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NOMENCLATURE 

Co = constant in the equation of state 

e = internal energy per unit mass 

ex = total internal energy per unit mass 

A<j> = variation of 4> in space 

S4> = variation of <j> in time 

Dij = deformation rate tensor 

D'iJ = deviator of the deformation rate tensor 

e = plastic strain 

f,fi = flux vector 

T = flux function 

G = bulk Shear Modulas 

To = plastic material constant 

Ho = y-intercept of the plastic yield function 

H'(e) = slope of plastic yield function 

ilij = spin tensor 

P = hydrostatic pressure 

Qj = heat flux 

q = velocity vector(u,v,w) 

p = density 

Po = pre-shock density 

s = constant in the equation of state 

S{j = deviator stress tensor 

&ij = stress tensor 

G = equivalent or von Mises stress 

5(U) = source terms 

Ox 
= deviatoric stress in x direction 

by = deviatoric stress in y direction 

Oxy = deviatoric shear stress in xy plane 

u = vector of conserved variables 

Us = shock speed 

VJ = tensor velocity 

y = specific density 

Vo = pre-shock specific density 



Chapter 1 

Introduction 

The US military has known that certain munitions will suffer premature ignition if the internal pressure wave 
generated from a mechanical insult is of sufficiently large magnitude. Current numerical solutions often do 
not provide adequate estimates of the pressure magnitude due to the application of artificial viscosity needed 
to maintain the stability of the numerical scheme. Other inaccuracies may be inadequate resolution of grid 
points in regions through which shocks propagate, and inaccuracies due to a massive skewing of the grid 
subject to large deformations. A similar example is found in the impact of high-speed munitions designed 
to penetrate concrete bunkers and explode at depth below the surface. In both examples it is necessary to 
properly capture the magnitude of the pressure wave created by impact induced shocks. 

One approach to accurately capture this phenomena is to cast the equations of motion in a conservative 
Eulerian form. This approach has several advantages; 

• Mass continuity, momentum, and energy are strictly conserved. Other formulations such as the Ar- 
bitrary Lagrangian Eulerian or ALE approach maintain mass, but the conservation of energy is not 
strictly conserved. 

• The Eulerian form can be cast in multiple coordinate frames including the material frame where the 
viewpoint of an observer is coincident with the particle velocity of the material, or from a reference 
frame at a fixed location, or from an arbitrary reference location including one which is a function of 
time. This freedom allows a great deal of flexibility in dealing with the quality of the discretization 
during extensive deformation of the solution. 

However, despite obvious advantages of this approach, the Eulerian form has not been embraced by a 
majority of researchers.1. The classical methods of integrating these equations such as the Lax-Wendroff 
class of schemes are highly oscillatory in the neighborhood of discontinuities without special treatment. 
Fortunately, much work has been done in the Computational Fluid Dynamics community which can be re- 
invented for the equations of hydrodynamics. One example is the notion of "upwind" schemes which provide 
essentially non-oscillatory results with sharply defined shock fronts. The current research extends the upwind 
approach to accommodate grid advection during the integration phase of the solution while maintaining at 
least second order accuracy in both time and space. 

This document describes the work in developing one-dimensional and two-dimensional numerical models 
for shock impact problems, as well as exact solutions of one-dimensional uniaxial strain problems used to 

1 See reference [1] for a survey on these techniques 



validate the numerical solutions. It contains some fundamental theory used to derive the working equations, 
as well as examples used to illustrate the various solutions. The numerical examples are illustrated in Chapter 
6 using screen captures of the working programs to illustrate the behavior of the numerical codes. 



Chapter 2 

One-Dimensional Considerations 

This chapter develops the theory for exact and numerical procedures of the uniaxial strain problem with 
examples used to illustrate the concepts. 

2.1    Theoretical Aspects 

The contents of this section are derived from a number of existing sources including [2],[3],[4], and [5], many 
of which are out of current publication. As the result, some of the developmental material is presented to 
provide a reasonably complete treatise on the topic. Much of the theory was provided and explained from 
unpublished notes authored by Dr. Davy Belk of Eglin AFB. The remaining material was developed by the 
author as necessary to complete the requirements of the contract. 

2.1.1    Equations of Motion 

The equations of motion are comprised of a set of equations which provide for the conservation of mass, 
momentum, and energy along with a set of non-linear constitutive equations which define the material 
derivatives of stress and strain. The equations are closed with an appropriate equation of state relating 
pressure to internal energy, velocity, stress, and strain. The fully three-dimensional form of the equations 
will be presented, then reduced to one dimension using the assumption of uniaxial strain with elastic/plastic 
deformation. 

Conservation Equations 

The conservation law equations are identical for both solid and fluid mediums. The only variation is in the 
form of the stress tensor and any source terms that may be present. These equations in divergence form are 

-Q£ + (pViVj - <?ji),j    =    pfi (2.2) 

a 
T   + (pervj - Vk<Jjk + Qj),j    =   pvkfk (2-3) 



In Cartesian components, the stress tensor aij can be represented as the sum of the deviator stress s^- 
and the hydrostatic stress components as 

aij = sij-p6ij (2.4) 

where the pressure p is defined as positive in compression to match our usual idea of pressure which is related 
to the stress tensor by 

-P=(j-f (2-5) 

This quantity, the negative of the mean normal stress, is not always equivalent to thermodynamic pressure, 
but will be considered as such in this context. 

Defining Dij as the classic deformation rate tensor and D'^ as the deviator of the deformation rate tensor 

Dij    =    ^(vi,j + vjti) (2.6) 

Dij    =    Dij-^Sij (2.7) 

The Prandtl-Reuss expressions relating deviator stress rate (corrected for material frame indifference) to 
plastic strain rate are given by 

^f    =    nikskj-siknkj+2G^D'ij-lßS-^D'rnn^ (2.8) 
de Si 
~Äl    =    fi- at a 

=    ß-ifDlj (2.9) 

where ß is defined as 

ß = —*, where, \k ^ 1    plaStk l0ading (2.10) H     l + MLkl |jfc->0    Otherwise v       ' 

and the spin tensor ft*j is defined as 

The set of conservation laws Eq.[2.1- 2.3] and the constitutive equations Eqs.[2.8 - 2.9] when combined 
with an equation of state (Section 2.1.5) provide a complete description of the equations of motion for an 
elastic or plastic medium. 



2.1.2    Uniaxial Strain 

To reduce the constitutive Eqs.[2.8][2.9] for the case of uniaxial strain, it will be assumed that no shear 
stresses can exist and that deformation is only allowed in the direction of motion. For this case the stress 
tensor is not one-dimensional, but rather assumes symmetry in the transverse direction. For this case, the 
stress tensor is given by 

mil = 
ax 0 0 
0 ay 0 
0      0     <r„ 

(2.12) 

The negative of the mean stress from Eq.2.5 is given by 

P= -3K + 2<7„) 

The stress deviator components are calculated by solving Eq.2.4 for Sjj 

(2.13) 

Ua* -av) 0 
0 -\{<*x-Py) 
0 0 

0 
0 

-\{(Tx -Oy)   . 

(2.14a) 

(2.14b) 

Similarly, the deviator of the deformation tensor is given by 

WJ] = 
2 du 
3 dx 

0 
0 

0 0 
18o n 

' 3 dx , « n 1 du 
U 3 dx 

The equivalent or von Mises stress a is defined as 

(2.15) 

°" —   I   <ySijsij \Sx\ —  \G x       &v (2.16) 

Plastic loading occurs when the equivalent stress reaches the yield function H'(e) 

O = jj \sx H'(e) (2.17) 

and 

du 
■K-SX >0 
ox 

(2.18) 



If the two conditions specified in Eqs.[2.17] [2.18] are satisfied, then k in Eq.[2.10] is 1, corresponding to 
plastic deformation, otherwise k = ß = 0 and the strain rate given by Eq.[2.9] is 0. 

With the previous definitions of stress and strain, the conservation and the constitutive equations for 
uniaxial strain reduce to 

dp     9(pu) 
dt        dx 

Sx) d{pu)     d{pu2 + P 
dt dx 

d(peT)      d[u(peT + P~-SX)] 

=    0 

=    0 

dt dx 
dSx 

~dT 
de 

dt 

(1- ß)\ 
i  du 
fdx~ 

„2 du 
^3 dx 

(2.19a) 

(2.19b) 

(2.19c) 

(2.19d) 

(2.19e) 

Note that the coupling of e in Eqs.[2.19a-2.19d] is due to the fact that ß (Eq.[2.10]) is a function of 
H'(e) which influences the stress rate in Eq.[2.19d]. However, for purely plastic deformation where H'(e) is 
a constant, ß will be a constant and Eq.[2.19e] decouples from the equation set. 

Part of the early research work was in casting the advection Eqs.[2.19d,2.19e] in a form where the entire 
equation set could be solved as set of partial differential equations. However, the advection equations would 
have to be manipulated such that the left-hand side was in a divergence form with all remaining terms 
treated as source terms on the right-hand side. The advantage of this scheme would be a higher level of 
coupling between the five equations since the eigenvalues of the coupled system would have the contributions 
of the constitutive equations. There is however no unique method for determining which terms should appear 
on the left-hand side, though this issue has been a point of research. 

As following [6], consider a generalized advection equation of the form 

(j>t + u<f>x - 0 (2.20) 

which when multiplied by p and combined with the continuity equation [2.19a] can be expressed in the 
divergence form 

(p4>)t + (pu<p)x = o (2.21) 

Note that Eqs.[2.19d,2.19e] can be put in this form for the special cases of ß = 1 and ß = 0, respectively. 
The well known jump condition for Eq.[2.21] is given by 

PL<!>L(UL - Us) = PR4>R{UR - Us (2.22) 

where Us is the speed of the discontinuity, and the R and L subscripts refer to the right and left states, 
respectively. If the jump condition for continuity given by 

PL(UL - Us) = PR{UR - Us) (2.23) 

10 



divides Eq.[2.22], then <f>L = 4>R indicating that <f> would be continuous across the shock. Fedkiw[6] concludes 
that if (f> is discontinuous across a shock, then Eq.[2.21] would be an inappropriate form for generalized 
advection equations. 

While the development of the argument is correct, it is not obvious that the conclusion is definitive for 
the current application. It should be obvious that his argument holds only in the case where the additional 
equations are part of the weak solution resulting in jumps relations, which for the current application is not 
applicable. Additionally, his arguments are only valid for equations which are truly in a divergence form, 
which again does not match the current case. 

Another approach to determine an appropriate divergence form of the constitutive equations was to 
consider the eigen properties of a candidate form to determine if the equations remained hyperbolic. Most 
of the variations studied had singular transformation matrices, resulting in an incompatible form. One form 
which did not exhibit this property was the form given by Eq.[2.21]. However, the eigenvalues for this form 
were the same as for the conservation equations alone, thus this form would be of no additional advantage 
in a flux based algorithm. 

The upshot of the current work is that solving Eqs.[2.19d,2.19e] with the conservation equations as a 
set of partial differential equations is not recommended. It will be shown that the exact solution of the 
conserved variables is dependent only on the initial state of stress, being independent of the derivatives of 
Sx or e. This provides a natural decoupling of the constitutive equations which should be mimicked by the 
numerical procedure. From a philosophical standpoint, attempts to pose advection equations in a contrived 
conservative form could create unphysical artifacts in the solution of the equations. 

Exact Shock Solutions 

The "genuine solution" of the partial differential equation in the general form 

g + ^=0 (,24, 

is strictly only valid where the derivatives are defined. Therefore, a discontinuous solution cannot be said to 
be genuine when p or Q(p) are discontinuous. The concept of weak solutions is used to extend the solution 
set to include discontinuities. The solution set is represented by 

-U.\p] + [Q}=0 (2.25) 

where the square brackets are used to indicate the jump across the discontinuity, i.e. 

[p]    =    Pi-Pi (2-26) 

[Q]    =   Q2-Q1 (2.27) 

and Us is the shock velocity given by 

—       AT 
u° = ik = it (2-28) 

ds 

11 



The general solution given by Eq.[2.25] as applied to the set of conservation equations Eq.[2.19a-2.19c] 
without heating or other body forces is given by 

Us 

Us[p] 
Us[pv] 

p(e + -v2) 

[pv] 

[pv2] - M 
1   2/ crv 

(2.29) 

(2.30) 

(2.31) 

These equations are the Rankine-Hugoniot Equations for uniaxial strain.   To develop a general solution 
framework for specific problems, a special case is derived where the reference frame Us = 0 resulting in 

PlVl P2V2 

P\v\ -o\    =    p2v\ - 02 

Pi(ei + 2Ui)ui -ffi«i P2(e2 + 2^2)^2 -CT2U2 

(2.32) 

(2.33) 

(2.34) 

where vi and v2 are velocities relative to the stationary shock. Substituting Eq.[2.32] into Eq.[2.34] results 
in 

e2 -ei = -(v2 -vl) 
<T)_       CT2 

Pi P2 
(2.35) 

Using Eq.[2.33] to eliminate velocities the above equation can be written as 

e2 ~ ei = -(ffi + <T2)(V2 - Vi) (2.36) 

This equation is often referred to as the Hugoniot equation. Note that the expression is independent of 
coordinate system and involves only thermodynamic variables. Another useful expression is found by solving 
for Ua in Eq.[2.29] and substituting the result into Eq.[2.30] resulting in 

(vi-v2)
2 = (a2-a1)(V2-V1) (2.37) 

For a normal shock (Figure.2.1) propagating with unknown velocity Us into condition 2, there are 3 
Rankine-Hugoniot equations , but there are five unknowns , i.e. w2,P2,e2,p2, anc^ U8. In order to close the 
system, two more conditions must be supplied. The conditions are typically an equation of state relating 
pressure, energy, and density, together with any one of the state variables downstream of the shock. With 
this information, all other unknowns at state 2 can be determined. 

The shock problem is defined as the impact of two infinite length bars, which in general, may be different 
materials, and impact one another at a contact discontinuity. Uniaxial strain will only be considered, thus 
the bars are confined in such a way as to prohibit lateral or non-axial deformation. 

12 
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Figure 2.1: Normal Shock Terminology. 

Experimental Hugoniot 

Sometimes a Hugoniot curve is erroneously referred to as an "equation of state" for the material. An equation 
of state is an entire surface in (P, V, e) space such that given arbitrary values of two of the parameters, the 
third can be determined. The Hugoniot is a single curve on this surface. By assuming a particular form of 
the equation of state, an experimentally determined Hugoniot is often used to determine coefficient values 
that are then applied off the Hugoniot. The misuse of the "equation of state" terminology is that in the 
absence of an equation of state, any condition involving one or more of the unknown values can be used to 
make the system determinate as long as the condition is independent of the jump conditions. This condition 
is then used as a replacement for the equation of state for solving shock problems, but it should not be 
mistaken as equivalent to an equation of state. 

One such condition is a linear relation between shock speed Us and particle velocity v given by 

Us = Co + sv (2.38) 

where the reference frame is such that the initial particle velocity is zero and the shock speed is positive. The 
coefficients CQ and s are determined experimentally where Co is close to the linear longitudinal wave speed. 
For the case as shown in Figure [2.1] where the shock speed is shown positive to the right, then Eq.[2.38] is 
rewritten as 

Us -v2 = Co + s(vi -v2) (2.39) 

This equation is called the right-running wave.  If the wave is propagating in the negative direction with 
respect to the material, then the formula would read 

Us - vi = -co + s(v2 - Vi) (2.40) 

13 



This equation is called the left-running wave. One of these empirical relations Eq.[2.39,2.40], as appropriate, 
can be used to analytically represent the Hugoniot curve and will be referred to as the Experimental Hugoniot. 

Hydrostatic Solution 

For the hydrostatic case, the deviatoric stress is set to zero. The impact of two bars will initiate a single 
shock wave through each material as illustrated in Figure [2.2]. The left material will contain the reflected 
shock with velocity Urs and the right material will contain the transmitted shock with velocity Uta. At the 
impact point between states 2 and 3, a contact discontinuity exists with velocity Uc, therefore, the materials 
are not allowed to mix. 

Reflected 

Shock 

Contact 

Discontinuity 
Transmitted 

Shock 

Figure 2.2: Single shock wave impact configuration. 

To determine which properties must be conserved, consider the Rankine-Hugoniot Equations [2.29] 
through [2.31] as applied between states 2 and 3 as illustrated in Figure [2.2]. Applying Eq.[2.29] results in 

US(P2 - Pz) = Uc(p2 - p3) (2.41) 

indicating (1) that Us = Uc, or simply that the speed of the discontinuity must equal the local particle 
velocity on either side of the interface, i.e. Uc = v2 = v3, and (2) that a jump in density may exist at the 
contact discontinuity. Applying the momentum Eq.[2.30] across the contact discontinuity results in a2 =03, 
or simply that the normal stress must be continuous across the contact discontinuity. For the hydrostatic 
case, this requires p2 = Pz- Applying the energy Eq.[2.31] across the interface indicates that a jump in energy 
may exist at the contact discontinuity. 

For the configuration shown in Fig.[2.2], there are eleven unknowns including Urs, v2, P2, e2, and p2 

from the left material, Uts, v3, p3, e3, and p3 from the right material, and Uc from the contact discontinuity. 
From these, three are duplicates with v2 = v3 = Uc, and p2 = Pz, therefore, in total there are eight 
independent unknowns. For the left material there are three Rankine-Hugoniot jump relations and one 
Experimental Hugoniot expression relating the jump conditions between states 1 and 2. Similarly, there are 

14 



four additional conditions from the right material relating the jump conditions between states 3 and 4. Since 
there are eight equations and eight unknowns, the problem is well-posed. 

The solution procedure begins by finding the speed of the contact discontinuity. This provides the 
velocity at states 2 and 3 by satisfying continuity in the normal stress at the contact discontinuity. With 
this information, the jump conditions will be analyzed for the remainder of the properties at states 2 and 3. 

The density at state 2 is expressed using Eq.[2.29] as a function of the respective shock speed and velocity 
jump where 

Urs ~ Vl ,0 A0s 
P2 = Pi 77 — (2-42) 

Urs ~ V2 

and similarly for state 3 

Uts ~ V4 O AO\ 

Uts ~ V3 

Solving the momentum equation Eq.[2.30] between states 1 and 2 for normal stress and substituting Eq.[2.42] 
results in 

<72 = «71 + (Urs - Vi)(V! - V2)pl (2.44) 

Similarly between states 3 and 4 we have 

a3 = (T4 +(Uts-v4)(v4-v3)p4 (2-45) 

Since the normal stress must be continuous across the contact discontinuity, Eqs.[2.44,2.45] are equated and 
simplified by substituting expressions for the shock speeds from Eqs.[2.39,2.40] to give a quadratic expression 
in terms of Uc where 

A2U
2

c+AlUc + A0 = Q (2.46) 

The coefficients of the polynomial are defined as 

A2    =    sRp4-sL
Pl (2.47) 

Ai    =   Pi(c^ + 2v1s
L)+p4(cR-2vis

R) (2.48) 

A0    =    Piv^-c^ + s^-pivi^+sLvi)+ai -C74 (2.49) 

where the superscripts R and L refer to the right and left materials. For A2 = 0, 

Uc = -^ (2.50) 

otherwise, the solution is given by the negative root of the quadratic formula 
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Uc = ~Al - ^ - 4AoM- (2.51) 
2A2 

where the negative root is required such at v\ > Uc > v4. For the special case where the material and 
thermodynamic properties are identical at states 1 and 4, Eq.[2.50] reduces to 

Uc = \(v1+v4) (2.52) 

The shock speeds can be found by applying Eqs.[2.40] and [2.39] where 

Urs = v1-c% + S
L(v2-v1) (2.53) 

Uts = v4+c* + sR(v3-v4) (2.54) 

The densities can be calculated from Eqs.[2.42] and [2.43], and the pressures using Eqs.[2.44] and [2.45] 
realizing that p2 = -02 and p3 = -a3. Energies can be calculated from Eq.[2.36] where 

e2    =    e! +-(pi + p2)(Vi - V2) (2.55) 

e3    =    e4 + ^(p3+p4)(V4-V3) (2.56) 

Note that this solution did not require the use of an explicit equation of state. However, it can be shown 
that the Mie-Grueneisen Equation of State if applied to the hydrostatic case would provide the same pressure 
since the solution stays on the same Hugoniot line. Also, although the energy equation was not used, it can 
be shown that the solution does satisfy the conservation of energy across the shock. 

EXAMPLE: Hydrostatic Response using the Experimental Hugoniot. 
Consider two bars impacting one another with identical material properties as shown in Table [2.1]. The left 
bar has a velocity of vi = 100 m/s and the right bar is moving at v4 = -100 m/s. The density of both bars 
are p\ = p4 = 8930 -H-. The pressure and energy of both bars are zero. The problem is to find the states 2 
and 3 as shown in Fig. [2.2] assuming a hydrostatic response. 

Using Eq.[2.52] to calculate the velocity of the contact discontinuity 

Uc = 0.5(100.0 + -100.0) = 0.0 m/s (2.57) 

Using Eqs.[2.53] and [2.54] to calculate the shock speeds 

Urs    =    100.0-3940.0 + 1.49(0.0-100.0) =-3989.0 m/s 

Uts    =    -100.0 + 3940.0 + 1.49(0.0 --100.0) = 3989.0 m/s 

Using Eqs.[2.42] and [2.43] used to calculate the densities 
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Table 2.1: Material properties used in the example problems. 

~c^ = 3940 m/s 

po - 8930 kg/m3 

T = 2.0 

s = 1.49 

Ho = 300 MPa 

H' = 30 MPa 

E = 121.9 GPa 

G = 45 GPa 

™™ (-3989.0-100.0) „^„ „„,„„,, , Q 
fl2 = 8930 V nnnnn—r-rr1 = 9153.865634 Wm3 
F (-3989.0 - 0.0) y/ 

™™ (3989.0--100.0)      „ ,   ,   ,,_ 
P3    =   8930v    (398Q 0Q        ; = 9153.865634 kg/m3100 

The normal stresses can be calculated from Eqs.[2.44] and [2.45] as follows 

a2    =   0 + (-3989.0 - 100.0)(100.0 - 0.0) -8930.0= -3.651477 GPa 

a3    =   0 + (3989.0 --100.0)(-100.0- 0.0) -8930.0= -3.651477 GPa 

Since there is no deviatoric stress for the hydrostatic case, the pressures at states 2 and 3 are simply the 
negative of the normal stresses, or 

P2    =    -a2= 3.651477 GPa 

p3    =    -a3 = 3.651477 MPa 

The energies are calculated using Eqs.[2.55,2.56] as follows 

e2    =    0.0 + 0.5 - (O.O + 3.651477*°) (Jb°_ _ ^^j = 5000.0 J/Kg 
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Elastic Solution using the Experimental Hugoniot 

The constants c and s given for the Experimental Hugoniot will not be applicable for impact velocties in the 
elastic range, and therefore will not give results consistent with experiment1. However, it is instructive to 
develop these relationships for the reader as a progression of complexity both from the mathematical as well 
as science perspective. Hopefully the value in this approach will be appreciated in the current and following 
sections. 

The elastic solution is similar to the hydrostatic solution in that an impact will generate a transmitted 
and reflected shock as shown in Figures [2.3]. However, unlike the hydrostatic case, deviatoric stress is 
produced and must be accounted for as a component of normal stress. 

U U U 

©   "* ©   ^© ^© 
■■                    Hd> ► v 

■i 
II 
HI 

11^—► a 

V 
 '—* 

P4 

e4 

s 
X 

P4 

a,    R 

Reflected 
Shock 

Contact 

Discontinuity- 
Transmitted 

Shock 

Figure 2.3: Single shock wave impact configuration for the elastic response. 

There are fifteen unknowns which are Ura, P2, «2, P2, e2, SX2, and CT2 from the left material and Uts, 
p3, v3, P3, e3, 5X3, and 03 for the right material, and Uc from the contact discontinuity. From these three 
are duplicates with v2 = V3 — Uc and 02 = 03, leaving twelve unknowns. For the left material there are 
three Hugoniot-Rankine Equations, the Experimental Hugoniot, <r2 = SX2-j>2, and Sx = Sx(p2) that relates 
deviatoric stress to density resulting in six independent equations for the left material. Similarly, there 
are six equations for the right material or twelve total equations matching twelve unknowns. This forms a 
well-posed system. 

The calculation of the contact discontinuity speed, the densities, the normal stresses, and the energies at 
states 2 and 3 are the same as calculated for the hydrostatic case (Section 2.1.2). To calculate the deviatoric 
stress, the assumption is made that the material response is elastic and that the Von Mises effective stress 
ö must be below the yield surface, or 

Hhe use of the Experimental Hugoniot will severly underpredict the shock speeds for an elastic shock. This statement also 
holds for the hydrostatic test case discussed in the previous section. 
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§1^1 < er (2.58) 

Since the value of deviatoric stress is not known at this point, the procedure is to simply guess that the 
solution is elastic. If the guess is wrong then the elastic procedure will be abandoned for a plastic solution 
discussed later in the chapter. 

The deviatoric stress is determined from Eq.[2.19d] cast in a differential form where 

dSx = \öde (2.59) 
o 

where for an elastic response ß = 0 and |j = e. Substituting the natural strain formulation de = y in the 
above equation and integrating from some initial state 0 results in 

s« i 

jdSx = A-GJj (2.60) 
■Sa 0 'o 

Sx = SX0 + \c\ny (2.61) 

For uniaxial strain, volumetric and longitudinal strain are identical, therefore, 

h      VQ       p 
(2.62) 

Substituting this expression into Eq.[2.61] leaves 

Sx = SX0 + \G\n^ (2.63) 
o p 

Writing this expression between states 1 and 2 shown in Fig.[2.2] results in 

SX2=SXl + ^GL\n?± (2.64) 
o pi 

Similarly for state 3 the deviatoric stress is given by 

SX3=SX4 + ^GR\n^ (2.65) 
3 P3 

With deviatoric stress calculated and validated not to exceed the yield surface (Eq.[2.58]), the pressures can 
be calculated at states 2 and 3 by 
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n = SX2 - a2 (2.66) 

Pz = SX3 - a3 (2.67) 

The energies can now be calculated using Eq.[2.55] and all unknowns are denned. 

EXAMPLE: Elastic Response using the Experimental Hugoniot. 
The same configuration for the material properties and initial conditions will be used as in Section 2.1.2, 
except that the velocity at state 1 will be set to 10 m/s and the velocity at state 4 to -10 m/s so that the 
response will be elastic. Since the calculations are symmetric, the velocity of the contact discontinuity Uc 

will be zero. The shock speed as calculated from Eq.[2.53] is 

Urs = 10.0 - 3940.0 + 1.49(0.0 - 10.0) = -3944.9 m/s 

and the shock speed as calculated from Eq.[2.54] is 

Uts = -10.0 + 3940.0 + 1.49(0.0 - -10.0) = 3944.9 m/s 

The density for state 2 as calculated from Eq.[2.42] is 

"-^\-Zl~-m -8952637»"* 
The density for state 3 as calculated from Eq.[2.43] is 

The normal stress at state 2 as given by Eq.[2.44] is 

o-2 = 0.0 + (-3944.9 - 10.0)(10.0 - 0.0) • 8930.0 = -353.1726 MPa 

The normal stress at state 3 as given by Eq.[2.45] is 

er3 = 0.0 + (3944.9 - -10.0)(-10.0 - 0.0) • 8930.0 = -353.1726 MPa 

The deviatoric stress at state 2 is given by Eqs.[2.64] as 

SX2 = 0 + f. 45.0 • 10» In JfgL = -151.9038 MPa 

and the deviatoric stress at state 3 is given by [2.65] as 
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Sxa = 0 + t: ■ 45.0 • 109 In n^°;°   = -151.9038 MPa 3 3 8952.637 

The energy at state 2 as given by Eq.[2.36] is 

e2 = 0.0 + 0.5 • (0.0 + -353.1726e«) (^M_ - gM_) = 50.00 J/K9 

The pressure at state 2 is given by 

p2 = SX2 -a2 = -151.9038e6 - -353.1726e6 = 201.2688 MPa 

and the pressure at state 3 is given by 

P3 = SXa -a3 = -151.9038e6 - -353.1726e6 = 201.2688 MPa 

With the deviatoric stresses known, the hypothesis that the solution is elastic can be tested by applying the 
yield criterion Eq.[2.58] 

||5x| = j|| - 151.90381 = 227.8 MPa < a = 300 MPa 

Since the effective stress is below the yield surface, the hypothesis that the response was elastic is correct. 
All other properties at states 2 and 3 will be identical to the hydrostatic case. 

Elastic Solution using the Mie-Grueneisen Equation of State 

This second method of calculating the elastic response utilizes the Mie-Grueneisen Equation of State which is 
dependent on the energy equation. The problem definition is the same as in the previous section where twelve 
unknowns must be matched with twelve independent equations. If the Mie-Grueneisen Equation of State 
is added to the twelve equations, one other equation must be removed such that the total number remain 
at twelve. The only possible solution is to replace the Experimental Hugoniot with the Mie-Grueneisen 
Equation of State. 

It is tempting to conclude that since the Mie-Grueneisen Equation of State derived in Section [2.1.5] uses 
the the Experimental Hugoniot in its derivation, that the Experimental Hugoniot must still be available 
for the calculation of the shock speeds as in the previous example. This assumption is false. It is true 
that the Mie-Grueneisen Equation of State as implemented calculates reference Hugoniot values using the 
Experimental Hugoniot. However, that assumption is only valid within the context of the derivation of the 
reference Hugoniot and may not necessarily be available outside that context. 

The Mie-Grueneisen Equation of State has a very complex dependency on density as observed in Eq.[2.121]. 
This complexity makes it difficult to form explicit closed form solutions for all but very simple problems, 
thus numerical techniques are needed to algebraically solve for the unknown states. 

To calculate the jump conditions across a discontinuity as in Fig. [2.1], consider that p2 and all parameters 
at state 1 are known. From the Hugoniot Equation given by Eq.[2.36], the jump in energy is implicitly solved 
giving 
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ei + \ (01 + SX{P2) - PH(V2) [l - £r(V0 ~ V2)]) (V2 - Vi 
e2 _  ——r 

1 + 4^-^1) 
where Sx(p2) is given by Eq.[2.64] and P//(p2) is given by Eq.[2.120]. The normal stress is given by 

(2.68) 

<?2 = SX(P2) - P(e2,V2) (2.69) 

with the velocity jump solved using Eq.[2.37] resulting in 

«2 = «i - y/{<T2-<Ti)(y2-Vi) (2.70) 

where the negative root corresponds to a left-running wave. For a right running wave 

V2 = Vi + Vfa-ffiXVa-Vx) (2.71) 

where the positive root corresponds to a right-running wave. 
The difficulty using the previous analysis is that specification of density at state 2 is inconvenient for 

solving the shock impact problem. Ideally, velocity at state 2 is determined by satisfying continuity in normal 
stress at the contact discontinuity, then using the velocity to solve for the remaining conditions at state 2 
and 3. 

To accomplish this, a numerical procedure is defined with an error function defined as 

f(P2) = v(p2) - Uc (2.72) 

where v{p2) is the procedure which produces velocity in Eq.[2.70] given density p2 and the desired contact 
discontinuity velocity Uc. To generate a new density which reduces the error in Eq.[2.72] from some initial 
estimate of density pi, the following function 

Pi+1 = Pi~   ...    v  ~ pi- Ap[ —   p—r (2.73) 
f'(Pi) \u{pi + Ap) - v(Pi) J 

is iterated until \pt+i -pi\ < e. The method is functionally a Newton-Raphson technique where the derivatives 
are evaluated using a first order finite difference approximation. The parameters e and Ap are reasonably 
small values taken during this study to be l.Oe-12 and 0.01, respectively. Convergence usually requires two 
or three iterations and is very robust. 

To calculate the contact discontinuity speed Uc, Eq.[2.52] is used if the material and thermodynamic 
properties are identical. If this is not the case, then the result of the previous numerical procedure will not 
produce a correct normal stress at the contact discontinuity, i. e. a2 ^ a3 . To correct this problem, a second 
numerical procedure is constructed to iterate the contact discontinuity speed to convergence. Eq.[2.52] is 
used to approximate Uc and an error function is constructed assuming that the normal stress is a function 
of velocity where 
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f(vi,v3) = 0-3(«3) - ^2(^2) (2.74) 

With this function a similar numerical procedure is established with the outside loop calculating the contact 
discontinuity speed and the inside loops calculating state properties based on that velocity. However, this 
choice of error functions is not tolerant of parameters that stray far from the symmetry conditions. An 
alternative error function might enforce the Hugoniot Equation Eq.[2.36] at the contact discontinuity such 
that 

f(Pi,Pa) = e2(/92) - e3(p3) - ^2 + cr3)( ) (2.75) 
2 P3      Pi 

though this function has not been investigated thoroughly to report on. The shock speed for the reflected 
shock is calculated by solving Eq.[2.29] for Urs resulting in 

U„ = P^LU^I (2.76) 
P\ - Pi 

Similarly the shock speed for the transmitted shock is given by 

Ut. = P3V3~P4V4 (2.77) 
Pz ~ Pi 

EXAMPLE: Elastic response using the Mie-Grueneisen Equation of State. 
Consider the impact problem as defined in the previous example. The contact discontinuity velocity Uc = 
0 m/s will be the same since the configuration is symmetric. The results of the numerical procedure as 
outlined in the preceding text for an elastic response is shown in Table [2.2]. The shock speed for the 
reflected shock is calculated using Eq.[2.76] resulting in 

8930.0-10.0-8948.925-0        ,„„„„     . 
Urs = = -4718.63 m/s 

8930.0 - 8948.925 ' 

Similarly the shock speed for the transmitted shock is given by Eq.[2.77] resulting in 

8948.925-0 -8930.0- (-10.0)      .„_„     . 
Uts =  = 4718.63 m/s ts 8948.925 - 8930.0 ' 

Note that the value of internal energy using the Mie-Gruneisen equation of state matches that for the elastic 
solution given by the Experimental Hugoniot even though the pressure and density vary between the two 
solutions. This result is somewhat unexpected due to the complexity of the expression for energy given by 
Eq.[2.68] as compared to the expression using the Experimental Hugoniot given by Eq.[2.36]. This suggests 
that a simplier approach might be available for the solution using the Mie-Gruneisen equation of state, though 
the explanation of this phenomena remains a mystery. This point certainly needs further investigation. 

The results for state 3 are the same as for state 2 as shown in Table [2.2]. 
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Table 2.2:   Results of the numerical procedure for the shock impact problem for state 2 using the Mie- 
Grueneisen Equation of State. 

v2 = 

Pi = 

P2 = 

Z2 = 

&X2 = 

Cxo = 

0 m/s 

8948.93 Kg/m3 

295.29 Mpa 

50.0 J/Kg 

-126.98 Mpa 

-422.27 Mpa 

Two-wave response using the Experimental Hugoniot 

When the effective stress exceeds the elastic limit on the yield surface, the material response becomes plastic 
and is accompanied by a change of slope on the stress-strain curve as shown in Figure [2.5]. When this 
occurs, two shocks may form depending on the requirements for the shock speeds. The fastest wave is called 
the elastic pre-cursor and compresses the material to the elastic limit. The second shock, if it exists, is 
referred to as the "plastic shock" as its existence is due to the plastic response of the material. 

For this case the impact of the two bars results in six states as illustrated in Figure.[2.4]. Though it is 
possible for one material to have an elastic response and the other a plastic response, those cases will not 
be considered, though the treatment is straightforward. The deviatoric stress generated behind the elastic 
pre-cursor at states 1' and 4' reaches a maximum defined by the yield surface or 

— '-'l1/   — &x4i (2.78) 

where the negative sign assumes compression. Since the deviatoric stress is known at states 1', the density 
can be calculated from Eqs.[2.64] where 

pv = p\ exp 
AGL 

Similarly for state 4' 

Pi' = Pi exp 
4GR 

\&Xl ^X1l) 

{&X4 bx4, ) 

(2.79) 

(2.80) 

The velocity at state 1' can be calculated by combining the expression for the left-moving Experimental 
Hugoniot Eq.[2.40] and mass continuity Eq.[2.42] to provide 

vv = V\ + 
cpjpy -pi) 

sL{pv - p\) - Pv 
(2.81) 
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Figure 2.4: Figure illustrating the two-wave Plastic Solution. 

Similarly for state 4' 

Vi> = Vi + 
-CQ(P4' -PA) 

sR(p4' - pi) - pv 

The shock speed Ure is calculated from Eqs.[2.40] to give 

Ure = Vi - C„  + SL(vu - Vi) 

Similarly, the shock speed Ute is calculated from Eq.[2.39] to give 

(2.82) 

(2.83) 

Ute = V4+CQ+ S
R

(V4, - Vi) 

The normal stress can be computed from Eq.[2.44] at state 1' using 

(2.84) 

o\< - 01 + pi(Ure - «i)(vi - vv) 

and similarly at state 4' as 

(2.85) 

CT4,  = <74 + Pi{Ute - «4)^4 - Vi,) (2.86) 
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Pressure at state 1' is calculated by 

Pv = SXl, - <TI< (2.87) 

and similarly for state 4' 

Pv = Sx4, - Oy (2.88) 

Energy can be computed using the Hugoniot Equation [2.36] resulting in 

ev=ei + l(a1+av)(Vv-V1) (2.89) 

and similarly for state 4' where 

e4<=e4 + ^4+0-4')(^4'-V4) (2.90) 

Note that the solution for state 1' and 4' does not depend on the velocity of the contact discontinuity as in 
previous examples. The states at 1' and 4' are completely determined by the elastic yield stress. However, 
this is not the case for states 2 and 3. 

If the material response is purely plastic, i. e. H' = 0, then a shock is necessary because of a thermo- 
dynamic mismatch between states 1' and 2, and similarly, between states 4' and 3. The deviatoric stress 
across the plastic shock will be continuous since the bar cannot unload and the yield surface constrains the 
deviatoric stress from increasing. Given the speed of the contact discontinuity Uc, the shock speeds Urp and 
Utp can be determined from the Experimental Hugoniot relation, and the rest of the unknowns at states 2 
and 3 follow the same procedure as for a hydrostatic shock (See Section [2.1.2]) where states 1 and 4 in the 
hydrostatic solution are replaced with 1' and 4', respectively. 

For a material with H' > 0, then in addition to the thermodynamic jump described in the previous 
paragraph, there would be an additional production of deviatoric stress from plastic compression governed 
by Eq.[2.19d]. The yield surface itself depends on the production of plastic strain e governed by Eq.[2.19e]. 
These two production equations can be combined to relate stress and plastic strain similar to the elastic 
case. The ratio of Eq.[2.19d] and Eq.[2.19e] gives 

where / = Sign(vx). In a compressive environment, vx < 0, therefore, / = -1. Rewriting Eq.[2.91] in a 
differential form leaves 

dSx = 2G(1 - hde (2.92) 
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For elastic strain, de = y, but the current definition of elastic strain requires that e > 0 which is violated in 
compression. To compensate for this, plastic strain will be defined in terms of / where 

de = 
dl 

(2.93) 

Substituting Eq.[2.93] into Eq.[2.92] leaves 

dSx = 2G{-ß-l)i (2.94) 

Integrating Eq.[2.94] from the elastic yield point Sj to the resting point on the yield surface provides 

j dSx = 2G{±-\)j 
sr r„ 

I 

or, 

Sx-S?    =   2G(--1) 
i' 

In/ 
-I/o 

.1 
Sx-S>    =   2G(--l)(ln/-ln/0) = 2G(--l)ln 

/ 

'ß     *'v '     ~~Kß     ~'"~h 
As in the elastic case for uniaxial strain, volumetric and longitudinal strain are identical, therefore 

(2.95) 

lo      V0      p 
(2.96) 

Substituting the equation above in Eq.[2.95] results in 

5, = sr0+2G(i-l)ln^ 

Rewriting this equation in the context of state 2 from Fig.[2.4] 

(2.97) 

SX2=Sl\L + 2G{-^-l)\nPj- (2.98) 

and for state 3 the equivalent expression is 

SX3=S^\R + 2G(-^-l)\n pv 
P3 

(2.99) 
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However, at this point SX2 and SX3 can not be calculated because the densities at those states are 
unknown. However, the speed of the contact discontinuity Uc = v2= v3 can be calculated as in the solution 
of Eq.[2.46] where state 1 is replace with 1' and state 4 with 4'. The shock speeds Urp and Utp follow suit 
from Eq.[2.40] and Eq.[2.39], respectively, where 

Urp=vv-c{; + sL{v2-vv) (2-100) 

and 

Utp = v4.-cg + 8R{v3-V4,) (2.101) 

The densities at states 2 and 3 can be calculated from Eq.[2.42] and Eq.[2.43] as 

Urp - V\> 
p2 = PV YJ — 

Urp - V2 

and 

Utp - V4> 
P3 = PA' —  

(2.102) 

Utp - v3 

(2.103) 

Now that the densities are known at states 2 and 3, the deviatoric stresses in Eq.[2.98] and Eq.[2.99] can be 
calculated. 

The normal stresses at states 2 and 3 are calculated from Eq.[2.44] and Eq.[2.45] as 

(Ji = «Tr +pv(Urp-vv)(vy -v2) (2.104) 

and 

oz = ov + Pi'{Utp - t>4')(u4' - v3) (2.105) 

Pressures are calculated directly as 

P2 = SX2 - 02 

and 

and energies are calculated from Eq.[2.55] and Eq.[2.56] as 
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e2 = ey + ±(Py+p2)(Vy-V2) (2.106) 

and 

e3 = e4. + ^(p4<+P3)(V4<-Vr
3) (2-107) 

An example for this case will not be given because while it has academic value, a two wave system 
given the current material properties is not possible without an unrealistically high yield stress, therefore 
the example will be left to the interested reader. 

2.1.3    Two-wave response using the Mie-Grueneisen Equation of State. 

The description for the two-wave response is very similar to the case for the Experimental Hugoniot, except 
of course that the Experimental Hugoniot is being replaced with the Mie-Grueneisen Equation of state. The 
deviatoric stress and density at state 1' and 4' will be identical. Once the density is known, the Hugoniot 
curve Eq.[2.36] is expanded in terms of the deviatoric stress and pressure at state 1'. Solving implicitly (See 
Eq.[2.115]) for energy at state 1' leaves the rather lengthy expression 

ey 
ei + £ (<7i + Sx(pi') -PH(VV) [l - ^7(Vb - Vy)]) (Vy - V1) 

The pressure at state 1' is found by solving the Hugoniot Equation Eq.[2.36] for pressure or 

(2.108) 

Pv=SXl,+a1-
2^ev   .f0 (2.109) 

Vy — V\ 

The velocity is found from Eq.[2.70] as 

vv =vi- y/(<rv ~ °i)(Vv -Vi) (2.110) 

where ay = SXl, - py. The velocity for state v4< is found from Eq.[2.71] as 

vv =v4 + y/(av - o4)(V4. -Vi) (2.111) 

thereby completing the unknowns at state 1'. 
The states at 2 and 3 must be determined numerically as was the case with the elastic solution using the 

Mie-Grueneisen Equation of State. The contact discontinuity speed is calculated or approximated using 

vc = \(v1+vi) (2.112) 
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The numerical procedure developed in Section 2.1.2 is used where 5x(/92) uses the plastic function as defined 
in Eq.[2.98]. The states at 2 and 3 are calculated, then if the normal stresses are not equal at the contact 
discontinuity, the densities at states 2 and 3 are recalculated using a Newton-Raphson procedure as devel- 
oped earlier until the error tolerance is below the established criteria. 

EXAMPLE: Two-wave solution using the Mie-Grueneisen Equation of State. 
The physical orientation will be the same as in previous examples and the material values will be the same 
as in Table 2.1. The initial properties at states 1 and 4 will be the same as in the previous examples except 
that vi = 100 m/s. The problem is to find the states at 1', 2, 3, and 4'. 

The problem is the collision of two like metal bars which impact on another. The physical properties are 
given in Table 2.1 except that Hi, will be set to zero such that the response is purely plastic. The initial 
conditions in the bars will be pi - p4 = 0.0, e\ = e4 = 0.0, SXl = SXi = 0.0. The velocity of the left bar will 
be vi = 100 m/s and the velocity of the right bar will be V4 = -100 m/s. 

The assumption is made that the deviatoric stress exceeded the yield point assuming an elastic response, 
thus the solution must exhibit a plastic response. However, to have a two-wave system the shock speed of 
the plastic wave must be less than the shock speed of the elastic wave. If this is not the condition, then the 
shocks will coalesce into a single shock. From Eq.[2.78] we have that SXl, = SX4, = § • 300 = -200 Mpa in 
compression. From Eq.[2.79], we can calculate the density at state 1' as 

pv = 8930.0 • exp 
3.0 

4.0 • 45.0e9 (0.0- (-200.0 -106)) = 8959.816332 Kg/m3 

The calculation of energy at state 1' will be broken into several pieces to simplify the solution.   The 
reference Hugoniot PH{PV) is given by Eq.[2.120] or 

PH(PV) = 
3940 02 • C—-  ox<±u.v     y 8930.Q 8959.81633a 

L1-^3    V8930.0        8959.816332''        8930.OJ 

The energy is solved using Eq.[2.108] 

= 466.077 MPa 

ev 

0.0 + | (o.O + -200 ■ 106 - 466.077 • 106 1- 2.0 

'8959.816332 

<-k  
V8930        8959 816332/JJ '8959.8 816332        8930J 

l+~       2P ( 1 1 

"8959.816332 8959.816332        8930 ^ 

ev    =    124.272 J/Kg 

The pressure is found at state 1' using Eq.[2.109] where 

fi                2 • (124.272 - 0.0) 
pv = -200.0 • 106 + 0.0 4  ; 
 i__ 
8959.816332        8930.0 

= 466.744826 MPa 

The normal stress at state 1' is 

av = SXl, - pv = -200 • 106 - 466.744826 • 106 = -666.744 MPa 
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The velocity is found at state 1' using Eq.[2.70] 

vv = 100.0 - y/( - 666.744e- - O.o) (^ - ^) = 84.23 m/s 

The shock speed Ure is calculated using Eq.[2.29] where 

8930.0 • 100.0 - 8959.826 • 84.2347        ACOr nK     , 
Ure = = -4635.95 m/s 

8930.0 - 8959.826 ' 

The properties at state 4' are identical to state 1' expect the velocity which is calculated from Eq.[2.71] 
which is 

t* = -100.0 + ^( - 666.744ea _ 0.0) (^1^ - ^) = -84.23 m/s 

The shock speed Urp is calculated from Eq.[2.29] where 

8959.826-84.2347-9147.919-0        AMn coe     , 
Um = = -4012.535 m/s rp 8959.826 - 9147.919 ' 

Summarizing the solution at state 1': 

p = 8959.816332 Kg/m3 

v = 84.23 m/s 

p = 466.744826 MPa 

Sx = -200 MPa 

a = -666.744 Mpa 

e = 124.272 J/Kg 

and summarizing the results at state 4' 

p = 8959.816332 Kg/m3 

v = -84.23 m/s 

p = 466.744826 MPa 

Sx = -200 MPa 

a = -666.744 Mpa 

e = 124.272 J/Kg 

The conditions at state 2 and 3 are solved using the described numerical procedure with the results 
presented in Table 2.1.3. 
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Table 2.3: Result of numerical procedure at states 2 and 3 using the Mie-Grueneisen equation of state for 
the two wave problem. 

p  = 9147.919 Kgjm6 

V      = 0 m/s 

p  = 3.559 GPa 

°x     = -200.0 MPa 

a    — -3.7587 GPa 

e    = 5219.884 J/Kg 

2.1 A    Single-wave plastic response using the Mie-Grueneisen Equation of State. 

If the contact discontinuity velocity increases in a two-wave system, at some point the velocity of the plastic 
wave will equal the velocity of the elastic wave. When this happens, the shocks collapse back to a single 
wave system as shown in Fig.[2.2]. The production of deviatoric stress at state 2 is taken from Eq.[2.98] 
where 

"■—£-*K SX2=SZ\L + 2G(-rj--l)\nV- (2.113) 

and similarly for state 3 

Sa3=Sr|Ä + 2Gf( 1)ln£± (2.114) 

P Pz 

The numerical procedure used in Section 2.1.2 is used to generate the parameters at state 2 and 3. 

EXAMPLE: Single Wave Plastic Solution using the Mie-Grueneisen Equation of State. 
For this case the velocity at state 1 will be increased to v\ = 600 m/s with ttj = -600.0 m/s. The numerical 
procedure as described previously will be employed to solve for the unknown states at 2 and 3. The results 
of this procedure are shown in Table 2.4. 

2.1.5    The Equation of State 
A convenient and often used equation of state for shock related problems is the Mie-Grueneisen equation of 
state, which gives pressure in terms of internal energy and specific volume or density as follows: 

p(e,V)=pH(V) + ^(e-eH(V)) (2.115) 

Its convenience in part stems from the use of the shock Hugoniot to give reference values. The pressure at 
an arbitrary value of specific volume and internal energy p(e, V) is obtained by finding the pressure PH(V) 
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Table 2.4: Result of numerical procedure for states 2 and 3 using the Mie-Grueneisen equation of state for 
the single plastic wave problem. 

p =    10189.95 Kg/m6 

V =    0.0 m/s 

p =   25.8 GPa 

e =    .18045 MJ/Kg 

&x =    -200.0 MPa 

a =    -26.0 GPa 

and internal energy e//(V) on a reference Hugoniot at a given density. The variation of the desired energy 
from the Hugoniot energy is then linearly related to the pressure difference at the fixed density, with the 
proportionality constant being £, where T is the Grueneisen coefficient. 

The Hugoniot reference state with a specified density pn must satisfy the Rankine-Hugoniot relations 
with a "zero state" where pressure, energy, and velocity are zero, i. e. po = e0 = vo = 0, with specified 
density />n. Letting 1 state in Eq.[2.35] be the "zero state" and state 2 be the Hugoniot reference state, then 

eH(VH) = ~(V0-VH) (2.116) 

Using the same substitution in Eq.[2.37] and solved for pn leaves 

wow - w^rH (2."7) 

If the above equation is substituted in Eq.[2.116], then 

eH = ~ (2-118) 

Substituting Eq.[2.118] into Eq.[2.115] results in 

p(e,V)=PH(V) l--jy(V0-V) + £e (2.119) 

The reference Hugoniot state including the shock speed has 4 unknowns, i. e. the speed of the discontinuity 
Us, VH, eH, and pn- There are only three Rankine-Hugoniot equations, thus some other equation must be 
supplied to complete the system of unknowns at the reference Hugoniot2. The Experimental Hugoniot will 
be used for this purpose. Combining Eq.[2.37] and either of Eqs.[2.39] or Eq.[2.40] results in 

2If the Mie-Grueneisen were designed such that the reference pressure were a function of energy as well as specific volume, 
then Eq.[2.116]-Eq.[2.118] would be sufficient to define the reference Hugoniot state. 
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Substituting this expression into Eq.[2.119] leaves 

cl(Vo-V) 

pH{y) _        
[s(Vo - K) - Vo] 

(2.120) 

[s(V0 -V)- V0}
2 

l-^(Vo-V) + £e (2.121) 

which is the Mie-Grueneisen Equation of State. This empirical condition, where s and c0 are material 
constants , is particularly useful both because of its simplicity and that it has been experimentally verified 
to represent many materials quite well. 

2.2    Numerical Aspects 

This section presents the numerical algorithms used to simulate the impact dynamics of uniaxial strain. Sub- 
section 2.2.1 presents the methods used to integrate the mass continuity, momentum, and energy equations 
cast in an Eulerian reference frame using a strictly conservative integration method. Section 2.2.2 describes 
upwind approaches for evaluating the flux used in the integration of the conservative equations in a manner 
which is essentially non-oscillatory without the need for explicit dissipative dampening. Section 2.2.3 derives 
the eigenvalues required to construct the characteristic velocity used in the integration scheme. The lasts 
section 2.2.5 describes the technique developed to avoid applying the traditional "Turning Method" when 
the numerical algorithm transitions from the elastic to the plastic portion of the surface. 

2.2.1    Integration Scheme for the Conservation Equations 

The equations of motion as presented from an Eulerian perspective, do not implicitly solve for the deformation 
of the continuum, but rather solve for the unknown velocity field. In contrast, Lagrangian techniques assume 
a material perspective and therefore track the material motion as the deformation occurs. The disadvantage 
of the latter is that the discretization of the deformed media can become highly skewed resulting in reduced 
accuracy. On the other hand, the Eulerian technique allows mass to pass through the internal cell structures 
providing the opportunity for the numerical technique to adjust the nodal placement within the continuum. 
The current philosophy is to require that nodes which lie on material boundaries remain on the boundaries 
for all time, whereas the interior nodes may deform in any manner to maintain the accurate solution of the 
problem. The requirement that boundary nodes remain on the boundary enters the solution as a boundary 
condition where 

—- — g(vi) for Xi £ [boundary] (2.122) 

Note that g(vi) for the multidimensional case does not require the boundary nodes to move at local particle 
velocities (though this would be a solution), but simply requires that the boundary nodes lie on the surface 
of the deformed material. This condition is also used to specify collisions with other surfaces, or a free 
boundary which evolves with the solution. Grid motion on the interior given by 
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OX' 
—1 = h(vi) for Xi G [interior] (2.123) 

can support any function h(vi) which is compatible with the boundary deformation to achieve a desirable 
nodal distribution. However the grid advection speed contributes to the eigenvalues of the system and since 
the maximum time step is inversely proportional to the maximum eigenvalue of the system, functions which 
move the interior nodes against the particle motion can significantly reduce the time step taken by the 
integration algorithm. For this reason, care should be taken when choosing h(vi) to minimize this influence. 

While the Eulerian form of the equations of motion provides additional flexibility in the discretation of 
the domain, this flexibility adds complexity to the integration of the equations of motion. To illustrate this, 
consider the divergence form of the one-dimensional equations of motion given by 

The equation is integrated over an arbitrary control volume resulting in 

dx 

Gauss's Theorem is used to represent the second term as a surface integral giving 

I ^-dV + I ^-dV = 0 (2.125) 
Jv dt Jv ox 

<f ^-dV + <f (f ■ fj)dS = 0 (2.126) 
Jv ot Js 

Here, the surface <S bounds the control volume V, and r) is a unit outward normal on the surface S. The 
volume and the control surface are assumed to be constant during integration, therefore Eq.[2.126] can not 
be used to integrate the equations of motion if the grid is deforming. This concept and the issues surrounding 
a moving grid for Eulerian equations lead to the definition of the so-called Geometric Conservation Law[7] 
or GCL. A recent investigation conducted by [8] determined that if the the numerical solution could exactly 
reproduce a constant flow field subjected to grid motion , then the solution was at least first-order accurate 
in time. However, no options were offered for schemes requiring a higher level of temporal accuracy. Is it 
therefore possible to have a method which is at least second-order accurate in time with a moving mesh? 
Fortunately, the answer is that any order of temporal accuracy is possible if the integration of the equations 
of motion properly account for the deformation of the grid. 

The fundamental problem of integrating Eq.[2.126] subjected to a moving mesh comes as the result of 
the conventional wisdom of separating the time derivative from the spatial derivatives before the application 
of Gauss' Theorem. As early as 1968, [9] and later [10] recognized that the divergence form of the equations 
of motion could include time as a coordinate direction, thus the nabla or del operator V could be written in 
the three-dimensional form for cartesian components as 

VS^ + ^ + ^ + |g') (2-127) 

35 



For the one-dimensional problem, the volume represents an (t,x) area. For a two-dimensional problem the 
volume is a (t,x,y) time-space slab, and a three-dimensional problem produces a (t,x,y,z) four-dimensional 
volume. With this operator, the conservation equations can now be represented in the simple divergence 
form as 

V • F = S(U) (2.128) 

where F = (U, f). The volume integral can now be applied over Eq.[2.128] with deforming geometry without 
any special consideration as this new definition of volume V is constant over the integral giving 

/ (V • F)dV = I S{U)dV = S0V (2.129) 
Jv Jv 

To evaluate the right-hand side of Eq.[2.128], the well known Mean-Value Theorem is applied where S0 is 
the value of 5(17) evaluated at some interior point in the volume. In practice, it might be better to use some 
form of numerical quadrature to produce a more accurate result. The simplification for the current research 
is better justified in that S(U) = 0 in the absence of body forces which are neglected in this study. For 
completeness however, the term is left in the derivation. 

Applying Gauss's Theorem to the left-hand side, Eq.[2.129] is rewritten for the one-dimensional equation 
set as 

I (F ■ r))dS = I (Ufjt + frjx)dS = SoV (2.130) 
Js Js 

where f) = {fit, f)x) is a unit outward normal to the control volume. Applying the discrete analogy of Eq.[2.130] 
to each edge of the control volume leaves 

4 4 

^(UjVtj + fjVxj) \Sj I = £ Tj = S0V (2.131) 
3 = 1 J=l 

Expanding Eq.[2.131] on each surface and solving for the term with U3 gives 

(U3Ax)n+1 = (U1Ax)n + T2-F2 + S£V = {UxAx)n + A[/»3 (2.132) 

where 

AC/^3 = r% - T% + S£V (2.133) 

Eqs.[2.132,2.133] represent a first-order 0{M) accurate Euler integration. To extend the method to second- 
order accuracy, a corrector step is added which is a temporal adaption of the well known MacCormack 
explicit algorithm [11] which is a member of the Lax-Wendroff method. It's advantage over the classic RK 
class of schemes is that the predictor step calculates to the n+1 time level, not at some fractional increment. 
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As a result, boundary conditions applied after the predictor but before the corrector step are straight forward 
to implement. The two step algorithm is as follows; 

(UAx)*    =    {UiAx)n + AU? (2.134) 

(UiAx)n+1    =    {UAx)*+ \(AU* - AU?) (2.135) 

The integration algorithm given above is very efficient requiring only two levels of memory; one level 
is used to store variables at time level n, and the second is used to store AU. The efficiency is gained by 
storing both levels of AU in the same array. After U* is calculated during the predictor step, the array 
that holds AUn is negated. On the corrector step, the new values of At/ are simply summed into the array 
holding AUn. The corrector step only uses U* and AU's therefore U* calculated during the predictor step 
can overwrite Un. This efficient memory overlap scheme has the added benefit that the same routine that 
calculates AUn will also calculate AU*. 

The linear stability requirement for this algorithm is 

St^max < CFL < 1 (2.136) 
Ax 

where |c|max is the maximum eigenvalue of the system, and CFL is the well known Courant-Friedrichs and 
Lewy number. 

2.2.2    Flux Evaluation 

Most upwind schemes vary only in the method used to compute the interface flux such as Ti and T\ in 
Eq.[2.133]. The schemes are designed to damp oscillations in the vicinity of discontinuities while maintaining 
a sharp profile. For the current application, the dampening of oscillations is particularly critical for the 
velocity profile where the velocity behind the shock is zero. A small amount of negative velocity will cause 
the stress to unload thereby creating large perturbations in the stress profile. 

Though much work has been done on the development of upwind schemes in the last thirty years (See [12] 
[13] for an introduction), most of these can be characterized as using one of two fundamental approaches to 
flux construction; flux interpolation [14][15][22][17], and variable extrapolation followed by flux evaluation[18]. 
Some of the algorithms having been developed for applications in Computational Fluid Dynamics depend 
on properties not applicable for the current application. Roe's scheme, for example, depends on the flux 
function F(U) being homogeneous of order one in U, namely, AF = U which does not hold for the current 
equation of state[2.121]. 

Several of the schemes referenced in the previous paragraph were applied with some success to the current 
application. The CUSP scheme of [15] provided good results if the user was willing to tune the flux limiter 
for the specific test case. In general, most of the schemes were either too dissipative to prevent the overshoot 
of shocks, or did not provide enough dissipation resulting in massive oscillations. The scheme providing the 
best overall performance was the WENO scheme [19] which adaptively computes the best stencil to maximize 
smoothness of the solution. 

Using the notation of [20], we general Ft and T^ as occurring on a material interface defined by 

^+i=-^+^+i (2-137) 
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where 

Tt = WENO^U^U^t^t+i^t^) (2-138) 

fir+1 = WEN05(Tr+3,jrr+2,Jr+i^^-i) (2-139) 

j? = \(Hun)±<*iU?)) (2-14°) 

and 

at = Moard^^i-i)!, 1^(^)1. l^(^+i)l) (2-141) 

where |^'([/i)| is the maximum eigenvalue (section 2.2.3). The WEN05(a,b,c,d,e) operator defines three 
interpolated values 

,1    =    ?_™ + H£ (2.142) q 3      6        6 K        J 

•»  -   f + T-S (2'144) 

and three smoothness functions 

ISi    =    13(a-26 + c)2+3(a-46 + 3c)2 (2.145) 
152 =    lS(b-2c + df+3(d-b)2 (2.146) 
153 =    13(c - 2d + e)2 + 3(3c - Ad + ef (2.147) 

The WEN05(a, b, c, d, e) operator is then defined as 

WEN05(a, b, c, d, e) = »^ + "™ + «*<b (2 14g) 
U\ + U>2 + UJ3 

where the weights w* are defined as 

(2.149) 

For all computations, e = 10~6 as suggested by [20]. 
The truncation error for the discretation is of order ö(Ax5) in space and of order ö(At2) in time from 

Eqs[2.134, 2.135]. 
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2.2.3    Eigenvalue Calculation 

The Weighted ENO numerical procedure outlined in section 2.2.2 has the advantage that only a single 
wavespeed is needed (see Eq.[2.141]), unlike other upwind schemes which require the similarity transformation 
matrices such as the Rieman scheme and others. For a complex equation of state, the calculations can be 
quite tedious particularly in multiple dimensions. 

The wave speed used in Eq.[2.141] is the maximum eigenvalue of the derivative of the flux T{U) Eq.[2.130]. 
The derivative of the flux is given by 

or in matrix form as 

dT(U)      T        df (2.150) 

8T{U) 
dU 

Vt Vx 
(at ~ u2)^ Vt + ur)x(2 - ir0p0)       -pr)xr0p0 (2.151) 

where 

dp _ CIPI\TQ(P - po) + spo - (1 + s)] _ uTppo 

dp ~ [p(s ~ 1) - spo}3 p 

For completeness, the following derivatives were substituted out of Eq.[2.151] 

(2.152) 

dp        -uToPo 
d{pu) 

(2.153) 

The eigenvalues for Eq.[2.151] are 

where c is defined as 

dp r0po 
d(pet) 

Al = T\t + UTjx, A/2) = Ai ± CT], 

(2.154) 

(2.155) 

dp     [p - Sx + p(et - u2)]r0p0 
i n 

dp 
(2.156) 

Note that this expression is not equivalent to the sound speed associated with the propagation of acoustic 
perturbations through the material.   To calculate the true sound speed, it is necessary to represent the 
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stress and strain equations as partial differential equations and include their contributions in the eigenvalue 
computation. 

To complete the definition of a, defined in Eq.[2.141], we define 

1^)1 = ^1 + ^1 (2.157) 

Note that if the grid deforms at the particle velocity rate (^f = u), then r\t = -dx = -u6t, and r)x = St 

for an outward normal. For this case, Ai = 0 thus the grid motion was able to eliminate the advective 
component of the flux leaving only the pressure terms. This reduces the maximum eigenvalue which in 
turn reduces the amount of dissipation needed for the upwind scheme (Eq.2.140), as well as increasing the 
overall computational time step. The computational advantage is not dramatic for cases where u < c, but 
does validate the intuitive notion that the grid should as a general rule move at particle velocity rates when 
possible. 

2.2.4    Integration of the Constitutive Equations 

The numerical integration technique for the conservation equations provides the mechanism to account for 
grid deformation both in time and space. To accommodate grid motion for the constitutive equations 
[2.19d] and [2.19e], a coordinate transformation will be considered where t = t(r),x = X(T,() and inversely 
T = r(t)X = C{t,x)- Applying the chain rule and expanding the transformed equations leaves 

^    =    {l-ß)\G-^ (2.158) 

dl    _       2J_ 
dr 3 XQ 

du 
(2.159) 

where the wave speed Q is given by 

Ct = }L^L (2-160) 
H 

Note that the substitution of ^--^ = ^ in Eqs.[2.158] and [2.159] reproduces the original equations [2.19d] 
and [2.19e] except that t in the original equation is replaced with T.   Therefore from the perspective of 
numerically solving the total differential equations, the transformation may be ignored. 

To integrate Eqs.[2.19d,2.19e], assume the equations can be written in the general form 

where the partial derivative on the right-hand side has been replaced by some numerical approximation and 
the function /(</>, t) may or may not be an explicit function of <p and t. A second order accurate two-step 
numerical solution to Eq.[2.161] is given by 
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<t>*    =    <t>n + Stf{4>n,t) (2.162) 

r+1    =   f + \öt{f(P,t + 6t)-f(<t>n,t)} (2.163) 

Note that the integration procedure is identical to that used for the conservation equations. This is important 
in that (i) the dependent variables will be at the same point in time after the predictor step thereby simplifying 
boundary conditions, and (ii) that the schemes share a common linear stability analysis. 

2.2.5    A Turning Algorithm 

The classical numerical procedure for calculating stress and stain rate assumes that the material response 
during loading is elastic until the effective stress reaches the yield surface. However, the numerical procedure 
rarely produces a stress exactly on the yield surface and instead generates a forbidden stress above the 
yield surface. The so-called "Return Methods" treat this problem by geometrically projecting this forbidden 
stress onto the yield surface using techniques such as the Radial or Oblique Return Method[21]. While these 
methods have been used with great practical success, their derivation does not strictly satisfy the differential 
equations for stress and strain rate. 

The conventional interpretation of the constitutive equations which govern the stress and strain pro- 
duction is that the transition from elastic to plastic deformation occurs at the yield surface with a slope 
discontinuity. This mathematical interpretation is commensurate with the concept that the material follows 
either an elastic or plastic response. While this behavior is approximately correct, a more realistic interpre- 
tation is that the transition from elastic to plastic deformation behaves more as a continuous function with 
a pronounced change of slope at the yield surface. Based on this interpretation, a new method is presented 
which assumes that the material behavior can be partially plastic at a point before the stress violates the 
yield surface. By selecting the appropriate level of plasticity for the next iteration, the algorithm will com- 
pute the value of stress that falls exactly on the yield surface. Since a forbidden stress is never used in the 
calculation, this method is coined a "Turning Method" as it provides an incremental transition from the 
elastic to the plastic region3. 

If the current effective stress is below the yield curve and in loading (point E as shown in Figure.2.5) 
, then an elastic response is assumed and a first order estimate of the stress is calculated. If the resulting 
effective stress exceeds the yield surface, then the first order estimate is discarded. Prom this point, the 
material response is assumed to be in a mixed elastic/plastic mode. To update to the new value of stress 
and strain, the "Turning Method" utilizes the existing stress and strain rate equations [2.19d] and [2.19e], 
except that the parameter k defined in Eq.[2.10] is allowed to take on a fractional value. Casting Eq.[2.19d] 
and Eq.[2.16] in an incremental form and substituting Eq.[2.10], we have 

*=<1+i£> 1  /«ACT 

2GuxAt 
(2.164) 

where 

ACT = H(itrial) ~ ^elastic (2.165) 

3An early temptation was to refer to this scheme as the "Method of No-Return".   Fortunately, good taste and a more 
descriptive name won out. 
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and 

/. = Sgn(Sx) (2.166) 

where the value k is assumed constant during this elastic/plastic phase. If H'(e) is zero, then the response is 
purely plastic and ACT is constant resulting in a non-iterative scheme. If H'(e) is non-zero, then Itriai is set 
to zero in Eq.[2.165], ACT is calculated, followed by k Eq.[2.164], then ß Eq.[2.10]. The process is repeated 
until the change in k is sufficiently small which in practice requires only a few iterations. 

Another way to achieve the same result is to consider that the material is plastic (namely, A; = 1), but 
that the slope of the material H' can be increased beyond what is physical to transition to the yield surface. 
This equivalent slope can be calculated using ß from the current scheme and solving Eq.[2.10] for H'. This 
illustrates that the scheme simply clips the edge of the stress-strain curve in order to avoid violating the 
yield surface. 

2.3    Numerical Results 

To illustrate the accuracy of the numerical algorithm, the test cases presented in the examples will be solved 
numerically and compared to the exact solutions. The Figures for the examples are shown in Chapter 6. 

In order to compute the numerical solution for the hydrostatic and elastic solution using the experimental 
hugoniot, it was necessary to find a function which expresses pressure as a function of known properties, 
which in effect, provides the role of an equation of state. To find a suitable functin, consider the expression 
for a Raleigh line given by 

^f = -pl(Us-v2f (2.167) 

which connects some initial point lonap-V Hugoniot to any other point 2 on the same p-V curve. 
Using this function, a plot of pressure versus particle speed can be produced that shows all possible states 
after passing through a single shock. Substituting the equation for the right-running experimental hugoniot 
and the jump condition for continuity, and after considerable manipulation results in 

Aa= pmCl{Pl-P2) 
[S(P1 -P2)+P2\2 

For the hydrostatic case, deviatoric stress will be 0. Assuming the reference pressure is also 0 and that the 
reference density is po, results in 

P =  P°PC^P - p^ (2.169) 
[s{po - p)+ P? 

or expressed in terms of specific density as 

_      CZ(VQ-V) 
P-[Vo(s-l)-sV}> (2J70) 
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For the elastic case using the experimental hugoniot, the effects of the deviatoric stress must be included. 
Assuming the reference deviatoric stress is 0 leaves 

P = Sx + »^-»l (2-171) [s{p0 -p) + pf 

or expressed in terms of specific density is 

p = s* + nnl{\V)vv (2'172) 
[Vo(s - 1) - sV\2 

As described in the examples, the configuration of the test cases are the impact of two metal bars with 
properties given in Table 2.1. Their initial pressure, energy, and deviatoric stress are zero, i. e. p\ = e\ = 
SXl = 0.0 and p4 = e4 = SX4 = 0.0 in both bars, and their initial densities are 8930.0 Kg/m3. The velocities 
of the bars are given in the context of each test case. 

2.3.1    Hydrostatic Test Case 

See the example in Section 2.1.2 for details of this test case. The results of velocity vs. pressure, density, and 
energy are shown in Figures [6.1], [6.2], and [6.3], respectively. Table 2.5 shows a comparison of the results. 
Only state 2 is shown since state 3 is identical to state 2. 

The results of this experiment indicate that the numerical algorithm is doing a very good job of capturing 
the fundamental physics of the problem. 

Table 2.5: Exact vs. Computed Results for Hydrostatic case(State 2). 
Parameter(Units) Computed Exact | Error | 
Velocity( m/s) 0.0 0.000 0.0% 
Pressure( GPa) 3.652 3.653 0.0% 
Density( Kg/m3) 9154.0 9153.866 0.0% 
Energy( J/Kg) 4991.0 5000.000 0.2% 
Shock Vel.( m/s) -3994.0 -3989.000 0.1% 

2.3.2 Elastic Solution using the Experimental Hugoniot. 

See the example in Section 2.1.2 for details of this test case. The results of velocity vs. pressure, density, 
energy, and deviatoric stress are shown in Figures [6.4], [6.5], [6.6], and [6.7], respectively. The comparison 
between the exact solutions and the numerical solution are shown in Table 2.6. 

This test case illustrates some oscillation particularly with the energy and the deviatoric stress near the 
impact point. However, the scheme is able to capture the correct values away from the oscillations. 

2.3.3 Elastic Solution using the Mie-Grueneisen Equation of State 

See the example in Section 2.1.2 for details of this test case. The results of velocity vs. pressure , density, 
energy, and deviatoric stress are shown in Figures [6.8], [6.9], [6.10], and [6.11], respectively. The comparison 
between the exact solutions and the numerical solution are shown in Table 2.7. 
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Table 2.6: Exact vs. Computed Results for Elastic case(State 2) using the Experimental Hugoniot. 
Parameter (Units) Computed Exact | Error | 
Velocity ( m/s) 0.0 0.0 0.0% 
Pressure( MPa) 200.09 201.319 0.6% 
Density( Kg/m3) 8952.65 8952.637 0.0% 
Energy( J/Kg) 50.0 49.9 0.1% 
Deviatoric Stress ( MPa) 151.5837 -152.123 0.3% 
Normal Stress( MPa) -353.1726 -353.1726 0.0% 
Shock Vel.( m/s) -3994.0 -3967.8 0.5% 

This test case is similar to the previous case in that both exhibit oscillations in deviatoric stress and 
energy near the impact point. However, like before the computed values are very close to the exact values 
away from the oscillations. 

Table 2.7:  Exact vs.   Computed Results for Elastic case(State 2) using the Mie-Grueneisen Equation of 
State.  

Parameter(Units) Computed Exact     |Error| 
Velocity (m/s) 0.0 0.0000 0.0% 
Pressure (MPa) 295.4 295.2880 0.0% 
Density (Kg/m3) 8948.9 8948.9250 0.0% 
Energy (J/Kg) 49.9 50.0000 0.1% 
Deviatoric Stress (MPa) -127.0 -126.9700 0.0% 
Shock Vel. (m/s) -4741.4 -4718.6411 0.4% 

2.3.4    Two-Wave Solution Using the Mie-Grueneisen Equation of State. 

See the example given in Section 2.1.3 for details of this test case. The results of velocity vs. pressure, 
density, energy, and deviatoric stress are shown in Figures [6.12], [6.13], [6.14], and [6.15], respectively. The 
comparison between the exact solution and the numerical solution is shown in Table 2.8. 

This test case has a much higher impact velocity than the previous case much as indicated by the higher 
error, although the oscillations are much better damped in proportion to the previous case. 

Table 2.8:  Exact vs.   Computed Results for the Two-wave Shock using the Mie-Grueneison Equation of 
State. 

State 1' State 2 
Parameter(Units) Computed            Exact Error Computed Exact | Error | 
Velocity (m/s) 84.502 84.234 0.3% 0.0 0.000 0.0% 
Pressure (MPa) 457.360 466.747 2.0% 3559.5 3558.695 0.0% 
Density (Kg/m3) 8959.270 8959.826 0.0% 9147.8 9147.919 0.0% 
Energy (J/Kg) 120.369 124.272 3.1% 5199.0 5219.884 1.9% 
Elastic Shock (m/s) -4678.3 -4635.9538 0.9% 
Plastic Shock (m/s) -3998.5 -4012.5352 0.4% 
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2.3.5    Single-Wave Plastic Solution using the Mie-Grueneisen Equation of State. 

See the example given in Section 2.1.4 for details of this test case. The results of velocity vs. pressure, 
density, energy, and deviatoric stress as shown in Figures [6.16], [6.17], [6.18], and [6.19], respectively. The 
comparison between the exact solution and the numerical solution is shown in Table 2.9. 

This solution exhibits some oscillation as the result of a very small undershoot of the velocity behind 
the shock. The undershoot causes the bar to unload elastically, then an oscillation sets up when the stress 
attempts to recover to the yield surface. One possible way to correct this behavior is to use a higher order 
temporal algorithm for the integration scheme. 

Table 2.9: Exact vs. Computed Results for the Plastic Single-Wave response using the Mie-Grueneisen 
Equation of State. 

Parameter(Units) Computed Exact | Error | 
Velocity (m/s) 0.0 0.000 0.0% 
Pressure (GPa) 25.8 25.800 0.0% 
Density (Kg/m3) 10190.0 10189.950 0.0% 
Energy (J/Kg) 180073.3 180458.200 0.2% 
Deviatoric Stress (MPa) -200.0 -200.000 0.0% 
Shock Vel. (m/s) -4249.0 -4135.954 2.0% 
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Figure 2.5: Figure illustrating the "Turning Method" 
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Chapter 3 

TwoDimensional Considerations 

This chapter will present the equations of motion and the development of numerical algorithms to solve the 
equations of motion for hydrodynamic simulations. Two examples will be shown demonstrating the use of 
the algorithms. 

3.1    Conservation Equations 

In the absence of heat conduction and any sources the conservation equations for two-dimensional plane 
stress is written in the vector form as 

BU     dF     dG_ 
dt      dx      dy 

(3.1) 

or in the divergence form of 

V-F^O (3.2) 

where 

F = (U,F,G) (3.3) 

and 

U 

p 
pu 
pv 

,F = 

. Per 

pu 
pu2 +p- Sx 

puv — £. xy 

puer + u(p - Sx) - vS- xy   _ 

,G 

pv 
PUV  -  Sxy 

PV2   +p-  Sy 
_ puer + v(p - Sy) - vSxy 

(3.4) 
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3.2    Constitutive Equations 

The constitutive equations written to satisfy material frame indifference for plane strain is 

where 

Ai 
D Sy 

Dt &xy 

e 

2 du c   i üü _ an \ _i_ or1  - D*y \dy        dx I "1" ^ V 3 dx 

C      I dv_   du 
°xy \ dx       dy 

I    c\f~\  I  1 dv 
"^ ZUr \ 3 dy        3 dx 

\ (Sy -Sx)(%-%)+G{^ + %- Iß^txy) 

_qdudv fdu,dv_ 
<Pxy-bxdx+bydy+   xy\dy + dx 

(3.5) 

(3.6) 

The conservation equations (Section 3.1) solved with the constitutive equations and closed with an equation 
of state (Section 2.1.5) form the complete equations of motion for hydrodynamics. 

3.3    Integration of the Conservation Equations 

The method of Integration follows closely with that developed in Section 2.2 for the case of uniaxial strain. 
Assuming two space dimensions Eq.[2.130] is written as 

/ (F ■ fj)dS = / {Ufjt + Ff)x + Grjy)dS = 0 
Js Js 

Expanding the terms in the expression above we have 

(3.7) 

T{\3,f,) = F-f, 

pU„ 
puUn   +   {P~   SX)fjX   ~   SXyfjy 
pvU„ - Sxyr)x + (p- Sy)fly 

peTUn   +   [U{p -  SX)   -  VSXy}fjx   +   [V(P -   Sy)   -  USXy]fly 

(3.8) 

where Un = (fjt + ufjx +vfjy). 
The continuum is discretized using an unstructured grid system where the field parameters are stored at 

the vertices of the grid.  A control volume (c.v.)  is constructed about each vertex using the dual medium 
grid as shown in Figure [3.1]. 
Summing Eq.[3.8] on all faces and setting the total flux of the time-space slab to zero requires that 

Un+1An+1 - UnAn + J2Jri(U,fj)\fj\ = 0 (3.9) 
t=i 
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Figure 3.1: The control volume using a dual medium grid. 

where ns is the number of lateral sides on the control volume. For each edge connecting the center node "o", 
and each neighboring vertex, two flux evaluations are required corresponding to the two segments connecting 
the center of the adjacent cells "c" to the center of the edge "m" Although other control volumes can be 
constructed such as connecting the center of the cells directly, the dual medium has been shown to provide 
the best results, particularly when the cell structure is skewed [22]. 

A second order scheme in time and space is formed by a two-step explicit integration algorithm.  The 
predictor step is a simple Euler integration derived by solving Eq.[3.9] for the term at the "n + 1" level or 

U*A* = UnAn + Al/" (3.10) 

where 

AUn = -J^T?(V,m (3.11) 
»=i 

The corrector phase is calculated as 

Un+1An+1 = UnAn + 5 [Al/* - Al/n] (3.12) 

where 
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A£r = -X>*(U,7?)|77| (3.13) 
*=1 

The lateral flux component F{Ü,f)) is needed at the middle of the edge segment "m", yet the field 
parameters are stored at the vertices. There are many methods which can be used to estimate the flux at 
the center of the edge, but one of the most popular is the class of upwind methods. Reference [22] suggests 
a method based on an approximate Rieman method where 

mfllo = E l^ (^(Uo.ft) + ^(U,,fr) - |^y ™> I (U, - Uo)) (3.14) 

The absolute value sign around the derivative indicates some form of eigenvalue decomposition and nor- 
malization. This procedure requires not only the eigenvalue calculation, but also similarity transformation 
matrices. However, the complexity of this operation is not warranted. The sound speed is much larger than 
the local particle velocity and is therefore dominated by the u + c eigenvalue. As a result, the absolute 
value operation in Eq.[3.14] is replaced with a scalar velocity a which satisfies a positivity condition on the 
eigenvalues where 

a > -j\h\max (3-15) 

where 

aF(u,»j) 
A;  : eigenvalues of 

ÖU 

The eigenvalue calculation is given in Section [2.2.3]. Substituting a in Eq.[3.14] leaves 

(3.16) 

F(VMo = j^\\f]\(HVo,fi0) + HVi,Vi)-a(Vi-lJo)) (3.17) 
1=1 ^ ' 

3.4 Integration of the Constitutive Equations 

The fundamental concept of integrating the constitutive equations [3.5] is to replace the partial derivatives 
with finite volume expressions, then applying some standard technique for integrating the resulting first- 
order Ordinary Differential Equation. The integration technique for two-dimensions is the same as shown in 
Section [3.2] and will not be repeated here. 

3.5 Results for Two-Dimensional Plane Strain 

The concepts explored in the case of uniaxial strain were extended into two-dimensions primarily to under- 
stand if the numerical algorithms would extend into multi-dimensions as expected. Two simple test cases 
are presented that illustrate reasonable qualitative plastic behavior, though the results were not validated. 
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The first test case was a finite length bar impacting a non-deformable surface at 1000 m/s (See Figure 
[6.20]). The boundary condition on the left wall was zero horizontal deflection, thereby simulating a cen- 
terline. The boundary condition imposed on the bottom surface was no vertical deflection. The right and 
top boundaries were free to deform as calculated and imposed a zero stress boundary. Ideally, the boundary 
condition should be zero surface traction, i. e., rijOji = 0 but the details of the implementation were never 
explored. In addition, the nodes on the interior of the simulation were moved during each time step such 
that LaPlace's solution was approximately satisfied at each time step, or 

V2a; + V2
2/ = 0 (3.18) 

This adaptivity provides a smooth variation of the interior grid nodes to large deformations at the boundary. 
Similar results were obtained if the interior nodes were allowed to follow the particle velocity rate. 

The second test case is identical to the first test case except a notch was included on the output boundary. 
The initial configuration is shown in Figure [6.21], and the deformed geometry is shown magnified in Figure 
[6.22]. 

Neither of these two test cases were evaluated in any detail other than to observe that the results 
indicated basic plastic response (i.e. mushrooming of the base) with an elastic rebound which was observed. 
The boundary conditions were not accurate and therefore would never compare favorably with data. 
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Chapter 4 

Conclusion 

The overall conclusion is an Eulerian form of the equations of motion for hydrodynamics can be used to 
numerically simulate a wide wide of impact velocities with great accuracy with little oscillation in the 
solution. The best observed upwind technique to solve these equations is the ENO technique which produces 
the sharpest shocks with the least amount of smearing. However, very high orders of accuracy in both time 
and space are necessary to achieve accurate solutions without oscillations, although correct jump conditions 
can be achieved in the presence of oscillations with lower order solutions. Small errors in velocity, particularly 
shock undershoots, can cause the deviatoric stress to unload generating large errors and oscillations in the 
stress field. 

Exact solutions to impact problems using multiple materials can be produced using the Mie-Grueneisen 
Equation of State, though not all the solutions are explicit and must be solved using numerical techniques 
to handle algebraic non-linearity. 

It is not desirable to solve the conservation equations and the constitutive equations as a coupled set 
of partial differential equations. It was illustrated that there were no discovered divergence forms that 
produced eigenvectors which remain bounded, and therefore retained its hyperbolic character. Secondly, 
no forms could be found which produced any different eigenvalues beyond that of the conservative system, 
therefore no gain would be attributed to the coupling. Perhaps the strongest argument is that some of 
the exact solutions demonstrate that the solution to the conservative equations were dependent only on the 
normal stress, and not on the individual stress components1. Therefore, it would not make physical sense to 
couple the conservative and constitutive equations when the physics are not coupled. 

'As an example, the solution for the hydrostatic and the elastic solution produce the same normal stress independent of the 
choice of stress model 
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Chapter 5 

Recommendations 

The research effort in examining the potential of using the Eulerian form of the equations of motion coupled 
with an upwind solution methodology is a success. The result of the numerics illustrates an exceptional 
capability to capture the correct jump conditions across shocks without the use of artificial dissipation 
to maintain stability. Although shocks are reasonably sharp using the WENO integration algorithm, the 
numerical solution for very high impact velocities exhibits a tendancy for the deviatoric stress to unload in 
the presence of small velocity undershoots downstream of the shock. This defect in stress in turn corrupts 
the calculation of plastic strain. This effect may be minimized by using a scheme with fourth-order or higher 
accuracy in time (the current scheme is fifth order accurate in space, and second order in time). 

Another strategy which needs to be examined is the level of improvement in the solution accuracy that 
could be realized by applying upwind techniques to the equations of motion cast in the Lagrange form. 
Simple numerical experiments using central difference approximations indicate the ability to capture shocks 
sharply, although artificial diffusion has to be applied to maintain stability, which taints the accuracy of the 
solution. Upwind techniques should further refine the shock without the explicitly added artificial viscosity 
resulting in higher accuracy. 

Much work is yet to be done on both the numerical model and the validation of the two-dimensional 
computer code. The current implementation needs to be expanded to include the axisymmetric form for 
validation against the Taylor impact experimental data. 
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Chapter 6 

Additional Figures 
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Figure 6.1: Pressure for hydrostatic test case. 
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Figure 6.2: Density for hydrostatic test case. 
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Figure 6.3: Energy for hydrostatic test case. 
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Figure 6.4: Pressure for elastic test case using the Experimental Hugoniot. 
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Figure 6.5: Density for elastic test case using the Experimental Hugoniot. 
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Figure 6.6: Energy for elastic test case using the Experimental Hugoniot. 
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Figure 6.7: Deviatoric Stress for elastic test case using the Experimental Hugoniot. 
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Figure 6.8: Pressure for elastic test case using the Mie-Grueneisen equation of state. 
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Figure 6.9: Density for elastic test case using the Mie-Grueneisen equation of state. 
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Figure 6.10: Energy for elastic test case using the Mie-Grueneisen equation of state. 
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Figure 6.11: Deviatoric stress for elastic test case using the Mie-Grueneisen equation of state. 
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Figure 6.12: Pressure for two-wave test case using the Mie-Grueneisen equation of state. 

66 



r    f 

u-vabctty 

AflBJOp-J 

Figure 6.13: Density for two-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.14: Energy for two-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.15: Deviatoric stress for two-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.16: Pressure for single-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.17: Density for single-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.18: Energy for single-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.19: Deviatoric stress for single-wave test case using the Mie-Grueneisen equation of state. 
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Figure 6.20: Pressure for impact of Copper Bar at 1000 m/s. 
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Figure 6.21: Initial Configuration of notched bar. 
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Figure 6.22: Deformed Configuration of notched bar with Pressure. 
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