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ABSTRACT 

The problem of time difference of arrival (TDOA) is important in underwater 

acoustics for both passive and active sonar. Classical approaches to this problem are 

based on generalized cross-correlation (GCC) methods implemented in the frequency 

domain. After appropriate weighting of the cross spectral data in the frequency 

domain, an inverse discrete Fourier transform (IDFT) is performed and the peak of 

the resulting GCC function is located in the time domain. 

This thesis shows that the cross-spectrum of the data satisfies an appropriate 

signal subspace model; therefore the IDFT can be replaced with a signal subspace 

technique such as MUSIC. The result is an enhanced ability to locate the peak. Fur- 

ther, application of methods such as root-MUSIC or ESPRIT produce direct numeri- 

cal estimates for TDOA without the need to search for a peak. Results are presented 

for an extensive set of simulations using both synthetic signal data and data from 

a ocean acoustic propagation model (MMPE). Results are further presented for an 

application of the new method to target localization and tracking. In all cases results 

are compared using both the new methods and the classical methods. 
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Time of Arrival Difference 
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vs source speed 

w frequency vector 

X observation vector 

Xi(t) received signal at buoy i 

zs source depth 

IX\X2 coherence estimate 

A/ maximum frequency shift 

Sf frequency sampling 

V noise vector 

e angle 

A matrix of eigenvalues of correlation matrix 

■H-noise matrix of noise eigenvalues of correlation matrix 

A-sig matrix of signal eigenvalues of correlation matrix 

A« eigenvalue or generalized eigenvalue of correlation matrix 

=n normalized noise covariance matrix 

^ variance parameter 

* propagator function 

0,05 direction of source motion 

tf envelope function or PE field function 

IpE Eckart filter 

Ipg general frequency weighting 

l])p PHAT frequency weighting 

tpR Roth frequency weighting 

i>s SCOT frequency weighting 
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EXECUTIVE SUMMARY 

In the passive sonar problem, signals received at two or more sensors or hy- 

drophones can be used to estimate the position and velocity of a detected acoustic 

source. Passive systems, unlike radar or active sonar systems, cannot control the 

amount of transmitted energy to be reflected from the source. However, the covert- 

ness of passive systems can be advantageous, both in military and biochemical appli- 

cations. In practice, the number of receiving sensors, the observation time and the 

ratio of the background noise to the source signal strength after propagation loss, 

when balanced against total system cost, dictate the feasibility of passive systems. 

In the ocean, sound usually arrives at each individual omnidirectional receiver 

through more than one path (e.g., direct and/or surface, bottom reflected paths). In 

order to deal with this problem from a signal processing point of view, it is useful to 

decouple two separate cases: the multipath and the planar problems. For multipath 

signals, a simple model of the received signal is that each receiver sees a signal plus an 

attenuated and delayed signal corrupted by additive uncorrelated noise, coming from 

different directions. For the planar problem (i.e., when all receivers and the source 

are in the same plane), it is usually assumed that the energy arrives at each receiver 

through only one propagation path in the same plane with all receivers and source. 

This means that the time delay to be estimated is the travel time of the acoustic 

wavefront between pairs of receivers, so that the source position and velocity can be 

estimated. 

In this thesis we deal with the time difference of arrival (TDOA) problem. 

We begin by examining previous research for estimating time difference of arrival 

known as generalized cross-correlation (GCC) methods. We refer to these as "classical 

methods." With these methods, data from the two channels are transformed to 

the frequency domain to form the conjugate product XY* (cross-spectrum). After 

appropriate weighting, an inverse discrete Fourier transform (IDFT) is performed and 
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the peak of the resulting generalized cross-correlation function is located in the time 

domain. Our main goal in this thesis was to prove that for this kind of problem it 

is possible to use so-called signal subspace methods. More specifically, we showed 

that the aforementioned cross-spectrum of the data satisfies an appropriate signal 

subspace model. In this way we were able to replace the IDFT with a signal subspace 

technique such as MUSIC, Minimum Norm, PCLP, or similar procedure. In our 

problem we apply the subspace methods in the frequency domain and observe then- 

results in the time domain. This is in contrast to their more usual application for the 

estimation of signals in noise. We also applied the subspace methods of root-MUSIC 

and ESPRIT, which produce direct numerical estimates for TDOA, without the need 

to search for a peak in the "pseudo-correlation" function. Both types of methods 

performed efficiently. 

We continued with a thorough series of simulations using synthetic data (MAT- 

LAB) and data created by an ocean acoustic propagation model (MMPE), each time 

testing the performance of all methods. The results showed that the subspace meth- 

ods performed as well or better than the classical methods, especially with low SNR 

conditions and with more difficult environmental data. Finally we applied the var- 

ious TDOA algorithms (classical and subspace methods) to the problem of target 

localization and tracking. All methods produced successful results. 
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I.        INTRODUCTION 

The problem of time-delay estimation (TDE) is important in the field of under- 

water acoustics for both passive and active sonar. In this problem a signal is emitted 

from a source (e.g., a submarine) and is received at two spatially separated sensors. 

If si(t) represents the original undistorted source and rii(t) and n^it) represent se- 

quences of uncorrelated, additive noise, then the signals received at two spatially 

separated sensors may be modeled as 

x1(t) = s1{t) + n1{t) 

x2(t) = aSl{t + D) + n2(t) (1.1) 

where D is the time delay between the two sensors. In a more complicated scenario, 

the received signals are attenuated and contain multipath reflections of the original 

source created by propagation through the ocean environment, in addition to the 

noise, as shown in Fig. 1. In the unknown source case (generally passive sonar), £i(£) 

and X2(t) and the ordinary cross correlation may be used to estimate the position 

and velocity of a moving source. For the known source case (generally active sonar) 

ordinary correlation involves using the original source and only one received signal 

to estimate the time it takes the signal to travel from the source to the receiver, i.e., 

m(t) = 0 in the model given above. In the absence of propagation distortion, this is 

matched filtering, which is the optimum linear method when the noise is white. 

Once the signal has been detected and the time delay D has been estimated, 

the time delay can be used to estimate the bearing angle B shown in Fig. 2. The 

bearing estimate is given by the approximate rule 

B ^ cos"1 (cD/L) (1.2) 

where c is the speed of sound in water, B is the bearing estimate and D is the time 

delay estimate.   It can be shown that B is the angle that the hyperbolic "fine of 
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Figure 1.   Model of direct and surface-reflected sound ray paths received at three 
sensors. 

SOURCE 

BEARING B 

Figure 2. Planar model of two receivers separated by a distance L. 

position" makes with the axis of the receivers; hence the approximation Eq. (1.2) is 

increasingly accurate as the range to the acoustic source increases. 

The critical part for the passive bearing estimation problem, or in general 

for the localization, is the accurate estimation of time delay. In the literature, this 

problem is treated using terms like time delay estimation (TDE), time delay (TD), 

time difference of arrival (TDOA), group delay, time-of-arrival difference (TOAD), 

phase delay and others. For our purposes it is assumed that all these terms are 

"identical" and the terms TDE or TDOA will be used for the rest of our discussion. 



A.     PREVIOUS RELATED RESEARCH 

Two conceptual procedures are basically known according to [Ref. 1]. 

• An intuitive approach and a familiarity with detection theory. 

• A rigorous application of the maximum likelihood (ML) for white signals in 
white noise. 

In both conceptual procedures it is attempted to "advance" the delayed received sig- 

nal by a hypothesized amount in order to align it with the other received signal. In 

other words both received signals Xi(t), X2(t) contain the same transient Si(t), coming 

from the same source, "buried" in different noise, ni(t), ri2(t), and the only difference 

between them, is the time of arrival (TOA). After the above hypothesis either they 

are summed, squared and averaged as shown in Fig. 3 or multiplied and averaged 

as shown in Fig. 4.    In both cases the hypothesized delays are adjusted in order to 

S7<t)»S2(t-D>5) ^ 

+ 2S(t)S(i-I>fO) 7'/< ~ J,(D> 

maamce J{0) 

Figure 3. Conceptual delay, sum, square and integrate configuration. 

maximize the configuration output. From the figures it is observed, that both config- 

uration outputs consist of "signal-cross-signal" terms. Further, both configurations 

are ML estimators for time delay under the assumptions that the signal and noises 

are white and mutually uncorrelated [Ref. 1]. When the signal and noise spectral 

characteristics are nonwhite, the received waveforms must be prefiltered with partic- 

ular equiphase filters (i.e., the prefilters must have the same phase characteristics) to 
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Figure 4. Conceptual cross correlator configuration. 

accentuate the frequency bands with good signal-to-noise ratio (SNR). It is of inter- 

est to note that a signal detector can be realized by comparing either configuration 

output to a threshold. Moreover in terms of detection (but not estimation) in the 

presence of noise, the system in Fig. 3 outperforms the system in Fig. 4 [Ref. 1]; 

however, the system in Fig. 3 requires prior knowledge of power levels in order to 

set the proper threshold. The system in Fig. 4 has a zero mean output in the signal 

absent, noise present case. 

A number of different approaches have been taken so that the conceptual 

systems in Figs. 3 and 4 can be achieved. The system in Fig. 3 can be implemented 

as shown in Fig. 5 which is called a time delay beamformer. It is presumed that s(t) is 

a sampled version of the original broadband time signal and that the sampling rate is 

large in comparison with the required Nyquist rate. In particular, the sampling rate 

is much greater than twice the bandwidth. The system configuration shown in Fig. 

4, including prefilters can be instrumented by a generalized cross-correlation (GCC) 

function, which in general is the inverse fast Fourier transform (FFT) of the product 

of a weighting function and the estimated complex cross-power spectrum. This means 

that data from the two sensors are transformed to the frequency domain to form the 

conjugate product XY*. After appropriate weighting, an inverse DFT is performed 

and the peak of the resulting generalized cross-correlation function is located in the 



Figure 5. Time-domain beamformer implementation of one conceptual configuration 
for three hypothesized delays. 

time domain. All the methods that follow this general approach will be referred to in 

this thesis as classical methods and quite extensive research has been conducted on 

these methods [Ref. 2, 3, 4, 1, 5]. 

More recently, techniques based on higher order statistics such as bicorrelation 

and bispectra have been introduced to the problem [Ref. 6, 7, 8, 9]. These methods 

are claimed to have some advantage when there is Gaussian noise present which is 

correlated between sensors. In particular, since higher order cumulants of Gaussian 

noise are theoreticaUy zero, these methods are practically "blind" to Gaussian noise. 

B.     THESIS OBJECTIVES 

This thesis has the following goals. The first objective is to research and 

develop an algorithm that can be used for Time-Difference-Of-Arrival (TDOA) esti- 

mation based on subspace methods. The next objective is to evaluate the performance 

of this algorithm by comparing it with the respective algortihm based on generalized 

cross-correlation (GCC) methods implemented in the frequency domain, through a 

thorough set of simulations using synthetic (MATLAB) and model-based acoustic 

(MMPE) data. Finally the last goal in this thesis is to develop localization and 

tracking algorithms implementing the above methods, and to evaluate their perfor- 

mance in target's extraction data (position-course-speed). 



C. THESIS APPROACH 

In this thesis we suggest an alternative to the classical methods based on 

some more modern approaches to spectral analysis. In particular, we focus on meth- 

ods based on the signal subspace concept. We observe that the data product XY* 

computed in the classical methods satisfies a signal subspace model and therefore a 

number of well-known techniques such as MUSIC [Ref. 10], ESPRIT [Ref. 11] and 

others can be used to estimate the time delay. Mathematically, the procedure can 

be viewed as replacing the inverse DFT in the classical methods with one of these 

other techniques. As we later see from experimental results the new methods retain 

the accuracy of the classical methods, but give a much "cleaner" indication of the 

peak. Further, the use of methods such as root MUSIC or ESPRIT for the estimation 

provides direct numerical estimates for the time delay without the need to search for 

a maximum. We also have to mention that we have obtained similar behavior with 

the "Maximum Likelihood" or "Minimum Variance" method proposed by J. Capon 

[Ref. 12, 13]. Our focus in this thesis however is on the subspace methods. 

D. THESIS OUTLINE 

The remainder of this thesis is organized as follows. Chapter II provides a 

short introduction of the concepts of the classical methods and also describes the 

special characteristics of each one method, that is going to be used later in the sim- 

ulations from this family of methods. Chapter III discusses the general idea behind 

the subspace methods, gives a brief insight of all the methods from this group, and 

finally provides an argumentative presentation of the way that these methods are im- 

plemented into our problem (TDOA). Chapter IV presents the whole thesis approach 

to the TDOA problem, using various synthetic data (MATLAB software) and model 

based acoustic data using the Monterey-Miami Parabolic Equation (MMPE) model 

[Ref. 14, 15] for more realistic results, under different conditions/environments each 

time. Chapter V discusses the simulation results for both kinds of data (synthetic and 



model-based acoustic) for the TDOA problem. Chapter VI develops a localization 

algorithm in two dimensions and discusses the implementation of the above methods 

in this localization problem in order to examine, how they ultimately function in the 

desired goal, namely the "Target Detection and Localization." Chapter VII further 

extends the research to "Target Tracking Problem." For this, one has to estimate not 

only target position, but also target course and speed, using Doppler measurements 

provided by MMPE. Chapter VIII presents conclusions and suggestions for future 

work. 
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II.        CLASSICAL METHODS 

A.     GENERAL APPROACH 

We have seen that the transmission of a short transient signal from a remote 

source monitored in the presence of noise at two spatially separated sensors can be 

mathematically modeled as 

x^t) = si(t) + ni(t) , 

x2(t) = asi(t + D) + n2(t) , (III) 

where Si(t), rii(t), and ri2(t) are real, jointly stationary random processes. Signal 

Si(t) is assumed to be uncorrelated with noise ni(t) and n2(t). 

One common method of determining the time delay D is to compute the cross 

correlation function 

^«W = j^ [xx{t)x2{t - r)dt , (II.2) 

where T represents the observation interval. In order to improve the accuracy of the 

delay estimate D, it is desirable to prefilter xi(t) and x2(t) prior to integration in Eq. 

(II.2). As shown in Fig. 6, Xi may be filtered through Hi to yield y* for i = 1,2. The 

resultant yi are multiplied, integrated, and squared for a range of time shifts, r, until 

the peak is obtained. The time shift causing the peak is an estimate of the true delay 

D. When the filters Hi(f) = H2(f) = 1, V/, the estimate D is simply the value of r 

at which the cross-correlation function peaks. 

The cross-correlation between xi(t) and x2(t) is related to the cross-power 

spectral density function by the Fourier transform relationship 

***»(?) = r GxlX2(f)^^df. (II.3) 
J—oo 

When xi(t) and x2(t) have been filtered as shown in Fig. 6, the cross-power spectrum 

between the filter outputs is given by 

<W/) = ^i(/)fiJ(/)G,«(/). (II.4) 
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Figure 6. Received waveforms filtered, delayed, multiplied, and integrated for a vari- 
ety of delays until peak output is obtained. 

where * denotes the complex conjugate.  The generalized cross-correlation between 

xi(t) and x2(t) is defined by 

Rit(r) = f" i>9(f)GXlX2(f)e*^df, 
J—oo 

where 

(II.5) 

(II.6) ^(/)=#l(/)#2*(/) 

and denotes the general frequency weighting. 

In practice, GXlX2(f) is not known a priori, and only an estimate GXlX2(f) of 
Gx!x2(f) can be obtained from finite observations of xi(t) and x2(t). Consequently, 

the integral 

^l(^) = J^9{f)GXlX2{fy
2^df (II.7) 

is evaluated and used for estimating delay. Indeed, depending on the particular form 

of ipg{f) and the a priori information, it may also be necessary to estimate ipg(f) in 

Eqs. (II.5) and (II.6). For example, when the role of the prefilters is to accentuate 

the signal passed to the correlator at those frequencies at which the signal-to-noise 

(S/N) ratio is highest, then ijjg(f) can be expected to be a function of signal and noise 

spectra which must either be known a priori or estimated. 
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B.     PROCESSOR WEIGHTING EVALUATION 

Before continuing to describe the weighting functions that are used in the 

generalized cross-correlation (GCC) in practice, it is informative to examine first the 

effect of processor weightings on the shape of Ryiy2(T) under ideal conditions. For 

models of the form of (II. 1), the cross correlation of X\{t) and X2(t) is 

RxlX2 (r) = aRSlSl (r-D) + Rnin2 (r). (II.8) 

The Fourier transform of (II.8) gives the cross-power spectrum 

<W/) = aGM(/)e-WD + Gnin2(f). (II.9) 

If ni(t) and ri2{t) are uncorrelated (Gnin2(f) = 0), the cross-power spectrum between 

Xi(t) and X2(t) is a scaled signal power spectrum times a complex exponential. Since 

multiplication in one domain is a convolution in the transformed domain, it follows 

for Gnin2(f) = 0 that 

R*lX2(r) = aRSlSl(r) © 5{t - D). (11.10) 

where ©denotes convolution. 

One interpretation of (11.10) is that the delta function has been spread or 

"smeared" by the Fourier transform of the signal spectrum. If s\(t) is a white noise 

source, then its Fourier transform is a delta function and no spreading takes place. An 

important property of autocorrelation functions is that |J?ss(r)| < R3S(0). Equality 

will hold for certain r for periodic functions. However, for most practical applications, 

equality does not hold for r^O, and the true cross correlation (11.10) will peak at D 

regardless of whether or not it is spread out. The spreading simply acts to broaden 

the peak. For a single delay this may not be a serious problem. However, when the 

signal has multiple delays, the true cross correlation is given by 

iW) = Ä.1.1 W © £"**(* - A). (11.11) 
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In this case, the convolution with RSlSl(r) can spread one delta function into an- 

other, thereby making it impossible to distinguish peaks or delay times. Under ideal 

conditions where V/,GXlXa(/) ^ GXlX3(f),iJ>g(f) should be chosen to ensure a large 

sharp peak in Ryiy2(r) rather than a broad one in order to ensure good time-delay 

resolution. However, sharp peaks are more sensitive to errors introduced by finite 

observation time, particularly in cases of low signal-to-noise S/N ratio. Thus, as with 

other spectral estimation problems, the choice of ^(/) is a compromise between good 

resolution and stability. 

Having all the above in consideration, we are equipped with the appropriate 

background for the role that ipg(f) is going to play. Thus, let us examine some 

generalizations of the cross-correlation function individually. 

1.      Roth Processor 

The weighting proposed by Roth [Ref. 4], namely x 

Mf) = ^ 77T (11.12) 

yields 

Equation (11.13) estimates the impulse response of the optimum linear (Wiener-Hopf) 

filter 

Hm(f) = p^ä (n.14) 
which "best" approximates the mapping of x^t) to x2(t). If m(t) ^ 0, as is generally 

the case for (II. 1), then 

GxlXl(f) = GSlSl(f) + Gnini(f), (ms) 

and 

nSLir) = sir -D)® f      ffi*y> me^/.       (me) 

Hhe subscript R is used here to distinguish the choice of ipg(f) 
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Therefore, except when GniTll(f) equals any constant (including zero) times G3lSl(f), 

the delta function will again be spread out. The Roth processor has the desirable 

effect of suppressing those frequency regions where Gnini (/) is large and GXlX2 (/) is 

more likely to be in error. 

2. Smoothed Coherence Transform (SCOT) 
Errors in GXlX2(f) may be due to frequency bands where Gn2n2(f) is large, as 

well as bands where Gnini(f) is large. One is therefore uncertain whether to form 

Mf) = TT^TTT or Mf) = TT^TTT; hence, the SCOT [Ref. 3, 16] selects 

ips(f) = * (11.17) 
yGXlXl (f)GX2X2 (/) 

This weighting gives the SCOT generalized cross-correlation 

/OO 

W/)^'^, (11.18) 
-OO 

where the coherence estimate is given by 

yGXlXl (f)GX2X2 (/) 

For Hi(f) =    , and H2(f) =    , ■-, the SCOT can be interpreted (see 
yGXlXl(f) \jGX2X2(f) 

Fig. 6) as prewhitening filters followed by a cross correlation. When GXlXl(f) = 

GX2X2(f), the SCOT is equivalent to the Roth processor. If ni ^ 0 and n2 ^ 0, the 

SCOT exhibits the same spreading as the Roth processor. This broadening persists 

because of an apparent inability to adequately prewhiten the cross power spectrum. 

3. Phase Transform (PHAT) 
To avoid the spreading evident above, the PHAT uses the weighting [Ref. 3] 

Mf) = lr 
1m\> (IL2°) 

which yields 

kSl w = f ^jk^frdf. (H.21) 
J-OO   \^XlX2\J)\ 
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For the model (III) with uncorrelated noise (i.e., G„ina(/) = 0), 

\GXlX2(f)\ = aGSlSl(f). (11.22) 

Ideally, when GXlX2(f) = GXlX2(f), 

has unit magnitude and 

RS2(T) = 6(T-D). (11.24) 

The PHAT was developed purely as an ad hoc technique. Notice that for 

models of the form of (III) with uncorrelated noises, the PHAT (11.21) ideally does 

not suffer from the spreading that other processors do. In practice, however, when 

GxlX3(f) ^ GXlX2(f), then 6(f) ^ 2-KJD and the estimate of R^2(r) will not be a 

delta function. Another apparent defect of the PHAT is that it weights GXlX2(f) as 

the inverse of GSlSl (/). Thus errors are accentuated where signal power is smallest. In 

particular, if GXlX2(f) = 0 in some frequency band, then the phase 9(f) is undefined 

in that band and the estimate of the phase is erratic, being uniformly distributed in 

the interval [-7r,7r] radians. For models of the form of (III), this behavior suggests 

that ipp(f) should be additionally weighted to compensate for the presence or absence 

of signal power. The SCOT is one method of doing this. 

4.      The Eckart Filter 

The Eckart filter derives its name from work in this area done in [Ref. 17]. 

Although it is not used in the experimental part of the thesis, derivations in [Ref. 

18, 19, 20] and [Ref. 21] are outlined here briefly for completeness. The Eckart filter 

maximizes the deflection criterion, i.e., the ratio of the change in mean correlator 

output due to signal present to the standard deviation of correlator output due to 

noise alone. For long averaging time T, the deflection has been shown [Ref. 19] to be 

d2 =        Llf-ooHi(f)mf)GSls2(fWy m o. 
r» i^i(/)i2i^(/)i2Gnini(/)Gn2n2(/)d/' (IL25) 

14 



where L is a constant proportional to T, and GSlS2(f) is the cross-power spectrum 

between sx(t) and S2(t). For the model (II.l), GSlS2(f) = aGSlSl(f) exp(j27r fD). 

Application of Schwartz's inequality to (11.25) indicates that 

Hi{f)m{f)=Mf)e+aKfD, 

maximizes d? where 

Mf) = 
aG. SlSi 

(11.26) 

(11.27) 

Notice that the weighting (11.27), referred to as the Eckart filter, possesses some of 

the qualities of the SCOT. In particular, both weightings act to suppress frequency 

bands of high noise. Also note that the Eckart filter, unlike the PHAT, provides us 

with zero weight when GSlSl = 0. In practice, the Eckart filter requires knowledge 

or estimation of the signal and noise spectra. For (II.l), when a = 1 this can be 

accomplished by letting 

Mf) = l<W/)l[GW/) - |GW/)I] • [GW/) - \GXlX2(f)\}. (11.28) 

Since in our problem it was not possible to have knowledge or estimation of the 

signal and noise spectra, it was not possible to use this weighting processor for the 

experimental part of the thesis. All the above processors are summarized in Table I 

and can be justified on the basis of reasonable performance criteria, whether heuristic 

or mathematical. 

Processor Name Weight 
iK/) = Hx{f)H*2{f) 

Cross Correlation 1 
Roth Impulse Response l/Gx1x1{f) 

SCOT l/y/Gx1x1(f)Gx2x2(f) 
PHAT l/\GxlX2{f)\ 
Eckart GSlSl 1 [Gmm {f)Gn2n2 (/)] 

Table I. Candidate Processors 
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III. SUBSPACE METHODS 

A.     CONCEPT AND PRINCIPLES 

An entire class of spectral estimates is based on the concept of signal and noise 

subspaces associated with the correlation matrix for a random process. Subspace 

methods apply primarily to locating discrete components (lines) of the spectrum. 

Pisarenko's harmonic decomposition was the first of these methods and motivated 

other improved methods, such as MUSIC, that followed. These methods are all 

based on the fact that when the data consists of complex exponentials in noise, the 

frequency vector w, defined by 

"" 1 

pi" 

w = (III.1) 

e*(iv-i)« 

is an eigenvector of the correlation matrix. Its projection onto an orthogonal subspace 

complementary to the subspace defined by all of the signal vectors produces a null 

which can be exploited to estimate the frequency. The methods can be formulated 

either as a search for peaks in a function (called a pseudospectrum) or as a polynomial 

root-finding problem. In this section we give a short presentation of the general 

principles [Ref. 22] in these methods. 

Consider M independent signals in noise, the observation vector x, the noise 

vector 77, and the signals vectors S;, defined by N consecutive samples of the random 

process, and where it is assumed that M < N. Analytically, this means that the 

observation signals x[n] (transient & noise) are equal with 

M 
x\n\ = ^2si[n}+T]{n] , 

i=l 

where the transients Si[n] are given by 

Si[n] = Ai^in . 

(III.2) 

(III.3) 
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Specifically, 

x = 

T} = 

Si 

x[0) 

x[l] 

x[N - 1] 

vM 

V[l] 

V[N - 1] 

1 

eJ{N-l)ui 

(III.4) 

(III.5) 

(III.6) 

x = ^Aisi + r?> (III.7) 
i=l 

where Si is defined by (III.6), and A{ is the complex amplitude of the ith signal, 

*i = \M<**- (IIL8) 

This is the general signal model used in all of the subspace methods. If the noise is 

white, the correlation matrix is 
M 

Roc = x) pisisrT+<# > (III.9) 
i=l 

where Pi is defined by 

Pi = E{AiA*} = E{\Ai\
2} ■ (111.10) 

The last two equations can also be written with more compact matrix notation 

A1 

A2 

as 

x = S 

w 

+ V (III.ll) 
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and 

R* = SP0S*r + v2
0I, (III. 12) 

where 

S = Si   s2   •••   sM (111.13) 

and 

P0 = 

Pi    0 

0    P2 

0 

0 
(III. 14) 

0     0    •••   PM 

It can be shown that the correlation matrix Rx has M eigenvectors lying in the signal 

subspace, which is spanned by the s^ and N — M eigenvectors lying in the orthogonal, 

complementary noise subspace. All N — M noise subspace eigenvectors correspond 

to eigenvalues A* = o2
0 while all of the signal subspace eigenvectors correspond to 

eigenvalues A* > a% . 

When the noise is not white, but is still uncorrelated with the signals, the 

foregoing development leads to the correlation matrix 

Rx = SP0S*   + <ro£,, (III. 15) 

instead of (III. 12).  Here E^ is a normalized covariance matrix that represents the 

covariance structure of the noise vector. In this case the whitening transformation 

y = s-^x (III. 16) 

leads to the correlation matrix 

R^ = S-^RocS"1/3 = TP0T*T + all , 

where 

T = £-x/2S 

(111.17) 

(III. 18) 
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is the matrix with columns that are the transformed signal vectors 

tk = S-1/2sk; k = l,2,---,M. (111.19) 

In the transformed vector space, the eigenvectors corresponding to the M 

largest eigenvalues span the signal subspace; those corresponding to the smallest 

eigenvalues (equal to a2
0) span the noise subspace. The eigenvectors and eigenvalues 

satisfy the equation 

Rye, = (E-^R^-I/S) ek = ^ 

which can be written as the generalized eigenvalue problem 

Roc^k = AkS^ek , 

(111.20) 

(111.21) 

where 

ek = S"1/2ek . (111.22) 

The basis vectors that span the signal and noise subspaces in the original coordinate 

system are 

bk = Sj/'ek = SJ/2 (Sj/2ek) (111.23) 

or 

bk = £„«* . (111.24) 

Neither the eigenvectors ek nor the basis vectors bk are orthonormal in the usual 

sense. The eigenvalues satisfy the same conditions, however. Those corresponding 

to the noise subspace are the N - M smallest eigenvalues (equal to <r2) and those 

corresponding to signal subspace are the M largest eigenvalues (all greater than u2). 

Let us now return to the case of white noise and the correlation matrix (III. 12). 

It is convenient for our later discussion to define the matrices of eigenvectors 

Ü/sig — ei   e2 eM (111.25) 
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and 

i-'nois 6M+1     ©M+2     • • •     GN 

and also the two matrices of eigenvalues 

Ai    0 

0   A2 
Asjg — 

0     0 

0 

0 

AM 

and 

^Vnoise — 

AM+I      0 

0        AM+2 

0 0 

0 

0 

°l  o 
0    al 

0     0 

0 

0 

The complete matrices of eigenvectors and eigenvalues are thus given by 

•l-» — l-'-'sig J-'noiseJ 

and 

A = 
XSlg 

0 

0 

Now observe that it is possible to write R* as 

R   — EAE*T = E • A • E*?" 4- E   •   A   •   E*T 
jslgji.Sigj_/sjg -r ■unoise-'^-noise-^-'noise 

and to write R^1 as 

R^  = EA~ E*   = EsigA7igE*ig + EnoiseA~olseE* -1      ü*T 
■"noise 

(111.26) 

(111.27) 

(111.28) 

(111.29) 

(111.30) 

(111.31) 

(111.32) 

Further, since the columns of Esig are orthonormal and define the signal subspace, 

this matrix can be used to form a projection matrix for the signal subspace, 

p .   _ T? .   fE*TE . "j  1 E*? = E • E*.T 
^ sig — ■E'sig ^sig-^sig^/       -f sig       -^sig-^sig > (111.33) 
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where the last step follows because Es*?Esig = IMxM. Likewise, Enoise can be used 

to form a projection matrix for the noise subspace 

P noise — EnoiseE*oise — I — Psig , (111.34) 

where the last equality follows because the subspaces are orthogonal complements of 

each other. 

B.     TYPES OF SUBSPACE METHODS 
1.      MUSIC 

The MUSIC (for Multiple Signal Classification) method forms a correlation 

matrix of some size N > M + 1 from which we try to find the eigenvalues and 

eigenvectors. Prom the previous presentation, the eigenvalues and the corresponding 

eigenvectors are divided into two categories; the ones that "belong" to signal subspace 

and the others to noise subspace according to the estimated eigenvalues. If the number 

of signals is not known, it can be estimated by looking at the smallest eigenvalues 

and finding the set that are approximately equal. This number is equal to N - M. 

The MUSIC method involves projection of the signal onto the entire noise subspace. 

For the MUSIC method we have the following approaches: 

1. Use the squared magnitude of the projection of w onto the noise subspace. 
Since each of the signals is orthogonal to the noise subspace, the quantity 
w* PnoiseW = w* EnoiseE*oisew goes to zero for the values of the frequency 
where w = Si. The MUSIC pseudospectrum is defined as 

pMu(eJW) = w^p1 .  w = W*TE   ^ET   w (HL35) w
      * noise W W     HinoiseXL(noiseW 

and therefore exhibits sharp peaks at the signal frequencies where w = Si. 

2. Use an alternative root-finding variation of the method called "root MUSIC". 
In this approach an eigenfilter Ei(z) is defined as 

Ei(z) = ef[0] + e^fl]*-1 + • • • + ^[JV - l]z"(*-i) , (HL36) 

where the e,[n] are components of the eigenvector ei. In this way the MUSIC 
pseudospectrum can be expressed as 

Puu^n = ^—-1 
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Since the denominator goes to zero at z = e?Ui{i = 1,2, • • •, M), the denomi- 
nator polynomial 

PMU{*)=   £  Ek(z)Et{\/z*) (111.38) 
i-M+l 

has M roots lying on the unit circle. These M roots (which are, in fact, double 
roots) correspond to the signal frequencies. 

A modification to the MUSIC method was proposed by Johnson and DeGraff 
[Ref. 23]. Prom the previous discussion, the MUSIC pseudospectrum can be 
written as 

Pm^-^{^L^>-     (IIU9) 

Since the eigenvalues for all the noise subspace eigenvectors are equal to a%, a 
pseudospectrum for MUSIC that differs from (III.35) only by a constant can 
be defined as 

PMUW) 
=    "TTr^j ~7f\      =     - /_N        T      ~^\      >      (111.40) 

where the last equality follows because A* = a%,i = M + 1, • • •, iV. Equation 
(111.40) gives the pseudospectrum of the "modified MUSIC method" by John- 
son and DeGraff which differs from the first approach in that, in practice, the 
estimated eigenvalues are not all exactly equal. 

2.       Minimum-Norm Procedure 

In the Minimum-norm procedure [Ref. 24, 25] we find a single appropriately 

chosen vector d in the noise subspace and define the pseudospectrum in terms of this 

vector as 

PMN{^) = r-^2 = *   T     • (111.41) [w*1d|2      w*1dd*1w 

The vector which lies in the subspace is chosen so that the squared magnitude ||d||2 

is minimized subject to the constraint that its first component is equal to 1.  The 

resulting vector is given by 

d = -^Enoisec , (111.42) 
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where Enoise is the matrix of noise subspace eigenvectors and c*T is the top row from 

the partition of Enolse such that 

■'-'noise — 
C*T 

F noise 
(111.43) 

If the components of d are denoted by d[Q], d[l], ...,d[N-l], with d[0] = 1, then the 

minimum-norm pseudospectrum can be equivalently expressed as 

pMN{eJU) = \D@W ' (IIL44) 

where D(z) is the polynomial 

D(z) = f) d[k]z-k . (111.45) 
fc=0 

Thus the frequencies can also be found as the roots of D(z) on the unit circle. 

3.      Principal Components Linear Prediction 

Another technique involving simple modifications to some of the previously 

presented methods suggests itself. Whenever there is added noise, let the estimated 

correlation matrix be represented in terms of only its eigenvectors and eigenvalues 

pertaining to the signal subspace. 

M 
R4M) = £AieierT. (ni46) 

i=l 

This is sometimes referred to as the principal components approximation of the core- 

lation matrix. This procedure, developed by Tufts and Kumaresan [Ref. 26, 27], 

amounts to eliminating some of the noise and increasing the overall signal-to-noise 

ratio. For model-based methods, a model derived from the reduced rank correlation 

matrix alone can then be generated and used to estimate the spectrum. 

Tufts and Kumaresan tried to eliminate the terms in the noise subspace using 

the pseudoinverse. This task could have even more successful results if a high-order 

correlation matrix was implemented. If the value of the prediction order variable P 
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was approximately in the same range with the available data samples (Ns), then the 

rank of the estimated correlation matrix is automatically reduced. In order to have an 

exact equality between the rank of the estimated correlation matrix and the number 

of signals, then the following relationship should hold: P — Ns — M/2, where P and 

Ns are defined above and M is the rank of the pseudoinverse. This specific case is 

called Kumaresan-Prony case. It has the advantage of less computational demands 

since the SVD of the square matrix is the same as its eigenvalue decomposition, and 

there is no need for both estimations to be conducted. For minimizing the variance 

of the frequency estimates, however, a smaller value of P « |ATS is suggested [Ref. 

26, 27]. The filter coefficient vector is thus computed from 

a = 
M   /   '*T   \ 
£ (2L_£J ei = -R^r , (111.47) 

where R^ and r are the appropriate partitions of the correlation matrix Rx, and the 

e'i, X'i are the eigenvectors and eigenvalues of R^.. The pseudospectrum is given by 

the final expression 

where 

\    . (111.49) 
a 

If the number of signals M is not known, it has to be estimated from the eigenvalues. 

The signal frequencies are then determined by either finding the peaks of (111.48) or 

by finding the roots of A(z). 

4.      ESPRIT 
The ESPRIT (Estimation of Signal Parameters via Rotational Invariance 

Techniques) [Ref. 28, 29] method takes a somewhat different approach to frequency 

spectrum estimation by exploiting a certain invariance principle that exists for the 

subspaces of two overlapping data sets. Let us consider a data set of N + 1 samples 
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x[0],x[l],■■■,x[N] and define the two vectors 

x = 

x[0] 

x[l] 

x[N - 1] 

and x = 

x[l] 

x[2) 

x[N] 

(111.50) 

Let B and B denote two matrices whose columns are basis vectors for the 

vector spaces associated with x and x. It can be shown [Ref. 22] that B and B' are 

related by a set of linear equations of the form 

B* = B' , (111.51) 

where * is an M x M square matrix and the eigenvalues of * are of the form X{ = e?"', 

where Ui are the desired frequencies. 

In the next few fines there will be a short presentation of the steps in the ES- 

PRIT algorithm (TLS version) in order to have an understanding of its functionality. 

We start by defining the N + 1-dimensional random vector x pertaining to N + 1 

consecutive data samples x[0], x[l], ■ ■ ■, x[N] and estimating the correlation matrix 

Rx from the data. Then we compute the eigenvectors and eigenvalues of R^ : x 

R-iCfc = AfcEweic k = l,2,---,N + l . (111.52) 

If necessary, we estimate the number of signals M from the eigenvalues. Afterwards 

a basis spanning the signal subspace is generated and is partitioned as 

6 = 2^ ei ejw 
B 

x   •• •   x 

X     • ••     X 

B' 
(111.53) 

Since B and B' will not satisfy 111.51 exactly, a Total Least Squares (TLS) approach 

to computing * is used. The details of TLS are beyond the scope of this presentation. 

Hi the noise is not white 111.52 can be replaced by a generalized eigenvalue problem. 
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However, a general outline would be to first compute the matrix V of right singular 

vectors of 

B   B' 

and then partition V into four M x M submatrices 

(111.54) 

V = 
Vii   V12 

v21 v22 
(111.55) 

The desired estimate for \£ is then given by 

*TLS = -V.oVr,1 . 12 V 22 (111.56) 

Finally, the desired frequencies are computed as the angle of the complex eigenvalues 

of *TLS as shown below 

Uk = l\k] k = l,2,---,M (111.57) 

C.     APPLICATION TO THE TDOA PROBLEM 

A model for the TDOA problem as we have already seen is as follows. We 

assume that a short transient signal d[n] is emitted from the source. We further 

assume the signal received at each sensor is subject to amplitude attenuation and 

additive noise so that the signals x and y can be written in discrete time as 

x[n]   =   d[n] + w[n] 

y[n]   =   Ad[n — L] + u[n], (111.58) 

where A is the relative amplitude, L is the time delay to be estimated, and u and w 

are the additive noise terms. Note that we assume the transient signals, d, received 

at each location are identical but arrive at different times. This assumption will be 

relaxed in the simulations presented later [Ref. 30]. Let us define R[k] as the product 

R[k] = X[k}Y*[k], (111.59) 
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where X[k] and Y[k] are the DFT's of the sequences x[n] and y[n] computed at a 

size equal to at least twice the length of the data. Thus the inverse transform of R[k] 

represents an estimate of cross-correlation in the time domain. Now let u0 represent 

the frequency resolution of the DFT. The DFT sequences X[k] and Y[k] are then 

given by 

X[k]   =   D[k} + W[k] 

Y[k]   =   AD[k]e~^kL + U[k] (111.60) 

and from (111.59) and (111.60) 

R[k] = A\D[k)\2e?"°kL + {D[k]U*[k] + AD*[k]W[k]e>"°kL + W[k]U*[k}}. (111.61) 

Let us also assume that the signal d[n] is broadband, and that the source spectrum 

is flat and therefore the magnitude \D[k]\ is approximately constant. Further, if 

the observed time sequences (x and y) are sufficiently long, the points in the DFT 

sequence for the term enclosed in brackets will be approximately uncorrelated. Thus 

the sequence R[k] satisfies the basic model for signal subspace analysis [Ref. 22], but 

with time and frequency interchanged. 

For the following discussion, we shall consider both related approaches to 

estimating TDOA. In the first approach a steering vector of the form 

1  ^°l  e'2"'0'   • • •      gjCv-iW 

is projected onto the noise subspace and the reciprocal of the result is plotted as 

the lag parameter I is varied. (Here N is the dimension of the observation used in 

the chosen subspace method.) The resulting function, which we refer to as a delay 

indicator function (DIF), peaks at the desired estimate I = L. Although the DIF 

resembles a generalized cross-correlation function, it is strictly speaking not a GCC. 

It is analogous to the pseudospectrum used in the spectral estimation problem. In 

the second approach, direct numerical estimates are computed and no DIF is formed. 

Root MUSIC and ESPRIT follow this approach. 
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IV.        THESIS APPROACH TO THE 
PROBLEM 

In order to verify all the theoretical results described in Chapters 2 and 3, var- 

ious simulations were conducted. All the simulations are divided into two categories 

depending on the kind of the data that were used. The first category used synthetic 

data generated from equations in MATLAB while the second category used data gen- 

erated by the Monterey-Miami Parabolic Equation (MMPE) acoustic propagation 

model [Ref. 14, 15]. 

All the simulations using the synthetic data assumed the same shape and form 

and length of transient at each receiver but for each one we added different noise with 

variations according to kind (white-colored), characteristics (variance), and amount of 

noise (SNR). White or colored Gaussian noise was generated in MATLAB and added 

to the signals to achieve a specified signal-to-noise ratio (SNR). The SNR specifically 

was defined by the formula 

SNR= wLn=
2
oMn| , (IV.l) 

aN 

where N is the number of the samples of the signal, s[n], and a% is the variance of 

the additive noise (white or colored). For the MMPE data, the received transients 

were different, in general, and noise was added with variations as before. In this way 

we kept all the basic assumptions that we made in Chapter 1 for the TDOA problem. 

A.     SYNTHETIC DATA 

For the synthetic data five different kinds of transients were used: 

1. exponential transient of the form 

where d is the decay factor and T is the time duration (length) of the expo- 
nential transient; 
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2. sinusoidal transient of the form 

f ,      f sin(27r/t),   0<t<T 
S{t)     { 0,    otherwise   ' (IV-3) 

where / is the frequency and T is the time duration (length) of the sinusoidal 
transient; 

3. damped sinusoidal transient which is a combination of the first two transients, 

s(t) _ / exp(-dt) • sin(27r/t),   0 < t < T 
S{t)-{ 0, otherwise  ' <IV-4) 

4. linear swept-frequency cosine generator (chirp(T, f0,Tu fr)) transient, 

m = \   6        n '   °i*-       , (IV.5) 
I, U, otherwise 

This function creates samples of a linear swept-frequency cosine signal at the 
time instances defined in array T, f0 is the instantaneous frequency at time 0, 
and /x is the instantaneous frequency at time Tx. Both /0 and /2 are in Hertz. 
In our case the instantaneous frequency sweep fi(t) given by 

fi(t) = l   fo + ßt>   °^t^T 

\ 0,     otherwise   ' (IV.6) 

where 

/5 = ^^; (IV.7) 

5. damped chirp transient which is the combination of the first and fourth tran- 
sients, 

a(t) = (   exp(-Ä).e(^[^i^]),   0<t<T (w8) 
{ 0, otherwise 

In this way we were able to compare the performance of the classical and 

subspace methods not only by varying the characteristics of the-noise but also by 

changing the characteristics of the original transients. This was done in order to have 

a more complete evaluation of the above methods. 
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B.     MODEL BASED ACOUSTIC DATA 

Although they provide a way to test algorithms under ideal conditions, we 

understand the simulated data in MATLAB does not approach the real conditions 

that occur in the ocean. For this reason we used data from the MMPE model to 

test the TDOA methods under more realistic conditions. This allowed us to test 

them in more complex environments, where additional factors like area geography, 

water column and bottom characteristics, sound speed profile, etc., can change and 

influence the result of the sound wave propagation. 

1.      Monterey-Miami Parabolic Equation (MMPE) Model 
and Split-Step Fourier (PE/SSF) Algorithm 

Before presenting data generated by the MMPE model, it is informative to 

describe what the model is what the model is and what it is capable of. We begin by 

defining the time-harmonic acoustic field in cylindrical coordinates (r, z, 4>) 

P(r,z,<f>,ut)=p(r,z,<l>)e-i"t. (IV.9) 

The result of the combination of Eq. (IV.9) with the wave equation, also in cylindrical 

coordinates, produces the Helmholtz equation, 

;| (r|) + ^0 + 0 + kW(r, z. flp = -«y(f - ,-,) , (IV.10) 

where k0 = f- is the reference wavenumber, n(r, z, 4>) = ,^z ^ is the acoustic index of 

refraction, c0 is the reference sound speed, and c(r, z, <f)) is the acoustic sound speed. 

Most of the properties of the environment are provided by c(r, z, 4>). Regarding the 

source function, it is assumed to be a point source located at a distance of r = Om 

and depth z = zs and with reference source level P0. This reference source level is 

the pressure amplitude at a reference distance of R0 = lm, and 

5({x)) = ±-r5{z - z-k)5(r) (IV.ll) 

is the Dirac-delta function defining the point source contribution. 
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For simplification of the Helmholtz equation, we assume that the cylindrical 

spreading dominates the propagation, and the magnitude of the pressure vector will 

be given by 

p(r,z) = -£=u(r,z). (IV. 12) 

Substituting Eq. (IV. 12) into the Helmholtz equation and neglecting the source term, 

we end up with the following equation 

d2u ,   ld2u     d2u     l2( 2        1    \ 

w+7>W + M+k°{ n+üy)u = 0- (IV-13) 
In Eq. (IV. 13), we observe that both the final term and the second term , which intro- 

duces azimuthal coupling between different radials, are proportional to —. Therefore, 

invoking the uncoupled azimuth approximation, these terms will be neglected in this 

analysis. 

Defining the operator notation 

d p   — 
op ~ dr (IV. 14) 

and 

Qop = (ß + e + l)1/2 , (IV.15) 

where 

£="2-1- "-55?■ e™) 
the homogeneous form of Eq. (IV. 10) then becomes 

(P!P + k2
oQ

2
op)u = 0. (IV.17) 

Proper factorization of the outward propagation field is obtained by defining 

u = Q-1/2^. (IV. 18) 

Because of the small range dependence of the environment it is also assumed that the 

commutator [Pop, Qop] is negligible. The outgoing wave then satisfies [Ref. 14, 15]. 

-ikol-fr=Qop*- (IV.19) 
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The physical meaning of the Eq. (IV. 19) is the representation acoustic energy 

in the waveguide, particularly the forward propagating acoustic energy when the 

backscattered energy is not significant. In other words Eq. (IV. 19) is considered 

to be the basic equation upon which all one-way PE models are "built". The next 

step is to create a method for generating solutions to this equation by developing 

approximations to the pseudo-differential operator Q^. 

For the creation of the numerical algorithm which will solve the PE, we observe 

that the acoustic field can be divided into a slowly modulating envelope function 

and a phase term which oscillates at the acoustic frequency. The PE field function, 

ip(r,z,(ß), is defined as 

tf = i>eik°r (IV.20) 

or, in terms of the acoustic pressure, 

p(r, z, <f>) = Po]^Q^(r, z, <t>)eik"-. (IV.21) 

The last equation is scaled in such a way that at r = R0, \ip\ = 1 and |p| = P0. Com- 

bining Eq. (IV.21) with the Helmholtz equation will provide us with wave equation 

for the PE field function, 

— = -ik0ip + ikoQopi; = -ik0Hopip, (IV.22) 

where 

Hap = 1 - Qop (IV.23) 

is a Hamiltonian-like operator which defines the evolution of the PE field function in 

range. 

In Eq. (IV.22), the function ip is a vector (in z) in Hubert space. The rela- 

tionship between the values of I/J at different ranges can now be expressed as 

V>(r + Ar) = $(r)^(r). (IV.24) 
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To propagate the solution out in range requires a representation of the propagator 

$(r). The MMPE model uses the split-step Fourier (PE/SSF) method to compute 

PE solutions. 

In the SSF algorithm the operators Hop and Q^ are a combination of scalar 

and differential operators. For the appropriate functionality of the SSF algorithm 

the different terms within Hop should be separated, requring an approximation to the 

square-root operator. In the MMPE model, the wide-angle PE (WAPE) approxima- 

tion of Thompson and Chapman is employed [Ref. 14, 15], such that 

Hop « Top + Uop (IV.25) 

where 

T   = 1 - ■        1  # 
1/2 

(IV.26) 
k*dZ2 

and 

Uop = -(n - 1). (IV.27) 

In this form, the differential operator has been separated from the index of refraction 

term as required for implementation with the SSF technique. In 2-space, the operator 

Uop is a simple scalar multiplication operator, in other words a diagonal matrix, 

but the operator T^ is not a diagonal matrix, so different depth eigenfunctions are 

coupled. However, in vertical wavenumber space, the corresponding operator fop is 

diagonal. 

The MMPE propagator function is then based on the "centered step" scheme, 

where error analysis shows that this scheme provides third order accuracy in Ar, and 

is the method used in the MMPE implementation. The general algorithm behind the 

PE/SSF implementation is then as follows. The PE field function ift is specified at 

some range r in the ^-domain. A multiplication of the z-space operator e~iko^u°f^ 

defined at the beginning of the range-step is applied. A transformation is then made 
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to the fc2-domain followed by a multiplication of the A;z-space operator e~lk°ArTop. The 

result is then transformed again to the z-domain followed by a multiplication of the 

z-space operator e-tk°-ruop(r+Ar) defined at the end of the range-step. The final result 

is the field function at r + Ar. The discrete fast Fourier transform (FFT) subroutine 

employed in the numerical code assumes the convention 

1>(z) = FFT(iP(kz)) (IV.29) 

and 

V(k) = IFFTMz)). (IV.30) 

Therefore, the PE/SSF implementation can be represented by 

lp(r+Ar,z) = e-^o^Uop(r+Ar,z)xFFT^e-ik0ArTop(kz) x jppj, Jg-i*o^%p(r^) x ^(r> z)] } , 

(IV.31) 

where, in fcz-space, 

■Lop\fcz) — ■!■ (IV.32) 

2.      Data Modulation-Demodulation 

The MMPE model is a broadband, full-wave acoustic propagation model based 

on the parabolic approximation to the Helmholtz equation. After defining all the nec- 

essary parameters for the entire environment (such as sound speed profile, bathymetry 

of the water/bottom interface, the acoustic parameters of the bottom, the source in- 

formation), this model computes the complex pressure, transmission loss, and arrival 

time structure for any point on a computational grid in range and depth. 

Broadband results are obtained by running the MMPE model for all discrete 

frequencies in the chosen bandwidth. The travel time results are then realized by per- 

forming a Fourier synthesis and a necessary multiplication by some window function, 

S(f). The complex arrival structure of the pressure field can then be written 

S(f)p(r, z, f)e-i2^df = ^L\    S(f)e-ik°r*(r, z, fy-^df. 
-oo yT    J—oo 

(IV.33) 
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By defining the reduced time T = t - (£), the phase factor e~ik°r = e~i2nf5 can be 

absorbed, such that 

PR    r°° 
p(r, z>T) = -jf /_ S(fMr, z, <fi)e-i2"fTdf. (IV.34) 

Note that the use of reduced time does not influence the autocorrelation function. 

For all the environments tested the same window function was used. The 

modeled transmitted pulse had a center frequency of 400 Hz with a bandwidth of 

128 Hz and with 256 frequency bins computed in the DFT. This creates a signal 

of duration 2 sec in the time-domain. In order to obtain the real pressure for each 

sonobuoy (receiver) while maintaining the initial assumption that all the receivers 

were receiving the signals of the same duration, we developed the following procedure. 

• First the frequency-domain complex pressure vector, corresponding to each 
receiver, was multiplied by a "Hanwin" factor. This "Hanwin" factor is a 
Harming window with length equal of the number of the frequency bins. 

• In order to add the carrier in the baseband signal, we had to append to both 
sides of the frequency-domain vector a number of zeros, creating a total length 
of 1024 bins. This will assist us with the frequency resolution that we are going 
to work with in order not to lose any information from the original transient. 
In this way, that part of spectrum corresponding to positive frequencies is 
formed. 

• 

• 

The part of the spectrum corresponding to negative frequencies was formed 
by taking the conjugate reverse of the original vector and appending it to the 
original vector. This produced a complete frequency-domain representation of 
the measured signal over 2048 frequency bins. The corresponding sampling 
frequency on the receiver was then 512 Hz. 

Performing an FFT on this complex frequency-domain signal produced a real 
time-domain signal that represented the measurement on the receiver. Due to 
a small imaginary component due to the numerical processing, the real part 
of this signal was extracted for use in the TDOA algorithms. 

Before adding noise to the transients, all transients must be in absolute time 
and not in reduced time, as in the previous step. For this procedure, a number 
of zeros are pre-appended, which for each pair of receivers is equal to the 
fraction of the difference of the two distances (of the 2 receivers) divided by 
the factor dt = 1/1024. 
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3.      MMPE Environments 

Before proceeding with the simulation results, let us describe the four test 

cases that were used with the MMPE model. This will provide a common reference 

not only for the TDOA simulation results but also for the localization and tracking 

problems presented in the next chapters. The four environments are: 

1. Flat Bottom 

2. Sound Channel 

3. Shelf Break 

4. Internal Waves 

The first two of these are range-independent (RI) while the last two are range- 

dependent (RD). The main difference between these two categories is that in the 

range-independent case the received signal at each sonobuoy depends only on the 

distance between the source and the receiver. In other words, the sound speed profile 

and bottom are the same at every point in the area of interest. In the range-dependent 

case the sound speed profile and/or bottom changes according to range and direction 

from the source. This makes it more difficult to simulate since one has to be aware in 

more detail about the environmental conditions. Range-dependent simulations pro- 

vide more realistic data consistent with the complicated conditions that occur in the 

ocean. 

a. Flat Bottom 

This environment is defined by a flat ocean bottom and isospeed water 

column. In our case we have regularly spaced values of bottom parameters. At each 

range location, the bottom is assumed to be a homogeneous half-space below that 

position. The specific values of the properties for the case are listed in Table II: 

b. Sound Channel 

This range-independent case is similar to the previous one with the 

following major differences. First, the bottom bathymetry is varying and the sound 
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Bathymetry flat (300 m depth) 
Sound Speed Profiles isospeed (1500 m/s) 
Water Density 1 g/cm3 

Water Attenuation 0.0 dB/A 
Bottom Sound-Speed 1700 m/s 
Bottom Density 1.6 g/cm3 

Compressional Bottom 
Attenuation 0.1 dB/km/Hz 
Shear None 

Table II. Environmental Properties for RI Test case: "Flat Bottom". 

speed profile, which is the same for the entire computational grid, is defined by the 

following equations: 

c= < 
1515 + 0.016z when z e [zsurf, zduct] 

1490 [l + 0.25 (et-^) + (*=**) - l)]   when z € [zduct, Zmax] 
(IV.35) 

where zsurf = 0m is the surface depth, zduct = 75m is the depth of the surface duct, 

Zmax = 500m is the maximum depth and zaxis = 200m is the depth of the axis of the 

sound channel. The sound speed profile is shown in Fig. 7. The specific values of the 

properties for the case are listed below in Table III. 

Bathymetry varying 
Sound Speed Profiles varying 
Water Density 1 g/cm3 

Water Attenuation 0.0 dB/A 
Bottom Sound-Speed 1700 m/s 
Bottom Density 1.6 g/cm3 

Compressional Bottom 
Attenuation 0.1 dB/km/Hz 
Shear None 

Table III. Environmental Properties for RI Test case: "Sound Channel". 
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Figure 7. Sound Speed Profile for RI Test case: Sound Channel. 

c.        Shelf Break 

The next case has to do with a range-dependent environment similar 

to that found in the regions of continental shelf breaks. This environment is defined 

by both a varying water column sound speed and bottom bathymetry with homoge- 

neous bottom acoustical properties. This environment is loosely based on shelf break 

front structures observed during the ONR Primer experiment [Ref. 31]. The general 

properties of this test case are defined in Table IV. 

Bathymetry varying 
Sound Speed Profiles varying 
Water Density 1 g/cm3 

Water Attenuation 0.0 dB/A 
Bottom Sound-Speed 1700 m/s 
Bottom Density 1.5 g/cm3 

Compressional Bottom 
Attenuation 0.1 dB/km/Hz 
Shear None 

Table IV. Environmental Properties for RD Test case: "Shelf Break". 
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The vertical sound speed profile and bathymetry for this case are dis- 

played in Fig. 8(a). This characteristic is extended infinitely in the direction perpen- 

dicular to the page providing a 3-D shelf break environment. The locations of the 

source and two of the receivers are shown in Fig. 8(b), which is the same environment 

as Fig. 8(a) but viewed from the top. Isobaths are also drawn to provide a better 

perspective on the relative positions of the source and receivers. 
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Figure 8. Sound speed profile: (a) Shelf break environment vertical view, (b) Shelf 
break environment horizontal view with sample locations of source and receivers. 
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d.       Internal Waves 

This environment is defined by varying water column sound speed fea- 

tures and a flat, homogeneous bottom. More specifically this test case is the combi- 

nation of a simple, sinusoidally varying perturbation with a soliton wavefield, and is 

loosely based on the work of Tielburger, Finette, and Wolf [Ref. 32]. The aforemen- 

tioned environment is characterized by the following properties as shown in Table V. 

Bathymetry Flat bottom (zb = 200 m depth) 
Sound Speed Profiles varying 
Water Density 1 g/cm3 

Water Attenuation 0.0 dB/A 
Bottom Sound-Speed 1700 m/s 
Bottom Density 1.5 g/cm3 

Compressional Bottom 
Attenuation 0.1 dB/km/Hz 
Shear None 

Table V. Environmental Properties for RD Test case: "Internal Waves". 

The background (range-independent) sound speed profile used is the 

same as defined in Eq. (IV.35). The perturbations to this background are a com- 

bination of a sum of simple sinusoids and a train of soliton waves. The sinusoidal 

perturbations are defined by 

dcsin(z, r) = C (£) e("*) T {cos (K(i)r)} (IV.36) 

where K(i) = [(20oom)-(1^i)(300m)] > B = 25m' and ^ is defined sucntliat tlie maximum 

value for dcsin is 7.5m/s. 

The soliton perturbation is defined by 

'(Ä(^)-r)-2, 

dcsol(z, r) = C (-|) e(-*) £ \ A(^ sech 
D(i) 

(IV.37) 
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where B = 25m, A(i) = lOe*-0-3^1», D(i) = ^/(^f), R(i) = fi(i - 1) - (7 - *)500 

for i = 2, • • •, 6, R(l) = 14000m, and C is defined such that the maximum value for 

dc is 12.5m/s. 

The combination of the above perturbations is then simply defined by 

dc(z, r) = dcsol(z, r) + dcsin(z, r) (IV.38) 

and the result for the total sound speed structure is depicted in Fig. 9. Note that 

the solitons are modeled as propagating only in the plane of the page while the 

internal wave sinusoids are considered randomly oriented in all directions.  For the 

1525 

1520 

1516 

1490 
10 

Range (km) 

Figure 9. Sound speed profile: Combination of Sinusoidal and Soliton Perturbations. 

range-independent environments the source depth was between 140m and 160m and 

the locations of the receivers were at ranges between 2km and 8km and at depths 

between 40m and 60m. For the Shelf Break environment the source depth was at 

250m and the receivers were at a depth of 100m at ranges between 2km and 5km, 

42 



while for the Internal Waves environment the source depth was at 150m and the 

receivers were at a depth of 50m and at the same ranges as in the Shelf Break. Better 

insight to the scenarios is given in the next chapter, where the simulation results for 

the TDOA are presented. 
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V.        TDOA SIMULATION RESULTS 

A.     SYNTHETIC DATA 

In this section we present simulation results using synthetic data in the TDOA 

estimation problem. Our purpose is to distinguish how the two families of methods 

(classical - subspace) perform, what their basic differences are, and finally which 

method(s) produce the best overall results. Since the number of combinations using 

different signals, kind and amount of noise, and different characteristics of the signals 

and of the methods is huge, we have tried to provide some typical cases in order to 

provide insight into the behavior of the methods. We will try to explain how the 

different factors attribute to the final result, which is the estimation of TDOA. 

In the first subsection of the synthetic data we present cases from "Expo- 

nential", "Sinusoidal", "Damped Sinusoidal", "Chirp" and finally "Damped Chirp" 

signals at different noise levels (SNR 15, 10, 5 dB). Our intent is to show the be- 

havior of the methods when the transient duration changes (short to long) and how 

successful they are when the desired TDOA to be predicted is large or small. In 

all cases there are different realizations of white noise with different variance added 

to each transient. For the subspace methods, the size of the covariance matrix (see 

Chapter 3) taken was 10 and 20 samples, and for the classical methods the number of 

segments (see Chapter 2) was either 1 or 2. In addition to the figures, corresponding 

tables summarize the results in order to provide a quick appreciation of each method's 

behavior. 

In the second subsection of the synthetic data, we merge both kinds of methods 

(classical-subspace) to examine how the category of methods influences the other and, 

of course, if there is any substantial improvement in the results. 

1.      Implementation Using Individual Methods 

The cases, whose results are presented in this subsection and in Appendix A, 

using synthetic data are the following: 
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• exponential transient with length of 100s and actual TDOA 50s; 

• exponential transient with length of 20s and actual TDOA 100s; 

• exponential transient with length of 50s and actual TDOA -10s; 

• sinusoidal transient with length of 100s and actual TDOA 50s; 

• damped sinusoidal transient with length of 100s and actual TDOA 50s; 

• chirp transient with length of 100s and actual TDOA 50s; and 

• damped chirp transient with length of 100s and actual TDOA 50s . 

Each case was tested with different realizations of additive noise and under three 

different levels of SNR. The figures and the comparative table for the first case is 

presented in this subsection. The remaining case results are submitted in Appendix 

A. Even though we have tested each kind of transient thoroughly changing various 

parameters, apart from the ones already defined, we have observed that the major 

influence to the desired result of TDOA is provoked by the noise (SNR), length 

of transient, amount of predicted TDOA, size of covariance matrix (for subspace 

methods), number of segments (for classical methods), and kind of transient. Having 

all the above in mind, we picked three typical cases from one kind of transient in order 

to see how the methods perform under different values of the aforementioned factors, 

and the same case from the rest of the transients for checking possible difficulties in 

estimating the TDOA for a particular type of signal. 

Figures 10 through 15 show TDOA results for the exponential transient for 

all methods using SNR values of 15dB, lOdB, and 5dB. The estimated values of time 

delay are listed in Table VI. 

46 



u 

-1 Music: 50 

———!■■■ 1 0 

-1 MinNorm:  50 

i » 

-2 . -2 . 

■3 ■ -3 ■ 

-4 ■ •4 ■ 

-5 
-a 

-6 
o               -a 00 0 50 00                                0                                 50 

T(seo) T(sec) 

-1 •     POP: 50 -1 M Music:   so - 

-2 -2 . 

-3 ■ 

9 
■ 

-a ■ -4 - 

-5 
-9 

-5 
0                       -9 DO 0 50 DO                                   0                                   50 

T(S80 ) T(S80 ) 

(a) 

500 500 

-29! 

0 
T(sec) 

500 

u 

-1 ■     X-Corr 50 

 ,—i 1                                        1 

-2 . . 
9 

-3 ■ ■ 

■4 • 1 • 

-5 
-a 

. [ 
00 0 sot 

T(sec) 

(b) 

Figure 10. Exponential transient: length L=100s; Actual TDOA=50s; SNR=15dB; 
White-Noise (o^). (a) Subspace methods, Covariance Size=10. (b) Classical methods, 
number of segments=l. 

47 



I-""                                                                   1") 

■     PCLP:    50 

[                    —■                        ,, 

-500 0 
T(sec) 

500 

(a) 

u 

-1 ■     Scot:      50 

i 1  

. 

-2 ■ ■ 

-3 ■ - 

■A • • 
.5 

-200 -100 0 
T(seo) 

100 200 

o 

-1 ■      Roth:       50 . 

-2 
■ 

-3 • 
■A 

■ 

■S 
|, I,,  I, „I I., 

-200 -100 0 100 200 
T(seo) 

i—                                 i  i 

MinNorm:  50 

i , 

-500 0 
T(sec) 

500 

r—'                            "              i   ) 

M Music:    so 

 1 

-500 0 
T(sec) 

500 

■     Phat:     SO - 

■ • 

■ ■ 

iL ., 
• 

-200        -100 0           100 
T(seo) 

200 

•      X-Corr   50 - 

■ - 

.1. - 

-200       -100 0 100        200 
T(seo) 

(b) 

Figure 11. Exponential transient: length L=100s; Actual TDOA=50s; SNR=15dB; 
White-Noise (a*), (a) Subspace methods, Covariance Size=20. (b) Classical methods, 
number of segments=2. 

48 



1 1— 

■     PCLP:    51 

!                                                           I 

-500 0 
T(seo) 

500 

(a) 

i 1—ii 1 

MinNorm:  51 

-500 0 
T(sec) 

Ptol:      50 

I 
-500 0 

T(seo) 

JUU 

500 

500 

500 

(b) 

Figure 12. Exponential transient: length L=100s; Actual TDOA=50s; SNR=10dB; 
White-Noise (cr%). (a) Subspace methods, Covariance Size=10 (b) Classical methods, 
number of segments=l 

49 



u 

-1 Music: 49 

I , 

-2 
■ 

■3 • 

•4 
■ 

-5 . 
-500 

0 

-1 

-2 

-3 

-4 

-5 
-500 

0 
T(seo) 

500 

1             ""                         ?   ) 

■     PCLP:    49 

0 
T(S80) 

530 

(a) 

Soot:      52 

ilil ii will iiii 
-200        -100 0 100 200 

T(sec) 

0 

-1 

-2 

■3 

-4 

-6 
-500 

1—                                  ,.,,,..) 

MinNorm: 49 

* 1_ 

0 
T(seo) 

500 

530 

-■ 1 

Pteii:      52 

kjf 
-200        -100 0 100        200 

T(seo) 

•      X-Corr:    SO                 jl 

-200       -100 0 100       200 
T(seo) 

(b) 

Figure 13. Exponential transient: length L=100s; Actual TDOA=50s; SNR=10dB; 
White-Noise (of), (a) Subspace methods, Covariance Size=20. (b) Classical methods, 
number of segments=2. 

50 



0 

-1 Music: 51 

 1—1 i                            i 0 

-1 . 
1   1 

MinNorm:  52 

 1 

-2 -2 . . 

-3 
9 

•3 • ■ 

■4 • -4 • ■ 

-5 
-9 

. -5 
0                      -S 

. . 
00 0 50 00 0                               SO 

T(sec) T(sec) 

-1 ■     PCLP: 52 -1 ■ M Music:   5Q ■ 

-2 -2 . . 

•3 -3 • 

A -4 ■ 

-5 
-3 

-5 
0                      -9 DO 0 50 00 0                               501 

T(sec ) T(seo) 

(a) 

Scat:     92 

-600 0 
T(sec) 

£00 

Roth:      248 

-500 0 
T(sec) 

500 -500 0 
T(sec) 

500 

-1 

n l-j 

■      X-Corr   53 

 n 

-2 
■ 1 

-3 

■A . " 
-5 ,    I          , | I    .      .1 I       L 

500 

(b) 

Figure 14. Exponential transient: length L=100s; Actual TDOA=50s; SNR=05dB; 
White-Noise (a%). (a) Subspace methods, Covariance Size=10 (b) Classical methods, 
number of segments=l 

51 



n 0 

-1 -1 Muslo: 49 MinNorm: 49 

i , 

-2 • -2 . 

-3 •3 ■ . 

-4 i ■A ■ ■ 

-5 , . 1 
-5 

0                      -5 -9 00 0 50 00                        o                         sot 
T(sec) T(sec) 

n.  

-1 ■     PCLP: 49 - -1 M Music:   4g 

f , 

-2 . -2 

■3 
■ 

9 
■a . 

-a 
■ ■4 

■ 

-R . 
-5 

3                      -3 
_ 

-3 DO 0 501 DO                                0                                 50C 
T(seo ) T(sec ) 

(a) 

Scot:      52 Phat:      52 

-200        -100 0 100 200 
T(seo) 

-200        -100 0 100 200 
T(seo) 

X-Corr   50 

-, _ 

-200       -100 0 100        200 
T(sec) 

(b) 

Figure 15. Exponential transient: length L=100s; Actual TDOA=50s; SNR=05dB; 
White-Noise (o^). (a) Subspace methods, Covariance Size=20 (b) Classical methods, 
number of segments=2 

52 



Method Parameters SNR 15 dB SNR 10 dB SNR 5 dB 
MUSIC Cov-Mat: 10 50 51 51 

Cov-Mat: 20 50 49 49 
Modified MUSIC Cov-Mat: 10 50 51 52 

Cov-Mat: 20 50 49 50 
MIN-NORM Cov-Mat: 10 50 51 50 

Cov-Mat: 20 50 49 49 
PCLP Cov-Mat: 10 50 51 52 

Cov-Mat: 20 50 49 49 
ESPRIT Cov-Mat: 10 49 51 50 

Cov-Mat: 20 50 50 50 
Root-MUSIC Cov-Mat: 10 50 50 49 

Cov-Mat: 20 50 49 49 
SCOT #-Segs: 1 50 50 92 

#-Segs: 2 50 52 47 
PHAT #-Segs: 1 50 50 92 

#-Segs: 2 50 52 47 
Roth #-Segs: 1 -299 -502 248 

#-Segs: 2 50 52 -204 
X-Corr #-Segs: 1 50 50 53 

#-Segs: 2 50 50 47 

Table VI. Exponential transient:   length L=100s; white noise (cr^  = 2);  actual 
TDOA=50s. 

After examining the corresponding Figs. 10 -15 and Table VI for the first case 

of the synthetic data we can say that almost all the methods performed satisfactorily. 

The figures for the subspace methods in all cases, Figs. 10(a) - 15(a), were clear 

without any subsidiary peaks, compared with the respective figures of the classical 

methods, Figs. 10(b) - 15(b). For medium noise level (SNR=10dB), Figs. 12 - 13, 

and even more for high noise level (SNR=5dB), Figs. 14 - 15, the subspace methods 

gave more accurate results. The increase of the size of the covariance matrix had a 

slight improvement in the performance for the subspace methods. On the contrary 

the increase of the number of segments for the classical methods had more positive 

influence on their performance, especially when the SNR became very low (5dB). Of 
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the classical methods, Roth had the worst performance and cross-correlation had the 

best performance, on average. Subspace methods with both approaches had similar 

behavior in all conditions. 

In summary, after reviewing all cases of the synthetic data (see Figs. 51 - 

86 and Tables XX - XXIV in Appendix A) for the performance of all methods, the 

following observations can be made. 

• The subspace methods uniformly had very efficient performance compared 
with the classical methods 

• 

• 

• 

• 

• 

• 

The subspace methods were more consistent in the quality of the results as 
a group. The classical methods, on the other hand, in some cases had great 
diversity among them in the quality of their performance. Among the clas- 
sical methods, Roth had the poorest performance; and in general the cross 
correlation was more consistent in accuracy than the other methods. 

The plots of the subspace methods were more distinct and it was easier to iden- 
tify the peak corresponding to the correct Time Difference of Arrival (TDOA). 

In cases where both methods provided the expected results the classical meth- 
ods had more accurate peaks than the subspace methods. However both meth- 
ods provided results in which accuracy was completely acceptable. 

In order to perform with multiple segments the classical methods needed to 
have appropriate length of input data (signal plus noise). Otherwise phe- 
nomena of aliasing appeared especially in cases with a large 'Value" of TDOA 
between the two data sets. This drawback did not affect the subspace methods 
at all since they do not deal with segmentation. 

Methods like root MUSIC or ESPRIT can produce direct numerical estimates 
for the time delay without the need to search for a peak. 

Subspace methods were more "resistant" to noise compared to the classical 
methods. 

For short duration of transients the performance of the methods decreased in 
accuracy, especially when it was combined with low SNR. In this case classical 
methods gave totally wrong results compared with the subspace methods, 
whose performance was inside the permissible limits of error (Table XX). 

For the case of a small value of predicted TDOA (Table XXI) the subspace 
methods performed more than satisfactorily even under high "noise condi- 
tions" .   The performance of the classical methods was similar with that of 
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the subspace methods for high SNR, but they became quite inferior when the 
noise was increased. 

• In general the increase in the size of the covariance matrix in subspace methods 
improved their performance, especially when the SNR was small. Better results 
were achieved when the size of the covariance matrix was greater than 20, but 
increased the total number of computations something that made the subspace 
methods to delay enough in order to provide us with the desired result. 

For the cases where all the remaining factors are the same (except for the type of 

transient), Tables XXII, XXIII, XXIV, and Figs. 10 - 15 and 63 - 86, we can say 

that all the methods have almost the same behavior with different transients as with 

the exponential transient. Only the sinusoidal transient had noticeably worse perfor- 

mance than the others and was influenced more with high noise level than the rest of 

the transients. 

2.      Implementation Using Combination of Methods 

Before we continue with the MMPE data, it is worth examining if the "com- 

bination" of the two families of methods, subspace and classical, perform better than 

each one separately. In our case the word "combination" means that before we apply 

the subspace methods in the frequency domain (cross-spectrum), the desired weight- 

ing factor will be implemented according to the processor we would like to use. The 

main idea was to examine if the subspace methods, with the assistance of the weight- 

ing factor, could provide us with more accurate results (peaks). Several test cases 

were conducted and it was determined that the peaks were more accurate but the 

results were not better than without implementing the combination. As a general 

remark, each weighting factor influenced the performance of the subspace methods 

differently in such a way that the subspace methods lost their good consistency in 

results. Figures 16 - 17 and the corresponding Table VII give a sample of the "com- 

bination" performance. 
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Method SCOT PHAT ROTH CROSS 
CORRELATION 

NONE 

MUSIC 95 95 -879 103 103 
Modified-MUSIC 96 96 -600 103 103 
MIN-NORM 90 90 -620 103 103 
PCLP 91 91 -871 103 103 
ESPRIT 95 95 -728 103 103 
Root-MUSIC 96 96 -864 103 103 

Table VII. Damped Sinusoidal transient: 
SNR=10dB; actual TDOA=100s. 

length L=400s; white noise {a\ = 2); 
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B.     MMPE DATA 
In this section results from data generated by the MMPE propagation model 

are presented. The particular environments that were used to generate these data 

are the ones presented in Chapter 4. These simulations were conducted to verify 

the observations from the synthetic data and to test the methods with broadband 

transients under more complicated environmental conditions. For each environment, 

we provide a Transmission Loss (TL) plot relative to the depth and the frequency 

bandwidth, the waveforms of the source and of the two receivers in the time domain, 

and the results of all TDOA methods. It will be seen that in all cases the signals 

in each location have totally different shape and magnitude due to the multipath 

structure of the waveguide. As mentioned before, the environments are divided into 

two categories: range-independent (the received signal depends only on the distance 

between the source and the receiver [Flat - Sound Channel cases], and range-dependent 

(the sound speed profile changes according to range and direction from the source 

[Shelf Break - Internal Waves cases]. Two cases are considered for each environment. 

For the range-independent environments the receivers are chosen to be at different 

ranges from the source. For the range-dependent environments the receivers are 

selected to be at the same ranges but in different relative directions from the source. 

In this way the difference between the two categories will be more evident. For more 

detailed description of the MMPE environments see Chapter 4. 

1.      Flat Bottom 
Two cases are considered for this environment. The receivers are at distances 

of 2km and 3km, and 2km and 5km for each case, respectively. In all cases different 

realizations of white noise were added to each transient with SNR=10dB. In Figs. 18 

and 19 are shown the Transmission Loss (TL) plot of depth versus frequency and the 

waveforms at the source and at the two receivers in the time domain for one of the 

two cases. The results for both cases are shown in Figs. 20 and 21 and summarized 

in Table VIII. From these results, it appears that all methods perform in a similar 
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manner to that in the section with the synthetic data. All of them gave results very 

close to the actual value for both cases with slightly better accuracy by the subspace 

methods. The difference in the figures between the two group of methods is still 

the same. Subspace methods have more clear plots and it is easier to pick up the 

correct peak from their graphs than the corresponding ones from classical methods 

(subsidiary peaks.) In this environment the root-finding subspace methods (ESPRIT 

- rootMUSIC) had the best performance of all the methods and Roth gave the worst 

results compared with the rest. 

Method Estimated TDOA Estimated TDOA 
Case 1 Case 2 

ACTUAL 0.6936 2.1209 
MUSIC 0.6953 2.1250 
Modified-MUSIC 0.6641 2.0879 
MIN-NORM 0.6943 2.1240 
PCLP 0.6943 2.1240 
ESPRIT 0.6934 2.1221 
Root-MUSIC 0.6943 2.1230 
SCOT 0.7324 2.1182 
PHAT 0.7324 2.1182 
Roth 0.5713 2.1328 
X-Corr 0.7285 2.1133 

Table VIII. TDOA results for Flat Bottom isospeed case. 
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Figure 18. Transmission Loss for FLAT Bottom environment. 
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Figure 19. Time domain waveforms for FLAT Bottom environment, (a) Source, (b) 
Receiver 1. (c) Receiver 2. 

62 



Ü 
Music: 

—i              i 

0.69631 
i—. 1  0  1 i 1 1 

MinNorm: 0.69434 
i—i 1  

-1 -1 ■ ■ 

-2 . -2 . 

-3 ■ -3 
. 

•4 ■ •4 • 

-5 -6 
-2 -1            0 1            2 -2          -1            0 1           2 

0 

T(sec) 

0 

T(S8C) 

POP: 0.69434 M Music:   0.66406 

-1 -1 ■ 

-2 -2 . 

■3 -3 ■ 

•4 

-5 . . 

-4 

-5 . 

• 

-2 -1             0 1            2 -2           -1             0 1            2 
T(sec) T(S80) 

(a) 

(b) 

Figure 20. FLAT Bottom environment Subcase 1: Actual TDOA=0.6939s; 
SNR=10dB; White-Noise (cr^). (a) Subspace methods, Covariance Size=10. (b) Clas- 
sical methods, number of segments=l. 

63 



-1 
Music:   2.125 

i , 

-2 • ■ 

-3 
■ 

■4 

-5 

• 

4-2                0 
T(sec) 

2 4 

0 

-1 
POP:    2.124 

. 

-2 
■ 

■3 • 

-5 
•i 4-2                 0 

T(seo) 
2 4 

(a) 

-1 
MinNorm: 2.124 

1 H 

-2 ■ ■ 

-3 • 

■4 • ■ 

-S , 
-4               -2 0                2 

T(sec) 
4 

n 

-1 
M Music: 

i»          —> 

2.0879 

-2 • 

-3 
■ 

-4 • 

-fi 
-a           -2 0                 2 

T(seo) 
4 

(b) 

Figure 21. FLAT Bottom environment Subcase 2: Actual TDOA=2.1209s; 
SNR=10dB; White-Noise {a2

0). (a) Subspace methods, Covariance Size=10. (b) Clas- 
sical methods, number of segments=l. 

64 



2.      Sound Channel 

Two cases are considered for this environment. In the first case the receivers 

are at distances 2km and 4km, while in the second case they are at 2km and 8km. In 

all cases a different realization of white noise was added to each transient to obtain 

a SNR of lOdB. Figures 22 and 23 show the Transmission Loss (TL) plot of depth 

versus frequency and the waveforms of the source and of the two receivers in the 

time domain for one of the two cases. The results for both cases are shown in Figs. 

24 and 25 and summarized in Table IX. The results show us a similar picture for 

the performance of the methods. The only difference is that in this environment the 

"gap" between the estimated values of TDOA from the classical methods and the 

actual predicted value becomes larger. 

Method Estimated TDOA Estimated TDOA 
Case 1 Case 2 

ACTUAL 1.5830 4.5929 
MUSIC 1.5830 4.5967 
Modified-MUSIC 1.5781 4.5967 
MIN-NORM 1.5830 4.5967 
PCLP 1.5830 4.5967 
ESPRIT 1.5820 4.5967 
Root-MUSIC 1.5820 4.5967 
SCOT 1.5771 4.5527 
PHAT 1.5571 4.5527 
Roth 1.5596 4.5527 
X-Corr 1.5732 4.5527 

Table IX. TDOA results for SOUND CHANNEL case. 
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Figure 22. Transmission Loss for SOUND CHANNEL environment. 

66 



0.6 0. 

(a) 

2 4 2.46 2.6 

(b) 

3.65 3.6 366 37 3.76 3.8 3.85 3.0 3.06 
Time (sec ) 

(c) 

Figure 23. Time domain waveforms for SOUND CHANNEL environment, (a) Source, 
(b) Receiver 1. (c) Receiver 2. 
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3.      Shelf Break 

For this environment the receivers are at distances 2km and 3km but in posi- 

tions relative to the source as shown in Fig. 26 for each of the two cases considered. 

In particular Fig. 26 provides us with a top view of the geometry for the two cases, 

indicating the positions of the source and of the receivers relative to the source, noting 

also the corresponding depths and the respective ranges for each case. Once again, 

different realizations of white noise were added to each transient to obtain a SNR 

of lOdB. Figures 27 and 28 show the Transmission Loss (TL) plot of depth versus 

frequency and the waveforms of the source and of the two receivers in the time do- 

main for one of the two cases. The results for both cases are shown in Figs. 29 and 

30 and summarized in Table X. As we now get into more complex environments 

(range-dependent), it is obvious that the graphs of the classical methods become 

more "noisy" than the ones in the range-independent environments, and also that 

they had an abrupt decrease in their performance except for the Cross-correlation 

method. Subspace methods still gave us accurate results and all of them were very 

consistent about the small diversity of their estimated values of TDOA. 

LEGEND 

Case 1 Receivers (£) 

Source o 
Case 2 ReceiversCj) 

Source Depth : 250m 

Receiver Depth: 100m 

Figure 26.   Top view of positions of source and receivers for both cases of SHELF 
BREAK environment. 
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Figure 27. Transmission Loss for SHELF BREAK environment. 

Method Estimated TDOA Estimated TDOA 
Case 1 Case 2 

ACTUAL 0.7175 0.7*07 
MUSIC 0.7139 0.7402 
Modified-MUSIC 0.7139 0.7490 
MIN-NORM 0.7139 0.7432 
PCLP 0.7139 0.7422 

ESPRIT 0.7139 0.7471 
Root-MUSIC 0.7139 0.7471 

SCOT -0.8613 -0.2793 
PHAT -0.8613 -0.2793 
Roth 1.2998 1.6211 
X-Corr 0.8154 0.7803 

Table X. TDOA results for SHELF BREAK case. 
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Figure 28.  Time domain waveforms for SHELF BREAK environment,  (a) Source, 
(b) Receiver 1. (c) Receiver 2. 
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Figure 29. SHELF BREAK environment Subcase 1: Actual TDOA=0.7173s; 
SNR=10dB; White-Noise (<?%). (a) Subspace methods, Covariance Size=10. (b) Clas- 
sical methods, number of segments=l. 

73 



Music:    0.74023 

-2-10 12 
T(sec) 

(a) 

 1 , ■ i 

M Music:   0.74902       1 

■ 

-2-1012 
T(seo) 

(b) 

Figure 30. SHELF BREAK environment Subcase 2: Actual TDOA=0.7407s; 
SNR=10dB; White-Noise (o%). (a) Subspace methods, Covariance Size=10. (b) Clas- 
sical methods, number of segments=l. 
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4.      Internal Waves 

For this environment both receivers are at a distance of 3km but at different 

positions relative to the source as shown in Fig 31 for each of the two cases considered. 

Figure 31 provides a top view of the geometry for the two cases, indicating the 

positions of the source and of the receivers relative to the source, noting also the 

corresponding depths and the respective ranges for each case. As with the previous 

environments, different realizations of white noise were added to each transient to 

obtain a SNR of lOdB. Figures 32 and 33 show the Transmission Loss (TL) plot of 

depth versus frequency and the waveforms at the source and at the two receivers in 

the time domain for one of the two cases. The results for both cases are shown in Figs. 

34 and 35 and summarized in Table XL Our observations for this environment are 

almost the same as with the Shelf Break. The only difference is that even the subspace 

methods give slightly worse results compared with the actual value of TDOA. This 

was expected since the Internal Waves was the most complex environment used in 

this thesis. These results are still within the permissible limits of error. 

LEGEND 

Case 1 Receivers Qt) 

Source o 
Case 2 Receivers <£> 
Source Depth : 150m 

Receiver Depth: 50m 

€r- 

SINUSOIDAL & 
SOLITON PERTURBATION 

<f> 

3km 

o 3km 

3km 

3km •<g> 

e 
SINUSOIDAL  PERTURBATION 

Figure 31. Top view of positions of source and receivers for both cases of INTERNAL 
WAVES environment. 
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Figure 32. Transmission Loss for INTERNAL WAVES environment. 

Method Estimated TDOA Estimated TDOA 
Case 1 Case 2 

ACTUAL 0.7770 0.2109 
MUSIC 0.7734 0.2090 
Modified-MUSIC 0.8311 0.1885 
MIN-NORM 0.7822 0.2061 
PCLP 0.7793 0.2061 

ESPRIT 0.7959 0.2012 
Root-MUSIC 0.7930 0.2041 

SCOT 0.6299 0.1289 
PHAT 0.6299 0.1289 
Roth 2.5938 0.0361 
X-Corr 0.8574 0.1357 

Table XI. TDOA results for INTERNAL WAVES case. 
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Figure 33.   Time domain waveforms for INTERNAL WAVES environment,    (a) 
Source, (b) Receiver 1. (c) Receiver 2. 
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Taking into consideration the figures and the tables with the TDOA results 

from all the environments, we observe that aU the methods performed quite accurately. 

It should be noted that the subspace methods were more consistent than the classical 

ones. This can be verified from the range-dependent environments, where all the 

subspace methods gave results more close to the actual value and they had only a smaU 

dispersion among them. On the contrary, the classical methods had slightly inferior 

performance in the range-independent environments and much worse in the range- 

dependent ones, with a wider dispersion of values. This difference in the performance 

among all the methods between the two categories of the environments also appears 

in the results of the localization problem in the next chapter. 
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VI.        THE LOCALIZATION PROBLEM 

In this chapter, we use the TDOAs between the receivers, estimated by the 

various methods, in order to estimate the location of the target. For this purpose a 

homonymous algorithm will be implemented whose main characteristic is to provide 

us the passive assessment of target position by using a corresponding set of equations, 

called Time of Arrival (TOA) equations. The TOA equations try to correlate the 

positions of the receivers with the position of the target using the time that a transient 

needs to travel from one location to the other. In other words, these equations try 

to find a correspondence between the signal arrival times and the target range. By 

solving the TOA equations for only two receivers, we are not going to get one specific 

location of the target, but an infinite number of possible locations since this solution 

corresponds to a bearing from this particular pair of receivers. Under these conditions, 

in order to eliminate this ambiguity we need to solve the TOA equations for all the 

receivers at the same time, so the desired target position will be the result of the 

crossing of all the bearings. This expectation is quite natural since, as far as we 

know, only one solution (target position) can account simultaneously for the travel 

time of the transient to each receiver. The algorithm that is implemented is simpler 

than most since it transforms the original nonlinear TOA equations into a set of linear 

equations. The inputs (receiver position and signal's arrival time for each receiver) 

correspond to a specific set of outputs (target position and transmission time of the 

transient). The rest of this chapter is based on a former thesis [Ref. 33] related to 

this subject. 

A.     PRESENTATION OF TDOA ALGORITHM 

In this section, a brief description of the TDOA algorithm will be provided to 

the reader since a detailed derivation of this algorithm is not within the scope of this 

thesis. Before we continue with the rest of our discussion, it would be advisable to 
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make clear that the solution to the localization problem, which is attempted to be 

given here, is conducted in two dimensions in the x - y plane. Let us assume that 

we have one source (target) and N receivers (buoys). The location for each receiver 

is given by the vector 

r,- = i = l,---,N (VI.1) 

where X{ and y{ are the x-y coordinates of buoy i. Let the arrival time of the transient 

at buoy i, defined as the time it takes the leading edge of the transient to travel from 

the source to the receiver, be denoted as U. In a similar manner, the transmission 

time of the transient from the target will be denoted as t, and the desired position of 

the target is defined by 

x 
r = 

y 
(VI.2) 

where x equals the target's x coordinate position, y equals the target's y coordinate 

position. 

In order to estimate the desired variables, t and r, we have to solve the following 

equation in matrix form 

Ar = qt + s, (VI.3) 

where 

X\ -x2        yi- y2 

X2 -xa        y2- y2 A = 

XJV-I - xN   yjv-i - yN 

(VIA) 

q=c< 

tl- -t2 

*2" "*3 

*AT-1 — tjV _ 

(VI.5) 
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and 

1 

- \\r2\\z -cHi + cHi 

c2 + c t3 

\n 
V2W2-\\rz\\2-c2t2 + cH2 

Irjv-iH2 - Mrjvll2 - c2^.! + c2^» N 

(VI.6) 

The variable c represents the sound speed, which in our case will be assumed constant 

throughout the whole computational grid. Equation (VI.3) is simply the transforma- 

tion of the nonlinear TOA equation 

(a* - x)2 + (w - yf - c2(U -t)2 = 0 (VI.7) 

into a linear TDOA equation which relates target position to transmission time 

x{xn - xn+1)+y{yn - yn+i) = c2t(tn-tn+i) + -(x2
n - x2

n+l +y2 - y2
+1 - c2t2

n + c2t2
n+1). 

(VI.8) 

This equation is formed by subtracting two equations like (VI.7) for successive pairs 

of the N receivers. 

The solution of Eq.  (VI.3) is computed in a least squares sense in order to 

find the target range r in terms of the transmission time t. Equation (VI.3) becomes 

r = g* + h, (VI.9) 

where 

g = (A)+q, (VI.10) 

h = (A)+s, (VI.11) 

and + denotes the pseudoinverse. Here we make the distinction that when N = 3 

the expected solution is exact for the corresponding set of equations, but for the case 

N > 3 the result is the least squares solution, which minimizes the equation error for 

the same set of Eqs. (VI.7). 

After some calculations, we come up with the following formula for the kth 

range equation: 

||rk-gt-h||2 = c2(*fc-i)*, (VI.12) 
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which after expanding and simplification produces 

at2 + 2bt + d = 0, (VI. 13) 

where 

a = ||g||2-c2, (VL14) 

b = gT-h-gT-rk + c2tk, (VI.15) 

d=\\h-rk\\*-c2t*. (VI.16) 

By solving the quadratic formula (VI. 13), we find two possible solutions for transmis- 

sion time t, but only one of them is correct. We must use the correct solution in Eq. 

(VI.9) in order to find the location of the target. 

In theory, the solution for t is independent of which particular range equation 

(k) was used to develop the quadratic equation. In practice, because of measurement 

errors, the solutions will be different. Therefore, it is advisable to develop N - 1 

estimates for t using A; = 1,2, • • •, iV -1, discarding any erroneous values and average 

the remaining solutions. This multiple solution technique also resolves which root is 

correct. The result can then be used in (VI.9) to find target position. 

B.     MATLAB IMPLEMENTATION 

This section explains how the localization testing was implemented in MAT- 

LAB using data produced by the MMPE propagation model. The problem was rep- 

resented by a "target", which is the sound source, and two or more sonobuoys, which 

are the receivers. More specifically, we specified a cartesian coordinate system and 

set the true position of the target. The buoy positions were given to the MATLAB 

program relative to the target's position. This was done by having as inputs the 

quadrant number, the distance (range) to the buoy, and the distance in x-coordinate 

to the buoy. In this way, it was possible to create any geometric scenario in two 

dimensions. 
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After specifying the geometry of the scenario, we had to find the value of 

the sound speed that would be used for each environment. To be as realistic as 

possible with each case, we evaluated the group speed of a specific mode that would 

dominate during propagation of the signal. This was executed for each water column 

corresponding to each buoy location in the range-dependent cases and only once in 

range-independent cases, since the sound speed profile remains the same throughout 

the computational grid. For the range-dependent environments, we averaged those 

values of the group speed for each buoy in order to end up with one value to use for 

the rest of the algorithm. 

After these steps, the data from MMPE (after being modulated/demodulated 

as described in Chapter 4) was read into the localization program. Then using all 

the previously described methods (subspace - classical) we evaluated the TDOAs for 

all combinations of pairs of buoys. Since we don't know absolute TO A for any of the 

buoys, we set TOA for the 1st buoy equal to zero, TOA(l) = 0, and measured the 

relative TOA for the other buoys with respect to the first buoy as a reference. 

The rest of the algorithm continues as it was presented in the last section to 

evaluate the "Estimated Target Position." The entire procedure is repeated for all the 

TDOA methods for each environment and for each case and using the same signals. 

In this way, it is possible to evaluate the performance of all the methods under the 

same circumstances and compare results among them. Figure 36 summarizes all the 

steps of the localization procedure. 

C.     SIMULATION RESULTS 

In this section, simulation results for the localization problem using the four 

MMPE environments are presented. For each environment, there are two cases con- 

sidered. In the first, the minimum number of three sonobuoys is used. (Recall that 

three is the minimum, since we require at least two separate TDOA measurements to 

locate the target.) In the second case, more than three sonobuoys are used. 
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Figure 36. Flowchart of Localization Algorithm implemented in MATLAB environ- 
ment using data from MMPE. 

For each environment and each TDOA method we show a pair of figures with 

the locations of the buoys, the real target location and the estimated location from 

each method. Each figure in the pair corresponds to the two cases mentioned above (3 

buoys and more than 3 buoys), and contains two subfigures with the results from the 

subspace and from the classical methods respectively. Each environment is accompa- 

nied by a table. The tables contain the error in target's position, i.e., the difference 

between the actual location and the estimated one for each method. In this way there 

is a fair evaluation for all the methods, since for this kind of problem the difference 

of the two positions (real-estimated) is of most concern. 
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1.      Flat Bottom 

The characteristics of this environment are described in Chapter 4. The true 

geometric positions for two scenarios with 3 and 5 receivers (buoys) are presented in 

Figs. 37 and 38 respectively. The source was at a depth of 150m while the receivers 

were at a depth of 50m and ranges of 2, 3 and 5 km from the source. Table XII has 

the target position error for all methods for both cases in this environment. 

Observing Table XII, we conclude that all methods performed efficiently, but 

the position accuracy was better for the subspace methods than the classical meth- 

ods. In both groups of methods there was an improvement with the increase of the 

number of sonobuoys, except from the Roth method. The variance of the results from 

the subspace methods was much smaller than the respective one from the classical 

methods. Further, the cross-correlation (X-Corr) had the best performance from the 

classical methods and was the only one from this family whose results were closer to 

those of the subspace methods. 

Method Target Position Error in (m) 
3 buoys 5 buoys 

MUSIC 29.68 23.74 
Modified-MUSIC 47.46 24.67 
MIN-NORM 30.16 22.45 
PCLP 30.16 22.42 

ESPRIT 30.76 21.86 
Root-MUSIC 30.06 21.81 

SCOT 100.87 67.52 
PHAT 100.87 67.52 
Roth 87.17 183.81 
X-Corr 37.04 31.42 

Table XII. Target position Error for Flat bottom isospeed case. 
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Figure 37. Localization problem for Flat bottom isospeed case with 3 sonobuoys. (a) 
Subspace methods, (b) Classical methods. 
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Figure 38. Localization problem for Flat bottom isospeed case with 5 sonobuoys. (a) 
Subspace methods, (b) Classical methods. 
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2.      Sound Channel 

The characteristics of this environment are described again in Chapter 4. The 

true geometric positions of the two scenarios with 3 and 5 receivers (buoys) are shown 

in Figs. 39 and 40, respectively. The source was at a depth of 150m and the receivers 

were at a depth of 50m and at ranges of 2 and 4 km from the source. The results are 

also accompanied by Table XIII presenting the Target Position Error for all methods. 

Once again the subspace methods had better accuracy than the classical methods 

as a group. In both families of methods, we observe that increasing the number of 

the buoys does not, by itself, assist the algorithm to more accurately predict the 

target position. The main consideration that has to be made is the disposition of 

the receivers and then the number of them. If the disposition is suitable, then an 

increase of the number of the sonobuoys may improve the result since, as we have 

seen in section A of this chapter, Eq. VI.3 will be solved either uniquely if N = 3 or 

in a least squares sense if N > 3. The performance was similar to the Flat bottom 

case, with Roth being more unstable in the results, and SCOT, PHAT performing 

better than X-Corr. 

Method Target Position Error in (m) 
3 buoys 5 buoys 

MUSIC 19.65 25.72 
Modified-MUSIC 21.35 28.42 
MIN-NORM 19.65 26.65 
PCLP 19.65 26.65 
ESPRIT 20.50 26.20 
Root-MUSIC 19.65 26.65 
SCOT 47.04 53.02 
PHAT 47.04 53.02 
Roth 24.70 487.13 
X-Corr 45.92 65.09 

Table XIII. Target position Error for Sound Channel case 

90 



10000 

7S00 

6000 

2600 

> 

-2500 

-6000 

-7500 

-10000 

I           I i 
O   1st buoy 
+   2nd buoy 
x   3rd buoy 
0   Target position 
+   Est-Pos-MUSIC 
x    Est-Pos-ModMUSIC 

+   Est-Pos-MN 
O   Est-Pos-PCLP 
9   Est-Pos-ESP 
*    Est-Pos-rootMU 

o ! 

♦ 

i                                        i      X !     + 

i           i i 
-10000 

10000 

7500 

6000 

2600 

& 0 

-2500 

-6000 

-7500 

-10000 
-10000 

-7500 -5000 -2500 0 
X(m) 

2500 5000 7500 10000 

(a) 

I 1 ■ 
O   1st buoy 
+   2nd buoy 
x    3rd buoy 
O   Target position 
+   Est-Pos-SCOT 
+   Est-Pos-PHAT 
A    Est-POS-ROTH 
$    Est-Pos-X CORR 

♦ 

1      X '   +     L 

i i        ..j  
-7500 -5000 -2500 0 

X(m) 
2500 5000 7500 10000 

(b) 

Figure 39.   Localization problem for Sound Channel case with 3 sonobuoys.   (a) 
Subspace methods, (b) Classical methods. 
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Figure 40.   Localization problem for Sound Channel case with 5 sonobuoys.   (a) 
Subspace methods, (b) Classical methods. 
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3.      Shelf Break 

Using the characteristics for this environment discussed in Chapter 4, the true 

geometric positions of two scenarios with 3 and 6 receivers (buoys) are presented in 

Figs. 41 and 42 respectively. The source was at a depth of 250m and the receivers 

were at a depth of 50m and at range of 3 km from the source, located upslope and 

downslope concurrently (see similar Fig. 26). Table XIV summarizes the results of 

the performance for all methods. In this range-dependent environment, we see that 

subspace methods have similar accuracy in their results compared with the one in 

the range-independent environments. In comparison with the subspace methods, the 

classical methods performed much poorer. This could be expected if we recall their 

quality of results in the estimation of TDOA (see Table X.) In general, there was an 

improvement of the results for all methods (except X-Corr) with an increase in the 

number of the sonobuoys. This improvement was more drastic for Roth, something 

that also was expected considering the diversity of the results from this method. An- 

other remark is that because of the complexity of the range-dependent environments 

the buoys disposition is very critical. An inappropriate disposition can create larger 

errors in target position than the range-independent environments. 

Method Target Position Error in (m) 
3 buoys 6 buoys 

MUSIC 24.65 22.48 
Modified-MUSIC 31.04 22.64 
MIN-NORM 25.32 20.45 
PCLP 25.32 20.48 
ESPRIT 27.29 21.96 
Root-MUSIC 27.29 21.89 

SCOT 434.35 432.77 
PHAT 434.35 432.77 
Roth 787.43 418.26 
X-Corr 93.53 215.67 

Table XIV. Target position Error for Shelf Break case 
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Figure 41. Localization problem for Shelf Break case with 3 sonobuoys. (a) Subspace 
methods, (b) Classical methods. 

94 



10000 

7600 

5000 

2500 

E, 
> 

-2600 

-6000 - 

-7500 

-10000 

I I i 
O   1st buoy 
+   2nd buoy 
■<   3rd buoy 
* 4th buoy 
i)   5th buoy 
O   6th buoy 
O   Target position 
+   Est-Pos-MUSIC 
x    Est-Pos-Mod MUSIC 

+   Est-Pos-MN 
O   Est-Pos-PCLP 
* Est-Pos-ESP 
* Est-Pos-rootMU 

o \    + 

♦ 

0 
i\             '                       * 

! i              i 
-10000 

10000 

7500 - 

6000 

2600 

E. 
> 

-2500 

-5000 

-76O0 

-10000 
-10000 

-7500 -5000 -2500 0 
X(m) 

2500 5000 7500 10000 

(a) 

I            I I 
O   1st buoy 
-*-   2nd buoy 
>■    3rd buoy 
«    4th buoy 
i>    5th buoy 
o   6th buoy 
O   Target position 
+    Est-Pos-SCOT 
+    Est-Pos-PHAT 
/>   Est-Pos-ROTH 
jj   Est-Pos-XGORR 

o !    + 

A    i 

!                !       o 
*     ' 

i                        i i 
-7500 -5000 -2500 0 

X(m) 
2500 6000 7500 10000 

(b) 

Figure 42. Localization problem for Shelf Break case with 6 sonobuoys. (a) Subspace 
methods, (b) Classical methods. 
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4.      Internal Waves 

Using the characteristics for this environment described in Chapter 4, the true 

geometric positions of two scenarios are shown with 3 and 6 receivers (buoys) in 

Figs. 43 and 44, respectively. The source was at a depth of 150m and the receivers 

were at a depth of 50m and at range of 2 km from the source located on both the 

sides. We have to mention that some of the receivers were located in the section 

of the computational grid with sinusoidal and soliton perturbations and the rest 

of them were in the other section with sinusoidal perturbations only (see similar 

Fig. 31). Table XV contains the results of the performance for all methods. This 

environment is the most complex that we used so far and it deviates considerably from 

the basic concept of the localization algorithm, which assumes a constant value for the 

sound speed. For this environment all the methods have decreased performance. The 

difference between subspace and classical was the same as before, shown in Table XL 

The only difference is that the increase in the number of the sonobuoys with different 

disposition had worse results than in the Shelf Break environment and that X-Corr 

gave similar results to the subspace methods. 

Method Target Position Error in (m) 

3 buoys 6 buoys 
MUSIC 65.90 160.52 
Modified-MUSIC 64.64 153.58 
MIN-NORM 63.02 164.64 
PCLP 62.29 165.85 

ESPRIT 63.81 164.78 
Root-MUSIC 66.11 155.57 

SCOT 423.57 849.08 
PHAT 423.57 849.08 
Roth 226.81 515.59 
X-Corr 49.22 160.37 

Table XV. Target position Error for Internal Waves case . 
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Figure 43.   Localization problem for Internal Waves case with 3 sonobuoys.    (a) 
Subspace methods, (b) Classical methods. 
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Figure 44.   Localization problem for Internal Waves case with 6 sonobuoys.   (a) 
Subspace methods, (b) Classical methods. 
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Prom the corresponding figures and tables for each environment, one can con- 

clude that in most cases all the methods performed quite successfully. The subspace 

methods were more consistent in their results as a group; this is something that didn't 

happen with the classical methods. Further, with different realizations of the noise, 

the variance of the results of the subspace methods was much smaller than for the 

classical methods. The location accuracy in the range-dependent environments was 

less than in the range-independent environments and was reduced even more when 

the distance between receivers and source became greater (4 to 8km). Another major 

factor for the successful localization of the target was the geometrical disposition of 

the receivers relative to the source position. In other words, if the receivers were 

located in such a way that the bearing from each pair formed an angle of between 

60° and 120°, then the estimate of their crossing will have less error than otherwise. 

A larger number of receivers does not always contribute to more accurate 

detection. This can be justified from the fact that when JV is equal to 3, the solution 

from Eq. (VI.9) is unique, while a value of N > 3 requires a least squares solution 

to minimize the equation error in the over specified set of equations. As discussed in 

Section A of this chapter, the solution for t is independent of which particular range 

equation (k) is used to develop the quadratic equation, and in order to overcome 

the obstacle of measurement errors, we have to develop N — 1 estimates for t using 

k = 1,2,--- ,N - I, discarding any erroneous values and averaging the remaining 

solutions. A larger value of N does not always lead to a better result. In other words 

for more accurate results, the placement of the buoys is more important than the 

number of the buoys. 
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VII.        TRACKING PROBLEM 

A.     DOPPLER IMPLEMENTATION IN MMPE 
In actual underwater acoustics problems, the source and/or the receiver are 

not stationary, but they are in motion. This motion causes temporal fluctuations, 

something we have to take into consideration if we want to find out how the under- 

water acoustic channel influences various applications such as communications [Ref. 

34]. In our case we will consider motion only due to the source (target), and the 

receivers (buoys) will be stationary. Figure 45 gives a characteristic example of the 

effect. The result of the source motion is to provoke a change in the value of the actual 

source frequency observed, fs(Q), m other words in the received frequency at buoy i 

compared with the original transmitted frequency, fa- The received frequency, fsiß), 

will depend on the transmitted frequency, fT, the observation angle, 0, the source 

speed, vs, and the direction of motion, <f>§ [Ref. 35], 

fs(0) = T-T^
1

- • (VII.l) 
l-(^)cos(6-4>s) 

Figure 45. Effect of Doppler due to linear motion of the source. 
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According to [Ref. 35] when |^s| < 90° then the observed frequency bandwidth 

downrange, BWg+, will be equal to 

BWr
s
+ = BWT + ^ (fTjmax + fTjmin\ sin<j>s\), (VII.2) 

where BWT is the actual transmitted bandwidth, and fT,max and fT%min are the actual 

transmitted maximum and minimum frequencies, respectively, of the transmitted 

band. The observed center frequency downrange is defined as [Ref. 35] 

fs,c = /r,c + TT (famax - /r,mm| sin0s|) , (VII.3) 

where fTtC is the actual transmitted center frequency. When \<j>s\ > 90°, then the 

observed bandwidth downrange will be [Ref. 35] 

BWr
s~ = BWT + -f (fTtmax\ sm<t>s\ + fTtmin), (VII.4) 

and the observed center frequency is equal to 

fs,c = fr,e + — {k,max\ sin<j>s\ + /r,min). (VII.5) 

The equation for the PE starting field in the vertical wavenumber domain has 

the general form [Ref. 35] 

ip (r = 0, kz, f) = e-ik*z°ij;0(kz, f) - eik*z°ipo(kz, /), (VII.6) 

where the functions ip0(kz, f) represent the starting field in free space. The role of the 

exponentials in Eq. (VII.6) is the creation of the appropriate interference structure 

between the source (target), which lies at depth zs and its image about the plane of 

the free surface (z = 0). The vertical wavenumber is defined by 

27Tf 
kz = k0 sin 6 = —- sin 0, (VII.7) 

c0 

where 6 is the angle of propagation relative to horizontal and k0 is the reference 

wavenumber. 
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For the rest of this chapter, we assume that we have a point source, which is 

modeled in such way that [Ref. 35] 

J>(kzJ) = a(k0)S(f), (VH.8) 

where 

«»<*■>-1/§- (m9) 

and S(f) is the amplitude spectrum of the pulse in the frequency domain. The MMPE 

uses a Hanning window in order to create the aforementioned spectrum, defined by 

'cos2(^7r),   \f-fe\<Bf 
S(f) = {   -  ^w~''   '*     "•'   -J«     , (VII.10) 

0, \f-fc\>MK 

where fc is the center frequency of the transmitted band and BW is the transmission 

bandwidth. 

Now that there is motion of the source, Eq. (VTI.6) should be stated in 

accordance with the transmission parameters (see [Ref. 35]) as 

j> (r = 0, fc„ /) = e-ik^0(kz,T, fT) - eik^Uk2,T, fT), (VII.ll) 

where 
 ^  (mi2) 

' [l + gcO8(0-0s)] 
The frequency in the enviromental frame is denned by the transmitted frequency, /T, 

with the assistance of Eq. (VII. 1), which determines the relationship between fr and 

fs(8). Finally the source spectrum S(f) will take the form [Ref. 35] 

^>=*([l+gci(a-fe)j)- ^ 
Finally the factor a has to be replaced by the corresponding transmitted value ax- 

One of the differences between the two cases, with and without Doppler, is the 

different size of the observed frequency bandwidth. In order to be able to compare 

results, the computational bandwidth of the non-Doppler case has to be set to the 

same size as the Doppler case. This is achieved by applying a weighting of zero to 

those frequency bins that are outside of the actual non-Doppler bandwidth. 
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B.     MATLAB IMPLEMENTATION AND  SIMULATION 
RESULTS 
For the tracking problem, the MATLAB implementation is almost the same 

as the implementation for the localization problem. However, there are two main 

differences. The first is the different manipulation of the MMPE data, since the code 

has now been changed in order to give us the effect of the Doppler. The second is an 

addition to the previous code, which has as inputs the coordinates of the buoys, the 

estimated coordinates of the source, the received signals corresponding to each buoy, 

and the evaluated group speed (see Chapter 6, section 2). The computed outputs will 

then be the course and the speed of the target. Regarding the new manipulation 

of the MMPE data, most of the procedure was shown in the previous section. So 

after re-mapping the original "MMPE" signal with the desired frequency resolution 

to account for the shift of the center frequency, we take the product of the real 

part of the re-mapped signal with the phasor exp(--?'2,r/<:Time), where fc is the center 

frequency of the received signal, and Time is the re-mapped time vector with the 

desired resolution. Finally there is an interpolation of the pressure vector from its 

original time spanning vector Time to a fixed time spanning vector Time^ which 

is the same for all received signals. 

For the computation of the course and the speed of the target, the procedure 

that we implemented was the following. First, we find the spectrum of each received 

signal and from the spectrum we extract the center frequency. Afterwards, with the 

coordinates of the buoy locations and the estimated target location, we extract the 

angles between the relative position vectors for each pair of the buoys. Then we find 

the relative Doppler frequency that corresponds to each pair of center frequencies of 

the received signals. Finally we estimate the course of the target for each buoy by the 

following equations. Note that for the simplicity of the problem we used only three 

receivers (N=3), otherwise the system of equations becomes very complex. 

Course{\)   =   acos(A(l)) + B(l) (VH.14) 
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where 

and 

and 

C<mrse(2)   =   acos(A(2)) + B{2) (VII.15) 

CWse(3)   =   acos(A(3)) + 5(3) (VII.16) 

=   {Kl + KD-Kl (VII17) 

A(2) =  {Kl+
2^~Ki (VH.18) 

43) = (^2tiS~^2 (V11-19) 

5(i) = ^(0(1)+ 0(2)) (vn.20) 

B(2)   =   i (0(2) + ^(3)) (VII.21) 

B(3)   =   \ (0(3) + 0(1)) (VII.22) 

Xl   = 
A^2Ci  (vn.23) 

sin (|(0(1)-0(2))) 

K2   = 
A^4  (m24) 

sin (|(0(2) - 0(3))) 

K3   = 
A^3lCi  (VII.25) 

sin(i(0(3)-0(l))) 

In Eqs. (VII.20) - (VII.22) and (VII.23) - (VII.25), the quantities 0(1), 0(2), 0(3) 

represent the angles in the horizontal plane of the position vectors of the buoys and in 

Eqs. (VII.23) - (VII.25) the variables A/i2, A/23, A/3i stand for the relative Doppler 

frequencies between the center frequencies of the received signals. In the end, the 

course of the target will be the average of the outcomes of Eqs. (VII.14) - (VII.16). 

Regarding the speed, it will be the average of the following calculations 

Speed{1)   =   2/«sin (At«) sinA(cLe(l) - **?&) ^^ 
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Speed(2)   = 

Speed(3)   = 

    A/23c  
2/c sin (^IzM) sin (cwrse{2) - ^±M) 

A/31c 

(VII.27) 

(VII.28) 
2/c sin (42h*Ü2) sin (Course(S) - ^l^lil) ' 

where fc is the theoretical center frequency of the transmitted signal. Since this 

quantity is unknown in our case, we substitute it with the average of the center 

frequencies of the received signals. This substitution will not significantly distort 

the result, since the shift of the center frequency due to Doppler is not large enough 

(low speeds) and the difference between the fc (transmitted) and the average of fc 

(received) is small. Figure 46 gives a geometrical overview of the problem. 

y 
<p Source Course 

""""N        .^W vs    Source SDeed 

(xs>ys)/ \     \<P3 
Source    \ 
Location 

<p^O(x2=y2)   / 

~)(y  ,r \        s~ Buov Locations 

X 

Figure 46. Top view of the Tracking problem. 

Some simulation results will follow, one from each environment. For each 

case there will be figures indicating the geometric scenario and the solution that each 

method gives for the localization problem and also tables with Target's Position Error 

in (m) and the Target's motion Data, Course(0 - 359°) and Speed(m/s). 

1.      Flat Bottom 

The characteristics of this range-independent environment remain the same as 

were presented in Chapters 4, 5 and 6. In this case, the source is at depth 100m and 

the 3 buoys are located at ranges 2, 3 and 5km and at depth 30m as shown in Fig. 
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47. The source course and speed are 40° and 15m/s, respectively. Table XVI presents 

the results for the localization and tracking accuracy. 

Method Target's Position Error in (m) 
MUSIC 130.8 
Modified-MUSIC 120.2 
MIN-NORM 132.0 
PCLP 131.1 
ESPRIT 137.4 
Root-MUSIC 137.1 
SCOT 1010.0 
PHAT 1010.0 
Roth 1293.0 
X-Corr 53.6 
Target's Motion Estimated Actual 
Course(0 - 359°) 37.73 40.00 
Speed (m/s) 13.95 15.00 

Table XVI. Target's Motion & position Error for Flat bottom isospeed case (Number 
of receivers = 3). 
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Figure 47. Tracking problem for Flat bottom isospeed case with N=3 sonobuoys. (a) 
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2.       Sound Channel 

As before, this range-independent environment retains the same properties as 

shown in Chapters 4, 5 and 6. For this case, the source is at depth 150m and the 3 

buoys are located at ranges 2 and 4km and at depth 40m as shown in Fig. 48. The 

source course and speed are 75° and 10m/s, respectively. Table XVII presents the 

results for the localization and tracking accuracy. 

Method Target's Position Error in (m) 

MUSIC 126.0 
Modified-MUSIC 131.7 
MIN-NORM 127.6 
PCLP 126.3 

ESPRIT 130.6 
Root-MUSIC 129.4 

SCOT 2234.5 
PHAT 2234.5 
Roth 4413.0 
X-Corr 229.3 
Target's Motion Estimated Actual 
Course (0 - 359°) 75.17 75.00 
Speed (m/s) 11.41 10.00 

Table XVII. Target's Motion & position Error for Sound Channel case (Number of 
receivers = 3). 
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3.      Shelf Break 
The properties of the current range-dependent environment are the same as 

described in previous Chapters. In this case, the source is at depth 250m and the 3 

buoys are located at ranges 3 and 4km and at depth 100m as shown in Fig. 49. The 

source course and speed are 100° and 8m/s, respectively. Table XVIII presents the 

results for the localization and tracking accuracy. 

Method Target's Position Error in (m) 

MUSIC 259.2 
Modified-MUSIC 289.3 
MIN-NORM 282.8 
PCLP 275.6 
ESPRIT 335.7 
Root-MUSIC 303.5 
SCOT 671.4 
PHAT 671.4 
Roth 1947.6 
X-Corr 185.2 
Target's Motion Estimated Actual 
Course(0 - 359°) 105.64 100.00 
Speed (m/s) 8.43 8.00 

Table XVIII. Target's Motion & position Error for Shelf Break case (Number of 
receivers = 3). 
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4.      Internal Waves 

Finally this range-dependent environment retains the properties that we have 

already seen in our previous discussion. During the present simulation, the source is 

at depth 150m and the positions for the 3 buoys are at range 2km and at depth 50m 

as shown in Fig. 50. The source course and speed are 230° and 5m/s, respectively. 

Table XIX presents the results for the localization and tracking accuracy. 

Method Target's Position Error in (m) 

MUSIC 176.5 
Modified-MUSIC 186.3 
MIN-NORM 176.7 
PCLP 176.2 

ESPRIT 181.4 
Root-MUSIC 181.3 

SCOT 938.5 
PHAT 938.5 
Roth 1504.8 
X-Corr 103.2 

Target's Motion Estimated Actual 
Course(0 - 359°) 228.77 230.00 
Speed (m/s) 4.21 5.00 

Table XIX. Target's Motion & position Error for Internal Waves case (Number of 
receivers = 3). 
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Prom the presented results, we observe that the accuracy of the localization of 

the target has been decreased, compared with the cases where there was no movement 

of the source (zero Doppler). Especially for the classical methods, the error in posi- 

tion's target was large enough to say that they failed to estimate the location of the 

source. One possible reason for the poor performance of the methods on the target 

localization is the approximation that we made during the manipulation of the data 

from MMPE when we were trying to set all signals in a fixed time spanning vector. 

On the other hand, the estimation of the target course and speed was quite accurate, 

or at least inside the acceptable limits of error, ±5° for the course and ±2m/s for the 

speed. 
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VIII.        CONCLUSIONS AND FUTURE WORK 

A.     CONCLUSIONS 

In this thesis, new techniques were developed to estimate the Time Difference 

of Arrival (TDOA) between two received signals at two seperate locations which 

contain the same transient but different noise. These techniques are based on subspace 

methods, a class of techniques based on the concept of signal and noise subspaces 

associated with the correlation matrix for a random process, and whose principal 

application is to locate narrowband hues in a spectrum or to estimate bearing of 

narrowband sources using array processing. As far as we know, the use of subspace 

methods to estimate TDOA for broadband transient sources is new. Our objectives 

were to implement the subspace methods in our problem, and to test them thoroughly 

comparing their performance with traditional methods of TDOA based on generalized 

cross-correlation ("classical methods"). The testing was conducted using synthetic 

data generated in MATLAB and data from an acoustic propagation model (MMPE). 

Tests were conducted under different scenarios using various transients, noise, or 

environmental conditions. 

The thesis went further to apply these methods in the localization of a target 

using the TDOA ranging algorithm and data from MMPE generated for various ocean 

environments. In this way, we tried to simulate realistic conditions in the ocean as 

much as possible. This second step was further expanded by the use of Doppler data 

from the MMPE algorithm to estimate not only the position but also course and 

speed; in other words, to track the source. 

From the various types of testing, we can conclude that the subspace methods 

provide good results in almost all cases. As a group, the subspace methods were 

more consistent in the accuracy of the results than the classical methods. This was 

observed not only in the TDOA testing but also in the localization and tracking 

experiments, where the subspace methods were more consistently accurate than the 
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classical methods. 

The plots produced by the subspace methods provide a clear and more easily 

identified correct peak than those corresponding to the classical methods and were 

not influenced as much by the noise. In addition some of these subspace methods 

can also be used to produce direct numerical estimates for the time delay without the 

need to search for a peak (ESPRIT - root MUSIC). 

Almost all methods (classical and subspace) performed satisfactorily in the 

localization problem. However accuracy tended to be more degraded for the range- 

dependent problems. This is not too surprising since the basic localization algorithm 

makes the assumption of a constant speed of sound. In the tracking experiments, 

the subspace methods had limited performance for estimation of target position but 

much better performance for estimation of course and speed. 

B.     SUGGESTIONS FOR FUTURE DEVELOPMENT 

The results of this thesis show promising results for the subspace methods, 

and their application to target localization and tracking via TDOA estimation. The 

testing should be continued with more complex environments using acoustic models 

and also with real data from ocean experiments. A comparison of the subspace 

methods with other families of methods for TDOA (e.g., bicorrelation and bispectra 

[Ref. 6, 7, 8, 9]), or even a combination of these, would give a wider view of the 

possible solutions to the problem. Finally, implementation of a three-dimensional 

localization algorithm may give more realistic results and could assist in the tracking 

problem, provided that it can overcome obstacles such as multipath propagation. 
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APPENDIX A. SYNTHETIC DATA 

This appendix presents sample figures and tables with summary results of the 

time delay estimation obtained from various forms of synthetic data. The transients 

that were used are the following: 

• Exponential 

• Sinusoidal 

• Modified-Exponential 

• Chirp 

• Modified-Chirp 

The definitions of the transients are given in Chapter 4 Eqs. (IV. 2) - (IV. 8). 
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Method Parameters SNR 15 dB SNR 10 dB SNR 5 dB 
MUSIC Cov-Mat: 10 101 100 106 

Cov-Mat: 20 99 99 104 
Modified MUSIC Cov-Mat: 10 101 100 107 

Cov-Mat: 20 99 99 104 
MIN-NORM Cov-Mat: 10 100 100 110 

Cov-Mat: 20 99 98 102 
PCLP Cov-Mat: 10 100 100 109 

Cov-Mat: 20 99 98 103 
ESPRIT Cov-Mat: 10 100 101 107 

Cov-Mat: 20 99 98 103 
Root-MUSIC Cov-Mat: 10 101 100 106 

Cov-Mat: 20 99 99 104 
SCOT #-Segs: 1 102 385 5 

#-Segs: 2 101 102 9 
PHAT #-Segs: 1 102 385 5 

#-Segs: 2 101 202 98 
Roth #-Segs: 1 -228 315 233 

#-Segs: 2 101 201 9 
X-Corr #-Segs: 1 98 107 93 

#-Segs: 2 101 102 109 

Table XX. Exponential transient: 
TDOA=100s. 

length L=20s;  white noise (cr*  =  2);  actual 
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Method Parameters SNR 15 dB SNR 10 dB SNR 5 dB 
MUSIC Cov-Mat 10 -10 -10 -10 

Cov-Mat 20 -10 -8 -10 
Modified MUSIC Cov-Mat 10 -10 -10 -10 

Cov-Mat 20 -11 -8 -10 
MIN-NORM Cov-Mat 10 -10 -10 -9 

Cov-Mat 20 -10 -9 -10 
PCLP Cov-Mat 10 -10 -10 -9 

Cov-Mat 20 -10 -9 -10 

ESPRIT Cov-Mat 10 -10 -10 -9 
Cov-Mat 20 -10 -9 -14 

Root-MUSIC Cov-Mat 10 -10 -10 -9 
Cov-Mat 20 -10 -8 -10 

SCOT #-Segs: 1 -10 -10 -76 
#-Segs: 2 -10 -11 -5 

PHAT #-Segs: 1 -10 -10 -76 
#-Segs: 2 -10 -15 -91 

Roth #-Segs: 1 -371 -42 -131 
#-Segs: 2 -10 -209 169 

X-Corr #-Segs: 1 -10 -9 -9 
#-Segs: 2 -10 -11 -5 

Table XXI. Exponential transient:   length L=50s; white noise (a% = 2); actual 
TDOA=-10s. 
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Method Parameters Exp Sin Damped 
Sin 

Chirp Damped 
Chirp 

MUSIC Cov-Mat: 10 50 49 50 50 50 
Cov-Mat: 20 50 51 50 50 50 

Modified-MUSIC Cov-Mat: 10 50 50 50 50 50 
Cov-Mat: 20 50 50 50 50 50 

MIN-NORM Cov-Mat: 10 50 49 50 50 50 
Cov-Mat: 20 50 51 50 50 50 

PCLP Cov-Mat: 10 50 49 50 50 50 
Cov-Mat: 20 50 51 50 50 50 

ESPRIT Cov-Mat: 10 49 49 50 50 50 
Cov-Mat: 20 50 51 50 50 50 

Root-MUSIC Cov-Mat: 10 50 49 50 50 50 
Cov-Mat: 20 50 51 50 50 50 

SCOT #-Segs: 1 50 50 50 50 50 
#-Segs: 2 50 -74 50 50 50 

PHAT #-Segs: 1 50 50 50 50 50 
#-Segs: 2 50 -74 50 50 50 

Roth #-Segs: 1 -299 -61 50 50 50 
#-Segs: 2 50 48 50 50 50 

X-Corr #-Segs: 1 50 50 50 50 50 
#-Segs: 2 50 48 50 50 50 

Table XXII. Transients:   same length; white noise (o* = 2); SNR=15dB; actual 
TDOA=50s. 
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Method Parameters Exp Sin Damped 
Sin 

Chirp Damped 
Chirp 

MUSIC Cov-Mat: 10 51 51 50 53 49 
Cov-Mat: 20 49 51 50 50 50 

Modified-MUSIC Cov-Mat: 10 51 52 50 53 49 
Cov-Mat: 20 49 51 50 50 50 

MIN-NORM Cov-Mat: 10 51 52 50 54 49 
Cov-Mat: 20 49 51 50 50 50 

PCLP Cov-Mat: 10 51 52 50 54 49 
Cov-Mat: 20 49 51 50 50 50 

ESPRIT Cov-Mat: 10 51 52 50 54 49 
Cov-Mat: 20 50 51 50 50 50 

Root-MUSIC Cov-Mat: 10 50 52 50 54 49 
Cov-Mat: 20 49 51 50 50 50 

SCOT #-Segs: 1   . 50 50 50 50 50 
#-Segs: 2 52 -255 50 50 50 

PHAT #-Segs: 1 50 50 50 50 50 
#-Segs: 2 52 48 50 50 50 

Roth #-Segs: 1 -502 50 108 50 50 
#-Segs: 2 52 -255 50 50 50 

X-Corr #-Segs: 1 50 50 50 50 50 
#-Segs: 2 50 48 50 50 50 

Table XXIII. Transients:  same length; white noise (a^ = 2); SNR=10dB; actual 
TDOA=50s. 
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Method Parameters Exp Sin Damped 
Sin 

Chirp Damped 
Chirp 

MUSIC Cov-Mat: 10 51 50 49 53 51 
Cov-Mat: 20 49 52 51 48 51 

Modified-MUSIC Cov-Mat: 10 52 50 49 53 51 
Cov-Mat: 20 50 51 51 48 51 

MIN-NORM Cov-Mat: 10 50 50 49 57 50 
Cov-Mat: 20 49 52 51 50 50 

PCLP Cov-Mat: 10 52 50 49 56 50 
Cov-Mat: 20 49 52 51       J 50 50 

ESPRIT Cov-Mat: 10 50 50 49 53 49 
Cov-Mat: 20 50 52 51 50 51 

Root-MUSIC Cov-Mat: 10 49 50 49 52 50 
Cov-Mat: 20 49 52 51 49 51 

SCOT #-Segs: 1 92 40 52 50 50 
#-Segs: 2 47 42 48 50 49 

PHAT #-Segs: 1 92 40 52 50 50 
#-Segs: 2 47 46 56 50 49 

Roth #-Segs: 1 248 478 -204 50 50 
#-Segs: 2 -204 42 -216 50 49 

X-Corr #-Segs: 1 53 48 46 50 50 
#-Segs: 2 47 46 48 50 50 

Table XXIV. Transients:  same length; white noise (a2
0 = 2); SNR=05dB; actual 

TDOA=50s. 
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(<jp). (a) Subspace methods, Covariance Size=10. (b) Classical methods, number of 
segments=l. 

159 



0 

-1 

-2 

■3 

■A 

-5 
-5000 

r ——■ 1 

■     Music:    51 

i .—_ 

0 
T(seo) 

1 1 

MinNorm:  50 

i . 

5000 

-5000 sooo 

0 

-1 

-2 

-3 

-4 

-5 
-6000 

-1 

-2 

-3 

-4 

-5 
-SOOO 

0 
T(sec) 

5000 

1 1 

M Music:   si 

i 1 

0 
T(S8C) 

5000 

(a) 

u 

-1 ■      Soot:      49 

 i i— 0 

-1 ■     Phat:     49 

i  

. 

-2 • -2 . 

-3 -3 ■ . 

■A ■A ■ 

-=> 1 -5 

0 

-1 

| 

n 

-2000     -1000 0 
T(seo) 

1000 2000 -2000     -1000 0 
T(sec) 

1000 2000 

-1 •      Roth:      49 ■ •     X-Corr:   50 . 

-2 . -2 

■3 
■ -3 . 

•4 - -4 - 
-S I ..         I   . 1 , .   I -5 

-2000     -1000 0 
T(se o) 

1000 2 D00 -2000     -1000 0 
T(se iO) 

1000 2000 

(b) 
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