
ARMY RESEARCH LABORATORY

The extensible Data Model and
Format: A High Performance

Data Hub for Connecting Parallel
Codes and Tools

by Jerry A, Clarke and Raju Namburu

ARL-TR-2552 July 2001

Approved for public release; distribution is unlimited.

20010813 059

The findings in this report are not to be construed as an official
Department of the Army position unless so designated by other
authorized documents.

Citation of manufacturer's or trade names does not constitute an
official endorsement or approval of the use thereof.

Destroy this report when it is no longer needed. Do not return it
to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5067

ARL-TR-2552 July 2001

The extensible Data Model and
Format: A High Performance
Data Hub for Connecting Parallel
Codes and Tools

Jerry A. Clarke and Raju Namburu
Computational and Information Sciences Directorate, ARL

Approved for public release; distribution is unlimited.

Abstract

The extensible Data Model and Format (XDMF) provides a performance
friendly system to integrate High Performance Computing (HPC) codes, analysis
tools, and user interfaces into a single end user application. Based on industry
standards, XDMF allows codes to exist in a modern computing environment
with minimal modification. Instead of imposing a new programming paradigm
on HPC codes, XDMF uses the existing concept of file I/O for distributed
coordination. XDMF incorporates Network Distributed Global Memory
(NDGM), Hierarchical Data Format version 5 (HDF5), and extensible Markup
Language (XML) to provide a flexible yet efficient data exchange mechanism.

u

Acknowledgments

The authors would like to acknowledge Ms. Jennifer Hare for her help
implementing the system, Dr. Photios Papados for his help with ParaDyn, Mr.
Stephen Schraml for his help with CTH, and the U.S. Army Research Laboratory
(ARL) Major Shared Resource Center (MSRC) for stable access to a variety of
high performance computing (HPC) platforms.

ui

INTENTIONALLY LEFT BLANK.

IV

Contents

Acknowledgments in

List of Figures vii

List of Tables ix

1. Introduction 1

2. Origins in Runtime Visualization 3

3. XDMF: The Next Step 6

3.1 XDMF : Programming Language Access 10

3.2 XDMF: Component Coordination 10

4. Functionality vs. Performance 11

5. Conclusion 18

6. References 19

Distribution List 21

Report Documentation Page 23

v

INTENTIONALLY LEFT BLANK.

VI

List of Figures

Figure 1. Access to XDMF 7

Figure 2. Separating light and heavy data 9

Figure 3. ParaDyn simulation 14

Figure 4. CTH simulation 17

vu

INTENTIONALLY LEFT BLANK.

vm

List of Tables

Table 1. Total runtime on IBM-NH2 15

Table 2. Total runtime between SGI Origin200 and Sun E10000 16

Table 3. Total runtime on SGI Origin2000 17

IX

INTENTIONALLY LEFT BLANK.

1. Introduction

Modern high performance computing (HPC) facilities are commonly a collection
of heterogeneous systems, each selected for its particular strength. Logically,
software systems can benefit from combining the strengths of various hardware
systems, under a single operating environment, to provide feature rich end-user
environments. In addition, software systems can also benefit from combining
components from different disciplines in a single system. For example,
providing interactive runtime scientific visualization to a running HPC code
allows the user to verify setup and monitor progress during execution.
Computation can proceed on the large scalable system, while the user visually
analyzes the data on a high-end graphics workstation.

Developing an environment where distributed and parallel software
components, written in various programming languages, can be easily
assembled into a complex system is a difficult task. In an HPC environment, the
task is even more difficult since the volume of data being processed is enormous.
It is beneficial to minimize data movement in order to improve overall system
performance.

Existing low level facilities like sockets, remote procedure call (RPC),
message-passing interface (MPI), and parallel virtual machine (PVM) alone are
insufficient to build complex, reusable distributed computing components and
applications. In addition to the extensive bookkeeping necessary to coordinate
messages, they lack the standard facilities to describe the meaning of the data in
addition to its values. For example, it is impossible to know whether an array of
floating point values describes the XYZ values of a computational grid or
computed vector values without some type of additional information.
Additional layers, provided by higher level facilities and environments, address
this issue.

Many higher level efforts attempt to provide a generalized solution for
distributed applications. Some of the most notable efforts involve
meta-computing, distributed object brokers, and software buses. Serious
meta-computing efforts attempt to address the complete distributed computing
issue in its entirety. Facilities for user authentication, job submission, resource
allocation, and task coordination are provided in an effort to provide seamless
access to a potentially enormous computational grid. These systems typically
provide some facility for individual components to communicate in addition to
standard low level methods. Meta-computing environments like Globus [1] and
Legion [2] may potentially provide the necessary framework, but properly
deploying these systems requires significant site-wide coordination of queuing
systems, system software, accounting, and security policies. These systems are

effectively distributed operating systems and will require more time to attain the
stability and acceptance necessary for site-wide deployment in production HPC
environments. In addition, they provide no inherent facility for describing data
meaning since they must support every type of HPC code.

Environments implemented entirely of user level code require no privileged
access and simplify both accounting and security issues. While limited in
functionality by definition, these environments provide sufficient capability for
the implementation of robust end-user systems constructed from verified and
efficient components in various disciplines. If each of these components were to
be developed from scratch, one might take advantage of object oriented
distributed systems based on the Common Object Request Broker Architecture
(CORBA) [3]. However, imposing this type of object oriented architecture on an
existing HPC code designed for scalable performance requires significant effort
and could adversely affect the code's performance.

Other approaches like the POLYLITH [4] software bus provide a standard
method for components to provide services to clients upon request. As its name
implies, the software bus approach is a flexible mechanism to interconnect
diverse software components in a procedural rather than an object-orientated
architecture. As opposed to a targeted solution, this approach is a generalized
one focusing on the communication and data transformation of independent
interconnected modules. POLYLITH, as well as other systems like Darwin [5],
define a Module Interconnection Language to describe the structure of the
distributed system. The Olan Configuration Language [6] found existing object
request brokers and software bus module interconnection languages insufficient
and extended the approaches to convey the dynamic aspects of applications.

While these systems have met with varying degrees of success, none can be
considered a standard for constructing distributed applications from existing
components. These systems attempt to define a "top-down" structure for
defining and implementing the operation of the entire software system. In fact,
this top-down approach is common to meta-computing and CORBA systems.
Perhaps a more expedient approach for sharing data is a "bottom-up" one of
defining a common data facility to which HPC codes could efficiently read and
write values in a standardized method similar to a restart or dump file. Such a
bottom-up solution to this issue would be immediately useful for transferring
data between applications like HPC simulation codes and visualization post-
processors. Eventually, if simultaneously available to running applications, such
a solution would lend itself to co-processing and computational steering systems.
Even this proves to be a nontrivial undertaking. Defining a method for accessing
enormous amounts of data and describing its content is difficult when one
considers the diverse data organization requirements and performance issues of
modern parallel codes. Several efforts attempt to define common data models,
formats, and sharing mechanisms for HPC applications.

While it is unlikely that a single data model and format could serve all HPC
applications adequately, clusters of similar applications can agree on data
exchange mechanisms. For example, the Hierarchical Data Format-Earth
Observing System (HDF-EOS) [7] effort has made significant progress toward
providing a common layer of data access for earth science data collection. The
Department of Energy (DOE) Accelerated Strategic Computing Initiative (ASCI)
program has significant effort invested to provide a common data model and
format, based on HDF5, for DOE simulation codes and tools. Other significant
efforts like the KeLP (Kernel Lattice Parallel) [8] system from the University of
California, San Diego, and the Active Data Repository [9] from the University of
Maryland, College Park, have succeeded in providing flexible data access for
running applications.

To realize the benefits of these systems, HPC codes and tools must use custom
application programmers interfaces (APIs) to access data. For example, an
application would not use the HDF5 API to access HDF-EOS data; rather, it
would utilize the HDF-EOS API. This forces the application to be aware of, or
adopt, the underlying data model. Full support for more than one of these
systems in an HPC simulation is rare at best. Legacy codes or codes with limited
development manpower may find it difficult to implement new data access
concepts not designed into the original code. In addition, current systems with a
clearly defined data model tend to store that information (metadata attributes)
via the same mechanism used to implement the data format. This is not always
optimal and makes it difficult to extend the data model or embed additional
information outside of the formal model.

Simply stated, the problem is that current systems either do not provide a
sufficient data model or make it difficult to separate from the data format. A
parallel HPC code, for example, should not be constrained by the data model
required by a generalized visualization system; the code should be able to
efficiently update values and continue computation. This is the focus of the
extensible Data Model and Format (XDMF) solution. By separating the data
model from format, the necessary order can be associated with the raw values to
give them meaning while not constiaining the HPC code. The code only needs
to be concerned with producing the proper format, leaving the complexity of the
data model to other tools. In addition, the data model is extensible, so particular
features not part of the original design can be added as needed.

2. Origins in Runtime Visualization

At the U.S. Army Research Laboratory (ARL), we have developed a system
called the Distributed Interactive Computing Environment (DICE) and are using

it in a production environment with structural mechanics, fluid dynamics, and
computational chemistry HPC codes. DICE provides flexible yet efficient
mega-components for graphical user interface, data organization, data exchange,
and scientific visualization. Originally designed to provide distributed runtime
visualization capability to several computational fluid dynamics codes, DICE has
become a flexible way to provide distributed capabilities to a variety of HPC
codes in different computational technology areas.

XDMF is the successor to the DICE data model. XDMF categorizes data in two
logically separate flavors—heavy data and light data. Heavy data are potentially
enormous data structures that describe data values. Light data conveys data
meaning and generally contains information describing the heavy data. Light
data tends to be small and portable, while access to the heavy data should be
minimized for performance reasons. XDMF keeps these two types of data
logically and (when advantageous) physically separate. This provides an
enormous amount of functionality and flexibility to distributed software
components.

Instead of imposing a new paradigm on HPC codes, XDMF uses the existing
concept of file input/output (I/O) for coordination. Since virtually every major
HPC code has input and output sections, it is straightforward to add additional
calls that mimic standard file I/O to transfer calculated values and control
information to the XDMF system. However, instead of resulting in secondary
storage I/O, these calls result in distributed interprocess communication.

Network distributed global memory (NDGM) is a facility like distributed shared
memory (DSM) that provides efficient access to a virtual, contiguous buffer via a
client/server architecture. NDGM servers manage a portion of a buffer that
physically resides in system shared memory, a disk file, or in its local address
space. Clients access this buffer via puts(), gets(), and vector operations by
specifying a virtual start address of the desired data. Locating sections of
requested buffers and the actual transfer is handled by the NDGM client system.
In addition, NDGM provides semaphores and barriers to coordinate the activity
of parallel/distributed applications.

While NDGM is not a true DSM system, it provides several advantages when
designing an efficient data exchange mechanism. NDGM does not automatically
map and unmap pages of memory from an application. Rather, the application
itself is responsible for transferring data to NDGM via a read/write interface.

While this might appear to be a major inconvenience, it greatly reduces the
amount of corrununication. In addition, NDGM takes full advantage of
operating system shared memory facilities when a server and client reside on the
same machine. This allows remote clients to maintain full access to the data
buffer while local clients incur minimal overhead. Support for the Generic
Security Services API (GSS-API) [10] provides the necessary security features

that are typically required in an HPC environment. NDGM by itself was used to
create an efficient parallel version of an existing computational fluid dynamics
(CFD) code without significant restructuring of the original code [11].

The original DICE data model was targeted at CFD codes that used large
multiblock structured grids, so it was possible to implement simple, existing file
formats directly in the NDGM buffer with minimal effort. However, the
addition of codes from other disciplines made the need for a more
comprehensive data organization obvious. The HDF Version 4 from the
National Center for Supercomputing Applications (NCSA) was chosen to
implement a self-describing organization over NDGM that provided sufficient
facuities for accessing subsections of data. The low level HDF I/O routines were
modified to provide transparent access to NDGM via the HDF API. HDF
datasets could now exist on disk, in NDGM, or both. This proved convenient
since codes could use the NDGM facility for interprocess communication and/or
write to secondary storage during batch execution by simply modifying the
target HDF filename.

Upon attempting to integrate the system with more production codes, limitations
of the current system became apparent:

• HDF4 used a fixed 32-bit offset mechanism resulting in a 2 GB limit.

• There was little in the way of data description above the rank and
dimension of arrays. For example, other than name, there was no way of
telling XYZ position data from calculated scalars.

• Other than NDGM access on pre-initialized HDF files, there was no parallel
I/O facility.

• Even tools that required information about possibly invariant quantities,
like rank and dimension, needed to access the potentially remote binary
data in HDF. This required development in system programming
languages like C and C++ when scripting languages like Tel and Perl were
more appropriate.

Several of these limitations could be easily resolved by migrating to the new
HDF5 format being developed primarily for NASA's HDF-EOS project and the
DOE ASCI Scientific Data Management (SDM) comprehensive data model and
format effort. However, by revisiting some of the basic concepts of the system,
we have significantly improved flexibility while mamtaining efficiency.

3. XDMF: The Next Step

We recently implemented a data model and format, which can best be described
as a distributed data hub, called XDMF. It is currently being integrated into
several major HPC codes. The first major feature of XDMF is that the light data
(data about the data and small amounts of values) is logically and potentially
physically separate from the heavy data (large arrays). The second major feature
is the support of NDGM as a virtual file driver under NCSA's Hierarchical Data
Format Version 5 (HDF5).

XDMF provides a targeted data model and format as well as a facility for sharing
the data in a distributed environment during runtime. Through the use of
NDGM, codes and tools can synchronize their activities at a coarse grain level to
provide a complex end-user application consisting of individually simple
components. Access to XDMF is provided via system programming languages
like C, C++, and FORTRAN, and scripting languages like Tcl/Tk, Python, Perl,
and Java.

The primary advantage of XDMF is interoperability. Tools can be quickly
designed that perform a particular task very well. If they use XDMF, these tools
can then be reassembled in a variety of configurations to accomplish different
goals. New HPC codes or visualization tools need only provide XDMF access to
use any of the other tools. XDMF is both a data model and format; information
about data values and how they are to be used are both made available.

It is important to note that XDMF is intended to augment, not replace traditional
parallel computing facilities like MPI, PVM, and OpenMP. In practice, existing
components that use MPI are outfitted with a small amount of additional code to
update XDMF. The code's efficiency is maintained via traditional, well-accepted
means, while the overall distributed application is serviced by XDMF.

Using XDMF and other components, a total end user application system can be
assembled. This system provides access to preprocessing, code setup, runtime
support, and postprocessing.

As shown in Figure 1, HDF5 is used to provide the NDGM buffer with structure.
HDF has been enhanced to support data in NDGM via the virtual file driver
interface. No HDF code needs to be modified to support this functionality; the
NDGM driver can simply be used with the current version of HDF5. With the
addition of this driver, HDF datasets can reside on disk, in NDGM, or in both.
This is particularly useful when data has both a static and dynamic component.
For example, a static grid may reside on disk while the updating solution resides
in NDGM. HDF provides a consistent interface for structured and unstructured

Full User Application

Scripting and Graphical User Interface Tools

Parallel/Distributed
HPC Codes

t t

Visualization
Generators and
Other Analysis

Tools

t
XDMF API

Sl'DätalFormat (HDFS)
'■W, 'L",J. 1» mi

>rfc"Dlstfibüted Global Memory (NDGM)

>. witli GSSAPI

Operating System

Distributed Resources

Figure 1. Access to XDMF.

data as well as a grouping structure. It allows the storage of character, integer,
and floating point values in a portable fashion by providing conversion to
various host-dependent formats. In addition, since the layout of the data is
tightly related to access efficiency, HDF5 provides multidimensional data access
facilities as part of the interface.

XDMF supports a variety of character, integer, and floating point data types.
These individual data types are then organized into XDMF Arrays. Arrays are
self-allocating, multidimensional data structures that have methods to set and
get the number of elements, safely access individual element values, and directly
manipulate the underlying data pointer for maximum efficiency. Several
arithmetic operators have been overloaded, and an additional expression facility
has been supplied to allow operations on entire arrays. A subregion of the array
may be described by Hyperslab or Index. A Hyperslab specifies a start, stride,
and count in each dimension, while an Index describes parametric indexes into a
dataset. Commonly, Hyperslabs are used to subsection structured datasets while
Indexes are used to subsection unstructured datasets.

XDMF arrays are stored externally in HDF5 files. HDF provides a virtual file
driver layer to allow HDF5 files to physically reside in things other than
standard disk files. XDMF provides an NDGM driver in addition to the available
Global Access to Secondary Storage (GASS: Globus System) and CORE
(In-Memory) drivers provided with HDF5. HDF5 also provides a compression

facility so that data can be compressed and decompressed as it migrates to/from
physical storage. XDMF arrays inside an HDF5 file must be fully qualified for
access. This is done by providing the domain, file, and pathname of the dataset.
This is passed as a colon separated string (i.e., NDGM:Myfile.h5:/
Geometry/XYZdata). Accepted domains are FILE, CORE, GASS, and NDGM.

To effectively describe the data in a flexible manner, some type of data model is
needed. Since it is anticipated that any model will need to be augmented by the
application in order to include all of the necessary information, flexibility and
extensibility are key elements to the data model. The intent of the data model
component is to provide a way to easily describe data content as opposed to data
value.

In concept this is quite similar to a Web page where the content of the
information is separate from the display of the information (i.e., color is
independent of a word's meaning). To assist in the free exchange of data on the
Internet, the World Wide Web Consortium (W3C) [12], an organization whose
members include AOL, IBM, Microsoft, Oracle, Sun, and other major
corporations, proposed a standard known as extensible Markup Language
(XML). XML is pervasive on the Web and is supported by a vast amount of
tools, both free and commercial.

While HDF provides an attribute facility capable of storing light data such as
units and dimension names, we feel a better choice is to take advantage of the
recent emergence of XML. Although primarily targeted at Web-based
applications, XML provides a standard way to store and structure application
specific data. There is already an impressive availability of tools for parsing
XML and converting it to internal data structures. The base data model
including information like grid topology, scalar names, and physical data
location is stored using XML. By utilizing the functionality of XML and logically
separating the light data from the HPC heavy data, a myriad of tools can be built
with high-level scripting languages and web tools that allow intelligent queries
of enormous datasets without causing massive amounts of I/O activity. In
addition, this makes it easy for separate components to view the same data
values differently. For example, one component's structured grid may be
viewed by another component as a collection of hexahedra. We believe that the
ability to physically separate the light data from the heavy data provides an
enormous benefit.

The data model in XDMF is stored in XML. This provides the knowledge of what
is represented by the Heavy data. In this model, HPC data is viewed as a
hierarchy of domains. A domain may contain one or more subdomains, but
must contain at least one grid. A grid is the basic representation of both the
geometric and computed/measured values. A grid is considered to be a group
of elements with homogeneous topology and their associated values. If there is
more than one type of topology, they are represented in separate grids. In

addition to the topology of the grid, geometry, specifying the X, Y, and Z
positions of the grid is required. Finally, a grid may have one or more attributes.
Attributes are used to store any other value associated with the grid and may be
referenced to the grid or to individual cells that comprise the grid.

The XML may be passed as an argument, stored in an external file, or
communicated via a socket mechanism. For customization purposes, tools can
also augment the standard content with XML processing instructions. This is
useful for attaching peer-level information to the standard XML content without
modifying the base specification.

The concept of separating the light data from the heavy data, as shown in
Figure 2, is critical to the performance of this data model and format. HPC codes
can read and write data in large contiguous chunks that are natural to their
internal data storage to achieve optimal I/O performance. If codes were required
to significantly rearrange data prior to I/O operations, data locality, and thus
performance, could be adversely affected, particularly on codes that attempt to
make maximum use of memory cache. The complexity of the dataset is
described in the light data portion which is small and transportable. For
example, the light data might specify a topology of one million tetrahedral, while
the heavy data would contain the geometric XYZ values of the mesh and
pressure values at the cell centers stored in large, contiguous arrays. This key
feature will allow reusable tools to be built that do not put onerous requirements
on HPC codes.

Complexity of Model Defined in Light Data

Domain

Domain

Grid
Grid

XML

Topology Geometry NDGM: Pressure.h5
lOOHexahedra XYZPoints.hS NDGM.Temperatiire.h5

r * " \ t " \

HPC
Code

. (^1 HDF5

File NDGM

HDF5

GASS

HPC Code I/O is Natural and Efficient

Figure 2. Separating light and heavy data.

3.1 XDMF: Programming Language Access

In addition to accessing data values via the HDF interface, XDMF contains an
object-oriented C++ convenience interface to the XML light data and HDF5
heavy data. This convenience interface layer provides access to a subset of the
HDF calls using reasonable default values for many of the parameters. It is also
able to encapsulate and synchronize data, in memory and external (HDF)
representations, to assist in the development of a more interactive set of data
analysis tools. Components that benefit from an object-oriented architecture can
access data via this layer, but its use is not required.

The computationally intensive components of a large system are generally
developed using system-programming languages like C, C++, or FORTRAN.
Once these computationally intensive components have been developed,
however, they may be "glued" together in a number of ways to provide the
overall functionality required. Using a system-programming language for this
task is tedious, time-consuming, and inflexible.

Scripting languages are specifically designed for this purpose. They tend to be
weakly typed, so that the output of one component can easily be used as the
input to another with little concern for the type of the data. While one pays in
runtime efficiency for this flexibility, scripting languages are intended to call
large chunks of functionality and not be used for fine grain control. By using the
Simplified Wrapper and Interface Generator (SWIG), the XDMF functionality is
made available to languages like Tel, Python, Perl, and Java. We have used this
interface to develop a simple visualization system based on the visualization
toolkit (vtk). In addition, we have developed a data reader for the commercial
visualization package EnSight. The combination of support for vtk and EnSight
services the vast majority of user visualization needs.

3.2 XDMF: Component Coordination

Providing a common distributed data model and format alone is insufficient for
building distributed applications. Individual components must be able to easily
coordinate their activity in order to avoid polling and race conditions. Without
this facility, we have little more than a network file system.

NDGM provides barriers and semaphores for this purpose. Semaphores are
locks, obtained by a client, explicitly released by the client or automatically
released when the client exits. Barriers are used to coordinate the actions of a
group of clients. A barrier is first initialized to a given value. Then, as clients
check into the barrier, the value is decremented. The client's activity is
suspended until the value reaches zero. NDGM also provides a barrier audit
facility where a client can check into a barrier without effecting its value. This is

10

useful for transient components, like visualization tools, to update their
information in a read-only manner.

These coordination facilities are made available to the upper layers of XDMF.
When a parallel HPC code begins to update values, each computational node can
optionally wait in a barrier while all other nodes complete their updates. Also,
the update can be suspended until a semaphore has been released by a
controlling component (typically a runtime visualization monitor).

4. Functionality vs. Performance

Naturally, the flexibility and functionality of the system sacrifices some
performance when compared to a hard-wired solution. A balance between
functionality and performance must be reached that allows for reusable tools
which perform their function with acceptable efficiency. In addition, to be truly
useful, existing HPC programs must be able to take advantage of the system
without overly burdensome modification. To gauge the actual runtime costs in
runtime of this flexible system, two different codes were outfitted for use. First
Paradyn, an MPI-based finite element code, was tested in a distributed memory
environment. Next CTH, an MPI-based finite volume code was run in a shared
memory environment. Due to the different nature of the data layout in these
codes, they are good representatives of the ends of our performance spectrum.

ParaDyn, from Lawrence Livermore National Laboratory, Livermore, CA, is a
parallel version of the widely used finite-element-based structural dynamics
program Dyna3D. ParaDyn, like many currently used HPC codes is written
primarily in FORTRAN and uses MPI to achieve parallelism. We felt that adding
runtime visualization capability to ParaDyn would demonstrate the steps
required to integrate existing components and also result in a useful distributed
application at ARL.

ParaDyn, like many HPC simulation codes, follows this basic execution:

• Read in computational grid and input parameters from the file system.

• Initialize internal variables.

• Iterate over the core physics routines of the code until final solution is
reached, periodically writing intermediate solutions to the file system.

• Write final solution, cleanup, and exit.

The additional XDMF calls map well into this execution flow. Since the code is
mainly FORTRAN and XDMF access is accomplished via C++, FORTRAN
wrapper functions are needed to encapsulate the required functionality.

11

For example, we write a new FORTRAN subroutine PARAINIT(), called when
ParaDyn initializes its internal variables, to initialize the necessary XDMF C++
objects and store their addresses in static variables. When the nodes need to
update XDMF, they have access to the appropriate C++ objects.

The internal structure of ParaDyn is complex enough to place it beyond the scope
of our discussion. Suffice it to say that internal variables are accessed through an
internal database API. For simplicity, let us assume that there exists such
FORTRAN subroutines as PDGETXYZ(), PDGETNODEVAR(), and
PDGETCELLVARO to return XYZ location and scalar values. We add a
subroutine call to the main ParaDyn loop to call a new PARACHECK()
subroutine every iteration. This is the where the majority of the XDMF
functionality is accessed.

PARACHECK() checks for new requests and for previous requests that are due.
For example, a previous request might have arranged for data to be updated
every 5E-04 s of computational time or every 10 iterations. All requests are made
via XML and processed via the internal XML parser supplied with the
convenience layer. Data values are retrieved via the appropriate ParaDyn
database API routines and written via an HDF5 object also supplied in the
convenience layer. The HDF5 object handles any remote access via NDGM
internally and automatically handles errors like the specified NDGM server
becoming inaccessible, which is a common occurrence. For example, it is
sometimes desirable for the user to temporarily start an NDGM server, request
an update, and then remove the NDGM server when convinced the code is
behaving correctly. Since a single run may take many wall clock hours, these
checks may be initiated from different locations; NDGM may need to move.
Pseudo code for PARACHECK() follows :

PARACHECK (integer Iteration, real Simulation Time)

Check for new requests

If Update is Required {

Parse XML Request

For each node in the request {

Switch on Request {

Case XYZ : data = PDGETXYZ()

Case Node : data = PDGETNODEVAR()

Case Cell: data = PDGETCELLVAR()

Default: Log Request Error

12

Map local subdomain of this variable to global space

Write data to HDF5 in global space

}

If this is a scalar run or this is MPI node 0 {

Signal completion of update via NDGM barrier

}

}

The XML to describe the data being written by ParaDyn gives the raw data
meaning. For example, Paradyn writes arrays of nodal position and
connectivity, the following section of XML describes how those arrays define a
hexahedral mesh.

<Grid Name="Solid Elements'^

<Topology

Type-'Hexahedra"

NumElements="110520">

</Topology>

<Geometry>

<Vertices>

<Index Name-'Connections"

DataType="Int"

Location="HDF"

Type="List"

BaseOffset="l">

NDGM:Blocks.h5:/Connections/Solid

</Index>

<Points

DataType="Float"

Precision="4"

Type="XYZ"

Location="HDF">

NDGM:Blocks.h5:/node/Values/Position

13

</Points>

</Vertices>

</Geometry >

</Grid>

As a benchmark, a ParaDyn simulation (Figure 3) was run of a concrete block
wall being loaded by a blast. The visualization shows the initial loading of the
wall represented by the colors on a mesh at the original concrete block locations.
At that point in the simulation, the initial loading, gravity, and contact with other
blocks effect the block's displacement. The lowest row of concrete block is fixed
to the ground and not allowed to move. The simulation is small enough (about
110,000 hexahedral elements) to complete in a reasonable amount of time for
benchmarking purposes. In fact, the relatively small amount of data being sent
to the NDGM buffer and the noncontiguous nature of the unstructured mesh
magnifies communication latency effects. In addition, in order to get a worst-
case idea of the overhead involved, we ran the problem on the IBM NH-2
(375-MHz Power3; the jobs were submitted in a manner to distribute the work
across different SMP nodes), with the NDGM buffer on one node. In this
scenario, all of the MPI nodes must funnel their runtime data to one designated
collection node that holds the HDF5 data.

Figure 3. ParaDyn simulation.

The NDGM implementation uses TCP/IP sockets as a communication
mechanism. To get an idea of what to expect, we ran the UNIX ttcp (Test TCP)
program, with various buffer sizes, between nodes on the IBM. With minor
variations, we regularly measured an average performance of about 68 MB/s

14

between 2 nodes for buffers over 25 KB. Smaller buffers significantly reduced
performance. Buffers of 2 KB only see 9 MB/s, while buffers of 200 bytes can see
less than 1 MB/s. A test of the low-level NDGM calls revealed an average of
about 61 MB/s over transfer sizes above 25 KB between 2 nodes. This test writes
contiguous sections of the NDGM buffer without calling any HDF5 routines.
This rate seems to stay constant with small numbers of nodes (i.e., with two
client NDGM nodes accessing a third server node, each client sees about
30 MB/s).

A similar test to write then read back the buffer did not perform nearly as well.
Each read requires the client to issue a request to the server and then collect
responses. This test consistently yielded transfer rates between 18 and 20 MB/s
at best between two nodes. Smaller buffers yielded lower rates.

The problem time of 3E-02 s resulted in 2107 iterations in ParaDyn and an
average timestep of 1.4E-05 s. Via the input file, we specified an update
frequency of 5E-04 s, which resulted in an update every 35 iterations. Each
update modified about 23 MB of HDF5 data. Including the update at iteration 0,
ParaDyn transferred about 1.4 GB of data to HDF5 over the entire runtime of the
problem. This varies slightly for different numbers of nodes.

All of these timings were run on nondedicated machines and networks. It is
important to note that we are in no way attempting to study the performance or
scalability of ParaDyn itself, or the platforms on which it ran. We wish only to
demonstrate how to estimate the performance costs one can expect when
implementing this new functionality. For each set of timings, effective
throughput is calculated (Table 1). This is simply the total data written (1.4 GB)
divided by the additional runtime required for the updates.

Table 1. Total runtime on IBM-NH2.

Number of
Nodes

Total Time
No Updates

(s)

Total Time
With Updates

(s)

Effective
Throughput

(MB/s)

2 921 1,074 9.15
4 462 576 12.28
6 308 414 13.21
8 239 373 10.45

While the performance was acceptable for runtime visualization purposes, we
were a bit disappointed with the effective throughput. Adding some counters to
the NDGM server revealed that it serviced 55,627 requests from an 8-node
ParaDyn run. And while most of those requests were data writes, only about
20% of the writes were over 10 KB. This is primarily due to the noncontiguous
nature of unstructured data, but the overhead of implementing a file structure
via HDF5 adds additional requests for file control information.

15

To give an idea of how we perform in a heterogeneous distributed environment,
we ran the same problem on an SGI Origin2000 (300-MHz R12000 Processors)
(Table 2) with the NDGM buffer on a Sun E10000 (400-MHz Ultrasparc II) over
the Gigabit Ethernet interface. Running ttcp with 100 KB buffers shows
-26 MB/s for this route. The low-level NDGM test showed -23 MB/s effective
throughput.

Table 2. Total runtime between SGI Origin200 and Sun E10000.

Number of
Nodes

Total Time
No Updates

(s)

Total Time
With Updates

(s)

Effective
Throughput

(MB/s)

2 1,653 1,761 12.96

4 766 871 13.33

6 492 593 13.86

8 399 495 14.58

Using the Gigabit Ethernet connection, our effective throughput is about
13 MB/s. Tests over other interfaces yield similar numbers. This seems to
indicate that local data access and communications latency are the main
performance factors as opposed to data bandwidth. We will continue to
investigate the lower levels of the system in order to better understand all of the
pertinent issues in order to increase the effective throughput.

The same overall strategy has been used to outfit another code, CTH, for use
with XDMF (Figure 4). CTH is a heavily used, parallel, finite-volume structural
mechanics HPC code. It too has an internal database API to access variables.
CTH, however, computes values on structured grids, so the data writes to the
HDF5 file tend to be large contiguous blocks. This time, to see how this system
performs under optimal conditions, we put the NDGM buffer on the same
machine as the code. This results in the HDF5 access being kernel shared
memory access. A simulation of a kinetic energy projectile impacting a moving
armor plate was used for this test. A problem with a grid of 64 x 256 x 128
(2.097E6) cells was run on the SGI Origin2000 for 521 iterations (4E-06s
simulation time) (Table 3). This time we requested a data update every
10 iterations. Each data update is about 120 MB, so the total for the entire
runtime is 6.36 GB.

Not surprisingly, the effective throughput of the structured grid code dumping
data to shared memory is significantly better than the unstructured grid code
dumping data to distributed memory or across the network. Large, contiguous
data access results in less internal overhead and fewer messages or shared
memory accesses. Since each processor updates the HDF5 data independently,

16

A

Figure 4. CTH simulation.

Table 3. Total runtime on SGI Origin2000.

Number of
Nodes

Total Time
No Updates

(s)

Total Time
With Updates

(s)

Effective
Throughput

(MB/s)

8 6,413 6,525 56.8
16 4347 4,395 133

32 2,327 2,356 219

the 32-processor runs, with an effective throughput of over 200 MB/s, probably
benefited by some of the HDF5 accesses overlapping computation of other
processors. The simple lesson is that data layout is extremely important to
performance.

With both ParaDyn and CTH, most of the interface code deals with accessing the
internal database APIs. To provide a more straightforward example, we provide
a complete code on our Website (www.arl.hpc.mil/ice) that has preprocessing,
computation, and file I/O confined to a single FORTRAN source file. The code
needed to interface this code to XDMF is then added in the previously mentioned
fashion. This interface is about 150 lines of C++ code. Much of this interface is
reusable for other applications; the main difference is the access of the HPC
code's internal variables. This may result in a new convenience object to
encapsulate the functionality, thus reducing many interfaces to significantly less
code.

In all cases, once the data is written to the HDF5 buffer it is ready to be
visualized. Utilizing a drag and drop graphical user interface, we provide access
to common visualization techniques like isosurfaces and cutting planes through
vtk networks. The light data is used to initialize these networks before any
heavy data is read from the HDF5 buffer. This flexibility allows the user to use
the same visualization tools across a wide variety of HPC codes. For the more

17

heavily used codes like ParaDyn and CTH, a Tcl/Tk interface is added to the
environment for setting up code input thus providing an entire common
runtime environment.

5. Conclusion

The extensible Data Model and Format (XDMF) is a new approach to distributed
computing. By mimicking the process of standard file I/O, XDMF adapts to the
existing structure of many HPC codes. Consisting entirely of user-level code,
XDMF requires no site-wide deployment of privileged code or modification of
current accounting or security policy. On this foundation, we have also provided
the graphical user interface and visualization support necessary to develop an
entire distributed environment for HPC codes.

18

6. References

1. Foster, I., and J. Antonio. "The Globus Project: A Status Report." Proceedings
of the Seventh Heterogeneous Computing Workshop, pp. 4-18, March 1998.

2. Grimshaw, A., A. Ferrari, F. Knabe, and M. Humphrey. "Wide Area
Computing: Resource Sharing on a Large Scale." Computer, vol. 32, issue 5,
pp. 29-37, May 1999.

3. Object Management Group. "The Common Object Request Broker:
Architecture and Specification." Number 91.12.1, December 1991.

4. Purtilo, J. M. "The POLYLITH Software Bus." ACM TOPLAS, vol. 16, no. 1,
pp. 151-174, January 1994.

5. Magee, J., N. Dulay, and J. Kramer. "A Constructive Development
Environment for Parallel and Distributed Programs." Proceedings of the
International Workshop on Configurable Distributed Systems, Pittsburgh,
PA, March 1994.

6. Bellissard L., F. Boyer, M. Riveill, and J. Vion-Dury. "System Services for
Distributed Application Configuration." Proceedings of the Fourth
International Conference on Configurable Distributed Systems, pp. 53-60, May
1998.

7. Folk, M., R. McGrath, and N. Yeager. "HDF: An Update and Future
Directions." Proceedings of the IEEE 1999 International Geoscience and Remote
Sensing Symposium, vol. 1, pp. 273-275, July 1999.

8. Baden, S. B., and S. J. Fink. "A Programming Methodology for Dual-Tier
Multicomputers." IEEE Transactions on Software Engineering, vol. 26, issue 3,
pp. 212-226, March 2000.

9. Chialin, C, T. Kurc, A. Sussman, and J. Saltz. "Optimizing Retrieval and
Processing of Multi-Dimensional Scientific Datasets." Proceedings of the
14th International Parallel and Distributed Symposium, pp. 405-410, May 2000.

10. Linn, J. "Generic Security Service Application Program Interface." RFC 1508,
September 1993.

11. Clarke, J. "Emulating Shared Memory to Simplify Distributed-Memory
Programming." IEEE Computational Science & Engineering, vol. 4, no. 1,
pp. 55-62, January-March 1997.

12. "Document Object Model (DOM) Level 1 Specification." World Wide Web
Consortium, http://www/w3.org/TR/REC-DOM-Level-l.

19

INTENTIONALLY LEFT BLANK.

20

NO. OF NO. OF
COPIES ORGANIZATION COPIES

2 DEFENSE TECHNICAL
INFORMATION CENTER
DTICOCA
8725 JOHN J KINGMAN RD
STE0944
FT BELVOIR VA 22060-6218

1

HQDA
DAMOFDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

OSD
OUSD(A&T)/ODDR&E(R)
DRRJTREW
3800 DEFENSE PENTAGON
WASHINGTON DC 20301-3800

ORGANIZATION

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI AI R
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI LL
2800 POWDER MILL RD
ADELPHI MD 20783-1197

DIRECTOR
US ARMY RESEARCH LAB
AMSRL CI 1ST
2800 POWDER MILL RD
ADELPHI MD 20783-1197

COMMANDING GENERAL
US ARMY MATERIEL CMD
AMCRDATF
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

ABERDEEN PROVING GROUND

2 DIRUSARL
AMSRL CILP(BLDG 305)

INST FOR ADVNCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
3925 W BRAKER LN STE 400
AUSTIN TX 78759-5316

DARPA
SPECIAL PROJECTS OFFICE
J CARLINI
3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

US MILITARY ACADEMY
MATH SCI CTR EXCELLENCE
MADN MATH
MAJ HUBER
THAYERHALL
WEST POINT NY 10996-1786

DIRECTOR
US ARMY RESEARCH LAB
AMSRL D
DR D SMITH
2800 POWDER MILL RD
ADELPHI MD 20783-1197

21

NO. OF
COPIES ORGANIZATION

ABERDEEN PROVING GROUND

8 DIR USARL
AMSRL CI

N RADHAKRISHNAN
AMSRL CI H

C NIETUBICZ
AMSRL CI HC

J CLARKE (5 CPS)
A MARK

22

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington. VA 22102-4302, and to the Office of Management and Budget, Paperwork Reduction Prolect(0704-0188l, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

July 2001

3. REPORT TYPE AND DATES COVERED

Final, September 2000-April2001
4. TITLE AND SUBTITLE

The extensible Data Model and Format:
Connecting Parallel Codes and Tools

A High Performance Data Hub for

6. AUTHOR(S)

Jerry A. Clarke and Raju Namburu

5. FUNDING NUMBERS

1U08AC

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRL-CI-HC
Aberdeen Proving Ground, MD 21005-5067

8. PERFORMING ORGANIZATION
REPORT NUMBER

ARL-TR-2552

9. SPONSORING/MONITORING AGENCY NAMES(S) AND ADDRESS(ES)

High Performance Computing Modernization Program (HPCMO)
1010 North Glebe Road, Suite 510
Arlington, VA 22201

«.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACTfMaximu/n 200 words)

The extensible Data Model and Format (XDMF) provides a performance friendly system to integrate high
performance computing (HPC) codes, analysis tools, and user interfaces into a single end user application. Based on
industry standards, XDMF allows codes to exist in a modern computing environment with nrinimal modification. Instead
of imposing a new programming paradigm on HPC codes, XDMF uses the existing concept of file input/output (I/O) for
distributed coordination. XDMF incorporates Network Distributed Global Memory (NDGM), Hierarchical Data Format
version 5 (HDF5), and extensible Markup Language (XML) to provide a flexible yet efficient data exchange
mechanism.

14. SUBJECT TERMS

data model and format, high performance computing

15. NUMBER OF PAGES

28
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500

23
Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

INTENTIONALLY LEFT BLANK.

24

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to
the items/questions below will aid us in our efforts.

1. ARL Report Number/Author ARL-TR-2552 (POC: Clarke) Date of Report July 2001

2. Date Report Received ——

3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be

used.) ——

4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.).

5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs

avoided, or efficiencies achieved, etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization,

technical content, format, etc.)_ _

Organization

CURRENT Name E-mail Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or

Incorrect address below.

Organization

OLD Name
ADDRESS

Street or P.O. Box No.

City, State, Zip Code

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

