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Abstract 

For semiconductor lasers subject to a delayed optical feedback, branches 

of steady states sequentially appear as the feedback rate is increased. But 

branches of time-periodic solutions are connecting pairs of steady states and 

provide bridges between stable and unstable modes. All bridges experience 

a change of stability through a torus bifurcation point. Close to the bifur- 

cation point, the torus remains localized near a specific fixed point in phase 

space. As the feedback rate increases, the torus envelope suddenly unfolds 

and its trajectory visits two or more unstable fixed points, anticipating the 

rich dynamics observed at larger feedback rates. 
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Nonlinear problems with a delayed feedback appear in many areas of science and engi- 

neering. They are modeling problems in chemistry (diffusion through a membrane, illumi- 

nated thermochemical reaction [1]), in biology (blood cell production [2,3], neural control 

[4], respiratory physiology [5]), in the medical sciences (drug delivery [6]), in mechanics 

(ship rolling [7]), as well as many other physical problems [8]. In nonlinear optics, a delayed 

feedback often plays an active role in the device. It may be used to stabilize a laser f9] or 

to deliberately produce a chaotic output [10]. It may also considerably diminish the per- 

formances of semiconductor lasers. These lasers appear in many of our applications (laser 

printer, CD player, code bar reading at the supermarket) and are highly sensible to delayed 

optical feedback. A weak optical feedback from external reflectors like the front facet of an 

optical fiber, a mirror, or an optical disk is enough to destabilize the normal output of the 

laser. 

For lasers controlled by feedback or subject to an unwanted feedback as well as other 

physical or biological systems modeled by delay-differential equations, the delay may have a 

stabilizing or a destabilizing effect. In many cases, however, we observe cascading instabili- 

ties which lead to complex dynamical regimes. Combined analytical and numerical studies 

of delay-differential equations (DDE) remain rare and it is not surprising that a lot of our 

current efforts on DDE concentrate on specific problems in nonlinear optics. In particular, 

a semiconductor laser subject to a delayed optical feedback is a key problem for all semi- 

conductor laser devices. Most of our understanding of its behavior comes from numerical 

studies [11]. One interesting dynamical regime, called Low Frequency Fluctuation or LFF, 

has attracted a lot of attention.   If a semiconductor laser operates close to its threshold, 

the laser power exhibits irregular oscillations with a short and a long time scales. The long 

time scale is about 100 ns and is characterized by sudden intensity drop-outs.  The short 

time scale is of the order of 1 ps and is much harder to identify [12]. Recent experimental 

investigations have considerably contributed to our understanding of LFF: a stable steady 

state mode of operation called the maximum gain mode always exists as an alternate to 

LFF [13] and LFF appears gradually as the number of modes increase [14]. Theoretically, 
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new ideas have also appeared. We may benefit from the fact that LFF appears with a low 

number of modes and investigate the bifurcation diagram analytically [15]. We may simulate 

the laser equations for a large range of values of the physical parameters and find conditions 

for which LFF is almost time-periodic (locked states [16]). Last, we may look for simplified 

forms of the laser equations which produce outputs close to LFF [17,18]. 

As the feedback rate is progressively increased from zero, branches of steady state inten- 

sities appear and are called external cavity modes. Each branch exhibits one of more Hopf 

bifurcations points which are followed by more complex bifurcations. Direct time integra- 

tion of the laser equations are limited to the stable solutions. Popular continuation methods 

such as AUTO [19] are capable to follow stable and unstable time-periodic solutions but are 

not available for delay differential equations. In this letter, we use a numerical continua- 

tion method specially developed for DDE [20] and find a simple bifurcation scenario as the 

feedback rate increases. Specifically, we find closed branches of periodic solutions connecting 

pairs of isolated steady states and torus bifurcation points which mark the beginning of 

richer time-dependent regimes. 

A single mode semiconductor laser subject to weak and moderate optical feedback is 

modeled by the Lang and Kobayashi equations [21]. In dimensionless form, these equations 

consist of the following two equations for the complex electrical field Y and the excess carrier 

number Z [17] 

dY 
— = (1 + ia)YZ + Kexp(-iu0T)Y(t - r), (1) 

T— = P-Z-(1 + 2Z)\Y\2 (2) 

Time t is measured in units of the photon lifetime rp (t = t'/rp). The external round-trip 

time is normalized as r = 2L/CTP where L is the distance laser-mirror and c is the speed of 

light. u>o= UJTP is the dimensionless angular frequency of the solitary laser u, and K = ^TP is 

the normalized feedback rate, a is the linewidth enhancement factor and T = Tn/rp is the 

ratio of the carrier TS to photon lifetime rp. P denotes the pumping rate above threshold. 

Typical values of the parameters are given by [14] 



.?. T = T = 103, P = 10-3, a = 4 and U0T = -1. (3) 

We may reduce the number of parameters by introducing the new variables s, E, and JV 

defined by s — t/r, E = T
1
^ and N = TZ. In terms of these new variables, Eqs. (1) and 

(2) become 

dE 
— = (1 + ia)NE + T]exp(-iu0T)E(s - 1), (4) 

q^=p-N-(l + 2T~
1
N) \E\2 (5) 

where the parameters 77, p and q are defined by 77 = TK, p = rP and q = Tr_1.The advantages 

of the rescaled equations (4) and (5) are twofold. First, using the values of the parameters 

listed in (3), we find p — q = 1. Consequently, the stiffness of the original equations (1) and 

(2) (large T and r) has been removed meaning that the new equations (4) and (5) are easier 

to solve numerically. Second, we may neglect the r-1 small term in Eq. (5) and reduce the 

number of fixed parameters. 

A basic solution of Eqs.   (4) and (5), called a external cavity mode or ECM solution 

corresponds to a single frequency solution of the form 

E = A exp (i(A - UJ0T)S) (6) 

and N = B where A, A and B are constants. The intensity \E\2 of any ECM mode solution 

is thus constant and equals \A\2. Substituting (6) into Eqs. (4) and (5) leads to conditions 

for A, B and A which can be analyzed. Specifically, the ECM frequency A satisfies the 

transcendental equation 

A - u0T = -77 (a cos(A) + sin(A)) (7) 

and A, B are related to A by A2 = 1_
P

2^f?s^A) > 0 and B = -77 cos(A). By analyzing Eq. 

(7) in the implicit form 77 = 77(A), we note that the number of ECM solutions increases with 

77. Except for the first ECM solution which appears at 77 = 0 or ECM solutions that bifurcate 

from A = 0, all ECM solutions appear by pair and emerge from limit points. One branch 



of solutions is always unstable (called anti-mode) and the other branch of solutions is stable 

(called mode) but may experience a change of stability through a Hopf bifurcation. Hopf 

bifurcation points appear on all (stable or unstable) branches but cannot be determined 

analytically [22]. 

In general, bifurcation diagrams are obtained by numerical integration of the laser equa- 

tions changing gradually the feedback rate [14].  The simulations are limited to the stable 

regimes and require several runs with different initial conditions in order to detect isolated 

and/or coexisting solutions.   Computations can be costly and have motivated alternative 

techniques such as the development of numerical continuation methods appropriate for 

delay-differential equations [20].   A continuation method detects Hopf bifurcation points 

in parameter space, follow stable or unstable branches of time-periodic solutions, and de- 

termine their stability changes. Figure 1 shows the bifurcation diagram of the steady and 

time-periodic solutions for the values of the parameters listed in (3). Branches of periodic 

solutions are connecting pairs of mode - antimode solutions.  These bridges start and ter- 

minate at distinct Hopf bifurcation points (shown by circles in Figure 1). They also overlap 

points where a mode and an antimode admit the same intensity. A recent asymptotic analy- 

sis of Eqs. (1) and (2) valid in the limit of large values of T shows that mixed ECM solutions 

of the form 

E oi Ax exp (i(Ai - CJ0T)S) + A2 exp (t(A2 - U0T)S) (8) 

exist in the vicinity of these points [15]. Ai and A2 are two single ECM frequencies satisfying 

Eq. (7) evaluated at the equal intensity point. By contrast to the single ECM solution (6), 

the mixed ECM solution (8) admits a time-periodic intensity \E\2 with a frequency equal 

to |Ai - A2|. The amplitudes Ax and A2 are functions of rj which can be determined 

by a higher order analysis [15]. By investigating the behavior of the extrema of \E\ as a 

function of 77, we note that the mixed ECM solution (8) corresponds to a closed branch of 

periodic solutions which overlaps the point where the single modes exhibit the same intensity. 

Although, the approximation (8) is mathematically valid for T large (equivalently, q large) 



[15], we have compared analytical and numerical solutions for the first mode - antimode 

bridge (see Figure 2). The good agreement between the numerical and analytical branches 

even for q = 1 suggests that the mixed ECM solution (8) is a natural approximation of the 

time-periodic solutions connecting pairs of single ECMs. The interaction between a mode 

and an antimode also generates a secondary torus bifurcation point (square in Figure 1). 

This bifurcation is important for the high intensity branches because it marks their change 

of stability and their transition to more complex regimes. 

It is worthwhile to investigate the behavior of the tori as they emerge from their bifurca- 

tion points. To this end, we use a standard integration technique and solve numerically Eqs. 

(4) and (5). We concentrate on the high intensity branches. As the feedback rate surpasses 

the torus bifurcation point, the oscillations are quasiperiodic and the envelope of the tori 

remains localized in the vicinity of the original ECM point (see Figure 3a). The oscillations 

are typically quasiperiodic i.e., a low frequency modulation of rapid oscillations (see Figure 

3c). The period of the rapid oscillations is P ~ 1.16 which is close to the analytical estimate 

P = 27r/ |A2 - Ai| ~ 1.14 (here, A2 ~ -17.5 and A2 ^ -12 are the frequencies of the two 

interacting ECMs). Our bifurcation scenario substantiates earlier investigations on high fre- 

quency regimes possibly linked to a mode - antimode interaction [23,24]. The period of the 

slow envelope is about P ~ 6.25 and manifests the effect of the laser relaxation oscillations 

corrected by the feedback [25]. Above a critical feedback rate, we note a sudden jump to a 

quite different regime. Specifically, the torus envelope unfolds into a trajectory that is now 

orbiting near two or more ECM points (see Figure 3b). The time evolution shown in Figure 

3d indicates that several unstable single mode or unstable periodic orbits are visited. The 

common feature between these modes and orbits is that they admit a similar value of N (see 

Figure 3b). A detailed numerical analysis of the solutions near the transition point between 

bounded and unbounded tori indicates a slight domain of hysteresis. 

The multi-frequency regime appearing as the bounded torus unfolds in the phase plane 

anticipates the rich dynamics of LFF observed at larger feedback rates. The bifurcation 

scenario (periodic isola, torus bifurcation, and torus unfolding) repeats itself for each high 



intensity branch of periodic solutions introducing more periodic orbits and allowing the 

progressive development of a mature LFF observed at larger values of the feedback rate. 
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Figure Captions 

Figure 1. Bifurcation diagram of the steady and time-periodic solutions. Full and dashed 

lines correspond to stable and unstable solutions, respectively. Circles, triangles and squares 

denote Hopf, period doubling, and torus bifurcation points, respectively. Closed branches 

of periodic solutions are connecting a mode and an anti-mode. The first branch of periodic 

solutions admit a closed branch of period two solutions (not shown). A torus bifurcation 

point immediately follows the second period doubling bifurcation point. 

Figure 2. First branch of periodic solutions. Both the maxima and the minima of the 

oscillations are shown. The numerical branch (full line) is compared to the asymptotic ap- 

proximation (dashed line). It is given by (8) where Ai and A2 are the single mode ECM 

frequencies evaluated at the equal intensity point (indicated in the figure by an arrow). 

Figure 3. Tori. At a critical feedback rate, a torus oscillating near an unstable periodic orbit 

suddenly unfolds into a more complex regime. This new regime dominates at higher values 

of 7] but coexists with the previous torus for a very small domain of 77. The solutions are 

represented in the phase plane N vs 3>(s - 1) - <E>(s). We also show $(s - 1) - $(s) as 

a function of time s. Here $ = ^ + UJ0TS where <$> is defined as the phase of the complex 

electrical field E. All the ECM solutions (A, .5) are fixed points in the phase plane and are 

located on an ellipse given by A = u0r + aN ± y/r]2 - N2. Moreover, the broken lines in 

the $(s - 1) - $(s) vs s diagram correspond to ECM frequencies A. (a) 77 = 4.4 and the 

torus has been obtained by progressively increasing 77 from a lower value, (b) 77 = 4.4 and 

the torus has been obtained by progressively decreasing 77 from a larger value. 
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