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Abstract  

The extensible Data Model and Format (XDMF) provides a performance 
friendly system to integrate High Performance Computing (HPC) codes, analysis 
tools, and user interfaces into a single end user application. Based on industry 
standards, XDMF allows codes to exist in a modern computing environment 
with minimal modification. Instead of imposing a new programming paradigm 
on HPC codes, XDMF uses the existing concept of file I/O for distributed 
coordination. XDMF incorporates Network Distributed Global Memory 
(NDGM), Hierarchical Data Format version 5 (HDF5), and extensible Markup 
Language (XML) to provide a flexible yet efficient data exchange mechanism. 
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1.   Introduction 

Modern high performance computing (HPC) facilities are commonly a collection 
of heterogeneous systems, each selected for its particular strength. Logically, 
software systems can benefit from combining the strengths of various hardware 
systems, under a single operating environment, to provide feature rich end-user 
environments. In addition, software systems can also benefit from combining 
components from different disciplines in a single system. For example, 
providing interactive runtime scientific visualization to a running HPC code 
allows the user to verify setup and monitor progress during execution. 
Computation can proceed on the large scalable system, while the user visually 
analyzes the data on a high-end graphics workstation. 

Developing an environment where distributed and parallel software 
components, written in various programming languages, can be easily 
assembled into a complex system is a difficult task. In an HPC environment, the 
task is even more difficult since the volume of data being processed is enormous. 
It is beneficial to minimize data movement in order to improve overall system 
performance. 

Existing low level facilities like sockets, remote procedure call (RPC), 
message-passing interface (MPI), and parallel virtual machine (PVM) alone are 
insufficient to build complex, reusable distributed computing components and 
applications. In addition to the extensive bookkeeping necessary to coordinate 
messages, they lack the standard facilities to describe the meaning of the data in 
addition to its values. For example, it is impossible to know whether an array of 
floating point values describes the XYZ values of a computational grid or 
computed vector values without some type of additional information. 
Additional layers, provided by higher level facilities and environments, address 
this issue. 

Many higher level efforts attempt to provide a generalized solution for 
distributed applications. Some of the most notable efforts involve 
meta-computing, distributed object brokers, and software buses. Serious 
meta-computing efforts attempt to address the complete distributed computing 
issue in its entirety. Facilities for user authentication, job submission, resource 
allocation, and task coordination are provided in an effort to provide seamless 
access to a potentially enormous computational grid. These systems typically 
provide some facility for individual components to communicate in addition to 
standard low level methods. Meta-computing environments like Globus [1] and 
Legion [2] may potentially provide the necessary framework, but properly 
deploying these systems requires significant site-wide coordination of queuing 
systems, system software, accounting, and security policies.  These systems are 



effectively distributed operating systems and will require more time to attain the 
stability and acceptance necessary for site-wide deployment in production HPC 
environments. In addition, they provide no inherent facility for describing data 
meaning since they must support every type of HPC code. 

Environments implemented entirely of user level code require no privileged 
access and simplify both accounting and security issues. While limited in 
functionality by definition, these environments provide sufficient capability for 
the implementation of robust end-user systems constructed from verified and 
efficient components in various disciplines. If each of these components were to 
be developed from scratch, one might take advantage of object oriented 
distributed systems based on the Common Object Request Broker Architecture 
(CORBA) [3]. However, imposing this type of object oriented architecture on an 
existing HPC code designed for scalable performance requires significant effort 
and could adversely affect the code's performance. 

Other approaches like the POLYLITH [4] software bus provide a standard 
method for components to provide services to clients upon request. As its name 
implies, the software bus approach is a flexible mechanism to interconnect 
diverse software components in a procedural rather than an object-orientated 
architecture. As opposed to a targeted solution, this approach is a generalized 
one focusing on the communication and data transformation of independent 
interconnected modules. POLYLITH, as well as other systems like Darwin [5], 
define a Module Interconnection Language to describe the structure of the 
distributed system. The Olan Configuration Language [6] found existing object 
request brokers and software bus module interconnection languages insufficient 
and extended the approaches to convey the dynamic aspects of applications. 

While these systems have met with varying degrees of success, none can be 
considered a standard for constructing distributed applications from existing 
components. These systems attempt to define a "top-down" structure for 
defining and implementing the operation of the entire software system. In fact, 
this top-down approach is common to meta-computing and CORBA systems. 
Perhaps a more expedient approach for sharing data is a "bottom-up" one of 
defining a common data facility to which HPC codes could efficiently read and 
write values in a standardized method similar to a restart or dump file. Such a 
bottom-up solution to this issue would be immediately useful for transferring 
data between applications like HPC simulation codes and visualization post- 
processors. Eventually, if simultaneously available to running applications, such 
a solution would lend itself to co-processing and computational steering systems. 
Even this proves to be a nontrivial undertaking. Defining a method for accessing 
enormous amounts of data and describing its content is difficult when one 
considers the diverse data organization requirements and performance issues of 
modern parallel codes. Several efforts attempt to define common data models, 
formats, and sharing mechanisms for HPC applications. 



While it is unlikely that a single data model and format could serve all HPC 
applications adequately, clusters of similar applications can agree on data 
exchange mechanisms. For example, the Hierarchical Data Format-Earth 
Observing System (HDF-EOS) [7] effort has made significant progress toward 
providing a common layer of data access for earth science data collection. The 
Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI) 
program has significant effort invested to provide a common data model and 
format, based on HDF5, for DOE simulation codes and tools. Other significant 
efforts like the KeLP (Kernel Lattice Parallel) [8] system from the University of 
California, San Diego, and the Active Data Repository [9] from the University of 
Maryland, College Park, have succeeded in providing flexible data access for 
running applications. 

To realize the benefits of these systems, HPC codes and tools must use custom 
application programmers interfaces (APIs) to access data. For example, an 
application would not use the HDF5 API to access HDF-EOS data; rather, it 
would utilize the HDF-EOS API. This forces the application to be aware of, or 
adopt, the underlying data model. Full support for more than one of these 
systems in an HPC simulation is rare at best. Legacy codes or codes with limited 
development manpower may find it difficult to implement new data access 
concepts not designed into the original code. In addition, current systems with a 
clearly defined data model tend to store that information (metadata attributes) 
via the same mechanism used to implement the data format. This is not always 
optimal and makes it difficult to extend the data model or embed additional 
information outside of the formal model. 

Simply stated, the problem is that current systems either do not provide a 
sufficient data model or make it difficult to separate from the data format. A 
parallel HPC code, for example, should not be constrained by the data model 
required by a generalized visualization system; the code should be able to 
efficiently update values and continue computation. This is the focus of the 
extensible Data Model and Format (XDMF) solution. By separating the data 
model from format, the necessary order can be associated with the raw values to 
give them meaning while not constiaining the HPC code. The code only needs 
to be concerned with producing the proper format, leaving the complexity of the 
data model to other tools. In addition, the data model is extensible, so particular 
features not part of the original design can be added as needed. 

2.   Origins in Runtime Visualization 

At the U.S. Army Research Laboratory (ARL), we have developed a system 
called the Distributed Interactive Computing Environment (DICE) and are using 



it in a production environment with structural mechanics, fluid dynamics, and 
computational chemistry HPC codes. DICE provides flexible yet efficient 
mega-components for graphical user interface, data organization, data exchange, 
and scientific visualization. Originally designed to provide distributed runtime 
visualization capability to several computational fluid dynamics codes, DICE has 
become a flexible way to provide distributed capabilities to a variety of HPC 
codes in different computational technology areas. 

XDMF is the successor to the DICE data model. XDMF categorizes data in two 
logically separate flavors—heavy data and light data. Heavy data are potentially 
enormous data structures that describe data values. Light data conveys data 
meaning and generally contains information describing the heavy data. Light 
data tends to be small and portable, while access to the heavy data should be 
minimized for performance reasons. XDMF keeps these two types of data 
logically and (when advantageous) physically separate. This provides an 
enormous amount of functionality and flexibility to distributed software 
components. 

Instead of imposing a new paradigm on HPC codes, XDMF uses the existing 
concept of file input/output (I/O) for coordination. Since virtually every major 
HPC code has input and output sections, it is straightforward to add additional 
calls that mimic standard file I/O to transfer calculated values and control 
information to the XDMF system. However, instead of resulting in secondary 
storage I/O, these calls result in distributed interprocess communication. 

Network distributed global memory (NDGM) is a facility like distributed shared 
memory (DSM) that provides efficient access to a virtual, contiguous buffer via a 
client/server architecture. NDGM servers manage a portion of a buffer that 
physically resides in system shared memory, a disk file, or in its local address 
space. Clients access this buffer via puts(), gets(), and vector operations by 
specifying a virtual start address of the desired data. Locating sections of 
requested buffers and the actual transfer is handled by the NDGM client system. 
In addition, NDGM provides semaphores and barriers to coordinate the activity 
of parallel/distributed applications. 

While NDGM is not a true DSM system, it provides several advantages when 
designing an efficient data exchange mechanism. NDGM does not automatically 
map and unmap pages of memory from an application. Rather, the application 
itself is responsible for transferring data to NDGM via a read/write interface. 

While this might appear to be a major inconvenience, it greatly reduces the 
amount of corrununication. In addition, NDGM takes full advantage of 
operating system shared memory facilities when a server and client reside on the 
same machine. This allows remote clients to maintain full access to the data 
buffer while local clients incur minimal overhead. Support for the Generic 
Security Services API (GSS-API) [10] provides the necessary security features 



that are typically required in an HPC environment. NDGM by itself was used to 
create an efficient parallel version of an existing computational fluid dynamics 
(CFD) code without significant restructuring of the original code [11]. 

The original DICE data model was targeted at CFD codes that used large 
multiblock structured grids, so it was possible to implement simple, existing file 
formats directly in the NDGM buffer with minimal effort. However, the 
addition of codes from other disciplines made the need for a more 
comprehensive data organization obvious. The HDF Version 4 from the 
National Center for Supercomputing Applications (NCSA) was chosen to 
implement a self-describing organization over NDGM that provided sufficient 
facuities for accessing subsections of data. The low level HDF I/O routines were 
modified to provide transparent access to NDGM via the HDF API. HDF 
datasets could now exist on disk, in NDGM, or both. This proved convenient 
since codes could use the NDGM facility for interprocess communication and/or 
write to secondary storage during batch execution by simply modifying the 
target HDF filename. 

Upon attempting to integrate the system with more production codes, limitations 
of the current system became apparent: 

• HDF4 used a fixed 32-bit offset mechanism resulting in a 2 GB limit. 

• There was little in the way of data description above the rank and 
dimension of arrays. For example, other than name, there was no way of 
telling XYZ position data from calculated scalars. 

• Other than NDGM access on pre-initialized HDF files, there was no parallel 
I/O facility. 

• Even tools that required information about possibly invariant quantities, 
like rank and dimension, needed to access the potentially remote binary 
data in HDF. This required development in system programming 
languages like C and C++ when scripting languages like Tel and Perl were 
more appropriate. 

Several of these limitations could be easily resolved by migrating to the new 
HDF5 format being developed primarily for NASA's HDF-EOS project and the 
DOE ASCI Scientific Data Management (SDM) comprehensive data model and 
format effort. However, by revisiting some of the basic concepts of the system, 
we have significantly improved flexibility while mamtaining efficiency. 



3.   XDMF: The Next Step 

We recently implemented a data model and format, which can best be described 
as a distributed data hub, called XDMF. It is currently being integrated into 
several major HPC codes. The first major feature of XDMF is that the light data 
(data about the data and small amounts of values) is logically and potentially 
physically separate from the heavy data (large arrays). The second major feature 
is the support of NDGM as a virtual file driver under NCSA's Hierarchical Data 
Format Version 5 (HDF5). 

XDMF provides a targeted data model and format as well as a facility for sharing 
the data in a distributed environment during runtime. Through the use of 
NDGM, codes and tools can synchronize their activities at a coarse grain level to 
provide a complex end-user application consisting of individually simple 
components. Access to XDMF is provided via system programming languages 
like C, C++, and FORTRAN, and scripting languages like Tcl/Tk, Python, Perl, 
and Java. 

The primary advantage of XDMF is interoperability. Tools can be quickly 
designed that perform a particular task very well. If they use XDMF, these tools 
can then be reassembled in a variety of configurations to accomplish different 
goals. New HPC codes or visualization tools need only provide XDMF access to 
use any of the other tools. XDMF is both a data model and format; information 
about data values and how they are to be used are both made available. 

It is important to note that XDMF is intended to augment, not replace traditional 
parallel computing facilities like MPI, PVM, and OpenMP. In practice, existing 
components that use MPI are outfitted with a small amount of additional code to 
update XDMF. The code's efficiency is maintained via traditional, well-accepted 
means, while the overall distributed application is serviced by XDMF. 

Using XDMF and other components, a total end user application system can be 
assembled. This system provides access to preprocessing, code setup, runtime 
support, and postprocessing. 

As shown in Figure 1, HDF5 is used to provide the NDGM buffer with structure. 
HDF has been enhanced to support data in NDGM via the virtual file driver 
interface. No HDF code needs to be modified to support this functionality; the 
NDGM driver can simply be used with the current version of HDF5. With the 
addition of this driver, HDF datasets can reside on disk, in NDGM, or in both. 
This is particularly useful when data has both a static and dynamic component. 
For example, a static grid may reside on disk while the updating solution resides 
in NDGM. HDF provides a consistent interface for structured and unstructured 
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Figure 1. Access to XDMF. 

data as well as a grouping structure. It allows the storage of character, integer, 
and floating point values in a portable fashion by providing conversion to 
various host-dependent formats. In addition, since the layout of the data is 
tightly related to access efficiency, HDF5 provides multidimensional data access 
facilities as part of the interface. 

XDMF supports a variety of character, integer, and floating point data types. 
These individual data types are then organized into XDMF Arrays. Arrays are 
self-allocating, multidimensional data structures that have methods to set and 
get the number of elements, safely access individual element values, and directly 
manipulate the underlying data pointer for maximum efficiency. Several 
arithmetic operators have been overloaded, and an additional expression facility 
has been supplied to allow operations on entire arrays. A subregion of the array 
may be described by Hyperslab or Index. A Hyperslab specifies a start, stride, 
and count in each dimension, while an Index describes parametric indexes into a 
dataset. Commonly, Hyperslabs are used to subsection structured datasets while 
Indexes are used to subsection unstructured datasets. 

XDMF arrays are stored externally in HDF5 files. HDF provides a virtual file 
driver layer to allow HDF5 files to physically reside in things other than 
standard disk files. XDMF provides an NDGM driver in addition to the available 
Global Access to Secondary Storage (GASS: Globus System) and CORE 
(In-Memory) drivers provided with HDF5. HDF5 also provides a compression 



facility so that data can be compressed and decompressed as it migrates to/from 
physical storage. XDMF arrays inside an HDF5 file must be fully qualified for 
access. This is done by providing the domain, file, and pathname of the dataset. 
This is passed as a colon separated string (i.e., NDGM:Myfile.h5:/ 
Geometry/XYZdata). Accepted domains are FILE, CORE, GASS, and NDGM. 

To effectively describe the data in a flexible manner, some type of data model is 
needed. Since it is anticipated that any model will need to be augmented by the 
application in order to include all of the necessary information, flexibility and 
extensibility are key elements to the data model. The intent of the data model 
component is to provide a way to easily describe data content as opposed to data 
value. 

In concept this is quite similar to a Web page where the content of the 
information is separate from the display of the information (i.e., color is 
independent of a word's meaning). To assist in the free exchange of data on the 
Internet, the World Wide Web Consortium (W3C) [12], an organization whose 
members include AOL, IBM, Microsoft, Oracle, Sun, and other major 
corporations, proposed a standard known as extensible Markup Language 
(XML). XML is pervasive on the Web and is supported by a vast amount of 
tools, both free and commercial. 

While HDF provides an attribute facility capable of storing light data such as 
units and dimension names, we feel a better choice is to take advantage of the 
recent emergence of XML. Although primarily targeted at Web-based 
applications, XML provides a standard way to store and structure application 
specific data. There is already an impressive availability of tools for parsing 
XML and converting it to internal data structures. The base data model 
including information like grid topology, scalar names, and physical data 
location is stored using XML. By utilizing the functionality of XML and logically 
separating the light data from the HPC heavy data, a myriad of tools can be built 
with high-level scripting languages and web tools that allow intelligent queries 
of enormous datasets without causing massive amounts of I/O activity. In 
addition, this makes it easy for separate components to view the same data 
values differently. For example, one component's structured grid may be 
viewed by another component as a collection of hexahedra. We believe that the 
ability to physically separate the light data from the heavy data provides an 
enormous benefit. 

The data model in XDMF is stored in XML. This provides the knowledge of what 
is represented by the Heavy data. In this model, HPC data is viewed as a 
hierarchy of domains. A domain may contain one or more subdomains, but 
must contain at least one grid. A grid is the basic representation of both the 
geometric and computed/measured values. A grid is considered to be a group 
of elements with homogeneous topology and their associated values. If there is 
more than one type of topology, they are represented in separate grids.   In 



addition to the topology of the grid, geometry, specifying the X, Y, and Z 
positions of the grid is required. Finally, a grid may have one or more attributes. 
Attributes are used to store any other value associated with the grid and may be 
referenced to the grid or to individual cells that comprise the grid. 

The XML may be passed as an argument, stored in an external file, or 
communicated via a socket mechanism. For customization purposes, tools can 
also augment the standard content with XML processing instructions. This is 
useful for attaching peer-level information to the standard XML content without 
modifying the base specification. 

The concept of separating the light data from the heavy data, as shown in 
Figure 2, is critical to the performance of this data model and format. HPC codes 
can read and write data in large contiguous chunks that are natural to their 
internal data storage to achieve optimal I/O performance. If codes were required 
to significantly rearrange data prior to I/O operations, data locality, and thus 
performance, could be adversely affected, particularly on codes that attempt to 
make maximum use of memory cache. The complexity of the dataset is 
described in the light data portion which is small and transportable. For 
example, the light data might specify a topology of one million tetrahedral, while 
the heavy data would contain the geometric XYZ values of the mesh and 
pressure values at the cell centers stored in large, contiguous arrays. This key 
feature will allow reusable tools to be built that do not put onerous requirements 
on HPC codes. 

Complexity of Model Defined in Light Data 
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Figure 2. Separating light and heavy data. 



3.1 XDMF: Programming Language Access 

In addition to accessing data values via the HDF interface, XDMF contains an 
object-oriented C++ convenience interface to the XML light data and HDF5 
heavy data. This convenience interface layer provides access to a subset of the 
HDF calls using reasonable default values for many of the parameters. It is also 
able to encapsulate and synchronize data, in memory and external (HDF) 
representations, to assist in the development of a more interactive set of data 
analysis tools. Components that benefit from an object-oriented architecture can 
access data via this layer, but its use is not required. 

The computationally intensive components of a large system are generally 
developed using system-programming languages like C, C++, or FORTRAN. 
Once these computationally intensive components have been developed, 
however, they may be "glued" together in a number of ways to provide the 
overall functionality required. Using a system-programming language for this 
task is tedious, time-consuming, and inflexible. 

Scripting languages are specifically designed for this purpose. They tend to be 
weakly typed, so that the output of one component can easily be used as the 
input to another with little concern for the type of the data. While one pays in 
runtime efficiency for this flexibility, scripting languages are intended to call 
large chunks of functionality and not be used for fine grain control. By using the 
Simplified Wrapper and Interface Generator (SWIG), the XDMF functionality is 
made available to languages like Tel, Python, Perl, and Java. We have used this 
interface to develop a simple visualization system based on the visualization 
toolkit (vtk). In addition, we have developed a data reader for the commercial 
visualization package EnSight. The combination of support for vtk and EnSight 
services the vast majority of user visualization needs. 

3.2 XDMF: Component Coordination 

Providing a common distributed data model and format alone is insufficient for 
building distributed applications. Individual components must be able to easily 
coordinate their activity in order to avoid polling and race conditions. Without 
this facility, we have little more than a network file system. 

NDGM provides barriers and semaphores for this purpose. Semaphores are 
locks, obtained by a client, explicitly released by the client or automatically 
released when the client exits. Barriers are used to coordinate the actions of a 
group of clients. A barrier is first initialized to a given value. Then, as clients 
check into the barrier, the value is decremented. The client's activity is 
suspended until the value reaches zero. NDGM also provides a barrier audit 
facility where a client can check into a barrier without effecting its value. This is 
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useful for transient components, like visualization tools, to update their 
information in a read-only manner. 

These coordination facilities are made available to the upper layers of XDMF. 
When a parallel HPC code begins to update values, each computational node can 
optionally wait in a barrier while all other nodes complete their updates. Also, 
the update can be suspended until a semaphore has been released by a 
controlling component (typically a runtime visualization monitor). 

4.   Functionality vs. Performance 

Naturally, the flexibility and functionality of the system sacrifices some 
performance when compared to a hard-wired solution. A balance between 
functionality and performance must be reached that allows for reusable tools 
which perform their function with acceptable efficiency. In addition, to be truly 
useful, existing HPC programs must be able to take advantage of the system 
without overly burdensome modification. To gauge the actual runtime costs in 
runtime of this flexible system, two different codes were outfitted for use. First 
Paradyn, an MPI-based finite element code, was tested in a distributed memory 
environment. Next CTH, an MPI-based finite volume code was run in a shared 
memory environment. Due to the different nature of the data layout in these 
codes, they are good representatives of the ends of our performance spectrum. 

ParaDyn, from Lawrence Livermore National Laboratory, Livermore, CA, is a 
parallel version of the widely used finite-element-based structural dynamics 
program Dyna3D. ParaDyn, like many currently used HPC codes is written 
primarily in FORTRAN and uses MPI to achieve parallelism. We felt that adding 
runtime visualization capability to ParaDyn would demonstrate the steps 
required to integrate existing components and also result in a useful distributed 
application at ARL. 

ParaDyn, like many HPC simulation codes, follows this basic execution: 

• Read in computational grid and input parameters from the file system. 

• Initialize internal variables. 

• Iterate over the core physics routines of the code until final solution is 
reached, periodically writing intermediate solutions to the file system. 

• Write final solution, cleanup, and exit. 

The additional XDMF calls map well into this execution flow. Since the code is 
mainly FORTRAN and XDMF access is accomplished via C++, FORTRAN 
wrapper functions are needed to encapsulate the required functionality. 

11 



For example, we write a new FORTRAN subroutine PARAINIT(), called when 
ParaDyn initializes its internal variables, to initialize the necessary XDMF C++ 
objects and store their addresses in static variables. When the nodes need to 
update XDMF, they have access to the appropriate C++ objects. 

The internal structure of ParaDyn is complex enough to place it beyond the scope 
of our discussion. Suffice it to say that internal variables are accessed through an 
internal database API. For simplicity, let us assume that there exists such 
FORTRAN subroutines as PDGETXYZ(), PDGETNODEVAR(), and 
PDGETCELLVARO to return XYZ location and scalar values. We add a 
subroutine call to the main ParaDyn loop to call a new PARACHECK() 
subroutine every iteration. This is the where the majority of the XDMF 
functionality is accessed. 

PARACHECK() checks for new requests and for previous requests that are due. 
For example, a previous request might have arranged for data to be updated 
every 5E-04 s of computational time or every 10 iterations. All requests are made 
via XML and processed via the internal XML parser supplied with the 
convenience layer. Data values are retrieved via the appropriate ParaDyn 
database API routines and written via an HDF5 object also supplied in the 
convenience layer. The HDF5 object handles any remote access via NDGM 
internally and automatically handles errors like the specified NDGM server 
becoming inaccessible, which is a common occurrence. For example, it is 
sometimes desirable for the user to temporarily start an NDGM server, request 
an update, and then remove the NDGM server when convinced the code is 
behaving correctly. Since a single run may take many wall clock hours, these 
checks may be initiated from different locations; NDGM may need to move. 
Pseudo code for PARACHECK() follows : 

PARACHECK (integer Iteration, real Simulation Time ) 

Check for new requests 

If Update is Required { 

Parse XML Request 

For each node in the request { 

Switch on Request { 

Case XYZ : data = PDGETXYZ() 

Case Node : data = PDGETNODEVAR() 

Case Cell: data = PDGETCELLVAR() 

Default: Log Request Error 

12 



Map local subdomain of this variable to global space 

Write data to HDF5 in global space 

} 

If this is a scalar run or this is MPI node 0 { 

Signal completion of update via NDGM barrier 

} 

} 

The XML to describe the data being written by ParaDyn gives the raw data 
meaning. For example, Paradyn writes arrays of nodal position and 
connectivity, the following section of XML describes how those arrays define a 
hexahedral mesh. 

<Grid Name="Solid Elements'^ 

<Topology 

Type-'Hexahedra" 

NumElements="110520"> 

</Topology> 

<Geometry> 

<Vertices> 

<Index Name-'Connections" 

DataType="Int" 

Location="HDF" 

Type="List" 

BaseOffset="l"> 

NDGM:Blocks.h5:/Connections/Solid 

</Index> 

<Points 

DataType="Float" 

Precision="4" 

Type="XYZ" 

Location="HDF"> 

NDGM:Blocks.h5:/node/Values/Position 
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</Points> 

</Vertices> 

</Geometry > 

</Grid> 

As a benchmark, a ParaDyn simulation (Figure 3) was run of a concrete block 
wall being loaded by a blast. The visualization shows the initial loading of the 
wall represented by the colors on a mesh at the original concrete block locations. 
At that point in the simulation, the initial loading, gravity, and contact with other 
blocks effect the block's displacement. The lowest row of concrete block is fixed 
to the ground and not allowed to move. The simulation is small enough (about 
110,000 hexahedral elements) to complete in a reasonable amount of time for 
benchmarking purposes. In fact, the relatively small amount of data being sent 
to the NDGM buffer and the noncontiguous nature of the unstructured mesh 
magnifies communication latency effects. In addition, in order to get a worst- 
case idea of the overhead involved, we ran the problem on the IBM NH-2 
(375-MHz Power3; the jobs were submitted in a manner to distribute the work 
across different SMP nodes ), with the NDGM buffer on one node. In this 
scenario, all of the MPI nodes must funnel their runtime data to one designated 
collection node that holds the HDF5 data. 

Figure 3. ParaDyn simulation. 

The NDGM implementation uses TCP/IP sockets as a communication 
mechanism. To get an idea of what to expect, we ran the UNIX ttcp (Test TCP) 
program, with various buffer sizes, between nodes on the IBM. With minor 
variations, we regularly measured an average performance of about 68 MB/s 
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between 2 nodes for buffers over 25 KB. Smaller buffers significantly reduced 
performance. Buffers of 2 KB only see 9 MB/s, while buffers of 200 bytes can see 
less than 1 MB/s. A test of the low-level NDGM calls revealed an average of 
about 61 MB/s over transfer sizes above 25 KB between 2 nodes. This test writes 
contiguous sections of the NDGM buffer without calling any HDF5 routines. 
This rate seems to stay constant with small numbers of nodes (i.e., with two 
client NDGM nodes accessing a third server node, each client sees about 
30 MB/s). 

A similar test to write then read back the buffer did not perform nearly as well. 
Each read requires the client to issue a request to the server and then collect 
responses. This test consistently yielded transfer rates between 18 and 20 MB/s 
at best between two nodes. Smaller buffers yielded lower rates. 

The problem time of 3E-02 s resulted in 2107 iterations in ParaDyn and an 
average timestep of 1.4E-05 s. Via the input file, we specified an update 
frequency of 5E-04 s, which resulted in an update every 35 iterations. Each 
update modified about 23 MB of HDF5 data. Including the update at iteration 0, 
ParaDyn transferred about 1.4 GB of data to HDF5 over the entire runtime of the 
problem. This varies slightly for different numbers of nodes. 

All of these timings were run on nondedicated machines and networks. It is 
important to note that we are in no way attempting to study the performance or 
scalability of ParaDyn itself, or the platforms on which it ran. We wish only to 
demonstrate how to estimate the performance costs one can expect when 
implementing this new functionality. For each set of timings, effective 
throughput is calculated (Table 1). This is simply the total data written (1.4 GB) 
divided by the additional runtime required for the updates. 

Table 1. Total runtime on IBM-NH2. 

Number of 
Nodes 

Total Time 
No Updates 

(s) 

Total Time 
With Updates 

(s) 

Effective 
Throughput 

(MB/s) 

2 921 1,074 9.15 
4 462 576 12.28 
6 308 414 13.21 
8 239 373 10.45 

While the performance was acceptable for runtime visualization purposes, we 
were a bit disappointed with the effective throughput. Adding some counters to 
the NDGM server revealed that it serviced 55,627 requests from an 8-node 
ParaDyn run. And while most of those requests were data writes, only about 
20% of the writes were over 10 KB. This is primarily due to the noncontiguous 
nature of unstructured data, but the overhead of implementing a file structure 
via HDF5 adds additional requests for file control information. 
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To give an idea of how we perform in a heterogeneous distributed environment, 
we ran the same problem on an SGI Origin2000 (300-MHz R12000 Processors) 
(Table 2) with the NDGM buffer on a Sun E10000 (400-MHz Ultrasparc II) over 
the Gigabit Ethernet interface. Running ttcp with 100 KB buffers shows 
-26 MB/s for this route. The low-level NDGM test showed -23 MB/s effective 
throughput. 

Table 2. Total runtime between SGI Origin200 and Sun E10000. 

Number of 
Nodes 

Total Time 
No Updates 

(s) 

Total Time 
With Updates 

(s) 

Effective 
Throughput 

(MB/s) 

2 1,653 1,761 12.96 

4 766 871 13.33 

6 492 593 13.86 

8 399 495 14.58 

Using the Gigabit Ethernet connection, our effective throughput is about 
13 MB/s. Tests over other interfaces yield similar numbers. This seems to 
indicate that local data access and communications latency are the main 
performance factors as opposed to data bandwidth. We will continue to 
investigate the lower levels of the system in order to better understand all of the 
pertinent issues in order to increase the effective throughput. 

The same overall strategy has been used to outfit another code, CTH, for use 
with XDMF (Figure 4). CTH is a heavily used, parallel, finite-volume structural 
mechanics HPC code. It too has an internal database API to access variables. 
CTH, however, computes values on structured grids, so the data writes to the 
HDF5 file tend to be large contiguous blocks. This time, to see how this system 
performs under optimal conditions, we put the NDGM buffer on the same 
machine as the code. This results in the HDF5 access being kernel shared 
memory access. A simulation of a kinetic energy projectile impacting a moving 
armor plate was used for this test. A problem with a grid of 64 x 256 x 128 
(2.097E6) cells was run on the SGI Origin2000 for 521 iterations (4E-06s 
simulation time) (Table 3). This time we requested a data update every 
10 iterations. Each data update is about 120 MB, so the total for the entire 
runtime is 6.36 GB. 

Not surprisingly, the effective throughput of the structured grid code dumping 
data to shared memory is significantly better than the unstructured grid code 
dumping data to distributed memory or across the network. Large, contiguous 
data access results in less internal overhead and fewer messages or shared 
memory accesses.  Since each processor updates the HDF5 data independently, 
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A 

Figure 4. CTH simulation. 

Table 3. Total runtime on SGI Origin2000. 

Number of 
Nodes 

Total Time 
No Updates 

(s) 

Total Time 
With Updates 

(s) 

Effective 
Throughput 

(MB/s) 

8 6,413 6,525 56.8 
16 4347 4,395 133 

32 2,327 2,356 219 

the 32-processor runs, with an effective throughput of over 200 MB/s, probably 
benefited by some of the HDF5 accesses overlapping computation of other 
processors. The simple lesson is that data layout is extremely important to 
performance. 

With both ParaDyn and CTH, most of the interface code deals with accessing the 
internal database APIs. To provide a more straightforward example, we provide 
a complete code on our Website (www.arl.hpc.mil/ice) that has preprocessing, 
computation, and file I/O confined to a single FORTRAN source file. The code 
needed to interface this code to XDMF is then added in the previously mentioned 
fashion. This interface is about 150 lines of C++ code. Much of this interface is 
reusable for other applications; the main difference is the access of the HPC 
code's internal variables. This may result in a new convenience object to 
encapsulate the functionality, thus reducing many interfaces to significantly less 
code. 

In all cases, once the data is written to the HDF5 buffer it is ready to be 
visualized. Utilizing a drag and drop graphical user interface, we provide access 
to common visualization techniques like isosurfaces and cutting planes through 
vtk networks. The light data is used to initialize these networks before any 
heavy data is read from the HDF5 buffer. This flexibility allows the user to use 
the same visualization tools across a wide variety of HPC codes.  For the more 
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heavily used codes like ParaDyn and CTH, a Tcl/Tk interface is added to the 
environment for setting up code input thus providing an entire common 
runtime environment. 

5.   Conclusion 

The extensible Data Model and Format (XDMF) is a new approach to distributed 
computing. By mimicking the process of standard file I/O, XDMF adapts to the 
existing structure of many HPC codes. Consisting entirely of user-level code, 
XDMF requires no site-wide deployment of privileged code or modification of 
current accounting or security policy. On this foundation, we have also provided 
the graphical user interface and visualization support necessary to develop an 
entire distributed environment for HPC codes. 
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