fixed-width font (the tt font in I?TEX) as follows:

<tag> text </tag>

E.3.1 SGML Element Definitions

Structures are described in the Interchange Format by means of SGML elements. Elements are delim-
ited by start-tags and end-tags. A start-tag is of the form <name>, where name is the generic identifier
of the delimited element. The end-tag is of the form </name>. For example, a particular Z given set
definition may be written in the Interchange Format as:

<givendef> NAME, DATE </givendef>

The internal structure of a general SGML element is itself defined in SGML by means of a formal SGML
element declaration. The components of an element declaration are:

Z Notation Version 1.1 30th June 1995 185

E INTER CHANGE FORMA T - NORM A TIVE ANNEX

1. the name of the element;

2. two characters (separated by a space) which specify the minimisation rules for the element;

3. the content model of the element.

The minimisation rules indicate whether the start-tags or end-tags may be omitted in instances of the
element. The first character in the pair corresponds to the start-tag and the second to the end-tag. The
character '-' or 'o' indicates that the corresponding tag respectively must be present or may be omitted.

The content model specifies what any occurrences of the element may legitimately contain. Contents
may be specified in terms of other elements and special reserved words. Ultimately all elements consist
of 'parsed character data' (represented in element declarations by the reserved word #PCDATA), which
contains any valid character data but not further elements. Further structural information concern-
ing elements which are constituents of the declared element is provided by the use of occurrence
indicators and group connectors.

Occurrence indicators define how many times a constituent element may occur in instances of the defined
element and are placed at the end of the constituent element. The following occurrence indicators are
used in this Appendix:

• a question mark (?) indicates that the preceding element occurs at most once;

• an asterisk (*) indicates that the preceding element may be absent or occurs one or more times;

• a plus sign (+) indicates that the preceding element occurs one or more times.

Group connectors specify the ordering of constituent elements. The following connectors are used in
this Appendix:

• a vertical bar (|) indicates that only one of the components it connects may appear;

• a comma (,) indicates that the components must appear in that order.

For example the element definition for a Z schema declaration is given as:

<!ELEMENT schemadef
((#PCDATA | sub | mixedname)+, formals?, decpart?, axpart?) >

Occurrences of this element thus consist of a sequence of parsed character data, subscript and mixed
name elements (representing the name of the schema), followed by an optional element which holds
the formal parameters of the definition, followed by elements representing the optional declaration and
axiomatic parts of the schema definition. The start-tag and end-tag of the schema definition must both
be present.

186 Z Notation Version 1.1 30th June 1995

E.S Introduction to SGML

E.3.2 SGML attribute declarations

In SGML, attributes are used to provide information associated with elements. The Interchange
Format employs attributes to encode layout information and other information which is not considered
to be part of the structure of a Z specification. For example, the Interchange Format defines a 'style'
attribute for schema definitions which permits an indication of whether the definition should be in
vertical or horizontal form. An occurrence of a 'schemadef' element may thus contain an attribute-
value pair inside the element's start-tag; for example:

<schemadef style=vert> S . . . </schemadef>

are An SGML attribute declaration specifies the name(s) of the element(s) to which the attributes _
attached, followed by a list of rows, each of which consists of the name of the attribute being declared
its type, and an optional default value. A type may be given as a collection of explicit values, or as one
of the following special keywords:

CDATA the attribute value may contain any valid character data and must be delimited by
double quotation marks;

ID indicates that a unique identifying value will be supplied for each instance of the
element;

NMTOKEN the attribute value is a name token (i.e. any alphanumeric string);

NUMBER the attribute value is a number.

The default value for an attribute may be denoted as one of the set of explicit values defined for an
attribute; alternatively it may be one of the following special values:

»IMPLIED a value need not be supplied;

»REQUIRED a value must be supplied.

E.3.3 SGML entities

An SGML entity is a named part of a marked-up document. An example of an entity declaration is:

<!ENTITY ZBS 'Z Standard, version 1.0' >

References to entities are contructed by prefixing the name of the entity with an ampersand character
(&) and delimiting the end of the name with a semicolon, space or end-of-file. Here is an example of
an entity reference:

We are now in a position to issue the &ZBS;.

Z Notation Version 1.1 30th June 1995 i oir

E INTERCHANGE FORMAT - NORMATIVE ANNEX

The entity reference in this document fragment would be expanded by an SGML parser as:

We are now in a position to issue the Z Standard, version 1.0.

In the Interchange Format, SGML entities are used to represent certain Z symbols or words. The
associations between the alphanumeric representation of mathematical symbols or words and their local
codes should be defined in SGML entity declarations. However - since local word processor codes may
differ - section E.4.3 presents a scheme in which the entity names used in the Interchange Format are
listed against the usual presentation format of the corresponding Z symbols or words.

188 Z Notation Version 1.1 30th June 1995

E.4 Definition of the Interchange Format

E.4 Definition of the Interchange Format

This section presents the definition of the Interchange Format as a collection of SGML declarations
Explanatory material and examples of the use of the Interchange Format are also given in Section E.5.'

An SGML Document Type Definition (DTD) defines the syntax of SGML-conformant documents in a
style which is readable by SGML parsers. The Interchange Format does not warrant a full DTD for
two reasons:

• the format does not specify the structure of the informal text in a Z document;

• the entity declarations are implementation-dependent.

A DTD consists of a header, followed by a body containing the element declarations, attribute dec-
larations and entity declarations. The definition of the Interchange Format presented in this Section
may be considered as the partial body of a DTD {partial because the entity declarations are not given
explicitly); it is also equivalent to a definition in BNF of the structure of the Interchange Format
Newhnes in a Z document are not significant in the translation to the Interchange Format except where
they serve to separate predicates or declarations.

It is unlikely that this Interchange Format could ever accommodate every function required by its users
However, any collection of SGML declarations (such as those which define this Interchange Format) may
be replaced or enhanced by the pre-insertion of additional SGML declarations. Such a 'customisation'
of the Interchange Format would be acceptable by SGML parsers.

E.4.1 Element declarations

These declarations define the higher-level structure of the Z paragraphs in a Z document written in the
Interchange Format. They correspond closely to the appropriate constructs of the Z Concrete Syntax
Note that no element minimisation options are offered; the start and end tags must both be present for
each element instance.

There are two top-level elements:

• the Z element represents a sequence of Z paragraphs;

• the inf ormalZ element represents a fragment of mathematics which does not belong to the formal
part of the specification document.

The Z element contains a (possibly empty) sequence of individual Z paragraph elements which constitute
(part of) a formal specification.

<!ELEMENT Z

(fixity | givendef | axdef | constraint

| schemadef | gendef | abbrevdef

| goal | structsetdef)* >

Z Notation Version 1.1 30th June 1995 -I on

E INTERCHANGE FORMA T - NORM A TIVE ANNEX

The inf ormalZ element defines a fragment of mathematics which is not to be considered as a formal
part of the specification; these fragments may be Z elements, declaration elements, or a sequence of
parsed character data, subscript elements and mixed name elements (corresponding to unstructured
fragments of mathematics).

<!ELEMENT informalZ
(Z | declaration | (#PCDATA | sub | mixedname)+) >

Elements representing goals, top-level constraints, declarations, abbreviation definition bodies, predi-
cates, fixity template expressions, given set definitions, declarations of formal parameters, subscripts
and operator names in fixity template definitions all consist of an unstructured sequence of parsed
character data, subscript elements and mixed name elements.

<!ELEMENT (goal | constraint | declaration
| body | predicate |exp | givendef
| formals | sub | namearg) - -

(#PCDATA | sub | mixedname)+ >

Elements representing axiomatic definitions, schema definitions and generic definitions contain decpart
and axpart elements; the latter element is optional, as is also the decpart element for schema defi-
nitions. Schema definitions and generic definitions may contain a formals element (representing the
declaration of formal parameters). The name introduced by a schema definition is modelled as an
unstructured sequence of parsed character data, subscript elements and mixed name elements.

<!ELEMENT axdef (decpart, axpart?) >

<!ELEMENT schemadef
((#PCDATA | sub | mixedname)+, formals?, decpart?, axpart?) >

<!ELEMENT gendef (formals?, decpart, axpart?) >

The element representing an abbreviation definition consists of the name introduced by the definition
(which is modelled as an unstructured sequence of parsed character data, subscript elements and mixed
name elements), an optional formals element which represents the declaration of formal parameters,
and a body element which represents the right-hand side of the abbreviation definition.

<!ELEMENT abbrevdef - -
((#PCDATA | sub | mixedname)+, formals?, body) >

The element representing a structured set definition consists of the name introduced by the definition
(which is modelled as an unstructured sequence of parsed character data, subscript elements and mixed
name elements) and a non-empty sequence of branch elements.

<!ELEMENT structsetdef
((«PCDATA | sub | mixedname)+, branch+) >

190 Z Notation Version 1.1 30th June 1995

E.4 Definition of the Interchange Format

The element representing a branch of a structured set definition consists of a constructor name (which
is modelled as an unstructured sequence of parsed character data, subscript elements and mixed name
elements) and an exp element.

<!ELEMENT branchf - - ((#PCDATA | sub | mixedname)+, exp) >

The element representing the axiomatic part of a 'boxed' definition consists of a sequence of predicate
elements, representing the predicates which are intended to be separated by the weakly-binding con-
junction denoted by significant newlines.

<!ELEMENT axpart - - (predicate+) >

The element representing the declaration part of a 'boxed' definition consists of asequence of declaration
elements each representing a collection of declarations which is separated from other such collections
by significant newlines.

<! ELEMENT decpart - - (declaration) >

The element which represents a fixity statement consists of an unstructured sequence of parsed character
data subscript elements and mixed name elements (modelling the first part of the operator name
introduced by the statement) and a (possibly empty) sequence of namearg and exparg elements which
represents the rest of the fixity template. Each exparg element consists of three exp elements followed
by an unstructured sequence of parsed character data, subscript elements and mixed name elements
which models part of the operator name.

<!ELEMENT fixity

((#PCDATA | sub | mixedname)+, (namearg | exparg)*) >

<!ELEMENT exparg - -

(exp, exp, exp, (#PCDATA | sub | mixedname)+) >

The element which represents a mixed name consists of parsed character data. A mixed name element
must be employed in cases where a Z name consists of more than one entity reference or of a mixture
of entity references and normal characters.

<!ELEMENT mixedname - - #PCDATA >

E.4.2 Attribute declarations

The attribute declarations permit the association of additional information with occurrences of elements
in a Z document written in the Interchange Format.

The attributes id and group permit identification and logical grouping of Z paragraphs respectively.

Z Notation Version 1.1 30th June 1995 lqi

E INTERCHANGE FORMAT - NORMATIVE ANNEX

<!ATTLIST
(givendef | axdef | constraint | schemadef | gendef

| goal | abbrevdef | structsetdef)
id ID «IMPLIED
group NMTOKEN «IMPLIED >

The attributes style and purpose define the layout and intended use of a schema definition respectively.

<!ATTLIST schemadef
style (vert | horiz) vert
purpose (state | operation | datatype) «IMPLIED >

The attribute label permits informal annotation of each member of the 'stack' of predicates which
constitutes the axiomatic part of a boxed definition.

<!ATTLIST predicate label CDATA «IMPLIED >

The following attributes are used with the fixity element:

• the attribute category indicates whether the defined operator is a relation, left-associative func-
tion or right-associative function;

• the attribute prec indicates the binding priority of the defined function (this attribute is not
required if the value of category is rel);

• the attributes firstarg and lastarg indicate the kind of first and last argument (if any) respec-
tively in the fixity statement.

<!ATTLIST fixity
category (leftfun | rightfun | rel) «REQUIRED
prec «NUMBER «IMPLIED
(firstarg | lastarg) (normal | type) «IMPLIED >

The attribute midarg of the namearg element indicates the kind of argument which appears just before
the part of the operator name presented in the namearg element.

<!ATTLIST namearg
midarg (normal | type) «REQUIRED >

E.4.3 Entity declarations

Editor's note: This subsection lists examples of entity definitions that might be required for the toolkit.

It will be updated when a final version of the toolkit has been developed.

192 Z Notation Version 1.1 30th June 1995

E-4 Definition of the Interchange Format

Entity declarations are used to define alphanumeric denotations for certain Z symbols and words. The
entity declarations for the Interchange Format are not presented in the conventional SGML format
because of the dependence of the internal representation of mathematical symbols or words on the
implementation of each user's Z document processor. The mode of declaration used in this Standard is
to present tables which record the association of each entity name with the corresponding mathematical
symbol or word. These tables are presented in the Lexis Section of this Standard.

Many of the entity names used in the tables have already been defined as standard in Appendix D of
[12].

In order to encode names which consist of more than one entity reference, or of a mixture of entity
references and normal text, "mixed name" elements must be employed. For example, the application
of the function A to the variable State (ie A State) is encoded as feDelta; State (or feDelta; State or
feDelta State), but the schema name AState must be encoded as any of these alternatives enclosed
within mixedname element tags. The use of the mixedname element indicates that the contents are to
be considered as a single name.

Z users may create additional entity declarations to cater for new symbols introduced in their specifi-
cation documents. For example, assume that the new symbol 0 is to be used in a Z document. The
author of the document must create an entity declaration of the form

<!ENTITY oslash SDATA " oslash"
—o enclosing a solidus—>

This declaration gives the name oslash to the entity which represents the symbol and identifies the
local code which generates the presentation format 0 of the symbol. As it is unlikely that other systems
possess this code, a description of the presentation format of the symbol is given as a comment in the
entity declaration. Any receivers of the Z document may then establish a suitable local code for this
symbol in their respective systems.

Entity definitions for the toolkit

Entity definitions are provided only for the following classes of toolkit member:

• non-alphanumeric members (apart from the addition (+) and multiplication (*) symbols, as it is
assumed that these symbols are reasonably portable);

• relations with alphanumeric names (as these are customarily presented in sans-serif font);

• 'type constructors' (ie generic constants with set values) with alphanumeric names (as these are
customarily presented in Roman font);

• the functions dorn and ran (as these are customarily presented in Roman font).

Z Notation Version 1.1 30th June 1995 193

E INTERCHANGE FORMAT - NORMATIVE ANNEX

E.5 Examples

This section presents examples of the use of the Interchange Format. Thses examples are carefully chosen
to cover the more obscure aspects of the Format. The areas covered are indicated in the subsection
headings.

E.5.1 Declaring infix identifiers

Consider the following axiomatic definition, which declares a relation isTwice which is intended to be
used in an infix manner:

SYNTAX REL NORMAL isTwice NORMAL

-isTwice- : N <-> N

Vi,j : N« i isTwice j 4» i = 2 *j

This can be encoded in the Interchange Format as

<Z>
<fixity category=rel firstarg=normal lastarg=normal>
isTwice </fixity>

<axdef >
<decpart>
<declaration>

isTwice: &Nat; ferel; Mat;
</declaration> </decpart>
<axpart>

<predicate>
feforall; i, j: &Nat; febull; i isTwice j feiff; i = 2*j

</predicate> </axpart>
</axdef>
</Z>

E.5.2 Subscripts

The axiomatic definition

ai, 03 : N

03 isTwice a\

is encoded in the Interchange Format as:

194 Z Notation Version 1.1 30th June 1995

E.5 Examples

<Z> <axdef>
<decpart>

<declaration>
a₁, a₃: &Nat;

</declaration> </decpart>
<axpart>

<predicate>
a₃ isTwice a₁

</predicate> </axpart>
</axdef> </Z>

E.5.3 Schema definitions and predicate labelling

Consider the following definitions:

[PERSON, HOUSE]

^_ Street
inhabits : PERSON -in- HOUSE
houses : PHOUSE

houses — ran inhabits

VÄ : houses • #inhabits~ \{h}) < 4
/ * No house may be occupied by more than 4 persons * /

The author of this specification intends to accomplish the following objectives:

• to attach a label to the second predicate in the schema definition;

• to indicate that the schema definition should be displayed in vertical form;

• to indicate (to a specification checker, for example) that the schema Street defines the state of a
system.

These objectives can be attained in the Interchange Format with the following encoding:

<Z>
<givendef> PERSON, HOUSE </givendef>

<schemadef style=vert purpose=state> Street
<decpart>
<declaration>

inhabits: PERSON fefpfun; HOUSE </declaration>
<declaration>

houses: fepset; HOUSE </declaration>

Z Notation Version 1.1 30th June 1995 195

E INTERCHANGE FORMAT - NORMATIVE ANNEX

<axpart>
<predicate>

houses = &ran; inhabits </predicate>
<predicate

label='No house may be occupied by more than 4 persons'>
feforall; h: houses ftbull;

fenum; inhabits fttilde; felimg; ftlcub; h fercub; ferimg; ≤ 4
</predicate> </axpart>
</schemadef>
</Z>

E.5.4 Symbols in top-level definitions

Note that in the Interchange Format there are no entity representations of the symbols immediately
associated with top-level definitions such as structural set definitions and abbreviation definitions. These
symbols are subsumed by the element tags for those definitions. For example, consider the following
abbreviation definition:

n == 5 + x

This definition is encoded in the Interchange Format as:

<Z> <abbrevdef> n
<body> 5 + x </body> </abbrevdef> </Z>

i.e. there is no need in the Interchange Format for an SGML entity which represents the == symbol
(although this symbol would of course be employed in the presentation format for instances of the
abbreviation element).

D

196 Z Notation Version 1.1 30th June 1995

F The logical theory of Z - Normative Annex

Notes on this section of the Z Standard

Section title: The Logical Theory of Z
Section editor: Andrew Martin
Original text by: Stephen Brien
Contributions by: Peter Lupton ...(to be added)
Source file: logical.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

Editor's note: Draft—comments and questions in" boxes!

F.l Preamble

Editor's note: To be supplied by Peter Lupton. This chapter defines what the theorems of Z are,
discusses the relationship between logic, deductive system, semantics; and soundness. It also describes how
other deductive systems (and logics?) are to be derived; what it means for them to be conformant/sound
and complete.

Editor's note: This chapter presents a deductive system for Z, a deductive type system for Z and equa-
tions for free variables and substitution of terms in Z.

old text:

The deductive system is a Gentzen-style sequent calculus in which sequents are composed of paragraphs
and predicates. The rules of the logic are presented in a simplified form. The meta-theorems of the logic
(theorems about the rules) permit the extension of the rules into a more practical form.

The loose definition of function application and definite description in the semantics permits a number
of interpretations of their meanings. This deductive system is sound with respect to a model in which all
well-typed expressions have a value.

F.2 Meta-language

The deductive system will be expressed using the abstract syntax. Some simplifications will be used.
In particular, the paragraph keywords given, gendef, abbr etc. will be omitted. The concrete syntax

Z Notation Version 1.1 30th June 1995 197

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

apparently now has a let a; := u in t construction.
^ x := u\ et.

The deductive system is better expressed with

Editor's note: Stephen has ^ b} P for substitution in predicates, and b © e for substitution in expressions.
Our abstract syntax doesn't permit the first, BUT some of the semantic equivalences need predicate and
expression substitution to be distinguished. I've used b © P for the former, for the time being.

F.2.1 Meta-Variables

The meta-variables used in what follows are members of the following syntactic categories:

n : PAR
r : PAR $.. 4 PAR

P,Q,R : PRED
X : NAME

b,e,f,s,v : EXP
S,T : SCHEMA

9 : DECOR

F.2.2 Sequent

Editor's note: We assume that the Abstract Syntax has been updated so that
CONJECTURE = conj PAR J • • • J PAR h PRED.

Editor's note: The abstract syntax for PAR is unclear. It doesn't seem to cater for all possibilities. For
the time being, this chapter uses Stephen's paragraphs.

The abstract syntax has a paragraph form CONJECTURE, which is a sequent:

nit"-flI„r-P

The meaning of this paragraph (in terms of the semantics) is described elsewhere. For the sequent to
be well-formed, the free variables of P must be declared in IIif • • • tUn. The preamble above describes
what it means for a sequent to be a theorem of Z; the deductive system defines which sequents may be
deduced from which other sequents.

This chapter also presents type judgements of the form

rh en .

This sequent means that, in the specification T, the expression e is well-typed with type r. The
following proof rules assume that r is arbitrary, it should be established by pattern matching. For
predicates (which do not have a type) we write \-P s/ to mean that the predicate P is well typed.
For paragraphs we write \- P :: to indicate that they are well-typed. Though the turnstile is the same

198 Z Notation Version 1.1 30th June 1995

F.2 Meta-language

as for the deduction rules, it is used to represent different kinds of relations. These assertions can be
distinguished by the syntax of the consequent (the antecedent in both cases being a specification).

Editor's note: What about provisos-as-judgements? (See Section F.I.)

F.2.3 Rules

The deductive systems consist of a number of rules for manipulating sequents. Inference rules will be
written

Rule a Premises Name /prot^0)
Conclusion v '

The premises are a (possibly empty) list of sequents:

Premises = Sequent... Sequent

The conclusion is always a single sequent:

Conclusion = Sequent

The Proviso is a decidable condition on the free variables of the expressions and predicates in the rule.
The annotation |4- indicates that the rule can be applied in both directions—that is, the rule

denotes both of the following inference rules

ri-tt and _r$_
r'H$ and FF¥ •

A rule is sound if whenever it is applied to valid premisses, a valid conclusion results. This is defined
in the semantics by saying that the set of environments supporting the premisses is a subset of those
supporting the conclusion. The rule

is sound if and only if

P =» {S1}
MD...n{Sm}

MC{Seq}M

The following meta-theorem holds for rules in the deductive system:

Theorem F.l (Sequent-lifting)

The rule p |_ p is sound if and only if the sequent Th P is a theorem.

Z Notation Version 1.1 30th June 1995 igg

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

This meta-theorem states that a theorem can be deduced from no premisses.

The semantic equivalences for substitution are given in tables in later sections. These tables state the
semantic equality of various expressions. A theorem which permits the use of semantic-equivalences in
proofs is the following.

Theorem F.2 (Semantic-equivalence-lifting) Given the semantic-equivalence for any predicates
or expressions

A = B

the following inference rule is sound:

AQ4)
A(B)

F.2.4 wf

The proviso wf(par) is an abbreviation stating that (par) is well-formed in that

<t>(par) n a(par) = 0

F.2.5 Proofs

Proofs in the deductive system proceed in the way that is usual for sequent calculi: proofs are developed
backwards, starting from the sequent which is to be proved. A rule is applied, resulting in fresh sequents
which must be proved. This process continues until there are no more sequents requiring proof, in which
case the original sequent is now proved.

A completed proof may thus be represented as a tree, with the proved sequent as the root node, and
every leaf node containing an empty list of sequents. However, if some of these lists in the leaves are
non-empty, then the derivation tree is still useful, although it does not represent a proof, it represents
a partial proof.

Theorem F.3 (Tree-squashing) Suppose that we have the derivation tree:

sa ... sim [Rj](Pj) a_^ *_ ^_£ [R]{P)

where each of the rules R and R{ are sound rules, then the derived rule

 Se~q lR]{P,Pi)

is also sound.

200 Z Notation Version 1.1 30th June 1995

F.3 Inference rules

F.3 Inference rules

F.3.1 Structural rules

Assumption rules

p |_ p AssumPred

———r——— AssumDefin(-wf(x :— e))

 ; AssumDecl(vjf(x : s)) x : s t- x € s K "

c , q SchemaAss(aS D (f>S = 0)

Paragraph and thinning rules

P AR\- Q
P\R\-Q

Y\-P
TIXTY-P

TY-P
r$ni-p

tl PredConj

Thinl

Thinr(aR C\(pP = 0)

ritr2pi H P (aT2 n <^n = 0
rantr21- P ^ \ann^r2 = 0

rhP £>i(arn</>p = 0) rtfsjTHP

F.3.2 Equality and substitution

rhe = e 1W"J i

T\-u = e <?„..

rhe =

rju = « :hti = = e
i> = < ; 1- v = = u

rtO} HP
tl r H 4 6> ©P

r^fej hu = e <
rh« = öee

TVans

tl UseBind

tl EquBind(ab f~l 0u = 0)

Z Notation Version 1.1 30</» June 1995 201

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

F.3.3 Propositional calculus

ri-p r\- Q

T\-P A Q

ThP AQ

Andl

rhP AndEr

ThPAQ t JTII —p, Q— AndEl

T\-P
r\-p v Q

r\-Q

Orlr

Orll T\-P V Q

r h P v Q rtPt-R rtQ\-R
ThR OrE

impl
T\-P=> Q

T\-P T\-P^ Q . „
 fFg mpE

r \- false
r\- p falseE

rj-i P \- false
 pp-p notE

P& Q = P=> Q AQ^P

-iP = P =$> false

false =*► P

P =*> true

202 Z Notation Version 1.1 30th June 1995

F.3 Inference rules

Editor's note: Hence, derivec

T\- P=> false tl noiDe/

r 1- false => P
falseDef

r 1- P =► true
trueDef

F.3.4 Quantifier rules

TI-V5.P *'"

ri-V5«P rn fee 5
rh|6) OP

AUE

ri-35«P

rh3S*p iwi-Q
Tr-Q

ExistsI

ExistsE

Editor's note: UNIQUEQUANT ?

F.3.5 Expression rules

Sets

Tt[x]Tt-e = {\x:=s)oT»y} D2
r$[x]Tr-y[s]ee 0/ € a(wf T))

(Vi:i«ie«)A

^X:t9Xe$^nSeteq{xi<i>S\J4>t)
TV- s = t

Z Notation Version 1.1 30th June 1995

1,

203

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

Thv = ei\/...Vv = en

TY-ve {ei,...,e„}
14- Extmem

T\-3S »e = u

n-ee{s•«}
|4 Setcomp(<pu f~l aS = 0)

Cartesian products

ri-Vs: hies tl Powerset(x £ <f>s)

T\-v = ej
rh»= (ci,...,e„).i

: Tupleequ(l < i < n)

T h u.l € Si A ■ ■. A u.n € sn

r h u € si X • • • x s„
f4 Prodmem

rhti = (ei,...,en) t| TVese/

r h u.l = ei A ... A u.n = en

Labelled products

BindEqu

r H xi := ei,... ,3* := e»> ■* = ei (1 - * ~ n)

T h u.X! = ei A ■ ■ ■ A u.x» = en ^ 5 -nd5e/

rh u = 4 xi := ei,...,x„ := en)

TU b) \~x = b.x
D6(x e ab,wfb)

Schemas

ri- e.xi = xi A ••• A e.xn = xw r h S
T h e = ÖS

£20

h (x::=xi,. ■ ■, xn:=xn) € S fl £8
P^ aS={xi,..., x„}

204
Z Notation Version 1.1 30th June 1995

Description

Th(e,u)ef
Tty-f I- (y-1 = e)=»(y.2 = ey) D18

T\-u=f{e) (y<t<j)eU<t>u)

F.3 Inference rules

Y\- e G s
T\-\ x:=e) ®P

T$y:s\-$x:=y)P=>y = e

rhe = |ii: s\P
£19

Editor's note: IF THEN ELSE

Substitution

TU b\ \-u = e
ri-M = | b) ee

U D7b{ab D<f>u = 0)

T I- v = § x := u) ee
T$x := u \- v = e

t| Usedef(x £ $v)

F.3.6 Schema calculus

r h u e [si : si; ■ ■ ■; xn : 5n]
T h u.Zi G si A ... A u.a;n G s„

ti BindProd

T\-beS \-\b\ ®P
T\-be[S\P]

■\\P.SchemaMem

T\-\b) OS
T\-beS

t; £>14(wf 5)

rh|i>) 0 [beS]
Thb€S

t|D15(wf6)

r H -■ { 6} 0 5
rh6e-5

tl SNot(wiS)

n-\b)QSA\b)®T
Thbe{SAT) l+ v

Z Notation Version 1.1 30th June 1995 205

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

T)r\b)eSV\b)®T v

rh&€(5vr)

rHft)Qg=H6)or (wf 5 ^ T)

rHHQ^<^Qf ti siffWS * T)

rh3SH&) QT f| Sßrisfe
rh&€3S«T (4>m(a&Ua5)) = 0

rhV5»| 6} er ti SAH
ri-&GV5«r (^T n («6 u aS)) = 0

Editor's note: SHIDING, SPROJECTION, SCOMPOSITION, SDECORATION, SSUBSTITUTION,

SUNIQUEQUANT

9nß Z Notation Version 1.1 30th June 1995

F.4 Type inference

F.4 Type inference

F.4.1 Structural rules

rne
ntrne T21

T22 rtnne

T\- X %T

Tt[y] \-XZT

T\- x %T
Y\y := e h x % r

ri-isT

T23a

T236

rjy : s 1- x % T

T\- y%T
T\[x)T\-y%T

T23c

T25{y i a[x]T)

F.4.2 Paragraphs

T\-SSVT
T\-x:s::

rh egr
rhi:=e

T18a

T18&

ThP:: T19

HIT:: r h II ::
hrtn :: T20

T24(z not given set of T)
rr-[i]r::

r i- b g s(xi *v* n,..., x„ ~~> Tn)
Y\-\b) ::

T h 5 g VT,(xi ^Ti,...,xn^>Tn)
F\- S ::

TZO

T34

Z Notation Version 1.1 30th June 1995 207

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

F.4.3 Predicates

T h ex g r T h e2 g r
T h ei = e2 A/

Thegr r h s %VT

rt- e es y/

T3a

Tl

T2

TU

T4-i

rhtrue j

rh false V

T\-P V
rh-p V

rhPv Q V

r\-p y/ rhgy

T4A

T4V

T4=^

r h e g T rfc := e h P
r h ^ x := e) eP y/

r y- s:: rts r- P V
ri-v5»p V

r h 5 •■: rt? h P V
r\-3S»p V

r H 5 :: TjS H P V
rh3x5»P y

T6

T36V

T363

T363x

r H 5 g PE(xi ~» n, • • •. Zn ~» T„)

r *" Xl ° n ''' r h ^ S T" T33

T\-^b) ©P V
T32a

208
Z Notation Version 1.1 30th June 1995

F.4.4 Expressions

rjrr : s\- x %T
Tla

rheST
T\x := e h x g r

T7&

rt[a:]T h y[s] g {I5x ^T'}
T

T
T26

rj[x] h i g P(UJC)
T8

r h ei g T ... rhengT
n-{ei,...,en}gPr

T9

TjS I- e g T

rh{5.e}s?r
T37

T h s g PT

ri-Psg'P(7?T)
Til

T h ei g Ti 1 r" en o Tn

T h (ei,...,e„) SX(TI,...,T„)
T13

T h sx g Pn r h s„ g PT„

r I- si x • • • x sn g "PX(ri,..., r„)
ri4

Th egX(Ti,...,Tj,...,Tn)

r I- e.z g Tj
T15(l < * < n)

r i-1\ g TI t- en o Tn

Th ^ ii := ei,...,s„ := e„ D g
S(a;i~*Ti,...,ar„~> r„)

T27

r h x\ % T\ rhi„ST„ T44

r h 05 g E(a;i ~» n, • • • i *n ~» T„) a5={a?i,. ..,*„}

F.^ Type inference

Editor's note: NUMBERL, STRINGL

Z Notation Version 1.1 30th June 1995 209

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

ri-ns(si~Ti,...>s»'v»TW) r28(1 <i<n)

r\-f°0VX(T',T) rhegr'
rh/(e)sr

T42

T\- [ix : s\ P %T
T43

Editor's note: IF THEN ELSE

rh b gE(£i~>Ti,...,
Xi~~>Tj,...,Xn^>Tn) T31

TU b) \- Xi g n (!<»<»)

TX\b) l-egr
rh bee %T

T32&

n-5g-PS(xi^ri,...,
Xi^Tj,...,xn^*Tn) T35

TtS \-Xi°0Ti (1 < i < n)

TXx:=uh e%T Tl^ < j < n)
T\- {x := u) ®e%T

F.4.5 Schema

r i- 3i g ^TI • • • r h Sn g Vrn

rhxi : si; • • •; xn : s„ g
■P£(a;i~>Ti,...,a:n~»Tn)

 rh5|Pgr T38

T29

r h ->s g T
T39

T h 5 g VHQ \-T°0VX<;
T40A

r h 5 g psg i-Tgrac
ri-5vTs VY,{Q U o T40V

210
Z Notation Version 1.1 30«/» June 1995

F. 4 Type inference

r h S g VSg \- T § VEq
 TdC\=*> r h S =*> T g PEfe U <;) J 4U^

r H s g rap h r g ps?
ri-so TgpEteuo T40<s>

Editor's note: SPROJECTION , SHIDING

n-v5.r8ra(e\\o

rh35.rgra(^\\?)

ri-a^.rgratew?) x

Editor's note: SCOMPOSITION, SDECORATION, SSUBSTITUTION

Z Notation Version 1.1 30th June 1995 211

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

F.5 Free variables and alphabets

F.5.1 Paragraphs

4>[x\ = 0

<j>P = $P

<t>s =

<f>(x : s) = (f)S

4>{x := e) = <f>e

<K[x]T) = <t>T\{x}

^(nitn2) = <^niu(^n2\ani)

a[x] = {x}
aP = 0

aS =

a(x : s) = {x}

a(x := e) = {x}

a([x]T) = aT

a{Ui % n2) = alii U aÜ2

F.5.2 Predicates

$(e e s) = (f>e\J(j>s

<&(e = v) = <f>eU<f>v

$true = 0

$false = 0

*hP) = $P

$(P A Q) = PU<?

$(P V Q) = PUQ

$(P =» Q) = PUQ

$(P «*• Q) = PU<?

$VS»P = 0Su($P \ aS)
$35.P = ^5U($P\a5)

^S.P = <£SU($P \ aS)

$(5) = aSU<t>S

$4 i := e) 0P = </>eö($P\{x})

$(4 ft) ©P) = $P \ ab (?)
(?)

212 Z Notation Version 1.1 30tfc June 1995

F. 5 Free variables and alphabets

F.5.3 Schemas

<j)[xi : si; •••; xn : s„] = 0(ai)U"-U^(s„)

fl5 | P] = <f>S U ($P \ ctS)

4>hS) = 4>s
(j>{S A T) = 4>S\J(f)T

(f>{S V T) = cj)S\J4>T

^.(5 =4> T) = 4>SU<j)T

<£(S «» T) = 4>S\J4>T

^(SProjT) =

(ß(S\[xi,...,xn]) =

<£(VS«T) = (ßSLS(j)T

0(3 S« T) = <t>SU<j>T

<^(3i 5 • T) = <j)S\J<t)T

<ßis[xi/yu •••,xn/yn]) =

<f>(S°gT) =

HS") =

<j){boS) :rr

a[xi : si,...,xn : sn] = \X\, .. . , Xnj

a[S | P] = aS

<*hS) = aS

a(S A T) = aSöaT

a(5 V T) = aSUaT

a(5 =>- T) = aSUaT

a(5 «*• T) = aSUaT
a(5 Proj T) =

a(5\[a;i,...,a;n]) =
o(V5» T) = aT\aS

a(3 5« T) = aT\aS

a(31 S • r) = aT\aS

a(5[ii/yi,...,aJn/yn]) =
a(S | T) =

a(5«) =

a(6©5) =

a\ xi := ei,...,xn := en) = \X\, . . . , Xnj-

Z Notation Version 1.1 30th June 1995 213

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

F.5.4 Expressions

<f>{x) = {x}

<Kx[v\) =

4>(i) =

4>(z) =
0{ei,...,e„} = ^(ei)U---U</.(e„)

<j,{S • e} = <f)SU(<l)e\aS)

#P s) = </>($)

<£(ei,...,e„) = ^(ci)U---U^(c»)

(f>(si x • • • x sn) = (f>{si)l)---U<t>{sn)

</>(e.i) = 4>{e)

(f>t\xi:=ei,...,xn:=en\) = (f>(ei) U • •• U 0(e„)

<£(0S) = $5

#6.z) = <t>(b) (?)

<K/(e)) = #U^e
<p(fiS»e) = (f)SU$(ei\aS)

0(if P then e\ else e2 fi) =
<j>(bee) = 4>e\ab (?)

M.z:=u)0e) = ^(ti)U^(e) \ {1} (?)

214 Z Notation Version 1.1 30i/i June 1995

F. 6 Substitution

F.6 Substitution

F.6.1 Predicates

6© (e = u) = boe = beu

6©(e€ s) = bee G beu
b © true = true

b © false = false

bO^P = -ibQP

bQ(PAQ) = bQPAbQQ

6©(P V Q) = bOPV bQQ

bQ(P^Q) = bQP =» bQQ

bQ(P&Q) = bQP&bQQ

When ab n $PQaS:

6©VS«P = V&oS^P

6©3S»P = 3beS»P

bQ3lS • P = 3lbeS • P

When abnaSn $P= 0 and aS n ^6=0:
6©VS«P = V6oS»6©P

6©3S«P = 36oS«6©P

603^ «P = 3^05 «6©P
When a6 f~l aS = 0:

60S = [60S]
When wf 6:

6 0S = 6 © [60S]

4 y := 4 0 (4 y:= u) P) — i y:= \ y ~v) eu) © P

§ x :=v) 0(4 y := u} P) =

^ y := 4 z := 1/) ©u} Q (§ x := v) © P)

where y $. <}>v

Z Notation Version 1.1 30</i June 1995 215

1

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

F.6.2 Schema predicates

bO[S\P] = bQSAbQP

bQ[->S] = -.6 0 5

bQ [S AT] = bQS AbQT

bQ[SV T] = bQSV bQT

bQ[S =» T] = 6©5=^6©T

ft © [5 <S> T] = bQS &bQT

6©[5ProjT] =

6©5\[si,...,a;„] =

When aSf\((t>boT U aft) = 0:

bQ[JS»T] = VboS*bQT

b 0 [3 5 • T] = 3 6©5 • & 0 T
b © [3X 5 • T] = 3lboS»bQT

bQ[S[xi/y1,...,xn/yn]] =

bQ[S°9T] =

bQ[S<] =

bi 0 [beS] =

216 Z Notation Version 1.1 30th June 1995

F.6 Substitution

F.6.3 Expressions

box = b.x when x £ ab

box = x when x ^ ab

bex[y] =

bei =

6©{ei,...,en} = {6oei,...,ioen}

When ab f~l (j>eCaS:

&©{.?• e} = {6o5»e}

When ab D aS D <f>e= 0 and aS D <f>b=0:

bo{S • e} = {&©£ • &©e}

6©P 5 = Fbos

&©((ei,...,e„)) = (6oei,...,6©e„)

bo(si x ■■• x sn) = besi x ■■■ x 6©sn

be(e.i) = (bee).i

bet\ xi := eu...,xn := en } =

4 xi := 6oei,...,a:n := 6oen}

6o0S = 0&©S

when aö n a5 = 0

&00S = b

when aö = aS

bi@b.x = (bieb).x

be(f(e)) = (bef)(bee)

be(ßS • e) = Agh. Look at Stephen's Fig 9.1

£>©(if P then e\ else e^ fi) =

biQ(bee) =

^ x :— v) ©(^ x := u) ©e) = ^ x := ^ x := v) eu} oe

^ j/ :— v\ ©(^ i := u\ ©e) = ^ ^ :=M !/ := w) euf ©

(4 2/ := 4 ©e)

when x £ (j>v.

Z Notation Version 1.1 30th June 1995 217

F THE LOGICAL THEORY OF Z - NORMATIVE ANNEX

F.6.4 Schema expressions

be[S | P

be[S | P

bo[-^S'

be[S A T

bo[S V T

be[S =» T

be[S <3> T

be[S Proj T

beS\[xi,...,xn

be^/S* T

be[3 S • T

60p! S • T

be[S[xi/y1,...,xn/yn

be[S § T

be[Sq

bio[beS

[beS \b&P]

when ab D aS = 0

[6©S | P]

when aft D $PCaS

[-^beS]

[beS A 6©T]

[6©5 V boT]

[boS^boT]

[beS&beT]

[V6©5»6oT]

P&QS.&OT]

P^QS« boT]

218 Z Notation Version 1.1 30th June 1995

F. 7 Provisos as judgements

F.7 Provisos as judgements

ri-P (aS _ s) r\-p T'y-as = s

T\-.<l>VS*P = x\J(y\z)

Z Notation Version 1.1 30th June 1995 219

G References — Informative Annex

Notes on this section of the Z Standard

Section title: References
Section editor: John Nicholls
Source file: infref.tex
Most recent update: 29th June 1995
Formatted: 3rd July 1995

References

[1] Abrial, J-R., "A Course on System Specification," Lecture Notes, Programming Research
Group, University of Oxford, 1981.

[2] Bowen, J. P., "Select Z Bibliography," available from newsgroup comp. specification.z.

[3] Brien, S.M., Gardiner, P.H.B., Lupton, P.J., Woodcock, J.C.P., "A Semantics for Z," in
preparation, 1992.

[4] Brien, S.M., Nicholls, J.E., Z Base Standard Version 1.0, Working Draft of the Z Standards
Panel. Also published as Technical Monograph PRG-107, Oxford University Computing
Laboratory, 1992.

[5] BSI Standard BS 0 : Part 1 : 1981, A standard for standards. Part 1. Guide to general
principles of standardization, British Standards Institution, 1991.

[6] BSI Standard BS 6154, Method of defining syntactic metalanguage, British Standards
Institution, 1981.

[7] Enderton, H.B., Elements of set theory, Academic Press, 1977.

[8] Gardiner, P.H.B., Lupton, P.J., Woodcock, J.C.P., "A simpler semantics for Z," in J. E. Nicholls
(ed), Z User Workshop, Oxford 1990, Proceedings of the Fifth Annual Z User Meeting,
Springer-Verlag, 1991.

[9] Goldfarb, C. F., The SGML Handbook, Clarendon Press, Oxford, 1990.

[10] Hamilton, A.G., Numbers, sets and axioms, Cambridge University Press, 1982.

[11] Hayes, I. J., (ed.), Specification Case Studies, Prentice-Hall International, 1987.

[12] ISO (International Organization for Standardization), ISO 8879-1986 (E) Information
Processing - Text and Office systems - Standard Generalized Markup Language (SGML),

Geneva: ISO, 1986.

[13] Jones, C. B., Software Development-A Rigorous Approach, Prentice-Hall International, 1980.

[14] Jones, C. B., Systematic Software Development using VDM, Prentice-Hall International, 1986.

220 Z Notation Version 1.1 30th June 1995

[is;

[ie;

[i7;

[is;

[19

[2o;

[21

[22;

[23

[24;

[25;

[26

[27;

[28

[29;

REFERENCES

King, S., S0rensen, I. H., Woodcock, J.C.P., "Z: Grammar and Concrete and Abstract Syntaxes
(Version 2.0)," Technical Monograph PRG-68, Programming Research Group, University of
Oxford, 1988.

Lalonde, W.R., Des Rivieres, J., "Handling Operator Precedence in Arithmetic Expressions with
Tree Transformations," ACM Transactions on Programming Languages and Systems, Vol 3, No
1, January 1981.

McMorran, M.A., Nicholls, J.E., " Z User Manual," Technical Report TR12.274, IBM Hursley
Park, 1989.

Morgan, C. C, "Schemas in Z: a Preliminary Reference Manual," Programming Research
Group, University of Oxford, 1984.

Nicholls, J.E., "Domains of application for formal methods," in Proceedings of Z User
Workshop, University of York, Workshops in Computing, Springer-Verlag, 1992.

Sennett, C. T., "Syntax and Lexis of the Specification Language Z," RSRE Memorandum No.
4367, 1990.

S0rensen, I. H., "A Specification Language," in Program Specification (J. Staunrup, ed.), Lecture
Notes in Computer Science, vol. 134, Springer-Verlag, 1982.

Sperberg-McQueen, CM., Burnard, Lou (editors), Guidelines for Electronic Text Encoding and
Interchange, TEI P3, Text Encoding Initiative, Chicago, Oxford April 8, 1994.

Spivey, J. M., Understanding Z: a specification language and its formal semantics, Cambridge
University Press, 1988.

Spivey, J. M., The Z notation - a reference manual, Prentice-Hall International, 1989. (2nd
edition, 1992).

Stoy, J.E., Denotational semantics: the Scott-Strachey approach to programming language
theory, MIT Press, 1977.

Sufrin, B. A., "Formal Specification: Notation and Examples," in Tools and Notations for
Program Construction (D. Neel, ed.). Cambridge University Press, 1981.

Sufrin, B. A., (ed.), "Z Handbook, Draft 1:1," Programming Research Group, University of
Oxford, 1986.

Woodcock, J. C. P., "Structuring Specifications in Z," Software Engineering Journal, Vol 4, No
1 (January 1989).

Woodcock, J.C.P., Brien, S.M., "W: a logic for Z," in J. E. Nicholls (ed), Z User Workshop,
York 1991, Proceedings of the Sixth Annual Z User Meeting, Springer-Verlag, 1992.

D

Z Notation Version 1.1 30th June 1995 221

