
REPORT DOCUMENTATION PAGE AFRL-SR-BL-TR-OI-

Public reoortmq burden for this collection of information is estimated to average 1 hour per response, includi
aathenna and maintaining the data needed, and completing and reviewing the collection of information. Ser
collection of information, including suggestions for reducing this burden, to Washington Headquarters Servic
DavisHighway Suite 1204. Arlington. V A 22202-4302. and to the Office of Management and Budget. Paperwt

£><&&-
jrces,
f this
srson

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
14 May 2001

;YPE AND
iuoi iecnni
15 May 1998

"Final Tecnnica
(lr m , COVERED

:jjort
May 2001)

4. TITLE AND SUBTITLE

Discrete Manufacturing Process Design Optimization:
Theory and Application

6. AUTHOR(S)
Richard Nance
Subcontract to: Sheldon H. Jacobson

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

VPI&SU, 340 Burruss Hall, Blacksburg, VA 24061

9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFOSR
801 North Randolph Street, Room 732
Arlington, VA 22203-1977

11. SUPPLEMENTARY NOTES

None

S. FUNDING NUMBERS

F49620-98-1-0432

8. PERFORMING ORGANIZATION
REPORT NUMBER

#1

10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

AFOSR

12a. DISTRIBUTION / AVAILABILITY STATEMENT

til L'M v« ii public release, W/VR

iSlIlüUi.i'Jii LiiaiüiLÖU

13. ABSTRACT (Maximum 200 words)

Discrete manufacturing process design optimization (DMPDO) is a problem of significant importance and
interest to the Air Force. Moreover, the complexity of parts that must be manufactured for airplane engines and
other units makes this problem extremely difficult. This report summarizes the research that has been
conducted in developing the generalized hill climbing (GHC) algorithm framework for discrete optimization
problems in general, and the DMPDO problems in particular. Convergence conditions for GHC algorithms
have been developed. Ordinal hill climbing (OHC) algorithms were introduced to exploit the efficiency of
ordinal optimization and the effectiveness of GHC algorithms to obtain a new class of discrete optimization
problem algorithms. The relationship between OHC algorithms and genetic algorithms was also studied.
Multiple sequence optimization using GHC algorithms were introduced to optimize across sets of DMPDO
sequences. Simultaneous GHC algorithms were introduced as a generalization to optimize across a set of
related discrete optimization problems. On-going interactions with researchers at the Materials Process Design
Branch of the AFRL at WPAFB and at Austral Engineering and Software, Inc. has resulted in these algorithms
being transitioned for application into commercial software tools designed to solve various DMPDO problems
of interest to the Air Force. ,

14. SUBJECT TERMS

Manufacturing Process Design Optimization, Discrete Optimization,
Heuristics

17. SECURITY CLASSIFICATION
OF REPORT

unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified
NSN 7540-01-280-5500

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

16. PRICE CODE

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-I8
298-102

FINAL TECHNICAL REPORT

Submitted to Dr. Neal D. Glassman
AFOSR/NM
801 North Randolph Street, Room 732
Arlington, VA 22203-1977
(703)696-8431
neal.glassman@afosr.af.mil

Principal Investigator: Sheldon H. Jacobson
Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign
Urbana, IL 61801-2906
(217) 244-7275 (office)
(217) 244-6534 (fax)
shj@uiuc.edu
www.staff.uiuc.edu/~shj/shj .html

Grant Number: F49620-98-1-0432 (AASERT)

20010817 051

Report Documentation Page.

Table of Contents

 1

Table of Contents 3

Executive Summary 4

1. Generalized Hill Climbing Algorithms 5

2. Necessary and Sufficient Convergence Conditions 6

3. Ordinal Hill Climbing Algorithms 9

4. Multiple Sequence Optimization Using Generalized Hill Climbing Algorithms 15

5. Simultaneous Generalized Hill Climbing Algorithms 28

References 42

Appendix ^

Media Coverage ^
™ 44 Transitions ^*

Awards

Publications ^

EXECUTIVE SUMMARY

The research conducted under this grant focused on the development and analysis of the generalized hill

climbing algorithm framework as a tool for address intractable discrete optimization problems. The

major technical accomplishments achieved include

i) the introduction and development of a new algorithm classification scheme for generalized hill

climbing algorithms,

ii) the formulation of new necessary and sufficient conditions for generalized hill climbing

algorithms,

Hi) the introduction and analysis of ordinal hill climbing algorithms as a new class of generalized hill

climbing algorithms,

iv) the introduction and analysis of multiple sequence optimization using generalized hill climbing

algorithms as a new class of generalized hill climbing algorithms for optimizing over sets of

manufacturing process design sequences simultaneously.

v) the introduction and analysis of simultaneous generalized hill climbing algorithms as a new class

of algorithms for optimizing over sets of related discrete optimization problems.

All the accomplishments are documented in several archival journal articles. In addition, the results have

been presented at national and international conferences.

Two Ph.D. dissertations were completed during the period of the grant. Dr. Kelly Ann Sullivan

successfully defended and submitted her Ph.D. dissertation On the Convergence of Generalized Hill

Climbing Algorithms in May 1999. Dr. Diane E. Vaughan successfully defended and submitted her

Ph.D. dissertation Simultaneous Generalized Hill Climbing Algorithms for Addressing Sets of Discrete

Optimization Problem in August 2000. In addition, Mr. Derek E. Armstrong is in the final stages of his

dissertation research and it is anticipated that he will defend his Ph.D. dissertation within the next twelve

months.

1. Generalized Hill Climbing Algorithms

Generalized hill climbing algorithms (Jacobson et al. 1998) provide a well-defined framework to model

algorithms for intractable discrete optimization problems. Generalized hill climbing algorithms allow

inferior solutions to be visited enroute to optimal solutions. This hill climbing capability is the basis for

the search strategy's name. To formally describe the generalized hill climbing algorithm framework,

several definitions are needed.

For a discrete optimization problem, define the solution space, Q., as a finite set of all possible

solutions. Define an objective function f: Q -> [0,+oo] that assigns a non-negative value to each element

of the solution space. An important component of GHC algorithms is the neighborhood function, n: Q

-> 2n, where n.(©) c Cl for all co e Q. Solutions in a neighborhood are generated uniformly at each

iteration of a GHC algorithm execution if, for all coeQ, with co' e TJ(CO),

P{Q)' is selected as the neighbor of © at a given iteration of a GHC algorithm} = 1 / I t|(a)) |.

Unless otherwise stated, assume that the neighbors are generated uniformly at each iteration of a GHC

algorithm. The GHC algorithm is described in pseudo-code form (Jacobson et al. 1998):

Set the outer loop counter bound K and the inner loop counter bounds N(k), k = 1,2,.. .,K
Define a set of hill climbing (random) variables Rk: Q x Q -» iff u {-oo,+oo}, k = 1,2,.. .K
Set the iteration indices i = 0, k = n = 1
Select an initial solution co(0) e Q
Repeat while k < K

Repeat while n < N(k)
Generate a solution oo e n.(co(i)) and calculate 5(ca(i),(o) = f((o) - f(co(i))
If Rk(co(i),co) > 8((o(i),co), then co(i+l) «- co (accept improving or hill climbing moves)
If Rk(co(i),ö>) < 8(co(i),(o), then co(i+l) <- to(i) (reject hill climbing moves)
n<-n+l,i<-i+l

iV«ft7n = N(k)
n<-l,k<-k+l

C/nft7k = K

Note that the outer and inner loop bounds, K and N(k), k = 1,2,.. .,K, respectively, may all be fixed, or K

can be fixed and the N(k), k = 1,2,...,K, are random variables whose values are determined by the

solution at the end of each set of inner loop iterations satisfying some property (e.g., the solution is a

local optima). Moreover, assume that the hill climbing random variables have finite means and finite

variances for all k and for all possible pairs of elements in the solution space (i.e., E[Rk(co(i),co)] < +»

K

and VarpR^rofi),©)] < +°o for all o(i) e Q, coen.(co(i)), and for all k = 1,2,.. .,K, i = 1,2,.. .,1 = £ N(k)).

The neighborhood function establishes relationships between the solutions in the solution space,

hence allows the solution space to be traversed or searched by moving between solutions. To ensure that

the solution space is not fragmented, assume that all the solutions in the solution space (with

neighborhood function r\) are reachable; that is, for all co',co"eQ, there exists a set of solutions coi, a>2,...,

com e Q such that cor e Ti(cor.i), r = 1, 2,..., m+1, where co' = co0 and co" = owi- Note that if all solutions in

a solution space are reachable, then the solution space (with neighborhood function r|) is said to be

reachable. The goal is to identify a globally optimal solution co* (i.e., f(co*) < f(co) for all co e Q).

2. Necessary and Sufficient Convergence Conditions

New necessary and sufficient conditions for the convergence of generalized hill climbing algorithms

were obtained during this grant. Convergence conditions provide one way to assess the value and

effectiveness of an algorithm. These results are reported in Sullivan (1999) and Sullivan and Jacobson

(2001). To describe these conditions, several additional definitions are needed.

The objective function, f, and the neighborhood function, r\, allow the solution space, Q, to be

decomposed into three mutually exclusive and exhaustive sets:

- a set of G-local optima, G (the set of global optima),
- a set ofL-local optima, L = L(r|) (the set of local optima that are not G-local optima),
- a set of hill solutions, H.

Therefore G u L are the set of local optima in Q associated with neighborhood function T|, where by

definition, Q = G u L u H with G n L = 0, G n H = 0, and L n H = 0. Note that by definition, for all

co e G, TI(CO) n L = 0, and for all co e L, ri(co) n G = 0 (i.e., a G-local optimum and a L-local optimum

cannot be neighbors of each other).

GHC algorithms can be viewed as sampling procedures over the solution space Q. The key

distinction between different GHC algorithms is in how the sampling is performed. For example, Monte

Carlo search produces unbiased samples (with replacement) from the solution space, while simulated

annealing produces biased samples, guided by the neighborhood function, the objective function, and the

temperature parameter. More specifically, simulated annealing can be described as a GHC algorithm by

setting Rk(co(i),co) = -tkln(v;), co(i) e Q, co e r|(co(i)), k = 1,2,...,K, where tk is the temperature parameter

(hence, defines a cooling schedule as tk-> 0) and {v;} are independent and identically distributed U(0,1)

random variables (see Johnson and Jacobson 2001a,b for a complete discussion on and description of

how these algorithms fit into the GHC algorithm framework).

To ensure that the neighborhood function does not fragment the solution space (i.e., decompose

the solution space into mutually exclusive subsets of solutions that are not reachable), a neighborhood

function TJ on the solution space Q is said to have the local search property if when local search (i.e.,

Rk(co',co") s 0 for all co' e Q, co" e TI(CO'), k = 1,2,...,K) is applied with neighborhood function n. to the

solution space Q, then for all coH e H, there exists coGuL e GuL such that the local search algorithm will

terminate in coGuL, passing only through elements in H. Assume that all neighborhood functions n.

associated with a GHC algorithm applied to solution space fi have the local search property. Note that if

a solution space (with neighborhood function T\) is reachable, then r\ also possesses the local search

property, though the reverse is not necessarily true.
K

Each execution of a GHC algorithm generates a sequence (sample) of I = £ N(k) solutions. In

practice, the best solution obtained over the entire GHC algorithm run, not just the final solution, is

reported. This allows the algorithm to aggressively traverse the solution space visiting many inferior

solutions enroute to a globally optimal solution, while retaining the best solution obtained throughout the

entire GHC run. Each sequence of solutions is a function of the initial solution, co(0)eQ, and two sets of

independent and identically distributed U(0,1) random variables,

/) {£j}, that generate the neighbors, co e T|(co(i)) (hence, allow 8(co(i), co) = f(co) - f(co(i)) to be

computed) at each iteration i = 1,2,...,

ii) {vj}, that generate values for Rk(co(i), co), when 5(co(i), co) > 0, to determine whether the

generated neighbor is accepted or rejected (i.e., Rk(co(i), co) > 6(co(i), co) or Rk(co(i), co) <

8(co(i), co), respectively).

Note also that fä} and {v;} are independent. In addition, assume that when comparing different

GHC algorithms, the initial solution is given and fixed across all such algorithms. This means that

({&},{Vi}) completely define the probability of each sequence of I solutions generated by a GHC

algorithm. More specifically, let E = Za(0) denote all sequences of I solutions generated by a GHC

algorithm, where each of the I solutions is in Q, 3 denotes the sigma field of events on S, and P = P^,v

denote the probability measure. Therefore, (E, 3, P) defines a probability space on the sequences of I

solutions generated by a GHC algorithm, where this probability space is characterized by the initial

solution, co(0), and the set of independent and identically distributed U(0,1) random variables, ({£i},{vi}),

that determine the sequence of I solutions generated by a GHC algorithm. For simplicity and ease of

notation, co(0) and ({^},{VJ}) will be suppressed, unless they are needed to avoid ambiguities.

The iterations of a GHC algorithm can be classified as either micro or macro iterations (Sullivan

1999). A micro iteration moves the algorithm from the current solution either to an immediate neighbor

or back to itself. A macro iteration is a set of micro iterations that moves the algorithm from any

element of G u L to any element of G u L (including itself), passing only through elements of H.

Using these definitions, at macro iteration k (fixed), the micro iterations define a homogeneous

discrete time Markov chain, with micro iteration transition matrix

Pt =
'P*(G,G) P*(G,L) P*(G,H)

P*(L,G) P'(L,L) F*{L,H)

P*(H,G) P*{H,L) P*(H,H)

where P£(U,V), U,Ve{G,L,H} are |U|x|V| matrices representing the micro iteration transition

probabilities from the elements in set U to the elements in set V. Note that if the micro iteration transition

Markov chain is aperiodic and irreducible, then at macro iteration k, the macro

pk _
P^G,H)d-P^H,H))-'P^H,G) + P^G,G) P^G,H)(I -P*(G,H)yl P*(H,L) + P*{G,L)

P*{L,HXI-P^H,H)TxPi{H,G) + P*(L,G) P*(L,H)(I-P^H,H))'X P*{H,L) + P*(L,L)_

iterations define an inhomogeneous Markov chain, with macro iteration transition matrix.

Without loss of generality, assume that the GHC algorithm run is initialized at a solution in L

(i.e., ©(0) G L), since local search can be applied from any element in Q, and the local search property

holds for the solution space Q. This places a restriction on the classes of discrete optimization problems

that can be studied, since if a local optima cannot be obtained in polynomial time in the size of the

problem instance, then initializing the GHC algorithm run in this way may not be feasible (see Jacobson

and Solow 1993). In addition, if local search is applied and the local optima obtained is a G-local

optima, then the problem is solved, though this may not be known until further algorithm iterations are

executed.

To illustrate the micro iteration and macro iteration concepts, from the GHC algorithm pseudo-

code, let the outer loops represent macro iterations, while the inner loops represent micro iterations

between the macro iterations. Therefore, as the GHC algorithm is now defined, there will be K macro

iterations, with N(k) micro iterations associated with macro iteration k = 1, 2, ..., K (i.e., N(k) micro

iterations between macro iteration k-1 and k, where the 0* macro iteration is defined as the initialization

of the GHC algorithm run at co(0) e L). Note that all the solutions visited during the N(k) micro

iterations associated with macro iteration k will be in H, and that N(k), k = 1,2,...,K, will be random

variables.

To obtain the necessary and sufficient convergence conditions for a GHC algorithm to converge,

define n„ to be the long run stationary distribution of a GHC algorithm being at solution coeGuL at

macro iteration k. The following lemma provides upper and lower bounds on the sum of the long run

stationary distribution of being at a solution in L at macro iteration k.

Lemma 1 (Sullivan and Jacobson 2001): For a GHC algorithm at macro iteration k (fixed), with macro

iteration transition matrix PM,

minY p£(<D,o)/[minY PM (co,a) + max £ PM(<V»)]
U •6C ttl meG t?L CT6i <°*G

©el
.k

maxY P^((ö,a)/[maxY PM (G>,CT) + min £ PM(o,a>)]
•eG Si *6C «rel ff ««G

These bounds are used to provide the necessary and sufficient convergence conditions for a GHC

algorithm to converge in probability to G, as given by Theorem 1.

Theorem 1 (Sullivan and Jacobson 2001): For a GHC algorithm at macro iteration k (fixed), with macro
iteration transition matrix PM,

a) (Necessary Condition)
If n^ -> 0 as k -> +oo, for all co e L, then

[min y PM (©,<*)] / [max Y PM (a,©)] -» 0 as k -> +oo,

b) (Sufficient Condition)
If [max V PM(©,O)] /[maxV PM(<D,O) + min £ PM(a,©)] -> 0

•eG Si *e0 <T6I
ff6 <»ec

as k -> +oo, then 11* -> 0 as k-> +oo, for all co e L.

Theorem 1 uses the macro iteration structure and the macro iteration transition matrix described above to

provide conditions that can be used to determine when a GHC algorithm does or does not converge.

These conditions are being studied and analyzed to determine convergence rates for different classes of

GHC algorithms, as well as to determine how different GHC algorithm formulations can be compared

and evaluated for various discrete optimization problems.

3. Ordinal Hill Climbing Algorithms

Ordinal hill climbing algorithms were introduced and analyzed during this grant. This section describes

results in formulating and applying ordinal hill climbing algorithms to manufacturing process design

optimization problems (Fischer et al. 1997) of interest to the Air Force. This effort has been

interdisciplinary, involving researchers from the Materials Process Design Branch of the Air Force

Research Laboratory (Wright Patterson Air Force Base), and Austral Engineering and Software, Inc.,

(Athens, Ohio). Note that the research and algorithm development work by our research group has been

transitioned to Austral Engineering and Software, Inc., hence supporting their effort under a Phase H

SBIR through the Air Force. This collaboration between an Air Force Laboratory, and industrial partner,

and an academic institution has been highly productive and extremely synergistic in identifying problems

of interest to the Air Force, as well as formulating and developing solutions to address such problems.

An important applied development has been the formulation of a hybrid algorithm that crosses

ordinal optimization with generalized hill climbing algorithms. The resulting new algorithm is termed

ordinal hill climbing. The results with this algorithm are reported in Sullivan and Jacobson (2000). To

describe the ordinal hill climbing algorithm, ordinal optimization must be described.

Ordinal optimization (Ho et al. 1992) is a search procedure that can be used to obtain

optimal/near-optimal designs for discrete manufacturing process design optimization problems. The

strength of the ordinal optimization approach is in its focus on finding good designs, rather than trying to

find the very best design (i.e., goal softening) (Lee et al. 1998). This allows ordinal optimization to

reduce sampling over a very large design space (when searching for an optimal design) to sampling over a

smaller, more manageable, set of good designs (see Chen and Kumar 1996 for an application of ordinal

optimization to a discrete optimization problem). The strength of the generalized hill climbing algorithm

is in its intelligent exploration of the design space when searching for an optimal design. In practice,

generalized hill climbing algorithms find good designs in finite time, similar to ordinal optimization.

Ordinal Optimization is an algorithmic approach for identifying good designs over a large design

space. By relaxing the requirement to obtain the optimal design, hence searching for designs that are in a

small percentage of the best designs, the algorithm can efficiently weed out very poor designs and

identify a set of designs (i.e., the selected subset) among which there exists a good design (i.e., an

element of the good enough subset). The quality of the selected subset with respect to the good enough

subset is obtained using an alignment probability, which measures the probability that these two subsets

contain some integer value number of overlapping (common) designs. The very nature of relaxing the

optimization requirement in this way has suggested the term soft optimization as appropriate for

describing the execution of ordinal optimization.

By relaxing (or softening) the optimization requirement for ordinal optimization, a fast convergence

rate for the algorithm can be obtained. In particular, Dai (1996) proves that the ordinal optimization

convergence rate is exponential in the number of designs selected. He shows this by considering a set of

t designs, selected independently and identically over the entire design space, and defining the correct

selection (CS) event as the event in which the best design (over the t selected) is indeed the best overall

design. Then, under mild restrictions, P{CS} is shown to be bounded below by l-oce"pt, where a and ß

are positive constants. Convergence can also established by showing that the alignment probability

converges to zero. These results show that relaxing an algorithm's requirement from finding the overall

10

best design, to finding a design in some top percentile of all designs in the design space, results in a

significantly improved rate of convergence.

Using the strengths of both ordinal optimization and generalized hill climbing algorithms, a new

algorithm is proposed, termed ordinal hill climbing. The ordinal hill climbing algorithm is a particular

type of generalized hill climbing algorithm, with the hill climbing component of the generalized hill

climbing algorithm based on ordinal information, where a set of designs are collected and evaluated at

each iteration (similar to how ordinal optimization is applied), hi particular, the algorithm is initialized

with a set (of M) selected designs, chosen among all the designs in the design space (e.g., randomly). At

each iteration k, a hill climbing random variable, Rk, defined over the discrete values {1, 2, ...,M} is

generated (Rk = rk) and used to keep the best rk designs in the selected set, where the designs in the

selected set are ordered from smallest to largest cost, with best referring to the designs with smallest cost.

The M-rk open spots in the selected set are then filled with new designs, chosen among all the designs in

the design space, or using some rule based on the designs that were kept in the selected set. This process

is iteratively repeated until the algorithm terminates (e.g., a fixed number of iterations are executed). The

ordinal hill climbing algorithm is described in pseudo-code form, given a design space, Q, and a cost

function (f) and a neighborhood function r\ (if needed) defined over the design space.

Select a set of M initial designs £»(0) c Q
Set the iteration number k = 0
Define the hill climbing variable Rk, where

i) EMn,=i P {Rk = m} = 1, H) Ro = 1 with probability one,
Repeat

Order the designs in D(k) from smallest to largest cost function values
Generate Rk (= r^
Keep the best (smallest cost function value) rk designs from the set £>(k). Call this set E,.
Generate M-Rfc new designs from the design space Q. Call this set E2.

SetD(k+l)<-EiuE2.
k<-k+l

Until stopping criterion is met

There are several parameters that must be initialized for the ordinal hill climbing algorithm. First, the

value of M, the size of the selected design sets, D(k), must be set. Second, the initial set of M

manufacturing process designs, D(0), can be selected randomly or using any specified selection rule. In

addition, there are two features of the algorithm where the user has great flexibility. First, the hill

climbing variable Rk can be defined as any discrete (random or deterministic) non-negative variable

defined over the set of integers (from one to M). Second, at each iteration, the method of filling in the

M- rk designs in the selected set must be specified (e.g., generate neighbors of each of the designs that

are kept in the selected set).

11

The intuition behind ordinal hill climbing algorithms is that at each iteration, the best designs,

where best is measured using the value of the cost function (smaller cost designs are better than larger

cost designs), are more likely to become part of, and remain in, the selected design set D(k). The hill

climbing variable determines the acceptance or rejection of designs in the design set based on their

relative costs (i.e., ordinal rank). Therefore, the ranking of the design costs, rather than the costs

themselves, determines whether a design is accepted. For example, if Rk is close to one with high

probability, as in the early stages of the algorithm execution, then most of the designs will be rejected

from the selected set during this phase, hence guaranteeing a broad (and aggressive) sampling of designs.

On the other hand, if as the algorithm progresses Rk is more likely to be close to M, then the algorithm

will tend to retain good designs that have managed to remain in the selected design set.

In light of this observation, a possible third requirement on the hill climbing variable is Rk-> M

(with probability one) as k -> +00. As the algorithm proceeds, this requirement ensures that the algorithm

will accept an increasing number of designs, until at termination, when P{lim k_>+«, Ric = M} = 1, the

algorithm accepts all of the designs in the selected design set. The defining feature of the ordinal hill

climbing algorithm is that at termination, the final set of designs is likely to contain a good design. To

identify a subset of this final set of designs to use, ordinal optimization can be applied.

There are a number of ways to simplify and/or fine-tune the ordinal hill climbing algorithm. If M

is set to one at all iterations, then each iteration considers only a single design. This simplification

reduces the ordinal hill climbing algorithm to a generalized hill climbing algorithm. There are an

unlimited number of choices for the hill climbing variable, Rk, that satisfy the requirements listed in the

ordinal hill climbing pseudo-code. There are also numerous ways in which the selected design set can be

updated from Z>(k) to £>(k+l), depending, for example, on the choice of neighborhood function. To

illustrate, this update can be done using multiple neighbors of only the best, or near-best (e.g., top ß * M,

where ß > 0 close to zero) designs. Stopping criterion that can be used for the ordinal hill climbing

algorithm include looking at the top aM designs, with a > 0 close to zero, and stopping the algorithm if

this top aM set of designs does not change over some specified number of iterations. Each of these

modifications results in a large selection of ordinal hill climbing algorithm variations that can be used to

address the an integrated blade rotor discrete manufacturing process design optimization problem of

interest to the Air Force. Computational results with the ordinal hill climbing algorithm applied to this

problem are reported in Sullivan and Jacobson (2000).

An important development during this phase of the project was the identification of a

relationship between genetic algorithms and ordinal hill climbing algorithms. Genetic algorithms (GA)

are an optimization strategy that has been successfully applied to numerous discrete optimization

12

problems. The foundation of GA is derived from the Darwinian notion of "survival of the fittest"

(Reeves 1993); this notion suggests that as time evolves, parents produce new offspring that are more

acceptable than members of previous populations. In other words, over a period of time, parents are

continually mating to produce successive generations of children that are closer to optimality than their

predecessors.

The GA ordinal component of comparing cost function values over a set of children (i.e.,

designs) suggest that there may be a natural bridge between GA and ordinal hill climbing algorithms.

Though GA have proven to be effective for addressing intractable discrete optimization problems, and

can be classified as a type of hill climbing approach, its link with generalized hill climbing algorithms

(through the ordinal hill climbing formulation) provides a well-defined relationship with other

generalized hill climbing algorithms (like simulated annealing and threshold accepting). Therefore, such

an analysis provides useful insights and observations that may fuel further research into both ordinal hill

climbing and genetic algorithms, and how they fit together on a broader scale.

The bridge between GA and the ordinal hill climbing algorithm framework is defined through the

hill climbing variable Rk and the method by which each successive selected subset is updated (based on a

neighborhood function definitions). In particular, the hill climbing variable Rk for ordinal hill climbing

algorithms determines the number of parents carried over from the selected set (population) D(k) to the

set Ei. Once the set Ei has been determined, its members can be mated (e.g., according to a crossover

rule) to produce M-Rk offspring. Therefore, the GA concept of mating serves as the neighborhood

function in the ordinal hill climbing algorithm framework. This set of M-Rk offspring, E2, together with

the set Ei becomes the next selected set or population (i.e., Dflc+1) = EiUE2).

Basic GA consist of three components:

i) Reproduction
ii) Crossover
iii) Mutation

Reproduction is the process by which individual parents are evaluated for mating and inclusion in future

populations. Variants of GA can be described by employing different hill climbing variables Rk (i.e., the

selection of parents to be contained in E! varies with the choice of Rk). Each parent in a population is

evaluated according to its cost function value. In general, parents with good (lower) cost function values

are more likely to be among the Rk selected parents for the set E,. However, for diversification, the set

Ei can be a mix of both good and bad parents. Crossover is a process by which offspring are generated

based upon the cost function values of the parents. A particular crossover method needs to be defined

before the GA is executed. Crossover may consist of generating a neighbor of a parent in Ei to produce

offspring or combining different parts of two parents in Ei to produce offspring.

13

The following is the ordinal hill climbing algorithm formulation of simple GA, which uses

reproduction and crossover components:

Select a set of M initial designs D(fl) c Q
Set the iteration number k = 0
Repeat

Order the designs in £>(k) from smallest to largest cost function values
Generate Rk (= Tk)
Keep the best (smallest cost function value) rk designs from the set £»(k) as parents for creating offspring.

Call this set Ei.
Generate offspring of E! according to the crossover rule to obtain M-rk new designs. Call this set E2.
Set£>(k+1)«-E!UE2.
k<-k+l

Until stopping criterion is met

Mutation involves the random alteration of a parameter value in the offspring. Mutation can play

either a primary or secondary role in GA, depending on the desired aggressiveness of GA. If the entire

population has cost function values that are relatively close to each other, the search may easily get

caught at a local optimum. In this situation, it may be desirable to increase the probability of mutation to

ensure the inclusion of designs in the set E, sufficiently different from those already in the population.

The following is the ordinal hill climbing formulated simple GA with a mutation component.

Select a set of M initial designs £>(0) e Q
Set the mutation probability
Set the iteration number k = 0
Repeat

Order the designs in D(k) from smallest to largest cost function values
Generate Rt (= it)
Keep the best (smallest cost function value) rk designs from the set D(k) as parents for creating

offspring. If the largest and smallest cost function values of parents among these rk values are
relatively close to each other, increase the mutation probability, hence the diversity of the parents
set. Call this set Ei.

Generate offspring of Ei according to the crossover rule to obtain M-rk new designs. Call this set E2.
SetD(k+l)<-E,uE2.
k<-k+l

Until stopping criterion is met

At the end of each iteration, the new population becomes the population of parents that will be

used to perform reproduction and crossover to generate yet another new population. This process is

repeated until the algorithm terminates; at termination, the final population will (hopefully) contain an

optimal parent (i.e., an optimal design).

These ordinal hill climbing algorithm formulations for GA illustrate the power and flexibility of

the ordinal hill climbing algorithm framework. It should be noted that by defining the procedure by

which the selected subset in ordinal hill climbing algorithms is updated without a neighborhood function,

it is possible to obtain an ordinal hill climbing algorithm formulation that is not a GA (such as by simply

randomly generating designs to obtain set E2). Moreover, problem-specific implementations for GA may

14

not fit into the ordinal hill climbing framework. Further research is needed to fully assess the

relationship between ordinal hill climbing algorithms and GA. However, the two formulations presented

provide a first step towards developing a bridge between GA and other search strategies like simulated

annealing, threshold accepting, and tabu search (Johnson 1996, Jacobson et al. 1998) using the

generalized hill climbing paradigm (Johnson and Jacobson 2001a,b). Moreover, these formulations serve

to illustrate the power of the ordinal optimization strategy in addressing deterministic discrete

optimization problems.

4. Multiple Sequence Optimization Using Generalized Hill Climbing Algorithms

Multiple sequence optimization using generalized hill climbing algorithms were introduced to

simultaneously address sets of manufacturing process design optimization problems (Vaughan et al.

2000). Initial results with generalized hill climbing algorithms required the manufacturing process

design sequence to be fixed, with the generalized hill climbing algorithm used to identify optimal input

parameter settings. This section describes a new neighborhood function that allows generalized hill

climbing algorithms to be used to also identify the optimal discrete manufacturing process design

sequence among a set of valid design sequences. The neighborhood function uses a switch function for

all the input parameters, hence allows the generalized hill climbing algorithm to simultaneously optimize

over both the design sequences and the inputs parameters. Computational results are reported with an

integrated blade rotor discrete manufacturing process design problem under study at the Materials

Process Design Branch of the Air Force Research Laboratory, Wright Patterson Air Force Base (Dayton,

Ohio, USA). This research provided motivation for the development of the simultaneous generalized hill

climbing algorithm framework (see Vaughan and Jacobson 2001) discussed in Section 5.

To describe the discrete manufacturing process design optimization problem, and how multiple

sequence optimization using generalized hill climbing algorithms can be used to address the problem,

Jacobson et al. (1998) present an extensive problem description. For completeness, this information is

also presented here. First, several definitions are needed.

Let the manufacturing processes be denoted by Pi, P2, ..., P„. Associated with each process are

(continuous or discrete) controllable input parameters, uncontrollable input parameters, and output

parameters. The output parameters for a particular process may serve as the uncontrollable input

parameters for a subsequent process. A sequence of processes, together with a particular set of input

parameters constitutes a manufacturing process design; label such designs D,, D2, ..., DM. Note that if

one (or more) controllable input parameter is continuous, then N = +oo. Otherwise, N < +a>. Without

loss of generality, assume that all the controllable input parameters are discrete, since any continuous

15

controllable input parameter can be discretized over an arbitrarily fine grid. Under this assumption, the

number of manufacturing process designs is finite, though potentially very large.

Denote the design space by Q, the set of all manufacturing process designs (i.e., fi =

{D1,D2,...,DN}), where a subset of the designs in Q are feasible. Infeasible designs violate prespecified

constraints on the manufacturing processes and the unit being manufactured, including geometric and

microstructural properties, and constraint violations on the output parameters (e.g., the required forging

press pressure may not exceed its upper bound limitations). Define a cost function f: Q -> [0,+°o) that

assigns a non-negative value to each element of the design space, where cost includes monetary costs and

measures for how well the finished unit meets prespecified geometric and microstructural properties.

Penalties for constraint violations on the output parameters and measures that ensure a robust

manufacturing design (i.e., the manufacturing process design is stable) are included in the cost function.

Define a neighborhood function r\: Q -> 2°, where n(D) c Q for all D e Q. The neighborhood function

establishes connections between the designs in the design space (either through the controllable input

parameters or through the design sequences), hence allows the design space to be traversed or searched

by moving between designs. For all solutions in the solution space, an individual neighbor can be

generated using generation probabilities (i.e., a probability mass function) among all possible neighbors,

as defined by the neighborhood function rj (see Johnson and Jacobson 1999 for complete details). The

goal is to identify the globally optimal manufacturing process design D* (i.e., f(D*) < f(D) for all D e

Q), or more realistically, near-optimal designs.

A manufacturing process design is needed to transform a billet into an integrated blade rotor

(BR) geometric shape (Gunasekera et al. 1996). Five manufacturing process design sequences have

been identified that can achieve this transformation. Define the following notation for the seven

processes that make up these five designs:

P0 is the cast ingot process
Pi is the extrusion process
P2 is the upset process
P3 is the machine preform process
P4 is the blocker forge process
P5 is the rough machining process
P6 is the finished shape process

The five possible manufacturing process design sequences, provided by researchers at the

Materials Process Design Branch of the Air Force Research Laboratory and Ohio University, are

PoP2P4P6 P0P2P5P6 P0P2P3P4P6 P0P1P2P4P6 PoP!P3P4P6.

16

Associated with each of the seven processes are uncontrollable and controllable input

parameters, and output parameters. For example, for process P0, there are two controllable input

parameters (the radius of the billet and the height of the billet), zero uncontrollable input parameters, and

two output parameters, which are just the controllable input parameter values. See the Appendix for a

list of the controllable input parameters for each of the seven processes. Fischer et al. (1997) and

Gunasekera et al. (1996) present complete details on all seven processes and their parameters.

Associated with each controllable input parameter is a discrete (naturally, or discretized from a

continuous domain) set of feasible values (the Appendix contains a listing of these values for all the

controllable input parameters for the seven processes). The cost function quantifies the cost associated

with not meeting certain geometric and microstructural properties of the finished product, the monetary

cost in producing the finished product, and cost penalties for constraint violations (see Jacobson et al.

1998). The goal is to identify a valid manufacturing process design sequence, together with values for all

the controllable input parameters for the processes, that result in a feasible manufacturing process design

that produces the IBR unit at total minimum cost.

Computer simulation models of the manufacturing processes described above have been

developed (Fischer et al. 1997, Gunasekera et al. 1996). This moves the search for an optimal

manufacturing process design from the shop floor (where trial and error has typically been applied, using

actual materials) to a computer platform. However, even using high speed computing resources, the

search for an optimal manufacturing process design may take a prohibitive amount of time. To

circumvent this problem, generalized hill climbing algorithms have been introduced as a tool to be used

with the computer simulation models to identify optimal/near-optimal manufacturing process designs.

Jacobson et al. (1998) uses three different neighborhood functions for GHC algorithms to

identify optimal controllable input parameter values for a set of fixed valid manufacturing process design

sequences. By considering each design sequence individually, they solve for the controllable input

parameter values that minimize the cost, and then choose the overall minimum cost design sequence (and

associate optimal controllable input parameter values) as the optimal design. For the five design

sequence problems described previously, this is a reasonable approach. However, for complex parts,

where the number of design sequences may be very large, performing such optimization (one design

sequence at a time) does not lend itself to efficient, automated optimization procedures. Moreover, such

an approach does not exploit any common manufacturing process subsequence components within two or

more design sequences, which can lead to added efficiencies in identifying optimal controllable input

parameter values.

17

To overcome these problems, applying GHC algorithms to optimize between (or across) design

sequences requires a new neighborhood function that captures the cost differences among the different

process design sequences, but also allows for seamless transitions (using a well-defined mechanism)

between such sequences. To formulate such a neighborhood function requires several new definitions

and notations.

Define S to be the set of possible manufacturing process design sequences and W to be the set of

possible values for the controllable input parameters for the seven processes. Therefore, each design D

can be represented as a two-tuple (w, s) where weWandseS. The neighborhood function is denoted

by r|(D) = n(w, s) = (r|i(w), r|2(s)), where n,: W -> 2W and n2: S ■» 2s. The neighborhood function r\

allows the GHC algorithm to simultaneously change both the input parameters and the manufacturing

process design sequence.

There are numerous ways to define the neighborhood functions r|i and r\2. For the experiments

reported in the computational section, for each w e W

q,(w) = {w' e W | w' and w have at most one controllable input parameter different for each process}.

To define the neighborhood function n2 on the set S, the process design sequences can be represented

using binary activity vectors. Given a process design sequence s e S, let

v _ fl, if P; is contained in s
[0, otherwise

The process design sequence s can be represented by the binary activity vector s e R where

S = (V,,V2,V3,V4,V5).

Note that every manufacturing process design sequence begins with P0 (cast ingot) and ends with P6

(finish machining), hence each such sequence can be represented by a binary activity vector of length

five. To define such vectors, a strict precedence relation must be imposed on the order in which the

processes can occur. For the seven processes, the precedence relation is given as P0 <. Pi <• P2 <• P3 <•

P4 <. P5 <. P6, where P' <. P" means process P must occur before process P" when both P' and P" occur in

the same manufacturing process design sequence. Therefore, the set of possible manufacturing process

design sequences can be formally defined using the binary activity vectors,

S = {s e R51 s is a binary activity vector of length five}.

For the computational results section, S contains thirty-two possible manufacturing process design

sequences. Of these, only the five manufacturing process design sequences depicted in the backgrounds

section are considered valid. These five manufacturing process design sequences, denoted as Svc S, are

18

referred to as valid manufacturing process design sequences. Table 1 depicts these five valid

manufacturing process design sequences and their corresponding binary activity vectors.

TABLE 1
Binary Activity Vectors for Valid Manufacturing Process Design Sequences

Process Sequence Binary Activity Vector

P0P2P4P6 (0,1,0,1,0)
P0P2P5P6 (0,1,0,0,1)

P0P2P3P4P6 (0,1,1,1,0)

P0P1P2P4P6 (1,1,0,1,0)

P0P1P3P4P6 (1,0,1,1,0)

Using the binary activity vector representation for elements of S, the neighborhood function r\2

can be implemented in a GHC algorithm with a random variable that maps elements of S to elements of

S. The neighborhood function r\2 depends on a probability switch vector. The components of a

probability switch vector q = (qb q2, q3, q4, qs) are the probabilities that a particular process is switched

from active (one) to inactive (zero) or from inactive (zero) to active (one). In order to generate a

neighbor from r|2(s), S e Sv, the components of the probability switch vector q are permuted to the vector

q', with the neighbor generated by switching each component of s, namely si5 i = 1,2,3,4,5, with

probability qV Note that if one or more of the q*, i = 1,2,3,4,5, are zero, the neighborhood function may

not contain the entire set of thirty-two possible design sequences. Therefore, for each s e Sv, setting one

or more of the qi5 i = 1,2,3,4,5, to zero can reduce the number of possible manufacturing process design

sequences in r|2(s).

To switch a process from active to inactive or vice versa, define a set of random variables

5p:{0,l} -» {0,1} wherep e [0,1] and

fx with probability 1-p ,...
p U"x with probability p

Define the permutation random variable, IIJ: [0,1]5 -> [0,1]5, which permutes the components of a vector

in [0,1]5. The permutation random variable will be used to permute the components of a probability

switch vector. The permutation random variable is defined so that every permutation p' of p = (pi, p2, P3,

p4, p5) occurs with equal probability. Therefore, at iteration j,

P{nj(p) = p'} = i/5!

for all permutations p' of p, hence a potential neighboring solution of s can be obtained using (1) as

s' = (£„, (5,),Sp,2 (s2),Sp.s (s3),Sp.A(J4),Sp.s(s5)),

19

where Ilj(q) = q' = (q'i, q'2, q'a, q'* q's) and q is the probability switch vector. Note that if s* e Sv, then

the neighboring solution of s is generated to be s.

Given the probability switch vector q, let h be the number of non-zero elements of q. Then

neighborhood function, r\2, is defined as

T|2(s) = {s' e S | s' has at most h binary components different from s}.

Note that for this neighborhood function, the generation probabilities are typically not uniform, since

they depend on the probability switch vector.

The choice of probability switch vector q depends on I SI (the cardinality of the possible process

design sequences) compared to I Sv I (the cardinality of the valid process design sequences). For the

problem described in the Background section, the number of possible design sequences is 2s = 32, which

is large compared to the number of valid process design sequences. There is a trade-off between quickly

moving between different manufacturing process design sequences and allowing the GHC algorithm to

spend a large number of iterations exploring the various input parameter values in one particular design

sequence. A neighborhood function that generates a limited number of design sequence changes may be

too restrictive (myopic), hence prevent the GHC algorithm execution from visiting the (globally) optimal

manufacturing process design sequence. This is the same problem that arises with many local search

algorithms, namely how to choose the neighborhood function (i.e., should it be myopic, with small

neighborhoods, or aggressive, with large neighborhoods.)

To apply GHC algorithms to multiple design sequences, a mathematical structure to compute the

probability of moving between the five valid manufacturing process design sequences, using the

neighborhood function, q2, must be developed. To define this structure, let T: [0, l]5 x S -> S determine

a neighbor of s (i.e., s') by first permuting p (i.e., by applying IIj(p)) and then generating s' =

(<V, (*i)»8p,2 (s2), dp<i (s3), Sp.t (s4), Sp,s (s5)). Note that references to an iteration implies an

application of *F(p, s) = s'. Moreover, recall that the possible design sequences are the 32 = I {0 , 1} 15 =

25 elements in the range of ^(p, s), and that of these 32 possible design sequences, only 5 represent valid

manufacturing process design sequences.

To formally define the distance between manufacturing process design sequences, consider the

metric space <E", p>, with S = {0,1}, where the metric p is defined on Zn x Sn such that the distance

between two possible manufacturing process design sequences s = (sb s2, ..., s„) e En and t = (U, t2,...,

t„)eEnis

p(s,t) = |s,-t,l +... + k-t„l (2)

20

(Royden, 1988, p. 140). To illustrate this metric, the distance between P0P1P2P4P6 (with activity vector s

= (1,1,0, 1,0)) and P0P1P3P4P6 (with activity vector t = (1, 0,1, 1, 0)) is p(s, t) = 2. Define

E={seln |p(s,0) = l},

where e'eE such that sh = (0,..., 0,1, 0,..., 0) with the one appearing in the h* position.

Define a binary switch on the j* element of an activity vector s to be the modulus two addition of

e" e E with s. For example, consider the activity vector s = (1, 1, 0, 1, 0) corresponding to PoPiP2P4P6-

By performing a binary switch on the second element of s (i.e., by adding e2 = (0, 1, 0, 0, 0)), the

resulting activity vector is s' = s + e2 = (1, 0, 0, 1, 0), corresponding to PoP^e- By performing a second

binary switch (i.e., by adding e3 = (0, 0, 1, 0, 0) to s'), the resulting activity vector is t = s' + s3 = (1, 0,1,

1, 0), corresponding to P0P1P3P4P6. Therefore, the metric p(s, t) represents the minimum number of

binary switches required to move from s to t. For example, the distance between P0P1P2P4P6 and

PoP,P3P4P6, represented as activity vectors s = (1,1, 0,1, 0) and t = (1, 0,1, 1, 0), respectively, is p(s, t) =

2. This distance can also be obtained by observing that the minimal number of binary switches required

to move from s to t. The distances between all five valid manufacturing process design sequences are

given in Table 2.

TABLE 2
Distances Between Valid Manufacturing Process Design Sequences

P0P2P4P6

(0,1,0,1,0)
P0P2P5P6

(0,1,0,0,1)
P0P2P3P4P6

(0,1,1,1,0)

PoP,P2P4P6
(1,1,0,1,0)

P0P1P3P4P6

(1,0,1,1,0)

P0P2P4P6

(0,1,0,1,0) 0 2 1 1 3

P0P2P5P6
(0,1,0,0,1) 2 0 3 3 5

P0P2P3P4P6

(0,1,1,1,0)
1 3 0 2 2

PoP,P2P4P6
(1,1,0,1,0)

1 3 2 0 2

P0P1P3P4P6

(1,0,1,1,0)
3 5 2 2 0

The domain of the neighborhood function r|2 is S = {s e En I s is an activity vector of a valid

manufacturing process design sequence}, where n2 (s') (for a fixed s' e S) is denoted by Ef c En. For all

s e Ej, the probability that *F(p, s') = s given that p(s', s) = k (see (2)) is

P{¥(p,s') = s}=P{p(s',s) = k}/
'5\

,ky
for s such that p(s', s) = k.

21

To determine P{p(s', s) = k}, recall that II(p) = s' is a sequence of binary switches on s, where

the cardinality of binary switches (the previously defined distance) is dependent on p = (pu p2, P3, P4, Ps)-

Table 3 provides the probabilities that p(s, s') = k for k = 1, 2, 3, 4, 5.

To illustrate the computation of these probabilities, if r\2 is defined with p = (.5, 0, 0, 0, 0), then

n(p) results in no binary switches with probability .5, and one binary switch with probability .5. If r\2 is

defined with p = (.5, .5, 0, 0, 0), then II(p) results in no binary switches with probability .25, one binary

switch with probability .5, and two binary switches with probability .25. The five valid manufacturing

process design sequences can be traversed using p = (pi, p2, 0, 0, 0). For neighborhood function r\2, with

p = (pi, p2, 0, 0, 0), it is possible to move between valid design sequences (in a single iteration) with

activity vectors that are at most two binary switches apart. Figure 1 depicts movement between

sequences in a single iteration, where the nodes denote the five valid manufacturing process design

sequences, and the edge values denote the distance between the sequences at the corresponding nodes.

TABLE3
Distance Probabilities

k P{p(s,s') = k}

1

2

3

4

5

,=i j=\ k=\ x

k*i

i^-pM-pjtiY
,=1 j=\ 4=1 *■

]*i k*j
k*i

j=\ i=i

P1P2P3P4PS

22

FIGURE 1: The Five Valid Manufacturing Process Design Sequences

PoP.P^P«

P«PlPsP4P< 3 P0P2P4P6

PoPjP3P4P6

P0P2P5P«

For the probability switch vector p = (pi, p2, 0, 0, 0), where 0 < p,, p2 < 1, the probability of

moving between sequences at any given iteration is a function of the number of binary switches required

to move between these sequences. In particular, define the two travel probabilities

P{l-bmary switch} = (—r-v—+—j^r—)

\}j
and

p. n, p, n,
P{2-binary switches} = y3^- = ^JO..

These expressions are validated empirically using Monte Carlo search, by recording the number of times

the algorithm iterated from a source design sequence (say A) to a neighboring design sequence (say B)

and then dividing by the number of times the algorithm visited the source design sequence (A). Table 4

provides the Monte Carlo search computational results for p = (pi, p2, 0, 0, 0, 0) = (.9, .9, 0, 0, 0), with

100,000 iterations. Note that for Monte Carlo search, all iterations are outer loop iterations with one

inner loop iteration per outer loop iteration (i.e., K = 100,000 and M(k) = 1, k = 1,2,.. .,100,000). Ninety

percent confidence intervals (CI) are reported for the travel probabilities, where the confidence intervals

marked with an asterisk are those that cover the true travel probability values (of these twelve confidence

intervals, nine cover the true travel probability value).

23

Trave

Sequence A

PoP,P3P4P6
(1,0,1,1,0)

POPJPJP^

(1,0,1,1,0)
PoP,P2P4P6

(1,1,0,1,0)
PoP,P2P4P6

(1,1,0,1,0)
PoP,P2P4P6

(1,1,0,1,0)
P0P2P3P4P6

(0, 1, 1, 1, 0)
P0P2P3P4P6

(0,1,1,1,0)
PoP2P3P4P6
(0,1,1,1,0)

P0P2P4P6

(0,1,0,1,0)
PoP2P4P6
(0,1,0,1,0)

P0P2P4P6

(0,1,0,1,0)
P0P2P5P6

(0,1,0,0,1)

Sequence B

PoP,P2P4P6
(1,1,0,1,0)

PoP2P3P4P6

(0,1,1,1,0)
PoP,P3P4P6
(1,0,1,1,0)

PoP2P3P4P6

(0,1,1,1,0)
P0P2P4P6

(0,1,0,1,0)
PoP,P3P4P6
(1,0,1,1,0)

P0P1P2P4P6

(1,1,0,1,0)
PoP2P4Pö
(0,1,0,1,0)

PoPlP2P4P6
(1,1,0,1,0)

P0P2P5P6

(0,1,0,0,1)
PoP2 P3P4P6
(0,1,1,1,0)

TABLE 4
ing Between Sequences, p = (.9, .9,0,0, 0)
Number of
Binary Switches

True Travel
Probability

.081

.081

.081

.081

.036

.081

PoP2P4P6
(0,1,0,1,0)

.081

.036

Estimated Travel
Probability

.079

.083

.076

.078

.038

.078

.082

True Travel
Probability CI
(.0769, .0811)*

(.0809, .0851)"

(.0728, .0792)

(.0748, .0812)"

(.0358, .0402)*

(.0748, .0812)*

(.0788, .0852)*

.034

.036

.081

.036

.081

.033

.082

.034

.089

(.0318, .0362)*

(.0309, .0351)

(.0789, .0851)*

(.0319..0361)*

(.0858, .0922)

Computational results are reported with the neighborhood function that allows for optimization

between the manufacturing process design sequences. The results in Jacobson et al. (1998) suggest that

the Weibull accepting hill climbing random variable was the most effective (among five different GHC

algorithm formulations tested) for optimizing over the controllable input parameters for a particular

design sequence, hence was used to define n,. The objective in running these experiments is to assess

the performance of the GHC algorithm formulations using the neighborhood functions (n,, n2), as well as

to identify optimal/near optimal manufacturing process design sequences and input parameters using

computer simulation models.

For Weibull accepting, tk is updated by multiplying the previous temperature parameter by the

increment multiplier ß„ where 0 < ß, < 1 (i.e., tk = ß,tk.,). The initial temperature parameter is to =

10,000, with p, = .96 and shape parameter a = 2.0. The acceptance probability for the Weibull accepting

GHC algorithm is

24

£s/t, T
P{Rk(D,D')>5} = eV k/,DeQ,D'eii(D)forallk=l,2,...,K. (3)

Note that if a = 1, then Weibull accepting reduces to simulated annealing (Jacobson et al. 1998).

The cost function evaluates the total cost associated with the simulated manufacturing process

design, in US dollars. The initial cost is the cost of the initial billet, which depends on the dimensions of

the billet and the specific metal being processed. The costs for the forging processes include:

i) set up costs,
ii) post-inspection costs,

iii) die wear costs,
iv) press run costs,
v) the cost of possible strain-induced-porosity damage in the workpiece.

Penalties are incurred with the forging processes when

i) the press capacity is exceeded,
ii) the aspect ratio of the workpiece is too large,

iii) the geometry of the workpiece conflicts with the die geometry.

The cost to machine the workpiece is the cost of the material removed from the workpiece, where a

penalty cost is incurred when the geometry of the workpiece conflicts with the desired final geometry of

the workpiece after machining. After the workpiece is processed, a mandatory ultrasonic non-destructive

evaluation cost and, if necessary, a cost of heat treatment is accrued. In addition, the final microstructure

of the workpiece is evaluated; if the microstructure violates predetermined specifications, a penalty cost

is incurred. All penalties are translated into US dollars in the cost function.

Computational results with the Weibull accepting GHC algorithm incorporating the new

neighborhood function (n.2) are reported. The Weibull accepting GHC algorithms were executed with

different values of K and M = M(k), k = 1,2,...,K, as well as with varying values for the components of

the probability switch vector p. Thirty (independently seeded) replications of each GHC formulation

were made, each initialized with a different initial manufacturing process design sequence. The same

thirty initial design sequences (for the thirty replications) were used across the different neighborhood

functions (i.e., the different probability switch vectors). The initial controllable input parameter values

for replications two through thirty were obtained by randomly selecting a neighbor (n.,) of the first

replication's feasible controllable input parameters values. The mean (u) and standard deviations (a), as

well as the minimum and maximum cost function values, were computed from the optimal values across

these thirty replications. All computational experiments were executed on a SUN ULTRA-1 workstation

(128 Mb RAM). Each set of thirty replications took approximately 30 CPU minutes.

In Tables 5-7, the variable y represents the percentage of the replications that the GHC algorithm

finds the optimal valid manufacturing process design sequence. The variable K represents the average

25

number of times, over the thirty replications, neighborhood function TU generates a manufacturing

process design sequence that is different from the incumbent design sequence.

Probability Switch Vector
(0.1,0.1,0,0,0)
(0.2,0.2,0,0,0)
(0.3,0.3,0,0,0)
(0.4,0.4, 0, 0,0)
(0.5, 0.5, 0, 0, 0)
(0.6, 0.6, 0, 0, 0)
(0.7,0.7, 0, 0, 0)

(0.75,0.75,0, 0, 0)
(0.8, 0.8, 0, 0, 0)

(0.833, 0.833, 0, 0, 0)
(0.9, 0.9,0, 0, 0)

TABLE 5
GHC Algorithm Results, K = 50andM = 200

9/30
22/30
20/30
27/30
21/30
21/30
24/30
25/30
25/30
27/30
27/30

2177.57
2047.62
2041.25
1973.88
2033.21
2033.88
2009.45
1998.00
1993.57
1976.08
1977.57

199.00
209.89
145.93
92.00
140.17
142.08
118.78
111.67
113.97
92.32
91.74

Minimum
1935.71
1927.01
1919.28
1930.43
1919.28
1919.28
1921.21
1927.01
1921.21
1927.01
1921.21

Maximum
2928.17
2928.72
2250.15
2245.28
2248.08
2254.63
2250.15
2250.15
2245.28
2245.28
2250.15

Probability Switch Vector
(0.1,0.1,0,0,0)

TABLE 6
GHC Algorithm Results, K = 100 and M - 100

(0.2, 0.2,0, 0, 0)
(0.3, 0.3, 0, 0, 0)
(0.4, 0.4, 0, 0, 0)
(0.5, 0.5, 0, 0,0)
(0.6, 0.6, 0, 0, 0)
(0.7,0.7,0,0,0)
(0.75,0.75,0, 0, 0)
(0.8, 0.8,0, 0, 0)
(0.833,0.833, 0, 0,0)
(0.9, 0.9, 0,0,0)"

15/30
15/30
24/30
25/30
25/30
22/30
24/30
22/30
24/30
24/30
27/30

JL
2089.41
2115.83
2000.99
1996.43
1993.50
2025.29
2005.69
2024.25
2004.95
2008.17
1974.30

156.13
213.35
125.00
112.76
113.54
132.74
120.13
135.71
121.77
120.15
93.37

Minimum
1921.21
1921.21
1921.21
1919.28
1921.21
1923.70
1932.86
1921.21
1919.28
1921.21
1921.21

Maximum
2245.28
2898.11
2248.08
2249.97
2245.28
2245.28
2248.08
2250.15
2244.25
2245.28
2248.08

Probability Switch Vector

TABLE 7
GHC Algorithm Results. K = 200 and M = 511

(0.1,0.1,0,0,0)
(0.2, 0.2, 0,0, 0)
(0.3, 0.3, 0, 0,0)

(0.4, 0.4, 0, 0, 0)
(0.5, 0.5, 0,0, 0)
(0.6, 0.6, 0,0, 0)
(0.7, 0.7,0, 0,0)
(0.75, 0.75, 0, 0, 0)
(0.8, 0.8, 0,0, 0)
(0.833, 0.833, 0, 0, 0)
(0.9,0.9, 0,0, 0)

9/30
11/30
20/30

22/30
22/30
21/30
23/30
21/30
20/30
17/30
19/30

2196.01
2131.19
2037.88

2012.43
2016.57
2027.38
2009.21
2025.96
2038.75
2067.71
2049.26

a
249.69
154.88
149.32

141.59
138.44
143.96
132.73
143.54
147.56
154.65
152.23

Minimum
1919.28
1923.15
1919.28

1919.28
1921.21
1919.28
1919.28
1919.28
1919.28
1919.28
1919.28

Maximum
2959.29
2293.87
2257.53

2257.53
2245.28
2248.08
2248.08
2245.28
2248.08
2248.08
2260.63

357.7
538.6
793.1
1001.5
1110.7
1268.8
1418.1
1408.2
1438.4
1402.4
1443.1

389.3
653.9
800.9
1133.6
1285.8
1389.0
1498.0
1419.7
1425.1
1451.0
1397.9

K

344.7
714.1
799.7

934.5
1294.2
1368.6
1531.3
1439.1
1424.8
1435.3
1403.8

26

The results in Tables 5-7 illustrate the performance of the Weibull accepting GHC algorithm with

the new neighborhood function. In particular, the results demonstrate differences when the values of K,

M, and components of the probability switch vector are changed. The Weibull accepting GHC algorithm

using the probability switch vectors (.1, .1, 0, 0, 0), (.2, .2, 0, 0, 0), (.3, .3, 0, 0, 0) with n2(s) resulted in a

low probability of generating a manufacturing process design sequence other than s (thereby providing a

myopic neighborhood structures), hence yielded inferior results than those obtained with the probability

switch vectors containing higher probability components. This observation leads to the initial conclusion

that as the number of manufacturing process design sequence changes increased, the mean value of the

optimal solution found by the Weibull accepting algorithm improved.

The results in Tables 5-7 also suggest that choosing probability switch vectors that maximize

process design sequence changes can also yield poor solutions, as measured by p.. This results from the

algorithm moving too quickly out of optimal manufacturing process design sequences to non-optimal

manufacturing process design sequences. Furthermore, the performance of a GHC algorithm depends on

the values of K and M. Comparing the values for y, u, and a in Tables 5 and 6, across the same

probability switch vectors values in Tables 7, the Weibull accepting GHC algorithm with K = 50, M =

200 or K = 100, M = 100 yielded results that are significantly better than for the case with K = 200, M =

50 in Table 7. Moreover, the Weibull accepting GHC algorithm with K = 50, M = 200 or K = 100, M =

100 also increased the number of hill climbing solutions accepted during the execution of the algorithm.

Examining (3), at each iteration of the Weibull accepting GHC algorithm, the probability that a hill

climbing solution is accepted is large when the value of tk is large. Therefore, using K = 50, M = 200,

the temperature parameter, tk, for the Weibull accepting GHC algorithm converges to zero at a

sufficiently slow rate such that the probability of accepting a hill climbing solution also decreases very

slowly at each outer loop iteration. This results in an increased frequency that the algorithm execution

visits the optimal sequence at the beginning of the execution. Visiting the optimal sequence early in the

execution of the algorithm also decreases the probability of becoming locked in a non-optimal process

design sequence at the end of the algorithm execution.

Note that as a base case, to compare the effectiveness and value of the Weibull accepting

algorithm with the new neighborhood function, experiments were run with a Weibull accepting algorithm

using a neighborhood function (in place of r\2, termed the uniform neighborhood function) that assigns an

integer value (i.e., 1,2,3,4,5) to each of the five possible manufacturing process design sequences, where

the probability of moving from a design sequence to any other design sequence is.25. This algorithm was

also executed using the same three combinations of values for K and M = M(k), k = 1,2,...,K. Thirty

(independently seeded) replications of each GHC formulation were made. The mean (u) and standard

27

deviations (a), as well as the minimum and maximum cost function values, were computed from the

optimal values across these thirty replications. These results are given in Table 8.

TABLE 8
Weibull Accepting Algorithm Resu

Inner and Outer Loop Bounds
K=50, M=200

K=100,M=100
K=200, M=50

24/30
25/30
19/30

ts with Uniform Neighborhood Function

2048.95
2147.12
2201.76

c
193.01
623.76
599.32

Minimum
1919.28
1927.01
1924.94

Maximum
2723.33
5200.51
5095.13

The results in Table 8, when compared to the results in Tables 5-7, suggest that using the

Weibull accepting algorithm with the new neighborhood function can be more effective in identifying

both the optimal design sequence and the optimal controllable input parameter values compared to the

Weibull accepting algorithm using the uniform neighborhood function. Moreover, the variance of the

optimal design sequences obtained using the new neighborhood function is significantly lower than for

the uniform neighborhood function. These results can be explained by noting that the uniform

neighborhood function selects neighboring design sequences uniformly, while the new neighborhood

function weights this selection based, in part, on common manufacturing processes between the design

sequences. This overlap provides a more effective strategy in moving between different design

sequences, in search of the optimal design sequence.

The computational results are consistent with what would have been obtained using trial and

error on the shop floor. In particular, the optimal design (PoP2P5P6) required smaller initial billets (hence

there was less material wasted) and used machining processes (rather than forging and extrusion

processes) to achieve the desired shape and size. These results are also consistent with those reported in

Jacobson et al. (1998), in terms of the minimum cost solutions obtained. The advantage of using

generalized hill climbing algorithms and computer simulation manufacturing processes is the speed and

efficiency at which these results can be obtained, at a fraction of the cost that would be spent if trial and

error on the shop floor would be required. Moreover, allowing a GHC algorithm to optimize over both

the design sequences and the controllable input parameters provides an important first step to developing

automated procedures for such optimization problems.

5. Simultaneous Generalized Hill Climbing Algorithms

This section introduces a mathematical framework for simultaneously addressing a set of related discrete

optimization problems using local search algorithms. The resulting algorithms, termed simultaneous

generalized hill climbing (SGHC) algorithms (Vaughan and Jacobson 2001), are motivated by the

multiple sequence manufacturing process design optimization problems discussed in Section 4. SGHC

algorithms can be applied to a wide variety of sets of related manufacturing, military and service industry

28

discrete optimization problems. Many well-known local search algorithms can be embedded within the

SGHC algorithm framework, including simulated annealing, threshold accepting, Monte Carlo search,

and pure local search (among others).

A SGHC algorithm probabilistically moves between the set of related discrete optimization

problems during its execution according to a problem generation probability function. The problem

generation probability function is shown to be a stochastic process that satisfies the Markov property.

Therefore, given a SGHC algorithm, movement between discrete optimization problems can be modeled

as a Markov chain. Sufficient conditions that guarantee that this Markov chain has a uniform stationary

probability distribution are obtained. Computational results are presented with SGHC algorithms for a

set of traveling salesman problems. For comparison purposes, GHC algorithms are also applied

individually to each traveling salesman problem. These computational results suggest that optimal/near

optimal solutions can be reached more effectively using a SGHC algorithm.

It is common to encounter several discrete optimization problems where a relationship exists

between the solution spaces of the individual problems. In general, these problems are approached

individually. However, because of their similarities, the same computational tools can be effectively used

to address them simultaneously. For example, the Material Process Design Branch of the Air Force

Research Laboratory, Wright Patterson Air Force Base, has several similar discrete manufacturing process

design optimization problems under study (see Jacobson et al. 1998, Sullivan and Jacobson 2000). These

problems are difficult to solve due in part to the large number of design sequences and associated input

parameter setting combinations that exist. Local search algorithms in the generalized hill climbing (GHC)

algorithm framework were introduced to address such manufacturing design problems (Jacobson et al.

1998). Initial results with GHC algorithms required the manufacturing process design sequence to be

fixed, with the GHC algorithm used to identify optimal input parameter settings for each feasible design

sequence (Jacobson et al. 1998).

The SGHC algorithm framework is motivated by a study reported in Vaughan et al. (2000) which

develops a new neighborhood function that allows a local search algorithm (in the GHC algorithm

framework) to be used to also identify the optimal discrete manufacturing process design sequence among

a set of valid design sequences. This neighborhood function allows the GHC algorithm to simultaneously

optimize over both the design sequences and the input parameters, eliminating the need to approach each

design sequence (i.e., a discrete optimization problem) individually. The computational results in Vaughan

et al. (2000) suggest that such an approach is feasible and yields reasonable results. However the

neighborhood function developed for this purpose is overly complex and problem specific.

29

The following analysis generalizes the results reported in Vaughan et al. (2000) by formally

defining a class of sets of discrete optimization problems where a relationship exists, similar to the one

described for the manufacturing problem. A set of discrete optimization problems contained in this class is

defined as a set of fundamentally related discrete optimization problems. The SGHC algorithm framework

is used to simultaneously approach sets of fundamentally related discrete optimization problems using

GHC algorithms. A metric between elements in a set of fundamentally related discrete optimization

problems is introduced to evaluate if and when it is advantageous to address a particular set of discrete

optimization problems with a SGHC algorithm.

Vaughan et al. (2000) introduces a new neighborhood function for simultaneously addressing a set

of related manufacturing process design optimization problems using GHC algorithms. This neighborhood

function allows for simultaneous optimization across the design sequences and the controllable input

parameters. The application of such optimization algorithms (that simultaneously explore multiple

manufacturing process designs) using computer simulation is a new advance in how optimal manufacturing

process designs can be efficiently identified (Vaughan et al. 2000).

It is common to encounter several discrete optimization problems where a relationship between the

solution spaces of the individual problems exists. For example, Henderson et al. (2001) introduces a

multiple platform search and rescue optimization problem that is modeled as several discrete optimization

problems. They show that for this set, the solution spaces of the individual problems overlap and are a set

of fundamentally related discrete optimization problems. Vaughan et al. (2000) describes an integrated

blade rotor discrete manufacturing process design problem that illustrates how certain manufacturing

problems can be modeled as several discrete optimization problems with overlapping solution spaces that

satisfy the definition of fundamentally related discrete optimization problems. Note that this paper relaxes

the methodology used to address the integrated blade rotor discrete manufacturing process design problem

described in Vaughan et al. (2000) to develop a general mathematical framework for simultaneously

approaching sets of fundamentally related discrete optimization problems.

To discuss the class of sets of discrete optimization problems for which SGHC algorithms are

applicable, the following definitions are needed. Consider a set of discrete optimization problems S = {Du

D2, ..., Dm}, where each discrete optimization problem Dy = (fiy, fy) is fully defined by a finite set of

solutions Qy and a real-valued objective function fy: Cly->R. A set of discrete optimization problems S is

fundamentally related by a set Ob = {c,, c2, ..., c„} of objects if the solution space Qy of each discrete

optimization problem Dy = (Qy, fy) e S can be fully defined by exactly one subset of Ob. Then for every

discrete optimization problem Dy= (Qy, fy) e S, there is exactly one set Cyc Ob such that Cy completely

defines Qy. The set Cy is defined to be the fundamental relation set of Dy.

30

Let S be a set of fundamentally related discrete optimization problems related by Ob. Consider Dy

e S where Cy c Ob is the fundamental relation set of Dy. Then Cy can be represented by the binary activity

vector cy e {0, 1 }n, cy = (B,, B2,..., Bn), where

Jl, if Cj is contained in Cy

[0, otherwise

SGHC algorithms are developed to approach sets of fundamentally related discrete optimization

problems. When two discrete optimization problems, Dy and Dq, are contained in a set of fundamentally

related discrete optimization problems with respective fundamental relation sets, Cy and Cq, where ICyTiCql

/ \Ob\ is close to one, it is reasonable to conjecture that the optimal/near optimal solutions of Dy and Dq are

similar. The following detachment metric is designed to determine if two discrete optimization problems,

in a set of fundamentally related discrete optimization, are close together, hence have similar solution

spaces.
Let S be a set of fundamentally related discrete optimization problems related by Ob. To formally

define the detachment metric p between discrete optimization problems Dy, Dq e S, consider the metric

space <En, p>, with £ = {0, 1}, where the detachment metric p is defined on I" x Sn such that the distance

between two discrete optimization problems can be determined by considering their binary activity vectors

e=(cl,cl, ...,cn')eEnand cq=(c,V2
?, ...,cB

9)eZn. Define the detachment metric as

p(Dy, Dq) - Cj + \c2 c2 + ...+

(Royden 1988, p. 140). The detachment metric provides a way to measure the overlap (or lack of overlap)

between the members in a set of fundamentally related discrete optimization problems.

To apply SGHC algorithms, a neighborhood function with an associated problem generation

probability function for moving between discrete optimization problems during an execution of a SGHC

algorithm must be developed. The neighborhood function is defined such that each discrete optimization

problem has the entire set of discrete optimization problems as neighbors. Therefore, whenever this

neighborhood function is applied, every discrete optimization problem is a candidate problem (i.e., has a

positive probability of being selected). The problem generation probability function determines the

probability of selecting a candidate problem.

More formally, define the neighborhood function, r|set:S->2s, such that r|set(Dy) = S, for all Dy e S.

Define the problem generation probability function hD^ (k, p(Dy, Dq)), such that

0 < hDjD (k, p(Dy, Dq)) < 1, for every DyeS, Dqeriset(Dy),

where

31

2 KyDq % P(Dy °q))= l> for evefy °yeS' Dq^W

for every k=l, 2,..., K.

Note that the problem generation probability function (the probability of selecting a candidate

problem, Dq e iwCDy), Dy e S) can be a function of both the outer loop iteration k=l, 2, ..., K and the

detachment metric p(Dy, Dq).

SGHC algorithms provide a mathematical framework for addressing several fundamentally related

discrete optimization problems simultaneously using GHC algorithms. SGHC algorithms seek to find

optimal solutions for sets of fundamentally related discrete optimization problems by allowing the

algorithm to probabilistically move between discrete optimization problems. When a new discrete

optimization problem is generated, an initial solution for this new problem is also generated using

information from the previous discrete optimization problem's final solution. The inner and outer loop

structure defined for GHC algorithms can be used in SGHC algorithms, where SGHC algorithms restrict

possible movement between discrete optimization problems to the first iteration of the outer loop iterations.

This constraint ensures that a GHC algorithm is applied to each discrete optimization problem at least N(k)

iterations each time it is generated (i.e., initially visited). Note that this was not the case for the

manufacturing problem presented in Vaughan et al. (2000), where movement between discrete optimization

problems was possible during all inner loop iterations. The SGHC algorithm is presented below in pseudo-

code form.

Set the outer loop counter bound K and the inner loop counter bounds N(k), k=0,l,2,...,K
Define a set of hill climbing (random) variables Rk: Q x Q -» iffu {-°°,+oo}, k=l,2,...,K
Set the iteration indices N(0)=i=0, k=n=l
Select an initial discrete optimization problem D(0) e S
Select an initial solution a>(0,0)e£2(0)
Repeat while k < K

Generate a discrete optimization problem D(k)€Tiset(D(k-l))
If D(k) * D(k-1), generate a solution coe Q(k) and co(k, l)<-co
else a>(k,l)<-<o(k-l,N(k-l))
Repeat while n < N(k)

Generate a solution coer|((o(k, i))
Compute 8(co(k, i),a>) = f(©)-f(co(k, i))
If Rk(a>(k, i),(o) > 8(a>(k, i),co), then co(k, i+l)<-a>
If Rk(a>(k, i),eo) < 5(co(k, i),co), then co(k, i+l)<-a>(k, i)
n<-n+l,i<-i+l

Until n = N(k)
n<-l,k<-k+l

Until k = K

32

All SGHC algorithms are formulated using three components, a set of hill climbing random variables

{Rk}, a neighborhood function n between solutions, and a neighborhood function nset between discrete

optimization problems. The two-tuple (k,) represents the inner loop iteration i=l, 2,..., N(k), during outer

loop iteration k=l, 2, ..., K. D(k) is the discrete optimization problem the algorithm is executing over

during the k* outer loop iteration, k=l, 2,..., K, where the solution space of D(k) is depicted by ß(k).

Markov chain theory is an effective tool for studying the performance of local search algorithms.

The following analysis shows that an application of the SGHC algorithm can be modeled using Markov

chains. In particular, an application of the GHC algorithm is first modeled using a Markov chain. Then an

application of the SGHC algorithm is modeled by a set of Markov Chains.

To show that an application of the GHC algorithm can be modeled with a Markov chain, the

following definitions are needed. A stochastic process is a family of random variables defined on some

state space. If there are countable many members of the family, the process (termed a discrete-time

process) is denoted by Q,, Q2, ..., where the set of distinct values assumed by a stochastic process is the

state space. If the state space is countable or finite, the process is a chain. A stochastic process {(&},

k=l,2, ... with state space Q = {©,, a>2, ...} satisfies the Markov property if for every n and for all states

Ö)l,CÜ2, ...,©„

Pr{Q„=Ö>n| Qn-l=0Vl, Qn-2=G>n-2, •••, Ql=»l} = Pr{Q„=Ö>„ | Q„-l=(Bn-l} = Pn(n-1)-

A discrete-time stochastic process that satisfies the Markov property is a Markov chain (Isaacson and

Madsen 1985).
Let {CM denote a discrete-time Markov chain with finite solution space Q={ro,, co2, ..., co^}. For

this chain there are |Q|2 transition probabilities, {Ps}, ij = 1, 2, ..., |Q|. The transition matrix associated

with the Markov chain {Qk} is P, where Ps is the probability of moving from state a* to state Cöj.

An application of a GHC algorithm can be modeled by a stochastic process { Qk}, k = 1, 2, ..., K,

n = 1, 2,..., N(k), ß* e Q with solution space Q. = {©i, co2,..., cop,} that satisfies the Markov property for

every n and all states <»i, (Dj, ...,©„ (i.e., { Qk } is a Markov chain). To see this, consider an application of

a GHC algorithm to a discrete optimization problem with solution space Q = {co,, co2, ..., (Op,}. Define

gii(k) to be the generation probability function for the neighborhood function r\, where giß) is the

probability that cOjen^O is generated during outer loop iteration k. Consider the inner loop iterations for

fixed outer loop iteration k= 1,2,...,K. Let {Qk
n },k=l,2,...,K, n= l,2,...,N(k), Qk

n eO, be the stochastic

process where if Qk
n = ©;, then the GHC algorithm is at solution co* during inner loop iteration n and outer

33

loop iteration k (Johnson and Jacobson 2001b). If the GHC algorithm is at solution C0j at inner loop

iteration n-1, the probability that the algorithm is at solution ©j at inner loop iteration n is

gy (k) ?r(Rk (a,, o)j)) > S9 for all o)t e Q, coj e r]^), j * i

WH
z*i

0 otherwise

independent of the solutions the algorithm visited at inner loop iterations 1,2,..., n-2. Therefore

Pr{ Qk
n =G>j | QlX =ö>i, Qk

n-2 =Ö5i (n-2), •••» Q\ =©i (1)} = Pf{ Qn =0>J I ß«-> =«»> = W»

Hence the Markov property holds. Moreover, for every outer loop iteration k, the Markov chain { Qn } has

a transition matrix P(k), where Pij(k) is as defined above .

Recall, that a SGHC algorithm is applied to a set of fundamentally related discrete optimization

problems. Movement between discrete optimization problems is only possible at outer loop iterations k=l,

2, ..., K. During the inner loop iterations, the SGHC algorithm is executing over the solution space of the

current discrete optimization problem using a GHC algorithm

The following analysis shows that for fixed outer loop iteration k = 1, 2, ..., K, the stochastic

process corresponding to the SGHC algorithm solution at inner loop iterations n = 1, 2, ..., N(k) can be

modeled by a Markov chain that corresponds to an application of a GHC algorithm. Moreover, it is shown

that for outer loop iterations k = 1, 2, ..., K, the possible movement between discrete optimization

problems is a stochastic process that satisfies the Markov property.

Consider an application of a SGHC algorithm to a set of fundamentally related discrete

optimization problems S = {D,, D2, ..., Dm}, where each discrete optimization problem Dy, y = 1, 2,.... m

is fully defined by a solution space Qy and an objective function fy (i.e., Dy=(Qy, fy)). Consider the inner

loop iterations n = 1, 2, ..., N(k), for fixed outer loop iteration k, k = 1, 2,..., K. Let {Qk
n (Dy) }, k = 1, 2,

..., K, n = 1, 2, ..., N(k) be the stochastic process where if g* (Dy) = <ou then the SGHC algorithm is at

solution C0iefiyat inner loop iteration n of outer loop iteration k.

Note that, for all inner loop iterations n = 1, 2, ..., N(k) of an outer loop iteration k = 1, 2, ..., K,

the SGHC algorithm is executing over a particular discrete optimization problem from the set of

fundamentally related discrete optimization problems S={D,, D2, ..., Dm} using a GHC algorithm. It was

shown that any application of a GHC algorithm to a discrete optimization problem can be modeled as a

Markov chain. Therefore, for fixed outer loop iteration k, the stochastic processes {Qn (Dy)}, y = 1, 2,...,

34

m, with transition matrices Py, are the Markov chains that correspond to an application of the GHC

algorithm to the discrete optimization problems Dy, y = 1, 2, ..., m for every n = 1, 2, ..., N(k) and for all

states coi, a)2, •••> roiny|-

Movement between discrete optimization problems is a stochastic process that satisfies the Markov

property. To see this, define {^(k)}, ¥(k) e S, k = 1, 2,... to be the stochastic process where if T(k)=y,

then during outer loop iteration k, for all inner loop iterations n = 1, 2, ..., N(k) the SGHC algorithm is

executing over solutions contained in the solution space of the discrete optimization problem Dy = (Qy, fy).

If the SGHC algorithm is executing over Qy at outer loop iteration k-1, then the probability that the SGHC

algorithm is executing over Qq during outer loop iteration k is

Tyq(k)=ÄflA(k,p(Dy,Dq)),

independent of the discrete optimization problems the SGHC algorithm visited at outer loop iterations 1, 2,

..., k-2 and independent of all preceding inner loop iterations. Therefore,

Pr{*P(k)=q | ¥(k-l)=y, ¥(k-2)=yk.2, ...,T(l)=y,} = Pr{¥(k)=q I ¥(k-l)=y} = Tyq(k)

and the Markov property holds. Moreover, the Markov chain {¥(k)} has transition matrix T(k), where

Tyq(k) is as defined above.

Consider an application of the SGHC algorithm to a set of fundamentally related discrete

optimization problems, S. This section presents sufficient conditions that guarantee that a SGHC algorithm

will (as k approaches +oo) be executing over the solution space of each discrete optimization problem DyeS

with probability 1/ |S|, where |S| is the cardinality of S. This result implies that, as k approaches +oo, each

discrete optimization problem in S = {D,, D2,..., Dm} is being explored with equal probability.

This section develops sufficient conditions that place restrictions on the selection of the problem

generation probability function hDjD% (k, p(Dy, Dq)). A discrete time Markov chain is a stationary Markov

chain if the probability of going from one state to another state is independent of the iteration at which the

transition is being made (Isaacson and Madsen 1985). That is, let {Xn} be a stationary Markov chain with

state space S={D,, D2, ...,Dm}. Then for all states Dy and Dq, for all k = -(n-l),-(n-2), ...,-1,0, 1,2,...,

Pr {Xn=Dy | Xn.,=Dq} = Pr {Xn+^Dy | X n+k.,=Dq}.

The long run distribution (stationary probability distribution) of a stationary Markov chain with

corresponding transition matrix T is defined by n = [tf, n2 ••• 7tm\, %i > 0, for all I = 1, 2, ..., m,

m

where n = 7iT and JV,. =1. Equivalently, the long run distribution of a stationary Markov chain is

defined by n = [/r, n2 • • • 7tm], where

35

hm M
ir= T-(*

n ->+oo

If Markov chain {T(k)} is stationary and has a uniform long run distribution, then as k approaches

infinity the SGHC algorithm is executing over the solution space of each discrete optimization problem in

S ={D,, D2, ..., Dm} with probability 1 / m = 1 / |S|. Theorem 2 provides sufficient conditions for the

selection of the problem generation probability function hDyDq (k, p(Dy, Dq)) that guarantee that the Markov

chain {¥(k)} has a uniform long run distribution. Therefore, when the sufficient conditions of Theorem 2

hold, the SGHC algorithm will (as k approaches +oo) be in discrete optimization problem Dy e S, y = 1, 2,

..., m with probability 1 / |S|.

To prove Theorem 2, the following definitions are needed. A subset, C, of the state space, S, is

closed if Pj- = 0 for all i e C, j e C. A Markov chain is irreducible if there exists no nonempty closed set

other than S itself. If S has a proper closed subset, it is reducible. State <öJ is said to have period d if P \ =

0 whenever n is not divisible by d and d is the greatest integer with this property. A state with period one is

said to be aperiodic (Isaacson and Madsen 1985).

Theorem 2 (Vaughan and Jacobson 2001): Consider an application of the SGHC algorithm. Define

hDyDq (k, p(Dy, Dq)) -hDA (PCD». Dq)) = V, (P(D" ^ fOT every k G T- C°nSider thC tranSiti°n

matrix T defined by Tyq = hDyDq (p(Dy, Dq)). If the transition matrix T is irreducible and aperiodic, then the

Markov chain {*F(k)} has a uniform long run distribution. Moreover, the long run distribution of {^(k)} is

7t = [l/|S|l/|S|...l/|S|].

Theorem 2 shows that if the problem generation probability function is chosen such that the

Markov chain {T(k)} is stationary and the associated transition matrix is symmetric, then the Markov

chain {^(k)} has a uniform stationary distribution.

The following discussion provides an illustrative example of a set of fundamentally related discrete

optimization problems. The Traveling Salesman Problem is formally described. Then the Multiple

Traveling Salesman Problem is presented and formulated as a set of fundamentally related discrete

optimization problems.

The traveling salesman problem (TSP) is a well-known NP-hard discrete optimization problem

(Lawler et al. 1985). The TSP is used to illustrate various local search algorithms because it is useful for

modeling a variety of real world problems. For example, traditional applications of the TSP include a

variety of vehicle routing and scheduling problems. More recently, applications of the TSP have been

expanded to include modern applications like the printing of circuit boards, x-ray crystallography,

overhauling of gas turbine engines, and the controlling of industrial robots (Johnson and Jacobson 2001b).

36

To formally define the TSP the following definitions are needed (Lawler et al. 1985). Define a

graph to be a finite set of vertices, some pairs of which are joined by edges. A cycle in a graph is a set of

vertices of the graph, which is such that it is possible to move from vertex to vertex, along edges of the

graph, so that all vertices are encountered exactly once, finishing at the start. If a cycle contains all the

vertices of the graph, it is called a Hamiltonian cycle (or tour). The TSP is defined as follows (Garey and

Johnson 1979).

Traveling Salesman Problem (TSP)
Instance: Given a set of n cities C = {cb c2, ..., c„} and a distance matrix D that represents the cost of
traveling between the cities in the set C.

n-\

Question: Find a Hamiltonian cycle H = (ci, c2, ..., cn) such that f(H) = J] Z)(cj; cj+1) + D(c„, cO is

minimized.

An instance of a TSP is a discrete optimization problem, where the solution space is the set of

possible all Hamiltonian cycles (with each tour consisting of n cities), Q = {a>i, a>2, ••-, »(nl),}. The
2

objective function value for each solution co,-=(ci, c2, ..., cn) e Q is the sum of the distances the tour

n-l

depicts, f(tOi) = ^T £>(CJ, cj+,) + £>(cn, Ci). The optimal objective function value represents the shortest
7=1

distance traveled.

The Multiple Traveling Salesman Problem (MTSP) is introduced to illustrate the application of

SGHC algorithms. The MTSP is defined as follows.

Multiple Traveling Salesman Problem (MTSP)
Instance: Given a set of n cities Ob = {c,, c2,..., c„}, a set of m subsets of Ob, O = {Cu C2,..., Cm), and a
distance matrix D that represents the cost of traveling between the cities in the set Ob.
Question: Find a Hamiltonian cycle H = (c,, c2, ..., c|n ,) where there exists a Cy, y = 1, 2, ..., m such

n-l

that CjeCy, for every j = 1,2, ...,n, andf(H) =]£ D(CJ, cj+1) + D(cn, d) is minimized.

Note that each of the sets Cy e O represents an instance of the TSP, Dy. Since the TSP can be

formulated as a discrete optimization problem, then the MTSP problem can be represented by set of

discrete optimization problems S={D,, D2,..., Dm}. The set S = {D,, D2,..., Dm} is a set of fundamentally

related discrete optimization problems. To see this, note that each discrete optimization problem Dy e S, y

= 1, 2,..., m is fully defined by Cyc Ob = {c,, c2, ..., c„}. Therefore, Cy is the fundamental relation set of

discrete optimization problem Dy.

The following computational results illustrate how a MTSP can be addressed with SGHC

algorithms. For comparison purposes, GHC algorithms are also applied to the individual members in the

37

set of fundamentally related discrete optimization problems. These computational results suggest that

optimal/near optimal solutions can be reached in less total iterations using a SGHC algorithm.

To develop a MTSP, a set consisting of 20 cities was generated by randomly locating each city on

a 1000 by 1000 unit grid. Four TSPs of size 18 were generated by randomly selecting 18 of the 20 cities

for each traveling salesman problem. In the case where an identical set of cities was generated for two or

more of the problems, a completely new set of discrete optimization problems was generated, resulting in

four distinct randomly generated TSPs.

The four randomly generated TSPs are arbitrarily labeled Dlt D2, D3, and D4. The detachment

metric p(Dy, Dq), between the TSPs, was calculated for all y,q = 1, 2, 3, 4. The distance matrix and

distance diagram are depicted in Figure 2.

Figure 2: Distance Matrix and Distance Diagram

D, D2 D3 D4

Di 0 4 4 4

D2 4 0 4 4

D3 4 4 0 2

D4
4 4 2 0

Computational results with Monte Carlo search, pure local search, and simulated annealing using

SGHC algorithms are reported. For comparison purposes, computational results with Monte Carlo search,

pure local search, and simulated annealing using GHC algorithms are also reported. The 2-Opt

neighborhood function was used for all executions of the SGHC and GHC algorithms. For the SGHC

algorithms, the problem generation probability function is defined as

hD D (k, p(Dy, Dq)) = [l/p(Dy, Dq)] / [£ (l/p(Dy, DO)], y * q
i=i

and

hDyDy (k, p(Dy, Dy)) = 1- X [l/(P(Dy> Dq)] / [X (l/p(Dy, DO)] = 0,
?=i i=l

for every y,q = 1, 2, 3,4, y * q for every k = 1, 2,..., K.

This problem generation probability function is such that the associated transition matrix is

symmetric and the Markov chain {*F(k)} is stationary. Therefore, by Theorem 1, the Markov chain {T(k)}

has a uniform stationary distribution, hence as k approaches infinity, the SGHC algorithm is executing over

the solution space of each discrete optimization problem in S = {Dls D2, ..., Dm} with probability 1/m =

38

1/|S| = 1/4. Moreover, this problem generation function guarantees the discrete optimization problem over

which the SGHC algorithm is executing changes at every outer loop iteration k (i.e., T(k) * ^(k-l), for all

k=l,2,...).
Executions with different values of K and N=N(k), k = 1, 2, ..., K are reported. To compare the

performance of applying a SGHC algorithm versus applying a GHC algorithm, the inner and outer loop

bounds of the SGHC algorithm were doubled. Therefore, the total number of iterations that the SGHC

algorithm executes is equal to the total number of iterations executed using the GHC algorithm for the four

individual problems. Let ReZ+ represent the total number of replications executed for each SGHC and

GHC algorithm formulation. For each replication, a different randomly generated initial tour was used.

The means, u, standard deviations, a, and the minimum and maximum distances, were computed from the

optimal tour distances across these R replications. The value y in Tables 9 to 14 represents the number of

replications for which the algorithms find the minimum distance tour. For simulated annealing, tk is

updated by multiplying the previous temperature parameter by the increment multiplier ß=.90 (i.e., tk=ßtk.

,), with initial temperature parameter to=2000.

Table 9: GHC Algorithm Results: Pure Local Search

Outer and Inner Loop Bounds y/R u CT Minimum Maximum

K=100, M=100 4/30 3864.3 36.9726 3805.4 3916.0

K=200, M=100 3/30 3863.4 32.7691 3805.4 3907.3

K=300, M=75 1/30 3876.6 36.9549 3805.4 3953.7

K=400, M=75 1/30 3885.3 42.1893 3805.4 3973.4

K=400, M=50 2/30 3867.9 37.7520 3805.4 3916.0

K=800, M=50 1/15 3872.8 35.2469 3805.4 3916.0

Table 10: SGHC Algorithm Results: Pure Local Search

Outer and Inner Loop Bounds y/R H a Minimum Maximum

K=100, M=100 10/30 3819.4 13.2943 3805.4 3831.8

K=200, M=100 23/30 3808.9 9.0535 3805.4 3831.6

K=300, M=75 23/30 3808.9 9.0535 3805.4 3831.6

K=400, M=75 24/30 3807.2 6.6434 3805.4 3831.6

K=400, M=50 9/30 3818.5 13.3165 3805.4 3831.6

K=800, M=50 12/15 3810.7 10.8417 3805.4 3831.6

Table 9 suggests that when the number of outer loop iterations for a pure local search GHC

algorithm is increased from 100 to 200, performance of the algorithm shows no improvement.

39

However, Table 10 suggests that the performance of a pure local search SGHC algorithm improves

significantly (as measured by \i) when the number of outer loop iterations is increased from 100 to

200.

Table 11: GHC Algorithm Results: Simulated Ann ealing

Outer and Inner Loop Bounds to y/R H a Minimum Maximum

K=100, M=100 3000 1/30 3854.1 41.4192 3805.4 3953.7

K=200, M=100 3000 1/30 3861.2 35.7662 3805.4 3916.0

K=300, M=75 2000 2/30 3861.5 39.7074 3805.4 3973.4

K=400, M=75 2000 5/30 3855.9 35.3872 3805.4 3907.5

K=400, M=50 2000 3/30 3868.8 39.4863 3805.4 3916.0

K=800, M=50 2000 1/15 3885.9 29.7020 3805.4 3916.0

Outer and Inner Loop Bounds
Table 12: SGHC Algorithm Results: Simulated Annealing

K=100, M=100
K=200, M=100
K=300, M=75
K=400, M=75
K=400, M=50
K=800, M=50

to

3000
3000
2000
2000
2000
2000

y/R

16/30
19/30
20/30
23/30
7/30
1/15

3814.1
3808.0
3808.9
3808.9
3831.6
3813.6

12.5549
7.9899
9.0535
9.0535
13.1248
12.5352

Minimum

3805.4
3805.4

3805.4
3805.4
3805.4
3805.4

Maximum

3831.6
3831.6
3831.6
3831.6
3831.6
3831.6

Table 13: GHC Aleorithm Results: Monte Carlo Search

Outer and Inner Loop Bounds y/R V- a Minimum Maximum

K=100, M=100 1/30 6390.0 294.6998 5634.9 6805.9

K=200, M=100 1/30 6195.6 239.7325 5575.7 6656.3

K=300, M=75 1/30 6111.7 293.6761 5293.0 6613.9

K=400, M=75 1/30 6099.6 292.5790 5310.2 6488.3

K=400, M=50 1/30 6122.6 287.3693 5291.7 6575.7

K=800, M=50 1/15 6007.1 231.746 5479.1 6328.1

Table 14: ! SGHC Algorithm Resu ts: Monte Carlo Search

Outer and Inner Loop Bounds y/R H a Minimum Maximum

K=100, M=100 1/30 6758.2 202.9184 5793.3 6758.2

K=200, M=100 1/30 6109.3 301.5243 5243.7 6611.5

K=300, M=75 1/30 6214.6 204.3092 5727.6 6575.3

K=400, M=75 1/30 6054.3 232.6718 5614.9 6462.8

K=400, M=50 1/30 6265.8 197.6956 5877.3 6659.3

K=800, M=50 1/15 5954.7 301.7151 5299.6 6382.3

Tables 13 and 14 suggest that there is little difference in performance between Monte Carlo search

GHC algorithms and Monte Carlo search SGHC algorithms. Note that this result occurs since Monte Carlo

search accepts neighboring solutions independent of their objective function value. Therefore, when

40

movement between discrete optimization problems occurs there is no exchange of common information

between the discrete optimization problems. Overall, Tables 9 through 12 suggest that the SGHC

algorithms outperform the GHC algorithms. The minimum distance found over the R replications using

SGHC algorithms is significantly smaller than the minimum distance found over the R replications using

GHC algorithms for both the simulated annealing and pure local search algorithms. Additionally, the

standard deviation of the optimal values over the R replications is smaller using the SGHC algorithms.

SGHC algorithms provide a new approach for addressing a set of fundamentally related discrete

optimization problems that can be more efficient than the traditional approach of addressing each discrete

optimization problem in the set S individually with a local search algorithm. For example, SGHC

algorithms allow practitioners to make a single algorithm run over a set of fundamentally related discrete

optimization problems. Moreover, the computational results presented suggest that a SGHC algorithm can

outperform the GHC algorithm. The development of the SGHC algorithm and the mathematical results in

this paper make it possible for the SGHC algorithm to be adapted and used to approach a variety of real

world problems.

Several on-site meetings and interactions with Austral Engineering and Software, Inc., has

resulted in further enhancement to the generalized hill climbing algorithm framework and software that

our research group has developed for their use through this project. This on-going effort of developing

and enhancing the generalized hill climbing algorithm code, in conjunction with the software

development efforts of Austral Engineering and Software, Inc., as well as the theoretical work being

undertaken to better understand the generalized hill climbing algorithm framework and how to exploit its

form to improve performance, all serve as a powerful mechanism for transitioning this research from an

academic environment into an industrial setting.

41

REFERENCES

Chen, C.H., Kumar, V., 1996, "Motion Planning of Walking Robots in Environments with Uncertainty,"
Proceedings of IEEE Conference on Robotics and Automation.

Dai, L., 1996, "Convergence Properties of Ordinal Comparison in the Simulation of Discrete Event
Dynamic Systems, " Journal of Optimization Theory and Application, 91(2), 363-388.

Fischer, C.E., Gunasekera, J.S., Malas, J.C., 1997, "Process Model Development for Optimization of
Forged Disk Manufacturing Processes," Steel Forgings, Second Volume, ASTM STP 1257, E.G.
Nisbett and A.S. Melilli, Editors, American Society for Testing and Materials.

Garey, M.R., Johnson, D.S., 1979, Computers and Intractability: A Guide to the Theory of NP-
Completeness, W.H. Freeman and Company, New York, New York.

Gunasekera, J.S., Fischer, C.E., Malas, J.C., Mullins, W.M., Yang, M.S., 1996, "Development of Process
Models for Use with Global Optimization of a Manufacturing System," Proceedings of the ASME
Symposium on Modeling, Simulation and Control of Metal Processing, ASME-International
Mechanical Engineering Congress, Atlanta, GA, November, 1996.

Henderson, D., Vaughan, D.E., Jacobson, S.H., Wakefield, R.R., 2001, " Optimal Search Strategies
Using Simultaneous Generalized Hill Climbing Algorithms." (Barchi Prize Nomination)

Ho, Y.C., Sreenivas, R., Vakili, P., 1992, "Ordinal Optimization of Discrete Event Dynamic Systems,"
Journal of Discrete Event Dynamical Systems, 2(2), 61-88.

Isaacson, D., Madsen, R., 1985, Markov Chains Theory and Applications, Robert E. Krieger Publishing
Company, Inc., Malabar, Florida.

Jacobson, S.H., Sullivan, K.A., Johnson, A.W., 1998, "Discrete Manufacturing Process Design
Optimization Using Computer Simulation and Generalized Hill Climbing Algorithms," Engineering

Optimization, 31,247'-260.
Johnson, A.W., 1996, "Generalized Hill Climbing Algorithms for Discrete Optimization Problems,

Ph.D. Dissertation, Department of Industrial and Systems Eng., Virginia Tech, Blacksburg, Virginia.
Johnson, A.W., Jacobson, S.H., 2001a, "A Convergence Result for a Class of Generalized Hill Climbing

Algorithms," Applied Mathematics and Computation (Accepted).
Johnson, A.W., Jacobson, S.H., 2001b, "A General Convergence Result for Hill Climbing Algorithms,"

Discrete Applied Mathematics (Accepted).
Lawler, EX., Lenstra, J.K., Rinnooy Kan, A.H.G., Shmoys, D.B., 1985, The Traveling Salesman Problem,

John Wiley and Sons, Chichester.
Lee, L.H, Lau, T.W.E., Ho, Y.C. 1998, "Explanation of Goal Softening in Ordinal Optimization," IEEE

Transactions on Automatic Control.
Reeves, C.R., 1993, Modern Heuristic Techniques for Combinatorial Problems, John Wiley & Sons,

Inc., New York, New York.
Royden, H.L., 1988, Real Analysis, Third Edition, Prentice Hall, New Jersey.
Sullivan, K.A., 1999, "A Convergence Analysis of Generalized Hill Climbing Algorithms," Ph.D.

Dissertation, Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, Virginia.
Sullivan, K.A., Jacobson, S.H., 2000, "Ordinal Hill Climbing Algorithms for Discrete Manufacturing

Process Design Optimization Problems," Discrete Event Dynamical Systems 10(4), 307-324.
Sullivan, K.A., Jacobson, S.H., 2001, "A Convergence Analysis of Generalized Hill Climbing

Algorithms," IEEE Transaction on Automatic Control (Accepted).
Vaughan, D.E., Jacobson, S.H., 2001, "Simultaneous Generalized Hill Climbing Algorithms for

Addressing Sets of Discrete Optimization Problems," Technical Report, University of Illinois,

Urbana, Illinois.
Vaughan, D.E., Jacobson, S.H., Armstrong, D.E., 2000, "A New Neighborhood Function for Discrete

Manufacturing Process Design Optimization Using Generalized Hill Climbing Algorithms," ASME
Journal of Mechanical Design, 122(2), 164-171.

42

APPENDIX

The following are the input parameters for the seven processes. Note that all the length

measurements (i.e., radius, height) are in inches, and all the temperatures are in fahrenheit. All

speeds are in inches per second. The die friction factors are unitless.

Process Input Parameters Possible Values

P0 Billet Radius [2,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0]
Billet Height [1.0,2.0,3.0] * Billet Radius

P, Die Geometry:
Height 1 [1.5,2.0,2.5,3.0,3.5]
Height 2 [1.5,2.0,2.5,3.0,3.5]
Height 3 [1.5,2.0,2.5,3.0,3.5]

Die Speed [.4,.6,.8,1.0,1.2]
Die Friction Factor [.2,.4,.6,.8]

Die Temperature/Ambient Temperature [1562,1607,1652,1697,1742,1787,1832]

P2 Radius [2.0,2.25,...,5.0]
Height [1.5,2.0,2.5,3.0,3.5]

P3 Die Geometry:
Radius 1 [1.5,1.75,..., 3.5]
Height 1 [0.5, 0.625, 0.75,0.875]
Radius 2 9.0 (fixed)
Height 2 [1.0,1.25,1.5,1.75,2.0]

Die Speed [0.4,0.6,0.8,1.0,1.2]
Die Friction Factor [0.2,0.4,0.6,0.8]

Die Temperature/Ambient Temperature [1562,1607,1652,1697,1742,1787,1832]

p4 Radius 1 [1.25, 1.50, ...,3.25]
Height 1 [0.5,0.625,0.75,0.875]
Radius 2 [1.5,1.75, ...,3.5]
Height 2 [0.5,0.75,1.0,1.25,1.5,1.75,2.0]
Radius 3 [3.5, 3.75,..., 5.0]
Height 3 [1.0,1.25,1.5,1.75,2.0]

P5 Radius 1 3.0 (fixed)
Height 1 0.5 (fixed)
Radius 2 3.0 (fixed)
Height 2 1.5 (fixed)
Radius 3 4.0 (fixed)
Height 3 1.5 (fixed)

P6 Radius [1.5,2.0,....,4.0]
Velocity [0.1,0.5,1.0,1.5]

Die Friction Factor [0.2,0.4,0.6,0.8]
Die Length [4.0,6.0,8.0,10.0]

Temperature [1562,1652, ,2372]
(* Reminder: there is a option for Die Geometry, shape =1 for conical shape, this value is fixed.)

43

MEDIA COVERAGE

The paper "A New Neighborhood Function for Discrete Manufacturing Process Design Optimization

Using Generalized Hill Climbing Algorithms," (co-authored with Diane E. Vaughan and Derek E.

Armstrong) published in ASME Journal of Mechanical Design (Volume 122(2), 164-171) was featured in

an article on October 20, 2000 focusing on new directions in manufacturing research in Advanced

Manufacturing Technology (www.wilev.com/technical insights).

TRANSITIONS

Extensive interactions with Austral Engineering and Software (AES), Incorporated, have resulted in

generalized hill climbing algorithm commercial quality software code. Mr. Armstrong spending ten

weeks working at the Materials Process Design Branch, Wright Patterson Air Force Base in collaboration

with AES, facilitated these interactions. The resulting code has been developed as library functions that

are compatible with the interactive framework (MPDXO) being developed by Austral Engineering and

Software, Incorporated, as part of their SBIR Phase H contract through Wright Patterson Air Force Base.

AWARDS

Dr. Diane Vaughan was awarded second place in the 2001 Paul E. Torgersen Graduate Student Research

Excellence Award at Virginia Tech. This competition evaluates all the Ph.D. dissertations that were

awarded within the College of Engineering at Virginia Tech over the prior twelve month period. See

http://www.eng.vt.edu/eng/grad-students/PETAward/petaward.html for further details.

PUBLICATIONS

The following is a list of publications that have resulted from research on this grant.

Submitted but not yet Accepted

Henderson, D., Vaughan, D.E., Jacobson, S.H., Wakefield, R.R., Sewell, EC. "Optimal Cut and Fill
Strategies using Local Search Algorithms."

Henderson, D., Vaughan, D.E., Jacobson, S.H., Wakefield, R.R., " Optimal Search Strategies Using
Simultaneous Generalized Hill Climbing Algorithms." (Military Operations Research Society
Conference Barchi Prize Nomination)

Vaughan, D.E., Jacobson, S.H., "Simultaneous Generalized Hill Climbing Algorithms for Addressing
Sets of Discrete Optimization Problems."

Published or Accepted

Jacobson, S.H., Sullivan, K.A., Johnson, A.W., 1998, "Discrete Manufacturing Process Design
Optimization Using Computer Simulation and Generalized Hill Climbing Algorithms," Engineering
Optimization, 31, 247-260.

Sullivan, K.A., Jacobson, S.H., 2000, "Ordinal Hill Climbing Algorithms for Discrete Manufacturing
Process Design Optimization Problems," Discrete Event Dynamical Systems, 10(4), 307-324.

44

Sullivan, K.A., Jacobson, S.H., 2001, "A Convergence Analysis of Generalized Hill Climbing
Algorithms," IEEE Transactions on Automatic Control.

Vaughan, D., Jacobson, S.H., Armstrong, D.E., 2000, "A New Neighborhood Function for Discrete
Manufacturing Process Design Optimization Using Generalized Hill Climbing Algorithms," ASME
Journal of Mechanical Design, 122(2), 164-171.

45

