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Abstract  

Pure and La doped BaoÄ^TiOs (BST) thin films were fabricated via the 
metalorganic solution deposition technique using carboxylate-alkoxide 
precursors on Pt-Si substrates. The La doping concentration, from 
0-10 mole-percent, was found to have a strong influence on the 750 °C post 
deposition annealed films material properties. All films possessed a nontextured 
polycrystalline microstructure with no evidence of secondary phase formation. 
The pure and 1 mole-percent La doped films exhibited a uniform microstructure 
suggestive of a fully developed film at this annealing temperature. Improved 
dielectric and insulating properties were achieved for the 1 mole-percent La 
doped BST thin films with respect to that of undoped BST films. The 
1 mole-percent La doped BST film exhibited a lower dielectric constant (283 vs. 
450) and enhanced resistivity (31.4 x 1013 Q-cm vs. 0.04 x 10*3 Q-cm) with respect 
to that of undoped BST films. The loss tangent and tunability (at 100 kHz) of the 
1 mole-percent La doped BST films were 0.019 and 21% (at E = 300 kV/cm), 
respectively. Films doped at concentrations between 5 and 10 mole-percent 
possessed under developed microstructures, suggesting that higher annealing 
temperatures and/or longer annealing times are required. The single phase 
structure of the 5 and 10 mole-percent La doped BST films, combined with the 
beneficial influence of the 1 mole-percent La doping on the BST films' dielectric 
and insulating properties, suggest potential for further enhancement of the films' 
material properties after optimization of the thermal treatments for the 5 and 
10 mole-percent La doped BST thin films. 
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1.   Introduction 

Electrical tunable ferroelectric thin film devices rely on the variation of a 
ferroelectric materials dielectric constant with application of an electric field 
[1-3]. Bai-xSrxTi03 (BST) is a promising ferroelectric material for tunable 
microwave device applications such as electronically tunable mixers, delay lines, 
filters, and phase shifters. For BST to be employed in tunable device 
applications, the dielectric and insulating properties must satisfy several critical 
requirements. These requirements include: (1) a low loss tangent over the range 
of operating dc bias voltages, (2) a large variation in the dielectric constant with 
applied dc bias, (3) for impedance matching purposes, the dielectric constant (sr) 
must be less than 500, (4) the film must possess low leakage current (II) 

characteristics, (5) the film must be single phase with a dense microstructure and 
rriinimal defects, (6) the films' surface morphology must be smooth and crack 
free, and (7) the film-substrate interface must be thermally stable as a function of 
both processing temperature and device operational environment [2, 4-6]. 
Undoped BST thin films offer tunabilities upward of 50% at bias voltages of less 
than 10 V, which is compatible with the voltage requirements of present 
semiconductor-based systems. Unfortunately, the tradeoff for such high 
tunabilities are high loss tangents; that is, tan 8 is much larger than 0.02. It is 
well documented that small concentrations of dopants can dramatically modify 
the properties of ferroelectric materials such as BST. In particular, Fe2+, Fe3-, 
Co2-, Co3+, Mn2+, Mn3+, Ni2+, Mg2+, Al2-, Ga3+, In3+, Cr3+, and Sc3+, which can 
occupy the B sites of the (A2+B4+Ö2-3) perovskite structure, have been known to 
lower dielectric loss [2, 3, 7-9]. The mechanism for this behavior centers on the 
thesis that ions with a charge less than 4+ can substitute for Ti4+ and behave as 
electron acceptors. These acceptors prevent the reduction of Ti4+ to Ti3+ by 
neutralizing the donor action of the oxygen vacancies. Because the electrons 
resulting from the generation of oxygen vacancy can hop between different 
titanium ions and provide a mechanism for dielectric losses, the compensation 
for the oxygen vacancy with the correct amount of acceptor dopants helps to 
lower the loss tangent. The goal of the present investigation was to determine 
the effects of La doping on the dielectric, insulating, structural, microstructural, 
surface morphological, and interracial properties of Bao.6Sro.4Ti03 thin films. 

2.   Experimental 

The thin films were fabricated via the metalorganic solution deposition (MOSD) 
technique. Figure 1 shows the basic steps for fabrication of La doped thin films 
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Figure 1. Flow diagram for the MOSD processing of La doped Bao.6Sro.4Ti03 thin films. 

by the MOSD technique. In fabrication, barium acetate and strontium acetate, 
each initially dissolved in acetic acid, were mixed together and heated to 70 °C in 
order to prevent hydrolysis and precipitation of the metal oxides. To adjust the 
viscosity of the solution, 2-methoxyethanol was utilized. Lanthanum acetate (the 
dopant precursor, in concentrations ranging from 1 to 10 mole-percent) and 
titanium isopropoxide were the final precursors added to the heated solution. 
The precursor films were spin coated onto Pt-coated silicon substrates. 
Particulate impurities were removed from the solution by filtering through 
0.2-um syringe filters. Subsequent to coating, the films were pyrolized for 
10 min on a hot plate at 350 °C to evaporate solvents and organic addenda and 
form an inorganic film. The spin coat-pyrolization process was repeated until a 
film thickness of 150 ran was achieved. Post-deposition annealing was performed 
in a tube furnace in an oxygen ambient at 750 °C for 60 min. The films were 
characterized for dielectric, insulating, structural, microstructural, surface 
morphological, compositional, and interfacial properties. The electrical 
measurements were conducted in the metal-insulator-metal (MIM) 
capacitor configuration.   MIM capacitors were formed by sputter depositing 



0.2-mm platinum (Pt) dots with 0.5-mm spacings through a shadow mask 
covering a 1 x 1 cm2 area. Capacitance (Cp) and dissipation factor (tan 8) were 
measured with an HP 4192A impedance/gain analyzer. The films' insulating 
properties, leakage current (II), were evaluated via I-V measurements using an 
HP 4140B semiconductor test system. Glancing angle x-ray diffraction (GAXRD), 
using a Rigaku diffractometer with CuKa radiation at 40 kV, was employed to 
assess film crystallinity, phase formation, and film orientation. A Hitachi S4500 
field emission scanning electron microscope (FESEM) was utilized to assess 
surface morphology, plan-view and cross-sectional grain formation, and 
microstructure. Auger electron spectroscopy (AES) was employed to assess the 
elemental distribution within the film and across the film-Pt interface. The AES 
analyses were obtained using a Perkin Elmer PHI660 scanning Auger 
microprobe. The films' surface morphology was analyzed and quantified with a 
Digital Instruments Nano Scope Ilia atomic force microscope (AFM) using 
tapping mode with amplitude modulation. 

3.   Results and Discussion 

The dielectric and insulating measurements of the 750 °C annealed 
0-10 mole-percent La doped BST films were conducted at room temperature on 
MIM capacitors. Table 1 summarizes the dielectric constant (sr), dissipation 
factor (tan 8), dielectric tunability, and resistivity (p) values for the undoped and 
La doped BST films at a frequency of 100 kHz. The values reported in Table 1 
show that La doping had a strong influence on the material properties of the BST 
thin films. The dielectric constant, dissipation factor, tunability, and leakage 
current (film resistivity increased) all decreased as the La concentration increased 
from 0-5 mole-percent. The dissipation factor of the 1 and 5 mole-percent La 
doped BST films (tan 8 = 0.019) was lower than that of the undoped BST thin 
film. The dissipation factor of the 10 mole-percent La doped film (tan 8 = 0.03) 
was significantly higher than that of the 1 and 5 mole-percent La doped BST thin 
films. Figure 2 displays the dielectric response as a function of measured 
frequency for the 1 mole-percent La doped BST film. The dielectric properties 
did not show any appreciable dispersion with measured frequency up to 1 MHz, 
indicating good film quality and the absence of internal interfacial barriers. The 
measured small signal dielectric constant and loss factor at a frequency of 
100 kHz were 283 and 0.019, respectively. The electrical quality (i.e., the 
insulating nature) of a dielectric thin film is determined by the value of the 
leakage current converted to film resistivity. 



Table 1.   Summary of dielectric and insulating properties for undoped and La doped 
Bao.6Sro.4Ti03 thin films at a frequency of 100 kHz. 

La mole-percent Er tan8 Tunability (%) 
(at 200 kV/cm) 

p (xlO13 fi-cm) 
(at 100 kV/ cm) 

0 450 > 0.025 28.1 0.04 

1 283 0.019 12.1 31.4 

5 204 0.019 3.49 31.4 

10 200 0.030 1.2 1570 
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Figure 2.   Dielectric constant and dissipation factor as a function of frequency for the 
750 °C annealed 1 mole-percent La doped Bao.6Sro.4Ti03 thin film. 

The La doped BST thin films possessed enhanced insulating behavior as 
demonstrated by the very high film resistivity values (low leakage current) 
tabulated in Table 1. The film resistivity of the La doped films was over two 
orders of magnitude larger than that of undoped BST. Capacitance-voltage (C-V) 
measurements conducted on the MIM capacitors were utilized to analyze the 
effect of La content on the tunability of the BST thin films. The tunability of the 
capacitance was measured in terms of AC/Co, where AC is the change in 
capacitance relative to zero-bias capacitance Co. The tunability, measured at 
200 kV/cm, was found to decrease as a function of increasing La concentration 
from 28.1% to 1.2% for the undoped and 10 mole-percent La doped BST films, 
respectively. This decrease in dielectric tuning with the addition of acceptor 
dopants is not surprising and has been reported in other studies for doped BST 
thin films [2,3,10]. Figure 3 shows the tunability of the 1 mole-percent La doped 
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Figure 3. Tunability of the 1 mole-percent La doped Bao.6Sro.4TiC>3 thin film as a function 
of applied electric field. 

film as a function of applied electric fields. The 1 mole-percent La doped thin 
film was found to be highly tunable as a function of increasing applied electric 
field. Specifically, the tunability varied from 0-35% at applied electric fields of 
0-500 kV/cm, respectively. 

In order to select the film composition best suited for reliable tunable device 
applications, the properties reported in Table 1 must be carefully considered and 
weighed against one another in terms of relative importance. As mentioned 
previously, desirable material properties for tunable device applications include 
low dielectric loss, a dielectric constant less than 500, high dielectric tunability, 
and low leakage current. Considering the tradeoffs between tunability and the 
values of dissipation factor, dielectric constant, and film resistivity, the 
1 mole-percent La doped BST film possessed the best overall properties for use in 
tunable device applications. The high tunability and excellent film resistivity, 
combined with the low dissipation factor within the measured frequency range, 
suggests the 1 mole-percent La doped BST to be an attractive material for tunable 
components and devices. However, it must be kept in mind that good dielectric 
and insulating properties are not stand-alone requirements. Other materials' 
properties, such as film structure, microstructure, surface morphology, and the 
nature of the film substrate also influence device performance and long-term 
reliability. Therefore, in order to fully evaluate and understand the properties 
discussed previously, the influence of the La doping concentration on the 
structural, microstructural, surface morphological, and interfacial properties 
must be assessed and correlated with the films' dielectric and insulating 
properties listed in Table 1. 



In order to insure optimum and accurate dielectric properties, long-term device 
reliability, and fabrication reproducibility, the annealed doped BST thin films 
must be well crystallized and possess a single phase structure. GAXRD was 
utilized to assess the film crystallinity and determine whether or not the films' 
possessed a single phase structure. Figure 4 displays the x-ray diffraction 
patterns of the 750 °C annealed undoped and La doped BST thin films. All films 
possessed a nontextured polycrystalline structure with no evidence of secondary 
phase formation. The fuU-width-half-maximum (FWHM) of the most intense 
diffraction peaks increased with increasing La content. This peak broadening is 
indicative of a decrease in grain size [2]. 

30 40 

Angle (29) 

Figure 4.   X-ray diffraction patterns of the undoped and La doped Ba0.6Sro.4Ti03 films 
annealed at 750 °C for 60 min. 

The surface morphology of the La doped films was smooth and crack free as 
determined by field emission scanning electron microscopy (FESEM). Crack-free 
surfaces are extremely important since surface cracks result from film stress, and 
stress is a source of dielectric loss [10-12]. The roughness of the film surface is 
also an important consideration since the film surface must be metallized in 
device fabrication. Good film-metal adherence requires a smooth, defect-free 
surface morphology. Quantitative analysis of the film surfaces, via tapping 
mode AFM, determined the root mean square surface roughness, Rnns, to be less 
than 1.5 nm for all film compositions. These extremely smooth film surfaces 
demonstrated excellent adhesion with the Pt electrodes in the MIM capacitor test 
structures. The AFM images displayed in Figure 5 show that both the undoped 
and doped films exhibited a dense microstructure which was significantly 
modified by the addition of La. The grain size was found to decrease with 
increasing La content, which is consistent with the GAXRD studies where the 
peak sharpness decreased with increasing La content. Specifically, the undoped 



Figure 5.   AFM micrographs of the 750 °C annealed (a) undoped, (b) 1 mole-percent, 
(c) 5 mole-percent, and (d) 10 mole-percent La doped Bao.eSriuTiCb thin films. 

and 1 mole-percent La doped BST films exhibited a uniform microstructure with 
an average grain size of 60 nm and 50 nm, respectively. The 5 and 
10 mole-percent La doped films possessed a nonuniform grain structure with 
average grain sizes of 30 nm and 22 nm, respectively. A nonuniform grain size 
structure is indicative of either (1) a multiphase film or (2) immature film 
crystallinity (i.e., the film was not fully crystallized at the present annealing 
temperature/time). Since the x-ray diffraction measurements demonstrated the 
1, 5, and 10 mole-percent La doped films to be single phase, we suggest that the 
5 and 10 mole-percent La doped BST films require a higher annealing 
temperature and/or longer annealing time at 750 °C to achieve the grain 
uniformity indicative of a fully developed single-phase crystalline 
microstructure. Thus, La doping of BST thin films at concentrations 
>5 mole-percent appears to elevate the thermal treatment required for complete 
film crystallization with respect to that of pure or lightly doped BST thin films. 

The cross-sectional FESEM microstructural analysis of the undoped and La 
doped BST films strongly support the AFM results. The FESEM data (Figure 6) 
shows that the undoped and 1  mole-percent La doped films possessed a 
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Figure 6. FESEM images of the 750 °C annealed (a) undoped, (b) 1 mole-percent, 
(c) 5 mole-percent, and (d) 10 mole-percent La doped Bao.eSro^TiCb thin films. 
Small arrows denote the film-Pt interfaces. 



well-crystallized, dense, void-free microstructure composed of granular 
multigrains randomly distributed throughout the film thickness. In contrast, the 
5 and 10 mole-percent La doped films possessed underdeveloped 
microstructures with respect to that of the pure and 1 mole-percent La doped 
films. The dielectric properties of BST thin films are known to strongly depend 
on film crystallinity, microstructure, and quality of the film-substrate interface 
[1-3, 5-6, 10]. Since the 5 and 10 mole-percent La doped films were not fully 
crystallized after annealing at 750 °C, the dielectric properties reported in Table 1 
do not reflect the true dielectric properties of these films. From our previous 
research on Mg doped single-phase BST thin films, we observed that both the 
dielectric constant and dissipation factor improved (were lowered) as the Mg 
concentration increased [2, 3]. If La behaves similarly to Mg, we suggest that 
after an elevated thermal treatment (annealing temperature greater than 750 °C 
and/or more than 60 min annealing time at 750 °C), the dielectric properties of 
the 5 and 10 mole-percent La doped films reported in Table 1 should improve. 

As previously mentioned, the film-substrate interfacial quality (structure and 
composition) also influences the dielectric properties. The cross-sectional FESEM 
images of the La doped films (Figure 6) reveal a structurally well-delineated 
film-Pt electrode interface at all doping concentrations. No amorphous layer or 
voiding was observed at the interface between the film and the bottom electrode. 
The excellent film-Pt interfacial quality, exemplified for the 1 mole-percent La 
doped BST film, is responsible for the nondispersive nature of the permittivity 
within measured frequency up to 1 MHz, as indicated in Figure 1. Additionally, 
this defect free and structurally abrupt interface bodes well for the excellent 
mechanical integrity and good adhesion characteristics of the film-PtSi substrate 
at all doping levels. The compositional film-Pt substrate integrity was evaluated 
via AES elemental depth profiles. 

The AES depth profiles of the 750 °C annealed 1-10 mole-percent La doped BST 
films are displayed in Figures 7 (a-c). For all doping levels, the AES depth 
profiles revealed a compositionally sharp interface with no interdiffusion of 
constituent elements between the dielectric film and the Pt electrode. The depth 
profiles also revealed that each element component of the film possessed a 
uniform distribution from the film surface to the interface of the bottom Pt 
electrode substrate. These data substantiate the fact that the film and 
platinized-silicon substrate maintain chemical and thermal stability at processing 
temperatures up to 750 °C (the annealing temperature). Since the 5 and 
10 mole-percent La doped films were not fully crystallized at 750 °C, the AES 
analyses at this temperature sheds little information on the actual thermal 
stability of these films. Considering the validity of the AES data for only the 
1 mole-percent La doped BST film (thermally stable film-PtSi interface), the fact 
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Figure 7.   AES elemental depth profiles of the 750 °C annealed (a) 1 mole-percent, 
(b) 5 mole-percent, and (c) 10 mole-percent La doped Bao.6Sro.4TiC>3 thin films. 
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that no impurities (no elemental interdiffusion) were observed in the AES 
elemental depth profile, without doubt, contributed to the films good dielectric 
and insulating properties reported in Table 1. 

Considering the structural, surface morphological, microstructural, and 
film-substrate interracial properties evaluated previously, validity of the 
reported dielectric properties is realized only for the undoped and 
1 mole-percent La doped BST thin films. Since the film crystallinity of the 5 and 
10 mole-percent La doped BST films was not fully developed after the annealing 
treatment, we suggest that the dielectric properties of theses films, reported in 
Table 1, are not the optimized properties. Results of this investigation do in fact 
demonstrate that at concentrations of 1 mole-percent, La doping serves to 
improve the films' dielectric loss, lower the dielectric constant, and increase the 
film resistivity with respect to that of undoped BST. The tunability, 12.1% at 
200 kV/cm, was much lower than tunable devices demand; however, our results 
demonstrated (Figure 3) that the film tunability was elevated to 35% by applying 
a higher field strength (E = 500 kV/cm). This applied field strength translates to 
an applied bias of 7.5 V, which is still compatible with the voltage requirements 
of present semiconductor based systems (<10 V) and well below the films' 
dielectric breakdown. The beneficial influence of the 1 mole-percent La doping 
on the dielectric and insulating properties of the BST thin films, combined with 
the fact that the films retained a single phase structure at La doping levels up to 
10 mole-percent suggests potential for further enhancement of the films' material 
properties after optimization of the thermal treatments for the 5-10 mole-percent 
La doped BST thin films. Future work will focus on optimization of the thermal 
treatments and characterization of material properties of the 5-10 mole-percent 
La doped BST thin films. 

4.   Conclusions 

This investigation demonstrated that La doping has a strong influence on the 
material properties of BST thin films. We have achieved improved dielectric and 
insulating properties for 1 mole-percent La doped BST thin films with respect to 
that of pure BST films. The measured values of the dielectric constant, 
dissipation factor, tunability, and resistivity of Bao.6Sro.4TiC>3 thin films doped 
with 1 mole-percent La were 283, 0.019, 12.1% at E = 200kV/cm, and 35% at 
E = 500 kV/cm, and 31.4 x 1013 O-cm, respectively. The 1 mole-percent La doped 
BST film was single phase and possessed a dense defect-free microstructure with 
a thermally stable film-electrode interface and smooth continuous surface 
morphology. Films doped at concentrations between 5 and 10 mole-percent 
possessed immature microstructures, suggesting that higher annealing 
temperatures and/or longer annealing times are required before the dielectric 
properties can be accurately assessed. 
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