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CHAPTER1

INTRODUCTION

1.1 Background

The US Air Force has invested heavily in the development of advanced surveillance systems and technologies.
Of increasing concern is the threat that potential adversaries may use bistatic technologies to take advantage of our
significant investment in advanced sensors. With relatively inexpensive receiver systems, an adversary could host
off of our illuminations to operate bistatically. A central requirement for non-cooperative bistatic operation is the
estimation of a coherent reference signal. This estimate is used to correlate against received waveforms to extract
the desired signal. As illustrated in Figure 1.1, a coherent reference is typically obtained by measuring a direct path
signal through the sidelobes of the illuminator. Conventional methods to prevent the interception of the direct path
signal include low sidelobe antennas, physical isolation, and the use of spread spectrum waveforms. These methods
will become inadequate as surveillance sensors migrate to space.

Transmit
Malnbeam

Monostatic
Radar

Bistatic
Recelver
Mainbeam

Spatially Denled
Coherent Reference

{ lon-Cooperative
™ Bistatic Sensor

Figure 1.1: Non-cooperative bistatic receivers require a coherent reference from the host illuminator

In addition, to enhance precision engagement, it is desirable that covert data/voice communication be
incorporated simultaneously with the surveillance function. This embedded communications capability should
atlow for the message signal to vary with angle such that separate information can be directed to different receivers
located at various angles. Directionally dependent waveforms would be ideal for space based sensing of RF tags on
aircraft (IFF), ground equipment and troops and would be especiaily valuable for search and rescue missions. Of
course, the radar and communications waveforms should be designed so that they can be radiated at the same time
without self-jamming.

1.2 Proposed Methodology

As shown in Figure 1.2, it is proposed to employ an (N+2) element antenna array where N of the elements are
used by the host radar for surveillance purposes while two of the elements are used by the interferometer for
coherent reference denial and communications purposes. The two interferometric elements are driven separately
with an independent waveform generation, timing and control circuit.

Ideally, the interferometer antenna pattern will overlay the sidelobes of the host radar main antenna pattern with
minimal overlay of the radar main beam. The interferometer may or may not be on all of the time. However, as a
minimum, the interferometer will be on while the host radar is in the transmit mode with the objective that the
interferometer signal will mask that portion of the host radar signal emitted through the radar sidelobes. In this way,
a coherent reference signal is denied to a non-cooperative bistatic receiver.

1/2




IYYYYYYY

Monostatic Radar \\ Main Antenna: N-Elements

Interferometric
Spatial Denial Anfsnna

Figure 1.2: A pair of interferometric elements driven by independent waveform generation, timing and control provides a means
to modulate the sidelobes of the host radar main array.

To increase the effectiveness of this masking, it is also proposed to modulate the interferometer antenna pattern
from pulse to pulse such that the pattern is rotated on each pulse. This is illustrated in Figure 1.3. Due to the nature
of the interferometer modulation, the proposed method of denying a coherent reference is more effective than
masking the sidelobes with a noise signal.

Also, by carefully selecting the interferometer modulation, a desired message signal can be embedded in the
sidelobes, thereby allowing data/voice communications operations simultaneously with the surveillance function.
Using a multi-channel phased array antenna and orthogonal spatial-temporal waveforms, the message signal can

vary with angle. In this manner, separate communications signals can be directed to different receivers located at
various angles.

1.3 Research Objectives
The objectives of this research effort are summarized below:

1) Develop joint spatial-temporal antenna-based signal processing techniques and waveforms that can be applied
simultaneously to radar and communications systems without self jamming,

2) Design multi-dimensional waveforms for the purposes of denying a coherent reference to a non-cooperative
bistatic radar located at an arbitrary angle while simultaneously permitting radar surveillance and multiple
embedded communications,

3) Design diverse waveforms which will accommodate multi-mission operations such as ground and airborne
moving target indication, tracking, automatic target recognition, and foliage and ground penetration,

4) Investigate theoretical measures of performance for sensor and communication systems incorporating these new
and novel waveforms.

2Eloment Main Beam 2Eloment
Interferomete of N-Element Interferomete:
erometer Antenna erometer
Finst Puse Saecond Pulse
~
OMNI
Pattem Rotation
OMN With Phase Shift

N\

A

‘ \'\ Far Field Response of

the N + 2 Element Array

Firat Puise
Second Pulse

Figure 1.3: Pulse-to-pulse phase modulation of the sidelobes denies a coherent reference to non-cooperative receivers. The
sidelobe modulation, also, permits embedded communications.




1.4 Report Organization

Bistatic radar fundamentals are reviewed in Chapter 2. Various issues associated with the successful operation
of a non-cooperative bistatic radar are discussed. Use of the interferometer signal to mask the direct signal of the
host radar is then considered. Performance degradation of the non-cooperative bistatic radar is shown to depend
upon the delay-Doppler ambiguity functions of the host radar and interferometer waveforms and their cross
ambiguity function.

Antenna patterns of the interferometer and host radar are developed in Chapter 3. It is noted that it is possible
to achieve spatial orthogonality between the host radar and interferometer by placing a broad mull of the
interferometer pattern in the direction of the main beam of the host radar. However, it is shown that frequency
hopping is required to steer the interferometer pattern while maintaining the broad null. Various waveforms are
considered for the signals driving the interferometer. Conditions required by the wave equation are investigated for
the quasi-stationary behavior of an antenna when modulated signals are radiated. Response of the interferometer
element pair when excited by two different modulated signals is derived. This is specialized to the situation where
both elements are excited by the same linear frequency modulated pulse. In addition, the case is considered where
one of the interferometer signals is an up chirp while the other is a down chirp.

A frequency-coded waveform, employing Costas sequences, is proposed for the host radar signal in Chapter 4.
The concept of the Costas array is introduced and the delay-Doppler ambiguity function of the Costas signal is
derived. The ambiguity function is shown to have a thumbtack-like shape (i.c., a single narrow central peak
surrounded by a low-level pedestal).

Orthogonal frequency division multiplexing (OFDM) is chosen as the modulation scheme for the
interferometer in Chapter 5. After a tutorial discussion of OFDM, the delay-Doppler ambiguity function of the
OFDM signal is derived.

Performance of the non-cooperative bistatic radar is considered in Chapter 6 assuming that the host radar and
interferometer employ Costas and OFDM signals, respectively. This requires derivation of the delay-Doppler cross
ambiguity function between the Costas and OFDM signals. Expressions are obtained for the false alarm and
detection probabilities of the non-cooperative bistatic radar.

Finally, a summary of results and suggestions for future work are provided in Chapter 7.




CHAPTER 2

NON-COOPERATIVE BISTATIC RADAR CONSIDERATIONS

2.1 Bistatic Radar Fundamentals [1]

A bistatic radar is one in which the transmitter and receiver are physically separated and, therefore, have
separate antennas, as shown in Figure 2.1. The north-referenced coordinate system, which is illustrated in Figure

B
Bistatic Angle

Transmitter Receiver

Figure 2.1: A bistatic receiver employs separate antennas for transmitting and receiving.

2.2, is frequently used to describe the bistatic radar geometry. The bistatic baseline is denoted by L and designates
the distance separating the transmitter and receiver. Ryand Ry denote the distance from the transmitter to the target
and the distance from the target to the receiver, respectively. The bistatic angle, B, is measured at the target and is

the angle between the lines whose lengths are denoted by Rt and Rg.

Target
North North
A B 4
Ry pi2 Rg
Bistatic Bisector
o -6
Transmitter Bistatic Baseline, L Receiver

Figure 2.2: Bistatic radar geometry is described using the north-referenced coordinate system.




The direct-path delay between the transmitter and receiver is
7 =L Q.1

where ¢ is the speed of light. The total delay related to the detection of a point target is

TP _ Rp+Ry
= ===,

T 22

The bistatic delay is defined to be the difference between the total delay and the direct-path delay and is given by

R.+R,-L
T,=1" —g¥ =Lk _— 23)
5
Thus, the bistatic delay is a measure of the bistatic range which is defined to be
BR =RT +R,—L. 2.4

The locus of constant bistatic range is an ellipsoid whose foci are located at the transmitter and receiver. The major
semi-axis length is given by

L_L+BR R +R,

> > 2.5)
while the minor semi-axis lengths are equal and given by
a’*-I* /4. (2.6)
For the special case of a monostatic radar,
L=1 =9 Q.7
and the ellipsoid becomes a sphere of radius Rg = Rr. The monostatic delay related to a point target is
7, =2 =2k 2.8

The Doppler frequency observed in the received signal is proportional to the time derivative of the bistatic

range. Let the target velocity vector be denoted by U . Assuming a stationary transmitter and receiver, (dL/dt) = 0.
The time derivative of the bistatic range is then given by

g(dif)-:-Zlﬁlcochos(ﬁQ) 2.9

where & is the angle between the velocity vector and the bistatic angle bisector, as illustrated in Figure 2.3. Hence,
the bistatic Doppler frequency is




B2

Transmitter L Receiver

Figure 2.3: The bistatic Doppler frequency depends upon the angle between the velocity vector and the bistatic angle bisector.

_ 1 d(BR) _2]¥|

7 - cosd cos(S/2) (2.10)

Sz =

where A, is the wavelength of the propagating wave. Observe that | D | cos & is the projection of the velocity
vector on the bistatic angle bisector. It represents the velocity component perpendicular to the constant range
ellipsoid. Along the bistatic baseline, [ = 180° and the target Doppler frequency is always zero independent of the
velocity vector orientation.

For a monostatic radar, ﬂ = 0°. The Doppler frequency becomes
2|v|
f,, ==——cosd (2.11)
Ao

where O is now the angle between the velocity vector and the radial line between the target and the radar. The
monostatic Doppler frequency geometry is shown in Figure 2.4,

The bistatic triangle of Figure 2.2 is readily solved to locate the target position relative to the transmitter
and receiver. Three pieces of information are needed to completely and unambiguously specify a triangle, one of

which must be the length of a side. Given L, then any two of BR, HT , and 9R can be used to solve the triangle to

locate the target. For example, using BR and 8,

Figure 2.4: The monostatic Doppler frequency depends upon the angle between the velocity vector and the radial line from the
target to the radar.

_ (BR)* +2L(BR)
R 2[BR+L(1+sinf,)]’

(2.12)




In a similar manner, using BR and 0., ,

(BR)* +2L(BR)
r = - . (2.13)
2[BR+ L(1-siné,)]
In addition, from Figure 2.2,
B=6,-6,. 2.14)
Using the law of sines, it follows that
sin f _ cos#, _ cosé; 2.15)

L R R,

As aresult, knowledge of any three of the four parameters 9T , 9R , L, and BR is sufficient to determine the fourth.
Also, it can be shown using the law of sines that

R, = (BR + L) cos6, 216
cos @, +cosb,
and
R = (BR +L)cos€R' @17
cosf; +cos6,
Finally, the distance along the baseline can be expressed as
I (BR + L)sin(6, —6;) ' 2.18)

cos@, +cos6,

The discussion in this section assumed that the bistatic radar transmitter and receiver were designed to be
used together and are synchronized for maximum performance. Synchronization issues for the case of a non-
cooperative bistatic radar receiver, where the receiver attempts to “hitchhike” off of an independent source of
illumination, is discussed in Section 2.2. This mode of operation is termed “non-cooperative” because the
transmitter is not designed to support bistatic radar operation.

2.2 Synchronization Issues for a Non-Cooperative Bistatic Radar Receiver [2,3]

In order to maximize the radar coverage and detection sensitivity of a non-cooperative bistatic radar
receiver, the receiver must either know or be able to estimate the following transmitter parameters:

1) Transmitter location,

2) Antenna polarization,

3) Carrier frequency,

4) Antenna beam pattern and beamwidth,
5) Antenna scan characteristics,

6) Complex envelope waveform.

Each of these requirements is briefly discussed in this section.




2.2.1 Transmitter Location

As pointed out in Section 2.1, solution of the bistatic triangle requires knowledge of the transmitter
position. This can be determined in a variety of ways. Although non-cooperative, the transmitter’s location may be
known a priori. For instance, the position of airport surveillance radars may be found in various data bases. When
not known, the transmitter’s location can be estimated using emitter location techniques. Such techniques typically
involve multiple receiver sites or a moving platform and are generally good enough so as not to significantly affect
target location accuracies.

222 Antenna Polarization

The antenna polarization may be known a priori in some cases. Otherwise, the polarization can be
determined by measuring the direct path signal using antennas matched to various polarizations. When this is not
possible, a 45°slant polarized antenna may be used as a compromise by the bistatic radar receiver.

223 Carrier Frequency

Waveform power can be maximized by tuning the bistatic radar receiver to the known or estimated carrier
frequency of the transmitted waveform. Techniques for determining the carrier frequency of an unknown waveform
are well known and have been implemented in electronic support measures (ESM) receivers. In fact, frequency
estimation can be done with a higher accuracy than is required for good bistatic radar operation. It can, also, be
done very rapidly. For example, frequency can be measured on a pulse-to-pulse basis by a technique known as
instantaneous frequency measurement (IFM). This becomes essential when hosting off radars that are pulse-to-pulse
frequency agile.

2.24 Antenna Beam Pattern and Beamwidth

It is desirable to integrate all of the pulses that the mainbeam places on the target. Knowledge of the
beamwidth is necessary to set the dwell time or, equivalently, the coherent processing interval (CPI). The
transmitted pulse amplitudes are modulated by the scanning of the transmitter beam for long dwells. Reasonable
knowledge of the transmitting antenna beam pattern becomes necessary to do a good job of matched filtering.
Beamwidth is another parameter that can be measured by ESM systems. This is generally derived by monitoring the
envelope of the transmitted pulses over a scan. It appears that an accuracy within 25% is sufficient to maintain good
bistatic radar receiver performance.

2.25 Antenna Scan Characteristics

In order for the antenna of the bistatic radar receiver to be pointing at the volume of space simultaneously
illuminated by the transmitter, it is necessary to know the transmitter scan characteristics. This is referred to as
pulse chasing. For mechanically-scanned radars, rotating at a constant angular rate, the scan rate of the transmitter is
estimated by tracking the times when the mainbeam flashes past the receiver. Knowledge of the scan time enables
estimates to be made of the azimuth angle toward which the transmitter antenna is pointing at any time instant,
Generally, it is not possible to synchronize a bistatic radar receiver to the elevation scanning of a transmitter unless a
known regular elevation scan pattern is used. To overcome this lack of knowledge, the bistatic radar receiver
typically uses a receive aperture with an elevation fan beam which covers all elevations of interest.

2.2.6 Complex Envelope Waveform

The complex envelope of the transmitted waveform, which contains the amplitude and phase modulation of
the radar pulse, must be estimated for use in cross correlation with the radar signal. In addition, approximations to
the pulsewidth and the timing of pulses, which may or may not be staggered, are needed to successfully perform the
operations of Doppler processing, pulse compression, and matched filtering.

As pointed out in Chapter 1, one of the objectives of this effort is to use the interferometer signal to disrupt
to the extent possible the synchronization of the non-cooperative bistatic radar receiver with the host radar.




2.3. Coherent Reference Denial

In this report it is assumed that the non-cooperative bistatic radar receiver performs detection by utilizing
an estimate of the host radar transmitted signal for correlation with the received data. In practice, the estimate
should be continuously updated in order to account for pulse-to-pulse amplitude, frequency, and phase variations
that may or may not be intentional.

The estimate of the host radar transmitted complex envelope is typically obtained from the direct path
signal observed by the bistatic radar receiver. In general, the direct path signal is corrupted by clutter and receiver
noise which, in some cases, can be sufficient to cause significant signal processing losses due to poor estimates of
the host radar complex envelope. However, for our purposes, it will be assumed that the interferometer signal is
mainly responsible for degradation of the complex envelope estimate. In this way, there is no reliance solely on the
clutter and receiver noise to prevent the non-cooperative bistatic radar receiver from hosting off of the monostatic
radar. Of course, to the extent that the clutter and receiver noise help to mask the transmitted radar waveform in the
direct path, the more difficult it will be for the non-cooperative bistatic radar receiver to operate successfully.

With reference to Figure 1.2, let the transmitted host radar and interferometer complex envelopes be
denoted by sgap (t) and sim(t), respectively. By definition, the energies of these signals are given by

Epip =10" | spip(®) [* dt @.19)
and
Epy =10 | Sig (@) ! dlt (2.20)

where both signals are assumed to be of the same duration, T4. To account explicitly for the signal energies, it is
convenient to introduce the unit energy signals frap(t) and fipy (t) such that

I fan@F dt =1 | firae OF dt=1. @21)

The complex envelopes can then be expressed as

Sap® = Eggp frap(?) (2.22)

and

S (D) = N Egeae fine (0. (2.23)
For simplicity, assume that the direct path signal between the monostatic and bistatic radars is used as the
coherent reference signal for the correlator in the non-cooperative bistatic radar receiver. With reference to Figure

2.2, the direct path consists of the bistatic baseline which is of length, L. Let Gﬁ: denote the antenna gain of the

monostatic radar in the direction of the direct path. Consequently, the power density of the monostatic radar signal
at the bistatic radar is

WDP = (ERAD /Td)GADﬂ}; .

2.24
RaD anl? @-24)

Let Gg denote the antenna gain of the bistatic radar in the direction of the direct path. Then the effective aperture
area of the bistatic radar antenna in the direction of the direct path is

APP — ._G.ﬁlz__z_ (2.25)
B 4x
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where A is the signal wavelength. It follows that the monostatic radar signal power intercepted by the bistatic radar

is

E GDP GDP 2‘2
(4n)'I'T,

Poh=Wip Am = (2.26)

Similarly, let GII;,; denote the antenna gain of the interferometer in the direction of the direct path. The
interferometer signal power intercepted by the bistatic radar is then given by

DP —~DP 92
EIFMGIFM GBR /1

(4m)* L'T,

PR = 2.27)

Assume the direct path signal intercepted by the bistatic radar receiver is delayed by an amount, 72 and Doppler
shifted by an amount, f PP 1f n® (t) denotes the complex envelope of the receiver noise in the direct path, the
complex envelope of the direct path signal may be modeled as

P (1) = k2L froap (G =T Y 27

DP (t DP

=) (228)
k2P fe (E=T7) € T 4 0P ()

where kpr, and kDF are complex constants such that

E GDPGDPA«Z
Vkrap I* = Pran Ty = ’“?4 jf)"z i 2.29)
and
DP 42
|kFM | "PlgIZTd = EIFM IFM GBRA’ (2'30)

(4m)- I

With reference to Figure 2.2, the signal reflected from the target to the non-cooperative bistatic radar
receiver travels from the transmitter along the two legs of the triangle whose lengths are Ry and Ry. In general, this
signal consists of two components, one from the monostatic radar and one from the interferometer. The two legs of

the triangle are referred to in this report as the total path. Let GAT;;{,GIFM,Gg denote the antenna gains of the
monostatic radar, interferometer, and bistatic radar, respectively, in the target direction along the total path. Also, let
O be the effective target radar cross section. Since the power density of the monostatic radar signal at the target is

Eran ! T,) G

WTP =
T 47R}

, 2.31)

the power density of the monostatic radar signal at the bistatic radar is

(Exap /T1)Gim_ O (2.32)

W TP — .
Kb 47R}? 47R}

Hence, the target signal power intercepted by the bistatic radar due to the monostatic radar is

11




TP TP 2
7P __ERADGMR s Or A

(2.33)

T U’R R,
Similarly, the target signal power intercepted by the bistatic radar due to the interferometer is
P P 2
pr - E ey G irag O pr O-T"L 2 34
BT (4m)RIRIT, @39
rfhria

Assume the total path signal received by the bistatic radar receiver is delayed by an amount, 7 nJ, and Doppler

shifted by an amount, f L (?) denotes the complex envelope of the receiver noise in the total path, the
complex envelope of the total path signal may be modeled as

() = kg frap =77 e 27 (t=77)

(2.35)
. TP P
ki Fiu =7 e (1)
P 7P
where kp,,, and Kz, are complex constants such that
TP TP 2
lkTP IZ_PTP T - ERADGIWZGBR O.T ﬂ' 2.36
rap | = Lpapla &= (47[)3R2R2 (2.36)
T8
and
TP TP 2
k2 P=PP T, = E G Gpr OrA @2.37)
IFM | — Y IFM*d — (4”)3R2R2 :
7R
The bistatic delay is defined in Equation (2.3) as
— TP _ .DP
Ty =T —T .

Similarly, the bistatic Doppler shift is defined to be
fa=f"-r". 2.38)

)

ianf T 0-T .
e’ with the total

Ideally, the non-cooperative bistatic receiver would like to correlate f,,, (¢ —Tn’)
path signal, s™" (t). To accomplish this, it would modify the direct path signal by a delay, 7,, and a Doppler shift,
fs. However, in practice, 7 and fp are unknown. Hence, the bistatic radar receiver would utilize estimates of

Tpand fp . Let these be denoted by

Tp=T,— 1T (2.39)
and
fe=13—0. (2.40)
12




A 2 - P _ 2 .
To detect a possible target, the bistatic radar receiver would then correlate SDP(t —1,)e’ 2t =" = 2y) with

s’ (t). This yields the test statistic employed for the detection of a target.

By definition, correlation of the complex waveforms f] () and f,(#) is given by

y= wffl (@) f ) ar 241)

where the asterisk denotes the operation of complex conjugation. Hence, the test statistic at the output of the
correlator in the non-cooperative bistatic radar receiver is

= I[s”” (t—%,) [re 27Tt TP (1) gy, (2.42)

Substituting the expressions for sPF (t) and s™ (t) given by Equations (2.28) and (2.35) into Equation (2.42), the
detection statistic becomes

- j2m PP -1 ~ 1)

L= [L Gepip )* S 1 =77 =%5) e

T . DP _ A * A
e TR ) +(k1?~“};1)* fIFM (t "TDP_TB)

- j2m PP -1 - tp)
e -
+(nDP(t —% ))* e —j2mfy (=t - 1) ]

B
(kR faap =TT e 7277770
; TP TP

+ kI fom @ —TT) e 7T 0™ ()] db.

e/ 27 fa(t—1PF - 25) (2.43)

Carrying out the product in the integrand of /, it is seen that [ is a summation composed of nine integrals. If the i"
integral is denoted by I;, the detection statistic can be expressed as

[= i I, 244

i=1

where only four of the terms do not involve receiver noise. Focusing on these four terms, it is convenient to define
the complex constants

by = (ken) * ki
k= (ki) * K
ky = (kyzyg) * ez (2.45)
k, = (kIL;‘I;l) * kgM .
Referring to Equations (2.3) and (2.39), note that

t—-t -t =t-1" +7 . (2.46)
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Also, with reference to Equations (2.38) and (2.40),

A fy =" -0, (2.47)
Making the change of variable,

c=t-1t% +7, (2.48)
it can be shown that

L=k e /" .“ Srap @) froip (6-7) e’ do. (2.49)

—o0

By definition, the delay — Doppler ambiguity function of the host radar waveform is

1 7 . ;
X (7,0) = A I Spap (O)Spyp (0 —7) e/ do
- RAD - (2.50)
* '2

= | fao(0) faw (6-7) 7 do
where use was made of Equations (2.22) and (2.23). As a result, I; may be expressed as

L=k e y(t,0). ' @.51)
In a similar manner, it can be shown that I, and I; are given by

I, =k, e /™ o (O oc-7) e’ do (2.52)

2 2 RAD IFM

and

L=k e ™™ _[ S ©) frap (6-7) e’ do. (2.53)

By definition, the delay — Doppler cross ambiguity function between the interferometer and host radar waveform is

Z(r,v) S _[ Sias (O)Spp (6-T) e/ do

i Erap (2.54)

= [ fru(©) fauw (0 ~7) 7 ds.

Note that
Z (-1-0)= [ [ (©) frp (0 +7) e 7™ do (2.55)
and
Z* (-1, ~v) = I St () faup (6 +7) /™ 4o, (@256
14




With the change of variable, & =0 + T, Z*(-7,—V)  becomes

Z* (—1‘, —v) = ‘]. fR'AD (a)fIFM (0{ —T) e /270@=D gy

=e ™ [ fup(@) S (@ =7) 7" " dar.

—o0

It follows that I; and I can be expressed as

L=k, e 70" "9% 7' (=, —0)
and

L=k e " Z(z,0).

Finally, it can be shown that

I, =k, e REA jfl;M(a) S (O —T) e’*™ do.

-0

By definition, the delay — Doppler ambiguity function of the interferometer waveform is

J‘ S;FM(O') Sy (O —T) e’’™ do
M —w

= [f2u(©) fiu (G—7) ™™ do.

T, v)=

Consequently,

I, =k,e’/" T(1, v).

In summary, the detection statistic used by the non-cooperative bistatic radar receiver is

1=e 77" [k y(r,0)+ k,e’*™" Z' (-1,-v)
+k,Z(z,v)+ k, T (z, )] + [termsthatinvolve receiver noise].

The desired signal component of the detection statistic is

L=ke'* " y(1, ).

The remaining terms represent noise and interference. In general, the desired signal component is corrupted by
thermal noise, clutter, multipath and/or other propagation effects. However, it is the intention of this effort to design
the interferometer signal such that it effectively masks the direct path signal from the host radar. The expression for
the detection statistic in Equation (2.63) clearly shows that the objective of coherent reference denial depends upon
the delay-Doppler ambiguity functions of the host radar and interferometer waveforms and their cross ambiguity

function.
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CHAPTER 3

INTERFEROMETER AND HOST RADAR ANTENNA PATTERNS

3.1 Interferometer Antenna Pattern

In addition to coherent reference denial, the interferometer signal is to be used for communications in many
different directions. Because the interferometer will serve as a transmitter, its antenna pattern is derived in this
section in the context of a radiation pattern. However, the radiation and reception patterns of an antenna are known

to be identical.

Consider a point, P,, in the far field of the interferometer, as shown in Figure 3.1. The cartesian
coordinates of P, are given by (,‘{o s Vor Zo) while its spherical coordinates are (ro, 6,0, ) These are related by

x, =7,sin 6, cosg,
y, =¥,sin@,sing, .
z, =¥, ¢c080,

Z)
_"\_\\\ PO
z,
6,
0
T y|°
.
= = P Ll y
“\\Eo\ sin 90 /,” !
‘\\\§ /”

X

3.1)

Figure 3.1: Both Cartesian and spherical coordinates are used to characterize a point in the far field of the interferometer.

Assume each antenna in the interferometer pair consists of a dipole antenna of length, / , as shown in
Figure 3.2. Note that each leg is of length, / /2. Let P denote an arbitrary point in the far field of the antenna with

spherical coordinates (r, 9,¢) . Assuming a sinusoidal excitation at frequency, @,, and using
approximation [4], the electric field at P is approximately given by the real part of

K —iB oy i
=7F(¢9)e 76 e"""' (32)

where K is a constant,

o 2r 2
ﬁo= Q2 = f:’z

i (33)
c c A, .

A, is the signal wavelength, and

a far field




cos[&l— cos 9} - cos[ B "l] COS[EI- cos 6] - cos[id—}
2 2 ] Ao A, |

sin@ sin @

34

F(6)=

v, cos (@,1) (~)

Figure 3.2: Each antenna in the interferometer pair consists of a dipole antenna of length, l.

Consistent with the circular symmetry of the dipole, the field is seen to be independent of @. The most frequently
encountered case is the half-wave dipole for which the total length of the dipole antenna is/ = /10 /2. Then

/4
cos|:—2— cos 9}
F(@)= ———= (35)
sin @

Let the two dipole antennas of the interferometer pair be directed in the z-direction and placed on the x-axis
at y=—d,;p, /2 and ) =+d ) /2, respectively, as shown in Figure 3.3. Thus, dipy is the spacing
between the interferometer elements. Consider a point, P, in the near field, as illustrated in Figure 3.4. The lengths
of lines OP, BP, and AP are denoted by r, ), and r,, respectively. The angles from the z-direction to lines OP, BP,

and AP are given by 8,6,,and@,, respectively. Finally ¥, %, , and 7, , respectfully, denote the angles between

the x-axis and the lines OP, BP, and AP. As point, P, moves into the far field of the antennas, the following
approximations become valid:

z
Y
B A
———4 >x
o
_dIFM dIFM
2 2

Figure 3.3: The dipole antennas are placed along the x-axis at A and B and are directed in the z-direction.
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Figure 3.4: When P is in the near field of the interferometer, the geometry is relatively complicated.

n=r=r
6,=0,=6 (3.6)
nh=r.=Y7.

The far-field geometry is shown in Figure 3.5.

Assuming both antenna elements of the interferometer pair are excited by the same sinusoidal signal at
frequency, @, , the total electric field at point P when P is in the near field is given by the real part of

T0T ]
5 —[EF(GI)e‘ iBor

, ‘0 1
_ l+-I£F(92)€— B, 7, e] ot
IFM n 7

3.7
2
As P moves into the far field of the interferometer,
1 1 1
—_—— (3.9)
h n r

Figure 3.5: The geometry simplifies as P moves to the far field
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However, the phase angles,

Brn= 275(—} (3.10)
and

-
=27 -~ |, 3.11
B.r, ,,( 0 ) (3.11)

(4

are very sensitive to small changes in r; and r, on the order of a wavelength because of their dependence on the
electrical distances # / A, and 7, / A, . From Figure 3.5,

n=r+Ar
r,=r—Ar. (3.12)

Using Equations (3.8), (3.9), and (3.12) in Equation (3.7), the total electric field at point, P, becomes

ToTr ] i (Ar b (Ar)| jat
E =£F(9)e' ]ﬁorl:e.- ]ﬁo( )+e.]ﬁo( ) e]wo
IFM r
=31—(—F(9)cos [B,(Ar)]e P, i (3.13)
»

From Figure 3.5,

Ar = d’%cosy (3.14)

where 7 is the angle between -7, the unit vector in the r-direction of spherical coordinates, and : , the unit vector

in the x-direction of Cartesian coordinates. Hence,

cosy =:r o (3.15)

a,

where the dot indicates a dot product between the two vectors. Thus, COS Y is the projection of : on: . From

Equation (3.1), it follows that

cos ¥ =sin@cosg. (3.16)
Therefore, utilizing Equations (3.14) and (3.16) in Equation (3.13), the total electric field at point, P, is expressed as
2K . _jp.r jo,t
Ell = —;—-F(Q)cos[ﬁz" dy schosqz)] e ib, e’%
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: 0.1
_2K F(O)cos[ﬂ(g%) sin @ cos ¢]e" ibor e (3.17)

%

The interferometer array factor is defined to be

F,, (6,0)= cos{n(g-/’fi) sin @ cos ¢J ) (3.18)
Hence,
] i@ t
E = 2K p(0)F (0,0) e TP T (3.19)
r

Observe that the resultant field involves the product of the pattern of the individual (identical) antenna elements and
the array factor which is a function of the electrical distance, dp,, / /10 . This is referred to as the principle of
pattern multiplication. If antennas other than dipoles are used for the array elements, EITFOJ is obtained by merely

substituting the appropriate F (0 ) for the antenna elements.

The above analysis makes use of traditional spherical coordinates in which the azimuth angle, @, is

measured from the x-axis. However, in the conventional array literature, the azimuth angle, & , is measured from
the perpendicular to a linear array. When the linear array is placed along the x-axis, & is measured from the y-axis,
as illustrated in Figure 3.6. Note that

cosg =sinc. (3.20)

Figure 3.6: When a linear array is placed on the x-axis, the azimuth angle, & , in the array literature is typically measured from
the y-axis.

In terms of &, the total electric field at point, P is

2K

_JBr jo,t
EMT z——;—F(B)F}FM(G,a)e ° e

(3.21)

where
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Fp,(6,0)= cos[ft(d—;flj sin @ sin a} . (3.22)

0

Radiation patterns are conventionally plotted in decibels where the pattern is normalized such that the
maximum value is 0dB. The radiation pattern of the dipole antenna used for the interferometer elements is
considered first. In decibels, this is defined to be

6)

F(
G(6)=101 3.23
( ) 080 F(6)| (3.23)

max
where F' (9)| max denotes the maximum value of F () and F(8)is given by Equation (3.4). Detailed plots of

G(O) are presented in Figures 3.7, 3.8, and 3.9 for various antenna lengths [5].

The polar plots in Figure 3.7 pertain to situations where / < /10 . It is seen from Figure 3.7 that the

radiation pattern for this case includes only one major lobe symmetrically placed around the antenna axis. Note that
the beam widths of the main lobes decrease with an increase in the antenna length. Thus, the longer the antenna is,
the more directive is the radiated energy.

180°

Figure 3.7: Radiation patterns are plotted for the dipole antenna with 1< /10 .

21




Figure 3.8: The dipole antenna radiation pattern is plotted for / =1.254, .

Figure 3.8 shows the dipole element radiation pattern for / ==1.25/10 Observe that there are now three

major lobes symmetrically placed around the antenna axis. The lobe with maximum gain is centered at @ =90°.
The dipole element radiation pattern for / =1.5/10 is presented in Figure 3.9. As in Figure 3.8, there are three
major lobes symmetrically placed around the antenna axis. However, now there are two lobes of equal maximum
intensity located at @ = 40° and @ =140°. With a still further increase in the electrical length of the antenna, a
larger number of lobes begin to appear in the element radiation pattern. The radiation pattern of the dipole antenna
is seen to lose its directional properties for antenna lengths larger than /10 .

The radiation pattern of the interferometer array factor, given in Equation (3.22), is considered next. As
indicated in Figure 1.2, it is first assumed that the interferometer elements are placed on a linear grid about the main
radar elements. The configuration is illustrated in Figure 3.10 where the spacing between antenna elements is
denoted by d. Independent of whether the N-element main radar antenna array contains an odd or even number of
elements, note that the spacing between the interferometer element pair is

d =—N—+—1-d——N+1d=N+1d. (3.24)
’”’(2) “ ”( )




Interferometer Pair

~
N-Element Main Radar Amray

@

tnterferometer Pair

k|
4
2

N-Element Main Radar Aray

)
Figure 3.10: The antenna configuration consists of a linear grid with equal spacing, d. The main radar array is composed of N
elements where N can be either an (a) odd or (b) even integer.

Substitution of Equation (3.24) into Equation (3.22) yields

d). ,.

Fip, (6,0) = cos| (N +1)”(1_ sin@sin e |. (3.25)
(4

Polar plots of lF}FM (6,a)| are commonly used to gain insight into the radiation pattern of the

interferometer array factor. Observe that values of Fiz, (0, Ot) range between —1 and +1. Hence, the maximum

value of IFIFM (9,0!)' is unity and occurs when

(N + 1)7:(%] sin@sinax =mn (3.26)

0
where

m=0,%+1,12,....

The minimum value of IF M (9, a)| is zero and occurs when

(N + l)z(—f{—) sin@sina = n—’zE (3.27)

(/]

where

n=+14345,.... (3.28)
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The maxima and zeros of IF 1M (6,a)| are seen to be a function of both @ and & . To visualize the azimuthal

radiation pattern of the array factor, it is convenient to hold @ fixed and vary & . Alternatively, to visualize the

elevation radiation pattern, it is convenient to hold & fixed and vary @ .

The azimuthal radiation pattern is considered first. For this purpose, let @ equal the fixed angle, €,. The

maxima are now governed by

(Vv + 1)72{%] sin@, sina =mm

(4

where

m=0,%112,....
Note that

sing = —= (ﬁ) ! :

(N+1) d Jsin8,
Since

|sina| <1,
it follows that

| < (V + 1)[%) siné,

Similarly, with @ = @, , the zeros of the array factor occur for

(N + l)ﬂ(%) sin@, sina = n—;t—

(]

where

Now

. n A) 1
sina = -2 |— .
2(N+1)\ d Jsin8,
Because Isin (Il cannot exceed unity, it is concluded that

| <2(v + 1)(1) lsin®,

A,

0

(3.29)

(3.30)

(3.31)

(332)

(3.33)

(3.34)

(3.35)

(3.36)

(337

Thus far, the discussion has focused on the values of & for which F,, (90 , a) attains either its maximum

or minimum values. The question arises as to whether or not the azimuthal radiation pattern contains minor lobes in
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addition to the major lobes. To answer this question, the derivative of Fip, (Oo,a) with respect to & is
considered. With reference to Equation (3.25),

dFm; Efo: a) =—(N+ l)ﬂ'(g—) sin @, sin[(N + 1)75(%-) sin @, sin aj| cosc. (3.38)

0

The derivative equals zero when either

sin[(N + l)ﬂ:(ﬂi) sin @, sin a:l =0 (3.39)
or
cosa=0. (3.40)
Note that Equation (3.39) is satisfied for
(N + l)ﬂ(ﬂ,ij sin@, sina =mn (3.41)
where
m=0,t1,12,.... (3.42)

This result is identical to that of Equations (3.29) and (3.30) and yields the major lobes of the azimuthal radiation
pattern for which

Fpy(6,,0)=1%1. (3.43)
Equation (3.40) is satisfied for
/4
a=t—. (3.44)
2

However, it should be remembered that the derivative equal to zero at a point only guarantees that the slope of the
function is zero at that point. Consequently, either a major lobe, minor lobe, or inflection point is possible at

a=+%.
2

Polar plots for the azimuthal radiation pattern of the interferometer array factor are presented in Figure
3.11, where N is allowed to range from N=2 to N=7, and

d=-'3°—,00 =£. (3.45)
2 2
For this special case,
A
dipy = (N + 1)_22' (3.46)

and
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F,FM(E,a)' = cosI:(N + l)g—sina : (3.47)

e i
{d) N=6 (e) N=7

Figure 3.11: The azimuthal radiation pattern of the interferometer array factor is plotted for d = /10 /2, 90 =m/2,and
drv equal to @) 34, /2,(0) 24,,(c) 54,/2,(@) 34,,(e) 74, /2 ,and (5) 42, .

Because 6, =Z, the plots in Figure 3.11 show the horizontal radiation pattern in the x-y plane at z=0. With
reference to Equation (3.31) and (3.33), the maxima occur for

sing = _2r£1__ (3.48)
(N +1) '
where
m=0,+1,£2,-.-, :tﬂoor(N; 1) (3.49)

and floor (O)denotes the largest integer less than or equal to its argument. Similarly, from Equations (3.36) and
(3.37), zeros appear when

. n
sing = ——— 3.50
W+ (330
where _
n==1,£3,---, tofloor(N +1) (3.51)

and ofloor (O)denotes the largest odd integer less than or equal to its argument. Because

Fpy (%,a) = cos[(N + 1)-72£sin a], (3.52)
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the radiation pattern assumes either positive or negative real values. In Figure 3.11 the lobes corresponding to
positive values of the cosine function are denoted by “+” while those corresponding to negative values of the cosine

LT

function are denoted by

In general, the azimuthal radiation pattern of the interferometer array factor can be shown to have the

following properties when the conditions of Equation (3.45) hold:

1. For all integer values of N, either odd or even,

a. symmetry exists about both the x- and y- axes,

b. the number of major lobes equals (2 N +2),

c. there are no minor lobes,

d. major lobes always occur at & = 0° and 180°

2. When N is an odd integer,

a. the polarity of the major lobes strictly alternate in sign from one lobe to the next,

b. major lobes always occur at & = +90°.

3. When N is an even integer,

a. focusing entirely above or below the x-axis, the polarity of the major lobes strictly alternate in
sign from one lobe to the next,

b. the first major lobes positioned on either side of the x-axis have the same polarity,

c. nulls always occur at @ = £90°.

These properties are clearly demonstrated by the plots in Figure 3.11.

The nulls appearing at & = £90° when N is an even integer are of particular interest. As pointed out by
pp p

the discussion leading up to Equation (3.44), the derivative of the array factor is zero for & = +90°. Therefore,
the nulls at these angles have zero slope. This is consistent with the property that the first major lobes positioned on
either side of the x-axis have the same polarity. This is illustrated in Figure 3.12 where a cartesian plot of

Fry (7[ / 2,(1), corresponding to N=2, is presented with @ varying from 0°to 180°. Observe that the null at
o = 90°, where the polarity of Fpp,, (7r /2, a)is unchanged and the slope is zero, is noticeably broader than the

nulls at @& =19.5° and 160.5°, where the polarity of Fy,, (77 /2, ) does change. To avoid self-jamming of the

radar and communications waveforms, it may be desirable to steer the interferometer pattern such that the main
beam of the host radar is centered in this broad null. Steering of the interferometer and placement of the broad null

is investigated in Section 3.3.

FIFM (pif2.alpha)

19.5\\/

—

<

N/

/60.5

o 30

Figure 3.12: The Cartesian plot of Fi,, (7[ /12,c ) , corresponding to N=2, illustrates the broad null that appears at

60

o =90°.

27

20 120 150
Alpha in Degees

180




Additional insight into the radiation pattern of the interferometer array factor is gained by considering the
case for which

dz_ﬂi,go:ﬂ (3.53)
27776
Now
F, (%a) -] cos[(N+1)%[-sina:| . (50

Polar plots for this case are presented in Figure 3.13 where, as with Figure 3.11, the number of antenna elements in
the main radar are allowed to vary from N=2 to N=7. Because 90 =7/ 6, the plots of Figure 3.13 illustrate the

radiation pattern as seen looking into a cone emerging from the origin whose axis is oriented in the z-direction and
whose sides are at an angle of 30° from the z-axis.

At a specified angle, ¢/, , the vertical pattern, |F.,, (@, &, ) is helpful in understanding the lobing structure
4 IFM (4

of the azimuthal pattern, |FIFM (0o,a)|. For example, consider @, = +90°. As before, let d =, /2. From
Equation (3.24), the vertical radiation pattern is given by

F s (9,1 -g-)|=| cos[(N + 1)% sin 9]‘ (3.55)

Figure 3.13: The Azimuthal radiation pattern of the interferometer array factor is plotted for

d=2,/2,6,=7/6,anddpy equalto @) 34, /2,®) 24,,(c) 54,/2,@ 32,,() TA, /2 ,and (9 44, .
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This vertical pattern is plotted in Figure 3.14 as N varies from N = 2 to N = 7. First, focus on the patterns at the
coordinates @, =7 /2,00 ;=+m /2. By comparing the plots in Figure 3.11 with those in Figure 3.14, it is

important to note that the vertical pattern experiences a broad null for the very same values of N that yields a broad
null in the horizontal pattern. Next, focus on the patterns at the coordinates 8, = 77/ 6,0/, = £/ /2. The major

lobes at @ = +77 /2 in Figures 3.13 (b) and (f) are seen to coincide with the major lobes at & = 30° in Figures 3.14
(b) and (f) for N = 3 and 7, respectively. Similarly, the nulls at & =% 7 / 2 in Figure 3.13 (d) are seen to coincide

with the null at @ = 30°in Figure 3.14 (d) for N = 5. Finally, the values at & = =7/ 2in Figures 3.13 (a), (c),
and (¢) are seen to be due to “cuts” through the major lobes located at € =41.8°,6 =23.6°and 0 = 34.9°,
respectively, in Figures 3.14 (a), (c), and (e).

3.2 Main Radar Antenna Pattern

As shown in Figure 3.10, the main radar antenna is assumed to be composed of N dipole antenna elements
equispaced by a distance, d, along the x-axis. Assuming each of the N elements is excited by the same sinusoidal
source at frequency, @ ,, the total electric field at a point P in the far field with coordinates, (r, o, a) , can be

shown to be given by [5]

(e)N=6

Figure 3.14: The vertical radiation pattemn of the interferometer array factor is plotted for d = A, /2, &, = £7 / 2, and dyes
equalto @) 34, /2, () 24, 54,/2,@ 34,.() 74,/2 ,and (9 44,.

P =K po)F, , (0,0) e P

¥ (3.56)

where, as in Section 3.1, K is a constant, ﬂo is defined in Equation (3.3), and F,, (9, o )is the main radar array
factor with
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_1 sin[N7(d / 2, )sinOsin |

F 69 - .
RAD( a) N sin[ﬂ:(dlxlo)sinesma]

(3.57)

Observe that the maximum value of IF RAD (9 ,a)| is unity. Of course, with N=2, the above array factor should
reduce to that for the interferometer. When N=2,

1 sin[%ﬂ(%)sinesinqj

Fiuo(6,0)= 2 sinln;{‘:sin@sina] ' 438
Making use of the trigonometric identity,
sin2x =2sinxcosx, (3.59)
Equation (3.58) simplifies to »
Foup(6,0)=cos[r(d/ A, )sin@sina]. (3.60)
This is identical to Equation (3.22) where diry appears in place of d.
Of particular interest is the case for which
d=21,/2. (3.61)
Then the main radar array factor becomes
F. (6,a)= 1 sin[N(z/2)sin@sina] e

" N sin[(z/2)sinfsina] -

For this choice of d, it can be shown that the array factor given by Equation (3.62) does not contain any grating

lobes. The array factor has a maximum value of unity which occurs for & = 0, 180°. The zeros of the array factor
occur when its numerator is zero but the denominator is not simultaneously zero. Thus, zeros result when

N g—sin Osina =nrx (3.63)

where
n==%142+3 ... (3.64)

Since @ = 0° corresponds to a maximum, note that # = 0 is excluded. At a null

. 2n
sing=—=—— (3.65)
Nsin@
Because lSin a[ cannot exceed unity, it follows that
Nsinf
ln| < . (3.66)

Consequently, at anull, 7 can be any integer which is restricted to the range.
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Nsin@

0<r< . (3.67)

The sidelobes of the main radar array factor are now investigated. Assume N is large enough such that the
denominator of Equation (3.62) varies slowly relative to fluctuations in the numerator. The sidelobe peaks then
correspond to maxima of the numerator. These result when

NZ[-sin fsina = nr (3.68)
2 2

where m is an odd integer. Equivalently, sidelobe peaks occur when

. m
smo = —— (3.69)
Nsin@
where m is an odd integer. Note that 7 = *1 in Equation (3.69) yields
o, 1
a=sin" | +t——|. (3.70)
Nsiné

However, according to Equation (3.65), the first nulls on either side of the main beam at & = 0? occur for

a=sin™ i——z-—-} (3.71)
| Nsinf

Since

) (3.72)

sin™" {i ; <
Nsin8 |

sin’l[i 2 }
Nsin@

the sidelobe peaks corresponding to m = %1 fall within the main beam centered at & = 0°. Hence, m = %1 are

excluded from the allowable values of m. Because lsin a[ cannot exceed unity, note from Equation (3.69) that

Im| <|N sin8). (.73)

In summary, it is concluded that the sidelobe peaks occur for integer values of m such that Equation (3.69) is
satisfied where

1<|m|<|Nsin6)|. (3.74)

The width of the main beam at @ = 0°is of interest. Let the beamwidth be measured between the

first nulls on either side of the main beam. Denote the angles of these nulls by al st _ gy - FTOM Equation (3.65),

. 2
sinlex,, =t—-. (3.75)
( 1 —null) Nsind
For N sufficiently large relative to sin @,
IOlls, | <<1 (3.76)
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Then
sine,,__)=a,__ . 3.77)

= Yy —null
It follows that

= + 2
o ot = _m. (3.78)

The beamwidth is then given by

4

BW = —_
N|51n9|

1 -nulls = 2,“1”—711411 A3 .79)

In some cases, the beamwidth is measured between the 3-dB points of the main beam. Let the angles at
which the 3-dB points occur be denoted by €, ,,. By definition, these are the angles for which the magnitude of

the array factor is equal to 1/ \/5 =0.707. It follows that

1 s1n[N Zsin 6 s1n(053_d5 )]l

=0.707. (3.80)
N sm[ sin @ sin(a, 4, )
For suitable choices of @ and N
lots_s| << [sin6| <1. (3.81)
Then
sin(e, )=, 4 (3.82)
and
.| T, . T .
sin E— sin @ sin(e,_, )] =0 4 B sin@. (3.83)
With these approximations, Equation (3.80) simplifies to
[ Nr . Nr
sinj a,_,, —2—sm 0] =0.7070,_4 Tsm 6. (3.84)

This is a transcendental equation which can be solved either graphically or numerically. The horizontal radiation
pattern is obtained when @ = £ /2 . Equation (3.84) becomes

51n[a3 B A; :I 0.707c,;_u % . (3.85)
The solution to this equation is
O, p=1% 0.886 , (3.86)
N
as can be verified through substitution. It follows that
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1.772
BW,_s =2l0t,_ps| = - (3.87)

for the main beam of the horizontal radiation pattern.

The following properties of the main radar array factor hold as N increases:
1. The main lobe narrows,

2. The number of sidelobes increase,

3. The peak magnitudes of the sidelobes decrease.

By way of example, the horizontal radiation pattern is plotted in Figure 3.15 for

d=2e g% n_¢.
2 2

Analytically, this is given by

7 1 sin[37sina]
Fep| — Q| = f-—F——. (3.88)
2 6 s1n[12'*- sin a]
The first nulls on either side of the main beam at & = 0° occur for
: . o : . Ao
Figure 3.15: The azimuthal radiation pattern of the main radar array factor is plotted for d= 7 s 0=— , and N=6
— 0
& =+19.5", (3.89)
Consequently,
—_ (e}
B W;s,_nu”s =39°. (3.90)
The approximate expression for this beamwidth, as given by Equation (3.79), yields
4 4 2
BW. — radians = 38.2°. 3.91)

o = e—=—=
1% —nulls N 6 3

These two results are seen to be in close agreement. In addition, the approximate expression in Equation (3.87) for
the beamwidth, as measured between the 3-dB points, yields
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BW, » = 1"]7\:2 172 0.295 radians =16.9°. (3.92)
Consequently,
0, 4 = 0.1475 radians. (3.93)
Substitution of this value in Equation (3.88) results in
FMD(-’zf 0. 1475)| =0.716 (3.94)

which is reasonably close to the correct value of 0.707.

As mentioned in Section 3.1, it may be desirable to steer the interferometer pattern such that the broad null
of the interferometer is centered on the main beam of the radar. With reference to Figures 3.11 (¢) and 3.15, observe

that the broad null of the interferometer is positioned at & = 90° while the main beam of the radar is at & = 0°.
Issues involved with steering the interferometer and positioning the broad null are discussed in Section 3.3.

33 Steering the Interferometer Along With Positioning the Broad Null

As shown in Figure 3.11, a broad null appears in the horizontal radiation pattern of the interferometer array factor
when d = A,/2,6, =7 /2, and N is an even integer. To minimize interference in target returns received by the

main radar, which could consist of both the interferometer and radar signals, it is desirable that the broad null of the
interferometer be centered on the main beam of the radar. In addition, a steering capability should be incorporated
into the interferometer so that separate communications signals can be directed to different receivers located at
various angles. These considerations are treated in this section.

3.3.1 Steering the Interferometer

The interferometer pair can be steered by inserting an appropriate phase shift into each channel. In particular, with
reference to Figure 3.4, let the phase shift associated with the element at position B be ¥/, and the phase shift

associated with the element at position A be ¥/, where

v, =y, -Ay. (3.95)
The total electric field at point, P, is given by the real part of

g =|£F (6 )7 ek FlB)e e 2 [ g

where @, is the frequency of the sinusoidal excitation. Let P be in the far field such that the approximations of
Equations (3.6), (3.8), (3.9), and (3.12) are valid. It follows that

EITFOA; zl(—F(e)e_’ﬂore ]Wl[e_jﬂa(Ar)+ejﬂa(Ar)e_](AW)]e]w°t(397)

r
However, the bracket in Equation (3.97) can be expressed as

Ay { Ay Ay

e"{ﬁzz) e—jﬂo(Ar)ej(T) t o iB87) e"(TJ =2cos[,B (Ar)_ﬁ'l’.}e_j(_f] .(3.98)
¢ 2
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From Equations (3.14), (3.16), and (3.20)

Ar = d%sin&sina. (3.99)
Also, making use of Equations (3.3) and (3.24), Equation (3.97) becomes
Epy =25 F(0) Fp, (6,0,A y)e P erel Y P (3.100)
where the interferometer array factor is now given by
Fp, (8,0,Ay)= cosI:(N + 1)72'(—;;1—) sin @ sin & — —%‘4 : (3.101)
o

It is seen that the array factor is independent of ¥,. Only the phase difference between the phase shifts applied to
the two interferometer elements plays a role in steering the array factor.

The maximum value of |F M (9, a,A l//)l is unity and occurs when

(N + l)n(lij sin@sina _A_Z'/{ =mn (3.102)

(4

where
m=0,x1%2,---.

The minimum value of |F M (9, a,A l//l is zero and occurs when

(N+1)z 4 sinesina—-A—yi=n£ (3.103)
3 2 2
where
n=x1,£3,+5,--. (3.104)

The maxima and zeros of |F}FM (9, a,Ay/] are seen to be a function of the phase difference, AY/. Hence, the

interferometer array factor can be steered through an appropriate choice for Ay,

It is convenient to measure A in units of 77 radians. Consequently, let
Ay =kx (3.105)

where k is an appropriately chosen constant. To consider the azimuthal radiation pattern, let @ equal the fixed
angle, 90 . The maxima are now governed by
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. m+ &
sm o = 7
(¥ +1)—sin 8, (3.106)
2’0
where m is an integer such that
k d ).
m+—< (N +1) — |lsin6,|. (3.107)
2 A,
Similarly, the locations of the nulls are determined from
. 1(n+k)
sma = - (3.108)
(N + 1)(7‘{;)sm 6,

where # is an odd integer such that

’%(n + k)’ <(N+ 1)({-[—]|sin 6,|- (3.109)

0

As was done in Section 3.1, it can be shown that minor lobes cannot exist except at & = £ /2 where either a
major lobe, minor lobe, or inflection point is possible.

To gain insight into the consequences of steering the interferometer array, let

d=-};i,00=32r-. (3.110)

The array factor is now given by

Froy (% &, kﬂ') = cos[(N +1

Equations (3.106) and (3.107), governing the maxima, simplify to

sina—ﬁ)n (3.111)
Yk .

. 2m+k
smo = (3.112)
N +1
where m is an integer such that
kl _N+1
m+— < (3.113)
2 2
while Equations (3.108) and (3.109), governing the nulls, reduce to
. n+k
sing = (3.114)
N+1

where n is an odd integer such that
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h+k<N+1. (3.115)

For the unsteered interferometer, it is seen from Figure 3.11 that a major lobe occurs at & =0° for all
integer values of N. Consider steering this lobe to & = 10° when N =2 and N = 7. For the unsteered array, the
major lobe at & = 0° results when m = 0. Hence, letm =0 and & =10’ in Equation (3.112). Solution for k yields

k=0.522 (3.116)
when N =2 and
k=1.392 (3.117)

when N = 7. Polar plots of |F}F1\X'7‘2r‘ ,akrc)] are presented in Figure 3.16 for these two cases.

Comparisons of Figure 3.11(a) with Figure 3.16 (a) and Figure 3.11 (f) with Figure 3.16 (b) reveal that the

major lobe at ¢ = 0° has, in fact, been steered to & =10°. Note that symmetry about the y-axis no longer exists
in the steered arrays although symmetry about the x-axis is maintained. For the case in which N = 2, the broad null

at & =90° in Figure 3.11 (a) has disappeared and the two major lobes at & =41.8° and @ =138.2° have

merged together into a single broad lobe centered at @ =907 in Figure 3.16 (a). Also, at @ =—90°, note that
there is now a minor lobe in the steered array whereas there is a null in Figure 3.11(a). For the case in which N =7,

the major lobe at a = 90°in Figure 3.11 (f) has disappeared and the two major lobes at
o = 48.6° and @ = 131.4° have merged together into a single broad lobe centered at & = 90 in Figure 3.16 (b).
Also, at @ =—90°, the major lobe in Figure 3.11 () has, in effect, split into two major lobes at & =—55.7° and

0 =—124.3° as well as introduced a minor lobe of opposite polarity. We see that severe distortion can occur in
the array factor radiation pattern when the interferometer is steered.

£33 x
00"
120 60
150 »
+
+
18 o % 0%
430 30
420 80
w04
(8) N=2 k=0.522 {b) N=7 k=1.392

Figure 3.16: The azimuthal radiation pattemn of the interferometer array factor is plotted when the major lobe at & = 0%in
Figure 3.11 is steeredto @ =10°for d = 4, /2,60, =7 / 2, and diry equal to (a) 34, /2 and (b) 44,

3.3.2 Positioning the Broad Null by Steering the Interferometer

A major objective for steering the interferometer is to center its broad null on the main beam of the radar.
As pointed out in Section 3.2, the main beam of the radar is located at & = 0°. This is illustrated in Figure 3.15.
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Consequently, using the results of Section 3.3.1, we attempt to locate a broad null at & = 0° by steering the
interferometer.

We first consider the case for N=2, d =4, /2,and 6, =7 /2. As seen in Figure 3.1 (a), a broad null

occurs at @& =—90°. This resulted forn = =3, in Equation (3.50). Hence, let n==3, a@=0°and N=2in
Equation (3.114) in order to rotate the broad null at & = —90°to & = 0°. Solution for k yields

k=3. (3.118)

A polar plot of , as obtained using Equation (3.111), is shown in Figure 3.17 (a). As expected,

T
F...|—,0,3%
’”’(2 )

there is a null at & =0°. However, it is not a broad null! This is confirmed by noting that the polarities of the

major lobes at & =+19.5° are of opposite signs. Interestingly, the major lobes in Figure 3.17 (a) are positioned at
the null in Figure 3.11 (a) and the nulls in Figure 3.17 (a) are positioned at the major lobes in figure 3.11 (a).

(a)N=2 k=3

Figure 3.17: The azimuthal radiation pattern of the interferometer array factor is plotted when nulls in Figure 3.11 are steered to

a=0"ford=2,/2,6, =7 /2 and dy equal to (a) 34, /2 and (v) 24, .

Having failed with N even, an attempt is now made to locate a broad null at & =0° for N odd. Consider
N=3,d=A4,/2,and 6, =7/2. As seen in Figure 3.11 (b), a narrow null occurs at & =—14.5° when

n = —1 in Equation (3.50). Hence, let # = —1,& = 0° and N = 3 in Equation (3.114) in order to rotate the null at
a=-14.5°t0 a=0°. Solution for k yields

k=1. (3.119)
A polar plot of: IFIFM (ﬂ' /2, a,fr)l , as obtained using Equation (3.111), is shown in Figure 3.17 (b). As expected,

there is a null at @ =0°. However, because of the alternation in polarity of the major lobes located at

0. =%14.5°, the null at & =0°1is not a broad null! Interestingly enough, there are now broad nulls at

o =190° . As was the situation with N = 2, the major lobes in Figure 3.17 (b) are positioned at the nulls in Figure
3.11 (b) and the nulls in Figure 3.17 (b) are positioned at the major lobes in Figure 3.11 (b).

Although it was possible to steer nulls to & = 0° for N=2 and N=3, these were not broad nuils. This raises
the question, “Is it possible to place a broad null at & = 0° ?” From Equation (3.114) the nulls of
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T
Fro (5 ,Q, kn‘)

occur when
. n+k
smo =—— 3.119)
N +1
where n is an odd integer. The solution for k with & = 0°is
k=-n. (3.120)
Thus, k is an odd integer. Note that
krm .
cos x+—-—2-— =tsinx (3.121)
for k an odd integer. It follows that the array factor in Equation (3.111) becomes
/4 MRESY
Fiey (5, a, kn‘) = ism[—(——z—-)— sin a} (3.122)

when a null is steered to & =0°. To have a broad null at & = (°, it is necessary that the major lobes located on

either side of & = 0 have the same polarity. However, this is not possible because
/4 T
FIFM(E’a’ kﬂ:) = —F'IFM("Z' U, kﬂ') . (3.123)

It is concluded that it is not possible to steer a broad null to & =0°. In addition, the fact that the unsteered
interferometer has an array factor given by

x N+1)_ .
Firv (E,a,o)= cos —2— T Ssin o (3.124)

while the interferometer steered to have a null at & = 0°has an array factor given by equation (3.122) explains why
the maxima of one occur at the nulls of the other.

3.3.3 Placement of Interferometer Along the y-Axis

To obtain a broad null at & = (°, it is necessary to place the interferometer on the y-axis while the linear
array of the main radar remains along the x-axis. As before, let the two dipole antennas of the interferometer pair be
directed in the z-direction. However, as shown in Figure 3.18, the elements are now placed on the y-axis at

y=—d,/2and y =+dy,, /2, respectively. The corresponding geometry for evaluation of the electric field
at point, P, is illustrated in Figure 3.19.
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The analysis proceeds exactly in the same manner as in Section 3.1 where the interferometer was placed
along the x-axis. The only difference is that, in place of ¥, the angle, 0 , is involved where O is the angle between

— ey

4, and 4, , the unit vector in the y-direction. Consequently, cos 8 is the projection of

—_—

a, on 4, andis given by

Cosd= a,. 4, =sinBsin ¢ = sin B cos O . (3.125)
z
B A
0 .
_ d iy 'iIFM
2 2
X

Figure 3.18: The dipole antennas are placed along the y-axis at A and B and are directed in the z-direction

Figure 3.19: The geometry is shown for evaluation of the electric field at point, P.
Corresponding to Equation (3.14), we have

Ar= e cos 0 = e

sin®cos & . (3.126)
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In the far field it follows that the total electric field at point, P, is given by
2K s
EXT ~ 22 F(6) Fypyy (0, 00)e P e (3.127)
r

where the interferometer array factor is given by

diru .
F i (0,) = cos[ T ( 1o )sin@cos & ]. (3.128)

This is identical to the expression for the array factor given in Equation (3.22) except that sin ¢ has been replaced by
cosCx .
Because the interferometer elements no longer straddle the main radar elements on the x-axis, the spacing

between the interferometer elements is no longer given by Equation (3.24). Instead it is convenient to measure the
interferometer spacing in units of half wavelength. Therefore, the interferometer spacing is defined to be

dIFM=ks—32£ (3129)

where k; is a constant. When d, the spacing between the main radar antenna elements, is a half wavelength, k; is
analogous to (N+1) of Equation (3.24). Substitution of Equation (3.129) in Equation (3.128) yields

kr .
F e (6, Q) = cos[ > sin@cosa]. (3.130)
The maxima of |FIFM (@, a)| occur for
2m
Cos O = ——— (3.131)
k, sin@
where m is an integer such that
k, sinf
|m| <= . (3.132)
2
Similarly, the nulls of IF}FM 0, a)] are governed by
Cosa " (3.133)
s = —— .
k, sin@
where n is an odd integer such that
<k, sing. (3.134)

Polar plots of the azimuthal radiation pattern of the interferometer array factor, where the elements are on
the y-axis, are presented in Figure 3.20 for 8 = /2 and k ;= 3, 5, and 7. Note that these values of k , correspond to
drm= 34,/2,54,/2 and T A, /2, respectively. As expected, because k , is an odd integer for each of the plots,
a broad null is seen to exist at @ = 0 ® in each case. Comparison of Figures 3.11 (a), (c), and (¢) with Figures 3.20
(2), (b), and (c), respectively, reveals that the horizontal radiation pattern of the interferometer positioned on the y-
axis is identical to that of the interferometer positioned on the x-axis except that one is rotated 90 ° with respect to
the other.

41




-120

(a) I£s=3 (b) k§=5 (c) ks=

Figure 3.20: The azimuthal radiation pattern of the interferometer array factor, where the elements are on the y-axis, is plotted

for0=7/2 and dmyequalto ()34, /2, () 54, /2and(c) 74, /2.

3.3.4 Evaluation of Broad Null at o0 = 0°

In Section 3.3.2 the interferometer was steered to produce a null at o = 0° | as shown in Figure 3.17 (a).
However, this was not a broad null . In Section 3.3.3, a broad null was located at o = 0° by positioning the
interferometer elements on the y-axis, as shown in Figure 3.20 (a). In both cases the spacing between the
interferometer elements is

34
.

1t is of interest to compare the width of the steered null in Figure 3.17 (a) to that of the broad null in Figure 3.20 (a).

dpm = (3.135)

From Equation (3.122) the horizontal radiation pattern plotted in Figure 3.17 (a) is given by

T .| 37 .
F}FM(E’a,37[) = Sln[Tsm 0!] (3.136)
whereas the horizontal radiation pattern plotted in Figure 3.20 (a), as obtained from Equation (3.130), is
T K7 4
F s (E,a) = cos|:—2— cos a:l . (3.137)

Converting to dB, Equations (3.136) and (3.137) become

20log 10 { } =201log 1o {Siﬂ[gg— sin (Z:| } (3.138)
201og 10 { } =201log 10 {cos[3—27£ cos a] } . (3.139)

Evaluations of Equations (3.138) and (3.139) about the nulls at & =0° are tabulated in Table 3.1. With reference to
the table, note that the width of the steered null, when measured between the —30 dB points, is approximately 0 . 8°
while that of the broad null is in excess of 12°. Hence, at the —30 dB points, the broad null is more than 15 times
wider than the steered null. At the —20 dB points, the width of the steered null is approximately 2.5° while that of
the broad null is in excess of 22°. Thus, at the —20 dB points, the broad null is more than 8.8 times wider than the

b4
FIFM (5 s as?’” )

and

/4
Fo. (=,a
IFM(Z )
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steered null. It is concluded that the broad null is considerably more effective than the steered null in establishing
spatial orthogonality between the interferometer and radar signals.

For the purpose of a later discussion, the broad nulls of Figure 3.20 (b) and (c) are also examined. The
horizontal radiation pattern plotted in Figure 3.20 (b) is

(n’ ) 57 }
Fooyl =0 || = |cos| —cosa (3.140)
2 2
while that plotted in Figure 3.20 (c) is
4 1z
F}FM(—Z—,OJ)I = cos[-?cosa:l. (3.141)

Converting to dB, as in Equations (3.138) and (3.139), the results are tabulated in Table 3.2. For the broad null in
Figure 3.20 (b) the width is approximately 10° when measured between the —~30dB points and is approximately 18°
when measured between the —20 dB points. For the broad null in Figure 3.20 (c) the width is in excess of 8° when
measured between the —30 dB points and is in excess of 14° when measured between the —20 dB points. In general,

the width of the broad null is narrowed as dipy increases by selecting larger values of k.

Table 3.1
: 34,
Comparison of Steered Null to Broad Null at o. = 0° for djpy = ——
Steered Null (N=2) Figure 3.17 (a) Broad Null (k; = 3) Figure 3.20 (a)
> Foovg (E s a,3n') * Fiev (E, aj
2 2
(Degrees) (dB) (Degrees) (dB)
0 -00 0 -~00
0.1 -41.7 +1 -62.9
0.2 -35.7 +2 -50.8
+0.3 -32.2 +3 -43.8
+0.4 -29.7 +4 -38.8
+0.5 -27.7 5 -34.9
+0.6 -26.1 6 -31.7
0.7 -24.8 17 -29.0
+0.8 -23.6 18 -26.7
+0.9 -22.6 +9 -24.7
+1.0 -21.7 +10 -22.9
1.1 -20.9 +11 =213
1.2 -20.1 +12 -19.8
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Table 3.2
Evaluation of Broad Null at ¢ = 0° for dipy = _S_j_o and —7-&0—
o Broad Null (k; =5) Broad Null (k;=7)
Figure 3.20 (b) Figure 3.20 (¢)
Firu (%,a) Fiea ('725 ’a)
(Degrees) (dB) (dB)
0 -00 00
*1 -58.5 -55.5
E7) -46.4 -43.4
13 -394 -36.4
+4 -34.3 -314
15 -30.5 -27.6
+6 =273 =244
7 -24.6 -21.7
+8 -22.3 -19.4
+9 -20.3 -174
+10 -18.4 -15.5
+11 -16.8 -14.0
+12 -154 -12.5

The behavior of the vertical pattern at the broad null is, also, of interest. Letting & = 0° in Equation

(3.130), the expression for the interferometer array factor becomes

This yields the vertical pattern at o = 0°. These are plotted in Figure 3.21 fork,=3, 5, and 7. In all three cases,
observe that broad nulls exist at @ =190°. In fact, examination of Equation (3.142) reveals that broad nulls

at@ = £90° always occur when k, is an odd integer. Therefore, assuming that the main radar antenna elements are
positioned on the x-axis while the interferometer elements are placed along the y-axis, broad nulls occur broadside
to the main radar antenna in both the horizontal and vertical planes whenever k; is an odd integer. Also, note that
the vertical patterns in Figures 3.21 (a), (b), and (<), where the interferometer elements are along the y-axis and o =
0, are identical to those in Figures 3.14 (a), (c), and (e), where the interferometer elements are along the x-axis and

a=*x/2.

Fi2,(8,0) = cos [iicfzi sin 9] .
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Converting the magnitude of Equation (3.39) to dB results in
kmw . :
cos[ ; sin Gjl } - (3.143)

Values for Equation (3.143) about € = 90° are tabulated in Table 3.3 for k; = 3, 5 and 7. By comparing the entries
in Table 3.3 with the corresponding entries in Tables 3.1 and 3.2, it is concluded that the broad nulls in the
horizontal and vertical planes have identical behaviors.

201og o ﬂF}FM (B’O)I}z 20log 1o {

(a) ks=3 (b) ks=5

Figure 3.21: The vertical radiation pattern of the interferometer array factor, where the elements are on the y-axis, is plotted for

0= 0 and dipy equal to (a) 34, /2, () 54, /2and(c) T4, /2.

Table 3.3
. 3, 5A, A,
Evaluation of Broad Null at 8 = 90° for djpy = R and
22 2

o Broad Null (k,=3) Broad Null (k; = 3) Broad Null (k; = 3)

Figure 3.21 (a) Figure 3.21 (b) Figure 3.21 (c)
6 |FIFM (0901 IF IFM (99()» IF IFM (0 ’OX

(Degrees) (dB) (dB) (dB)

90 00 00 00
901 -62.9 -58.5 -55.5
90+2 -50.8 -46.4 -43.4
90+3 -43.8 -39.4 -36.4
90+4 -38.8 -343 -314
9015 -34.9 -30.5 -27.6
9016 -31.7 -27.3 -24.4
90+7 -29.0 -24.6 -21.7
90+8 -26.7 -22.3 -19.4
9019 -24.7 -20.3 -174

90+10 -22.9 -18.4 -15.5
90411 -21.3 -16.8 -14.0
90112 -19.8 -15.4 -12.5
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33.5 Comparison of the Interferometer and Radar Field Strengths Broadside to the Radar

In this section the electric field at a point in the far field due to the interferometer is compared to the
electric field at the same point due to the radar. Attention is focused on those points in the main beam of the radar
which also fall within the broad null of the interferometer. For this comparison, identical excitations are assumed
for the interferometer and radar array.

With reference to Equation (3.21), the total electric field due to the interferometer is
E o = & F(6)Fpp, (6,0)e#7e’™" (3.21)

where the array factor is given by Equation (3.130). Similarly, from Equation (3.56), the total electric field due to
the radar is

E 2ip = 2K F(6)Fryp(0,0) ¢ /57 ¢! (3.56)
where the array factor is given by Equation (3.57). It follows that the ratio of the field magnitudes is

[Ee| _ 2 |Finu (6,20

Conversion of the ratio to dB results in
| Torl '
2010g 10 { (== ¢ = 20log, {F;r,, (6, )|} (3.145)
|Exs)

-20 log 10 ﬂ Frip (0, a)l} -20Tog 1 {%}

Let the point at which the fields are measured be in the x-y plane where the elevation angle is @=7/2 .
Assume the main radar has the azimuthal radiation pattern shown in Fig 3.15 for which N=6 and d=A0/2. Equation

(3.145) then becomes
k.
COS| 5 cosax

1 sin[37 sin ]

6 sin[% sin ]

| TOT|
20 log 1o

=20log,,

70T
[£2]

-201og 10 {

Note that the first term on the right side of Equation (3.146), corresponding to the interferometer array factor, is
tabulated in Tables 3.1 and 3.2 for k, = 3,5, and 7. These are values of k, for which a broad null appears at o. = 0.
Values for the second term, corresponding to the radar array factor, are tabulated in Table 3.4. From Equation
(3.92), the 3-dB bandwidth of the main beam was shown to be approximately 16.9 °. This agrees closely with the
values given in Table 3.4 fora==% 8°and a==* 9 °. Utilizing Tables 3.1, 3.2, and 3.4, results are tabulated in
Table 3.5 for interferometer spacings corresponding to k; =3, 5, and 7.

(3.146)

} -9.5 (dB).
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Recall that a variety of interferometer element spacings are possible because the interferometer elements
are placed along the y-axis while the main radar elements are positioned along the x-axis. Consequently, the main
beam of the radar can be made as narrow as desired to accommodate the width of the broad null of the
interferometer. Alternatively, the broad null of the interferometer can be made as wide as needed to accommodate
the beamwidth of the radar main beam. The half-power points of the radar coincide with the 3-dB points of its main
beam. For this example, the 3-dB points are approximately equal to * 8.5°. From Table 3.5 it is seen that the
interferometer field magnitude is at least 31.0, 26.6, and 23.7 dB less than the radar field magnitude, respectively,
for the cases corresponding to k ; = 3, 5, and 7. Recall that these results were obtained assuming identical
excitations for the radar and interferometer. Since the interferometer excitation is likely to be considerably smaller
than the radar excitation, placement of the broad null of the interferometer at the center of the main beam of the
radar is likely to be an effective technique for preventing the interferometer signal from interfering with the desired
radar target returns.

Table 3.4
Evaluation of Radar Main Beam
o Main Beam (N=6)
Figure 3.15
‘FMD (52[— s a)
(dB)
(Degrees)
0 0
+1 -04
+2 -0.18
+3 -0.34
+4 -0.59
15 -1.01
6 -1.39
+7 -1.94
8 -2.58
19 -3.2
*10 -4.2
+11 -52
+12 -6.4
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Table 3.5

Ratio of Interferometer to Radar Electric Field Magnitudes in the Main Beam of the Radar for dyjpy =

3y Sk T

9

22
ki=3 k=5 k=7
.

ET EIT ELT

(Degrecs) (dB) (dB) (dB)

0 - 00 - 00 -00

+1 -72.4 -68.0 -65.0
+2 -60.1 -55.7 -52.7
+3 -53.0 -48.6 -45.6
+4 -47.7 -43.2 -40.3
5 -43.4 -39.0 -36.1
+6 -39.8 -354 -32.5
+7 -36.6 -32.2 -29.3
+8 -33.6 -29.2 -26.3
19 _ -31.0 -26.6 -23.7
+10 -28.2 -23.7 -20.8
+11 -25.6 21.1 | -18.3
+12 -22.9 -18.5 -15.6

3.4 Use of Frequency Modulated Signals to Steer the Interferometer

When the interferometer elements are on the y-axis, the interferometer array factor is

Fw (0,0)= cos[z(%) sin @ cos a] . (3.128)
Recalling that
2nf, 2«7
0=—=—, 33
i/ = (3.3)

the array factor can, also, be expressed as
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F M (0, a) = cos[—’Bé2 d i, SIn 6 cos a} ) (3.147)

The relation in Equation (3.3) can be interpreted as having arisen from the wave equation.

In the far field the propagating wave can be approximated as a spherical wave whose description depends
only upon the radial distance, r, and sinusoidal frequency of excitation, f,. Assuming spherical symmetry, the wave
equation is given by [6]

?rs(r,)] 1 0*[rs(r,2)]

= -V (3.148)
or’ c’ or’
where c is the wave propagation velocity. One solution to this equation is of the form
K _igr
s(ryt) == P e/ (3.149)
r
This can be verified by direct substitution of Equation (3.149) into Equation (3.148). Note that
9% \rs(r,t “iBr
[ ( > )] - ﬁzK e iB, eJZ”f.,’ (3.150)
or? 0
while
1 9%rs(r,t 275N . _iar
— [ (2, )] - 7‘7; Ke iB, eﬂﬂf.,t' 3.151)
c at c

Equality between Equations (3.150) and (3.151) exists provided

po= 2—7‘#". (3.3)

C
Since
c= Aof,, (3.152)
ﬂO can, also, be written as
Bo= 2r (33)
o .

Examination of Equation (3.144) suggests that the array factor can be varied by changing PO whichis a

function of the sinusoidal frequency of excitation. Therefore, it should be possible to make the array factor vary in
time by exciting the interferometer with a frequency modulated signal. This observation is examined in Section
34.1.
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3.4.1 Quasi-Stationary Considerations

Assume the interferometer is excited by the frequency modulated signal
s (®)=s )=V ncos [277,1+6(2)] . (3.153)

By definition, the instantaneous frequency of s(t) is

1 a4 R2afr+e(1)]

fo= wd
1 do(t) ‘
= +o— 3.154
Jo 2 dt G139
For convenience, let

o(t)=2mg(z). (3.155)

The instantaneous frequency then becomes
=7 +dg—(t). (3.156)

dt

Analogous to Equations (3.149) and (3.3), the conjecture arises that the propagating wave in the far field can be
characterized by

; i2x[f,t+g(t)]
s ()= K - By Jrrilerre (3.157)
r
where
Bt)= 27 () : (3.158)
C

This conjecture can be resolved by, once again, utilizing the wave equation.

Let Equation (3.157) be substituted into Equation (3.148). Observe that

Pl _ _ goy o =80 gi2aliuess(]

~ (3.159)

while

1 2lstrall, {_ 1 [_ dﬁ(t)+w( )] i [_rdzﬂ(t)+2,,d2g<z)]}

c or’ c? c? dt? dr?

KelBor eﬂﬂ[f., t+g(r)]. (3.160)

Equating Equations (3.159) and (3.160) and canceling common terms yields
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,Bz(t)=ci2[— dﬂ()+27;f(t)] = [ dd’f() 27:%20)} (3.161)

Now assume that the modulation, g(t), varies slowly relative to the carrier frequency, f,, such that

dg(t)
. 3.162
= << f, (3.162)

Making use of Equation (3.158), observe that

2
r dp(t) =l d gz(t) (3.163)
dt c dt
and
2 3
rd—ﬂz—@ =2l d gS(t) : (3.164)
dt c dt
On the other hand,
27@7’(t)=2n'|:f0 +fiiga$} = 27f,. (3.165)
It is likely that
t =L<< f, (3.166)
C

where #, denotes the time required by the propagating wave to traverse the distance, r. Finally, assuming

d’g(r)

7| << 2, (3.167)
t

it is concluded that Equation (3.161) is approximately given by

B ()= (2—790{@)2 (3.168)

Therefore, Equation (3.158) is approximately valid and the propagating wave can be approximately modeled by
Equation (3.157).

We say that the interferometer behaves in a quasi-stationary manner when Equations (3.149) and (3.3),
which are strictly valid only for a sinusoidal constant frequency excitation, can, to a very good approximation, be
generalized to Equations (3.157) and (3.158) for frequency modulated excitations. ~However, as pointed out by
Equatlon (3.162), the modulation must vary slowly relative to the carrier frequency. It follows that the array factor,
given by Equation (3.147), can be generalized to

51




t .
Fr (8,0,t) = cos[@ d ) 5106 cos a} (3.169)
for frequency modulated excitations in this class. Introducing the time variant wavelength, defined by
C
Alr)= Yok (3.170)

the array factor can also be expressed as

Fr0,0,8) = cos[n'(d” L Jsin@cos a} (3.171)

Alt)

The time-variant array factor is investigated in the following sections for selected modulations.

3.4.2 The Time-Variant Array Factor for a Chirp Signal Applied to the Interferometer Elements

In this section the same chirp signal is applied to the two interferometer elements. In Section 3.4.3 an up

chirp is applied to one element while a down chirp is applied to the other. Both cases are handled by the general
analysis given below.

With reference to Figure 3.18, let the signals applied to the interferometer Elements at A and B be given by

T, T
S, (t) -3 Vn °°5[2”(/; teg (e, (’))] 2 2 (3.172)
0 , Otherwise
and
T I
Sy (t) - Vmcos[z”(fa”‘gl (+g, (’))] 3 2 2 (3.173)

0 , Otherwise
where g; (1) and g (t) are suitably chosen phase modulations such that the quasi-stationary assumptions of Section
3.4.1 are valid. In terms of complex signals s, (t) and sp (t) can be expressed as

T T
Re V. /2l Gi2ns () Hi2mg (1) } "ES ts 5
s,(8) = m i (3.174)

0 , oOtherwise

and
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St<

T
’ 2 (3.175)

T
Re {V eﬂ’ffal e—jZ”gl(i) eﬂﬂgz(f)} 5

sp(0) =

0 , Otherwise

By definition, the instantaneous frequency of s, (t) and sp( t), respectively, is

dgl(t) dgz(t)
=f + + 3.176
IAGENA T (3.176)
and
—- _dgl(t) dgz(t)
0=/, it (3.177)

Using the notation of Figure 3.19, and assuming quasi-stationary behavior, the total electric field

at point, P, is given by R { Tor } where
(3.178)

ﬂA (t)= 2z JC_rA(t) ’ ,BB = '27#2 (t_)

and

ETOT K (9 )e—jﬂB(t)rlejZIfote—jan,(t)ejanz(t) +£F(92 )e-jﬂA(t)rzejzmtejz%tejzﬂgz(t) (3.179)

IFM ~ 1 a
With P in the far field the analysis proceeds in the same manner as in Section 3.1. Then
27, dgi(t) , dg,(t)
+ + -A 3.18
Ba(e)r, = [f,, o= (=) (3.180)
while
Byt = 2_7:[/,0 _dz,0) + % (t)](r +Ar) (3.181)
c dt dt

where Ar is given by Equation (3.126). In the far field, therefore, Equation (3.179) becomes

27 dg, (1) dg (D 2n dg, () ig ()
K —1——[(}",+——)Ar————rj| . j—[(f,,+——)Ar~—r] .
E]Tg\; ~LF@)e ¢ dt dr e im0 4ol e df dt o2ra )

dgz(’)

480, _dg Ar:|
dt

e"—[”" o 127820 2t

(3.182)

dgz(’) dgl )
—-‘(f Ar ; .
=_2K F()Fpy(6,0,1) e ° ) g 127820 I
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where the interferometer array factor is given by

Fy (0,0,1)= COS{ZT”[(fO + dg;t(t))A

Finally, from Equations (3.176) and (3.177), note that

r— dg;i;t(t)r] +2mg,(t)). (3.183)

ﬁ)_i_dgz(t)___f,q(t)'{’fs(t) (3.184)
at 2
while
dgl(t)=f,4(t)_f5(t). (3.185)
dt 2
As a result, Equations (3.182) and (3.183) can, also, be expressed as
EXT ~ 2K F ()P 6,,1) (3.186)
r
~JE (L4 S (ONr=(Fu )13 ()] j2me, (1) j2mfot
e e e
and
Fi 0,0,0) = cos{z[(f, (1) + £, 0)ar - (£, ()~ £ O+ 27 8,0} Gasy)
Having completed the above analysis, we now consider the case for which the same chirp signal is applied
to the two interferometer elements. Let
g)=0 (3.188)
and
P
gz(t)=ﬂ—2-- (3.189)
Then, with reference to Equations (3.172) and (3.173), it follows that
e TeisT
s (8) =5, (=] TmeOSL2EUt+LTL 2 2 (3.190)
0 , Otherwise
The corresponding instantaneous frequency is
f4@)= f3(0)= fo+ut = £0). (3.191)
Observe that
L)+ f3(e)=2(1, + ) (3.192)
while
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£4(6)- f(6)=0. (3.193)

Consequently, when the same chirp signal is applied to the two interferometer elements, the expression in Equation
(3.187) for the interferometer array factor becomes

F, (6,a1)= cos[ (/. + ut)Ar } cos[?cl f(t)Ar}. (2.194)

Making use of Equations (3.158) and (3.126), the array factor can, also, be expressed as
t .
Fp,(0,0,t)= cos[@ d , sin 6 cos ail . (3.195)

Observe that this is consistent with Equation (3.169).

As was done in Equation (3.129), it is convenient to measure the spacing of the interferometer elements in
units of half wavelength. Then

89, - B0y, 20 20, 20 _k7or; . priy)

2 PMT T vy e T2
krm ’
=J2__[1+é_§9] (3.196)

where Af (t) is the instantaneous frequency deviation given by

Af(t)=f(0)- f, = . (3.197)
In addition, it is convenient to define
kAf(t
Ak, (£) = ===~ /() (3.198)
1,
which can be interpreted as the instantaneous deviation from k. Note that
Af(r) _ Ak, (1)
= . (3.199)
Lo k,

Hence, Equation (3.196) can, also, be written as

o, _kz [1 A )}. (3.200)

2 IFM 2 k

s

It follows that alternative expressions for the interferometer array factor are

Fp,,(8,0,1)= cos{ 2”{ Aj} ( )]sinecosa} (3.201)

o
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= cos{ k’; [l + N;;(t)]sin @ cos a} )

By way of example, consider the case for which
¥4
0 =—and k, =21. (3.202)
2

At time, t;, assume
Af ()= Ak (1,)=0. (3.203)

The array factor is now given by

Fiy (% N A ) = cos{:—?:-;ﬁ cos a] . (3.204)

The magnitude of the array factor is plotted in Figure 3.22(a). As explained in Section 3.3, a broad null appears at
o = 0°since k, is an odd integer.

Figure 3.22: The azimuthal radiation pattern of the interferometer array factor, where the elements are on the y-axis, is plotted

for @ =7/2,d,, =212,/2, and (Af(2)/ £,) equalto ()0, (b) 0.01, and (c) 0.001.

Now assume a 1% change in the carrier frequency at time, t, such that

A (r,) _ Ak ()
£k

The corresponding array factor is

(75 ) [212m
Fry —2—,(Je,t2 = oS

Its magnitude is plotted in Figure 3.22(b). Instead of the broad null at & = 0°, there is now a minor lobe peak
whose magnitude is 0.324. This is only 9.8 dB down from the major lobe peak value of unity and raises concern
that significant energy could be radiated in the direction of the radar main beam. Even so, as is seen from Table 3.6,
there is very little steering of the major lobe positions.

=0.01. (3.205)

cos a]. (3.206)
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For very small percentage changes in the carrier frequency it is possible to derive an approximate relation
for the minor lobe peak at & = 0°. With @ = 7r/2, Equation (3.201) becomes

F,FM(Z[—,a,t) = cos ke I+ Ak, (1) cosax
2 2 k, . (3.207)

Assume that k, is an odd integer such that a broad null appears at & = 0° when Ak, (¢t)=0. At & =0°

Firas (';_E 0, t) |= |cos[ks275 + Ak, (t)%}l:l sin(Aks (t)-’zﬁ) : (3.208)
When
Ak, (t)£ <«<1, (3.209)
it follows that
T /4
F..|=,01|=|Ak ()= 3210
| 20 ) =[x, 0 ey

For our example, in which &, = 21and there is a 1% change in the carrier frequency, Equation (3.205) yields

Ak (t,)=0.01k, =0.21.

Using Equation (3.210), the magnitude of the minor lobe peak at & = 0° is approximately given by

Aks(t)z’ =021Z =0.33. (3211)
2 2
Table 3.6
Comparison of Major Lobe Positions in First Quadrant for a 1% Change in Carrier Frequency
A (t) Major Lobe Positions
o o
(Degrees)

0 17.8 31 40.4 482 55.2 61.6 67.6 734 79 84.5 90

0.01 19.4 319 41 48.7 555 61.9 67.8 73.6 79.1 84.6 90
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This value is very close to the peak value of 0.324 observed in Figure 3.22 (b).

At some time instant, t;, suppose it is desired that the minor lobe peak at & = 0° be 30dB down from the
major lobe peak of unity. From Equation (3.210) it would be required that

20log,,|Ak, (¢,)% | =~30dB . (3.212)
Solution of this equation results in

Ak (2,)=0.02.
As before, let k,=21. Then Equation (3.199) gives

A (1) _ Ak, (5) _0.02

7 k 21

s

=0.001. (3213)

This corresponds to a 0.1% change of the carrier frequency. The corresponding array factor is

V4 21.021x
Fioyl =50ty | =cos| ————cosa |. (3.213)
2 2
Its magnitude is piotted in Figure 3.22 (¢ ). At & =07, the value of the interferometer pattern is
ﬂ. —
Firu| 501, | =0.03298 (3213)

which is 29.6 dB down from the major lobe peak value of unity. Consequently, a 0.1% change, or less, of the carrier

frequency does a very good job of approximating the broad null at & = (0°. However, as is shown in Table 3.7,
there is negligible steering of the major lobe positions.

If the broad null at & = 0’ is to be maintained, it is concluded that a linear frequency modulated pulse, or
chirp signal, is not effective for steering the interferometer. In the next section we investigate the interferometer
response when an up chirp is applied to one of its elements while a down chirp is applied to the other element.

Table 3.7
Comparison of Major Lobe Positions in First Quadrant for a 0.1% Change in Carrier Frequency
Af (t) Major Lobe Positions
o o
(Degrees)
0 17.8 31 404 48.2 55.2 61.6 67.6 73.4 79 84.5 90
0.001 17.9 311 404 48.2 55.2 61.6 67.6 734 79 84.5 90
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34.3 The Time-Variant Array Factor for Two Different Chirp Signals Applied to the Interferometer

Elements

With reference to Equations (3.172) and (3.173), let

t
& (t ) =H ':2’
and
b4} (t ) =0.
Therefore, the signals applied to the interferometer elements at A and B are
o el
s,() = ' COS[ 27 (f o1+ 15)], 2 2
0 , Otherwise
o Taiel
s,(0)=] Vmeos(2z(fi=p3l, 2 2
0 , Otherwise

The corresponding instantaneous frequencies are

[0)= 1, +
and

f0)=1,—pt.
Note that

[0+ 1,06)=2/,
while

fA(t)-fB(l‘)=2,Uf~

Thus, with an up chirp applied to one of the interferometer elements and a down chirp applied to the other, the

interferometer array factor of Equation (3.187) becomes

2 £
F,(6,0,1,7)=cos —[ﬁ,Ar—,utr]+27w—2- .
c

Observe that the array factor now depends upon r as well as @, ¢, and t. The dependence upon 6 and o is made

obvious by utilizing Equation (3.126) which yields
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(3.215)

(3.216)

(3.217)

(3.218)

(3.219)

(3.220)

(3.221)

(3.222)




2

2r| /. d : t
F.,(8,0,t,r)= cos{—c—[f——zf—’l’-smecosa—ytr +27ru? . (3.223)
It is of interest to evaluate the array factor at a fixed point in space for which the coordinates are 00 ,a,,
and 7,. Making use of Equation (3.129), note that
27[ fodIFM 7[ f;lo

. k , kr .
P sinf, cosa, = ST— sin@, cosar, = ‘T sinf,cosa, =¢,.  (3.224)

where @, is a constant. From Equations (3.219) and (3.220) the maximum frequency deviation of the up and down
chirp signals is

P S TP B 4 T G A TP AR TS U/ AP /i
fD"fA(zj fA( 2) fg( 2) fg(z) 1+ f,+ ul.  (3225)

2 2
Hence,
Jo

=40 3.226
M T ( )

It follows that
2_”% - i’illzro =21f ;. (3.227)

c c T

Consequently, at the point in space for which the coordinates are 8,,,, and 7,, the interferometer array factor
can be written as

2

Freu (9,,,ao,t,n.)=COS[27¢"AFt—2ﬂﬂ52-—¢AF (3228)

where f,-and @, are array factor constants dependent upon position. Thus, at any point in the far field, the array
factor is a linear frequency modulated pulse whose carrier frequency and phase are determined by position.

From Equation (3.182) the total complex electric field at a point in the far field is given by

2K S e uiARl
ET z—r—F(e)F,FM (6,0,t,7)e 7T RIA g i2n for (3.229)

Therefore, the total real electric field is

Re{ETT }= £F(9)FIFM 0,a,t,7) (3.230)
r

cos{Zﬂl:(fo N —C'UA—r)t . lc-’i]}

As before, consider a point whose coordinates are 90 »&,,and 1,. Following the previous development, note that

60




1 fD TIFM
C‘

—sinf, cos,

2sin @, cosq, (3.231)

Jo k4
T

1
7s1n 6,cosa, = f,

N
\\\

o

is a carrier offset frequency. In addition, define the carrier phase to be

O, —op e (3232)
c

The total real electric field at the point whose coordinates are 8,,,,, and 7, is then given by

2KF(60)FIFM(90’ao’t’ro)

Re{ET%" }~

o

cos27(f, + fou )t = 9cal (3.233)

where [, and @, are carrier constants dependent upon position.
The substitution of Equation (3.228) into Equation (3.233) results in

RefEzzr}~ 2%

o

cos27(f, + fo )t —Bcs]. (3.234)

This is recognized as a double side band suppressed carrier amplitude modulated signal where the amplitude
modulation is a linear frequency modulated waveform whose instantaneous frequency decreases during the chirp. It
is interesting to note that the carrier is a constant frequency sinusoid even though an up chirp and down chirp were
applied at the interferometer elements. At t= 0 the electric field is given by

rele g b

F(Oo)cos[zfgfﬁt - 27u % - %p]

(8,)cos(— 9, )cos(— @, ). (3.235)

This can be a small value at various points in the far field. A typical sketch of the electric field is shown in Figure
3.23, assuming fr to be much smaller than (f, + fca).

Although f4r, @4z, fcy and @, change with position, the basic waveform for the electric field is

unchanged. Consequently, steering the interferometer with up and down chirps applied to the interferometer
elements has little meaning even though the array factor is a function of both time and the observation point in the
far field. In addition, the waveform sketched in Figure 3.23, is not a good choice for masking the direct path signal
from the main radar.
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It is shown in Section 3.4.4 that a frequency-hopped waveform is capable of maintaining the broad null
while steering the interferometer and degrading performance of the non-cooperative bistatic radar.

0.5 0.5
0 w 0

05 08

-3
[+] 0.5 1 16 2 18.5 19 195 20 205
1 (secs) t (secs)

Figure 3.23: When up and down chirps are applied to the two interferometer elements, the electric field at a fixed point in the far
field is a suppressed carrier amplitude modulated signal whose modulation is a linear frequency modulated waveform, as
sketched in the figure.

344  The Time-Variant Array Factor for a Frequency-Hopped Signal Applied to the Interferometer
Elements

It is intended that the interferometer signal be used to 1) mask over many directions the direct path signal of
the main radar and 2) communicate separate information to various receivers located at different angles. In addition,
the interferometer signal should not interfere with the mission of the main radar. In order to maintain spatial

orthogonality between the interferometer and main radar, it is desirable that the broad null at & = 0° be preserved
while the interferometer is steered in different directions. These objectives can be met, as shown in this section, by
using a frequency-hopped signal to drive the two elements of the interferometer.

Let both elements of the interferometer, assumed to be positioned on the y-axis, be driven by

Sipm(t) = % v, (t-iT,) (3.236)
where

{Vmcos[Zﬂ(fo +f,)t], O0<t<T,

v.(t) = , (3.237)
' 0o , otherwise
Consequently, during the i ® interval, given by
iT, <t <(i+1)T,, (3.238)

the interferometer signal is a constant frequency sinusoid with frequency, ( [+ fo,. )

Following the quasi-stationary development in Section 3.4.2, the interferometer array factor can be
expressed as

Fr0,0,t)= cos[éz(—t)- d ;s Sin B cOS a] (3.195)
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B(r) = 271 (¢) _

c

During the i® interval
2r\f, + 1.,
ﬂ(t)=M, iT <t<(+1)T,.
c
As in Section 3.3.3, let the spacing between the interferometer elements be

A
den =ks?0-

Then

ﬂ(t)dIFM - ks”j’o [/o +fo,-] —

k.
2 2 2

4
fo

where use was made of the fact that

=21,
Now define

Ak, = Ko

S S

Note that

Ju o Ak

Lk
Hence, Equation (3.240) can be written as

Ak

2

§

ﬂ(t)dIFM = ksﬂ- {1 +
2

Substitution of Equation (3.243) into Equation (3.195) yields

F, (8,0,t)=cos I:(ks + Ak, )% sin @ cos a] .

When € =7 /2, the horizontal radiation pattern becomes

Fry (—;E,a, t) = cos[(ks + Ak, )12[- cos a] .
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L=k, + Ak )—.
-t var)?

(3.158)

(3.239)

(3.129)

(3.240)

(3.152)

(3.241)

(3.242)

(3.243)

(3.244)

(3.245)




A broad null exists at & = 0° provided (ks + Aki)is an odd integer. To maintain a broad null at f, (i.e., when
Ak, =0), letk,, also, be an odd integer. The broad null is then preserved by requiring that Ak; be plus or minus

an even integer. For specified values of AK;,k, and f,, f,,is determined from Equation (3.242) according to

Ak,

i ! . 3.246
o kf,, (3.246)

5

In this way, a broad null always exists at & = (° even though the frequency changes from one interval to the next.
The interferometer pattern of Equation (3.245) can be steered in various directions through the appropriate
choice of Ak, and, therefore, f,,. In general, when (ks + Ak,.)is an odd integer, there are (ks + Ak, — l)major

lobes completely contained in the upper half of the interferometer pattern centered at a =10°,
(ks + Ak, -—l)major lobes completely contained in the lower half of the interferometer pattern centered at

o =+180°, and two major lobes centered at @ = +90° . Thus, the number of major lobes changes with a change
in Ak,. This can be utilized to direct the interferometer signal towards a specified direction during the i® interval.

To illustrate the steering of the interferometer by means of a frequency-hopped signal, while maintaining the
broad null at & = (0°, radiation patterns are presented in Figure 3.24 for k, = 21 and Ak, =0and £ 2. Note that

this involves the smallest allowable values for lAk,| . Of course, greater differences between the patterns will result

for larger values of |Ak,| .

As expected, a broad null exists at & = 0° for all three cases presented in Figure 3.24. Observe that there are
18, 20, and 22 major lobes, respectively, in the upper half of the patterns shown in Figure 3.24 (a), (b), and (c).
Also, each pattern contains two major lobes centered at @ = £90°.

Positions of the major lobes, indicated by x’s, and nulls, indicated by o’s, are shown in Figure 3.25 for the three
patterns plotted in Figure 3.24. The polarities of the major lobes are indicated by + and — signs placed over the x’s.

Comparison of the major lobe positions in Figure 3.24 (a) with those in Figure 3.24 (b) reveals that the
major lobes in the two figures are separated by a minimum of 1° for 20° < @ £ 80°. A similar conclusion arises
when the major lobe positions in Figure 3.24 (b) are compared with those in Figure 3.24 (c). Making the same
comparisons with regard to the nulls, it is seen that they are, also, separated by a minimum of 1° for
20° < ¢ £80°. Consequently, significant separations exist even though (ks + Ak,.) differs by the minimum

allowable value.
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Figure 3.24: The azimuthal radiation pattem of the interferometer array factor is plotted for a frequency-hopped excitation with
@ =7m/2,k, =21, and Ak;equalto(a)-2,(b)0,and (c) +2.

ks+ Ak ! ' ' b l i
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23 L -3 e 91K
23 =3 ® . g-+1o-+9a
l i
° 0 20 ) 0 50 [ ) 0 )
Degrees

Figure 3.25: Positions of the major lobes, indicated by x’s, and nulls, indicated by 0’s, are shown for the three patterns plotted in
Figure 3.24.

However, even though the difference in (k .+ Ak, )is twice as large when comparing the pattern of Figure

3.24 (a) with that of Figure 3.24 (c), observe for 54° < & < 66° that some separations between major lobe
positions and null positions are less than 1°. Consequently, making the difference in (k: + Ak, )larger does not

guarantee large separations relative to neighboring major lobe and/or neighboring null positions. It should be noted
that some of the closely spaced major lobes, when comparing Figure 3.24 (a) to 3.24 (c), are of opposite polarity.
The reversal in sign could help to thwart the non-cooperative radar in its attempt to obtain a high quality reference

from the direct path signal.

Nevertheless, this example indicates that it should be possible to select suitable values for k, and Ak, such

that the interferometer is steered in desired directions while maintaining the broad null at & = 0°.

65




CHAPTER 4
A RADAR WAVEFORM EMPLOYING FREQUENCY DIVERSITY

4.1 Frequency-Hopped Waveforms [7], [8]

Frequency-hopped waveforms are a subclass of frequency-coded signals. In particular, consider the radar
pulse waveform of duration NT which consists of N contiguous different frequency bursts, each of duration T.
Assume the hopping frequencies are appropriately selected from a set of N frequencies equally spaced according to
(f-+f,) where

n

f =%; n=01 ..,(N-1) . @.1)

The spacing is given by

n+l n

1
T T —]':-; n =0,1, cooy (N-—]) . (4~2)

A linear stepped-frequency pulse results when the frequencies are chosen consecutively such that the n®
frequency burst has the frequency (f.+f,), where £, is given by Equation (4.1). On the other hand, the frequencies
can, also, be scrambled. For this purpose, consider an arbitrary ordering of the N integers contained between 0 and
(N-1). Note that there are N! such orderings. Let a particular sequence of ordered integers be represented by the set

6,}=16,,6,,6,,..,6y,} . @3)

Now let the subscript, n, indicate the ordering of the frequency bursts contained within the radar pulse. The
frequency of the n™ burst is then chosen to be

A=(fc+fon) — o+ f) =

f.+f =f + QTL ; n=0,1, .., (N-1) . 4.4)

The resulting waveform is referred to as a scrambled-frequency pulse. Because {0,} contains each integer between
0 and (N-1) only once, the frequencies of the N bursts within the radar pulse are each different.

Analytically, the frequency-hopped pulse can be expressed as
N-1
s(t)= X s,(t—nT) @4.5)
n=0

where

A 2rn(f. +f )t <t<
sn(t)={ cos[2z(f, +f )], O T @)

0 otherwise

The envelope of this waveform is illustrated in Figure 4.1 for both a linear stepped-frequency pulse and a scrambled-
frequency pulse. When the frequencies are chosen consecutively, the linear stepped-frequency pulse is a discrete
approximation to the linear frequency modulated pulse or chirp waveform. The bandwidth of the frequency-hopped
pulse is NAf, where Af is given by Equation (4.2), and is assumed to be much less than the carrier frequency, £,
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Figure 4.1: The frequencies of a frequency-hopped pulse may be either (a) consecutive or (b) scrambled.

Many factors favor the use of frequency-hopped waveforms for the pulsed radar signal. These are briefly

discussed below:

1)

2)

3

4)

5)

6)

By appropriate ordering of the frequencies, it is possible to eliminate the range-Doppler ambiguity of the
linear frequency modulated or chirp waveform. It is shown in the following sections that a thumbtack
approximation to the ambiguity function is possible.

For a specified value of N there are multiple orderings of the frequencies that result in a thumbtack shaped
ambiguity function. Coherent reference denial is enhanced by changing the frequency scrambling from one
radar pulse to the next. This prevents the non-cooperative bistatic radar from relying on the integration of a
single radar waveform estimate over the coherent processing interval. In addition, the non-cooperative
radar is forced to repeatedly estimate a new radar waveform from each pulse received in the direct path.

Another benefit from modifying the frequency ordering from one radar pulse to the next is that the main
radar is likely to be less susceptible to interfering FM signals and repeater jammers.

When the radar pulse consists of N frequency bursts, the receiver can be channelized with N channels
where each channel is tuned to a unique frequency and has a bandwidth equal to Af. This bandwidth is 1/N
times the total signal processing bandwidth. Therefore, extremely high time-bandwidth products can be
achieved utilizing receiver components that have instantaneous narrow-band characteristics.

Channelization allows the capability for selective limiting. In a conventional FM receiver using a single
limiter, strong CW interference anywhere in the total signal bandwidth is likely to capture the FM receiver.
As a result, the target return signals are suppressed and unlikely to be detected with a preset threshold
crossing. In a channelized system, CW interference suppresses target returns in only one of the channels.
Hence, the target signal power is reduced only by a factor of [(N-1)/NT. If N is greater than 10, CW
interference can be 20 to 30 dB above the per-channel target signal power without preventing target
detection in a fixed-threshold system.

Modem technology, employing phase-locked voltage controlled oscillators and digital frequency
synthesizers, allows for the generation of sophisticated stepped frequency waveforms. In fact, specialized
stepped-frequency systems have been developed that achieve up to 10 GHz of bandwidth and very large
time-bandwidth products.

4.2 The Permutation Matrix [7]

Frequency-hopped waveforms are conveniently represented by an NxN matrix, denoted by A, for which the N
rows correspond to the N frequencies and the N columns correspond to the N time intervals during which a burst
occurs. The entry in the i® row and j* column, designated by ay;, is set equal to unity if and only if frequency, f+f;,
is transmitted in the time interval t; where i, j =0, 1, ..., (N-1). Otherwise, a; is set equal to zero. The matrix, A, is
known as the permutation matrix. Because the elements of A take one of two possible values, A is, also, called a
binary matrix.
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The binary matrix for a quantized linear FM signal is shown in Figure 4.2. For this case, N=7. A dot in the
ij™ block indicates a;=1 whereas a blank indicates a; = 0. Note that there is only one dot per column and per row.
This is consistent with the requirement at any given time slot that only one frequency is transmitted and each
frequency is transmitted only once.

£+, *
f+f; *
fH, *
fHf, *
f+f, *
f A+ *

f, *

fiel | b 6] 6] ] ] t

Figure 4.2: Permutation matrix for a stepped frequency linear FM waveform has nonzero entries only along one of the
diagonals.

An NxN matrix contains a total of Q=N? matrix elements. Thus, when the elements are binary, the number
of different matrices possible is 22 However, of these only N! matrices can be obtained by permuting the N
integers contained between 0 and (N-1). It is for this reason that A is referred to as a permutation matrix. Some of
these are better than others for designing the signal pattern of a radar waveform.

When a frequency-hopped signal is reflected from a target and received by an observer, it is shifted in time
depending upon the range to the target and in frequency depending upon the radial velocity of the target. The
amounts of these shifts are determined by comparing shifts in both time and frequency of a replica of the transmitted
waveform with the actual received signal and noting for which combination of time and frequency shifts the
coincidence is greatest. This may be thought of as counting the number of coincidences between 1’s in the
permutation matrix A with 1°s in a shifted version of A for which all entries have been shifted r units to the right (r
is negative if there is a shift to the left) and s units upward (s is negative if there is a shift downward). Let the
shifted permutation matrix be denoted by A(r,s).

The number of such coincidences, C(r,s), is the unnormalized autocorrelation between A and A(r,s). C(1,s)
clearly satisfies the following conditions:

C(0,0)0=N @.7
0<C(r,s)<N; r#0 and s#0 4.8)

In addition, because time and frequency are restricted to the intervals t, < t <ty and f; < £ < £, + f), it follows
that

C(r,s)=0; |f|>N and/or §|2N . (4.9)

The two-dimensional autocorrelation function, C(r,s), is called the ambiguity function and can be thought
of as the total coincidence between the actual returning signal and the transmitted signal shifted by r units in time
and s units in frequency. It is useful to think of the permutation matrix, A, as a two-dimensional template of N? cells
which is opaque at the (N*-N) cells where a;=0 and transparent at the N cells where a;=1. The total signal energy
emerging through the N transparent windows is summed to give the value of C(r,s) when the template is shifted r
units on the time axis and s units on the frequency axis.
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For example, with regard to the permutation matrix shown in Figure 4.2, C(0,0) =7, C(1,1) =6, C(2,2) = 5,
C(3,3) =4, C4,4) =3, C(5,5) =2, C(6,6) = 1 and C(zr,s) = 0 for all other choices of r and s. This yields the well
known diagonal ridge associated with the linear stepped FM signal. In the real world the returning signal is always
noisy. For large values of N and a very noisy environment, this signal pattern would be likely to produce spurious
targets in addition to the ambiguities caused by the ridge.

For radar applications it is desirable to have an ambiguity function that approaches the ideal thumbtack. In
this context a good frequency hopping pattern should result in small values for C(r,s) when (r,s) # (0,0). Such
patterns have been proposed by John Costas [9] and are discussed in the next section.

4.3 Costas Arrays [9], [10]
John P. Costas attempted to find those NXN permutation matrices for which
max C@r,s)=1 .
(r,5) = (0,0)
Such matrices are known as Costas arrays. In addition to radar, the frequency hop patterns associated with Costas
arrays may be useful in other applications, such as spread spectrum communication systems, where the objective

may be to achieve either jamming resistance, low probability of intercept, or frequency diversity for a selectively
fading channel.

(4.10)

The problem of constructing Costas arrays can be described as: Place N 1’s in an otherwise null N by N
matrix such that each row contains a single 1 as does each column. Make the placement such that for all possible
(1,5) shift combinations of the resulting permutation matrix relative to itself, at most one pair of 1°s will coincide.

Let M(N) denote the number of Costas arrays that can be generated from the N! (NxN) matrices obtained
by permuting the N integers contained between 0 and N-1. The density of Costas arrays is defined to be M(N)/N!.
These values are tabulated in Table 4.1 for 3 < N <12. Although the number of Costas arrays increases with N, the
density decreases significantly. Thus, a random search by means of a computer program can be rather lengthy.

An example of a Costas array for N=7 is shown in Figure 4.3. This array corresponds to the particular
sequence of ordered integers given by

{6.1=13,6,0,5,4,1,2} . @.11)

The corresponding ambiguity matrix is shown in Figure 4.4 where the time shift, r, and the frequency shift, s, both
extend over the integers in the range from —6 to +6. A block of the ambiguity matrix is left blank when C(r,s)=0.
Note that C(0,0)=7 and that the nonzero values of C(r,s) are equal to unity.

TABLE 4.1
NUMBER AND DENSITY OF COSTAS ARRAYS
N 3 4 5 6 7 8 9 10 11 12
M®N) 4 12 | 40 116 200 444 760 2,160 4,368 7,852

MN)N! [067 [05 [033 [o0.16 [004 |0011 |2x10° | 6x10™ 1x10% | 1.6x10°
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Figure 4.3: The permutation matrix shown is one of 200 possible Costas arrays for N=7.

The ambiguity matrix is readily constructed from the difference triangle associated with the sequence, {6,}.
By definition, the element in the i® row and j* column of the difference triangle is determined by

where (i+j) < N.

d;; = 6iujny =Gy

(4.12)

For example, consider the sequence in Equation (4.11) which generates the Costas array in Figure 4.3. The
difference triangle is formed by successively considering i=1,2,3,4,5,6 and, for each i, letting j assume all values
such that (i+j) < 7. Hence, for i=1 and j=1,2,3,4,5,6, we obtain

6 1
5
4 1 1 1
3 1 11 1
2 1 111 1
1 1 1 1 1
0
-1 1 1 1 1
-2 1 1
-3 1 1
-4 1 1
-5 1 1
-6
sir] 6 | -5 31211 2 4 6

Figure 4:4: The ambiguity matrix is shown for the Costas array of Figure 4.3.
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(4.13)

Similarly, for i=2 and j=1,2,3,4,5, there results
d,; =6,-6,=0-3=-3
d,,=6,-6,=5-6=-1
d,; =6,-6,=4-0=4 4.14)
d,, =6;-6,=1-5=—4
dys =66, =2-4=-2

The complete difference triangle is shown in Figure 4.5.

It can be shown that {8,} yields a Costas array if and only if the difference triangle formed from {6,} has
no repeated terms in any row. The ambiguity matrix is constructed by recognizing that d;;=k indicates that a 1 is to
be placed in the block of the ambiguity matrix corresponding to r=i and s=k. For example, ds, = -5 implies that a 1
belongs in the matrix corresponding to r=4 and s= -5. The matrix is completed by recognizing that

C(r,s) = C(-r,—s) . (4.15)

The number of entries in the difference triangle is (N-1)N/2. Utilizing Equation (4.15), it follows that there are (N-
1)N 1’s in the ambiguity matrix.

{6n}={3,6,0,54,1,2}

AY] 1 2 3 4 5 6
1 3 -6 5 -3 1
2 -3 -1 4 -4 -2
3 2 -2 1 -3
4 -5 2
5 -2 -4
6 -1

Figure 4.5: This difference triangle can be used to construct the ambiguity matrix presented in Figure 4.4,

The ambiguity matrix provides a first-order approximation to the actual ambiguity function because it does
not account for fractional shifts. A detailed evaluation of the actual ambiguity function for the frequency-hopped
signal is likely to reveal many more minor peaks and a few peaks whose values are larger than unity.
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The frequency-hopped signal generated from a Costas array is referred to as a Costas signal. A three-
dimensional view of the ambiguity function for the Costas signal generated from the Costas array of Figure 4.3 is
shown in Figure 4.6. The cut along the time shift axis for zero frequency shift is shown in Figure 4.7. Observe that
the peak value of the ambiguity function has been normalized to unity.

Figure 4.6: The ambiguity function of the Costas signal generated from the Costas array of Figure 4.3 approximates the shape of
a thumbtack.

The plot in Figure 4.6 shows a few peaks reaching a value of 0.29=2/7. However, most peaks reach the expected
level of 0.143=1/7. The ambiguity matrix does not predict any minor peaks along the time shift axis for zero
frequency shift. Nevertheless, many minor peaks, most of which are less than or equal to 0.1, are revealed in Figure

4.7.

~70 -56 -42 -28 -14 ] 1.4 2.8 42 56 7.0

Figure 4.7: The ambiguity matrix does not predict the minor peaks along the time shift axis for zero frequency shift.

In summary, the Costas array generates a Costas signal whose ambiguity function approaches the shape of
the ideal thumbtack. The ratio between the main lobe and the pedestal is approximately N. However, the pedestal is
not smooth. The ambiguity function has a few peaks higher than predicted by the ambiguity matrix and many dips
occur at various locations within the pedestal. The pedestal stretches from the origin as far as + NT in time shift
and, essentially, as far as = N/T in frequency shift. The number of major sidelobe peaks predicted from the
ambiguity matrix is equal to (N-1)N. There are approximately three times as many blanks than 1’s in the ambiguity

matrix.
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4.4 Ambiguity Function of the Costas Signal [9]

Without loss of generality, frequency-hopped waveforms can be analyzed in terms of baseband signals by
considering their complex envelopes. The complex envelope of the frequency-hopped signal, described by
Equations (4.5) and (4.6) and normalized to have unit energy, is given by

1 N-1
fean() =—== 2 p,(t—-nT) (4.16)
MADET T A JNT a0
where
© Aehh | 0<t<T @i
AU e ) 4.17
P 0, otherwise
By definition, the energy of frap(t) is
NT ) NT .
I o 0 dt = [ frup () frap (9
1 I‘}T N-1 T N1 d
= t— t —mt)dt
NT 2 p,(t-nT) 2 p,(t—mt)
1 NT (-1 2
= t—nT| ; dt 418
—INT | {Eolpn( n I} 4.18)
LTIFY T) p),(t-mT)}d
+ t— t— t
ONT {0 2 P, (t—nT) p,(t-m )}
n#m
Note that
. A* , nT<t<(m+DT
|pn(t—nT)|2 = n (n_ ) 4.19)
0, otherwise
Also, because the frequency bursts do not overlap when n#m,
p,(t-nT) p. (t-mT)=0, n=m. (4.20)
It follows that
NT 2
[ e @] dt=1 . 8.21)
0
Therefore, fz sp(t) has been normalized to have unit energy.
The delay-Doppler ambiguity function was defined in Equation (2.50) to be
NT .
x(Tv)= g frap(0) foup (0 —17)e" "7 do (2.50)
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where the infinite limits of integration were truncated because of the finite extent of fyap(t). The normalized

ambiguity function is known to have the following properties:

lz(z,v)| <1=x(0,0)] , (4.22)
|z(—z, -v)| = |x(z,0)] , (4.23)
424

[ lx(z,0) drdv =1.

—00 —o00

Because of the odd symmetry, indicated by Equation (4.23), it is necessary to consider only nonnegative values of T

and v.
Substitution of Equation (4.16) into the expression for the ambiguity function results in

* N-1 N-1 .
p.(c-nT) p, (6 —-7-mT) " do . (4.25)

1
Z(T,v) - AZNT _-L EO mz=:0

Separating the terms in the double summation into those for which n=m and those for which n#m, we obtain

= N-1 )
[ 'Y p.(o-nT)p, (c-7-nT) ™ do
(4.26)

1
7,0) =
2O =T
1 T * 2rvo
Yoy, I 2 ¥ p.(0~nT) p,(0~7-mT) "™ do

+
Attention is first focused on those terms in Equation (4.26) for which n=m. Make the change of variables
4.27)

p=0—-nT

“The terms for which n=m then become

1 N-1 | ° )
X e pL(p) P, (p-T) ™ dp
2 _ oo n n
A I\iT “N: (4.28)
=g I fu@m) e
n=0
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where the autocorrelation function of p,(t) was defined to be

_L p.(P) p.(p-7) ™" dp . (4.29)

1
0 (7:0) = =

Now focus on those terms for which n#¥m. As before, make use of the change of variables in Equation
(4.27). Those terms for which n#m then become

1 Py 2z vnT T . _ 2zrvp

T 5.5, ¢ L i) palp -7 - (m-m)T] e dp

e (4.30)

1 R T j2zv T
=N nzz:o P .. [T+(m-n)T,v] e
where the cross-correlation function between p,(t) and py,(t) was defined to be
1 T o 2zvp
bun(@0) == [ p,(0) Pulp-7) " dp . @“31)

Combining the results obtained for n=m and n#m, the ambiguity function of Equation (4.26) is expressed

: N-1 N-1 )
x(1,0)= N ,.Z=o o, (T,0) +3 4. [t +(m-n)T,v]; 2™ | (4.32)

The magnitude of the ambiguity function represents the magnitude of the coherent processor response to a pulse
train arriving with delay, t, and Doppler shift, v. (This assumes that the Doppler shift is approximately unchanged
over the different frequency hops within the pulse.) As pointed out in Section 4.3, Costas developed his approach of
frequency-hopped waveforms in an attempt to shape the ambiguity function in the form of a thumbtack. The
success of this approach depends upon the characteristics of @u,(T,0) and @y, (T,0).

An analytical expression is now obtained for @,,(t,v). The case for which 0 < 7 < T is considered first.
Note that p_ () is zero outside the interval [0,T] while p,(p-t) is zero outside the interval [t, T +T]. Since T >0,

their product is zero outside the interval [1,T]. Substitution of Equation (4.17) into Equation (4.29) then yields, for 0
<t<T,that
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T Y4 T U
¢nn(z,v) - I € I " eJ » eJ dp

4.33)

— A2 T -7 sin[z (T -17)] pilF(THD)-271,7)
T (T -17)

Similarly, for -T < 7 < 0, the product of p; () and pa(p-7) is zero outside the interval [0, T+T]. For this case
Equation (4.29) becomes

2 +T
0, (W)= [ TIPS L G20 gy
0

. 4.
= AZ T +7 sm[n’ U(T + 7'-)] ej[nv(T+1)—-2ﬂ:f,,1] . ( 34)
T (T +7)

Finally, since py(t) is zero outside the interval [0,T], p; (p) and pa(p-1) do not overlap for [t=T. It follows that
@un(T,0) is zero for [t2T. Combining the above results, the autocorrelation function of py(t) is given by

, (T _ITI) sin[z v(T _|T|)] T (T +0)-275,7)
P (T,0) = T  zo(T-ld)
0 , le] =T

, [T
(4.35)

The cross-correlation function between pu(t) and pn(t) is derived in a similar manner. For 0 <7 < T
substitution of Equation (4.17) into Equation (4.31) results in

A2 T ] ) ‘
¢nm (T,‘U) = _T_ £ e—12zrf.,p e]27t f (p-T) gizmvp d,D
i (4.36)
— A2 T-7 sin[z a, (T-17)] il G (THD)427 £,7]
T T anm (T - T)
where
O =ty £ -0 @.37)
Also, for -T <1 <0, we obtain
2 T+T
6. (T, 0)=— | e—jIannP @27 fn(p=0) gi2EVP
o (4.38)

= A? T+7 sin[7z a,, (T +17)] oI G (T4214221,7]
T 7o, (T+7)

Finally, since both p,(t) and pn(t) are zero outside the interval [0,T], p; () and pu(p-1) do not overlap for [t| > T.

It follows that .m(t,0) is zero for [tf] > T. Combining the above results, the cross-correlation function between py(t)
and pn(t) is given by
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, (T=|e) sin[ 7, (T -}z])]
O (,0) = T 7a,(T-f)
0 ; le| 2T

-j am (T+ 2mfy
7w g (THT)427 (T} , IT!ST

As required, note that @pm(t,0) reduces to @u(T,0) for n=m.

With reference to Equation (4.32), it is now shown that the central peak of the ambiguity function is
associated with the summation involving @.(t,0) while the sidelobe responses in the pedestal of the ambiguity

function are, in the main, associated with the summation involving @u[t+(m-n)T,v].

First, consider the T = 0 axis. Along this axis the ambiguity function is given by
1 N4 N-1 -
70,0)=—— ¥ <9, (0,0)+ 2 @, [(m-n)T,v] e’ " .
AN n=0 m=0
nEm
For n#m, where n and m are integers, observe that
|(m-m)| T2T
From Equation (4.39), it is concluded that
¢, [((m~-n) T,v]=0, n#m

Consequently, Equation (4.40) simplifies to

_ 1 R 2z T
x(O,v)—AzN Eo ¢, (0,0) e

However, from Equation (4.35),

A2 sin(z vT) 7 VT

0,v
9w (0,0) zovT
It follows that
_ sin( z v T) jzoT N j2zvnT
%) = ZONT n‘éo °
= giTUNT sin (x v NT)
7 v NT

where use was made of the result that

N e;ZIrvNT -1

j2ronT =
ejZIrvT -1
_ e’ sin(r v NT)

T T sin(mvT)

-1
e

n=0
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(4.41)

(4.42)

(443)

(4.44)

(4.45)

(4.46)




Observe that
Z(an) =1 4.47)

and that the first zeros of 4(0,v) occur for

v = (4.48)

1
NT

As a result, the Doppler resolution of the N-pulse frequency-hopped signal is identical to that of a CW pulse of
duration NT.

Costas [9] introduces the normalized frequency variable
y=vT . (4.49)

Since the frequency channel spacing is 1/T, as determined by Equation (4.2), y is a measure of frequency in units of
frequency-hop spacing. The ambiguity function along the 7 = 0 axis can now be expressed as

x(0,y) = "N sin(z Ny) (4.50)
7Ny
for which the first zeros are given by
1
s L @51)
YEEX
The ambiguity function along the v=0 axis is considered next. From Equation (4.32)
1 N-1 N-1
X(7,0) = —; 236, (.00 + 2 @, [t+(m-n)T,0]> . 4.52)
AN =0 m=0

n#m

The summation involving the cross-correlation terms can no longer be ignored. However, we first concentrate on
the contribution by the autocorrelation terms alone. For this purpose, define

1 N-1
x'(7,0) = N Eo 0., (7,0) . 4.53)
From Equation (4.35)
(T-l)
2 j2rf, T
0. (z0) ={& T °© , =T (4.58)

0 |4 =T

With reference to Equation (4.4), it follows that
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_ 1 _ipgba®
QI_\ITT@ :é‘,: P JesT . (4.55)

Because the sequence of integers in the set, {6,}, consists of all integers between 0 and (N-1) and each integer
appears only once, the ordering of terms in the summation of Equation (4.55) is inconsequential. Therefore, the

x'(@0) =

summation can be written as

5] = (5]
n=0 n=0
2 sin| 77 N T (4.56)
—-27—1 . —_— .
e -1 i [N—ljf T
— =e
T sin(zlr)
© T
It follows that
sin(ﬂ N T)
T-le) -in[=2)e T
x1'(70) = (—Uz e J ( T ) AT J , z'| <T . 4.57)
T . ( 1 )
Nsinl z—7
Observe from Equation (4.54) that ¢,,(1,0)=0 for |t| = T. Hence,
X' (0)=0, [l 2T . (4.58)

It is seen that the t-axis response beyond |t| = T is entirely due to the summation over the cross-correlation terms in
Equation (4.52).

Costas [9] introduces the normalized delay variable

T
(4.59)

Since each subpulse is of width, T, x is a measure of delay in units of subpulse width. Note that |1 |<T implies |x|

<1. For this case ¥'( 7,0) becomes

0,0 = (- fx]) et SHENS) .
2 (x,0)=(1-]x]) e N sin(rx) x| (4.60)
Observe that
x'(0,0) =1 4.61)
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Since Equation (4.22) is, also, valid, it can be deduced from Equation (4.61) that the cross-correlation terms
do not contribute to the ambiguity function at the origin. The first zeros of ¥'( x,0) to either side of the origin occur
at

1
X=*t— 4.62)
N
or, equivalently, at
T
T=%— (4.63)
N

This is a measure of the delay resolution for the Costas signal.

It is of interest to evaluate the Doppler and delay resolutions in terms of the time-bandwidth product of the
frequency-hopped pulse. The duration of this pulse is

T, =NT . .69)

Because each subpulse is of duration T, the subpulse bandwidth is approximately 1/T. In addition, the frequency
hops span a frequency range of extent equal to NAf = N/T. Thus, the bandwidth of the frequency-hopped pulse is
approximately

BW =X | (4.65)
T

As a result, the time-bandwidth product of the Costas signal is approximately

T,(BW) = (NT) (?—) =N? . (4.66)
BW) 1 1
Note that e = 4.67)
N T, NT
while
_&. = ._.1__ = 1 (4.68)
N2 BW N '

Recall that the Doppler resolution, from Equation (4.48), is 1/(NT) and the delay resolution, from Equation (4.63), is
T/N. Therefore, the compression ratio for the Costas signal is N? in both the Doppler and delay domains.

The cross-correlation terms in Equation (4.52) are now examined. For 1 = 0 note that

Qrn[TH(m-n)T,0] becomes Qpp[(m-n)T,0]. Because n#m, [(m-n)T| = T. It follows from Equation (4.39) that.
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Pm(m-n) T,0]=0, n#*m . (4.69)

This is consistent with the observation, previousiy pointed out, that the cross-correlation terms do not contribute to
the central peak of the ambiguity function at t=v =0.

With reference to Equation (4.39), note that @,,[t+(m-n)T,0] is not identically zero only over the range of
T governed by

[f+m-n)T|<T . (4.70)
This inequality can be rewritten as
~-T<t+(m-n)T<T @.71)
or, equivalently, as
- T-(m-n)T<7<T-(m-n)T . 4.72)

Hence, along the t-axis, @um[t+(m-n)T,0] spans an interval of length 2T centered at (m-n)T. Since n#m in the
summation over m in Equation (4.52), the interval given by — T< 1 < T is excluded. Nevertheless, for a fixed value
of n and values of m that differ by unity, the corresponding cross-correlation terms do have intervals that overlap.
The overlapping of these terms produces reinforcement and cancellation effects which are quite complex because of
the amplitude and phase relationships involved. It is difficult to predict the exact peak values of the sidelobes.
However, they are expected to be on the order of 1/N, as suggested by the relevant Costas array.

From Equations (4.4) and (4.37) note that

_6.-6, _

w =f Ty 0= @.73)
For |T +(m—n) Tl <T, use of Equation (4.73) in Equation (4.39) yields

A (T —|T+(m——n)T|)

punlz+(@m-0)T, ]| =

T
sin[n’(—e—“—j}ﬁ‘— -v) (T ——|1'+(m—n)T|)]i (.74
, n(-é'"—?ﬂ—v) (T=|r+(m-n)T]) ’ '

Consider the case for which
T=m-mT . 4.75)

Then the magnitude in Equation (4.74) becomes
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T
|0, (0,0)] = A 5 (4.76)
r|+—" -0 |T
T
Now let
v = d @4.77)
T .
where r is any integer. Equation (4.76) can then be expressed as
r , |sinB
¢nm (O’ '..I_,) = A ﬂ 4.78)
where
6.-6_-r
B = n(“—T‘“——)T =6, -6, ~1) . (4.79)
Because (0,-0,,-r) is an integer, it follows that
I A, 1=6_-6
Pom (0, | = ’ oo (4.80)
T 0, r#6,-6,
Therefore, @, [T+ (m —n)T,v] attains its peak value of A’ for values of T and v given by
6. -6
7, =(a-m)T and v, = —T—ﬂ‘— . 4.81)
Defining
L=n-m, (4.82)
T, and v, can be rewritten as
6. -6 d
7, =LTand v, = 2L — =2 (4.83)
T T

where dy 4 is the difference given by Equation (4.12). Consequently, the frequencies at which the cross-
correlation terms peak, for a specified value of L, can be obtained from the difference triangle of Section 4.3. These
peak positions are, also, reflected in the corresponding Costas array. Although the actual peak values of the
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sidelobes in the pedestal are difficult to predict, they are expected to be small relative to the central peak. This is
illustrated in the following examples.

The examples are based on an N=10 and an N=30 Costas array. For N=10, the firing order is given by the
sequence of ordered integers in the set

{.}=11.3,7,4,9,8,6,2,5,0}. (434)
For N=30, the firing order is determined from the set

2,8,26,18,25,15,16,19,28,24,12,7, 23,9, 29,

{6.1= (4.85)
27,21,3,11,4,14,13,10,1,5,17,22,6, 20,0

They are referred to as Welch-codes because they can be constructed from a theorem proposed by L. R. Welch [11].

Various views of the ambiguity surface for the 10-pulse Welch code are shown in Figure 4.8 [9].
] (%, y)| is plotted where x and y are the normalized variables of Equations (4.59) and (4.49), respectively. In

Figure 4.8(a) observe that the density of peaks increases towards the origin, as predicted by the difference triangle
and the ambiguity matrix for the Costas array. A different perspective of the ambiguity surface is shown in Figure
4.8(b). Note that sidelobe peaks far from the origin remain below the 1/N level. However, those near the origin
tend to have their values above the 1/N level due to the overlapping of the cross-correlation terms. Nevertheless,
most peaks remain below the 2/N level.
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Figure 4.8: Various views of the ambiguity surface for the 10-pulse Welch code are shown: (a) an overview, (b) a different
perspective, (c) Doppler response for x=0, (d) delay response for y=0, (e) pedestal region near the highest sidelobe peak.
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The Doppler frequency response for x=0 is shown in Figure 4.8(c). As predicted by Equation (4.50), a
Isin(ﬂ' Ny)/m Ny I behavior is seen with the zero of the main lobe occurring at y=0.1=1/N. The delay response

for y=0 is shown in Figure 4.8(d). From x=0 to x=1 the |sin(7L'Nx) / Nsin(z x)l behavior, as noted in
Equation (4.60), is seen. Beyond x=1, the @,,(x,0) terms vanish and only the @,,(x,0) cross-correlation terms
contribute to the ambiguity function. As predicted by Equations (4.75) and (4.80), observe that | Z(X,O)i =0 for

all integer values of x.

The largest sidelobe peak, due to overlapping of cross-correlation terms, was found to have a value of 0.21.
Because N=10, a single cross-correlation term would result in a sidelobe peak of height 0.1. Thus, the largest
sidelobe peak has a value which is 2.1 times larger than would be expected from a single cross-correlation term.
The general neighborhood of the largest sidelobe peak is shown in Figure 4.8(¢). The phasing and overlap of the
cross-correlation terms are seen to produce isolated peaks approximately twice the 1/N value predicted by the Costas

array,

Various views of the ambiguity surface for the 30-pulse Welch code are shown in Figure 4.9 [9]. As was
done with Figure 4.8, l x(x,y)| is plotted where x and y are the normalized variables of Equations (4.59) and

(4.49), respectively. Pedestal spiking above 1/N is evident near the main peak of Figure 4.9(a). However, away
from the main peak, most of the sidelobes have peak values approximately equal to 1/N. The largest pedestal peaks
are on the order of 2/N. Clearly, the pedestal peaks can be reduced by increasing the value of N.

Figure 4.9(b) shows a plot of I (X, y)l where values are evaluated only at integer values of x and y. As

would be expected from Equations (4.75) and (4.80), the pedestal region of the ambiguity surface is either zero or
1/N depending upon whether or not there is a cross-correlation peak. The peaks of the individual cross-correlation
terms are clearly displayed by this artifice. However, note that triangles indicate isolated peaks while the flat-topped
sections indicate two or more frequency-adjacent peaks. The density of peaks is seen to increase near the main lobe,

as predicted by the ambiguity matrix for the corresponding Costas array.
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Figure 4.9: Various views of the ambiguity surface for the 30-pulse Welch code are shown: (a) an overview, (b) plot using only
integer values for x and y, (c) Doppler response at x=0, (d) delay response at y=0, (¢) complete delay axis response, (f) Doppler
response at x=25, (g) Doppler response at x=5, (h) Doppler response at x=1.4, (i) pedestal region near the highest sidelobe peak.
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The Doppler response at x=0 is shown in Figure 4.9 (c) for values of y between 0 and 1. As was the case
with Figure 4.8(c), the behavior is of the form |sin(7£ Ny)/zNy ] . As expected, the first zero of the main lobe

occurs at y=0.0333=1/30. The delay axis response at y=0 is shown in Figure 4.9(d) for values of x between 0 and 1.
As with Figure 4.8(d), the behavior is dictated by Equation (4.60). Consequently, the first zero appears in the
vicinity of x=1/30. The complete positive delay axis for y=0 is shown in Figure 4.9(e). The main peak is hard to
see because of the scale chosen for the x-axis. However, this choice of scale clearly demonstrates that the sidelobes

are very well behaved with relatively few excursions above the 1/N value.

Figure 4.9(f) is a frequency cut taken at a delay of x=25. With reference to the set of ordered integers in
Equation (4.85), the 25" row of the difference triangle is given by

dysj = Onsiiy —ej—l (4.86)
where j assumes all positive integer values such that
254+ <30 . (4.87)
As a result,
51 = 6,,-6,=17-2=15

yo =0 —6,=22-8=14

»

ys4 = Oy —6,= 20 ~18 =2
255 = Oy —0,=0—25=-25

A A A A o

Recall from the discussion of the difference triangle in Section 4.3 that d;;=k implies a peak at x=i and y=k.
Therefore, for the frequency cut at x=25, peaks are predicted at y= -25, -20, 2, 14, and 15. These sidelobe peaks are
clearly seen in Figure 4.9(f). Observe that the isolated cross-correlation terms have their peak values equal to
1/N=0.0333. However, the two peaks at y=14,15 experience mutual interference effects that result in a wider peak
whose magnitude exceeds 1/N but is less than 2/N.

A frequency cut for x=5 is shown in Figure 4.9(g). Because this is closer to the main peak at the origin,
many more sidelobes appear than was the case for x=25. Near the center of this plot the mutual interference effects
due to groups of frequency-adjacent cross-correlation peaks are clearly evident. The largest peak values are
approximately equal to 2/N.

The largest peak in the pedestal region was found to be at x=1.4 and had a value equal to 0.078 which is
2.34 times the 1/N value of 0.0333. Figure 4.9(h) shows a frequency cut at this delay with the largest peak occurring
near y=3. The ambiguity surface for the region near the pedestal highest peak is shown in Figure 4.9(i). The rapid
undulations of this surface are to be compared with the comparable surface in Figure 4.8(e). Note, also, the lower
level of the surface for N=30 as compared to that for N=10. Increasing N from 10 to 30 has increased both the range
and Doppler resolution by a factor of 3 and has lowered the pedestal region by about the same factor.
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An advantage of frequency-hopped waveforms is their flexibility with regard to ordering of the frequency
steps. For some radar applications it may be more desirable to have a lower pedestal than the thumbtack shape
approximated by the Costas signal. Figure 4.10 shows the ambiguity surface of a 10-pulse frequency stepped linear
FM signal having spacings equal to 1/T. The classic FM ridge is clearly in evidence and contains most of the
volume under the surface. Comparison of this surface with that shown in Figure 4.8(a), which was, also, for a 10-
pulse burst, reveals the much lower pedestal of the linear FM waveform. Although this is an advantage, there is
potential for considerable ambiguity due to the ridge and nearby sidelobe structure.

i
: i ¥
Al

2333 -1.67 g !

NORMALIZED FREQUENCY

so0 NORMALIZED DELAY ,

Figure 4.10: The ambiguity surface is shown for a 10-pulse frequency stepped linear FM signal with spacing equal to 1/T.

87




CHAPTER 5

AN INTERFEROMETER WAVEFORM EMPLOYING ORTHOGONAL
FREQUENCY DIVISION MULTIPLEXING

5.1 Orthogonal Frequency Division Multiplexing [12]

5.1.1  Overview of OFDM

Orthogonal frequency division multiplexing (OFDM) is a modulation technique that has been proposed
recently for use in broad-band mobile multimedia applications. Because frequency-selective and time-variant
channels are typically encountered in these applications, channel equalization must be incorporated to achieve an
acceptable level of performance. The quality of service is usually measured in terms of data rate and bit error rate.

Fading channels can be frequency selective when multipath propagation is experienced and can become
time-variant when the transmitter and/or receiver are in motion. The computational requirements for an equalizer to
be used to compensate for a frequency-selective channel increases in complexity with the data rate. Furthermore,
the system resources (or overhead) needed for the estimation of time-variant channel parameters can be
considerable.

To overcome these drawbacks OFDM has been considered for high data-rate applications. In effect, OFDM
divides the radio channel into many narrowband subchannels which appear to be frequency nonselective. Thus, the
task of channel equalization is simplified to estimating a single complex factor (or transfer function) for each
subcarrier. Such a channel estimation can be realized by inserting pilot symbols with known modulation into the
transmitted signal. Based on these pilot symbols the receiver can measure the channel transfer functions for each
subcarrier using interpolation techniques. In this case, each subcarrier can be demodulated coherently.

Alternatively, differential modulation can be performed in a manner similar to that used with M-ary
differential phase shift keying (M-DPSK). With OFDM this has been extended for multi-level modulation to a
combined differential amplitude and phase modulation in order to achieve a higher bandwidth efficiency and still
rather good performance. This modulation technique is termed differential amplitude and phase shift keying
(DAPSK). The performance of OFDM systems with differential modulation compares quite well with systems
using nondifferential modulation and coherent demodulation. Furthermore, the computational complexity in the
demodulation process is quite low for differential modulation.

Channel coding is an important ingredient for OFDM systems. Transmission over a frequency-selective
channel! implies that some of the subcarriers are strongly attenuated and errors occur even with a high average signal
power. In this flat fading situation an efficient channel coding leads to a very high coding gain. For this reason,
OFDM systems will always make use of channel coding.

Also, apart from simplifying the channel equalization with respect to single carrier systems, OFDM offers
more possibilities to adapt the transmission system to the communications channel by varying the modulation of the
subcarriers. However, an optimal adaptation is limited to quasistationary channels.

As compared to single carrier systems, the most important advantage of the OFDM transmission technique
is obtained in frequency selective channels. The signal processing in the receiver is rather simple in this case
because, after transmission over the communications channel, the orthogonality of the OFDM subcarriers is
maintained and the channel interference effect is reduced to a multiplication of each subcarrier by a complex factor.
Therefore, equalizing the signal is very simple, whereas equalization may not be feasible in the case of single carrier
transmission covering the same bandwidth.
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5.1.2 OFDM Signal Characterization

As was done in Section 4.4, the discussion is carried out at baseband through the use of complex envelopes.
OFDM was chosen for the interferometer signal because it can be made to closely resemble the Costas signal
selected in Chapter 4 for the radar waveform. This should greatly enhance the ability of the interferometer signal to
mask the radar signal transmitted through the sidelobes of the main radar.

In general, an OFDM signal consists of M subcarriers, each of duration T, The baseband frequencies of the
subcarriers are given by

f == :m=0,1, .., (M-I). 6.1)
TS
Consequently, their spacing is
m+l m
Af=fm+l—fm= T _7
i s $ 5.2)

=—3 m=0,1, w., (M-1) .

Ry
When T, =T and M=N, the OFDM signal frequencies are identical to those used with the Costas signal.

The m™ subcarrier signal is described analytically by

BV, 0<t<T,

g, = (5.3)
0 , Otherwise

Each subcarrier can be modulated independently with the complex modulation symbol, S, where k refers to time
and m refers to the subcarrier frequency. Thus, the k™ OFDM block extending over the interval [k T, (k+1)T] is
characterized by

M-1
()= T Sy, 8,(t-KT,) . (54)
The total interferometer signal, consisting of K OFDM blocks is given by
K-1 K-1 M-l
sem (D) = kZ_JO s (t) = E.O T S, 8.(t-kT,). (5.5)
= =0 m=0

The energy of the interferometer signal is

KT, ) KT,
Epy = -([ |SIFM(t)l dt = g Sipm (1) Sy (1) dt

KT, (k-1 M-I Ktoma L (5.6)
= g {kz::o m2=:0 Sim &m(t—KT,) } {E& n2='.0 S,n 8,.(t—LT) } dt .
Because the OFDM blocks do not overlap when k#¢,
8. (t—kT,) g, (t—4T)=0, k={ . (5.7)

Consequently, the expression for Egy simplifies to
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K-1 M-1 M-1 , (DT .
Ep =2 Z 2 S8, | ga(t-kT)g,(t-kT,)dt. (58)

8

However, through direct integration, it is readily shown that all subcarriers are mutually orthogonal over the time
intervals [kTs, (k+1)T,] fork=0, 1, ..., (K-1). In particular,

(k+1)T,
I g, (t-KT,) g, (t-kT,)dt
(k+DT, _
- B? J‘ e]Zﬂfm(t—kTs) e—]Zﬂ'fn(t—kTs) dt (5.9)
KT,
_ BT, , m=n
0 , otherwise
It follows that
o KL Mo 2
Epy = B'T, & X S,.| - (5.10)
k=0 m=0

However, in general, the modulation symbols are selected randomly depending upon the data to be transmitted.

2
Assuming stationarity such that the statistical average of lSk ml is constant independent of k and m, let

2

ol =E “Sk,ml J (5.11)
where E['] denotes the expectation operator. The average energy of the interferometer signal is then given by

E{E, } = KMo? BT, . (5.12)
The normalized interferometer signal with unit average energy is, therefore,

1

fiem(t) = ——=—==s5pu(1)
v E{Ejum}
(5.13)
1 K-1 M-l

= ——= X X Sk,m gm(t_kTs)

Bo, J’Kms— k=0 m=0

51.3 OFDM Signal Recovery Employing a Guard Interval

As shown in Equation (5.9), all subcarriers are mutually orthogonal over the time intervals given by [kT,,
(k+1)T,] where k=0, 1, ..., (K-1). This orthogonality enables the employment of correlation to recover the
modulation symbols, Sy . Specifically, for the k* OFDM block, note that
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] (DT

[ s.(t) g (t—KkT,)dt

BZTs KT,
] L (Mo ‘
= BT it {‘E‘O Sia Ealt —kTs)} g, (t—kT))dt (5.14)
= Sk,m

where use was made of Equation (5.9).

In practice, a guard interval is added to the subcarrier signal in order to avoid intersymbol interference
which may arise in multipath channels. Let the length of the guard interval be denoted by T,. ~ The total OFDM
block duration is now equal to

T= Tg +T, . (5.15)
The m™ subcarrier is redefined by

j2mfgt
Be , —T,St<T

. (5.16)
0 , otherwise

g, ={

where, even with the increase in block duration, the subcarrier frequencies are still determined from Equation (5.1).
Because the symbol duration is T, Equation (5.4) and (5.5) are modified such that

M-1
()= Z S, gn(t—kT) (.17
and
K-1 K-1 M-1
Sipm (1) = k§0 s (1) = Rt E:'O Sem Em(t—KT) . (5.18)

The guard interval is removed at the receiver and only the time intervals [kT, (k+1)T-T,], where k=0, 1, ...,
(K-1), are actually processed. As a result, the guard interval in the k™ block is a pure system overhead. Observe that
each processing interval is of length

(k+1)T—Tg —kT =T—Tg =T, . (5.19
Consequently the orthogonality of Equation (5.9) is maintained and
] T
= t) g, (t=kT)dt . 20
Sem =g & 80 E.(t-KD) (520

Assuming the guard interval length is larger than T, the maximum channel delay, no intersymbol
interference will occur. This is illustrated in Figure 5.1. Note that the message portion of the maximally delayed k™
symbol block, arising from multipath, does not overlap the message portion of the direct path’s (k+1)™ symbol block
since Ty > 1. Thus, there is no intersymbol interference between consecutive symbol blocks. However, the
message portion of the maximally delayed k™ symbol block does overlap the message portion of the k™ symbol
block in the direct path. This results in fading which is compensated for by channel equalization.
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Figure 5.1: The guard and message intervals are shown for (a) the direct path signal and (b) the maximally delayed multipath
signal.

'

5.14 Use of Fast Fourier Transform in OFDM Implementation

OFDM is, in effect, a parallel system. A principal objection to the use of parallel systems is the complexity
of the equipment (filters, modulators, etc.) required to implement the system. However, the modulation and
demodulation processes involved with OFDM can be implemented in the digital signal processing parts of the
transmitter and receiver employing Fast Fourier Transform techniques. This is discussed next.

From Equations (5.16) and (5.17) the k™ OFDM block is given by

M-1 i
si(t) = £ BS,, g (kD) (.21

Although the above expression is valid for

kKT-T, <t < k+DT -T, , (5.22)
the message portion extends only over the interval

kT <t < (k+DT -T, , (5.23)

as illustrated in Figure 5.1(a). An estimate of the Nyquist sampling rate for the k™ OFDM block is obtained by
approximating its spectrum.
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The spectrum of the m™ subcarrier is

T, ) T, .
Gm(f)= J’ gm(t) e-—]ant dt = J‘ BeJZﬂ:(fm—f)tdt
T -Te
eI (DT, _ e—jZn’(fm—f)Tg
= B . (5.24)
2z (f, 1)
_ BT D 5 sin[z T(f - f,)]

ZT(f—£,)

Observe that the first zeros in the spectral main lobe occur at f = f;, = 1/T where T =2 T,. Therefore, the width of the
main lobe is 2/T. As noted by Equation (5.2), the subcarriers are spaced in frequency according to Af = 1/T,.
Consequently, for M » 2, the bandwidth of each OFDM block is approximately

BW = MAf =—1;I— . (5.25)

s

This corresponds to the bandwidth of the bandpass transmitted signal. The baseband bandwidth is half of that.
Doubling the baseband bandwidth to obtain the Nyquist sampling rate, it follows that the Nyquist rate is

f,=BW=2 (5.26)
T

B

Let s,(t) be sampled only over the message portion of the k™ OFDM block. Since the time spacing between
the samples is

1 T
At = — =5 (5.27)
*f, M’
M samples are required to cover the message portion of the k™ block. The sampling instants are given by
. iT, |
t. = kT +iAt, =kT+—M— ; i=0,1,...,(M-1) . (5.28)
With reference to Equation (5.21), the i sample of s,(t) becomes
M-1 j2zf, (k’l‘ + % - kT]
si(t)=s,; =B mz=0 Sim €
w1 . (5.29)
M-1 _]27!‘-T—- [l _ﬁ) M-1 j2m—i
=B XS, .,e =™ =B S,.e M
m=0 ’ m=0 ?

It follows that the M time samples (i=0, 1, ..., (M-1)) can be generated by performing the inverse discrete Fourier
transform (IDFT) of the M modulation symbols of the k™ OFDM block, Sim, Where m=0, 1, ..., (M-1). Of course,
fast Fourier transform techniques can be used to implement the IDFT. This provides significant simplification for
the transmitter. Given the M time samples, si(t) is readily generated using the usual reconstruction techniques based
upon the sampling theorem. sy(t) is then used to modulate a carrier waveform at the desired carrier frequency.
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At the receiver the modulated carrier is converted to baseband in the usual way to produce si(t). s(t) is
then sampled to generate the M time samples s; = si(t;) where i=0, 1, ..., (M-1). The message symbols are then
recovered by utilizing the discrete Fourier transform (DFT) such that

Sim=— X s, e M . (5.30)

As with the transmitter, fast Fourier transform techniques can be used to implement the DFT. This considerably
simplifies implementation of the receiver.

When the subcarrier spacing, Af, is designed to be much smaller than the channel coherence bandwidth and
the symbol duration T is much smaller than the channel coherence time, the channel transfer function, H(ft), can be
approximated by a complex constant within the bandwidth of each subcarrier signal and the duration of each
modulation symbol. In such a situation, the effect of the radio channel is a simple multiplication of each subcarrier
signal, S gm(t-kT), by the complex transfer constant, Hy , = H(mAf, kT).

As a result, the k™ OFDM block results in the received signal

M-1
()= T S, Hyp8a(t—KT) + 0,() (531)

where n(t) denotes the additive noise. As illustrated in Figure 5.1, intersymbol interference is avoided provided the
guard interval length, T,, is larger than the maximum multipath delay, t,. Therefore, correlation can be used to
recover the separate symbols associated with each subcarrier. Specifically,

] T,

R“’"‘=B2Ts ij . (t) g, (t—kT)dt. (5.32)

Alternatively, the DFT could be used. During the k™ block time interval,
KT-T, <t<(k+DT-T, , (5.22)

the received waveform is
M1 j27f, (1-KT) '
r(t) = .,Eo Sem Hym B +n,(t) . (5.33)

Sampling r,(t) at the M sampling instants specified by Equation (5.28), yields the M time samples

M-1 jer B
(t)=8B m}Z,O Sem Hem € M +0,(t) . (5.34)

Application of the DFT to these M time samples generates

1 Mt -jZﬂKld—m
Rin= —B_ E%)rk(t )€

= Sk,m Hk,m +Nk,m

(5.35)

where
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1 M- —jzirﬁm
Ny = E EZ) n,(t;) e (5.36)

denotes the scaled additive noise Fourier coefficients.

The above detection schemes imply perfect synchronization at the receiver. Time and frequency
synchronization errors disturb the orthogonality of the subcarriers which can considerably impair performance.

A general block diagram of the OFDM communication system discussed above is shown in Figure 5.2.
The S/P and P/S blocks indicate serial-to-parallel and parallel-to-serial encoders, respectively. IFFT and FFT refer
to the inverse fast Fourier and fast Fourier transforms, respectively. The bit interleaver is used to scramble the bits
s0 as to mitigate error bursts. In addition, convolutional encoding, which is readily decoded by the Viterbi
algorithm, is performed on the data.

Convoluu Bit - IFFT
Data
Encoder Intedeaver Modulator + Guard

skM-1

>l
Viterbi Bit -FFT
Data Decoder Deintereaver Demoduator -Guard
[ ]

A

R kM1

y
[ ChannelEsﬁmaﬁon‘ ]

Figure 5.2: An ODFM communication system typically employs fast Fourier transform techniques, coding, and channe!
estimation,

5.1.5 Modulation and Demodulation Without Differential Encoding

As mentioned in Section 5.1.2, each subcarrier can be modulated independently with the complex
modulation symbol, Sy,,. Generally, this complex value is generated using multilevel signaling whereby a sequence
of p binary bits is mapped into one of 2° possible symbols.

If no differential encoding is applied, the data bits to be transmitted are directly mapped to the modulation
symbols, Sy, M-ary phase-shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) are
examples of this modulation technique.

Coherent demodulation has to be applied when nondifferential modulation is used in the transmitter.
Typically, this means that the mixer in the receiver is synchronized in both frequency and phase with the carrier
frequency of the received signal. However, in the case of an OFDM transmission system, each subcarrier has to be
synchronized in both frequency and phase. Also, if any kind of amplitude modulation, such as MQAM, is used in
the transmitter, the attenuation of each subcarrier must be known.

To generate this information in the receiver, channel estimation needs to be performed which provides

estimates, H, ., of the channel transfer constants. Given

Rk,m = Sk,m Hk,m + Nk,m > (535)
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the decision is based on the statistic

R

k,m
DS =0 =
k,m A

k,m

H
. k,m S
Hk,m

5.37)

k,m

~

S

Dﬁm . This decision procedure is indicated by

¢ m» an estimate of the transmitted signal, is determined by noting the region of the decision space containing

§,n =deciDC, . (5.38)

A

The estimate, H is obtained by using known pilot symbols which are inserted into the OFDM signal

k,m?
before transmission. The first step for the receiver is to extract the transfer constants at those times and frequencies

at which the pilot symbols were transmitted. Interpolation is then used to estimate the transfer constants
corresponding to particular values of k and m.

51.6 Modulation and Demodulation With Differential Encoding

Differential encoding for narrowband channels means that the transmitted information is contained in the
quotient of two successive modulation symbols. Therefore, the data bits to be transmitted are not mapped directly
to the modulation symbols, Sy, Instead the quotient of two successively transmitted modulation symbols is
designed to contain the data bit information.

This technique can be applied either with respect to time or frequency. In the time direction the operation
of differential encoding is described analytically by
Sem =Seam XCum (5.39)
where the p binary bits are first used to determine Cy,. Sig, is then determined by carrying out the product between
Cymand Sy, .. Alternatively, differential encoding in the frequency direction is summarized by the product

Sem =Spma XCyn - (5.40)

As before, the p binary bits are first used to determine Cy . S is then calculated from the product.

In both cases the coherence time and coherence bandwidth of the channel need to be large compared to the
symbol duration and subcarrier spacing, respectively, to ensure that the corresponding channel transfer constants,
Hyn, are adequate measures of the channel behavior. Cases are encountered in communication systems where
differential encoding in the frequency direction has some advantages with respect to the system overhead needed to
monitor the channel.

The topic of demodulation is now discussed. For this purpose, only differential encoding in the time
direction is considered. When differential encoding is employed in the transmitter, demodulation at the receiver can
be carried out noncoherently. From Equation (5.35) Ry .» and Ry, are given by

Riem =Sim Hem + Ny s
(5.41)
Ritm =Siam Hiam + Ny
Employing Equation (5.39) in the expression for Ry, there results
Rk,m =Sk-—1,m Ck,m Hk,m + Nk,m . (542)

The quotient of Ry, and Ry, 4, yields the statistic
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ne __ k,m

_ Sk-—l,m Ck,m Hk,m + Nk,m
km T -
Rk—l,m Sk—l,m Hk-—l,m + Nk—l.m

Sitm Ciom Hi |1+ - (5-43)
_ ' ’ ' Sk—-l,m Ck,m Hk,m
k-1,m
Sk—l,m Hk-l,m 1 + S H
k-1,m k-1,m
In practice, successive channel transfer constants are strongly correlated such that
H, . =H_ . (5.44)
If, in addition, the noise is negligible such that
N
km l «<1 ,
Sk—l,m Ck,m Hk,m l
(5.45)
N,
LI PO
Sk—l,m Hk—l,m
the statistic simplifies to
em =Cim - (5.46)

An estimate of the message symbol, Cy n, is obtained by noting the region of the decision space containing thm .

This decision procedure is indicated by
¢, . =decfDi%} . (5.47)

Note that channel estimation does not have to be performed with the noncoherent demodulation scheme
discussed above. Thus, the computational complexity of the receiver is relatively low. Unfortunately, the
noncoherent statistic of Equation (5.46) is affected by twice as much noise power as the coherent statistic of
Equation (5.37). This results in a higher bit error rate than does the coherent demodulation approach with good
channel state information.

Another approach to detection, called quasi-coherent demodulation, involves both differential encoding and
coherent demodulation. From Equation (5.39)

C — Sk,m
km T

548
S, (548)

-i,m

Coherent demodulation, as specified in Equation (5.38), is used to obtain estimates of Si,, and Sy.;, m. The quasi-
coherent detection statistic is then given by
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ka

. dec = :
S

DIt = 5 = R“’“’ : (5.49)

dec § ———

Hk—l,m

In this way, the channel influence is removed before differential decoding takes place. As with the other detection
procedures, the estimate of the message symbol, Cy ., is determined by noting the region of the decision space

containing D} and is indicated by writing

€, =dechDis} . (5.50)

Apart from differential decoding, the processing in a quasi-coherent receiver is similar to that in a coherent
one. However, because of differential encoding, an incorrect decision influences two successive symbols. Provided
that the error rate is relatively small (i.e., less than 10%), it has been shown that the error probability with quasi-
coherent demodulation is approximately twice that of coherent detection with perfect channel estimation.

5.1.7 M-ary Differential Amplitude and Phase Shift Keying

M-ary differential amplitude and phase shift keying (M-DAPSK) has been promoted as an effective
modulation technique for achieving higher bandwidth efficiency. In fact, M-DAPSK has been shown to have a
substantial performance improvement over M-ary differential phase shift keying (M-DPSK) for M 2 16.

Before delving into M-DAPSK, M-ary amplitude and phase shift keying (M-APSK) is discussed first.
Assume p input bits are used to determine each symbol. However, let p, of these bits determine the amplitude of
each symbol while p,, of these bits are used to specify the symbol phase. Note that

P=pP. tP, > (5.51)
the number of possible amplitudes is

N, =2%, (5.52)
the number of possible phases is

N, =27, (5.53)

and the total number of symbols (or signal states) is
et
M, =27 =2"""=N,N, . (5.54)

As an example, let p = 6, p, = 2, and p, = 4. This results in 4 amplitudes, 16 phases, and a total of 64
symbols. A 64-APSK signal space is shown in Figure 5.3. The signal constellation consists of four different
amplitude rings, each with 16 phase states. The amplitude values of the rings are 1, a, a%, and a>. Hence, successive
rings have amplitudes which differ by the constant factor, a. In general, the signal space diagram for M-APSK can
be described by the signal set
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P=la* e (5.55)

where A and P are integers selected from the sets
A=1{,1,.., (N, -1}
P=0,1,.., N,-1}

such that N, and N,, satisfy Equation (5.54).

(5.56)

M-ary DAPSK is a logical extension of M-ary APSK. The p data bits for M-DAPSK first determine the
message symbol, Cy,. Let A(Cyn) and P(Cy,) denote integers selected from the sets A and P of Equation (5.56).
The message symbol is then given by

2z
2E P(Cym)
C N ?
C,, =a") g™ . (5.57)

,m

Im{x)

Ra(x)

Figure 5.3: The signal space contains 64 possible symbols when there are 4 possible amplitudes and 16 possible phases.

Differential encoding generates the transmitted signal, Sy ,, according to Equation (5.39). Note that Sy.;n, is of the
form

2n
== P(S¢oim)
L AGem) N /
Siim =@ " e (5.58)

where A(Sy 1 m) and P(Sy.; ) are, also, integers selected from the sets A and P. When Sy, and Cy, are multiplied,
the amplitude exponents are added as are the phase exponents. However, to assure that Sy ,, is contained in the set,
¥, it is necessary to add A(Sk.1,m) and A(Cym) modulo N,. Because of the inherent periodicity in the phase, it is not
strictly necessary to add P(Sy.1 ) and P(Cy ) modulo N,. As a result, the transmitted symbol is

2r
it [PSetm) + P(Cm)]
A(S A(C od N N ’ i
Skm = alASkim) + AC) mot N, N, : (5.59)

By way of example, consider the signal space diagram of Figure 5.3 for which p = 6, p, = 2, and p, = 4.
Assume the first two message bits are used to determine the amplitude of Cy, in accordance with

0051, 01—a 1152’ 10-2°. (5.60)
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The remaining four bits determine the phase of Cyn. Table 5.1 shows the magnitude of S, as a function of the
magnitude of Sy, and the transformation indicated by Equation (5.60). Observe that |Si| equals |Cym| when
[Sk-1,m] is unity.

TABLE 5.1
DIFFERENTIAL AMPLITUDE MODULATION FOR p, =2
S S

1 1 a a* 2’

a a a’ a 1

a’ a’ a 1 a

a’ a 1 a a
AMPLITUDE 00 01 11 10

BITS

Given a value of p, the optimal values for a p, and p, so as to minimize the bit error rate when employing
differential encoding are given in Table 5.2. When p < 4 (or, equivalently, M; < 16), observe that differential phase
shift keying is preferred where all symbols have the same amplitude.

TABLE 5.2
OPTIMAL MODULATION PARAMETERS FOR DIFFERENTIAL ENCODING

PM; p#/N. | p/N, | Noncoherent } Quasi-Coherent
Demodulation | Demodulation
a a
<4/<16 0/1 p/M; 1.0 1.0
4/16 1/2 3/8 20 1.8
5/32 1/2 4/16 1.6 1.45
6/ 64 2/4 4/16 14 1.38
7/128 2/4 5/32 1.3 1.21

It is possible to eliminate the modulo operation on the sum of the amplitude exponents by, in effect,

integrating it into the amplitude mapping. For this purpose, let the transmitted symbol be given by

Sem = Skim Cem - (5.61)

k,m

Define the extended set of integers given by
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A ={-N,+1), (N,+2), .., -1, 0, 1, .., (N, =D} . (5.62)

Let A’(C'y.) be an integer selected from A’ and, as before, let P(C’y ) be an integer selected from the set, P. C'yp is
then defined by
L

A'(Cym) e N,

(Cim)

Cin =2 (5.63)

The integer selected for A’(C'y) depends both upon the p, data bits and |Sy; n| . It is chosen in such a
manner that

ISk,m| = g [AGm) + ACm) | (5.64)

is either 1, a, 2%, ..., a®™2, a® D By way of example, consider, once again, the signal space diagram of Figure 5.3.

Table 5.3 shows the magnitudes of C'y, and Sy, as a function of the magnitude of Sy, and the amplitude data
bits. Observe that

[Seal
'Sk——l,m|
as was the case with modulo arithmetic. However the amplitude bits are now decoded by recognizing that

IClm|=1 — 00

C;’m|=a or %3 — 01

Cim| = (5.65)

, : (5.66)
Ck,m]=a or %2 —11
Cim|=2" or % —10 .
TABLE 5.3
DIFFERENTIAL AMPLITUDE MODULATION FOR p, =2
|Sk—1,m| ’Ck,ml |Sk,m|
1 1 a a a’ 1 a a a
a 1 a a* | 1a a a’ 2@ |1
a’ 1 a 1/a° | 1/a a* a° 1 a
2’ 1 1/a> | 1/a* | 1/a a’ 1 a |a°
AMPLITUDE 00 01 11 10 00 01 11 10
BITS
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Table 5.4 summarizes the mapping specified in Equation (5.66) and gives thresholds that would be
employed in the detection process. Due to the division of two successively received noisy symbols, the exact
thresholds for noncoherent demodulation are hard to calculate. However, a good approximation is given by the
geometric average of two adjacent valid amplitudes. As a result, the thresholds in Table 5.4 are of the form

T =a' Va; j=(-N,+1), .., 0, ..., (N,=2) . (5.67)

The thresholds used to obtain the phase information bits are given by half the distance between two adjacent valid
phases. Hence,

1 \2n .
T;“ = (— + 1)—; i=0,1,..,(N, -1 . (5.68)
2 Np
TABLE 5.4
THRESHOLDING SCHEME FOR EVALUATION OF AMPLITUDE
INFORMATION BITS
|C' | a’ a*’ a! 1 a a’ a*
k,m
AMPLITUDE
BITS 01 11 10 00 01 1 10
a-2.5 a—f.S a-0.5 aO.S a1.5 a2.5
THRESHOLDS
a-2.5 a—] .5 a—O.S a0.5 a1 5 a2.5

In the case of quasi-coherent demodulation with independent identically distributed symbols, the optimum
thresholds are identical to those used with coherent demodulation. In particular, they are half the distance between
two adjacent valid phases or amplitudes. Thus,

T = T° = a) -(1—;3—); i=0,1, .., (N.—2)
(5.69)
T:c ='Tc =Tnc = (-l—'}’l)%z; 1=O, 1, veey (Np_l)

P P 2
P

As indicated in Figure 5.2, channel coding should be implemented with OFDM. The radio channel
attenuates each OFDM subcarrier by the complex transfer constant, Hy ,. If the channel is a multipath channel with
many propagation paths and without a line-of-sight path, the amplitude of the transfer constants is Rayleigh. This
means that, even at a very large average signal-to-noise ratio, there are always some subcarriers that are strongly
attenuated and have a rather low signal-to-noise ratio. Hence, many bit errors would occur on these subcarriers. For
this reason, channel coding is a very important component of OFDM systems. Soft decision decoding has been
shown to be superior to hard decision decoding. A soft decision algorithm first decides the resuit based upon the
statistic being above or below a decision threshold and then gives a “confidence” number that specifies how close
the text statistic is to the threshold value. In hard decisions only the decision output is known. The Viterbi decoding
algorithm examines the possible paths through a code tree and selects the best one based on some conditional
probabilities.
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5.2 Ambiguity Function of the OFDM Signal

The delay-Doppler ambiguity function of the interferometer waveform is defined in Equation (2.61) as
I'(r,0) = | fry, (0) fp(0-7) 277 do . @.61)

Because of the odd symmetry for an ambiguity function, indicated by Equation (4.23), it is necessary to consider
only nonnegative values of T and v.

Having chosen the interferometer signal to be the OFDM signal specified by Equation (5.13) and (5.3), the
ambiguity function becomes

_

1 < K—l - * *
rr,v)=——— | {z T S, g (a—kTs)}

KMT B’g? -» k=0 m=0
Kt Mot (5.70)
{Z XS, g (ocd-7- ZTS)} e’ do
=0 n=0
Interchanging the order of summation and integration results in
1 K-1 M-1 K-l M-l
T =T B & o & & Stm St
s s (5.71)

| g (c-kT,) g, (6 -7—(T,) "’ do

The four-fold summation in Equation (5.71) can be grouped into terms for four cases:
Dk=¢m=n2)k=f,m#n,3)k*¢, m=n,and4) k# €, m=#n. This yields

K~1 M-1

1"(1',1)) KMY;BZO':Z =k§"0 Z_O |Sk,m|2 j‘ g;(o_ —kTs)g,,, (0_ —— kTs)ejZEvo' do

+ S,

m

Sin f g. (0 -kT,) g, (c —-7—kT,) &*"*° do

K-1 M-1 K- - |
+ k= Z_',O go S;,m Se,m I g;, (o —kTs) gm (0 -7~ .ZTS ) e/ J o (5.72)
- m_kﬂ[_ -
K-1 M-1 K-1 M- - |
+ ,Eo 2_:0 [go );'0 Sk:m Se,,, I & m (0' —-kT;) g, (o' —_T— ZTS) ejZn'vcr do .
k#t,m#n —o
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Recall that the modulation symbols, Sy , are selected randomly depending upon the data to be transmitted.
Consequently, I'(t , v) is a random function of the modulation symbols. Assuming statistical independence from
one symbol to another and stationarity, the statistical average of Equation (5.72) involves expectations of the form

E[[S,.|'] . ElSi,.] . and EIS, ). From Equation (5.11)

E[ISk,mlz] =o! . (5.11)
In addition, assuming circular symmetry for the symbol constellation, such as shown in Figure 5.3,
Els;,.|=Els,.]=0 . 5.73)
It follows that
E[Sin Sia] = ElSia) BB, l= 05 m#n
E[SLm S,,m] = E[S;m] E[SLm ]=0; k=2 (5.74)
Efs;, s,.] = Els;,.] Els,.]= 0; k= £, m#n
Consequently, taking the expected value of Equation (5.72) results in
K-1 M-t =

T [ g (0-kT)g,.(c-7-kT,) e do . (579)

Breol =e—mr Z Z |

The expression in Equation 5.75 is further simplified by making the change of variables

p =0kl (5.76)
Then
K-1 M-1 = . j2mv (p+kT,)
E[['(z,v)] o2 T T e (00 Ve,
s 5.77
1 SN 27 kT, ( )
ST o 2 € Y (D)

where the autocorrelation function of g,(t) was defined to be
1 7 . .
Van(50) = — | 8.(0) 8a(p-1) ™" dp . (5.78)
s

Note that Equations (5.3) and (5.78) are identical in form to Equations (4.17) and (4.29), respectively. It follows
from Equation (4.35) that

, (T, —lTD Sin[ﬂ'v (T, —|T|)] IFuTn-200]

Voam (z,0) = T, Y v(Ts_lTb
0 le] > T,

l7| < T,
(5.79)
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Observe that

w..(0,0)=B". (5.80)
Therefore, as would be expected due to our normalization,
E[f0,00]=1 . (5.81)

Although the terms corresponding to the expectations in Equation (5.74) average to zero, they contribute to
significant fluctuations of the ambiguity function over the 1-v plane. A measure of these fluctuations is the variance
of T'(t, V). By definition, this is given by

Var{l(z,0)} = E|[F(e,of* |- |E[N@0)|* (582)

E[l'(z, v)] is found from Equation (5.77). Therefore, it remains to determine E[IT(z ,v)l*]. For this purpose, it is
convenient to return to Equation (5.71).

Making the change of variables
p =0 — kT, (5.76)
in Equation (5.71), it follows that

[ g (6 —kT,) g, (6 -7-(T) ™ do

=™ [ gl (p) g, [p -7 - (-BT,] " dp (5:83)
= Ts ej2”vas !//mn [T +(f—'k)T5 » U ]
where the cross-correlation function between g,(t) and g,(t) is defined to be

1.
Vo @0) = — [ g, (D) 8, (p-7) " dp (5:84)

Note that Equations (5.3) and (5.84) are identical in form to Equations (4.17) and (4.31), respectively. It follows
from Equation (4.39) that

Bz (Ts _ITI) Sin[ﬂ. amn (Ts —|T|)] e—j[:mrmn (T,+7) + 271, 7]
T ra,, (T, -[7)

s

7| <T,

0 , 7] =2T,
(5.85)

where Oy, is given by
o, =f —-f -v . 4.37)
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Consequently, Equation (5.71) can be expressed as

r L 5% % hf\:ls WS, , ek -K)T
(T,U)—mko R en € Wmn[T +( - ) S,U] . (5.86)

1t follows that
IC(z,v)|* =T(z,0) T"(7,0)

1 K-1 M-1 K-1 270K,
= KMBZ 0.2 kE'O m§0 £§0 n;O SkmSZn € Wmn [T +(£ k)TS,U]

K-1 M-1 K-1 M-l

X T X £ 2 S..Si.e Ty lr+(-K)T,,0] (5.87)

k=0 m'=0 £=0 n'=0

—

K-

1 K-1 M-1 K-1 M- M-1 K-1 M-1 . .
= ——— ] T T T X Z I ZS,.S.SewSra

—

KMB2 g2 ) k0 m=0 ¢=0 n=0 k=0 m=0 ¢=0 n=0 =" °F k,m

x e Oy 17 +(U-K)T,, 0],y [T +((' -k T,, 0]

The expected value of | '(t,v) |2 is, therefore,

1 \> K-1 M1 K-l M1 K-l Mol K-l M-l
dreof’]- () EEEEEE LY

KMB?g? | k=0 m=0 =0 n=0 k=0 m'=0 £=0 n'=0
E[S],S,, Sy wSiy | 276K (5.88)

v, [t +(U-K)T, 0]y, 7+ -k)T,,v]

Recall that the modulation symbols, Sy .., are assumed to be stationary and statistically independent with
zero means. Consequently, when E [S;,m S, .Sy S;,,n»J can be decomposed into a product for which one or

more of the factors is the expectation of a single symbol or its conjugate, the expectation in Equation (5.88) is zero
and the corresponding terms can be excluded from the eight-fold summation.

In addition, for some choices of the indices in Equation (5.88), E[S;m S,. Sy S:,, n,J can be

decomposed into a product involving factors of the form E[Sk m] and El J For circularly symmetric

signal sets these expectations are, also, zero as explained next.
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In general, Sy, is a complex quantity which can be expressed in polar form as
Sem =A . €% . (5.89)

Consequently,

SI,=Al, &% (5.90) |

Assuming p, data bits are used to specify the symbol, the number of possible phases is given by Equation (5.53).
When the symbol constellation has circular symmetry, such as that in Figure 5.3, the phases are distributed by equal
angular increments where the increment is given by

2z
Ap=— . (5.91)
2P
Beginning with symbols placed on the real positive axis, the symbol angles are given by
2w k
kAg=""— ;k=0,1,..,(N,-1) . (5.92)
2P
A total increment of ® corresponds to
2r k
kApg=—— =7 . (5.93)
2P
This requires that
_ N
k=2""= —E"— (5.94)

which is an integer in the set for k since N, is guaranteed to be an even integer. Therefore, for each symbol in the
set, there is a corresponding symbol with the same amplitude but displaced in phase by = radians. This justifies the
conclusion that

Ele%=|=0 . (5.95)

Now consider Si,m for which the angle is given by 26, . The symbols corresponding to Si,m are
distributed at equal angular increments given by
2r 2r 2r

2A¢ = 22p,, = 5o =R (5.96)

where

p, =p,-1 . (5.97)
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In effect, Si ., is distributed in the same manner as Sy, except that the number of data bits used to specify the phase

of Si‘m is reduced by unity. Therefore, the number of distinct phases for Si,m is half of those for Sy, Based on

these observations, it is concluded that
E[e”"“" J =0 . (5.98)
Because the amplitude data bits are statistically independent of the phase data bits, it follows that
gls: ]=Blaz, e”%=|= B[a2,] B ]= 0 . (599)

Also, since the complex conjugate of zero is zero,

Bl Fl]=0 . (5.100)

Excluding those terms for which E [S;_m S, .Sy S;,,n,] is zero, the only remaining terms in the eight-
fold summation of Equation (5.88) are those having the form

2
J where k= and m#n. These arise in the following ways:

E“sk,m]“] and E[]Sk,,,,[2 S

1) Letk=f=k'=¢'andm=n=m'=n"
The corresponding terms in Equation (5.88) are given by

2
(‘1&%2?) ]:E; :Z: E[|Sk,m|4] Wamlz:0]? (5.101)

2) Let k=¢ m=nand k=10, m=nbutexcludek=£=k¥=¢0andm=n=m'=n". The
corresponding terms in Equation (5.88) are given by

2

1 K-1 M—-1K-1 M-l 2] 2]

02 =0 m’ Eﬁsky"" E Sk',m'l

KMB“o,; k=0 m=0k'=0 m'=0
k#k’ & m#m’

(5.102)

27 v(k-K)T, .
x e2TE-OL (7,01 W, [7,0]

3) Let k=k,m=m'and £=4¢,n=nbut exclidek=¢0=k'= 'andm=n=m'=n'. The
corresponding terms in Equation (5.88) are given by
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252 = m=0 {=0 n=
KMB'o, ) {ama ™™
(5.103)
X W [1'+(£—k)Ts,v]|2
4
By = Ellsk,ml J (5.104)
and making use of Equations (5.11), (5.101), (5.102), and (5.103), Equation (5.88) becomes
1 2 M-1
2] S 2
Elireol 1= ) w5 reteo
1 2 ka1 M- K1 M- —— .
B & ?%&k':z(" e Yo [T50 1 W [750] (5.105)
m#m

1 2 gk Mo K-l M-
+( ) )3 D ) |1//m,,[r+(f k)TS,v]I

With reference to Equation (5.82), it is, also, necessary to evaluate |E[T(z ,V)] |2, From Equation (5.77) it
follows that

IE[F(T’U)]Z =E[r I'(z,v) RET(z, )]}

2 R 1M-1K-1 M1 —
=(—-) Y ’ e’ v, [T,01v,..[7,0]
(5.106)

1 2 k4 M K- M- R
+ ) Z_e""’ w0y, [r,0]

Combining the results for E[| T(z ,v)*] and | E['(z ,v)]| * in Equation (5.82) yields
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2
1 M-l 2
MBZO.Z) (/'[4-0-54) mz=0 |Wmm[7 ,U]l
(5.107)
1 2. K1 M- K-l M-I )
+ ( 2) 2 X I I |,lr+(¢-0T,0]
KMB") & oo, =0 ™
An obvious choice for T is
Ts =T (5.108)

where T is the duration of a subpulse in the Costas single proposed for the radar pulse waveform. Also, let
K=M=N (5.109)

where N is the number of subpulses in the Costas single. Then the frequencies of the Costas and OFDM signals
become identical and the duration of the OFDM signal equals that of the radar pulse.

Note that Equation (5.77) can be expressed as

K-1 M-l

EIT 7,0 =r; 7,0) + 3 7,0 ejZﬂ'vas
F@0]=TC0) + e Z T Yo (T,0) (5.110)
k#m

where
’ Kl j2romT,
I''(z,v) = VB n?;‘.o V.., (T,0) € ; (5.111)
while Equation (4.32) can be expressed as
" o T + 1 Nil Nz_l + -mT j2zvnT
x(z,0) = ¥'(z,0) TN S G [T+(m—n)T,V) e .112)
n+m
where
’ N1 32 T
x(z,v) = N X o (T,0) €7 (5.113)

As pointed out in Chapter 4, the central peak of the Costas signal ambiguity function is associated with ¥ (t,v).
Under the conditions of Equations (5.108) and (5.109)
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BZ
Von(T,0) = -A—Z-¢mm (7,0) . (5.114)

Then I"'(7,0) becomes equal to ¥ (7,V) within a scale factor. This, in tum, implies that the central peaks of

the ambiguity functions for the OFDM and Costas signals have identical shapes with identical resolutions in delay
and Doppler. Because the non-cooperative bistatic radar does not know a priori in which direction the main radar is
pointing, it must perform the difficult task of pulse chasing. However, it is likely to be unsuccessful in completing
this task because it will be unable to distinguish between reflections involving either the OFDM or Costas signal. In
addition, it will be difficult for the non-cooperative bistatic receiver to separate the OFDM and Costas signals
because they contain the same frequencies and, assuming time synchronization, will experience amplitude
transitions at the same time instants. As a result, performance of the non-cooperative bistatic radar will be severely
degraded. This issue is investigated further in Chapter 6.
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CHAPTER 6
NON-COOPERATIVE BISTATIC RADAR RECEIVER PERFORMANCE

6.1 Cross Ambiguity Function for the Costas and OFDM Signals

As discussed in Section 2.3, the non-cooperative bistatic radar receiver performs detection by utilizing an
estimate of the main radar transmitted signal for correlation with the received data. In this report it is assumed that
the estimate is obtained from the direct path signal observed by the bistatic radar. As revealed by Equation (2.63),
the detection statistic used by the non-cooperative bistatic radar receiver involves the cross ambiguity function,
Z(t,v), between the Costas and OFDM signal in addition to their delay-Doppler ambiguity functions. An expression
for Z(t,v) is derived in this section.

With reference to Equation (2.54), the cross-ambiguity function is defined to be
Z(z,v) = | £y (0)fpup(c—7) €777 do . (2.54)

Substitution of Equations (4.16) and (5.13) into Equation (2.54) yields

1 e  (K-1 M-l . .
Z(T,v ) I {z z S m Sm O-“kTs}
) ABo, JKMNTT - [k m0 ~* B ( ) .

N-1 ,
{2_30 pn(O'-T—nT)} e’ do

Once again, assume the conditions of Equations (5.108) and (5.109). Interchanging the order of summation and
integration yields

Z( ) 1 N-1 Nz—:l N-1 S'
7,0) = —————— om
k=0 m=0 n=0 ’
ABo, TNVN ©2)
| g (6-kT) p,(c—7—-nT) &/***? do .
Making the change of variables
p=0—-kT 6.3)
in Equation (6.2), it follows that
| g (o6~kT)p, (0 —7-nT) &*"*" do
= ei2mkT [ o* (p)p.[p—7T-(n-k)T] e*** dp (6.4)

=T &7 g _[t+(n-k)T,v]

where the cross-correlation function between g,(t) and p,(t) is defined to be
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1 7 7w
emn(r’v) = ? _-[o gm(p)pn(p_r) eJZ d dp ¢ (6'5)

Utilizing the same procedure employed to develop Equation (4.39), it follows that

(T-le]) sin[za,, (T -|7)]

—jl oy, (T+T)+ 271, 7] , 'Tl ST

6, (7,0) = T 7o, (T-l) (6.6)
0 . =T
where 0y, is given by
m= = =0 : ©7)
Consequently, Equation (6.2) can be expressed as
1 N-1 N-1 N-1 kT
Z(T,v) = T X X S, [r+(n-KT,0] . (68

N_\/— k=0 m=0 n=0

Because the modulation symbols, Sy ., are selected randomly based upon the data to be transmitted, Z(,v)
is a random function of the modulation symbols. Note that

N-1 N-1 N-1 .
E[Z(1,0)] = T X X E[S,.1¢7Y0,,r+(n-KT,0]=0 (69

N_\/—_ k=0 m=0 n=0

where use was made of equation (5.73). Thus, as seen from Equation (2.63), Z(t,v) behaves as a zero-mean additive
noise component of the detection statistic for the non-cooperative bistatic radar.

6.2 Non-Cooperative Bistatic Radar Detection Statistic Involving the Costas and OFDM Signals

As expressed in Equation (2.44) the detection statistic for the non-cooperative bistatic receiver is the sum of
nine terms where the first four terms are given by Equations (2.51), (2.58), (2.59), and (2.60), respectively. The
remaining five terms involve receiver noise and are developed next by carrying out the products indicated in
Equation (2.43).

Making use of Equations (2.3), (2.38), (2.39), and (2.40), these five terms can be expressed as

TP —j2m [fP2 2™ 4 fpr+ 0T - vr]
I, =k e B
RAD

| 6.10
I ™ bp " 2z PP ron (6.10)
frap(t—77) [0 (t-75 +7)] e dt,
I, =k¥ P [£PP 2T + fyr+0r™ - vr)
6 — IFM
" i (6.11)
[ fra(t=7™) [0 (t=75 + )] 7 g,
I = e_ﬂ”[_fﬂrn*'faﬁ'v‘tn—vrl
, =
(6.12)

f 0™ ) ™t -7, +7)] et gt

113




_ (kDP )‘ ej2:r[f“’1"’—f“’z—vr”’+vr}
RAD

- . (6.13)
Fn™(t) fh,, (t—7T +7) e 2700 gt |

o
oo
|

DP Y _j2x [fTP 7™ — £Pr_yr™ 4 wr)
I, = (k ) €
9 IFM

= ) . o (6.14)
[a™(t) £y (=7 +7) e 27D gt
The statistic can be written as

=4, + 4L, (6.15)
where the signal portion of the statistic is

l, =1 (6.16)
and the interference component of the statistic is

9
(=21 . 6.17)

2

Recall from Equation (2.39) and (2.40) that t and v denote the errors experienced in estimating 1 and fg,
respectively. Perfect estimates are obtained when

7=0 =0 . (6.18)

In order to evaluate the best possible performance of the non-cooperative bistatic radar, it is assumed throughout the
remainder of this chapter that Equation (6.18) is valid. The expressions for the nine terms of the detection statistic
then simplify to ‘

I, =k, 7(0,0), (6.19)
I, =k, Z'(0,0), (6.20)
I, =k, 2(0,0), (6.21)
I, =k, 1(0,0), ©622)
I, =k, e 2™ | £ (t—2™) [ (t-1p)] e dt (6.23)
I, =kT, e [ £ (t—2™) [0 (t-7,)] ¥ dt (6.24)
I, = e [ n™(t) [n""(t-rB)]' g 27t gt | (6.25)
I, = k2,) e [ ™) £ (t—7T) e dt (6.26)
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= (k) e [ a™(t) fi (t—7T) e T dt 627)

—o0

In general, the detection statistic is a complex random variable. However, because the Costas signal is
deterministic, %(0,0) is a constant. Utilizing Equation (4.47), it follows that

E[¢.] = E[1,] = k, . (6.28)

Thus, the signal portion of the detection statistic is a constant.

With respect to the interference component of the detection statistic, note that
E[I,] = E[I,] =0 (6.29)
due to Equation (6.9). Also, with reference to Equation (5.81)
E[L] = k, ETO0] =k, . (6.30)

Finally, assuming the complex envelopes of the receiver noises in the direct and total paths to be statistically
independent with zero means, it follows that

E[Is] = E[Ié] = E[I7] = E[Is] = E[I9] =0 . (6.31)
Consequently,
E[¢,] = k, . (6.32)
Hence, the interference component of the detection statistic is a random variable with a nonzero mean.

The variance of £; is now derived. By definition,

varfe,}=E[le,|] -|E[£,]] : (6.33)
Note that
2 S 2 .
le,|" = ¢, ¢} = ):EEE LI (6.34)
Therefore,
9 9 9 9
E[|£1|2]= > E[i]=2 B [|1| |+ g:  ELG] . 39

e
'-‘N

Observe that the double summation in Equation (6.35) contains 64 expectations that need to be evaluated.

To evaluate the expectations involving I, and I3, it is necessary to obtain an expression for Z(0,0). From
Equation (6.8)
1 N-1 N-1 N- o
00) = ———= S, n-k)T,0 .
200) = s & E Z Seabuln -0T.0) 6:36)
s

—

where 6,,,(7,0) is given by Equation (6.6). Since 0,,(t, v) is zero for |T| 2 T, it follows that

6. [(n-k)T,0] = 0 for n#k . (6.37)
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As a result, Z(0,0) becomes

1 N-1 N-i
7(0,0) = W z 3 S mBumi [0,0] : (6.38)
However,
6_.(0,0) = {’?)B ’ E:E : (6.39)
Thus, the expression for Z(0,0) simplifies to
2(0,0) = ! b Stk . (6.40)

o, o NJYN 0
E [|12| 2] and E[|I3| 2] are evaluated first. Note that
EL|T = k" Ellzoo|*] . (641)

Utilizing Equation (6.40), it follows that

-1

E[|Z(0,0)*] = 021N3 b5

N-1 .
T E[s,,S,,

< k=0 £=0
_ 1 Nil E[S 2] N-1 N-1 E[S' ] E[S ] (6.42)
B O'SZN3 k=0 I k’k| +k=0 11:&(; k.k £,

where the statistical independence between different data symbols was invoked. However, the data symbols are

. . . 2
random variables with zero mean and variance O .

Consequently,
1
E [| Z(0,0)|’ ] = (6.43)
and
[I L[ ] lk l : (6.44)
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In a similar manner,

k 2
E[|13|2]=|I\;l : (6.45)
Also,
B, 1;]=k,x; E{{z00f} . (6.46)

Use of Equations (6.40) and (5.99) and the statistical independence of the zero mean data symbols results in

. k. k. N1 NI
ElL, 1] = 0':2N33 Iz ES..S,.]
k, | N-1 N-1
= GsiNi {50 E[s,] + z k}:g EfS,,] E[Sz,z]} 647)
= 0
Similarly,
BLL]=0 . 6.48)
Next observe that
N-1
E[Z(00)] = ——= = Ef;,] = 0 6

O, NJ/N &0

due to the zero mean value of the data symbols. It is concluded that
ISWES-IRHES: L BHES: BN
= el ;;]=ElL, ,]=E[, 1;]= €[, 1;]

(6.50)
E[Ia I:]'—-E[I4 I;]= E[I3 I;] = E[Is I;]

Bl ;]=[L 5]=ElL ;]=E[L ] = o

Also, because the receiver noises are zero mean and statistically independent, it follows that
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el 2]=el1, ;)= E[, 11]= E[1, 17]
= elr,it]=el,)=ElL)=ElL I

]
= el ;)= )=l 1] = Elr 1]
;]

= |, i)=£l, )= ElL, 1;]=El1,1
= el 1;]=El, ;)= ElI, )= E|1, 1] ©651)
= el 1:)=ElL, 1;]=E[1, ;)= El1, 17

£lr, ;)= Els 1] = El1, 1]

Eln,]=ElL ;)= E1, 1]

[16 19

[17 19

J=
=
= gl 1]
]
]

ElL,I]= o0

l"j by

Finally, from Equation (5.13), it is noted that

E [fIFM (t)] =

1 K—l K-1
> E[S,.]g.(t-kT,) = 0 (6.52)

Bo-s ,KMT k—O m=0

due to the zero mean value of the data symbols. Thus,

ElL1;]=ElL, ;]=ElL]=EL;]= o . (6.53)

At this point 58 of the 64 expectations in Equation (6.35) have been evaluated. It remains to evaluate

e} elp), Bl el

g5
Note from Equation (6.22) that
EL|T = k| Elroo?] . (6.54)

An expression for E[IF(T, v)| 2] is given by Equation (5.105). Observing from Equation (5.79) that

ZJ, and Ehl9| J

Y oum(0,0) = B® (6.55)
and from Equation (5.85) that
V., 00)=0; m#n, (6.56)

the expression for E“T(0,0)' 2 J simplifies to
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[|r(0 0)[* ] (W—)z 4, N ,E B*

1 ) N Nl Nd No .
+ (NZB2 ) 1(2—:0 kZO m§0 mZ B
k#k’ mzm’

6.57)

where the conditions of Equations (5.108) and (5.109) have been employed.

With respect to Equation (6.57), observe that there are N terms in the single summation involving the index
m. In addition, there are (N? - N) terms in the double summation involving the indexes k and k' where k # k' and
there are (N? - N) terms in the double summation involving the indexes m and m' where m # m'. Consequently,

there are
(N2 -N) (N> -N) = N> (N-1)’ (6.58)
terms in the four-fold summation involving the indexes k, k', m, m' where k # k' and m #m'. It follows that
1
E[| r(0,0)|2]= 5 [% +(N- 1)2] : (6.59)
Thus,
I kol | 4 +(N-1 . 6.60
[M]N[as ( )} (6.60)

An expression for I is given by Equation (6.23). Therefore,

Bl = k| 1] fant —2™) fiaple —2™)

(6.61)
B{ln™ ()] 0™ -} e atap
Denote the autocorrelation function of 1™ (t) by R o (7) where
R (1) =E {[n DP (t)]' n™ (t +7) } . (6.62)
Consequently,
E{[nDP(t—TB)T n™ (u —18)} =R ,(u-t) . (6.63)
Assume that n°"(t) can be approximated as white noise with a two-sided power spectral density given by No. Then
R . (7) = N,6(7) (6.64)

where 8(t) is the Dirac delta function. Hence,

119




B = ol 11 St 7™ frptt = 2™)

NS (u—1) &7 grdu

(6.65)
P | T 7Py |
= 'kRAD| No_-[o IfRAD(t -7 )‘ dt
12
= |k1€1;D| Ny
since, by Equation (4.21), frap(t) has unit energy.
An expression for I is given by Equation (6.24). As a result,
2 2 & *
E[|I6| ]= lkIT}fMI L-[ E[fLFM(t "TTP) S (U — TTP)]
E{l? (=, ) -1y} drau
2 o *
= |k;F}’M L-[ E[fIFM(t —T") [ (4~ TTP)]
(6.66)

N,6(u—1t) &7 drdy

Kz, N, EE“ Font =7)|? | ar

2
P
|kIFM| NO

where use was made of Equation (6.64) and the fact that firm(t) is normalized by Equation (5.13) to have unit
average energy.

An expression for I, is given by Equation (6.25). It follows that
) -
£|jr,| ]={ ] Epr o b w! |

(6.67)
E{[nDP(t—TE)T n" (u —TB)} e/ grdy .

The autocorrelation function of n'* (t) is defined to be
R -(7)= E{[nTP (t)]' n™ (t+ r)} . (6.68)

Making use of Equations (6.63) and (6.68), Equation (6.67) becomes
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E[|I7|2_= L{ R (t—g) R o (u—t) ™20 didy . (6.69)

At this point it would be convenient to approximate both n°"(t) and n™"(t) as statistically independent white
noise processes. However, this leads to the integrand of Equation (6.69) containing a squared impulse with the end

result being that E l I, | 2 | is infinite. This unrealistic result is caused by the simplifying but idealized assumption

of white noise.

In actuality, the non-cooperative bistatic radar will have a receiver bandwidth of 2W. A realistic
assumption is that the power spectral density of the receiver noise is constant over this bandwidth. Therefore, it is
assumed that the power spectral density of the noise complex envelopes is rectangular with height, N,, and
extending from —W to +W Hz. The autocorrelation function of this bandlimited noise is then given by

W .
R »(7) =R ,(0)=] N, e df =2N,W sm2z W7 (6.70)
" -w 2zWrT

Another point that need to be addressed is the infinite limits of integration that appear in Equation (6.69).
They arise from Equation (2.42) where the infinite limits of integration are permitted because of the actual finite
time extent of the integrand. (Recall that a radar will employ time gates to extract time segments of the received
signal equal in duration to the radar pulse width.) In the absence of estimation errors, Equation (2.42) would be
expressed as

0= [ [s t-rp)] sT(0) e R gt 67

—oo

Under the conditions of Equations (5.108) and (5.109) both the main radar and interferometer signals contained
within s”F(t-t3) and s™"(t) are zero outside the time interval

™ <t<t™ + NT . (6.72)

Consequently, Equation (6.71) can be written as

TTP+NT

= [ [ (t—7)] s™ (1) e H0™ gt (6.73)

where use was made of Equation (2.3). Introducing the change of variable
T=t-1", (6.74)

Equation (6.73) becomes

NT
t=] [s®@+c™ —1,] sT@+7T) e dr
;’T (6.75)
= [sDP (t+rDP)T sTT(t+ 1) e ¥kt gt
0

where use was, again, made of Equation (2.3) and the variable, t, was substituted for the variable, T. Focusing on the
noise components of Equations (2.28) and (2.35), the component of £ corresponding to I is given by

NT . .
I, = | [nDP (t_l_,z.DP)] n™(t+7™) et g ©676)
0
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Equation (6.76) is now used to determine an expression for E[l I, l 2 ] .

Utilizing Equation (6.76), it follows that
NT
E[|I7|2]= i E{[nDP ¢ +7°)] n®* (u+TDP)}
0
E {n”’(t+r”’) [n”’(u +r"’)]'} e/ gt gy 6.77)

NT
= [ Rp@—-10) Ro(@-u) &% didu .
0 n n

Observe that Equation (6.77) is identical to Equation (6.69) except that the limits of integration are now finite. Note
from Equation (6.70) that the noise correlation function is an even function of 7. Consequently,

Rn“’ (t-u) = Rn“’ (u=t) . (6.78)
Employing Equations (6.70) and (6.78), it follows that

N Sin22 Wu=1) | iaer o
BIILI*|= (2N, W) S 275 (- gt 4
[I 7‘ ] ( 0 ) Iof [ 271'W(u—t) € u

(6.79)

Attention is now devoted to evaluation of the double integral in Equation (6.79). Introduce the change of
variable

T=u-t . (6.80)

We wish to replace the double integral involving u and t by a double integral involving t and t. The regions of

integration in the t vs. u and t vs. 1 planes are shown in Figure 6.1. Observe that the boundaries for the region of
integration in the t vs. T plane are given by

I: t=NT, 7=u-NT

: t=0 , 7=u
(6.81)

IMI: u=NT, 7=NT -t
IV: u=0 , 7=-t

tn t 4

NT ! I NT

v I - m

. |
0 ;4 Nt U -NT 0l I NI =<

Figure 6.1: E[l 17 I 2 ] is evaluated by integrating over the regions indicated.
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Carrying out the integration in the t vs. T plane,

NT [ s 2 NT-7
E[|I7|2] - (2NO W)2 £ [%Z_T_] ejZIthT{ (..)‘ dt} dT

0 . 2 NT
e QN | {w] ejz”f”’{,f dt} i

~NT 2xWt -t
N et 2
= 2N,w) { [%} e/ BT (NT -1) dr (6.82)
0 [ T
+ Ny [ |22V nent (T gy dr
-NT 2zWt

N Tsin2z Wz |

s (NT—|g]) &**”" dz

where the strips of integration with respect to t are shown in Figure 6.1. Unfortunately, even though the expression
T has been reduced to a single integration, a closed form result does not appear possible.

for E“I7 l 2

To obtain an estimate of E[l I.,I 2] , a rectangular approximation is made forsin2a Wt /2 n W 1. The

height of the rectangle is chosen to be unity, which is the maximum value of sin 2 a Wt /2 n W 1, and the width of
the rectangle is chosen to be 1/W, which is the width of the main lobe of sin 2t W 7 /2 # W 1. The rectangular
approximation is centered at the origin because the main lobe of sin 2 x W 1 /2 ®# W 1 is, also, centered at the origin.

Hence, we introduce the approximation

sin 2z W7 |1, _Z_;V_ grg.z_%v_ 683)
2z W7 0, otherwise
Consequently,
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2 2 -2-%; i
E[|I7| ]z @Nw) | (T -|e) "7 dr
W

0
= 2N, W) j] (NT+71) /% dr (6.84)

2W

1
2w )

+ N, W) | (NT-1) %" dr
0

Utilizing the integral relation that

at
fr e dr = ez (at 1) (6.85)
a
and combining results, it follows that
sin —=
E[|I7|2] =~ 2N, W) ;2 - cos™ie | 4| NT - L Wl (686
2(xfy) W 2W ) rmf,

From Equation (4.65) and (5.26) the baseband bandwidth of both the Costas and OFDM signals is approximately

given by

BW =X (6.87)
T

where the conditions of Equations (5.108) and (5.109) are assumed to apply. Assuming the receiver bandwidth of
the non-cooperative bistatic radar receiver is twice the baseband bandwidth of the signals,

N
. (6.88)

As a result, Equation (6.86) can be expressed as

2
(ZNO %) 1—cos(”fNBT) T £ T
E[|17|2] = +(NT— ) Sin(”; ) (6.89)

nfy, 2z £, 2N

where f; is the bistatic Doppler shift given by Equation (2.38).

Finally, following the same reasoning that led to the results of Equations (6.65) and (6.66), it is concluded

that
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B[I,|*]= 13988 N, (6.90)

II9| IkIFMl N, . (6.91)

With reference to Equations (6.47), (6.48), (6.50), (6.51), and (6.53), it is noted that all terms are zero in the
double summation of Equation (6.35) for which i #j. Hence,

E[le.?]= = E[jt)?] . (6.92)

i=2

Substitution of Equations (2.45), (6.44), (6.45), (6.60), (6.65), (6.66), (6.89), (6.90), and (6.91) into Equation (6.92)
yields

£l ] - kz,zl A |k:;;|2N|f;f;Dr

[%+(N—l)2} + | W

2 2
Dp P
lkIFM ‘ IkIFM

N2
(6.93)
2 2 2
+ [ Mo+ ko No + Jein] N
2
T
(ZNO —]]-\1’—) 1—-cos (——ﬂj];’; ) r r
+ + (NT - ) sin(”fﬂ
7 [y 27 [, 2N N
On the other hand, making use of Equations (2.45) and (6.32),
2 2 2 2
|E 6] =k =[x ki - (6.94)

The variance of £;, as given by Equation (6.33), then becomes
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2 kTP 2
var{e,} = 2h| |V + k2| N + e
|kIFM B Ny + =~ kIFM (g:_ - 2N+1) + |k1€iD|2 N, (6.95)

+

(2]\/0 N )2 1- cos(——” /i BT)
T N +(NT——) sin(” ST ) )
N

7 fs 27 [ N

One measure of performance for a radar is signal-to-noise ratio. For a monostatic radar operating in an
additive thermal noise background with variance, Ny, the signal-to-noise ratio is given by

Ele Y _ e

SNR )it onostatic = (6.96)
(SNR s nostari Var {Noise} N,
For the non-cooperative bistatic radar, the signal-to-noise ratio is
E
(S 'NR )Non—cooperalive = -|—-—s-]— (697)

Bistatic Var { e P }

where Var{{;}is given by Equation (6.95). The loss factor is defined to be

126




(SNB) Monostatic _ _ VARY f}

(SNR) Non~cooperative Ny
Bistatic
B 2 2
TP TP
ppP |? L7 pP |? 1 |kraD
NO N NO N
[ 2
DP
2 k 2
TP 1 A IFM Hy TP
0 Cs
TfpT
4N 2 |1 cos(-NL) faT
N T T
+_.£(_) +(N __)si.. B ] .
zfp \T 2z fp 2N N

Observe that the loss factor, LF, is defined to be a positive number greater than or equal to unity since the signal-to-
noise ratio of the monostatic radar is expected to be larger than that of the non-cooperative bistatic radar. The more
effective is the interferometer in masking the transmitted radar waveform, the larger will be the value for LF.

6.3 Non-Cooperative Bistatic Radar Receiver Performance
6.3.1  False Alarm Probability

Because Z(0,0), I'(0,0), and fimy(t) consist of a large number of random components due to the randomness
of the data symbols, the central limit theorem can be invoked to justify modeling the detection statistic, £, as a
complex Gaussian random variable. By definition, the probability of false alarm is the conditional probability of
detecting a target given that a target is not present. With reference to Equations (2.35), (2.36), and (2.37), the
absence of a target is equivalent to

oy =kpp =k, =0 . (6.99)
Then

sTM=n"() . (6.100)

The mean value of the signal component of the detection statistic is given by Equation (6.28). In view of
Equations (2.45) and (6.99), it follows that

E[¢,]=k, = 0 ©(6.101)

in the absence of a target. In addition, the mean value of the interference component of the detection statistic is
given by Equation (6.32). Hence, in the absence of a target, it is concluded from Equations (2.45) and (6.99) that

127




E[¢,]=k,= 0 . (6.102)
Thus, given that a target is not present,

E[¢]=E[¢,]+ E[¢,]= 0 . (6.103)

Let O'fo denote the variance of the detection statistic in the absence of a target. Because ; is a constant,

o;, = Var{fl}z |k1€fD|2 N, + ‘kl?fillz N,
(6.104)

e
. N NIT) N +(NT—-L) sin Z 5T
[y 27 fp 2N N

where use was made of Equations (6.99) and (6.95). The absence of a target is conventionally referred to as
hypothesis, Hy. Therefore, under Hy, the detection statistic, £, can be modeled as a zero-mean complex Gaussian
random variable with its variance given by Equation (6.104).

Denote the real and imaginary parts of the detection statistic by
¢, = Re{t} (6.105)
and
¢, =Im{¢} . (6.106)
In the absence of a target, the probability density function of £ is

Py, L =L, +jL|Hy) = p, 4 (L,s Li|Hy)

K B+ D)
1 207, _ 207,

vk ol 2no;

(6.107)

where O fo is given by Equation (6.104).

Let H, refer to the hypothesis that a target is present. The statistical test employed for detection is then
described by

Hl
il = 7 (6.108)

where 7 is a constant that denotes the threshold. A statistically equivalent test, which is easier to analyze, is
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Hl
L] = 12 + L 7. (6.109)
HO

As a result, the probability of false alarm is given by
P, =Pr {2 + 22 2y*|H, }=Pr{, ¢, ¢ R|H,} (6.110)
where R is the shaded region sketched in Figure 6.2.  Consequently,

Pr =11 p, oL Li|H)dL, dL,

(6.111)
2+

e ¥ arar .
R

Wil
Y/

2
Figure 6.2: A target is declared present when ILI falls into the shaded region.

To evaluate the double integration in Equation (6.110), it is convenient to introduce polar coordinates. Let

L =Zcosp (6.111)
and
L,=Zsinf i (6.112)
It follows that
Z= L + L (6.113)
and
a L
B=tan? L | (6.114)
Ll’
Equation (6.110) can then be expressed as
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ZZ
1 7 T T202
P, = — J dg | Ze ™ dZ (6.115)
2no T -
where use was made of the differential relationship
dL, dL,=ZdZdp . (6.116)
Evaluation of the integrals results in
ZZ
1 1, |-
P, = — [ dB |-o] e 2% |7
2ro, -r °
’ 6.117)
i, ,, _r
_ 1 . 207, [ dB = e 262, .
27 -r

From Equation (6.117) it follows that

y =0, J2n(/P) . 6.118)

Consequently, the threshold is readily determined from a knowledge of o’fo and specification of the false alarm
probability. Note that the smaller is Pr and the largeris 0, the larger is the required value of the threshold.
6.3.2  Detection Probability

By definition, the probability of detection is the conditional probability of detecting a target given that a
target is present. The presence of a target is typically designated as hypothesis, H;. Under H, the detection statistic,
g, is modeled as a complex Gaussian random variable with mean

m, =m, + jm, (6.119)
and variance O Zl . From Equations (6.28), (6.32), and (2.45) it follows that

m, = Ele,|H,)+ Ele i, )= &2, ) k5 + (eli) kiR (6.120)

o ,21 is given by Equation (6.95).

In the presence of a target, the probability density function of € is
pEIHl(LIHl) = Py, 0,8, (Lr’Li|H1)
6.121)

2
IL-m“|

20}
= —F @€ “ .

However,
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L=m, | =lL,-m, )+ j @-m)lL, -m, )~ i, ~m,)]

6.122)
=m +m + L, +L -2(m, L, +m, L) .
As a result, Equation (6.121) becomes
! mj, +mj, L +13 - 2(m, L, +my L)
2 2
Pyn, (UH)) = — e 9 e 290 . (6.123)
2o,
Employing the test specified in Equation (6.109) the probability of detection is given by
Py=Pr{2 + 22 29 |H }=Pr{t,, ¢, ¢ R|H,} (6.124)
where R, once again, is the shaded region sketched in Figure 6.2. Consequently,
P, = J.RI P ., |H1(Lr 5Li|H1) dL, dL,
(6.125)
i, +m, L+ L -20m, L +my,L)
1 e 2
= — e “n Jf e g dLdL, .
2rno, R

Evaluation of the double integral in Equation (6.125) is, as before, facilitated through introduction of the
polar coordinates defined by Equations (6.111) and (6.112). It follows that

. _mi . mgi _ 72 . Z(my, cosf + my, sin §)
202 = 20 , o
P, = ; o[ ze Y] e a dg | dz .  (6.126)
2rno 7 -
4

From a table of integrals it is known that

51__ j‘ ercosﬂ+ssinﬂ dﬁ=lo [rz +Sz ] (6.127)

V3

where Io(°) is a zeroth-order modified Bessel function of the first kind. Therefore, the detection probability becomes

2 2 2
mi, + mj, _Z

1 3 o A
e 4 — Jmf +m} |dZ . (6.128)
(o) . !

4

o
!

[

R+

N
®°
~

(=2

With reference to Equation (6.119), observe that
2 2 2
Im,| =m} +m} . (6.129)

Thus, the expression for Py, can be simplified to
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|me,| 7’
1 T . M,
= o 0, [ ze 1, J_il Z | dz . (6.130)
ae 4 0-51

Having integrated out B, it has been determined that the probability density function on z is given by

26} 207 l4
p()={—5 ¢ ' Z e " = Z |, 220 (6.131)
0-!.’, 4
0 , Z<0 .
Consequently,
[ p,(2) dz =1 (6.132)
0
and the probability of detection can be expressed as
1 |m,l|2 v ZZ
Py T el m
P,=1- — e oo [ Ze 2o 1, li——i‘— Z | dz . (6.133)
O-ll 0 £

The above result can be further simplified by introducing the incomplete Toronto function [13,14] which is
defined as

B
Ty (m,n,r) = 2" ¢ [t % I [2rt] dt . (6.134)
0
Let
|
r= (6.135)
V20,
and
t= _ZzZ (6.136)
Lo,
Substitution of Equations (6.135) and (6. 136) into Equation (6.133) yields
4
, V2o, )
P,=1-2¢" [ te” I, [2rd]dt
0 (6.137)
-1 (1,0 e
V2o, "\ 20,
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Plots of T ¥ (1,0, Jq— ) are presented in Figures 13 and 14 of the Marcum paper [13] for various choices of v

and q. Although the Toronto function needs to be evaluated numerically, Equations (6.130) and (6.133) clearly
reveal that the detection probability is decreased by increasing y and O [21 . This observation is useful in selecting

system parameters to effectively degrade the operation of the non-cooperative bistatic radar.
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CHAPTER 7

CONCLUSIONS

7.1 Summary

Radar receivers typically utilize a replica of the transmitted waveform for processing the radar return. In an
attempt to estimate this transmitted waveform, non-cooperative bistatic radars normally intercept a direct path signal
emitted through the side lobes of the host radar.

This report investigates the use of an interferometer along with the host radar to deny coherent reference
signals to unwanted observers. The interferometer signal is intended to be

1) effective in masking the host radar signal emitted through the side lobes,

2) orthogonal to the signal transmitted through the main lobe of the host radar so as not to degrade radar
performance,

3) useful for data/voice communications,

4) controllable such that separate communication signals can be directed to different receivers located in
different directions.

In addition, the host radar signal is intended to be flexible to allow for multi-mission operations.

The time domain cannot be used to achieve orthogonality between the interferometer and radar waveforms
because, assuming perfect synchronization and temporal orthogonality, the non-cooperative radar could correlate the
direct path signal with its radar return without experiencing any loss due to presence of the interferometer signal. In
fact, for effective masking, the radar and interferometer signals should be highly correlated in the time domain.

Consequently, the desired orthogonality must be achieved in the spatial domain. Analysis of the two-
element interferometer array factor reveals that a relatively broad spatial null exists in its end fire position when the
element spacing is an odd integer number of half wavelengths of the transmitted interferometer signal. This null
cannot be steered electronically. Therefore, when the host radar main lobe points broadside to the x-axis, the
interferometer elements must be placed along the y-axis in order to take advantage of the broad null. Shouid the
main lobe be steered to different directions, it would be necessary to mechanically rotate the interferometer elements
in order to maintain the spatial orthogonality between the interferometer and radar waveforms.

In order to communicate separate signals in different directions, it will be necessary to steer the
interferometer without destroying the broad null in the end fire position. This can be accomplished by frequency
hopping the transmitted carrier such that the odd integer relationship between the element spacing and wavelength is
maintained while the carrier changes from one frequency to another.

The flexibility of frequency hopping makes it attractive for design of the host radar waveform. Depending
upon the particular mission, the frequency hops can be arranged to synthesize a discrete frequency quantized
approximation to the frequency modulated signal that produces a desired delay-Doppler ambiguity function.

Because the ideal shape of the ambiguity function is an impulse function, the Costas signal is proposed for
the host radar waveform. It yields a thumb tack shaped ambiguity function with a relatively low pedestal. For a
fixed number of frequency hops within a radar pulse, there are many different hopping patterns that result in
essentially the same thumb tack shaped ambiguity function. Hence, different frequency hopping patterns can be
utilized to further complicate the coherent reference estimation task of the non-cooperative radar.

Having selected the Costas signal for the transmitted radar waveform, orthogonal frequency division
multiplexing (OFDM) becomes an attractive communication technique for the interferometer. The hopping
frequencies of the Costas signal are required to be orthogonal over a hopping interval of duration, T. The subcarrier
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frequencies of an OFDM signal are required to be orthogonal over a symbol duration, T,. By selecting T = T, the
two sets of frequencies become identical. In addition, the use of M-ary amplitude and phase shift keying to
modulate the subcarriers makes it very difficult to separate the Costas and OFDM signals when their amplitude
transitions are synchronized in time.

Utilization of OFDM for communications has many important advantages. Both modulation and
demodulation can be implemented using fast Fourier transforms. The difficult tasks of channel estimation and
equalization are simplified significantly when communicating over fading and time-variant broadband channels.
Also, the parallel nature of OFDM makes it an efficient scheme for the transmission of data.

Performance of the non-cooperative bistatic radar receiver was analyzed. In addition to noise terms, the
detection statistic was shown to involve the delay-Doppler ambiguity functions of the host radar and interferometer
waveforms as well as their cross ambiguity function. Analytical expressions for these functions were obtained under
the assumption that the host radar and interferometer employ Costas and OFDM signals, respectively. Taking
advantage of the result that the detection statistic consists of a random sum of many terms, none of which are
dominant, the detection statistic was approximated as a complex Gaussian random variable. Analytical expressions
were then derived for the false alarm and detection probabilities of the non-cooperative bistatic radar.

7.2 Suggestions for Future Work
7.2.1  Performance Evaluation of the Complete System Using Realistic Scenarios

Although analytical expressions needed for performance of the non-cooperative bistatic radar were
obtained, time did not permit for assessment of the complete system. It is desirable to

1) Construct plots of the OFDM ambiguity function and the cross ambiguity function between OFDM
and Costas signals for both individual sample functions and the entire ensemble of the OFDM signal,

2) Obtain analytical expressions for the false alarm and detection probabilities of the host radar,
3) Postulate realistic scenarios along with the corresponding numerical values for the system parameters,

4) Evaluate complete system performance for the realistic scenarios postulated in (3) and adjust the
system parameters where necessary to improve performance,

5) Perform computer simulations to verify the predicted theoretical results.
7.2.2  Extension of the Interferometer to More than Two Elements

The two-element interferometer, under a specified constraint, produced a broad null in the end fire position
which was useful in obtaining spatial orthogonality between the host radar and interferometer waveforms. However,
this null could not be steered electronically. It is conjectured that introduction of a third interferometer element will
enable steering of the broad null. Should this prove to be possible, the advantages to be gained by adding additional
elements would be investigated.

135




The concept of the tri-element interferometer is illustrated in Figure 7.1. Elements 1 and 2 can be replaced
by an equivalent element, denoted by E. Elements E and 3 then comprise an equivalent two-clement interferometer.
By adjusting the amplitudes and phases of the sinusoidal signals applied to elements 1 and 2, the position of element
E can be moved horizontally along the line connecting elements 1 and 2. Selection of the frequency of excitation
such that the distance, d, is an odd integer of half wave lengths would then produce a broad null in the end fire
position of the equivalent two-element interferometer. In this manner the broad null could be electronically steered
by appropriately selecting the amplitudes and frequencies of the sinusoidal signals applied to elements 1, 2, and 3.

E 2

-
<]

3

Figure 7.1: The tri-element interferometer can be viewed as an equivalent two-element interferometer.
723  Generalization of the Ambiguity Function to Include Direction of Arrival

Because both spatial and temporal processing is performed in a radar, an ambiguity function generalized to
include the direction of arrival would be extremely useful. As a first step, it is proposed to carry out this
generalization by incorporating the antenna radiation patterns as a function of angle.

More generally, the transformation of operators approach, introduced by Cohen [15], may be useful in
developing a combined delay-Doppler, spatial displacement-spatial frequency ambiguity function. This would be
applicable to pulse propagation where there is a strong correlation between temporal and spatial frequencies.
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