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Abstract 

In this paper, a model-based diagnostic method, which 
utilizes Neural Networks and Genetic Algorithms, is 
investigated. Neural networks are applied to estimate 
the engine internal health, and Genetic Algorithms are 
applied for sensor bias detection and estimation. This 
hybrid approach takes advantage of the nonlinear 
estimation capability provided by neural networks 
while improving the robustness to measurement 
uncertainty through the application of Genetic 
Algorithms. The hybrid diagnostic technique also has 
the ability to rank multiple potential solutions for a 
given set of anomalous sensor measurements in order to 
reduce false alarms and missed detections. The 
performance of the hybrid diagnostic technique is 
evaluated through some case studies derived from a 
turbofan engine simulation. The results show this 
approach is promising for reliable diagnostics of 
aircraft engines. 

Nomenclature 

A8 Nozzle area 
A16 Variable bypass duct area 
BST Booster 
CLM Component Level Model 
FAN Fan 
GA Genetic Algorithms 
HPC High-Pressure Compressor 
HPT High-Pressure Turbine 
LPC Low-Pressure Compressor 

* Aerospace Engineer 
Electronics Engineer, Member 
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LPT Low-Pressure Turbine 
MBD Model Based Diagnostics 
N2 Low pressure spool speed 
N25 High pressure spool speed 
P27D Booster tip pressure 
P42 Inter-turbine pressure 
PS15 Bypass duct static pressure 
PS21 Fan exit static pressure 
PS3 Combustor inlet static pressure 
T27 HPC inlet temperature 
T3 Combustor inlet temperature 
WF36 Fuel Flow 

Introduction 

Over the last several decades, significant research 
efforts have been directed at the development of 
performance diagnostic systems for aircraft engines. 
Such systems can provide a variety of benefits to 
aircraft operators including improved safety,1 improved 
reliability, and reduced operating costs. With the 
significant growth in air traffic projected in the coming 
years, it is expected that the demand for enhanced 
performance diagnostic methods will continue to 
increase. 

In this work, aircraft engine performance diagnostics is 
accomplished by estimating a set of internal engine 
health parameters from available sensor measurements. 
These measurements, which include gas path 
temperatures and pressures, spool speeds, fuel flows, 
and variable geometry, provide information regarding 
the health of the engine. The general approach to 
performance diagnostics can be expressed using the 
following relationship between the engine health 
parameters and the sensed parameters. 

y =f(p, operating condition )+w (1) 
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where y is an mxl vector representing sensed 
parameters, p is an »xl vector of engine health 
parameter deltas (deviations from nominal), /(■) is a 
nonlinear function of p and operating condition such as 
altitude and engine power level, and w is an wxl vector 
representing measurement inaccuracies including bias 
and white noise. The problem is to estimate the health 
parameter delta vector p given the sensed parameter 
vector y. 

Several issues make this problem highly challenging. 
First,   the   only   information   available   for   health 
parameter estimation is the sensed parameters, and the 
number of health parameters to be estimated is often 
greater than the number of sensors available.  For such 
an underdetermined problem, there exists an infinite 
number   of  solutions   for   a   given   set   of  sensor 
measurements, and some assumptions must be made to 
select the best or most probable solution. One option is 
to   assume   that   the   most   likely   solution   has  the 
minimum deviation from the condition estimated in the 
previous time frame assuming the health condition is 
expected to degrade gradually rather than rapidly.   A 
second  issue  is  that  accurate  estimation  of health 
parameters may not be achieved if sensor locations are 
not appropriate.    For instance, assume that a health 
parameter is primarily affecting the flow condition in 
the bypass duct and has a minor influence on the core 
flow.     It will  be  difficult to  estimate  this  health 
parameter from core flow measurements alone even if 
there are an excessive number of sensors.   In such a 
case, some heath parameters are unobservable since 
critical measurements are missing.    Another issue is 
that the sensor measurements are often distorted by 
noise and bias as described in Equation 1, thereby 
masking the true condition of the engine and leading to 
incorrect   estimation   results.       Moreover,   accurate 
statistical   information  to   characterize   measurement 
uncertainty   may   not   be   available,   and   filtering 
techniques are ineffective against biases.  Sensor biases 
are often treated as part of the engine health parameters 
because of their relatively large magnitude and time- 
invariant character.  However, this obviously increases 
the number of unknowns in the estimation problem. 
Finally, the combined effect of system non-linearity and 
sensor   selection   may   result   in   multiple    health 
degradation scenarios producing similar measurement 
shifts.  This is a difficult problem to deal with because 
estimation techniques, in general, give only one set of 
estimated   health   parameters   for   a   given   set   of 
measurements without the capability to indicate the 
level  of confidence  in the  results.     One  possible 
approach which addresses this issue involves the use of 
a failure data base developed a priori from flight tests 
or simulation; several possible solutions are selected 
from the data base and a confidence level is determined 

using statistical approaches. Incorporation of 
intelligence in the estimation architecture is 
indispensable in determining the most reasonable 
solution in the highly nonlinear and noise-corrupted 
problem environment. A health monitoring system 
without the capability to deal with these issues will 
exhibit unacceptable false alarm or missed detection 
rates. 

Researchers have investigated a number of estimation 
techniques such as Weighted Least-Squares,2'3 Kaiman 
Filters,4'5,6 Neural Networks,7'8 and Genetic 
Algorithms.9'10 Each approach has relative strengths, 
however, a technique that is capable of addressing all of 
the above issues has not yet emerged. In this paper, the 
engine diagnostics problem is approached through a 
Model-Based Diagnostic method utilizing Neural 
Networks and Genetic Algorithms. The proposed 
technique takes advantage of the nonlinear estimation 
capability provided by neural networks while 
improving the robustness to measurement uncertainty 
due to bias through the application of Genetic 
Algorithms. The hybrid diagnostic technique also has 
the capability to rank multiple potential solutions for a 
given set of anomalous sensor measurements in order to 
reduce false alarms and missed detections. 

Model-Based Diagnostics 

One approach to aircraft engine performance 
diagnostics that has been investigated by a number of 
researchers is called Model-Based Diagnostics 
(MBD).2"6'8"12 As shown in Figure 1, the MBD 
architecture is composed of an engine model and an 
associated parameter estimation algorithm for 
monitoring engine component performance 
deterioration. The engine model can be linear or 
nonlinear.   In this architecture, a set of engine model 

PLA     1 
Altitude >- 
Mach   J 

Engine 
Health   •*- 
Estimation 

Engine 

Engine Model 
y    - *0 

Parameter 
Estimator 

Model-Based Diagnostics 

Figure 1. Model-Based Diagnostics Architecture. 
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health parameters, p, is tuned such that the model 

outputs match the engine physical sensor 
measurements. It is assumed that the health parameters 
have sufficient authority to describe the actual engine's 
performance variations due to component degradations. 
In addition to estimated health parameters, an 
accurately tuned engine model provides estimated 
sensor values as well as estimations of unmeasurable 
parameters such as thrust and component stall margins. 
With these estimated parameters, a variety of 
accommodating actions can be performed to prevent the 
progression of damage. Estimated health parameter 
information can be integrated with control system logic 
in the development of a comprehensive engine health 
management system which maintains safe operation of 
the propulsion system by simultaneously considering 
performance and engine operability. 

Engine Model 

In this research, the XTE46 engine model developed by 
General Electric Aircraft Engines (GEAE)12 was used. 
This model is constructed as a Component Level Model 
(CLM), which assembles the major components of an 
aircraft engine. The CLM is a nonlinear simulation that 
represents engine physics and is capable of real-time 
execution. The XTE46 engine model is a scaled, 
unclassified representation of an advanced military 
twin-spool turbofan engine. Engine performance 
deterioration is modeled by adjustments to efficiency 
and/or flow coefficient scalars of the following 
components: Fan (FAN), Booster (BST), High-Pressure 
Compressor (HPC), High-Pressure Turbine (HPT), and 
Low-Pressure Turbine (LPT). A set of nine health 
parameters, shown in Table 1, must be estimated 
correctly in order to diagnose the engine health 
condition. There are 17 sensors and three actuators that 

can potentially be used as sensed parameters. In a 
realistic application, such a large set of sensors would 
not be available. After some investigation, a set of 12 
sensed parameters was selected as shown in Table 1. In 
the current study, the performance of the health 
estimator is evaluated in the simulation environment. 
The XTE46 CLM is used to represent both the physical 
engine and the MBD system engine model. 

Nonlinear Effects of Health Degradation 

One of the challenges often encountered in the health 
estimation problem is the highly nonlinear relation 
between health parameters and sensed parameters. It is 
possible that small degradations in health parameters, 
which are considered insignificant from an operability 
perspective, can cause large shifts in the sensor 
measurements. Likewise, significant degradation in a 
single health parameter can result in small measurement 
shifts relative to the standard noise level. Furthermore, 
there is a chance that distinct health degradations will 
result in indistinguishable shifts in sensor 
measurements.11 An example of this is shown in Figure 
2 which compares the measurement shifts for two 
health degradation scenarios at cruise condition: Case A 
for 2% degradations in Fan and LPT efficiencies, and 
Case B for a 3% degradation in Fan efficiency. The 
two cases are distinct, however, the differences in all 
sensor measurements between these two cases are 
within the range of noise. One approach to address this 
problem is to incorporate some intelligence logic which 
can provide a list of possible degradation scenarios for 
given measurement shifts. Even if a diagnostic system 
cannot give a clear answer, such a list can provide very 
useful information to maintenance personnel attempting 
to troubleshoot anomalous engine behavior.   Another 

Table 1. XTE46 Engine Variables 

Health Parameter Sensed Parameter 

1 FAN efficiency 1 N2 
2 FAN flow 2 N25 
3 BST flow 3 T27 
4 HPC efficiency 4 T3 
5 HPC flow 5 PS15 
6 HPT efficiency 6 PS21 
7 HPT flow 7 P27D 
8 LPT efficiency 8 PS3 
9 LPT flow 9 P42 

10 WF36 
11 A8 
12 A16 

IS 

0 ...._  : : ; : :_... 

2 

3 
| | Case A: 2% Reduction in FAN and LP'l Efficiencies 
PS3 Case B: 3% Reduction in FAN Efficiency 

j ; ;             ;             ;             ;              ;             ;             ; 
4 5 6 7 

Health Parameter Number 

..q_.. 

10       11       12 
Sensor Number 

Figure 2. Comparison of Two Degradation Cases 
at Cruise Condition. 
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approach is to use sensor measurements from more than 
one operating point so that a unique set of measurement 
shifts can be assigned for each degradation scenario. 
This approach takes advantage of the non-linearity in 
the system. Diagnostics based on multiple operating 
points ' has been investigated by several researchers, 
but it has some limitations. First, it must be assumed 
that a given health degradation does not progress as 
multiple operating points are traversed. Second, it takes 
additional time to reach a diagnosis. Third, additional 
restrictions may be imposed on the selection of 
diagnostic sensors. In the current research, feedback 
parameters regulated by a control system must be 
excluded from the diagnostic sensor suite since bias in a 
feedback parameter causes other sensor measurements 
to shift. In such a case where a bias has a health- 
degradation-like effect on multiple sensors, the 
nonlinear function in Equation 1 becomes a function of 
that bias in addition to health parameters and operating 
condition. This obviously increases the number of 
unknown parameters in the problem. Since different 
parameters may be regulated at different operating 
points due to control mode changes, the number of 
diagnostic sensors which can be used across multiple 
operating points is limited. As the number of operating 
points increases, the impact of the above three issues 
increases, and a multi-point diagnostic approach 
becomes less practical. 

Hybrid Neural Network-Genetic Algorithm 
Estimation Architecture 

Accurately estimating the health parameters is a critical 
issue for the development of a MBD system. Any 
estimation architecture must be able to handle non- 
linearity as well as be robust to sensor noise and bias as 
discussed earlier. 

The estimation architecture in this paper combines 
neural networks and Genetic Algorithms (GA) for 
aircraft engine performance diagnostics at steady-state 
conditions. It is assumed that the sensor measurements 
are time averaged; however, they still contain some 
uncertainty due to sensor noise and modeling errors. 
Neural networks exhibit excellent nonlinear estimation 
capabilities, but the training set required to fully 
represent all possible permutations of health parameters 
and sensor bias is prohibitively large. It would take 
excessive time to train such neural networks, and their 
performance might not reach a satisfactory level. In 
order to avoid this problem, the approach taken by the 
hybrid estimator designates neural networks for the 
health estimation task while designating GA for the 
sensor bias detection task. This approach reduces the 
size of the training set significantly. 

The problem setup is shown in Figure 3. The vector/? 
represents a set of health parameter deltas to be 
estimated. In the simulation environment, the 
measurement uncertainty vector in Equation 1 is 
decomposed as 

w = b + v (2) 

where b and v represent a bias vector and a white noise 
vector, respectively. In this paper, it is assumed that at 
most one sensor can be biased at a time to make the 
problem manageable. Thus, the bias vector contains 
one non-zero value at most, and its magnitude must be 
large relative to the expected noise magnitude. This 
vector will be estimated; however, the estimated value 
of the non-zero element will be under the influence of 
noise to some degree since bias and noise contained in 
measurements are indistinguishable. Therefore, an 
estimated bias vector will have only one non-zero 
value, just as the actual bias vector b does, but the 
estimated value will be an approximation of the largest 
normalized value contained in the uncertainty vector w. 
The unknown vectors p and b must be estimated based 
on the available physical sensor measurements^. 

As shown in the figure, the hybrid estimator 
architecture is composed of the bias data set, the neural 
network estimator, the engine model, and the GA 
optimization technique. The bias data set, which is 
composed of a large number of bias vectors, is defined 
a priori and is used by the GA in the search for a bias 
vector that matches well with an actual bias contained 
in the measurement vector. The neural network 
estimator is trained off-line with noise-corrupted but 
bias-free sensor measurements, and it will perform 
sufficiently well in estimating health parameters as long 
as the sensor measurements do not contain any bias. 
For a given set of estimated health parameters and 
sensor bias, the engine model is executed and its 
outputs are evaluated against the physical sensor 
measurements. The bias data set, the neural network 
estimator, and the engine model are coordinated by the 
GA in the search for an optimal solution. 

Bias Data Set 

The bias data set defines the solution space over which 
the GA searches for an optimal sensor bias solution. It 
is composed of a set of bias vectors, each of which has 
a non-zero value only in the &* entry, defining the bias 
value and also identifying the Ä* sensor as biased. A 
vector with zeros in all entries is also included in the 
data set to account for the case where no bias is present. 
The bias values for each sensor are equally spaced, 
based on the noise standard deviation a over a range of 
possible values. The minimum bias value is defined by 
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the detection threshold while the maximum value is set 
in accordance with a bound that would typically 
disqualify the sensor for being out of range, as shown in 
Figure 4. The detection threshold is set large enough so 
that noise is unlikely to be interpreted as a bias. In this 
paper, the threshold is set to 4a while the upper bound 
is set to 20a. 

Neural Network Estimator Design 

The neural network estimator is the key element of the 
hybrid architecture. As mentioned earlier, the neural 
network estimator does not need to account for sensor 
bias, but it still has to tolerate the effects of 
measurement uncertainty due to noise. The robustness 
of the estimator can be improved by using noise- 
corrupted sensor measurements during training so that 
neural networks will learn to distinguish the range of 
measurement shifts due to noise and those due to health 
degradations. However, since the number of health 
degradation scenarios that an engine may encounter is 

virtually infinite, it is still a challenging problem to 
develop an estimator that performs adequately well. It 
was found that sensor measurements from at least two 
operating points were needed in order to achieve the 
desired estimation performance level. This problem 
may be due to sensor location, sensor noise, highly 
nonlinear engine dynamics, or a combination of these 
as discussed earlier. Table 2 compares the performance 
of two estimators; one designed at cruise condition and 
another designed using data from cruise and takeoff 
conditions. For the two-point design, the estimation 
process is initiated after the steady-state data at the 
second operating point are collected. Both of them are 
composed from nine multiple-input, single-output sub- 
estimators, each of which was developed using a 
feedforward neural network. They were trained by 
backpropagation using about 3000 degraded engines. 
The single-point design has 12 inputs while the two- 
point design has 24 inputs. The table shows the 
standard deviation and mean value of estimation errors. 
The result was obtained using the sensor measurements 
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of 500 degraded engines without noise. These 500 
engines were not used in the neural network training. 
Although a single-point diagnostic approach is desired 
as discussed earlier, it was found to provide 
unsatisfactory estimation accuracy. Thus a muti-point 
estimator is utilized. It should be noted that some of the 
health parameters are more difficult to accurately 
estimate than others. 

Table 2. Performance Comparison of Estimators 

Single-Point Design 
at Cruise 

Two-Point Design 
at Cruise & Takeoff 

Mean 
Absolute 

Error 
(%) 

Standard 
Deviation 

of 
% Error 

Mean 
Absolute 

Error 
(%) 

Standard 
Deviation 

of 
% Error 

FAN 
Eff 

9.00 13.01 5.55 9.15 

FAN 
Flow 

5.42 9.28 2.92 4.77 

BST 
Flow 

6.08 9.90 5.03 8.55 

HPC 
Eff 

9.64 15.22 4.19 7.79 

HPC 
Flow 

9.39 15.69 5.52 9.30 

HPT 
Eff 

8.86 14.66 4.91 8.50 

HPT 
Flow 

2.94 4.92 1.51 2.65 

LPT 
Eff 

10.33 15.16 6.38 10.09 

LPT 
Flow 

5.63 9.11 2.79 4.70 

Genetic Algorithm Optimization Process 

To find an optimal solution in the bias data set, the GA 
search sequence shown in Figure 3 proceeds as follows. 

First, a bias vector bf selected from the bias data set is 

subtracted from physical sensor measurement deltas 
(the deviations from nominal condition) Ay, and the 
resultant vector is fed into the neural network estimator. 
If the selected bias vector is identical or close to the 
true bias b, then the bias in the measurements is 
cancelled out. This allows the neural network estimator 
to generate an accurate estimation of the health 
parameter vector pi from the bias-free measurements. 

The engine model is run with inputs of bt and pi to 

synthesize engine sensor outputs yt for comparison 

with the sensor measurements. 

For each selected bias vector bt, the following cost 

function, which accounts for the multi-point estimator, 
is computed. 

J,= 
j=iL 

(yih-yj 
wt 

(y<)j-yj 

\K 

Takeoff 

(3) 

where m is the number of sensors and 

WJ 
f <7 •    when   j — k 

13(7 j    otherwise 
(4) 

where q, is a standard deviation of noise in sensory, and 
k indicates the non-zero entry of a selected bias vector. 
The parameter Wj normalizes the estimation error while 
imposing a larger penalty for discrepancies in the jfc* 
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sensor. If a selected bias vector contains a bias 
estimation value in the wrong sensor, the estimation 
error in the £* entry is magnified. The noise standard 
deviation for the sensors changes with operating point. 
Therefore, in the above equation, Wj and noise 
contained in y>j are based on the corresponding sensor c 
values at the specific operating point. However, the a 
value used to create bias intervals in the bias data set is 
based on the a value at the cruise condition. 

A value indicating the estimation accuracy, or fitness 
value, for each selected bias vector is defined as 

run for relatively few generations. In this highly 
nonlinear and noisy environment, it is possible to have 
dissimilar faults producing similar sensor signatures, as 
was illustrated in Figure 2. Running the GA until 
convergence to a single individual can lead to erroneous 
conclusions regarding engine health. After the search 
process, the searched bias vectors are ranked based on 
their corresponding fitness values. A list of several 
fault candidates can help to avoid false alarms or 
missed detections. Moreover, running the GA for fewer 
generations can save a significant amount of computing 
time. 

Fitness, = ^y 
J, 

(5) 

where K is a constant for normalization. In this paper, a 
fitness value larger than 1 indicates good agreement 
between model outputs and actual measurements. The 
fitness value becomes larger as the output error between 
yt and y diminishes. 

A unique aspect of the GA search process is that a set 
of multiple points in the solution space is evaluated at 
each iteration, and the content of this set is updated 
from iteration to iteration. In the GA problem setup, 
each bias vector in the data set is referred to as an 
"individual," and a number of individuals are selected 
from the data set to construct a "population." At each 
iteration, or "generation," the entire population is 
evaluated, and a fitness value is assigned to each 
individual. The higher the fitness value, the higher the 
probability that the corresponding individual will 
survive into the next generation. The population of the 
next generation is constructed from individuals of the 
previous generation and individuals newly introduced 
from the data set. As the population is updated from 
generation to generation, those individuals with high 
fitness values will occupy the major portion of the 
population. The objective of the GA optimization is to 
find the best individual among the data set through this 
search process. Unlike gradient search methods, the 
GA search process starts from multiple points set by the 
initial population; this helps to avoid convergence to a 
local peak in the highly nonlinear environment. 
Moreover, the fitness values indicate the level of 
confidence in the estimation. If an appropriate 
estimation set is not found in the search process, the 
fitness value will remain small. This indicates the best 
estimation set should not be relied upon for accurate 
diagnosis of engine health although an anomalous 
condition may exist. 

A GA is generally run for many generations until the 
set of individuals constructing the population converges 
to a single individual.   In the current study, the GA is 

Results of Hybrid Estimator Performance 

This section shows some of the results obtained from an 
extensive assessment of the hybrid estimator. Table 3 
shows the estimation of health parameters from sensor 
measurements which contain no bias. The set of actual 
health parameters shown in Table 3 was not a part of 
the neural network estimator training set. There are no 
clear guidelines to define the adequate performance 

Table 3. Health Parameter Estimation Without 
Sensor Bias 

Health 
Parameter 

Actual 
Condition 

(%) 

Estimated 
Condition 

(%) 

% Error 
(P-P)/* 100 

/p 

FANEff -2.900 -2.793 -3.682 
FAN Flow -1.800 -1.819 1.029 
BST Flow 0.000 0.000 
HPC Eff -2.300 -2.177 -5.367 
HPC Flow -1.900 -2.016 6.078 
HPT Eff -1.400 -1.612 15.138 
HPT Flow 1.000 Ö.883 -11.750 
LPT Eff -2.000 -2.199 9.930 
LPT Flow 2.100 2.093 -0.320 

Normalized Estimation En -or (P->J£ 
Sensor Cruise Takeoff 
N2 0.750 -0.069 
N25 -0.155 0.755 
T27 -0.378 0.007 
T3 0.482 0.028 
PS15 0.146 0.029 
PS21 -0.059 0.163 
P27D 0.281 0.600 
PS3 0.155 1.095 
P42 -0.235 0.467 
WF36 -0.222 0.412 
A8 0.198 0.121 
A16 -0.263 -0.062 
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level in the highly nonlinear environment of the current 
study. In this paper, the performance of the estimator is 
considered satisfactory if the maximum health 
estimation error is less than 30%. Table 3 shows both 
good sensor matching and good health estimation 
accuracy, meeting with the performance requirements. 
It should be noted that estimation accuracy is 
influenced by sensor noise. 

When one of the sensors is biased, the neural network 
estimator alone can no longer accurately estimate health 
parameters. The following example shows a case 
where the fuel flow sensor has a 9.5a bias with the 
same health degradation as shown in Table 3. This bias 
magnitude is in the medium range of the current 
problem setup. After the GA search process, the hybrid 
estimator provides the rank of bias estimations as 
shown in Table 4 and the corresponding plots shown in 
Figure 5. Table 4 shows the identification numbers of 
biased sensors, bias values, and corresponding fitness 
values. Sensor matching is considered adequate if the 
fitness value is larger than 0.75 and is considered very 
good if the fitness value is larger than 1. Therefore, the 
top four bias estimations are good candidates for 
representing the actual bias. Figure 5 shows the fitness 
values of individuals (bias vectors) selected by the GA 
during the search process. The horizontal axis varies 
from -20c to 20c with a lc increment. The bias vector 
representing the no-bias case is shown at the center of 
all plots, providing a baseline for comparison between 
estimations with and without bias detection. As 
mentioned earlier, the detection threshold is set to 4c. 
The bias data set contains 409 individuals and the 
population size is set to 50. The initial population 
included four individuals from each sensor, two 
individuals for each bias direction. 

Table 4. Rank of Sensor Bias Estimation After the 
GA Search (Case 1: 9.5a Bias in WF36) 

Rank Sensor ID Bias Value 
(a) 

Fitness 

1 10 (WF36) 10 1.036 
2 10 (WF36) 9 1.020 
3 10 (WF36) 11 0.878 
4 10 (WF36) 8 0.852 
5 10 (WF36) 7 0.723 
6 10 (WF36) 12 0.594 
7 10 (WF36) 6 0.554 
8 10 (WF36) 13 0.512 
9 10 (WF36) 5 0.458 
10 10 (WF36) 14 0.402 

nim I mm ■ 

aim I H n 

5 rrntB I 

I   HI. mm   II I I 

Figure 5. Fitness Values of Individuals Selected by 
GA Search. (Case 1: 9.5a Bias in WF36) 

Table 5 shows the health parameter estimation and 
sensor matching of the estimator with and without bias 
detection. The estimation result of the individual 
ranked first in Table 4 is shown. For the estimator with 
bias detection, the performance requirement is met. 
Although the estimation errors of HPT efficiency and 
HPT flow coefficient are relatively high among the 
health parameters, a similar trend was noticed in the 
previous example where no bias was present, as was 
shown in Table 3. This illustrates the highly effective 
performance of the hybrid estimator in isolating a 
sensor bias. 

The task of bias detection and estimation becomes 
easier for larger biases. With a large bias in the 
measurements, the cost function value of Equation 3 
ideally remains large unless the bias is canceled out by 
an accurate estimate. This task becomes more difficult 
for small biases which are less distinguishable from 
noise. Table 6, Figure 6, and Table 7 show a case 
where the fuel flow sensor has a 4.5a bias with the 
same health degradation as shown in Table 3. Table 6 
and Figure 6 show that the individuals representing the 
bias in the correct sensor (WF36) no longer dominate 
the GA population as they did in the previous case with 
a larger bias value. Depending on the sensor noise 
profile, this ranking can change, and the correct sensor 
may not be ranked highest. The performance goal of 
the hybrid estimator is to at least capture the correct 
sensor in the ranking of plausible solutions in order to 
avoid missed detection. For smaller bias magnitudes, 
the robustness of the neural network estimator is 
demonstrated. The bias vector representing the no-bias 
case (Sensor ID 0) is ranked 4th overall, and the 
corresponding health estimations and sensor matching 
shown in Table 7 are well within the acceptable range. 
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Table 5. Health Parameter Estimation With and Without Bias Detection 
(Case 1: 9.5a Bias in WF36) 

With Bias Detection Without Bias Detection 

Health Parameter Actual 
Condition (%) 

Estimated 
Condition (%) 

% Error Estimated 
Condition (%) 

% Error 

FAN Efficiency -2.900 -2.788 -3.876 -2.950 1.722 
FAN Flow -1.800 -1.811 0.596 -1.819 1.076 
BST Flow 0.000 0.000 -0.134 
HPC Efficiency -2.300 -2.172 -5.578 -2.305 0.234 
HPC Flow -1.900 -2.027 6.658 -1.497 -21.213 
HPT Efficiency -1.400 -1.614 15.254 -1.715 22.516 
HPT Flow 1.ÖÖÖ 0.875 -12.484 2.201 120.045 
LPT Efficiency -2.ÖÖÖ -2.197 9.857 

-2.303 
15.146 

LPT Flow 2.100 2.Ö83 -0.819 2.393 13.942 

With Bias Detection Without Bias Detection 

Error (^-^ Error ^~y)^ 

Sensor Actual Bias Estimated 
Bias 

Cruise Takeoff Cruise Takeoff 

N2 0 0 0.751                -0.070 3.432 -0.109 
N25 0 0 -0.154                 0.754 -1.896 -0.352 
T27 0 0 -0.377                 0.006 0.453 0.078 
T3 0 0 0.482                  0.027 0.204 -0.275 
PS15 0 0 0.146                  0.030 -1.439 -0.369 
PS21 0 0                    -0.058 0.163 0.767 0.100 
P27D 0 0                      0.281 0.600 1.217 0.543 
PS3 0 0                     0.157 1.091 -3.064 -10.008 
P42 0 0 -0.234                 0.466 -0.561 0.194 
WF36 9.5o lOo -0.055                  0.490 -2.906 -0.645 

A8 0 0 0.198                  0.120 2.313 0.397 
A16 0 0 -0.263                 -0.063 0.159 -0.488 

Table 6. Rank of Sensor Bias Estimation for Small 
Bias (Case 2: 4.5<j Bias in WF36) 

Rank Sensor ID Bias Value 

(a) 
Fitness 

1 10 (WF36) 5 1.035 
2 10 (WF36) 4 1.022 
3 10 (WF36) 6 0.878 
4 0 (No bias) 0 0.863 
5 9 (P42) 4 0.828 
6 12 (A16) 4 0.813 
7 12 (A16) 5 0.776 
8 11 (A8) -4 0.776 
9 9 (P42) 5 0.765 
10 12 (A16) 6 0.757 

N2 

III 
T3 

I 1 In 
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«»■<> i 
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Figure 6. Fitness Values of Individuals Selected by 
GA Search. (Case 2: 4.5a Bias in WF36) 
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Table 7. Health Parameter Estimation With and Without Bias Detection 
(Case 2: 4.5a Bias in WF36) 

With Bias Detection Without Bias Detection 

Health Parameter Actual 
Condition (%) 

Estimated 
Condition (%) 

% Error Estimated 
Condition (%) 

% Error 

FAN Efficiency -2.900 -2.787 -3.887 -2.865 -1.224 
FAN Flow -1.800 -1.810 0.538 -1.864 3.557 
BST Flow 0.000 0.000 0.000 
HPC Efficiency -2.300 -2.175 -5.456 -2.228 -3.137 
HPC Flow -1.900 -2.026 6.624 -1.881 -1.018 
HPT Efficiency -1.400 ■1.608 14.876 -1.642 17.259 
HPT Flow 1.000 0.877 -12.310 1.235 23.506 
LPT Efficiency -2.000 -2.197 9_g24 -2.227 11.330 
LPT Flow 2.100 2.085 -0.706 2.220 5.723 

With Bias Detection Without Bias Detection 

Error ^~yY Error ^~yY 

Sensor Actual Bias Estimated 
Bias 

Cruise Takeoff Cruise Takeoff 

N2 0 0 0.759 -0.070 1.237 -0.021 
N25 0 0 -0.149 0.754 -0.365 0.674 
T27 0 0 -0.376 0.006 -0.256 -0.002 
T3 0 0 0.483 0.027 0.409 -0.044 
PS15 0 0                       0.144 0.029 -0.075 0.057 
PS21 0 0                     -0.057 0.162 -0.014 -0.115 
P27D 0 0                       0.283 0.600 0.316 0.278 
PS3 0 0                       0.161 1.093 -0.593 -1.506 
P42 0 0                     -0.232 0.466 -Ö.362 0.260 
WF36 4.5a 5o                   -0.052 0.489 -1.617 -0.198 
A8 0 0                     0.203 0.120 0.497 0.117 
A16 0 0                    -0.260 -0.063 -0.269 -0.201 

Concluding Remarks 

A hybrid estimation technique for aircraft engine 
performance diagnostics was presented in this paper. 
The hybrid architecture consists of Neural Networks 
and Genetic Algorithms, which function synergistically 
for estimating health parameters from biased sensor 
measurements. Neural networks are well suited for 
estimating health parameters in a highly nonlinear 
environment. However, a major problem arises when 
the size of training data set becomes prohibitively large. 
In order to avoid this problem while improving the 
robustness to measurement uncertainty, Genetic 
Algorithms were applied for sensor bias detection. The 
hybrid estimator exhibited excellent performance when 
at most one sensor was biased. The task of health 
parameter estimation became more difficult when the 
bias was of smaller magnitude and was thus less 
distinguishable from the standard noise level. Since 
measurement shifts due to health degradations are often 
small compared to sensor noise, and distinctive health 
degradations do not necessarily result in distinctive 

measurement shifts, it is difficult to obtain one solution 
with a high level of confidence. This problem was 
handled by ranking individuals in the GA population set 
based on their corresponding fitness values. This 
approach reveals a potential method of reducing the rate 
of false alarms and missed detections. 

There are, however, areas for further improvement. A 
systematic way of selecting and/or locating sensors for 
health estimation is desired. Simply increasing the 
number of sensors for health diagnostics does not 
guarantee improved estimation performance. 
Moreover, as the number of sensors increases, the 
chance of having biases in multiple measurements 
increases. Another desired improvement is a reduction 
of the required computing time. A real-time, on-board 
diagnostic system which can be integrated with a 
control system is desirable, but difficult to achieve with 
the proposed architecture. In future work, new 
approaches that allow improved computing speed 
without sacrificing reliability will be investigated. 
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