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1 Introduction 
Hwang et al (1999a and 1999b) uses standard FFT procedures to estimate deep water 2-dimensional 
wavenumber spectra from lidar images. The characteristic wavelength analyzed is O(100m), homogeneity 
scale is O(lOifcm) and wave evolution scale is O(100fem). Knowledge of the local bathymetry allows, via the 
linear dispersion relation, is needed for retrieving frequency-directional spectrum. 

The classical Fourier transform approach (FT) fails in the nearshore region due to the strong spatial 
inhomogeneities of the wavefield, generated by lower order wave-bathymetry and quadratic wave-wave in- 
teraction. Shoaling waves evolve much faster than deep-water waves, over O(lfcm) scales (Elgar and Guza, 

1985). 

2 Progress 
Other approaches, such as wavelet transforms, have been ocasionally used in ocean wave data analysis. The 
method is relatively new and its physical interpretation has yet to be set on a solid basis. 

In this first period the research has been geared toward some very basic aim: assessing the potential of 
the wavelet transform approach, identifying the directions of research and the implementing the numerical 

tools necessary to pursue them. 
I have performed a extensive survey of the relevant literature, partly to educate myself on the subject, 

but the main concern was to identify ways to generalize the classical harmonic analysis approach to the 
nearshore. A summary of the ideas is presented in Subsection 2.1. The imformation is vast, the wavelet 
research is booming, with new papers and monographs coming out each day. Unfortunately, in the field 
of ocean surface waves, the method has been applied sporadically and mechanically, mainly as a drop-in 
replacement of the classical Fourier approach. I talk more on this in Section 2.2. There are however some 
very interesting achievements (not in the ocean waves field of research, though). 

A considerable amount of work was also done towards building the software basis needed for numerical 
simulations and analysis (Subsection 2.3). This involved identification available wavelet transform software, 
selection of the most suited package, familiarization with its architecture. The process of complement- 
ing/integrating it is ongoing, and will continue for a quite a while. 

Section 3 describes work in progress and further directions of research. 

2.1    Generalization of classical FT 
The deep-water analysis method may be regarded as a windowed FT approach (Mallat 1998), where the 
window width is large enough to assume practically infinite resolution in wave number in the Fourier space. In 
the case of a windowed FT, the Fourier functions eikx are replaced by eikxg{x-x0), where g a constant width 
window function of compact support translated by x0. Its resolution in the wavenumber space depends on the 
choice of the window. The corresponding Heisenberg boxes satisfy the uncertainty inequality akax < l/2( a 
is a measure of the resolution; classical FT corersponds to ak = 0 and ax = oo). 
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The restriction of a const; Vidth window makes the windowed FT a jard to use on signals that 
exhibit strong inhomogeneity acius's scales. Allowing the window to vary in sizt xoads to the Gabor transform; 
generalizing the family of basis functions (to satisfy some quite general "admissibility" conditions) leads to 
a continuous wavelet transform (CWT). These transforms conserve energy and admit the definition of an 

energy density. 
Unlike the classical FT, both the windowed FT and the CWT representations are highly redundant. The 

discrete wavelet transform (DWT), based on multi-resolution analysis eliminates the redundancy by extract- 
ing a complete orthogonal set, based on a multi-resolution analysis (MRA, Wojtaszczyk 1997). Assuming 
that a local Fourier spectrum may be defined, the the Fourier and wavelet spectra contain equivalent infor- 
mation and can be retrieved from each other. Moreover, for transient, short time series, the DWT spectral 
estimator seems to be more robust than the classical Fourier or CWT, the latter exhibiting scale mixing 
problems due to overcompleteness (Pando and Fang, 1998). 

The above observations seem to indicate that, by smoothly modifying the window width and the basis 
functions, it is possible to devise a unified approach for the spectral analysis of lidar images all the way from 
the deep sea into the nearshore. Such an approach would facilitate physical interpretation and the recon- 
struction of traditional wave field parameters (frequency-directional spectra, mean direction of propagation, 

mean period etc). 

2.2 Physical interpretation of wavelet transform 
The use of the CWT/DWT raises several important questions related to the physical interpretation of the 

results. . 
Is there an optimal wavelet shape to be used for a given purpose? The literature is extremely rich in 

wavelet shapes, classes and methods to generate them. Owing to it's simple analytic form, a Gaussian wave 
group, the Morlet wavelet (Grossmann and Morlet 1985) has been traditionally preferred in the descrip- 
tion of progressive waves. There is no formal justification, though, to choose it over, say, a chirp wavelet 
(Holschneider 1998), which includes a wavenumber shift that can account for linear evolution. For two di- 
mensional applications, Cauchy wavelets (Antoine et al. 1999) have minimal uncertainty and much better 
angular selectivity than Morlet wavelets. Different applications will require different wavelet features; for 
example, wave crest detection would use real wavelets such as the Hermitian class (Lewalle 1997). A study 
of shore reflection might require use of boundary wavelets (Monasse and Perrier 1998). 

Is then the choice of the wavelet critical for the results of the analysis? General statements about wavelets 
behaviour can also be made. Statistical and spectral properties are well understood and seem to be realtively 
insensitive to the type of wavelet used in the analysis (Nason et al. 1997, Masry 1998, Perrier et al. 1995, 
Pando and Fang 1998, Brillinger 1996). 

The concern here is not the "mechanical" decomposition/reconstruction of the lidar images, but the 
retrieval of meaningful physical quantities, and their definitions stem directly from the governing equations 
of the physical processes. Wavelet use with partial differential equations suffers from the fact that they are 
not eigenfunctions of space/time- invariant operators (eg. V, dt). The decomposition yields infinite system of 
equations, making analytical approaches difficult. Studies have been restricted mostly to numerical solutions 
algorithms (Bacry et al. 1991, Konno and Lomdahl 1994, Beylkin and Coult 1998, Monasse and Perrier 
1998). This argument is, however, somewhat deceptive, since the wavelet decompositions are tools best 
fitted to transient/inhomogeneous problems, which are not really described by invariant operators. Very 
simple and intriguing results obtained by Lewalle 1997/1998, using Hermitian wavelets on the Poisson and 
the diffusion equation indicate, that they can be very effective tools if used not just as drop-in replacement 
of the classical Fourier analysis. 

2.3 Numerical implementation 
Generic implementations for the different wavelet transforms are available as free downloadable packages 
on the Internet, a few of them designed to be used in the Matlab environment. A short list comprises the 
W-transf orm Toolbox, which provides a class of discrete transforms that treats signal endpoints differently 
than usual and allows signals of any length to be handled efficiently; the Uvi-Wave Toolbox, developed 
by the Signal Theory Group, University of Vigo, and provides filter generation, wavelet/wavelet packet 



transforms and MRA; WaveLa )m Stanford University. With over one t' and Matlab files, datasets, 
and demonstration scripts, the lacter is the most comprehensive package. Wav^ab is a collection of Matlab 
functions that have been used by the authors and collaborators to implement a variety of computational 
algorithms related to wavelet analysis. A partial list of the techniques include orthogonal/biorthogonal 
wavelet transforms, translation-invariant wavelets, interpolating wavelet transforms, cosine packets, wavelet 
packets, matching pursuit. One nice feature is that some computationally expensive routines have been 
implemented as Matlab MEX functions. 

The WaveLab package is being used at present as the basis for the development of a number of com- 
plementary numerical routines (eg. routines for generating different type of wavelets, such as Cauchy, cirp, 
boundary wavelets). A certain amount of time was and will continue to be spent for the familiarization with 
the architecture of the package and for its integration with the rest of the software under development (data 
retrieval routines, deep-water classical 2D Fourier analysis, etc). 

3 Present and further directions of research 

Nearshore lidar images contain traces of numerous complex processes, from random directionally spread 
waves undergoing nonlinear shoaling, to wave breaking, shear currents, over unknown bathymetry. 

In this phase, the stress of the study is set on the mathematical formulation of the first order (linear) 
problem and implementation of the necessary numerical tool, which has to be done in a tightly controled 
environment. The research is therefore limited at present to simulated unidirectional random wave fields 
(normal incidence to the shoreline), over a very mildly sloping bottom (known bathymetry, the wave field 
can be approximated locally by a superposition of plave waves to a very good degree of accuracy). The 
analysis domain does not extend into the surf zone. 

The immediate goal is to build an algorithm capable of reconstructing the local frequency spectra from 
simulated unidirectional lidar images. 

A direct lidar data analysis approach being pursued at present is outlined in Subsection 2.1. The classical 
FT approach is being compared with the DWT based Fourier spectral analysis in the deep water domainin 
order to establish the capabilities of the latter method. The DWT approach can be extended into shallow 
water; assuming the results are comparable, the study will create a platform for testing the performance of 
the method in the nearshore and evaluating (from a data analysis/synthesis point of view) the impact of 
using different wavelet shapes. 

The retrieval of frequency spectra from wavelet analysis requires the knowledge of the relationship between 
the wavelet scale and the frequency (similar to the Fourier dispersion relation). The search for such a relation 
follows the ideas outlined in Subsection 2.2. This is essentially an attempt to derive evolution equations for 
wavelet coefficients starting from the governing equations, using an approach similar to the one described 
in Agnon (1999). Using operational calculus, Agnon was able to derive a general mild slope equation that 
accounts for all the terms that are linear in the derivatives (to any order) of the depth, and reduces, under 
additional assumptions, to well known forms given by Berkhof (1972), Kirby (1986) and Chamberlain and 
Porter (1995). The formal solution to the governing equations does not use the explicitly a 'local" plane 
wave structure for the wave, which makes it suitable for a wavelet decomposition approach. 

Further research will involve a slow relaxation of the initial assumptions, starting with discarding the 
very mild slope assumption and the unidirectionality of the waves. In the following stage, the work will focus 
on the derivation of an algorithm for the reconstruction of the directional frequency spectrum and associated 

parameters. 
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