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CHAPTER 1 

INTRODUCTION 

1.1 Background 

The US Air Force has invested heavily in the development of advanced surveillance systems and technologies. 
Of increasing concern is the threat that potential adversaries may use bistatic technologies to take advantage of our 
significant investment in advanced sensors. With relatively inexpensive receiver systems, an adversary could host 
off of our illuminations to operate bistatically. A central requirement for non-cooperative bistatic operation is the 
estimation of a coherent reference signal. This estimate is used to correlate against received waveforms to extract 
the desired signal. As illustrated in Figure 1.1, a coherent reference is typically obtained by measuring a direct path 
signal through the sidelobes of the illuminator. Conventional methods to prevent the interception of the direct path 
signal include low sidelobe antennas, physical isolation, and the use of spread spectrum waveforms. These methods 
will become inadequate as surveillance sensors migrate to space. 

Target 

Transmit 
Malnbeam 

Monostatic 
Radar 

Bistatic 
Racelvsr 

Mainbaam 

Non-Cooperative 
Bistatic Sensor 

Figure 1.1: Non-cooperative bistatic receivers require a coherent reference from the host illuminator 

In addition, to enhance precision engagement, it is desirable that covert data/voice communication be 
incorporated simultaneously with the surveillance function. This embedded communications capability should 
allow for the message signal to vary with angle such that separate information can be directed to different receivers 
located at various angles. Directionally dependent waveforms would be ideal for space based sensing of RF tags on 
aircraft (IFF), ground equipment and troops and would be especially valuable for search and rescue missions. Of 
course, the radar and communications waveforms should be designed so that they can be radiated at the same time 
without self-jamming. 

1.2 Proposed Methodology 

As shown in Figure 1.2, it is proposed to employ an (N+2) element antenna array where N of the elements are 
used by the host radar for surveillance purposes while two of the elements are used by the interferometer for 
coherent reference denial and communications purposes. The two interferometric elements are driven separately 
with an independent waveform generation, timing and control circuit. 

Ideally, the interferometer antenna pattern will overlay the sidelobes of the host radar main antenna pattern with 
minimal overlay of the radar main beam. The interferometer may or may not be on all of the time. However, as a 
minimum, the interferometer will be on while the host radar is in the transmit mode with the objective that the 
interferometer signal will mask that portion of the host radar signal emitted through the radar sidelobes. In this way, 
a coherent reference signal is denied to a non-cooperative bistatic receiver. 

1/2 



Monostatic Radar 
V 

YYYYYYY 
Main Antenna: N-Elements 

Intarferometrle 
Spatial Denial Antenna 

Figure 1.2: A pair of interferometric elements driven by independent waveform generation, timing and control provides a means 
to modulate the sidelobes of the host radar main array. 

To increase the effectiveness of this masking, it is also proposed to modulate the interferometer antenna pattern 
from pulse to pulse such that the pattern is rotated on each pulse. This is illustrated in Figure 1.3. Due to the nature 
of the interferometer modulation, the proposed method of denying a coherent reference is more effective than 
masking the sidelobes with a noise signal. 

Also, by carefully selecting the interferometer modulation, a desired message signal can be embedded in the 
sidelobes, thereby allowing data/voice communications operations simultaneously with the surveillance function. 
Using a multi-channel phased array antenna and orthogonal spatial-temporal waveforms, the message signal can 
vary with angle. In this manner, separate communications signals can be directed to different receivers located at 
various angles. 

13 Research Objectives 

The objectives of this research effort are summarized below: 

1) Develop joint spatial-temporal antenna-based signal processing techniques and waveforms that can be applied 
simultaneously to radar and communications systems without self jamming, 

2) Design multi-dimensional waveforms for the purposes of denying a coherent reference to a non-cooperative 
bistatic radar located at an arbitrary angle while simultaneously permitting radar surveillance and multiple 
embedded communications, 

3) Design diverse waveforms which will accommodate multi-mission operations such as ground and airborne 
moving target indication, tracking, automatic target recognition, and foliage and ground penetration, 

4) Investigate theoretical measures of performance for sensor and communication systems incorporating these new 
and novel waveforms. 

2-E lerne nt 
Interferometer 

Fk»tPilM 

RratPtfi« 

Second Pub» 

2-Element 
Interferometer 

Second PulM 

Far Field Response of 
the N + 2 Element Array 

Figure 13: Pulse-to-pulse phase modulation of the sidelobes denies a coherent reference to non-cooperative receivers. The 
sidelobe modulation, also, permits embedded communications. 



1.4 Report Organization 

Bistatic radar fundamentals are reviewed in Chapter 2. Various issues associated with the successful operation 
of a non-cooperative bistatic radar are discussed. Use of the interferometer signal to mask the direct signal of the 
host radar is then considered. Performance degradation of the non-cooperative bistatic radar is shown to depend 
upon the delay-Doppler ambiguity functions of the host radar and interferometer waveforms and their cross 
ambiguity function. 

Antenna patterns of the interferometer and host radar are developed in Chapter 3. It is noted that it is possible 
to achieve spatial orthogonality between the host radar and interferometer by placing a broad null of the 
interferometer pattern in the direction of the main beam of the host radar. However, it is shown that frequency 
hopping is required to steer the interferometer pattern while maintaining the broad null. Various waveforms are 
considered for the signals driving the interferometer. Conditions required by the wave equation are investigated for 
the quasi-stationary behavior of an antenna when modulated signals are radiated. Response of the interferometer 
element pair when excited by two different modulated signals is derived. This is specialized to the situation where 
both elements are excited by the same linear frequency modulated pulse. In addition, the case is considered where 
one of the interferometer signals is an up chirp while the other is a down chirp. 

A frequency-coded waveform, employing Costas sequences, is proposed for the host radar signal in Chapter 4. 
The concept of the Costas array is introduced and the delay-Doppler ambiguity function of the Costas signal is 
derived. The ambiguity function is shown to have a thumbtack-like shape (i.e., a single narrow central peak 
surrounded by a low-level pedestal). 

Orthogonal frequency division multiplexing (OFDM) is chosen as the modulation scheme for the 
interferometer in Chapter 5. After a tutorial discussion of OFDM, the delay-Doppler ambiguity function of the 
OFDM signal is derived. 

Performance of the non-cooperative bistatic radar is considered in Chapter 6 assuming that the host radar and 
interferometer employ Costas and OFDM signals, respectively. This requires derivation of the delay-Doppler cross 
ambiguity function between the Costas and OFDM signals. Expressions are obtained for the false alarm and 
detection probabilities of the non-cooperative bistatic radar. 

Finally, a summary of results and suggestions for future work are provided in Chapter 7. 



CHAPTER 2 

NON-COOPERATIVE BISTATIC RADAR CONSIDERATIONS 

2.1 Bistatic Radar Fundamentals [1] 

A bistatic radar is one in which the transmitter and receiver are physically separated and, therefore, have 
separate antennas, as shown in Figure 2.1. The north-referenced coordinate system, which is illustrated in Figure 

Transmitter Receiver 

Figure 2.1: A bistatic receiver employs separate antennas for transmitting and receiving. 

2.2, is frequently used to describe the bistatic radar geometry. The bistatic baseline is denoted by L and designates 
the distance separating the transmitter and receiver. RT and RR denote the distance from the transmitter to the target 
and the distance from the target to the receiver, respectively. The bistatic angle, ß , is measured at the target and is 

the angle between the lines whose lengths are denoted by RT and RR. 

Target 

North 
A 

Transmitter Bistatic Baseline, L 

North 

Receiver 

Figure 2.2: Bistatic radar geometry is described using the north-referenced coordinate system. 



The direct-path delay between the transmitter and receiver is 

r    =f (2.1) 

where c is the speed of light. The total delay related to the detection of a point target is 

T1" =**&-. (2.2) 

The bistatic delay is defined to be the difference between the total delay and the direct-path delay and is given by 

TB = t    - T     = — ä . (2.3) 
c 

Thus, the bistatic delay is a measure of the bistatic range which is defined to be 

BR = RT+RR-L. (2.4) 

The locus of constant bistatic range is an ellipsoid whose foci are located at the transmitter and receiver. The major 
semi-axis length is given by 

L + BR    RT+RR 
« = —— =     2 (2.5) 

while the minor semi-axis lengths are equal and given by 

b = yja2-L2 I A. (2.6) 

For the special case of a monostatic radar, 

L=TDP=0 (2.7) 

and the ellipsoid becomes a sphere of radius RR = RT. The monostatic delay related to a point target is 

*m=
1¥ = 1¥- (2.8) 

The Doppler frequency observed in the received signal is proportional to the time derivative of the bistatic 
range. Let the target velocity vector be denoted by V . Assuming a stationary transmitter and receiver, (dL/dt) = 0. 
The time derivative of the bistatic range is then given by 

—^—^ = -2|£J|cos<5cos(j3/2) (2.9) 
dt 

where S is the angle between the velocity vector and the bistatic angle bisector, as illustrated in Figure 2.3. Hence, 
the bistatic Doppler frequency is 



Transmitter Receiver 

Figure 23: The bistatic Doppler frequency depends upon the angle between the velocity vector and the bistatic angle bisector. 

f.=- 
1 d(BR) _ 2 ] v 

dt Xo 
COs£cOs(/?/2) (2.10) 

where X 0 is the wavelength of the propagating wave. Observe that | V | COS S is the projection of the velocity 

vector on the bistatic angle bisector. It represents the velocity component perpendicular to the constant range 

ellipsoid. Along the bistatic baseline, ß = 180° and the target Doppler frequency is always zero independent of the 

velocity vector orientation. 

For a monostatic radar, ß = 0°. The Doppler frequency becomes 

2|v 
J m Ao 

-cosS (2.11) 

where 6 is now the angle between the velocity vector and the radial line between the target and the radar.  The 
monostatic Doppler frequency geometry is shown in Figure 2.4. 

The bistatic triangle of Figure 2.2 is readily solved to locate the target position relative to the transmitter 
and receiver. Three pieces of information are needed to completely and unambiguously specify a triangle, one of 

which must be the length of a side. Given L, then any two of BR, 6T , and 6R can be used to solve the triangle to 

locate the target. For example, using BR and 9R , 

Figure 2.4: The monostatic Doppler frequency depends upon the angle between the velocity vector and the radial line from the 
target to the radar. 

R* = 
(BR)2+2L(BR) 

2[BR + L(l + sm0R)] 
(2.12) 



In a similar manner, using BR and 8T , 

In addition, from Figure 2.2, 

Using the law of sines, it follows that 

R  -    VR)2+2L(BR) 
T    2[BR + L(l-sm0T)]' 

ß = eT-eR. (2.i4) 

sin/? _ cos6R _ cos#r 

RT RR 

(2.15) 

As a result, knowledge of any three of the four parameters 6T , 6R, L, and BR is sufficient to determine the fourth. 
Also, it can be shown using the law of sines that 

_   _(BR + L)coseT 
KR ~   ... „     . „ (216) 

and 

cos 6R + cos 9T 

cos8R + cos0r 

Finally, the distance along the baseline can be expressed as 

L = - —  T ^   R'. (2.18) 
COS^j +cos0r 

The discussion in this section assumed that the bistatic radar transmitter and receiver were designed to be 
used together and are synchronized for maximum performance. Synchronization issues for the case of a non- 
cooperative bistatic radar receiver, where the receiver attempts to "hitchhike" off of an independent source of 
illumination, is discussed in Section 2.2. This mode of operation is termed "non-cooperative" because the 
transmitter is not designed to support bistatic radar operation. 

2.2 Synchronization Issues for a Non-Cooperative Bistatic Radar Receiver [2,3] 

In order to maximize the radar coverage and detection sensitivity of a non-cooperative bistatic radar 
receiver, the receiver must either know or be able to estimate the following transmitter parameters: 

1) Transmitter location, 

2) Antenna polarization, 

3) Carrier frequency, 

4) Antenna beam pattern and beamwidth, 

5) Antenna scan characteristics, 

6) Complex envelope waveform. 

Each of these requirements is briefly discussed in this section. 



2.2.1 Transmitter Location 

As pointed out in Section 2.1, solution of the bistatic triangle requires knowledge of the transmitter 
position. This can be determined in a variety of ways. Although non-cooperative, the transmitter's location may be 
known a priori. For instance, the position of airport surveillance radars may be found in various data bases. When 
not known, the transmitter's location can be estimated using emitter location techniques. Such techniques typically 
involve multiple receiver sites or a moving platform and are generally good enough so as not to significantly affect 
target location accuracies. 

2.2.2 Antenna Polarization 

The antenna polarization may be known a priori in some cases. Otherwise, the polarization can be 
determined by measuring the direct path signal using antennas matched to various polarizations. When this is not 
possible, a 45° slant polarized antenna may be used as a compromise by the bistatic radar receiver. 

2.2.3 Carrier Frequency 

Waveform power can be maximized by tuning the bistatic radar receiver to the known or estimated carrier 
frequency of the transmitted waveform. Techniques for determining the carrier frequency of an unknown waveform 
are well known and have been implemented in electronic support measures (ESM) receivers. In fact, frequency 
estimation can be done with a higher accuracy than is required for good bistatic radar operation. It can, also, be 
done very rapidly. For example, frequency can be measured on a pulse-to-pulse basis by a technique known as 
instantaneous frequency measurement (IFM). This becomes essential when hosting off radars that are pulse-to-pulse 
frequency agile. 

2.2.4 Antenna Beam Pattern and Beamwidth 

It is desirable to integrate all of the pulses that the mainbeam places on the target. Knowledge of the 
beamwidth is necessary to set the dwell time or, equivalently, the coherent processing interval (CPI). The 
transmitted pulse amplitudes are modulated by the scanning of the transmitter beam for long dwells. Reasonable 
knowledge of the transmitting antenna beam pattern becomes necessary to do a good job of matched filtering. 
Beamwidth is another parameter that can be measured by ESM systems. This is generally derived by monitoring the 
envelope of the transmitted pulses over a scan. It appears that an accuracy within 25% is sufficient to maintain good 
bistatic radar receiver performance. 

2.2.5 Antenna Scan Characteristics 

In order for the antenna of the bistatic radar receiver to be pointing at the volume of space simultaneously 
illuminated by the transmitter, it is necessary to know the transmitter scan characteristics. This is referred to as 
pulse chasing. For mechanically-scanned radars, rotating at a constant angular rate, the scan rate of the transmitter is 
estimated by tracking the times when the mainbeam flashes past the receiver. Knowledge of the scan time enables 
estimates to be made of the azimuth angle toward which the transmitter antenna is pointing at any time instant. 
Generally, it is not possible to synchronize a bistatic radar receiver to the elevation scanning of a transmitter unless a 
known regular elevation scan pattern is used. To overcome this lack of knowledge, the bistatic radar receiver 
typically uses a receive aperture with an elevation fan beam which covers all elevations of interest. 

2.2.6 Complex Envelope Waveform 

The complex envelope of the transmitted waveform, which contains the amplitude and phase modulation of 
the radar pulse, must be estimated for use in cross correlation with the radar signal. In addition, approximations to 
the pulsewidth and the timing of pulses, which may or may not be staggered, are needed to successfully perform the 
operations of Doppler processing, pulse compression, and matched filtering. 

As pointed out in Chapter 1, one of the objectives of this effort is to use the interferometer signal to disrupt 
to the extent possible the synchronization of the non-cooperative bistatic radar receiver with the host radar. 



2.3. Coherent Reference Denial 

In this report it is assumed that the non-cooperative bistatic radar receiver performs detection by utilizing 
an estimate of the host radar transmitted signal for correlation with the received data. In practice, the estimate 
should be continuously updated in order to account for pulse-to-pulse amplitude, frequency, and phase variations 
that may or may not be intentional. 

The estimate of the host radar transmitted complex envelope is typically obtained from the direct path 
signal observed by the bistatic radar receiver. In general, the direct path signal is corrupted by clutter and receiver 
noise which, in some cases, can be sufficient to cause significant signal processing losses due to poor estimates of 
the host radar complex envelope. However, for our purposes, it will be assumed that the interferometer signal is 
mainly responsible for degradation of the complex envelope estimate. In this way, there is no reliance solely on the 
clutter and receiver noise to prevent the non-cooperative bistatic radar receiver from hosting off of the monostatic 
radar. Of course, to the extent that the clutter and receiver noise help to mask the transmitted radar waveform in the 
direct path, the more difficult it will be for the non-cooperative bistatic radar receiver to operate successfully. 

With reference to Figure 1.2, let the transmitted host radar and interferometer complex envelopes be 
denoted by sRAD (t) and SIFMO), respectively. By definition, the energies of these signals are given by 

ERAD=\0
Ti\sMD{t)\1dt (2.19) 

and 

EiFM=hTd IWOfdf (2.20) 
where both signals are assumed to be of the same duration, Td. To account explicitly for the signal energies, it is 

convenient to introduce the unit energy signals fRAD(t) and fffM (t) such that 

# i /«o« i2 *=J? i f1FM (o i2 *=i. (2.21) 

The complex envelopes can then be expressed as 

SBjn\t) = ■^ERADJRAD{t) (2.22) 'RAD 

and 

(0 = V^W™(0- (2-23) SIFM 

For simplicity, assume that the direct path signal between the monostatic and bistatic radars is used as the 
coherent reference signal for the correlator in the non-cooperative bistatic radar receiver.  With reference to Figure 

2.2, the direct path consists of the bistatic baseline which is of length, L. Let G%£ denote the antenna gain of the 

monostatic radar in the direction of the direct path. Consequently, the power density of the monostatic radar signal 
at the bistatic radar is 

wDP - (ERAD'Td)Gm 
rYRAD~ A_T2 • V-t-V 

DP 
MR 

4nL' 

Let GBR denote the antenna gain of the bistatic radar in the direction of the direct path. Then the effective aperture 
area of the bistatic radar antenna in the direction of the direct path is 

nDP i2 
ADP _ UBR 

A r79V. siBR - (2.25) 
47T 
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where X is the signal wavelength. It follows that the monostatic radar signal power intercepted by the bistatic radar 
is 

PZ = w» AS = ^JZZ?   ■ <2-26> (An) L Td 

Similarly, let  G\pM denote the antenna gain of the interferometer in the direction of the direct path.    The 
interferometer signal power intercepted by the bistatic radar is then given by 

j?       (~iDP fDP 12 

' IFM 
pDP   _ ^IFM^IFM^BR" m 27) 

(ATCYL% 

DP 
Assume the direct path signal intercepted by the bistatic radar receiver is delayed by an amount, T , and Doppler 

shifted by an amount, fDP. If nDP(t) denotes the complex envelope of the receiver noise in the direct path, the 
complex envelope of the direct path signal may be modeled as 

sDP(t) = k^f^t-T^e J>*r«^ . (2.28) 

•rDP     f        (i_~£>P\ a j1nfD\t-TDP)  ,      DP 
^IFM   J IFM 

where k^ and k^M are complex constants such that 

+KP
Mf1FM{t-TDP)e^"<" ''+#»-(0 

p     fiDPfiDP i; 
| L.DP   |2  _   pDP  rp    _ ^RAD^MR^BR" n -yn\ 
\KRAD\     ~rRAD1d~ (AJT\2T2 V~^> 

and 
p f~iDP    f~iDP 12 

I L.DP   \2_pDPm   _ ^IFM  ^IFM  ^BR A n ->m 

\K1FM I   ~rIFM1d - (4ir)2L2 ' 

With reference to Figure 2.2, the signal reflected from the target to the non-cooperative bistatic radar 
receiver travels from the transmitter along the two legs of the triangle whose lengths are RT and RR. In general, this 
signal consists of two components, one from the monostatic radar and one from the interferometer. The two legs of 
the triangle are referred to in this report as the total path. Let GMR,GIFM,GBR denote the antenna gains of the 
monostatic radar, interferometer, and bistatic radar, respectively, in the target direction along the total path. Also, let 
<TT be the effective target radar cross section. Since the power density of the monostatic radar signal at the target is 

WTP = (ERAD/Td)Gm^ (231) MR 

AnRl 

the power density of the monostatic radar signal at the bistatic radar is 

WTP    — \ERAD '^d)^MR      ®T (2 32) 
*"> AnRl 4xR2

R ' 

Hence, the target signal power intercepted by the bistatic radar due to the monostatic radar is 

11 



<TP ^RAD  ^MR  ^BR    UT
     

A 

rRAD ~ „_0D2    D2   ^ • ^"ii) (4xY% K Td 

Similarly, the target signal power intercepted by the bistatic radar due to the interferometer is 

F /-< TP   p TP    _    12 
*-*  WHY   '-' WAY   V^ OB       U  y Ai 

r 
pTP     _   -^ /FAf w ZFAf *-* BR    u T 'k , 

(4/r)3#2#2:rd 

Assume the total path signal received by the bistatic radar receiver is delayed by an amount, r77", and Doppler 

shifted by an amount, /     .  If n   (f) denotes the complex envelope of the receiver noise in the total path, the 
complex envelope of the total path signal may be modeled as 

'''(0 = *^/™('-Oe"  ('-O 

+ *S,/™(/-TnVa^<M*>+«*(0 

(2.35) 

7 TP l TP where kg^ and kWM are complex constants such that 

I L.TP    |2_ pTP T   _ ^RAD^MR^BR UT '" ,~ o£. 
I KRAD I   - rRADJd ~ ,„     ^3n2n2  V-30) 

P       (~<TP f^TP _     12 
^BJD^MR^BR UT /L 

and 

->77>   r^TP 
UTP    |2_ pTP T   _ ^IFM^IFM^BR   UT*1 n ,7>. 

™l"ZF"rf"       (4^)3^Ä
2       • (237) 

The bistatic delay is defined in Equation (2.3) as 

TB = T    - T     . 

Similarly, the bistatic Doppler shift is defined to be 

fB=f
TP-fDP. (2-38) 

Ideally, the non-cooperative bistatic receiver would like to correlate fRAD{t — ^TP)ei2n with the total 

path signal, sTP (t). To accomplish this, it would modify the direct path signal by a delay, TB, and a Doppler shift, 

fB. However, in practice, TB and fB are unknown. Hence, the bistatic radar receiver would utilize estimates of 

TB and fB . Let these be denoted by 

tB = TB-T (2.39) 

and 

fB=fB-
v- (2.40) 
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To detect a possible target, the bistatic radar receiver would then correlate  S    (t — tB)ejBt Tj> with 

sTP (t). This yields the test statistic employed for the detection of a target. 

By definition, correlation of the complex waveforms fx (t) and f2(t) is given by 

y=  J/i*(0/2(0 dt (2.41) 
—oo 

where the asterisk denotes the operation of complex conjugation.   Hence, the test statistic at the output of the 
correlator in the non-cooperative bistatic radar receiver is 

/= ][S
DP(t-fB)}*e-J2*M'-TDP-i* STP{t)dt. (2.42) 

Substituting the expressions for sDP (t) and sTP (t) given by Equations (2.28) and (2.35) into Equation (2.42), the 
detection statistic becomes 

l=)l(kMn)*fL(t-*DP -*,)e 

e ~^'M-^-^ +(*-)*/™ (t-TDP-tB) 

e-
JUf"l,-'B'-t')  e-J»hO-r»-t.> (2-43) 

+ lnu,(t-t1,))*e-J2't'l-tB'-f')] 

+ *£, fIFM «-<?*)€ """it-**) +n»it)]dtm 

Carrying out the product in the integrand of /, it is seen that / is a summation composed of nine integrals. If the i* 
integral is denoted by Ij, the detection statistic can be expressed as 

/=£/, (2.44) 
1=1 

where only four of the terms do not involve receiver noise. Focusing on these four terms, it is convenient to define 
the complex constants 

£   _ (L-DP \ * JJP 
"l  — K^RADJ      "-RAD 

*%—(."■ IFM)    KRAD (2-45) 

k  =(kDP\*kTP 
*4 — K^IFMJ      "-IFM • 

Referring to Equations (2.3) and (2.39), note that 

t-TDP -TB=t -TTP + T  . (2.46) 
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Also, with reference to Equations (2.38) and (2.40), 

/"+/,  =fP-V. (2.47) 

Making the change of variable, 

<T = t-TTP +T, (2.48) 

it can be shown that 

/, =*, e-'3""- J /^(cr)/^ (a-T)eJ2^da. (2.49) 
—oo 

By definition, the delay - Doppler ambiguity function of the host radar waveform is 

X (T,U) = -^— J s^ (a)SRAD (<r-r) e >2*v°da 

= J flu>«r)f*AD(e-'')ei*""do 
(2.50) 

where use was made of Equations (2.22) and (2.23). As a result, Ii may be expressed as 

Ix=kxe-J2nfPT x(j,v). (2.51) 

In a similar manner, it can be shown that I2 and I3 are given by 

I2 = k2 e-^fTP'   J   f^(CT)fIFM {fj-x) eJ1^d<7 (2.52) 

and 

I3=k3e-*"**   J   /;M (<7)/^ (ÖT-T) e """AT. (2.53) 

By definition, the delay - Doppler cross ambiguity function between the interferometer and host radar waveform is 

Z (J, v)   .      * J 4M (a),^ (<r-r) e ^Vcr 
y^IFM &RAD      -oo 

= J 7™(ff)Au, (ff -r) ey2*"V<7. 
(2.54) 

Note that 

and 

Z (-T,-t;) =   J  fWM (a)/^ (o- +r) t ^"VcT (2.55) 

Z*(-r, -t»=   J  fmi{&)fLD{<y+T)e>»"H*d<T. (2.56) 
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With the change of variable, a = (7 + T ,   Z * (-T, - V)      becomes 

Z * (-T,   -v) =  J /^ (a)/™ (a -T) e """-W 
(2.57) 

(2.61) 

It follows that I2 and I3 can be expressed as 

I2=k2  e ~ilK{f? ' v) T Z* (-T, - V) (2.58) 

and 

I3=k3  e~J2*fTPT Z(t,V). (2.59) 

Finally, it can be shown that 

h = K  e -j2*/TPr   ]fIFM(o) f!FM (a -T) ej2™ da. (2.60) 

By definition, the delay - Doppler ambiguity function of the interferometer waveform is 

r (/, v) = -i- J s]FM{a) sIFM (o- -r) e^ rfo- 

Consequently, 

/4=*4C-y2*/,Prr(T,ü). (2.62) 

In summary, the detection statistic used by the non-cooperative bistatic radar receiver is 

/ = e-
J2*fT"T [k, Z(r,v)+ k2 e J2™< ? (-t,-v) (263) 

+ k3 Z (T, V) + k4 T (t, v)]   + [terms that involve receiver noise]. 

The desired signal component of the detection statistic is 

The remaining terms represent noise and interference. In general, the desired signal component is corrupted by 
thermal noise, clutter, multipath and/or other propagation effects. However, it is the intention of this effort to design 
the interferometer signal such that it effectively masks the direct path signal from the host radar. The expression for 
the detection statistic in Equation (2.63) clearly shows that the objective of coherent reference denial depends upon 
the delay-Doppler ambiguity functions of the host radar and interferometer waveforms and their cross ambiguity 
function. 
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CHAPTER 3 

INTERFEROMETER AND HOST RADAR ANTENNA PATTERNS 

3.1 Interferometer Antenna Pattern 

In addition to coherent reference denial, the interferometer signal is to be used for communications in many 
different directions. Because the interferometer will serve as a transmitter, its antenna pattern is derived in this 
section in the context of a radiation pattern. However, the radiation and reception patterns of an antenna are known 
to be identical. 

Consider a point, P0, in the far field of the interferometer, as shown in Figure 3.1. The cartesian 

coordinates of P0 are given by (%0, yo, Z0 ) while its spherical coordinates are (ro, 6o, (j>o ). These are related by 

xo=rosin0ocos£, 
.y0 =r0 sin 0O sing, 
z„ = r„ cos#„ 

(3.1) 

Figure 3.1: Both Cartesian and spherical coordinates are used to characterize a point in the far field of the interferometer. 

Assume each antenna in the interferometer pair consists of a dipole antenna of length, / , as shown in 
Figure 3.2. Note that each leg is of length, 111. Let P denote an arbitrary point in the far field of the antenna with 

spherical coordinates (r, &,(/>). Assuming a sinusoidal excitation at frequency, 0)0, and using a far field 
approximation [4], the electric field at P is approximately given by the real part of 

K 
E = —F{e)e-iß"rejt0ot 

(3.2) 

where K is a constant, 

A0 is the signal wavelength, and 

C C /L 
(3.3) 

16 



COS 

F(ey. 

ßol cos 9 -cos ßol COS 
id      a 
—-cosy -cos id 

sin# sin# 
(3.4) 

Vm cos (coo t) 

Figure 3.2: Each antenna in the interferometer pair consists of a dipole antenna of length, / . 

Consistent with the circular symmetry of the dipole, the field is seen to be independent of <p.   The most frequently 

encountered case is the half-wave dipole for which the total length of the dipole antenna is / = Ä0 12. Then 

COS 

*■(*) = ■ 

n 
COS0 

sin# 
(3.5) 

Let the two dipole antennas of the interferometer pair be directed in the z-direction and placed on the x-axis 

at X 
=
 ~^IFM^ 

and X = +diFM /2, respectively, as shown in Figure 3.3. Thus, diFM is the spacing 

between the interferometer elements. Consider a point, P, in the near field, as illustrated in Figure 3.4. The lengths 

of lines OP, BP, and AP are denoted by r, ri, and r2, respectively.   The angles from the z-direction to lines OP, BP, 

and AP are given by 9,0,, and92, respectively. Finally /, Y\ , arid /2 , respectfully, denote the angles between 

the x-axis and the lines OP, BP, and AP. As point, P, moves into the far field of the antennas, the following 
approximations become valid: 

■>x 

dlFM 
2 2 

Figure 33: The dipole antennas are placed along the x-axis at A and B and are directed in the z-direction. 
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B A 

Figure 3.4: When P is in the near field of the interferometer, the geometry is relatively complicated. 

r, « r2 « r 

Oj ~ &2 ~ & (3.6) 

The far-field geometry is shown in Figure 3.5. 

Assuming both antenna elements of the interferometer pair are excited by the same sinusoidal signal at 
frequency, 0)o , the total electric field at point P when P is in the near field is given by the real part of 

TOT 

IFM 
'^Ffoy'Ar-+£*&),-'Ar O'   2 j(00t 

As P moves into the far field of the interferometer, 

1       1      1 

1        r2        T 

(3.7) 

(3.8) 

To point 
/*P 

Figure 3.5: The geometry simplifies as P moves to the far field 
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and 

However, the phase angles, 

F(6X)~F(62)~F(9). 

r „\ 
ß0rx=27t 

KKJ 

(3.9) 

(3.10) 

and 

ß0r2=27C 
( , \ 

\Kj 
(3.11) 

are very sensitive to small changes in ri and r2 on the order of a wavelength because of their dependence on the 

electrical distances rx IX0 and r21Ä0 . From Figure 3.5, 

K ~r + Ar 

r2 ~ r — Ar. (3.12) 

Using Equations (3.8), (3.9), and (3.12) in Equation (3.7), the total electric field at point, P, becomes 

J(0ot 

IFM     r    v 

\jß0(Ar)      jß0(Ar) 
e + e 

™F(e)coS\ßAAr)]eJß'reJa'' 
r 

From Figure 3.5, 

Ar = ^™-cosy 
2 

(3.13) 

(3.14) 

where y is the angle between ^ , the unit vector in the r-direction of spherical coordinates, and a  , the unit vector 

in the x-direction of Cartesian coordinates. Hence, 

oos/< •;» (3.15) 

where the dot indicates a dot product between the two vectors.  Thus, COS y is the projection of a ona   .  From 

Equation (3.1), it follows that 

cos y = sin 9 cos ty. (3.16) 

Therefore, utilizing Equations (3.14) and (3.16) in Equation (3.13), the total electric field at point, P, is expressed as 

ETZ=— F(0)co* ßo djpM sin 0 cos <p 
Jßor  Mt 
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r 
it 

(d IFM 

Zo 
sin 6 cos <j> 

jßor  J<oot e (3.17) 

The interferometer array factor is defined to be 

^(0.0) = c°s n 
11FM 

V   K    ) 
sin 6 cos <t> (3.18) 

Hence, 

r 
(3.19) 

Observe that the resultant field involves the product of the pattern of the individual (identical) antenna elements and 

the array factor which is a function of the electrical distance, dIFM IA0.   This is referred to as the principle of 

pattern multiplication.  If antennas other than dipoles are used for the array elements, EWM is obtained by merely 

substituting the appropriate F\9) for the antenna elements. 

The above analysis makes use of traditional spherical coordinates in which the azimuth angle, (j), is 
measured from the x-axis. However, in the conventional array literature, the azimuth angle, a , is measured from 
the perpendicular to a linear array. When the linear array is placed along the x-axis, a is measured from the y-axis, 
as illustrated in Figure 3.6. Note that 

cos0 = sina. (3.20) 

Figure 3.6: When a linear array is placed on the x-axis, the azimuth angle, (X , in the array literature is typically measured from 
the y-axis. 

In terms of OC, the total electric field at point, P is 

EZ - ^F(e)FIFM(0,a) C jß°'' ej(°" * 
r 

(3.21) 

where 
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FIFM(9,a) = cos TZ 
\ 

*1FM 

K    K    J 
sin 9 sin a (3.22) 

Radiation patterns are conventionally plotted in decibels where the pattern is normalized such that the 
maximum value is OdB. The radiation pattern of the dipole antenna used for the interferometer elements is 
considered first. In decibels, this is defined to be 

G(0) = lOlog. 10 
F{e) 

F(9\ 
(3.23) 

where Fid)* max denotes the maximum value of F{0) and F($) is given by Equation (3.4). Detailed plots of 

G{6) are presented in Figures 3.7, 3.8, and 3.9 for various antenna lengths [5]. 

The polar plots in Figure 3.7 pertain to situations where / < A0 . It is seen from Figure 3.7 that the 

radiation pattern for this case includes only one major lobe symmetrically placed around the antenna axis. Note that 
the beam widths of the main lobes decrease with an increase in the antenna length. Thus, the longer the antenna is, 
the more directive is the radiated energy. 

   /-V2 
    / =3^/4 
    / =h 

180° 

Figure 3.7: Radiation patterns are plotted for the dipole antenna with I < A0 . 
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e*^e 

Figure 3.8:  The dipole antenna radiation pattern is plotted for / = 1.25A0. 

Figure 3.8 shows the dipole element radiation pattern for I — \ .25X0 Observe that there are now three 

major lobes symmetrically placed around the antenna axis. The lobe with maximum gain is centered at 6 = 90°. 

The dipole element radiation pattern for / = 1.5A0 is presented in Figure 3.9. As in Figure 3.8, there are three 

major lobes symmetrically placed around the antenna axis. However, now there are two lobes of equal maximum 

intensity located at 6 — 40° and 6 = 140" . With a still further increase in the electrical length of the antenna, a 
larger number of lobes begin to appear in the element radiation pattern. The radiation pattern of the dipole antenna 
is seen to lose its directional properties for antenna lengths larger than Ao . 

The radiation pattern of the interferometer array factor, given in Equation (3.22), is considered next. As 
indicated in Figure 1.2, it is first assumed that the interferometer elements are placed on a linear grid about the main 
radar elements. The configuration is illustrated in Figure 3.10 where the spacing between antenna elements is 
denoted by d. Independent of whether the N-element main radar antenna array contains an odd or even number of 
elements, note that the spacing between the interferometer element pair is 

Figure 3.9: The dipole antenna radiation pattern is shown for / = 1.5Ä0 . 

diFM = —r- \d - 
(N + \ 

= (N + l)d, (3.24) 
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Interferometer Pair - 
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-2d    -d 0 d       2d 

-i h ->x 

[¥)•& 

N-Etement Main Radar An*ay 

(a) 

Interferometer Pair - 

-ih -\ h ->x 

(Z±i\J>L±\       ^w    £ d     id 
(   2   )      [   2   ) 2 2 2 2 { 2 ;   I 2 ; 

N-Etement Main Radar Array 

(b) 
Figure 3.10: The antenna configuration consists of a linear grid with equal spacing, d. The main radar array is composed of N 

elements where N can be either an (a) odd or (b) even integer. 

Substitution of Equation (3.24) into Equation (3.22) yields 

Fmf{0ta) = cos (N + l)n 
'd^ 

\Kj 
sin 9 sin a (3.25) 

Polar plots of \FIFM\6,Cci are commonly used to gain insight into the radiation pattern of the 

interferometer array factor. Observe that values of Fjpj^iß^a) range between -1 and +1. Hence, the maximum 

value of \FIFM\6,del is unity and occurs when 

{N + l)x 'd^ 

vAy 
sin 0 sin or = mn 

where 

w = 0,±l,±2,.... 

The minimum value of jiv^ iß, öj| is zero and occurs when 

{N + \)K\ 
\ 

\J 
sm#sinor = w — 

2 

where 

« = ±1,±3,±5,. 

(3.26) 

(3.27) 

(3.28) 
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The maxima and zeros of \FIFM \9, «)| are seen to be a function of both   9 and a .  To visualize the azimuthal 

radiation pattern of the array factor, it is convenient to hold 9 fixed and vary OL.  Alternatively, to visualize the 
elevation radiation pattern, it is convenient to hold OL fixed and vary 9 . 

The azimuthal radiation pattern is considered first. For this purpose, let 9 equal the fixed angle, 90. The 
maxima are now governed by 

(jV + l>T 
\KJ 

sin0„sinor = /w;r 

where 

Note that 

sin or = 

m = 0,±l,±2,.... 

(k\    1 m 

Since 

it follows that 

\m\ 

(N + l) 

|sin or| < 1, 

d Jsinö 

sin6> 

Similarly, with 9 = 0o, the zeros of the array factor occur for 

{N + \)x 'd^ 

\Kj 
■   a    ■ X sint/,sina = rt — 

2 

where 

Now 

« = ±1,±3,±5,. 

sin a = ■ 
2{N + l){d Jsin90 

Because |sin OC\ cannot exceed unity, it is concluded that 

W<2(JV + l) sin0„ 
w 

(3.29) 

(3.30) 

(3.31) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

Thus far, the discussion has focused on the values of (X for which FIFM (90, a) attains either its maximum 

or minimum values. The question arises as to whether or not the azimuthal radiation pattern contains minor lobes in 
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addition to the major lobes.    To answer this question, the derivative of FJFM{60,a) with respect to a is 

considered. With reference to Equation (3.25), 

dF'™(9°>aK-(N + l}r 
( A\ 

da 

The derivative equals zero when either 

\Ao) 

sin 0„ sin (N+iy sin 0o sin a 

sin {N + 1)TT 
( A\ 

\K) 
sin 0„ sin a = 0 

COS«.  (3.38) 

(3.39) 

or 

Note that Equation (3.39) is satisfied for 

cosa = 0. 

( J\ 
(N + ijn — sin#0sinGf = /w;r 

where 

\Kj 

w = 0,±l,±2,.. 

(3.40) 

(3.41) 

(3.42) 

This result is identical to that of Equations (3.29) and (3.30) and yields the major lobes of the azimuthal radiation 
pattern for which 

Fim{90,a) = ±\ 

Equation (3.40) is satisfied for 

a = ±—. 
2 

(3.43) 

(3.44) 

However, it should be remembered that the derivative equal to zero at a point only guarantees that the slope of the 
function is zero at that point.   Consequently, either a major lobe, minor lobe, or inflection point is possible at 

a = ±—. 
2 
Polar plots for the azimuthal radiation pattern of the interferometer array factor are presented in Figure 

3.11, where N is allowed to range from N=2 to N=7, and 

For this special case, 

and 

2     °     2 

4™=(* + i)y 

(3.45) 

(3.46) 
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(n    \ 
rlFM 7'a — cos (N + l)—sin a (3.47) 

0 *     180 

0 *    180   • 

(d)N»6 («)N=7 

Figure 3.11: The azimuthal radiation pattern of the interferometer array factor is plotted for d = A0 11, 0O = 7t 12 , and 

dm,, equal to (a) 3Ä0 12 , (b) 2Ä0 , (c) 5X0 12 , (d) 3Ä0, (e) 7ÄJ2, and (f) 4 Ä0. 

Because 0O =f, the plots in Figure 3.11 show the horizontal radiation pattern in the x-y plane at z=0.   With 

reference to Equation (3.31) and (3.33), the maxima occur for 

sin «r = 
2m 

(N + l) 
where 

m = 0,±l,±2,---,± floor 
(N + l 

(3.48) 

(3.49) 

and floor (•)denotes the largest integer less than or equal to its argument.  Similarly, from Equations (3.36) 
(3.37), zeros appear when 

and 

sin or = n 
{N + l) 

(3.50) 

where 

n = ±l,±3,---,±ofloor(N + l) (3.51) 

and ofloor (•)denotes the largest odd integer less than or equal to its argument. Because 

IFM 
(it       \ 
—,a =cos {N + l)—sin a (3.52) 
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the radiation pattern assumes either positive or negative real values. In Figure 3.11 the lobes corresponding to 
positive values of the cosine function are denoted by "+" while those corresponding to negative values of the cosine 
function are denoted by "-". 

In general, the azimuthal radiation pattern of the interferometer array factor can be shown to have the 
following properties when the conditions of Equation (3.45) hold: 

1. For all integer values of N, either odd or even, 

a. symmetry exists about both the x- and y- axes, 

b. the number of major lobes equals (2 N +2), 

c. there are no minor lobes, 

d. major lobes always occur at CC = 0° and 180° 

2. When N is an odd integer, 

a. the polarity of the major lobes strictly alternate in sign from one lobe to the next, 

b. major lobes always occur at CC = ±90° . 

3. When N is an even integer, 

a. focusing entirely above or below the x-axis, the polarity of the major lobes strictly alternate in 
sign from one lobe to the next, 

b. the first major lobes positioned on either side of the x-axis have the same polarity, 

c. nulls always occur at CC = ±90  . 

These properties are clearly demonstrated by the plots in Figure 3.11. 

The nulls appearing at CC = ±90° when N is an even integer are of particular interest. As pointed out by 

the discussion leading up to Equation (3.44), the derivative of the array factor is zero for a = ±90° . Therefore, 
the nulls at these angles have zero slope. This is consistent with the property that the first major lobes positioned on 
either side of the x-axis have the same polarity.   This is illustrated in Figure 3.12 where a cartesian plot of 
F1FM{jtS2,(X), corresponding to N=2, is presented with a varying from 0°to 180° .  Observe that the null at 

CC = 90°, where the polarity of FWM \7t 12, CC) is unchanged and the slope is zero, is noticeably broader than the 

nulls at a = 19.5° and 160.5°, where the polarity of FIFM {ft 12, a) does change. To avoid self-jamming of the 
radar and communications waveforms, it may be desirable to steer the interferometer pattern such that the main 
beam of the host radar is centered in this broad null. Steering of the interferometer and placement of the broad null 
is investigated in Section 3.3. 

s 
A a 
Ö  0 

1^  

)9.s\ 

V  / 
■\ 

\/ 

/160.5 

90 120 
Alpha in Degrees 

Figure 3.12: The Cartesian plot of FjpM \TC I2,CC), corresponding to N=2, illustrates the broad null that appears at 

a = 90°. 
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Additional insight into the radiation pattern of the interferometer array factor is gained by considering the 
case for which 

2    °     6 

Now 

It 
FIFM -»«    = cos (N + l)— sin a 

(3.53) 

(3.54) 

Polar plots for this case are presented in Figure 3.13 where, as with Figure 3.11, the number of antenna elements in 

the main radar are allowed to vary from N=2 to N=7. Because 0o = 7t 16, the plots of Figure 3.13 illustrate the 

radiation pattern as seen looking into a cone emerging from the origin whose axis is oriented in the z-direction and 
whose sides are at an angle of 30° from the z-axis. 

At a specified angle, (X0, the vertical pattern, -P^ (0,0Co )| is helpful in understanding the lobing structure 

of the azimuthal pattern, \FIFM \0O, Of)].  For example, consider ao = ±90° .  As before, let d = Ao/2.  From 

Equation (3.24), the vertical radiation pattern is given by 

■wf^fjHcos (N + l)—sin0 (3.55) 

no+l 1«0+! 

1M + ■Hit 

Figure 3.13: The Azimuthal radiation pattern of the interferometer array factor is plotted for 

d = AJ2,eo = Kl 6, and 4™ equal to (a) 3A0/2,(b) 2A0,(c) 5/l0/2,(d) 3A0,(e) 7/l0/2,and(f) 4Ä0. 
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This vertical pattern is plotted in Figure 3.14 as N varies from N = 2 to N = 7. First, focus on the patterns at the 
coordinates 90=7C 12,GC =±7Z 12 . By comparing the plots in Figure 3.11 with those in Figure 3.14, it is 

important to note that the vertical pattern experiences a hroad null for the very same values of N that yields a broad 
null in the horizontal pattern. Next, focus on the patterns at the coordinates G0 = IT 16,GC0 = ±K 12. The major 

lobes at a = ±K 12 in Figures 3.13 (b) and (f) are seen to coincide with the major lobes at 9 = 30° in Figures 3.14 
(b) and (f) for N = 3 and 7, respectively. Similarly, the nulls at a - ± 7t 12 in Figure 3.13 (d) are seen to coincide 

with the null at 9 = 30°in Figure 3.14 (d) for N = 5.  Finally, the values at a = ±K I2in Figures 3.13 (a), (c), 

and (e) are seen to be due to "cuts" through the major lobes located at 9 = 41.8°,9 = 23.6°and 9 = 34.9°, 

respectively, in Figures 3.14 (a), (c), and (e). 

3.2        Main Radar Antenna Pattern 

As shown in Figure 3.10, the main radar antenna is assumed to be composed of N dipole antenna elements 
equispaced by a distance, d, along the x-axis. Assuming each of the N elements is excited by the same sinusoidal 
source at frequency, CO 0, the total electric field at a point P in the far field with coordinates, (r, 9, a), can be 

shown to be given by [5] 

(d)N=5 

Figure 3.14: The vertical radiation pattern of the interferometer array factor is plotted for d — A0 12, (X0 — +K12, and dffM 

equal to (a) 3Ä0 12, (b) 2Ä0 , (c) 5Ä0 12, (d) 3Ä0 , (e) 1X0 12 , and (f) 4X0 . 

NK -iß a rj<»°' EZ-—F(9)FjiAD(9,a)e-^re 
(3.56) 

where, as in Section 3.1, K is a constant, ß0 is defined in Equation (3.3), and FRAD(9,a)is the main radar array 

factor with 
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^juD\t'^a)-—   .  r / ,,. \ .  ^ .—r- (3-57) N sin[7r{d/AjsmOsince\ 

Observe that the maximum value of [f^ \0, Gf)| is unity.  Of course, with N=2, the above array factor should 

reduce to that for the interferometer. When N=2, 

.    1 sin2/r-f sin0sina\ 
FRAD&O)=-—-t-^- r 

2  sin[^r^-sinösinörj 
(3.58) 

Making use of the trigonometric identity, 

sin 2x = 2 sin x cos x, (3.59) 

Equation (3.58) simplifies to 

FRAD (^' °0 = cos[n(d IX0) sin 9 sin a]. (3.60) 

This is identical to Equation (3.22) where diFM appears in place of d. 

Of particular interest is the case for which 

d = XJ2. (3.61) 

Then the main radar array factor becomes 

F    ,ß   \_ 1 sin[iV(;z:/2)sm0sinet:] 
^RADK"' &) ~ "77      :~1?     /o\   •    7T~-        T~ ■ N  sm[(;z72)sin0sinaj 

(3.62) 

For this choice of d, it can be shown that the array factor given by Equation (3.62) does not contain any grating 

lobes. The array factor has a maximum value of unity which occurs for CC = 0°, 180°. The zeros of the array factor 
occur when its numerator is zero but the denominator is not simultaneously zero. Thus, zeros result when 

N—sm.Bsmcc = njt (3.63) 

where 

#i = ±l,±2,±3, —. (3.64) 

Since CC = 0° corresponds to a maximum, note that n = 0 is excluded. At a null 

In 
sina = . (3.65) 

TVsintf 

Because |sin Cc\ cannot exceed unity, it follows that 

JVsinfl 
\n\< 

2 

Consequently, at a null, n can be any integer which is restricted to the range. 

(3.66) 
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0 < \n \< 
Nsinß 

(3.67) 

The sidelobes of the main radar array factor are now investigated. Assume N is large enough such that the 
denominator of Equation (3.62) varies slowly relative to fluctuations in the numerator. The sidelobe peaks then 
correspond to maxima of the numerator. These result when 

.T7C  .    .  .          mn 
N—sm9sma =  

2 2 

where m is an odd integer. Equivalently, sidelobe peaks occur when 

m 
sinor = - 

(3.68) 

(3.69) 
NsinO 

where m is an odd integer. Note that m = ±1 in Equation (3.69) yields 

a = sin-1 ±  . (3.70) 
L   Nsin9j 

However, according to Equation (3.65), the first nulls on either side of the main beam at a = 0° occur for 

Since 

sin 

or = sin 

1 

Nsind 

Nsin0 

sin 
Nsin0 

(3.71) 

(3.72) 

the sidelobe peaks corresponding to m = ±1 fall within the main beam centered at a = 0°. Hence, m = +1 are 

excluded from the allowable values of m. Because |sin O] cannot exceed unity, note from Equation (3.69) that 

\m\ < \N sin 0\. (3.73) 

In summary, it is concluded that the sidelobe peaks occur for integer values of m such that Equation (3.69) is 
satisfied where 

\<\m\<\N sm9\ (3.74) 

The width of the main beam at OC = 0° is of interest. Let the beam width be measured between the 

first nulls on either side of the main beam. Denote the angles of these nulls by #ls,      n . From Equation (3.65), 

(°r-„J=± 

For N sufficiently large relative to sin 9, 

sml 

aV-null 

Nsin9 

«1. 

(3.75) 

(3.76) 
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Then 

It follows that 

4v.J- <**.. sin 
Is'-null 

au,   „ ~ ±  1 -"""       NsinS 

The beamwidth is then given by 

BWlS,    „ =2\a„    „ 
V'-nulls Xs -null N\smO\ 

(3.77) 

(3.78) 

(3.79) 

In some cases, the beamwidth is measured between the 3-dB points of the main beam.  Let the angles at 
which the 3-dB points occur be denoted by dy_dB . By definition, these are the angles for which the magnitude of 

the array factor is equal to 1 / v2 = 0.707. It follows that 

1 sin[iVf sinösin^,^)] 

N   sin[f sintfsin^j^)] 
= 0.707. 

For suitable choices of 9 and N 

Then 

lo^ J << |sin 0| < 1. 

s™(a3-dB)aa 
'3-dB 

and 

sin 
K   . sinösin^,^) a<X3-dB—sm0. 

With these approximations, Equation (3.80) simplifies to 

Nn . 
sin a ■3-dB sin# = 0.707a. 

Nn 
'3-dB sin0. 

(3.80) 

(3.81) 

(3.82) 

(3.83) 

(3.84) 

This is a transcendental equation which can be solved either graphically or numerically.  The horizontal radiation 
pattern is obtained when 0 =7Z 12 . Equation (3.84) becomes 

sin a 
NTC 

3-dB « 0.707a 
NK 

■3-dB 

The solution to this equation is 

«3-dB = ± 
0.886 

N 

(3.85) 

(3.86) 

as can be verified through substitution. It follows that 
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ßW}_dB=2\ai_dB\ 
1.772 

N 
(3.87) 

for the main beam of the horizontal radiation pattern. 

The following properties of the main radar array factor hold as N increases: 

1. The main lobe narrows, 

2. The number of sidelobes increase, 

3. The peak magnitudes of the sidelobes decrease. 

By way of example, the horizontal radiation pattern is plotted in Figure 3.15 for 

2 2 

Analytically, this is given by 

^JT'" 
1 sin[3;r sin a] 
6 sin[f sin or] 

(3.88) 

The first nulls on either side of the main beam at CC = 0° occur for 

X0   Q     It 
Figure 3.15: The azimuthal radiation pattern of the main radar array factor is plotted for a = , o — —, and N=6. 

Consequently, 

OL,     =±19.5°. 

BW«      =39°. 
Is'-nulls 

The approximate expression for this beamwidth, as given by Equation (3.79), yields 

BWv-mils ~ TV ~ 6 ~ 3 radians = 38*2°' 

(3.89) 

(3.90) 

(3.91) 

These two results are seen to be in close agreement. In addition, the approximate expression in Equation (3.87) for 
the beamwidth, as measured between the 3-dB points, yields 
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BW 
1.772      1.772 

1-dB 
N 

= 0.295 radians   =16.9° 

Consequently, 

a3-dB -0.1475 radians. 

Substitution of this value in Equation (3.88) results in 

^(f.0.1475 

which is reasonably close to the correct value of 0.707. 

0.716 

(3.92) 

(3.93) 

(3.94) 

As mentioned in Section 3.1, it may be desirable to steer the interferometer pattern such that the broad null 
of the interferometer is centered on the main beam of the radar. With reference to Figures 3.11 (e) and 3.15, observe 

that the broad null of the interferometer is positioned at Of = 90° while the main beam of the radar is at CC = 0°. 
Issues involved with steering the interferometer and positioning the broad null are discussed in Section 3.3. 

3.3 Steering the Interferometer Along With Positioning the Broad Null 

As shown in Figure 3.11, a broad null appears in the horizontal radiation pattern of the interferometer array factor 
when d = A0 12,90 = 7t 12, and N is an even integer. To minimize interference in target returns received by the 

main radar, which could consist of both the interferometer and radar signals, it is desirable that the broad null of the 
interferometer be centered on the main beam of the radar. In addition, a steering capability should be incorporated 
into the interferometer so that separate communications signals can be directed to different receivers located at 
various angles. These considerations are treated in this section. 

3.3.1      Steering the Interferometer 

The interferometer pair can be steered by inserting an appropriate phase shift into each channel. In particular, with 
reference to Figure 3.4, let the phase shift associated with the element at position B be yx and the phase shift 

associated with the element at position A be \f/2 where 

The total electric field at point, P, is given by the real part of 

E]ZArF^y}ß^ejx>f^f-F{e2)e-j^^ei^\ejloJ 

(3.95) 

(3.96) 

where C00 is the frequency of the sinusoidal excitation.   Let P be in the far field such that the approximations of 
Equations (3.6), (3.8), (3.9), and (3.12) are valid. It follows that 

'v\e -jßMr),ajß0(Ar)-j(A 
KFM ~fF(0)e'r-e""& ""v-"+e—-'g    -     je      (3.97) V)hj°>ot 

However, the bracket in Equation (3.97) can be expressed as 

ft) e-JfloMe{  2 + eJßMr)e-J[* -2 cos A(Ar)- 
Ay/ -j 

Ayr 

.(3.98) 
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From Equations (3.14), (3.16), and (3.20) 

Ar = -JEM-sm9sina. 
2 

Also, making use of Equations (3.3) and (3.24), Equation (3.97) becomes 

'TOT _ 2K E1Z-^F{9)FIFM{0,a,A¥)e -jßorJ{C00t + Vl-^-) 

where the interferometer array factor is now given by 

FIFM(9,a, Ay/) = cos (iV + l>r 
( A\ 

\KJ 
sin 9 sin a - Ay 

(3.99) 

(3.100) 

(3.101) 

It is seen that the array factor is independent of y/l. Only the phase difference between the phase shifts applied to 

the two interferometer elements plays a role in steering the array factor. 

The maximum value of \FIFM \9, OC, A y )| is unity and occurs when 

(iV + l>zr sin 9 sin a — = mn 

where 

m = 0,±l,±2,---. 

The minimum value of |ivM (9, OC, A y/J^ is zero and occurs when 

(N + l)/r 
d \ .  n .        Ay/      it — smtfsina — = n — 

KK) 2 2 
where 

(3.102) 

(3.103) 

(3.104) « = ±1,±3,±5,--. 

The maxima and zeros of \FJFM [9, OC, A \j/^ are seen to be a function of the phase difference, Ay.  Hence, the 

interferometer array factor can be steered through an appropriate choice for Ay/. 

It is convenient to measure Ay in units of K radians. Consequently, let 

Ay/ = kn (3.105) 

where k is an appropriately chosen constant.   To consider the azimuthal radiation pattern, let 9 equal the fixed 

angle, 80 . The maxima are now governed by 
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sin a — 
ffz + l 

(N + i)jLsine0 (3.106) 

where m is an integer such that 

k 
m + -\ 

2 
<(N + l) sin0„ (3.107) 

Similarly, the locations of the nulls are determined from 

since = -,—2 \t J \   
(N + \U)sm0o 

(3.108) 

where n is an odd integer such that 

i(n + k^<(N + l^f sin 0„ (3.109) 

As was done in Section 3.1, it can be shown that minor lobes cannot exist except at (X = +7UII where either a 
major lobe, minor lobe, or inflection point is possible. 

To gain insight into the consequences of steering the interferometer array, let 

2     °     2 

The array factor is now given by 

IFM 

71 1       1 — ,CC,kK   =cos 
N + l . k) 
 sin or— \iz 

.   2 2 

Equations (3.106) and (3.107), governing the maxima, simplify to 

2m + k 

where m is an integer such that 

sin or = 

k 
m -\— 

2 

JV + 1 

N + l 

while Equations (3.108) and (3.109), governing the nulls, reduce to 

n + k 
sin or = 

JV + 1 

where n is an odd integer such that 

(3.110) 

(3.111) 

(3.112) 

(3.113) 

(3.114) 
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\n + k\ < N +1 (3.115) 

For the unsteered interferometer, it is seen from Figure 3.11 that a major lohe occurs at a = 0° for all 

integer values of N. Consider steering this lobe to a = 10° when N = 2 and N = 7. For the unsteered array, the 

major lobe at Of = 0° results when m = 0. Hence, let m = 0 and Of = 10° in Equation (3.112). Solution for k yields 

when N = 2 and 

k = 0.522 

k = 1.392 

(3.116) 

(3.117) 

when N = 7. Polar plots of \^IFM<2 >^>^\ are presented in Figure 3.16 for these two cases. 

Comparisons of Figure 3.11(a) with Figure 3.16 (a) and Figure 3.11 (f) with Figure 3.16 (b) reveal that the 

major lobe at Of = 0° has, in fact, been steered to Of = 10°. Note that symmetry about the y-axis no longer exists 
in the steered arrays although symmetry about the x-axis is maintained. For the case in which N = 2, the broad null 

at a = 90° in Figure 3.11 (a) has disappeared and the two major lobes at Of = 41.8° and « = 138.2° have 

merged together into a single broad lobe centered at Of = 90° in Figure 3.16 (a). Also, at Of = -90°, note that 
there is now a minor lobe in the steered array whereas there is a null in Figure 3.11(a). For the case in which N = 7, 

the major lobe at or = 90" in Figure 3.11 (f) has disappeared and the two major lobes at 

a = 48.6°and« = 131.4° have merged together into a single broad lobe centered at a = 90°in Figure 3.16 (b). 

Also, at a = -90°, the major lobe in Figure 3.11 (f) has, in effect, split into two major lobes at a =-55.7° and 

Or =-124.3° as well as introduced a minor lobe of opposite polarity. We see that severe distortion can occur in 

the array factor radiation pattern when the interferometer is steered. 

-90 + 

(a) N>2 k-0.522 

Figure 3.16: The azimuthal radiation pattern of the interferometer array factor is plotted when the major lobe at Of = 0 in 

Figure 3.11 is steered to Of = 10° for d = \ /2,d0 = K12 , and d^w equal to (a)    3A0/2and(b) 4A0 

3.3.2      Positioning the Broad Null by Steering the Interferometer 

A major objective for steering the interferometer is to center its broad null on the main beam of the radar. 

As pointed out in Section 3.2, the main beam of the radar is located at Of = 0°. This is illustrated in Figure 3.15. 
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Consequently, using the results of Section 3.3.1, we attempt to locate a broad null at CC = 0° by steering the 
interferometer. 

We first consider the case for N = 2, d = X0 12 , and 90 = K11.  As seen in Figure 3.11 (a), a broad null 

occurs at ÖT = -90° .  This resulted for« = -3, in Equation (3.50).  Hence, let n = -3,   a = 0° and N = 2 in 

Equation (3.114) in order to rotate the broad null at Of = —90° to CC — 0°. Solution for k yields 

k = 3. (3.118) 

A polar plot of 
Jt 

F
IFM\ —,(X^7t , as obtained using Equation (3.111), is shown in Figure 3.17 (a). As expected, 

there is a null at CC = 0° . However, it is not a broad null!  This is confirmed by noting that the polarities of the 

major lobes at CC = ±19.5° are of opposite signs. Interestingly, the major lobes in Figure 3.17 (a) are positioned at 
the null in Figure 3.11 (a) and the nulls in Figure 3.17 (a) are positioned at the major lobes in figure 3.11 (a). 

Figure 3.17: The azimuthal radiation pattern of the interferometer array factor is plotted when nulls in Figure 3.11 are steered to 

a = 0°for d=Ao/2,0o = tf / 2 and dffM equal to (a) 3/l0/2and(b) 2A0 . 

Having failed with N even, an attempt is now made to locate a broad null at CC = 0° for N odd. Consider 

N = 3, d = Ä0 12, and 90 =7C 12 .   As seen in Figure 3.11 (b), a narrow null occurs at CC = —14.5° when 

n = — 1 in Equation (3.50). Hence, let n = —1, CC = 0° and N = 3 in Equation (3.114) in order to rotate the null at 

a = -14.5° to CC = 0° . Solution for k yields 

k = l. (3.119) 

A polar plot of\FIFM{n/2,CC,7T^ , as obtained using Equation (3.111), is shown in Figure 3.17 (b). As expected, 

there is a null at CC = 0°.    However, because of the alternation in polarity of the major lobes located at 

CC = ±14.5°, the null at Gf = 0°is not a broad null!    Interestingly enough, there are now broad nulls at 

CC = ±yU    AS was tj,e situation with N = 2, the major lobes in Figure 3.17 (b) are positioned at the nulls in Figure 
3.11 (b) and the nulls in Figure 3.17 (b) are positioned at the major lobes in Figure 3.11 (b). 

Although it was possible to steer nulls to CC = 0° for N=2 and N=3, these were riot broad nulls. This raises 

the question, "Is it possible to place a broad null at CC = 0° ?" From Equation (3.114) the nulls of 
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IFM — ,a,kn 

occur when 

smor = - 
n + k 
N + l 

(3.114) 

where n is an odd integer. The solution for k with CC = 0° is 

Thus, k is an odd integer. Note that 

COS x + - 

k = —n 

kn 
= + smjc 

for k an odd integer. It follows that the array factor in Equation (3.111) becomes 

K 
IFM\ ,a,kn  =±sin 

\N + \)7t 
sin or 

(3.120) 

(3.121) 

(3.122) 

when a null is steered to CC = 0° . To have a broad null at CC = 0° , it is necessary that the major lobes located on 

either side of CC = 0° have the same polarity. However, this is not possible because 

IFM ^,a,kn\ = -FIFM 
71 

-a,kn (3.123) 
V- 

It is concluded that it is not possible to steer a broad null to CC = 0°.   In addition, the fact that the unsteered 
interferometer has an array factor given by 

it 
FIFM |— ,a,0]=cos I    2    J K sin a (3.124) 

while the interferometer steered to have a null at CC = 0°has an array factor given by equation (3.122) explains why 
the maxima of one occur at the nulls of the other. 

3.3.3      Placement of Interferometer Along the y-Axis 

To obtain a broad null at CC- 0°, it is necessary to place the interferometer on the y-axis while the linear 
array of the main radar remains along the x-axis. As before, let the two dipole antennas of the interferometer pair be 
directed in the z-direction.   However, as shown in Figure 3.18, the elements are now placed on the y-axis at 
y =—dIFM 12 and y = + dIFM 12, respectively. The corresponding geometry for evaluation of the electric field 
at point, P, is illustrated in Figure 3.19. 
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The analysis proceeds exactly in the same manner as in Section 3.1 where the interferometer was placed 
along the x-axis. The only difference is that, in place of J, the angle, 8, is involved where 8 is the angle between 

Qr and Qy , the unit vector in the y-direction. Consequently, cos 8 is the projection of 

Qr on Qy and is given by 

Cos 8 =     dr . Qy = sin 8 sin <|> = sin 0 cos OC (3.125) 

> y 

Figure 3.18: The dipole antennas are placed along the y-axis at A and B and are directed in the z-direction. 

► y 

Figure 3.19: The geometry is shown for evaluation of the electric field at point, P. 

Corresponding to Equation (3.14), we have 

d 
Ar=^^-cos<? 

2 
d _   "IFM sin 9 cos Ct, (3.126) 
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In the far field it follows that the total electric field at point, P, is given by 

E% « —F{e)F1FM{e,ayjß°rej»°' (3.127) 
r 

where the interferometer array factor is given by 

F IFM (6, a ) = cos[;r ( -^- ) sin 6 cos a ]. (3.128) 
AO 

This is identical to the expression for the array factor given in Equation (3.22) except that sin Ot has been replaced by 
cosQ!. 

Because the interferometer elements no longer straddle the main radar elements on the x-axis, the spacing 
between the interferometer elements is no longer given by Equation (3.24). Instead it is convenient to measure the 
interferometer spacing in units of half wavelength. Therefore, the interferometer spacing is defined to be 

diFM = ks— (3.129) 
2 

where ks is a constant.  When d, the spacing between the main radar antenna elements, is a half wavelength, ks is 
analogous to (N+l) of Equation (3.24). Substitution of Equation (3.129) in Equation (3.128) yields 

k 7t 
vvm(d,a) = cos[-L— sin0cosor]. (3.130) 

The maxima of \FlFM(6, (X)\ occur for 

2m 
Cos« =  (3.131) 

k „sin# s 

where m is an integer such that 

2 
\m\<^ . (3.132) 

Similarly, the nulls of \FIFM{6, Q?)| are governed by 

Cos«= -  (3.133) 
ks sin 6 

where n is an odd integer such that 

|n|<^sin0. (3.134) 

Polar plots of the azimuthal radiation pattern of the interferometer array factor, where the elements are on 
the y-axis, are presented in Figure 3.20 for 6 = n/2 and k s = 3, 5, and 7. Note that these values of k s correspond to 

diFM = 3A0 / 2,5Ä0 12 and 7 X0 12, respectively. As expected, because k s is an odd integer for each of the plots, 

a broad null is seen to exist at a = 0 ° in each case. Comparison of Figures 3.11 (a), (c), and (e) with Figures 3.20 
(a), (b), and (c), respectively, reveals that the horizontal radiation pattern of the interferometer positioned on the y- 
axis is identical to that of the interferometer positioned on the x-axis except that one is rotated 90 ° with respect to 
the other. 
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180 

Figure 3.20: The azimuthal radiation pattern of the interferometer array factor, where the elements are on the y-axis, is plotted 

for6=;r/2 and diFMequalto(a)3A0/2, (b) 5A0/2and(c) 7A0 I'2 . 

3.3.4 Evaluation of Broad Null at a =0° 

In Section 3.3.2 the interferometer was steered to produce a null at a = 0° , as shown in Figure 3.17 (a). 
However, this was not a broad null . In Section 3.3.3, a broad null was located at a = 0° by positioning the 
interferometer elements on the y-axis, as shown in Figure 3.20 (a). In both cases the spacing between the 
interferometer elements is 

dlFM  — 
_ 34, 

(3.135) 

It is of interest to compare the width of the steered null in Figure 3.17 (a) to that of the broad null in Figure 3.20 (a). 

From Equation (3.122) the horizontal radiation pattern plotted in Figure 3.17 (a) is given by 

,Jt 
^W(->«>3tf) sin 

3/r 
-sin or (3.136) 

whereas the horizontal radiation pattern plotted in Figure 3.20 (a), as obtained from Equation (3.130), is 

'3n 
FIFM^O) COS -cos« (3.137) 

Converting to dB, Equations (3.136) and (3.137) become 

201og 
,7t 

F
IFM(^^,37T) = 20 log sin 

In 
-sino* (3.138) 

and 

20 log 
K 

FiFuh:^) 20 log COS 
In 

-cos« (3.139) 

Evaluations of Equations (3.138) and (3.139) about the nulls at a =0° are tabulated in Table 3.1. With reference to 
the table, note that the width of the steered null, when measured between the -30 dB points, is approximately 0 . 8° 
while that of the broad null is in excess of 12°.   Hence, at the -30 dB points, the broad null is more than 15 times 
wider than the steered null. At the -20 dB points, the width of the steered null is approximately 2.5° while that of 
the broad null is in excess of 22°. Thus, at the -20 dB points, the broad null is more than 8.8 times wider than the 
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steered null. It is concluded that the broad null is considerably more effective than the steered null in establishing 
spatial orthogonality between the interferometer and radar signals. 

For the purpose of a later discussion, the broad nulls of Figure 3.20 (b) and (c) are also examined. The 
horizontal radiation pattern plotted in Figure 3.20 (b) is 

JPM ~,x» i - cos -^-cos or (3.140) 

while that plotted in Figure 3.20 (c) is 

COS 
In 

-cos ör (3.141) 

Converting to dB, as in Equations (3.138) and (3.139), the results are tabulated in Table 3.2. For the broad null in 
Figure 3.20 (b) the width is approximately 10° when measured between the -30dB points and is approximately 18° 
when measured between the -20 dB points. For the broad null in Figure 3.20 (c) the width is in excess of 8° when 
measured between the -30 dB points and is in excess of 14° when measured between the -20 dB points. In general, 
the width of the broad null is narrowed as diFM increases by selecting larger values of ks. 

Table 3.1 

Comparison of Steered Null to Broad Null at a = 0° for diFM = 3^o 
2 

Steered Null (N=2) Figure 3.17 (a) Broad Null (ks = 3) Figure 3.20 (a) 

a 

(Degrees) 

1 IFM 

(dB) 

a 

(Degrees) (dB) 
0 -CO 0 -OO 

+0.1 -41.7 ±1 -62.9 

±0.2 -35.7 ±2 -50.8 

±0.3 -32.2 ±3 -43.8 

±0.4 -29.7 ±4 -38.8 

±0.5 -27.7 ±5 -34.9 

±0.6 -26.1 ±6 -31.7 

±0.7 -24.8 ±7 -29.0 

±0.8 -23.6 ±8 -26.7 

±0.9 -22.6 ±9 -24.7 

±1.0 -21.7 ±10 -22.9 

±1.1 -20.9 ±11 -21.3 

±1.2 -20.1 ±12 -19.8 
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Table 3.2 

Evaluation of Broad Null at a = 0° for di™ = —- and —- 
2             2 

a 

(Degrees) 

Broad Null (ks = 5) 
Figure 3.20 (b) 

(dB) 

Broad Null (ks = 
Figure 3.20 (c^ 

(dB) 

7) 

0 -oo »OO 

±1 -58.5 -55.5 

±2 -46.4 -43.4 

±3 -39.4 -36.4 

+4 -34.3 -31.4 

±5 -30.5 -27.6 

±6 -27.3 -24.4 

±7 -24.6 -21.7 

±8 -22.3 -19.4 

+9 -20.3 -17.4 

±10 -18.4 -15.5 

+11 -16.8 -14.0 

±12 -15.4 -12.5 

The behavior of the vertical pattern at the broad null is, also, of interest.   Letting OC = 0° in Equation 
(3.130), the expression for the interferometer array factor becomes 

FIFM(e,0) = cos 
krJt 

sin# (3.142) 

This yields the vertical pattern at a = 0°. These are plotted in Figure 3.21 for ks = 3, 5, and 7. In all three cases, 

observe that broad nulls exist at 6 = ±90°.  In fact, examination of Equation (3.142) reveals that broad nulls 

at 6 = ±90° always occur when ks is an odd integer. Therefore, assuming that the main radar antenna elements are 
positioned on the x-axis while the interferometer elements are placed along the y-axis, broad nulls occur broadside 
to the main radar antenna in both the horizontal and vertical planes whenever ks is an odd integer. Also, note that 
the vertical patterns in Figures 3.21 (a), (b), and (c), where the interferometer elements are along the y-axis and a = 
0, are identical to those in Figures 3.14 (a), (c), and (e), where the interferometer elements are along the x-axis and 
a = ±7tl2. 



Converting the magnitude of Equation (3.39) to dB results in 

20 log ,0^(0,0)1}= 20 log I0 COS -sin# (3.143) 

Values for Equation (3.143) about 6 = 90° are tabulated in Table 3.3 for ks = 3, 5 and 7. By comparing the entries 
in Table 3.3 with the corresponding entries in Tables 3.1 and 3.2, it is concluded that the broad nulls in the 
horizontal and vertical planes have identical behaviors. 

(a) ks=3 (b) ks=5 

Figure 3.21: The vertical radiation pattern of the interferometer array factor, where the elements are on the y-axis, is plotted for 

a = 0 and d^M equal to (a) 3Ä0 / 2 , (b) 5Ä0 12 and (c) 7 A0 12 . 

Table 3.3 

3A,   5/L        7'/L 
Evaluation of Broad Null at 0 = 90° for dim = —-^, —- and —- 

2      2           2 

a 

0 
(Degrees) 

Broad Null (ks = 3) 
Figure 3.21 (a) 

(dB) 

Broad Null (ks = 3) 
Figure 3.21(b) 

(dB) 

Broad Null (ks = 3) 
Figure 3.21 (c) 

(dB) 
90 -oo -OO -OO 

90+1 -62.9 -58.5 -55.5 

90±2 -50.8 -46.4 -43.4 

90+3 -43.8 -39.4 -36.4 

90±4 -38.8 -34.3 -31.4 

90±5 -34.9 -30.5 -27.6 

90±6 -31.7 -27.3 -24.4 

90±7 -29.0 -24.6 -21.7 

90±8 -26.7 -22.3 -19.4 

90±9 -24.7 -20.3 -17.4 

90±10 -22.9 -18.4 -15.5 

90+11 -21.3 -16.8 -14.0 

90±12 -19.8 -15.4 -12.5 

45 



3.3.5      Comparison of the Interferometer and Radar Field Strengths Broadside to the Radar 

In this section the electric field at a point in the far field due to the interferometer is compared to the 
electric field at the same point due to the radar. Attention is focused on those points in the main beam of the radar 
which also fall within the broad null of the interferometer. For this comparison, identical excitations are assumed 
for the interferometer and radar array. 

With reference to Equation (3.21), the total electric field due to the interferometer is 

^TZ-^ne)F1FM(6,a)e-^e^ (3.21) 

where the array factor is given by Equation (3.130). Similarly, from Equation (3.56), the total electric field due to 
the radar is 

^'Z-]fF{e)FRAD{e,a)e -Jßo ,M< (3.56) 

where the array factor is given by Equation (3.57). It follows that the ratio of the field magnitudes is 

7TOT 
'1FM 

7TOT 
'RAD 

_ 2 \FIFM{e,a)\ 
(3.144) 

Conversion of the ratio to dB results in 

20 log; 
7TOT 
'IFM 

7TOT 
■'RAD 

= 2O\ogm\FIFM(0,a)\} (3.145) 

N 
-20108,0^(0,«)!} - 20 log 10   - 

Let the point at which the fields are measured be in the x-y plane where the elevation angle is 6=7t / 2 . 
Assume the main radar has the azimuthal radiation pattern shown in Fig 3.15 for which N=6 and d=A,o/2. Equation 
(3.145) then becomes 

20 log 10 < 

7TOT 
'IFM 

7TOT 
'RAD 

= 20 log 10 COS 
kn ■cos or 

-20 log 10 

(3.146) 

1 sin[3;rsinar] 
6 sin[f sin ör] 

9.5 (dB). 

Note that the first term on the right side of Equation (3.146), corresponding to the interferometer array factor, is 
tabulated in Tables 3.1 and 3.2 for ks = 3,5, and 7. These are values of ks for which a broad null appears at a = 0. 
Values for the second term, corresponding to the radar array factor, are tabulated in Table 3.4. From Equation 
(3.92), the 3-dB bandwidth of the main beam was shown to be approximately 16.9 °. This agrees closely with the 
values given in Table 3.4 for cc= ± 8 ° and a= ± 9 °. Utilizing Tables 3.1, 3.2, and 3.4, results are tabulated in 
Table 3.5 for interferometer spacings corresponding to ks = 3,5, and 7. 
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Recall that a variety of interferometer element spacings are possible because the interferometer elements 
are placed along the y-axis while the main radar elements are positioned along the x-axis. Consequently, the main 
beam of the radar can be made as narrow as desired to accommodate the width of the broad null of the 
interferometer. Alternatively, the broad null of the interferometer can be made as wide as needed to accommodate 
the beamwidth of the radar main beam. The half-power points of the radar coincide with the 3-dB points of its main 
beam. For this example, the 3-dB points are approximately equal to ± 8.5°. From Table 3.5 it is seen that the 
interferometer field magnitude is at least 31.0, 26.6, and 23.7 dB less than the radar field magnitude, respectively, 
for the cases corresponding to k s = 3, 5, and 7. Recall that these results were obtained assuming identical 
excitations for the radar and interferometer. Since the interferometer excitation is likely to be considerably smaller 
than the radar excitation, placement of the broad null of the interferometer at the center of the main beam of the 
radar is likely to be an effective technique for preventing the interferometer signal from interfering with the desired 
radar target returns. 

Table 3.4 

Evaluation of Radar Main Beam 

a 

(Degrees) 

Main Beam (N=6) 
Figure 3.15 

(dB) 

0 0 

±1 -0.4 

±2 -0.18 

±3 -0.34 

±4 -0.59 

±5 -1.01 

±6 -1.39 

±7 -1.94 

±8 -2.58 

±9 -3.2 

±10 -4.2 

±11 -5.2 

±12 -6.4 
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Table 3.5 

Ratio of Interferometer to Radar Electric Field Magnitudes in the Main Beam of the Radar for diFM = 

3VAoand7Ao 
2      2          2 

a 

(Degrees) 

ks = 3 

pTOT 

ks = 5 

pTOT 
^IFM 

ks = 7 

pTOT 

pTOT 

(dB) 

■pTOT 
E'RAD 

(dB) 

pTOT 

(dB) 

0 -oo -oo -oo 

±1 -72.4 -68.0 -65.0 

±2 -60.1 -55.7 -52.7 

±3 -53.0 -48.6 -45.6 

±4 -47.7 -43.2 -40.3 

±5 -43.4 -39.0 -36.1 

±6 -39.8 -35.4 -32.5 

±7 -36.6 -32.2 -29.3 

±8 -33.6 -29.2 -26.3 

±9 -31.0 -26.6 -23.7 

±10 -28.2 -23.7 -20.8 

±11 -25.6 -21.1 -18.3 

±12 -22.9 -18.5 -15.6 

3.4 Use of Frequency Modulated Signals to Steer the Interferometer 

When the interferometer elements are on the y-axis, the interferometer array factor is 

IFM (0,a) = cos 
(d     \ UIFM 

L V to j 
K sin 6 cos a 

Recalling that 

ß0 = W<L=2!, 
c      Ao 

(3.128) 

(3.3) 

the array factor can, also, be expressed as 
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FIFM (0,a) = cos > d7Jn, sin 9 cos a '1FM (3.147) 

The relation in Equation (3.3) can be interpreted as having arisen from the wave equation. 

In the far field the propagating wave can be approximated as a spherical wave whose description depends 
only upon the radial distance, r, and sinusoidal frequency of excitation, f0. Assuming spherical symmetry, the wave 
equation is given by [6] 

d2[rs{r,t)]      l_   d2[rs(r,t)] 

dr2 c2 dt2 

where c is the wave propagation velocity. One solution to this equation is of the form 

,(r,0 = -e-yAV2"-'. (3.149) 

(3.148) 

This can be verified by direct substitution of Equation (3.149) into Equation (3.148).   Note that 

d2[rs(r,t)) _     Rl       -jßor   unf.t 
—aP p»Ke    e 

while 

1_ d2[rs(r,l)] = _ f2¥o>\Kc-Jß.rcJ2*f.' 
<   c  ) c2        dt2 

Equality between Equations (3.150) and (3.151) exists provided 

(3.150) 

(3.151) 

(3.3) 

Since 

ßo can, also, be written as 

■>=Wo> 

a       lK 

(3.152) 

(3.3) 

Examination of Equation (3.144) suggests that the array factor can be varied by changing ßo which is a 

function of the sinusoidal frequency of excitation. Therefore, it should be possible to make the array factor vary in 
time by exciting the interferometer with a frequency modulated signal. This observation is examined in Section 
3.4.1. 
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3.4.1 Quasi-Stationary Considerations 

Assume the interferometer is excited by the frequency modulated signal 

. s DM (0 = s (t) = V m cos [27tfj + </){t)] . 

By definition, the instantaneous frequency of s(t) is 

1   d [2#oH*(0] 
nx)=T„7t 

= f + J_ i^ä 
Jo    In    dt   ' 

For convenience, let 

The instantaneous frequency then becomes 

4>(t) = 2ng(t). 

/(')=/.+ dg{t) 
dt 

(3.153) 

(3.154) 

(3.155) 

(3.156) 

Analogous to Equations (3.149) and (3.3), the conjecture arises that the propagating wave in the far field can be 
characterized by 

K    _ jß{t)r     J2*[fot+g(t)] 
s (r,t) = — e e 

r 

where 

ß{f)JM!ä. 

(3.157) 

(3.158) 

This conjecture can be resolved by, once again, utilizing the wave equation. 

Let Equation (3.157) be substituted into Equation (3.148). Observe that 

a2 Mr,/)] 
dr2 = -ß\t)Ke -Jß(')r jMfot+g{t)] 

while 

(3.159) 

1    d2[rs(r,t)]_ \     1 f      dß{f) 
dt2 — r- 

dt 
■ + ty(t) 

+ i -r±m+2Kdi^ 
dt1 dt1 

£e-Jß(t)reJ?4fot+g{t)\ 

Equating Equations (3.159) and (3.160) and canceling common terms yields 

(3.160) 
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1 
ß2{t)=^ 

dß{t) 
dt 

+ 27tf{t) J d2ß{t)_2jtd
2g{t) 

dt1 dt1 
(3.161) 

Now assume that the modulation, g(t), varies slowly relative to the carrier frequency, f0, such that 

dg{t) 
dt 

«fo 

Making use of Equation (3.158), observe that 

(3.162) 

and 

dt c   dt 

yW=2;r.^
3iM 

dt1 df 

(3.163) 

(3.164) 

On the other hand, 

It is likely that 

27tf(t) = 27t /.+ 
dg(t) 

dt 
~2nfo- 

tr=~«fo 
C 

(3.165) 

(3.166) 

where tr denotes the time required by the propagating wave to traverse the distance, r. Finally, assuming 

d2g{t) 
dt2 «/:, (3.167) 

it is concluded that Equation (3.161) is approximately given by 

£aM- ̂
    c 

(3.168) 

Therefore, Equation (3.158) is approximately valid and the propagating wave can be approximately modeled by 
Equation (3.157). 

We say that the interferometer behaves in a quasi-stationary manner when Equations (3.149) and (3.3), 
which are strictly valid only for a sinusoidal constant frequency excitation, can, to a very good approximation, be 
generalized to Equations (3.157) and (3.158) for frequency modulated excitations. However, as pointed out by 
Equation (3.162), the modulation must vary slowly relative to the carrier frequency. It follows that the array factor, 
given by Equation (3.147), can be generalized to 
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FIFM{e,a,t) = cos ß{t) dmi, sin 6 cos a lIFM (3.169) 

for frequency modulated excitations in this class. Introducing the time variant wavelength, defined by 

Ä^ = J7Ä> (317°) 

the array factor can also be expressed as 

FWM{6,a,t) = cos K 'IFM sin 6 cos a 

The time-variant array factor is investigated in the following sections for selected modulations. 

(3.171) 

3.4.2 The Time-Variant Array Factor for a Chirp Signal Applied to the Interferometer Elements 

In this section the same chirp signal is applied to the two interferometer elements. In Section 3.4.3 an up 
chirp is applied to one element while a down chirp is applied to the other. Both cases are handled by the general 
analysis given below. 

With reference to Figure 3.18, let the signals applied to the interferometer Elements at A and B be given by 

^(0 = • 

T T 
 <t< — 

Kmcos[2>t(/;«+g1('K&(0)] 2 2 (3.172) 

and 

SB(t) = • 

0 

rma*[2x(f0t-gl(t)+g2(t))]       , 

,    otherwise 

2 2 
(3.173) 

0 ,    otherwise 

where gi (t) and g2 (t) are suitably chosen phase modulations such that the quasi-stationary assumptions of Section 
3.4.1 are valid. In terms of complex signals sA (t) and sB (t) can be expressed as 

^(0 = 

_T_ T_ 
Re {Fm e

}2*f°' ej2*gi(t) eJ2Kgll')}     , 2 ~ ^ ~ 2 
(3.174) 

0 ,    otherwise 

and 
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sB(t) = • 
Re {Fm e

}lKU e]lns^ eilns^}     , 2 " ' " 2 

0 ,    otherwise 

By definition, the instantaneous frequency of sA(t) and sB( t), respectively, is 

(3.175) 

and 

L{f)=L+Ml+Ml 
JAI   J°      it it 

A«-/.-^-*0 

(3.176) 

(3.177) 
dt dt 

Using the notation of Figure 3.19, and assuming quasi-stationary behavior, the total electric field 

at point, P, is given by Re \E ™T
M } where 

A(')= c c 
(3.178) 

and 

ET0T =—F(0 \fiP^em*,e~ilng"(f)ei'lKg'l{f) +—F(d V^WV^V'^V2*^(3.179) 
IFM    ^ r2       

2 

With P in the far field the analysis proceeds in the same manner as in Section 3.1. Then 

A('>2- 
2n 

while 

Äfo- — c 

' f    dgl(t)   dg2(t) 
Jo      dt dt 

f        d^(f)       dS2Jt) 
Jo 

(r-Ar) 

(r + Ar) 
dt dt 

where Ar is given by Equation (3.126). In the far field, therefore, Equation (3.179) becomes 

(3.180) 

(3.181) 

.2* ](') 

.2»- [<^ w)r_rfa(oAj. 
j2Kg2it) eJ2itfot 

(3.182) 

J^F{e)FWM{0,a,i)   e ^      * *    Je^'w^ 
r 
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where the interferometer array factor is given by 

^™(0>«>O=cos{^ /, i Jg2^V dg^ 
dt dt 

+ 27lgx(t)}. (3.183) 

Finally, from Equations (3.176) and (3.177), note that 

fc 
, dgl{t) = fA{t)+ fB(t) 

dt 2 

while 

4gi(t) = fA(t)-Mt) 
dt 2 

As a result, Equations (3.182) and (3.183) can, also, be expressed as 

—F{e)F1FM{e,a,t) ■pTOT 
J1FM 

(3.184) 

(3.185) 

(3.186) 

and 

e-J$ifA (')+/* (*))r-(fA (t)~fB (t))^\eJ27tg2 {t)eJ2Kf01 

FJFM fa*,*) = ™s{f[{fA {t)+fB {t))Ar - {fA {t)-fB {t))r]+ 2lt gl (t)}.   (3.187) 

Having completed the above analysis, we now consider the case for which the same chirp signal is applied 
to the two interferometer elements. Let 

and 

&(t)=o 

t 
gl{t)=ß—- 

(3.188) 

(3.189) 

Then, with reference to Equations (3.172) and (3.173), it follows that 

Vmcos[2jc(f0t+/iT)]*        2~/_ 2 (3.190) 

0 ,    otherwise 

The corresponding instantaneous frequency is 

fA(t) = fB(t) = fo + lM = f(t). 

Observe that 

/,(')+A (0=2(/o+/tf) 

while 

(3.191) 

(3.192) 
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/,W-AW=O. (3.193) 

Consequently, when the same chirp signal is applied to the two interferometer elements, the expression in Equation 
(3.187) for the interferometer array factor becomes 

FIFM(e,a,t) = COS 
c 

= cos -/«*■' 

Making use of Equations (3.158) and (3.126), the array factor can, also, be expressed as 

'ß{t) FIFM(e,a,t)=cos dm, sin 8 cos a 'IFM 

(3.194) 

(3.195) 

Observe that this is consistent with Equation (3.169). 

As was done in Equation (3.129), it is convenient to measure the spacing of the interferometer elements in 
units of half wavelength.  Then 

ßif)   .       _ ß{t) .    AO _ ty(t)      ÄO _ KTCfo r ()] 

= M[l+A£(0] 
2 L 

where Af(t) is the instantaneous frequency deviation given by 

In addition, it is convenient to define 

A*,(,) = M^ 
Jo 

which can be interpreted as the instantaneous deviation from ks. Note that 

Af{t)_Aks(t) 
fo K 

Hence, Equation (3.196) can, also, be written as 

„       UIFM   ~      « 
\, **,(')' 

s 

It follows that alternative expressions for the interferometer array factor are 

sin 6 cos a \ F1FM{e,a,t) = cos\^- 

(3.196) 

(3.197) 

(3.198) 

(3.199) 

(3.200) 

(3.201) 
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= cos< 
kn 

k. 
sin 0 cos a) 

By way of example, consider the case for which 

At time, ti, assume 

The array factor is now given by 

6 = — and k, =21. 
2 

&f{ti) = Aks{ti) = 0. 

IFM = cos 
2br ■cos a 

(3.202) 

(3.203) 

(3.204) 

The magnitude of the array factor is plotted in Figure 3.22(a). As explained in Section 3.3, a broad null appears at 

CC = 0 since k is an odd integer. 

-   0  —      180 

Figure 3.22: The azimuthal radiation pattern of the interferometer array factor, where the elements are on the y-axis, is plotted 

for 6 = 7C12, dIFM = 2 \X0 12, and  {Af(t) I f0 ) equal to (a) 0, (b) 0.01, and (c) 0.001. 

Now assume a 1% change in the carrier frequency at time, t2, such that 

Af(t2)_Aks{t2). 
fo K 

The corresponding array factor is 

0.01. 

IFM 
7C \ 
—,a,t,   =cos 
.2 

21.2 br -cos a 

(3.205) 

(3.206) 

Its magnitude is plotted in Figure 3.22(b). Instead of the broad null at a = 0°, there is now a minor lobe peak 
whose magnitude is 0.324. This is only 9.8 dB down from the major lobe peak value of unity and raises concern 
that significant energy could be radiated in the direction of the radar main beam. Even so, as is seen from Table 3.6, 
there is very little steering of the major lobe positions. 
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For very small percentage changes in the carrier frequency it is possible to derive an approximate relation 

for the minor lobe peak at a = 0° . With 6 = 7CII, Equation (3.201) becomes 

IFM —,a,t = cos^ 
k,n \ i **,(*)' 

k. 
cos ör 

(3.207) 

Assume that kg is an odd integer such that a broad null appears at a = 0° when Aks (t) = 0.  At a = 0° 

IFM 
V2       J 

= cos 
kjt      ,,   i \7t \   r   .   (   . ,   ( \K 
-^- + M,(/)y|=|sin(M,(/)- 

When 

M.Wf «1, 

it follows that 

IFM 
K 

,0,t *M')f 

(3.208) 

(3.209) 

(3.210) 

For our example, in which ks = 21 and there is a 1% change in the carrier frequency, Equation (3.205) yields 

Aks{t2) = 0.01*, =0.21. 

Using Equation (3.210), the magnitude of the minor lobe peak at CX = 0° is approximately given by 

A*,(*£ = 0.21-= 0.33. 
2 

(3.211) 

Table 3.6 

Comparison of Major Lobe Positions in First Quadrant for a 1% Change in Carrier Frequency 

4/W Major Lobe Positions 

a 
(Degrees) 

fi> 

0 17.8 31 40.4 48.2 55.2 61.6 67.6 73.4 79 84.5 90 

0.01 19.4 31.9 41 48.7 55.5 61.9 67.8 73.6 79.1 84.6 90 
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This value is very close to the peak value of 0.324 observed in Figure 3.22 (b). 

At some time instant, t3, suppose it is desired that the minor lobe peak at a = 0° be 30dB down from the 
major lobe peak of unity. From Equation (3.210) it would be required that 

20 log10 \Aks fe )f I = -30dB . (3.212) 

Solution of this equation results in 

M,fe) = 0.02. 

As before, let ks = 21.  Then Equation (3.199) gives 

Affe) _A*,fe). 0-02 ..()MM 
fo K 21 

This corresponds to a 0.1% change of the carrier frequency. The corresponding array factor is 

(3.213) 

JFM 
(K        \ 
—,a,t3   =cos 

v2        J 
21.02 to -cos« (3.213) 

Its magnitude is plotted in Figure 3.22 ( c ). At OC = 0°, the value of the interferometer pattern is 

= 0.03298 (3.214) *'IFM\ T'">^3 

which is 29.6 dB down from the major lobe peak value of unity. Consequently, a 0.1% change, or less, of the carrier 

frequency does a very good job of approximating the broad null at OC = 0°.  However, as is shown in Table 3.7, 
there is negligible steering of the major lobe positions. 

If the broad null at OC = 0° is to be maintained, it is concluded that a linear frequency modulated pulse, or 
chirp signal, is not effective for steering the interferometer. In the next section we investigate the interferometer 
response when an up chirp is applied to one of its elements while a down chirp is applied to the other element. 

Table 3.7 

Comparison of Major Lobe Positions in First Quadrant for a 0.1% Change in Carrier Frequency 

4A0 Major Lobe Positions 

(Degrees) 

fo 

0 17.8 31 40.4 48.2 55.2 61.6 67.6 73.4 79 84.5 90 

0.001 17.9 31.1 40.4 48.2 55.2 61.6 67.6 73.4 79 84.5 90 
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3.4.3      The Time-Variant Array Factor for Two Different Chirp Signals Applied to the Interferometer 
Elements 

With reference to Equations (3.172) and (3.173), let 

g\ti) = P-Z 

and 

g2{t)=o. 

Therefore, the signals applied to the interferometer elements at A and B are 

^(0 = 

**(')= 

Vmco&[2x(f0t+M$)],        2~'~2 

0 ,    otherwise 

T T 

0 ,    otherwise 

(3.215) 

(3.216) 

(3.217) 

(3.218) 

The corresponding instantaneous frequencies are 

fA(t) = fo+Mt (3-219) 

and 

/*(*) = fo-P- <3-220) 

Note that 

fA{t)+fB{t) = 2f0 (3-221) 

while 

fA{t)-fs{t)=2ß. 

Thus, with an up chirp applied to one of the interferometer elements and a down chirp applied to the other, the 
interferometer array factor of Equation (3.187) becomes 

FIFM {9, a, t, r) = cos j ^-\f0Ar-ßür]+2nfi^i. (3.222) 

Observe that the array factor now depends upon r as well as 6, <X, and t.  The dependence upon 9 and a is made 
obvious by utilizing Equation (3.126) which yields 
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FIFM{0,a,t,r) = cos\ — 
'fod; IFM sm0cosa-jutr + 2KJU—}.    (3.223) 

It is of interest to evaluate the array factor at a fixed point in space for which the coordinates are 0o,(Xg, 

and r0. Making use of Equation (3.129), note that 

—£^-sm$0cosa0 = ^^^sm0ocosao =-^sin0ocosao =^      (3.224) 
c      2 c     2 2 

where (f>AF is a constant. From Equations (3.219) and (3.220) the maximum frequency deviation of the up and down 

chirp signals is 

(' '\ 
JD * JA    ~   I      JA\        J     ~ JB 

(   T\    r(T\_ .    pT     ,    fjT 

V    ±) -fa ~5) = f°+2~fo+2=ßT'      (3'225) 
\*J 

Hence, 

It follows that 

T 

2K 2K fD       „   _ 
—Mr0=—^-r0=2KfAF 

c c   T 

(3.226) 

(3.227) 

Consequently, at the point in space for which the coordinates are 6o,Ctg, and ro, the interferometer array factor 

can be written as 

FiFM(0o><x
o,t,ro) = COS 2rfAFt-2K{l — -<t>AF (3.228) 

where f ^ and (f)^ are array factor constants dependent upon position. Thus, at any point in the far field, the array 

factor is a linear frequency modulated pulse whose carrier frequency and phase are determined by position. 

From Equation (3.182) the total complex electric field at a point in the far field is given by 

ETOT „2K_P(a\i?     (a „ , ^„-iHu.'-n*^ „i-i*t.t 
'IFM F(e)Fim{e,a,t,r)e (3.229) 

Therefore, the total real electric field is 

2K 

r 
Re{ETZ h—F{0)FIFM(0,a,t,r) (3.230) 

cos I 2K 

As before, consider a point whose coordinates are 0o,CXo, and r0. Following the previous development, note that 

( .     LiAr\     fr 
/.+—'- — V c   J       c 
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c       c T    2 

=  
l  fD KK 

Kfo T    4 
sin 6„ cos an (3.231) 

Jo 

is a carrier offset frequency. In addition, define the carrier phase to be 

fr 
c 

The total real electric field at the point whose coordinates are 0o,GCo, and ro is then given by 

ro 

cos[27ü{f0+fCA)t-<pCA] 

where fCA and <pCA are carrier constants dependent upon position. 

The substitution of Equation (3.228) into Equation (3.233) results in 

(3.232) 

(3.233) 

Rete}=— F(eo)cos 
ro 

2itfJIFt-2jcn — -<l>AF 

(3.234) 

This is recognized as a double side band suppressed carrier amplitude modulated signal where the amplitude 
modulation is a linear frequency modulated waveform whose instantaneous frequency decreases during the chirp. It 
is interesting to note that the carrier is a constant frequency sinusoid even though an up chirp and down chirp were 
applied at the interferometer elements. At t = 0 the electric field is given by 

r l IK 
RetelUI-— F(Ocos(-^)cos(-*y. (3.235) 

This can be a small value at various points in the far field. A typical sketch of the electric field is shown in Figure 
3.23, assuming fAF to be much smaller than (f0 + fCA). 

Although fjp, (p^, fCA and <j)CA change with position, the basic waveform for the electric field is 

unchanged. Consequently, steering the interferometer with up and down chirps applied to the interferometer 
elements has little meaning even though the array factor is a function of both time and the observation point in the 
far field. In addition, the waveform sketched in Figure 3.23, is not a good choice for masking the direct path signal 
from the main radar. 
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It is shown in Section 3.4.4 that a frequency-hopped waveform is capable of maintaining the broad null 
while steering the interferometer and degrading performance of the non-cooperative bistatic radar. 

-0.5 

l (sacs) 
20.5 

Figure 3.23: When up and down chirps are applied to the two interferometer elements, the electric field at a fixed point in the far 
field is a suppressed carrier amplitude modulated signal whose modulation is a linear frequency modulated waveform, as 

sketched in the figure. 

3.4.4      The Time-Variant Array Factor for a Frequency-Hopped Signal Applied to the Interferometer 
Elements 

It is intended that the interferometer signal be used to 1) mask over many directions the direct path signal of 
the main radar and 2) communicate separate information to various receivers located at different angles. In addition, 
the interferometer signal should not interfere with the mission of the main radar.   In order to maintain spatial 

orthogonality between the interferometer and main radar, it is desirable that the broad null at CC = 0° be preserved 
while the interferometer is steered in different directions. These objectives can be met, as shown in this section, by 
using a frequency-hopped signal to drive the two elements of the interferometer. 

Let both elements of the interferometer, assumed to be positioned on the y-axis, be driven by 

s1FM(t)=£üi(t-iTs) (3.236) 
i=0 

where 

q(t) = 
rVmcos[2^(f0+foi)t],    0<t<Ts 

(3.237) 
0     , otherwise 

Consequently, during the i - interval, given by 

iTs<t<(i + l)Ts, (3.238) 

the interferometer signal is a constant frequency sinusoid with frequency, \f + f .). 

Following the quasi-stationary development in Section 3.4.2, the interferometer array factor can be 
expressed as 

FIFM($,a,t) = cos ß{t) dlFM sin 6 cos a (3.195) 
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where 

During the i- interval 

ß{t) = W(t) 

ß^=2x(f0+foi) ^  lT^/^(I. + 1)7;> 

As in Section 3.3.3, let the spacing between the interferometer elements be 

d       — k —2- 
"IFM       Ks   ~   ■ 

Then 

2 2c   Uo    Joii      2 

f. 
l+JoL 

fo. 

where use was made of the fact that 

Now define 

c = KL ■ 

Kfoi Ak:=- 
fo 

Note that 

Hence, Equation (3.240) can be written as 

ßitemt _ *,* 
2 

Substitution of Equation (3.243) into Equation (3.195) yields 

FIFM{6,a,t) = cos 

ksK 

2 
Ak' 

= (*,+A*,)| 

[kr +A&,)— sin 0 cos or v 2 

When 6 —Tt 12, the horizontal radiation pattern becomes 

1FM -,a,t 
\2        j 

= cos (k, +Aki)— cos a 

(3.158) 

(3.239) 

(3.129) 

(3.240) 

(3.152) 

(3.241) 

(3.242) 

(3.243) 

(3.244) 

(3.245) 
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A broad null exists at OC = 0°provided [ks + Akjis an odd integer. To maintain a broad null at f0 (i.e., when 

A&. = 0), let ks, also, be an odd integer. The broad null is then preserved by requiring that Akt be plus or minus 

an even integer. For specified values of Akt, ks and f0, foi is determined from Equation (3.242) according to 

foi^-T-fo- (3-246) 
K 

In this way, a broad null always exists at OC = 0° even though the frequency changes from one interval to the next. 

The interferometer pattern of Equation (3.245) can be steered in various directions through the appropriate 

choice of AÄ:(and, therefore, foi. In general, when \ks + Ak^is an odd integer, there are \ks + Akt — l)major 

lobes completely contained in the upper half of the interferometer pattern centered at OC = 0°, 

\ks +Aki — 1) major lobes completely contained in the lower half of the interferometer pattern centered at 

OC = ±180°, and two major lobes centered at OC = ±90°. Thus, the number of major lobes changes with a change 

in Akt. This can be utilized to direct the interferometer signal towards a specified direction during the i* interval. 

To illustrate the steering of the interferometer by means of a frequency-hopped signal, while maintaining the 

broad null at OC = 0°, radiation patterns are presented in Figure 3.24 for ks = 21 and A£. = 0 and ± 2 . Note that 

this involves the smallest allowable values for \Aki . Of course, greater differences between the patterns will result 

for larger values of AÄ:,. . 

As expected, a broad null exists at OC = 0° for all three cases presented in Figure 3.24. Observe that there are 

18, 20, and 22 major lobes, respectively, in the upper half of the patterns shown in Figure 3.24 (a), (b), and (c). 

Also, each pattern contains two major lobes centered at OC = ±90°. 

Positions of the major lobes, indicated by x's, and nulls, indicated by o's , are shown in Figure 3.25 for the three 

patterns plotted in Figure 3.24. The polarities of the major lobes are indicated by + and - signs placed over the x's. 

Comparison of the major lobe positions in Figure 3.24 (a) with those in Figure 3.24 (b) reveals that the 

major lobes in the two figures are separated by a minimum of 1° for 20° < OC < 80° . A similar conclusion arises 

when the major lobe positions in Figure 3.24 (b) are compared with those in Figure 3.24 (c). Making the same 

comparisons with regard to the nulls, it is seen that they are, also, separated by a minimum of 1° for 

20° <CC< 80° .   Consequently, significant separations exist even though [ks + Akt) differs by the minimum 

allowable value. 
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« v 

Figure 3.24: The azimuthal radiation pattern of the interferometer array factor is plotted for a frequency-hopped excitation with 

9 = 7C12, k   = 21 , and A kj equal to (a) -2, (b) 0, and (c) +2. 

ks+ 

19    4- 

19 

21 

21 

23 

23 4- 

+ 
*«r 

«I 50 

Degrees 

Figure 3.25: Positions of the major lobes, indicated by x's, and nulls, indicated by o's, are shown for the three patterns plotted in 
Figure 3.24. 

However, even though the difference in (ks + Akt)is twice as large when comparing the pattern of Figure 

3.24 (a) with that of Figure 3.24 (c), observe for 54° <ÖT<66°that some separations between major lobe 

positions and null positions are less than 1°.  Consequently, making the difference in (ks + M,.) larger does not 

guarantee large separations relative to neighboring major lobe and/or neighboring null positions. It should be noted 

that some of the closely spaced major lobes, when comparing Figure 3.24 (a) to 3.24 (c), are of opposite polarity. 

The reversal in sign could help to thwart the non-cooperative radar in its attempt to obtain a high quality reference 

from the direct path signal. 

Nevertheless, this example indicates that it should be possible to select suitable values for ks and Akt such 

that the interferometer is steered in desired directions while maintaining the broad null at CC — 0°. 
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CHAPTER 4 

A RADAR WAVEFORM EMPLOYING FREQUENCY DIVERSITY 

4.1 Frequency-Hopped Waveforms [7], [8] 

Frequency-hopped waveforms are a subclass of frequency-coded signals. In particular, consider the radar 
pulse waveform of duration NT which consists of N contiguous different frequency bursts, each of duration T. 
Assume the hopping frequencies are appropriately selected from a set of N frequencies equally spaced according to 
(fc+fn) where 

fn=|;n = 0,l,...,(N-l). (4.1) 

The spacing is given by 

A/=(/c+/n+1) -(/,+/„)=   ^ -J=J ;    H = 0,1,...,(AT-1)   . (4.2) 

A linear stepped-frequency pulse results when the frequencies are chosen consecutively such that the n* 
frequency burst has the frequency (fc+f„), where f„ is given by Equation (4.1). On the other hand, the frequencies 
can, also, be scrambled. For this purpose, consider an arbitrary ordering of the N integers contained between 0 and 
(N-l). Note that there are N! such orderings. Let a particular sequence of ordered integers be represented by the set 

{Gn} = {0o,OxA>->OK-x}       ■ (4-3) 

Now let the subscript, n, indicate the ordering of the frequency bursts contained within the radar pulse. The 
frequency of the n* burst is then chosen to be 

fc + f„ = f.+ Y ;    n = 0,l, ..., (N-l)  . (4.4) 

The resulting waveform is referred to as a scrambled-frequency pulse. Because {0n} contains each integer between 
0 and (N-l) only once, the frequencies of the N bursts within the radar pulse are each different. 

Analytically, the frequency-hopped pulse can be expressed as 

s(t)=Esn(t-nT) (4.5) 
n=0 

where 

fA cos^f.+f.).],   0<.<T 
[ 0 otherwise 

The envelope of this waveform is illustrated in Figure 4.1 for both a linear stepped-frequency pulse and a scrambled- 
frequency pulse. When the frequencies are chosen consecutively, the linear stepped-frequency pulse is a discrete 
approximation to the linear frequency modulated pulse or chirp waveform. The bandwidth of the frequency-hopped 
pulse is NAf, where Af is given by Equation (4.2), and is assumed to be much less than the carrier frequency, fö. 
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fc fc+f. fc+f2 fc+f3 f+f4 fc+f5 fc+fe 

hx-j     (a) 

|,    NT  >| 

t 

fc+f« fc+f, fc+f. fc fc+f, fc+f3 fc+fS 

(b) t 

Figure 4.1:   The frequencies of a frequency-hopped pulse may be either (a) consecutive or (b) scrambled. 

Many factors favor the use of frequency-hopped waveforms for the pulsed radar signal. These are briefly 
discussed below: 

1) By appropriate ordering of the frequencies, it is possible to eliminate the range-Doppler ambiguity of the 
linear frequency modulated or chirp waveform. It is shown in the following sections that a thumbtack 
approximation to the ambiguity function is possible. 

2) For a specified value of N there are multiple orderings of the frequencies that result in a thumbtack shaped 
ambiguity function. Coherent reference denial is enhanced by changing the frequency scrambling from one 
radar pulse to the next. This prevents the non-cooperative bistatic radar from relying on the integration of a 
single radar waveform estimate over the coherent processing interval. In addition, the non-cooperative 
radar is forced to repeatedly estimate a new radar waveform from each pulse received in the direct path. 

3) Another benefit from modifying the frequency ordering from one radar pulse to the next is that the main 
radar is likely to be less susceptible to interfering FM signals and repeater jammers. 

4) When the radar pulse consists of N frequency bursts, the receiver can be channelized with N channels 
where each channel is tuned to a unique frequency and has a bandwidth equal to Af. This bandwidth is 1/N 
times the total signal processing bandwidth. Therefore, extremely high time-bandwidth products can be 
achieved utilizing receiver components that have instantaneous narrow-band characteristics. 

5) Channelization allows the capability for selective limiting. In a conventional FM receiver using a single 
limiter, strong CW interference anywhere in the total signal bandwidth is likely to capture the FM receiver. 
As a result, the target return signals are suppressed and unlikely to be detected with a preset threshold 
crossing. In a channelized system, CW interference suppresses target returns in only one of the channels. 
Hence, the target signal power is reduced only by a factor of [(N-l)/N]2. If N is greater than 10, CW 
interference can be 20 to 30 dB above the per-channel target signal power without preventing target 
detection in a fixed-threshold system. 

6) Modern technology, employing phase-locked voltage controlled oscillators and digital frequency 
synthesizers, allows for the generation of sophisticated stepped frequency waveforms. In fact, specialized 
stepped-frequency systems have been developed that achieve up to 10 GHz of bandwidth and very large 
time-bandwidth products. 

4.2 The Permutation Matrix [7] 

Frequency-hopped waveforms are conveniently represented by an N><N matrix, denoted by A, for which the N 
rows correspond to the N frequencies and the N columns correspond to the N time intervals during which a burst 
occurs. The entry in the i* row and j* column, designated by ay, is set equal to unity if and only if frequency, fc+fi, 
is transmitted in the time interval tj where i, j =0, 1, ..., (N-l). Otherwise, ay is set equal to zero. The matrix, A, is 
known as the permutation matrix. Because the elements of A take one of two possible values, A is, also, called a 
binary matrix. 
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The binary matrix for a quantized linear FM signal is shown in Figure 4.2. For this case, N=7. A dot in the 
ij* block indicates ay=l whereas a blank indicates a^ = 0. Note that there is only one dot per column and per row. 
This is consistent with the requirement at any given time slot that only one frequency is transmitted and each 
frequency is transmitted only once. 

fc+f6 
* 

fc+f5 
* 

fc+f4 * 

fc+f3 
* 

fc+f2 
* 

fc+f, * 

fc * 

f/t to t, t2 h u t5 t6 

Figure 4.2: Permutation matrix for a stepped frequency linear FM waveform has nonzero entries only along one of the 
diagonals. 

An N*N matrix contains a total of Q=N2 matrix elements. Thus, when the elements are binary, the number 
of different matrices possible is 2Q. However, of these only N! matrices can be obtained by permuting the N 
integers contained between 0 and (N-l). It is for this reason that A is referred to as a permutation matrix. Some of 
these are better than others for designing the signal pattern of a radar waveform. 

When a frequency-hopped signal is reflected from a target and received by an observer, it is shifted in time 
depending upon the range to the target and in frequency depending upon the radial velocity of the target. The 
amounts of these shifts are determined by comparing shifts in both time and frequency of a replica of the transmitted 
waveform with the actual received signal and noting for which combination of time and frequency shifts the 
coincidence is greatest. This may be thought of as counting the number of coincidences between 1 's in the 
permutation matrix A with 1 's in a shifted version of A for which all entries have been shifted r units to the right (r 
is negative if there is a shift to the left) and s units upward (s is negative if there is a shift downward). Let the 
shifted permutation matrix be denoted by A(r,s). 

The number of such coincidences, C(r,s), is the unnormalized autocorrelation between A and A(r,s). C(r,s) 
clearly satisfies the following conditions: 

C(0,0) = N 

0<C(r,s)<N ;   r * 0 and s*0 

(4.7) 

(4.8) 

In addition, because time and frequency are restricted to the intervals t0 < t < t^j and fc < f < fc + f^.^, it follows 
that 

C(r,s) = 0 ;    |r|> N and/or Isl > N (4.9) 

The two-dimensional autocorrelation function, C(r,s), is called the ambiguity function and can be thought 
of as the total coincidence between the actual returning signal and the transmitted signal shifted by r units in time 
and s units in frequency. It is useful to think of the permutation matrix, A, as a two-dimensional template of N2 cells 
which is opaque at the (N2-N) cells where ^=0 and transparent at the N cells where ajj=l. The total signal energy 
emerging through the N transparent windows is summed to give the value of C(r,s) when the template is shifted r 
units on the time axis and s units on the frequency axis. 
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For example, with regard to the permutation matrix shown in Figure 4.2, C(0,0) = 7, C(l,l) = 6, C(2,2) = 5, 
C(3,3) = 4, C(4,4) = 3, C(5,5) = 2, C(6,6) = 1 and C(r,s) = 0 for all other choices of r and s. This yields the well 
known diagonal ridge associated with the linear stepped FM signal. In the real world the returning signal is always 
noisy. For large values of N and a very noisy environment, this signal pattern would be likely to produce spurious 
targets in addition to the ambiguities caused by the ridge. 

For radar applications it is desirable to have an ambiguity function that approaches the ideal thumbtack. In 
this context a good frequency hopping pattern should result in small values for C(r,s) when (r,s) * (0,0). Such 
patterns have been proposed by John Costas [9] and are discussed in the next section. 

4.3 Costas Arrays [9], [10] 

John P. Costas attempted to find those NxN permutation matrices for which 

max C(r,s) = \  . 
(r,s)* (0,0) 

(4.10) 

Such matrices are known as Costas arrays. In addition to radar, the frequency hop patterns associated with Costas 
arrays may be useful in other applications, such as spread spectrum communication systems, where the objective 
may be to achieve either jamming resistance, low probability of intercept, or frequency diversity for a selectively 
fading channel. 

The problem of constructing Costas arrays can be described as: Place N l's in an otherwise null N by N 
matrix such that each row contains a single 1 as does each column. Make the placement such that for all possible 
(r,s) shift combinations of the resulting permutation matrix relative to itself, at most one pair of 1 's will coincide. 

Let M(N) denote the number of Costas arrays that can be generated from the N! (NxN) matrices obtained 
by permuting the N integers contained between 0 and N-l. The density of Costas arrays is defined to be M(N)/N!. 
These values are tabulated in Table 4.1 for 3 < N <12. Although the number of Costas arrays increases with N, the 
density decreases significantly. Thus, a random search by means of a computer program can be rather lengthy. 

An example of a Costas array for N=7 is shown in Figure 4.3. This array corresponds to the particular 
sequence of ordered integers given by 

{0n}={3,6,O,5,4,1,2} (4.11) 

The corresponding ambiguity matrix is shown in Figure 4.4 where the time shift, r, and the frequency shift, s, both 
extend over the integers in the range from -6 to +6. A block of the ambiguity matrix is left blank when C(r,s)=0. 
Note that C(0,0)=7 and that the nonzero values of C(r,s) are equal to unity. 

TABLE 4.1 

NUMBER AND DENSITY OF COSTAS ARRAYS 

N 3 4 5 6 7 8 9 10 11 12 

M(N) 4 12 40 116 200 444 760 2,160 4,368 7,852 

M(N)|N! 0.67 0.5 0.33 0.16 0.04 0.011 2*10'J 6x10"4 lxlO"4 1.6xl<r* 
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*c+f6 
* 

*c+f5 
* 

M * 

« * 

*c+S * 

M * 

fc * 

f/t to tl h h u t5 t6 

Figure 43: The permutation matrix shown is one of 200 possible Costas arrays for N=7. 

The ambiguity matrix is readily constructed from the difference triangle associated with the sequence, {9n}. 
By definition, the element in the i* row and jth column of the difference triangle is determined by 

"i,j ~ ^(i+H)    ^(j-D (4.12) 

where (i+j) < N. 

For example, consider the sequence in Equation (4.11) which generates the Costas array in Figure 4.3. The 
difference triangle is formed by successively considering i=l ,2,3,4,5,6 and, for each i, letting j assume all values 
such that (i+j) < 7. Hence, for i=l and j=l,2,3,4,5,6, we obtain 

6 

5 1 

4 1 1 1 

3 1 1 

2 1 1 1 1 1 

1 1 1 1 1 

0 7 

-1 1 1 1 1 

-2 1 1 1 1 1 

-3 1 1 

-4 1 1 1 

-5 1 

-6 

s/r -6 -5 -4 -3 -2 -1 0 2 3 4 5 • 

Figure 4:4: The ambiguity matrix is shown for the Costas array of Figure 4.3. 
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du =0,-00=6-3 = 3 

d12 =02-0j =0-6 = -6 
du =03-02 =5-0 = 5 

d1>4=04-03=4-5 = -l 

d15=05-04=l-4 = -3 

d,6=06-05 =2-1 = 1 

(4.13) 

Similarly, for i=2 and j=l ,2,3,4,5, there results 

d21=02-0o=O-3 = -3 
d2,2  =03~0l  =5-6 = -l 

d2,3 =04-02 =4-0 = 4 

d2,4 =05-03 =1-5 = -4 

d25 =06-04=2-4 = -2 

(4.14) 

The complete difference triangle is shown in Figure 4.5. 

It can be shown that {6n} yields a Costas array if and only if the difference triangle formed from {6„} has 
no repeated terms in any row. The ambiguity matrix is constructed by recognizing that djj=k indicates that a 1 is to 
be placed in the block of the ambiguity matrix corresponding to r=i and s=k. For example, d^ = -5 implies that a 1 
belongs in the matrix corresponding to r=4 and s= -5. The matrix is completed by recognizing that 

C(r,s) = C(-r-s) . (4.15) 

The number of entries in the difference triangle is (N-l)N/2. Utilizing Equation (4.15), it follows that there are (N- 
1)N 1 's in the ambiguity matrix. 

{6n} = {3, 6, 0,5,4,1,2} 

i\j 1 2 3 4 5 6 

1 3 -6 5 -1 -3 1 

2 -3 -1 4 -4 -2 

3 2 -2 1 -3 

4 1 -5 2 

5 -2 -4 

6 -1 

Figure 4.5: This difference triangle can be used to construct the ambiguity matrix presented in Figure 4.4. 

The ambiguity matrix provides a first-order approximation to the actual ambiguity function because it does 
not account for fractional shifts. A detailed evaluation of the actual ambiguity function for the frequency-hopped 
signal is likely to reveal many more minor peaks and a few peaks whose values are larger than unity. 
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The frequency-hopped signal generated from a Costas array is referred to as a Costas signal. A three- 
dimensional view of the ambiguity function for the Costas signal generated from the Costas array of Figure 4.3 is 
shown in Figure 4.6. The cut along the time shift axis for zero frequency shift is shown in Figure 4.7. Observe that 
the peak value of the ambiguity function has been normalized to unity. 

Figure 4.6: The ambiguity function of the Costas signal generated from the Costas array of Figure 4.3 approximates the shape of 
a thumbtack. 

The plot in Figure 4.6 shows a few peaks reaching a value of 0.29=2/7. However, most peaks reach the expected 
level of 0.143=1/7. The ambiguity matrix does not predict any minor peaks along the time shift axis for zero 
frequency shift. Nevertheless, many minor peaks, most of which are less than or equal to 0.1, are revealed in Figure 
4.7. 

1.0 f— 

0.9 

O.S 

0.7 

O.S 

05 P- 

0.« 

■^ nAnÄMH Jtu*\ A n. ^ ^ 
-7.0    -5.6     -4.2     -2.8    -1.4 2.8       4.2        5.6      7.0 

Figure 4.7: The ambiguity matrix does not predict the minor peaks along the time shift axis for zero frequency shift. 

In summary, the Costas array generates a Costas signal whose ambiguity function approaches the shape of 
the ideal thumbtack. The ratio between the main lobe and the pedestal is approximately N. However, the pedestal is 
not smooth. The ambiguity function has a few peaks higher than predicted by the ambiguity matrix and many dips 
occur at various locations within the pedestal. The pedestal stretches from the origin as far as ± NT in time shift 
and, essentially, as far as ± N/T in frequency shift. The number of major sidelobe peaks predicted from the 
ambiguity matrix is equal to (N-l)N. There are approximately three times as many blanks than 1 's in the ambiguity 
matrix. 

72 



4.4 Ambiguity Function of the Costas Signal [9] 

Without loss of generality, frequency-hopped waveforms can be analyzed in terms of baseband signals by 
considering their complex envelopes. The complex envelope of the frequency-hopped signal, described by 
Equations (4.5) and (4.6) and normalized to have unit energy, is given by 

W,)=XJNT Ip"(,-nT) (416) 

where 

jAe^"',    0<t<T 
I     0 ,        otherwise 

By definition, the energy of fRAD(t) is 

NT NT 

j Ifn^coi'dt = J fRAD(t) f^(t)dt 
o 

NT   N_i N-l 1 «I    N-l N-l 
±-  J   I Pn(t-nT)  Z  P:(t-mt)dt 

A2NT     0     n=0   " " v '    m=0 
NT    fN. 

1 r        N-1 i ,2 
-^—   J     Z P„(t-nT2   dt (4.18) 
A NT     o    I n=0 I 

1 NJ    CN_,   N_] 

,— H Z  Z 
A  NT    0      L.n=0   m=0 

n *m 

+ -?—!  \t   ZpB(t-nT)p;(t-ml)[dt   . 

Note that 

I TN|
2
_J

A2
 '   nT<t<(n + l)T 

[ 0 , otherwise 

Also, because the frequency bursts do not overlap when n*m, 

Pn(t-nT)P;(t-mT) = 0,     n*m. (4.20) 

It follows that 

NT 

1 
0 
J |fRAD(t)|2dt = l    . (4.21) 

Therefore, fRAD(0 has been normalized to have unit energy. 

The delay-Doppler ambiguity function was defined in Equation (2.50) to be 

NT 

J 
0 

%(T,V) = J f^(ff) Wff-T^2"* dff (2.50) 
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where the infinite limits of integration were truncated because of the finite extent of fRAo(t)-   The normalized 
ambiguity function is known to have the following properties: 

|*(T,u)|<n=|#(0,0)|   , (4.22) 

\Z(-T,-V)\ = \Z(T,V)\   , (4.23) 

I    /     \z(T,vf dTdU =1 . (4.24) 
—oo     —oo 

Because of the odd symmetry, indicated by Equation (4.23), it is necessary to consider only nonnegative values of x 
and v. 

Substitution of Equation (4.16) into the expression for the ambiguity function results in 

Z(r,v) = -±— J  Z  Z P>-nT) Pm(<7-T-mT) e*"* da . (4.25) 
A NT -°° n=0 m=0 

Separating the terms in the double summation into those for which n=m and those for which n*m, we obtain 

Z(r,v) = -^— J I   pn{a-nT) pn (a-T-nT) ej2*v° da 

+ -^— I  I  Z   pn{e-nT)pm{o-T-mT)eJ2*v° da        . (4.26) 
A   NT  ~" "=0 ">=0 

Attention is first focused on those terms in Equation (4.26) for which n=m. Make the change of variables 

p = <7-nT   . (4.27) 

The terms for which n=m then become 

1 I1   ^„T   |     pl(p)vAp-T)e^P   dp 
A2NT   "To 

1      Z   L(^)ej2"nT 
(4.28) 

A'N    "To   "» 
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where the autocorrelation function of pn(t) was defined to be 

*,.(*.») = T    I Vl (P) P.(P-T) ej2ff^ dp       . (4.29) 

Now focus on those terms for which n*m.   As before, make use of the change of variables in Equation 
(4.27). Those terms for which n*m then become 

1 N£N£eJ2-nT     J    p-(/7)pJp_T_(m_n)T]ei2^p   dp 

A   NT    n=Om=0 

(4.30) 

— I   I 0nra[r + (m-n)T,u]e^"T 

'N    n=0  m=0 

where the cross-correlation function between pn(t) and pm(t) was defined to be 

«U^) = l    JP:(p)pm(p-T)ejWdp     . (4.31) 
1    -~ 

Combining the results obtained for n=m and n*m, the ambiguity function of Equation (4.26) is expressed 
as 

Z(W) = TL Z I*. (*,»)+E <*nm [r + (m-n)T,ü]   ej2™nT . (4.32) 
AN  n=0 m=0 n=0 

n*m 

The magnitude of the ambiguity function represents the magnitude of the coherent processor response to a pulse 
train arriving with delay, x, and Doppler shift, u. (This assumes that the Doppler shift is approximately unchanged 
over the different frequency hops within the pulse.) As pointed out in Section 4.3, Costas developed his approach of 
frequency-hopped waveforms in an attempt to shape the ambiguity function in the form of a thumbtack. The 
success of this approach depends upon the characteristics of <p„n(T,u) and <Pn,m(T,u)- 

An analytical expression is now obtained for (p„n(T,u). The case for which 0 < x < T is considered first. 

Note that pn (/?) is zero outside the interval [0,T] while pn(p-x) is zero outside the interval [x, x +T]. Since x >0, 
their product is zero outside the interval [x,T]. Substitution of Equation (4.17) into Equation (4.29) then yields, for 0 
< x < T, that 
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^n(T,u) = Ai|e-^f»" e**'-^ ei2xvp dp 
T    r (4.33) 

_ A2 T-T sin[^t>(T-r)]   ^„(T+D^«^] 

T       ^ü(T-r) 

Similarly, for -T < x < 0, the product of p* (/?) and p„(p-x) is zero outside the interval [0, T+T].  For this case 

Equation (4.29) becomes 

j2     T+T 

""To (4 34) 
= A* T + T sin[zv(T + T)] eJ[nv{T+T)-inM 

T 7UV(T + T) 

Finally, since pn(t) is zero outside the interval [0,T], p* (p) and p„(p-x) do not overlap for |x|>T.  It follows that 
(Pnn(T,u) is zero for |x|>T. Combining the above results, the autocorrelation function of p„(t) is given by 

A2 (T-M) sm[7uv(T-\r\)] ^„v(1+ty2^r]      , , <T 

4» (*.*>) =\ T XV(T-\T\) '    " ■      (4-35) 

o ,        |T| >T 

The cross-correlation function between pn(t) and pm(t) is derived in a similar manner. For 0 < x < T 
substitution of Equation (4.17) into Equation (4.31) results in 

nm T       I- 

_ A2 T-7 sin[^anm(T-T)] e_j[waim(T+r)+2^fmT] 
T       xaBm(7-r) 

(4.36) 

where 

Also, for -T < x < 0, we obtain 

2     T+T 

nm To 

= A2   T + T   sin[7r0fnm(T + 7)]  e-j[*«».(T+r)+2)rf.r] 
T ^«„„(T + T) 

(4.38) 

Finally, since both pn(t) and pra(t) are zero outside the interval [0,T], p* (p) and pm(p-x) do not overlap for |T| > T. 
It follows that cp„n,(x,i)) is zero for |x| > T. Combining the above results, the cross-correlation function between pn(t) 
and pm(t) is given by 
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<*nm(7,u) = 

(T-|rj) sin[^gnm(T-|r|)] 

T ;ranm(T-|r|) 
0 

-}[zam(T+T)+2xf„t] T   <T 

|r|>T 

(4.39) 

As required, note that <|>nn,(T,v) reduces to (Pnn(t,u) for n=m. 

With reference to Equation (4.32), it is now shown that the central peak of the ambiguity function is 
associated with the summation involving (pnn(T,u) while the sidelobe responses in the pedestal of the ambiguity 
function are, in the main, associated with the summation involving cpnm[T+(m-n)T,i)]. 

First, consider the T = 0 axis. Along this axis the ambiguity function is given by 

1        N-l 

A'N »=o 

JV-l 

^„(0,u)+Z (j)nm[{m-n)T,v}\e 
m=0 

jljwnT (4.40) 

For n*m, where n and m are integers, observe that 

|(m-n)|T>T     . 

From Equation (4.39), it is concluded that 

</>nm[(m-n)T,v] = 0 ,      n*m     . 

Consequently, Equation (4.40) simplifies to 

X(0,v) = -^-    Z^(0,ü)  ej2-nT     . 
AN     "=o 

(4.41) 

(4.42) 

(4.43) 

However, from Equation (4.35), 

It follows that 

#.<o.»)=A'*(iL^neJ..T 

J(0,ü) = Sin( * "_T)   ej*"T   Z1  ei2*"*7 

/rt>NT 

_   gjTtiNT sin (TU v NT ) 

where use was made of the result that 

(4.44) 

(4.45) 

N-l                                  jlnvNT   _ -i 
y        jlnvnT   _ £ l_ 

n=0 e —   1 

eiKvm  sinjxvNT) 

einvT     sm(nvT) 

(4.46) 
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Observe that 

*(0,0) = 1 (4.47) 

and that the first zeros of %(0,v) occur for 

V = ± 
NT 

(4.48) 

As a result, the Doppler resolution of the N-pulse frequency-hopped signal is identical to that of a CW pulse of 
duration NT. 

Costas [9] introduces the normalized frequency variable 

y = vT   . (4.49) 

Since the frequency channel spacing is 1/T, as determined by Equation (4.2), y is a measure of frequency in units of 
frequency-hop spacing. The ambiguity function along the T = 0 axis can now be expressed as 

#(0,y) = e 
_   i,rNy    sin(7T Ny) 

^Ny 
(4.50) 

for which the first zeros are given by 

y = ± 
N 

(4.51) 

The ambiguity function along the D=0 axis is considered next. From Equation (4.32) 

1 N-l 

AN     n=0 

N-l 

<L(r,0)+  I <*L [T+(m-n)T,0] 
m=0 

(4.52) 

The summation involving the cross-correlation terms can no longer be ignored.  However, we first concentrate on 
the contribution by the autocorrelation terms alone. For this purpose, define 

AN      "=0 
(4.53) 

From Equation (4.35) 

<U',o) 
A2£T—M) e_j2,f„r       j, 

= < T 'II 

0 k >T 
(4.54) 

With reference to Equation (4.4), it follows that 
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e„z (T-H) N-i    _j2^^ 
^'(7,0) = -^^ I   e      T  ,|T|<T 

NT        n=0 
(4.55) 

Because the sequence of integers in the set, {0n}, consists of all integers between 0 and (N-l) and each integer 
appears only once, the ordering of terms in the summation of Equation (4.55) is inconsequential. Therefore, the 
summation can be written as 

N-l      -j2^^-r      NM      -j2^-T 
Z  e       T   =1  e      T 

n=0 n=0 

T       _ 1 

N 

-jilt — T 
= e ■i-(¥>"TTl 

-1 sin 7C—T 
I   T  J 

(4.56) 

It follows that 

(T-ld)     -J.(*i) 
• f   N 

N-,^1      sin n—T 

N sin (   1   "l 
V   T J 

.  M^T (4.57) 

Observe from Equation (4.54) that <pnn(t,0)=0 for |x| > T. Hence, 

X'(T,0) = 0  , Id >T (4.58) 

It is seen that the t-axis response beyond |x| = T is entirely due to the summation over the cross-correlation terms in 
Equation (4.52). 

Costas [9] introduces the normalized delay variable 

r 
x = — 

T 
(4.59) 

Since each subpulse is of width, T, x is a measure of delay in units of subpulse width. Note that   | T | <T implies |x| 
<1. For this case x'( T,0) becomes 

*'(x,0) = (l-|x|)e-*<»-«-   J2I&N2)    Hs,   . 
N sin(^xj 

(4.60) 

Observe that 

*'(0,0) = 1 (4.61) 

79 



Since Equation (4.22) is, also, valid, it can be deduced from Equation (4.61) that the cross-correlation terms 
do not contribute to the ambiguity function at the origin. The first zeros of x'( x,0) to either side of the origin occur 
at 

X = ± — (4.62) 
N 

or, equivalently, at 

,   T 
T = ±—    . (4.63) 

N 

This is a measure of the delay resolution for the Costas signal. 

It is of interest to evaluate the Doppler and delay resolutions in terms of the time-bandwidth product of the 
frequency-hopped pulse. The duration of this pulse is 

Td = NT    . (4.64) 

Because each subpulse is of duration T, the subpulse bandwidth is approximately 1/T. In addition, the frequency 
hops span a frequency range of extent equal to NAf = N/T. Thus, the bandwidth of the frequency-hopped pulse is 
approximately 

N 
BW = —  . (4.65) 

T 

As a result, the time-bandwidth product of the Costas signal is approximately 

Td(BW) = (NT)(y) = N2   . (4.66) 

(BW) _  1_ _   1 
Note that -—H1 = =  (4.67) 

N2       T„      NT 

while 

Td   _    1 
N2     BW     N 

(4.68) 

Recall that the Doppler resolution, from Equation (4.48), is 1/(NT) and the delay resolution, from Equation (4.63), is 
T/N. Therefore, the compression ratio for the Costas signal is N2 in both the Doppler and delay domains. 

The cross-correlation terms in Equation (4.52) are now examined.  For x = 0 note that 

<Pnm[T+(m-n)T,0] becomes (^[(m-n^.O]. Because n#m, |(m-n)T| > T. It follows from Equation (4.39) that. 
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0nm[(m-n)T,O] = O,      n*m (4.69) 

This is consistent with the observation, previously pointed out, that the cross-correlation terms do not contribute to 
the central peak of the ambiguity function at T = v = 0. 

With reference to Equation (4.39), note that (p^rKm-n)!,*)] is not identically zero only over the range of 
T governed by 

|r+(m-n)T <T (4.70) 

This inequality can be rewritten as 

or, equivalently, as 

-T<T+(m-n)T<T 

-T-(m-n)T<r<T-(m-n)T    . 

(4.71) 

(4.72) 

Hence, along the T-axis, (p^l^Km-n^O] spans an interval of length 2T centered at -(m-n)T. Since n^m in the 
summation over m in Equation (4.52), the interval given by - T < T < T is excluded. Nevertheless, for a fixed value 
of n and values of m that differ by unity, the corresponding cross-correlation terms do have intervals that overlap. 
The overlapping of these terms produces reinforcement and cancellation effects which are quite complex because of 
the amplitude and phase relationships involved. It is difficult to predict the exact peak values of the sidelobes. 
However, they are expected to be on the order of 1/N, as suggested by the relevant Costas array. 

From Equations (4.4) and (4.37) note that 

a    =f -fm-V = fLJ2.-V (4.73) 

For |r+(m - n)T|<T , use of Equation (4.73) in Equation (4.39) yields 

.       , (T-|T+(m-n)T|) 

sin[tf (-s =- -v) (T - \t+(m - n)T|) ] 

71 (9n   $m - v) (T-|r+(m-n)T|) 

Consider the case for which 

T = (n-m)T    . 

Then the magnitude in Equation (4.74) becomes 

(4.74) 

(4.75) 
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|*L(0,v)| = A2 
sin it 

e-e„ 
V 

K _5 m    _v    T 

Now let 

r 
i> = — 

T 

where r is any integer. Equation (4.76) can then he expressed as 

A 2    siny? 

where 

ß =tt 

tm(o,-) 

e-e„-x 

ß 

1  = K(On-Om-T) 

(4.76) 

(4.77) 

(4.78) 

(4.79) 

Because (ön-öm-r) is an integer, it follows that 

«Uo,-) [O ,     r*0D-0m 

Therefore, (j)nm [T + (m — n)T, V] attains its peak value of A2 for values of T and v given by 

6 —6 
T. =(n-m)T and v. =-* ^ . 

(4.80) 

(4.81) 

Defining 

L= n-m , 

Xp and Up can be rewritten as 

r„ = LT and vn = p p y 
_ ftn+L ~^m   _ "L,m+1 

(4.82) 

(4.83) 

where dL>m+i is the difference given by Equation (4.12). Consequently, the frequencies at which the cross- 
correlation terms peak, for a specified value of L, can be obtained from the difference triangle of Section 4.3. These 
peak positions are, also, reflected in the corresponding Costas array.   Although the actual peak values of the 
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sidelobes in the pedestal are difficult to predict, they are expected to be small relative to the central peak. This is 
illustrated in the following examples. 

The examples are based on an N=10 and an N=30 Costas array. For N=10, the firing order is given by the 
sequence of ordered integers in the set 

{0D} = {1,3, 7, 4, 9, 8, 6, 2, 5,0}. (4.84) 

For N=30, the firing order is determined from the set 

,   , _ (2, 8, 26,18, 25,15,16,19, 28, 24,12, 7, 23, 9, 29, 1 
^ n'~ [27, 21, 3,11, 4,14,13,10,1,5,17, 22, 6, 20,0       ]' 

They are referred to as Welch-codes because they can be constructed from a theorem proposed by L. R. Welch [11]. 

Various views of the ambiguity surface for the 10-pulse Welch code are shown in Figure 4.8 [9]. 

I j(x, y)| is plotted where x and y are the normalized variables of Equations (4.59) and (4.49), respectively.  In 

Figure 4.8(a) observe that the density of peaks increases towards the origin, as predicted by the difference triangle 
and the ambiguity matrix for the Costas array. A different perspective of the ambiguity surface is shown in Figure 
4.8(b). Note that sidelobe peaks far from the origin remain below the 1/N level. However, those near the origin 
tend to have their values above the 1/N level due to the overlapping of the cross-correlation terms. Nevertheless, 
most peaks remain below the 2/N level. 

(b) 

" 
" 

5 ' 

| , 

. OS to an*»«- 

" 
* 

i; 
I; 

i 

1 a JYL. n M W n /-v 
NORMUJZED FMCMNCT 

(c) 

HCRMN.IZEO OS1AV 

(1) 

L^ 

Figure 4.8: Various views of the ambiguity surface for the 10-pulse Welch code are shown: (a) an overview, (b) a different 
perspective, (c) Doppler response for x=0, (d) delay response for y=0, (e) pedestal region near the highest sidelobe peak. 
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The Doppler frequency response for x=0 is shown in Figure 4.8(c).   As predicted by Equation (4.50), a 

sin(/T N y) / 7Z N y | behavior is seen with the zero of the main lobe occurring at y=0.1=l/N. The delay response 

for y=0 is shown in Figure 4.8(d). From x=0 to x=l the |sin(^Nx) /Nsin(;r x)| behavior, as noted in 

Equation (4.60), is seen. Beyond x=l, the q>nn(x,0) terms vanish and only the <|>nm(x,0) cross-correlation terms 

contribute to the ambiguity function. As predicted by Equations (4.75) and (4.80), observe that hjf(x,0) = 0 for 

all integer values of x. 

The largest sidelobe peak, due to overlapping of cross-correlation terms, was found to have a value of 0.21. 

Because N=10, a single cross-correlation term would result in a sidelobe peak of height 0.1. Thus, the largest 

sidelobe peak has a value which is 2.1 times larger than would be expected from a single cross-correlation term. 

The general neighborhood of the largest sidelobe peak is shown in Figure 4.8(e). The phasing and overlap of the 

cross-correlation terms are seen to produce isolated peaks approximately twice the 1/N value predicted by the Costas 

array. 

Various views of the ambiguity surface for the 30-pulse Welch code are shown in Figure 4.9 [9]. As was 
done with Figure 4.8, |j)f(x, y)   is plotted where x and y are the normalized variables of Equations (4.59) and 

(4.49), respectively. Pedestal spiking above 1/N is evident near the main peak of Figure 4.9(a). However, away 

from the main peak, most of the sidelobes have peak values approximately equal to 1/N. The largest pedestal peaks 

are on the order of 2/N. Clearly, the pedestal peaks can be reduced by increasing the value of N. 

Figure 4.9(b) shows a plot of bf(x, y)  where values are evaluated only at integer values of x and y. As 

would be expected from Equations (4.75) and (4.80), the pedestal region of the ambiguity surface is either zero or 

1/N depending upon whether or not there is a cross-correlation peak. The peaks of the individual cross-correlation 

terms are clearly displayed by this artifice. However, note that triangles indicate isolated peaks while the flat-topped 

sections indicate two or more frequency-adjacent peaks. The density of peaks is seen to increase near the main lobe, 

as predicted by the ambiguity matrix for the corresponding Costas array. 
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Figure 4.9: Various views of the ambiguity surface for the 30-pulse Welch code are shown: (a) an overview, (b) plot using only 
integer values for x and y, (c) Doppler response at x=0, (d) delay response at y=0, (e) complete delay axis response, (f) Doppler 
response at x=25, (g) Doppler response at x=5, (h) Doppler response at x=1.4, (i) pedestal region near the highest sidelobe peak. 
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The Doppler response at x=0 is shown in Figure 4.9 (c) for values of y between 0 and 1. As was the case 

with Figure 4.8(c), the behavior is of the form sin(/T N y) / K N y |. As expected, the first zero of the main lobe 

occurs at y=0.0333=l/30. The delay axis response at y=0 is shown in Figure 4.9(d) for values of x between 0 and 1. 

As with Figure 4.8(d), the behavior is dictated by Equation (4.60). Consequently, the first zero appears in the 

vicinity of x=l/30. The complete positive delay axis for y=0 is shown in Figure 4.9(e). The main peak is hard to 

see because of the scale chosen for the x-axis. However, this choice of scale clearly demonstrates that the sidelobes 

are very well behaved with relatively few excursions above the 1/N value. 

Figure 4.9(f) is a frequency cut taken at a delay of x=25. With reference to the set of ordered integers in 
Equation (4.85), the 25th row of the difference triangle is given by 

d25,j = 02S+H -0J-! (4-86) 

where j assumes all positive integer values such that 

25 + j < 30  . (4.87) 

As a result, 

d25>1=025-0o = 17-2=15 

d25,2 =026-01 = 22-8=14 
d 25,3 =027-62 = 6-26= -20 (4.88) 

d25,4 =028-03 = 20-18=2 

d25,5   = 029 -04 = 0 ~ 25 = -25      . 

Recall from the discussion of the difference triangle in Section 4.3 that dy=k implies a peak at x=i and y=k. 
Therefore, for the frequency cut at x=25, peaks are predicted at y= -25, -20, 2, 14, and 15. These sidelobe peaks are 
clearly seen in Figure 4.9(f). Observe that the isolated cross-correlation terms have their peak values equal to 
1/N=0.0333. However, the two peaks at y=14,15 experience mutual interference effects that result in a wider peak 
whose magnitude exceeds 1/N but is less than 2/N. 

A frequency cut for x=5 is shown in Figure 4.9(g). Because this is closer to the main peak at the origin, 
many more sidelobes appear than was the case for x=25. Near the center of this plot the mutual interference effects 
due to groups of frequency-adjacent cross-correlation peaks are clearly evident. The largest peak values are 
approximately equal to 2/N. 

The largest peak in the pedestal region was found to be at x=l .4 and had a value equal to 0.078 which is 
2.34 times the 1/N value of 0.0333. Figure 4.9(h) shows a frequency cut at this delay with the largest peak occurring 
near y=3. The ambiguity surface for the region near the pedestal highest peak is shown in Figure 4.9(i). The rapid 
undulations of this surface are to be compared with the comparable surface in Figure 4.8(e). Note, also, the lower 
level of the surface for N=30 as compared to that for N=l 0. Increasing N from 10 to 30 has increased both the range 
and Doppler resolution by a factor of 3 and has lowered the pedestal region by about the same factor. 
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An advantage of frequency-hopped waveforms is their flexibility with regard to ordering of the frequency 
steps. For some radar applications it may be more desirable to have a lower pedestal than the thumbtack shape 
approximated by the Costas signal. Figure 4.10 shows the ambiguity surface of a 10-pulse frequency stepped linear 
FM signal having spacings equal to 1/T. The classic FM ridge is clearly in evidence and contains most of the 
volume under the surface. Comparison of this surface with that shown in Figure 4.8(a), which was, also, for a 10- 
pulse burst, reveals the much lower pedestal of the linear FM waveform. Although this is an advantage, there is 
potential for considerable ambiguity due to the ridge and nearby sidelobe structure. 

-5.00 -3.33        -1.67 0.00 1.07 

NORMALIZED FREQUENCY 

Figure 4.10: The ambiguity surface is shown for a 10-pulse frequency stepped linear FM signal with spacing equal to 1/T. 
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CHAPTER 5 

AN INTERFEROMETER WAVEFORM EMPLOYING ORTHOGONAL 

FREQUENCY DIVISION MULTIPLEXING 

5.1   Orthogonal Frequency Division Multiplexing [12] 

5.1.1      Overview of OFDM 

Orthogonal frequency division multiplexing (OFDM) is a modulation technique that has been proposed 
recently for use in broad-band mobile multimedia applications. Because frequency-selective and time-variant 
channels are typically encountered in these applications, channel equalization must be incorporated to achieve an 
acceptable level of performance. The quality of service is usually measured in terms of data rate and bit error rate. 

Fading channels can be frequency selective when multipath propagation is experienced and can become 
time-variant when the transmitter and/or receiver are in motion. The computational requirements for an equalizer to 
be used to compensate for a frequency-selective channel increases in complexity with the data rate. Furthermore, 
the system resources (or overhead) needed for the estimation of time-variant channel parameters can be 
considerable. 

To overcome these drawbacks OFDM has been considered for high data-rate applications. In effect, OFDM 
divides the radio channel into many narrowband subchannels which appear to be frequency nonselective. Thus, the 
task of channel equalization is simplified to estimating a single complex factor (or transfer function) for each 
subcarrier. Such a channel estimation can be realized by inserting pilot symbols with known modulation into the 
transmitted signal. Based on these pilot symbols the receiver can measure the channel transfer functions for each 
subcarrier using interpolation techniques. In this case, each subcarrier can be demodulated coherently. 

Alternatively, differential modulation can be performed in a manner similar to that used with M-ary 
differential phase shift keying (M-DPSK). With OFDM this has been extended for multi-level modulation to a 
combined differential amplitude and phase modulation in order to achieve a higher bandwidth efficiency and still 
rather good performance. This modulation technique is termed differential amplitude and phase shift keying 
(DAPSK). The performance of OFDM systems with differential modulation compares quite well with systems 
using nondifferential modulation and coherent demodulation. Furthermore, the computational complexity in the 
demodulation process is quite low for differential modulation. 

Channel coding is an important ingredient for OFDM systems. Transmission over a frequency-selective 
channel implies that some of the subcarriers are strongly attenuated and errors occur even with a high average signal 
power. In this flat fading situation an efficient channel coding leads to a very high coding gain. For this reason, 
OFDM systems will always make use of channel coding. 

Also, apart from simplifying the channel equalization with respect to single carrier systems, OFDM offers 
more possibilities to adapt the transmission system to the communications channel by varying the modulation of the 
subcarriers. However, an optimal adaptation is limited to quasistationary channels. 

As compared to single carrier systems, the most important advantage of the OFDM transmission technique 
is obtained in frequency selective channels. The signal processing in the receiver is rather simple in this case 
because, after transmission over the communications channel, the orthogonality of the OFDM subcarriers is 
maintained and the channel interference effect is reduced to a multiplication of each subcarrier by a complex factor. 
Therefore, equalizing the signal is very simple, whereas equalization may not be feasible in the case of single carrier 
transmission covering the same bandwidth. 
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5.1.2      OFDM Signal Characterization 

As was done in Section 4.4, the discussion is carried out at baseband through the use of complex envelopes. 
OFDM was chosen for the interferometer signal because it can be made to closely resemble the Costas signal 
selected in Chapter 4 for the radar waveform. This should greatly enhance the ability of the interferometer signal to 
mask the radar signal transmitted through the sidelobes of the main radar. 

In general, an OFDM signal consists of M subcarriers, each of duration Ts The baseband frequencies of the 
subcarriers are given by 

s 

Consequently, their spacing is 

m + l      m 
4/    — J m+l      Jm   ~ T        T s s 

=— ;   /w=0, 1, ..., (M-l) 
(5.2) 

When Ts =T and M=N, the OFDM signal frequencies are identical to those used with the Costas signal. 

The m* subcarrier signal is described analytically by 

B emfmt ,        0 < / <  Ts 

£m(0 (5.3) 
0 ,     otherwise 

Each subcarrier can be modulated independently with the complex modulation symbol, Sk,m, where k refers to time 
and m refers to the subcarrier frequency. Thus, the k* OFDM block extending over the interval [k Ts, (k+l)TJ is 
characterized by 

M-l 

Sk(t)= ISM  gB(t-kT.). (5.4) 
m=0 

The total interferometer signal, consisting of K OFDM blocks is given by 

K-l K-l     M-l 

sIFM(t)= Zsk(t)=Z    Z     Sk,m gm(t-kT.) . (5.5) 

The energy of the interferometer signal is 

KTS 2 KTS 

EIFM = / ISIFMO)!   dt= / sIFM(t)s;FM(t)dt 
0 

K
JE      fK-l   M-l 1     fK-l   M-l      , ] 

=  I      I   Z  Sk>m gm(t-kTs)      Z   Z Si>D gB(t-/r,)   dt 
0       I k=0   m=0 J     l/=0    n=0 J 

(5.6) 

Because the OFDM blocks do not overlap when k*£, 

gm(t-kTs)g;(t-^Ts) = 0,k^   . (5.7) 

Consequently, the expression for EIFM simplifies to 
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K-l    M-l M-l (k+J)T, 
EIFM = Z   Z   Z  Sk,m Sk,n    J     gm(t-kTs) gn(t-kTs) dt . (5.8) 

k=0   m=u n=u kls 

However, through direct integration, it is readily shown that all subcarriers are mutually orthogonal over the time 
intervals [kTs, (k+l)Ts] fork=0,1, ..., (K-l). In particular, 

(k+l)T. 

I    gm(t-kTs)g*n(t-kTs)dt 
kT5 

(k+l)T8 

=   B2    I    ej2*fm(,~kTs) e"j2;rfn(,"kTs) dt (5.9) 
kT„ 

JB2TS     ,          m = n 
[ 0       ,    otherwise 

follows that 

V EIFM 

K-l  M-l .        l2 

= B2TS   E   IJsJ 
k=0   m=0 '          ' 

(5.10) 

However, in general, the modulation symbols are selected randomly depending upon the data to be transmitted. 
I       I2 

Assuming stationarity such that the statistical average of Sk m    is constant independent of k and m, let 

0-s=E[|Sk,m|2] (5.H) 

where E[] denotes the expectation operator. The average energy of the interferometer signal is then given by 

E{EIFM}=KM<72B2TS . (5.12) 

The normalized interferometer signal with unit average energy is, therefore, 

f™(t) = ;/Efc>s™(,) 

1 K-l     M-l 

—4==  Z    Z   Sk,mgra(t-kTs) 
B<7S>/KMTS   

k=0  m=0 

(5.13) 

5.1 J      OFDM Signal Recovery Employing a Guard Interval 

As shown in Equation (5.9), all subcarriers are mutually orthogonal over the time intervals given by [kTs, 
(k+l)Ts] where k=0, 1, ..., (K-l). This orthogonality enables the employment of correlation to recover the 
modulation symbols, S^. Specifically, for the k* OFDM block, note that 
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BX    CT. 

(k+l)Ts 

I     sk(t)g*m(t-kTs)dt 

1      (k+l)Ts     rM-i h)Ts     fM-1 ] 
J Z Sk>n gn(t -kTs)    §:(t-kTs)dt (5.14) 
-T8 (n=0 J B^TS    CT8 

= Sk>m 

where use was made of Equation (5.9). 

In practice, a guard interval is added to the subcarrier signal in order to avoid intersymbol interference 
which may arise in multipath channels. Let the length of the guard interval be denoted by Tg. The total OFDM 
block duration is now equal to 

T = Tg+Ts   . (5.15) 

The m* subcarrier is redefined by 

JB ej2*f-' ,   -Tg<t<Ts 

[O ,      otherwise 

where, even with the increase in block duration, the subcarrier frequencies are still determined from Equation (5.1). 
Because the symbol duration is T, Equation (5.4) and (5.5) are modified such that 

M-l 

sk(t)= Z Sk>m gm(t-kT) (5.17) 

and 

K-l K-l     M-l 

Z sk(t) = Z    Z 
k=0     K k=0    m=0 

siFM(t) = £ sk(t) = £   _Z     Skm  gm(t-kT) . (5.18) 

The guard interval is removed at the receiver and only the time intervals [kT, (k+l)T-Tg], where k=0, 1, ..., 
(K-l), are actually processed. As a result, the guard interval in the k,h block is a pure system overhead. Observe that 
each processing interval is of length 

(k + 1)T - Tg -kT = T -Tg = Ts     . (5.19) 

Consequently the orthogonality of Equation (5.9) is maintained and 

j (k+l)T-Tg 

Sk>m = -^T    ■/       Sk(t)g*m(t-kT)dt   . (5.20) 

Assuming the guard interval length is larger than xm, the maximum channel delay, no intersymbol 
interference will occur. This is illustrated in Figure 5.1. Note that the message portion of the maximally delayed k* 
symbol block, arising from multipath, does not overlap the message portion of the direct path's (k+l)"1 symbol block 
since Tg > tm. Thus, there is no intersymbol interference between consecutive symbol blocks. However, the 
message portion of the maximally delayed k* symbol block does overlap the message portion of the kA symbol 
block in the direct path. This results in fading which is compensated for by channel equalization. 
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I I I I 
I     Qa-iy Symbol |        k* Symbol |      (k+1)* Symbol       | 
| Block | Block | Block | 

u.Guard ^.Message ^^.Guard ^.Message ^^.Guard ^Message +| 
i  Portion I  Portion     i   Portion i   Portion     |   Portion |   Portion     |  

(k-l)T-Tg (k-l)T kT-Tg kT (k+l)T-T,      (k+l)T (k+2)T-Tg      t 

(a) 

|      (k-1)* Symbol        | k* Symbol |      (k+l)tb Symbol 
I Block | Block | Block 

u_Guard >i< Message _>j^_Guard .^.Message ^i^Guard +j^. 
■   Portion I   Portion     i  Portion |   Portion     |   Portion  |  -> 

(k-l)T-T, + Tm    (k-l)T + Tm      kT-Tg + Tm    kT + Tm    (k+l)T-Tg + Xm    (k+l)T + T„ t 

(b) 

Figure 5.1: The guard and message intervals are shown for (a) the direct path signal and (b) the maximally delayed multipath 
signal. 

5.1.4      Use of Fast Fourier Transform in OFDM Implementation 

OFDM is, in effect, a parallel system. A principal objection to the use of parallel systems is the complexity 
of the equipment'(filters, modulators, etc.) required to implement the system. However, the modulation and 
demodulation processes involved with OFDM can be implemented in the digital signal processing parts of the 
transmitter and receiver employing Fast Fourier Transform techniques. This is discussed next. 

From Equations (5.16) and (5.17) the k* OFDM block is given by 

M-l 
sk(t) =  X  BSk,m ej2*Ut-kT) . (5-21) 

Although the above expression is valid for 

kT-T   < t < (k + l)T -T   , (5-22) 
g 

the message portion extends only over the interval 

kT < t < (k + l)T -T    , (5.23) 

as illustrated in Figure 5.1(a).  An estimate of the Nyquist sampling rate for the k,h OFDM block is obtained by 
approximating its spectrum. 
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The spectrum of the m"1 subcarrier is 

T 

Gm(f)= I gra(t) e-j2*ft dt =   J   Bej2*(f-f)tdt 

j2tf(fm-f)Ts _     -j2^(fm-f)Tg 

=   B  (5.24) 
J2*(fm-f) 

BT e^*^"0^   sin^T(f-fJ] 
*T(f-fm) 

Observe that the first zeros in the spectral main lobe occur at f = fm ± 1/T where T > Ts. Therefore, the width of the 
main lobe is 2/T. As noted by Equation (5.2), the subcarriers are spaced in frequency according to Af = 1/TS. 
Consequently, for M » 2, the bandwidth of each OFDM block is approximately 

BW=MAf = — . (5.25) 
Ts 

This corresponds to the bandwidth of the bandpass transmitted signal. The baseband bandwidth is half of that. 
Doubling the baseband bandwidth to obtain the Nyquist sampling rate, it follows that the Nyquist rate is 

f, = BW = M . (5.26) 

Let sk(t) be sampled only over the message portion of the k* OFDM block. Since the time spacing between 
the samples is 

1       T 
Ats=-=-J, (5.27) 

fs       M 

M samples are required to cover the message portion of the k"1 block. The sampling instants are given by 

tj =kT + iAts =kT + -^-2- ;  i =0,1,..., (M-l)  . (5.28) 
M 

With reference to Equation (5.21), the i* sample of sk(t) becomes 

MM^^B I Sk,me       l      M      J 

, -, (5-29) 
M-l j2*^    ii M-l j2jr»i 

= BZSk,me    T»lMj=B Z Sk>me    M      . 
m=0 m=0 

It follows that the M time samples (i=0, 1, ..., (M-l)) can be generated by performing the inverse discrete Fourier 
transform (IDFT) of the M modulation symbols of the k* OFDM block, S^, where m=0, 1, ..., (M-l). Of course, 
fast Fourier transform techniques can be used to implement the IDFT. This provides significant simplification for 
the transmitter. Given the M time samples, sk(t) is readily generated using the usual reconstruction techniques based 
upon the sampling theorem. sk(t) is then used to modulate a carrier waveform at the desired carrier frequency. 
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At the receiver the modulated carrier is converted to baseband in 
then sampled to generate the M time samples sk_i = sk(t;) where i=0, 1, ... 
recovered by utilizing the discrete Fourier transform (DFT) such that 

the usual way to produce sk(t).  sk(t) is 
(M-1). The message symbols are then 

I      M-1                -j2ff^-m 

k-m     B   i=0 (5.30) 

As with the transmitter, fast Fourier transform techniques can be used to 
simplifies implementation of the receiver. 

implement the DFT.  This considerably 

When the subcarrier spacing, Af, is designed to be much smaller than the channel coherence bandwidth and 
the symbol duration T is much smaller than the channel coherence time, the channel transfer function, H(f,t), can be 
approximated by a complex constant within the bandwidth of each subcarrier signal and the duration of each 
modulation symbol. In such a situation, the effect of the radio channel is a simple multiplication of each subcarrier 
signal, Siyn gra(t-kT), by the complex transfer constant, H^ = H(mAf, kT). 

As a result, the k'h OFDM block results in the received signal 

M-1 

rk(t)= S Sk>mHk>mgm(t-kT) + nk(t) 
m=0 

(5.31) 

where nk(t) denotes the additive noise. As illustrated in Figure 5.1, intersymbol interference is avoided provided the 
guard interval length, Tg, is larger than the maximum multipath delay, xm.  Therefore, correlation can be used to 
recover the separate symbols associated with each subcarrier. Specifically, 

1        (k+l)T-T, 

R-=i^r I rk(t)8»(t_kT)dt' (5.32) 

Alternatively, the DFT could be used. During the k* block time interval, 

kT-Tg <t<(k + l)T-Tg , (5.22) 

the received waveform is 

M-1 

rt(t)=ISk,fflHMBew-kI»+nt(t) . 
m=0 

(5.33) 

Sampling rk(t) at the M sampling instants specified by Equation (5.28), yields the M time samples 

M-1                                     j2*ii 
rk(t,)=B  2  SkmHkim e    "  +nk(t,) . 

m=0 
(5.34) 

Application of the DFT to these M time samples generates 

1     M-1                      -j2*—m 

Rkm = - Zrk(ti) e     M k,m
       B   i=0 (5.35) 

-  \,m "k,m +Nk)m 

where 
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1     M-l -j2w—m 

Nk,m = - .Snk(ti)e      M 
B  ,=0 

denotes the scaled additive noise Fourier coefficients. 

(5.36) 

The above detection schemes imply perfect synchronization at the receiver. Time and frequency 
synchronization errors disturb the orthogonality of the subcarriers which can considerably impair performance. 

A general block diagram of the OFDM communication system discussed above is shown in Figure 5.2. 
The S/P and P/S blocks indicate serial-to-parallel and parallel-to-serial encoders, respectively. IFFT and FFT refer 
to the inverse fast Fourier and fast Fourier transforms, respectively. The bit interleaver is used to scramble the bits 
so as to mitigate error bursts. In addition, convolutional encoding, which is readily decoded by the Viterbi 
algorithm, is performed on the data. 

Data Convolutional 
Encoder 

Data Viterbi 
Decoder 

Bit 
Deinteneaver Demodulator 

Channel 

'' 

• 
-FFT 

-Guard 

Channel Estimation 

Figure 5.2: An ODFM communication system typically employs fast Fourier transform techniques, coding, and channel 
estimation. 

5.1.5      Modulation and Demodulation Without Differential Encoding 

As mentioned in Section 5.1.2, each subcarrier can be modulated independently with the complex 
modulation symbol, S^. Generally, this complex value is generated using multilevel signaling whereby a sequence 
of p binary bits is mapped into one of 2P possible symbols. 

If no differential encoding is applied, the data bits to be transmitted are directly mapped to the modulation 
symbols, Sk,m. M-ary phase-shift keying (MPSK) and M-ary quadrature amplitude modulation (MQAM) are 
examples of this modulation technique. 

Coherent demodulation has to be applied when nondifferential modulation is used in the transmitter. 
Typically, this means that the mixer in the receiver is synchronized in both frequency and phase with the carrier 
frequency of the received signal. However, in the case of an OFDM transmission system, each subcarrier has to be 
synchronized in both frequency and phase. Also, if any kind of amplitude modulation, such as MQAM, is used in 
the transmitter, the attenuation of each subcarrier must be known. 

To generate this information in the receiver, channel estimation needs to be performed which provides 

estimates, Hkm, of the channel transfer constants. Given 

Rk>m = Sk,m Hk,m + N k,m   » (5.35) 
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the decision is based on the statistic 

D^m=^-L = ^Skm+^   . (5.37) 
"k.m nk,m nk,m 

Sk m, an estimate of the transmitted signal, is determined by noting the region of the decision space containing 

'k,m Dk    . This decision procedure is indicated by 

Sk,m=dec{D^m}  . (5.38) 

The estimate, Hk m, is obtained by using known pilot symbols which are inserted into the OFDM signal 

before transmission. The first step for the receiver is to extract the transfer constants at those times and frequencies 
at which the pilot symbols were transmitted. Interpolation is then used to estimate the transfer constants 
corresponding to particular values of k and m. 

5.1.6      Modulation and Demodulation With Differential Encoding 

Differential encoding for narrowband channels means that the transmitted information is contained in the 
quotient of two successive modulation symbols. Therefore, the data bits to be transmitted are not mapped directly 
to the modulation symbols, S^. Instead the quotient of two successively transmitted modulation symbols is 
designed to contain the data bit information. 

This technique can be applied either with respect to time or frequency. In the time direction the operation 
of differential encoding is described analytically by 

Sk,m=Sk_1;mXCk)m (5.39) 

where the p binary bits are first used to determine C^m. S^m is then determined by carrying out the product between 
C^m and Sk.i>m. Alternatively, differential encoding in the frequency direction is summarized by the product 

Sk>m=Sk>m.IxCk>Ill  . (5.40) 

As before, the p binary bits are first used to determine Ck,m. S^m is then calculated from the product. 

In both cases the coherence time and coherence bandwidth of the channel need to be large compared to the 
symbol duration and subcarrier spacing, respectively, to ensure that the corresponding channel transfer constants, 
Hk,ra> are adequate measures of the channel behavior. Cases are encountered in communication systems where 
differential encoding in the frequency direction has some advantages with respect to the system overhead needed to 
monitor the channel. 

The topic of demodulation is now discussed. For this purpose, only differential encoding in the time 
direction is considered. When differential encoding is employed in the transmitter, demodulation at the receiver can 
be carried out noncoherently. From Equation (5.35) Rk,m and Rk-i,m are given by 

Rk,m  = Sk,m  Hk,m  + Nk,m  > 

^■k-l.m  = ^k-l.m  Hk_lm  + Nk_lm 

Employing Equation (5.39) in the expression for R^, there results 

Rk,m =Sk_1>m Ck>m Hkm + Nkm      . (5.42) 

The quotient of Rk,m and Rk-i,m yields the statistic 
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Dnc   = 
R k,m ^k-l,m ^k.m "k,m   + ^ k,m 

^■k-l,m ^k-l,m "k-l,m   "*" ^k-1.: 

^k-l.tn ^k,m  "k,m 1 +                 NM1 

c,m 

^k-l,m    "k-l,m 1 +           Nk-1'm 

^k-l,m   "k-l,m _ 

In practice, successive channel transfer constants are strongly correlated such that 

"k,m   ~ "k-l,m 

If, in addition, the noise is negligible such that 

(5.43) 

(5.44) 

N k,m 

Sk-l.m   Ck,m   Hk 

N 

«   1 

the statistic simplifies to 

^k-l,m   "k-l, 

Dnc   = C 

«   1 

(5.45) 

(5.46) 

An estimate of the message symbol, C^, is obtained by noting the region of the decision space containing D™m. 

This decision procedure is indicated by 

Ck,m=dec{D^}  . (5.47) 

Note that channel estimation does not have to be performed with the noncoherent demodulation scheme 
discussed above. Thus, the computational complexity of the receiver is relatively low. Unfortunately, the 
noncoherent statistic of Equation (5.46) is affected by twice as much noise power as the coherent statistic of 
Equation (5.37). This results in a higher bit error rate than does the coherent demodulation approach with good 
channel state information. 

Another approach to detection, called quasi-coherent demodulation, involves both differential encoding and 
coherent demodulation. From Equation (5.39) 

C      = Sk,n (5.48) 
'k-l,m 

Coherent demodulation, as specified in Equation (5.38), is used to obtain estimates of S^,,, and Sk-i, m-  The quasi- 
coherent detection statistic is then given by 
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dec 

Dqc   = k,m 

k.m 

k,m 

'k-1,m dec 
R k-l,n 

Hk_ln 

(5.49) 

In this way, the channel influence is removed before differential decoding takes place. As with the other detection 
procedures, the estimate of the message symbol, C^m, is determined by noting the region of the decision space 

containing D£c
m and is indicated by writing 

Cu    = decfor j ^k,m I    k,m J (5.50) 

Apart from differential decoding, the processing in a quasi-coherent receiver is similar to that in a coherent 
one. However, because of differential encoding, an incorrect decision influences two successive symbols. Provided 
that the error rate is relatively small (i.e., less than 10%), it has been shown that the error probability with quasi- 
coherent demodulation is approximately twice that of coherent detection with perfect channel estimation. 

5.1.7      M-ary Differential Amplitude and Phase Shift Keying 

M-ary differential amplitude and phase shift keying (M-DAPSK) has been promoted as an effective 
modulation technique for achieving higher bandwidth efficiency. In fact, M-DAPSK has been shown to have a 
substantial performance improvement over M-ary differential phase shift keying (M-DPSK) for M > 16. 

Before delving into M-DAPSK, M-ary amplitude and phase shift keying (M-APSK) is discussed first. 
Assume p input bits are used to determine each symbol. However, let pa of these bits determine the amplitude of 
each symbol while pp of these bits are used to specify the symbol phase. Note that 

P=Pa   +Pp 

the number of possible amplitudes is 

_  OP» 

the number of possible phases is 

N. =2 

NP=2P 

and the total number of symbols (or signal states) is 

    i-\p    _   "iPa+Pp      M  = 2P = 2 = NN„ 

(5.51) 

(5.52) 

(5.53) 

(5.54) 

As an example, let p = 6, pa = 2, and pp = 4. This results in 4 amplitudes, 16 phases, and a total of 64 
symbols. A 64-APSK signal space is shown in Figure 5.3. The signal constellation consists of four different 
amplitude rings, each with 16 phase states. The amplitude values of the rings are 1, a, a2, and a3. Hence, successive 
rings have amplitudes which differ by the constant factor, a. In general, the signal space diagram for M-APSK can 
be described by the signal set 
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w = N, 
aA e "p (5.55) 

where A and P are integers selected from the sets 

A = {0,1,..., (N.-l} 
P = {0,1,..., (Np-l} 

such that Na and Np satisfy Equation (5.54). 

(5.56) 

M-ary DAPSK is a logical extension of M-ary APSK. The p data bits for M-DAPSK first determine the 
message symbol, CKm. Let A(Ck,m) and P(Ck>m) denote integers selected from the sets A and P of Equation (5.56). 
The message symbol is then given by 

W,™    - a e (5.57) 

Figure 53: The signal space contains 64 possible symbols when there are 4 possible amplitudes and 16 possible phases. 

Differential encoding generates the transmitted signal, Sk>m, according to Equation (5.39). Note that Sk.ijm is of the 
form 

k-l,m    - a e (5.58) 

where A(Sk.i,m) and P(Sk.i,m) are, also, integers selected from the sets A and P. When Sk.i,m and Ck,m are multiplied, 
the amplitude exponents are added as are the phase exponents. However, to assure that S^m is contained in the set, 
¥, it is necessary to add A(Sk_i,m) and A^m) modulo Na. Because of the inherent periodicity in the phase, it is not 
strictly necessary to add P(Sk.i,m) and P(Ck,m) modulo Np. As a result, the transmitted symbol is 

Sk,m ~ a 
_ -[A(Sk.1,m) + A(Ck,m)]modN, 

.In 
[P(Sk-,,m) + P(Ck,m)] 

x e (5.59) 

By way of example, consider the signal space diagram of Figure 5.3 for which p = 6, pa = 2, and pp = 4. 
Assume the first two message bits are used to determine the amplitude of C^ in accordance with 

00 ->1,   01-*a,     ll-*a2,      10-»a3 (5.60) 
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The remaining four bits determine the phase of CKm. Table 5.1 shows the magnitude of Sk,m as a function of the 
magnitude of Sk.,,ra and the transformation indicated by Equation (5.60). Observe that |Sk,m| equals |Ck,m| when 
|Sk-!>m| is unity. 

TABLE 5.1 

DIFFERENTIAL AMPLITUDE MODULATION FOR pa = 2 

Is     1 Pk-l,m| Sfc,m 

1 1 a zl aJ 

a a a2 aj 1 

a* a* a3 1 a 

a* a3 1 a a2 

AMPLITUDE 

BITS 

00 01 11 10 

Given a value of p, the optimal values for a pa and pp so as to minimize the bit error rate when employing 
differential encoding are given in Table 5.2. When p < 4 (or, equivalently, Ms < 16), observe that differential phase 
shift keying is preferred where all symbols have the same amplitude. 

TABLE 5.2 

OPTIMAL MODULATION PARAMETERS FOR DIFFERENTIAL ENCODING 

p/M Pa/Na Pp/Np Noncoherent 

Demodulation 

a 

Quasi-Coherent 

Demodulation 

a 

<4/<16 0/1 p/Ms 1.0 1.0 

4/16 1/2 3/8 2.0 1.8 

5/32 1/2 4/16 1.6 1.45 

6/64 2/4 4/16 1.4 1.38 

7/128 2/4 5/32 1.3 1.21 

It is possible to eliminate the modulo operation on the sum of the amplitude exponents by, in effect, 
integrating it into the amplitude mapping. For this purpose, let the transmitted symbol be given by 

Sk,m  — Sk_i>m    Ck , (5.61) 

Define the extended set of integers given by 
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A' = {(-N.+l), (-N.+2),  .... -1, 0, 1, ..., (N.-l)} . (5.62) 

Let A'(C'k,m) be an integer selected from A' and, as before, let P(Ck,m) be an integer selected from the set, P. C\m is 
then defined by 

C'     = a
A'(C'k'm) e Np 

J-^PCC^) 

'k.m (5.63) 

The integer selected for AXCKm) depends both upon the pa data bits and |Sk.iim| .  It is chosen in such a 
manner that 

Ig       I _a[A(St.,,m) + A'(Ct,m)] 
k,m (5.64) 

is either 1, a, a2, ..., a(Na"2), a(Na_I). By way of example, consider, once again, the signal space diagram of Figure 5.3. 
Table 5.3 shows the magnitudes of C'k,m and S^m as a function of the magnitude of Sk-i,m and the amplitude data 
bits. Observe that 

\C    1 = k,m 

PH. 
(5.65) 

as was the case with modulo arithmetic. However the amplitude bits are now decoded by recognizing that 

KJ = i -* oo 
C'   | = a    or   V, ->  01 'k.m 

C'   | = a2   or   l/2 ->11 'k.m 

|Ck,m| = a3   or %    ->10 . 

TABLE 5.3 

DIFFERENTIAL AMPLITUDE MODULATION FOR pa = 2 

(5.66) 

Sk-l,m |^k,m| 
k 

1 1 a a2 a3 1 a a* aJ 

a 1 a a* 1/a a a2 aJ 1 

a' 1 a 1/a2 1/a a2 a3 1 a 

a3 1 l/aJ 1/a* 1/a aJ 1 a a2 

AMPLITUDE 

BITS 

00 01 11 10 00 01 11 10 
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Table 5.4 summarizes the mapping specified in Equation (5.66) and gives thresholds that would be 
employed in the detection process. Due to the division of two successively received noisy symbols, the exact 
thresholds for noncoherent demodulation are hard to calculate. However, a good approximation is given by the 
geometric average of two adjacent valid amplitudes. As a result, the thresholds in Table 5.4 are of the form 

Ta
nc =aj Va";  j=(-Na + l), ..., 0, ..., (N,-2) (5.67) 

The thresholds used to obtain the phase information bits are given by half the distance between two adjacent valid 
phases. Hence, 

T"=(i+X; i-<u--(N'-1) • 
TABLE 5.4 

THRESHOLDING SCHEME FOR EVALUATION OF AMPLITUDE 

INFORMATION BITS 

(5.68) 

C     1 ** a2 a1 1 a a* a5 

AMPLITUDE 

BITS 01 11 10 00 01 11 10 

THRESHOLDS 

a2'5 

a" 

a'15 

a'" 

a05 

a-o.i 

a05 

adi 

a15 

a15 

a25 

a" 

In the case of quasi-coherent demodulation with independent identically distributed symbols, the optimum 
thresholds are identical to those used with coherent demodulation. In particular, they are half the distance between 
two adjacent valid phases or amplitudes. Thus, 

T,qe = Ta
c = aJ (1 + a) 

j = 0,l, ..., (N.-2) 

nrqc   __ npc     npnc   __ 
p   —   p -   p   ~~ 

(5.69) 

i = 0,l, ..., (N -1) 

As indicated in Figure 5.2, channel coding should be implemented with OFDM. The radio channel 
attenuates each OFDM subcarrier by the complex transfer constant, Hkm. If the channel is a multipath channel with 
many propagation paths and without a line-of-sight path, the amplitude of the transfer constants is Rayleigh. This 
means that, even at a very large average signal-to-noise ratio, there are always some subcarriers that are strongly 
attenuated and have a rather low signal-to-noise ratio. Hence, many bit errors would occur on these subcarriers. For 
this reason, channel coding is a very important component of OFDM systems. Soft decision decoding has been 
shown to be superior to hard decision decoding. A soft decision algorithm first decides the result based upon the 
statistic being above or below a decision threshold and then gives a "confidence" number that specifies how close 
the text statistic is to the threshold value. In hard decisions only the decision output is known. The Viterbi decoding 
algorithm examines the possible paths through a code tree and selects the best one based on some conditional 
probabilities. 
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5.2   Ambiguity Function of the OFDM Signal 

The delay-Doppler ambiguity function of the interferometer waveform is defined in Equation (2.61) as 

T(T,V) = i f;M (a) fIFM(<7-r) ej2"* da . (2.61) 

Because of the odd symmetry for an ambiguity function, indicated by Equation (4.23), it is necessary to consider 
only nonnegative values of x and v. 

Having chosen the interferometer signal to be the OFDM signal specified by Equation (5.13) and (5.3), the 
ambiguity function becomes 

1 -     fK-l M-l "I 

rfr,t>)=        '      2   J    Z Z S*    gl (ff-kT.) 
ruvii^ " 

("K-l M-l 

KMIß'CT,     -    lk=0m=0 
(5.70) 

Z  2-S,n gn((j-T-^Ts)   e
J— d<7 

I^=0  n=0 I 

Interchanging the order of summation and integration results in 

1 K-l     M-l   K-l     M-l 

T(T,V)= ^-r-    Z    Z    Z    X   S*km  S, 
KMT B <T     k=0  m=0 £=0   n=0 

(5.71) 

I   g*m (o- -kT.) gn (a -T- *T,) ej2™* da 

The four-fold summation in Equation (5.71) can be grouped into terms for four cases: 

1) k = C,m = n,2)k = £,m*n,3)k*£,m = n,and4)k*£,m*n.   Thisyields 

K-l    M-l     . .,   ~ 

lst„ 
k=0    m=0 

T(T,V) KMTsB
2a] = Z    Z    |5i>m|   J   &1 (<7-*r.) *„(*-*-AT, )e'2"*«/<7 

it=0    m=0     ■ '    -a. 

AT-1     M-l   M-l - 

+ Z    Z   Z  5;)m 5M J   g;«T-*r,)^ {O-T-KT,)*
1™ da 

k=0     m=0    n=0 -<» 

K-l    M-l   K-l - 

+ Z    Z   Z    S^ 5^ J   *; (<7 -kT,) gm (a -T- IT,) e'2"* da (5.72) 
t=0    m=0   1=0 -oo 

tf-1    M-l   K-l    M-l ~ 

+ Z    Z   Z    Z   5;,m 5,, J   £(o--^7;)g„ (ff-r-W,)*'2"" </<7 
k=0     m=0    (=0     n=0 -oo 
k*t,m±n 
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Recall that the modulation symbols, Sk,m are selected randomly depending upon the data to be transmitted. 
Consequently, T(T , v) is a random function of the modulation symbols. Assuming statistical independence from 
one symbol to another and stationarity, the statistical average of Equation (5.72) involves expectations of the form 

E[|Sk>m|
2]   ,  E[S;J , and E[SkJ . From Equation (5.11) 

E[|Sk>m|
2]=<rs

2   . (5.11) 

In addition, assuming circular symmetry for the symbol constellation, such as shown in Figure 5.3, 

E[skJ=E[skJ=0   . (5.73) 

It follows that 

E[sk,mSkJ=E[skjE[sM]=0;m*n 

E[sk>m S J = E[skJ E[S J= 0 ; k* / (5.74) 

E[sk>m S,,n] = E[s*k)m] E[s,n] = 0 ; k* I, m *n     . 

Consequently, taking the expected value of Equation (5.72) results in 

E^u)l=^STk
Xo   Zo  Jgm(^-kTs)gm(cr-T-kTs)e

j2— da .   (5.75) 
KMTSB    k=0  m=0 — 

The expression in Equation 5.75 is further simplified by making the change of variables 

p = C - kTs     . (5.76) 

Then 

E^T'^ -T^ K X ' g:(p)gm(p-^)ej2jrM"+kT') dp 
KMT B    k=0   m=0 — s (5.77) 

1 K-l    M-l       .„      ,„. 

= —-— E    E  e^""5 w    (T,V) 
KMB    k=0  m=0 

where the autocorrelation function of gm(t) was defined to be 

¥mJr,V) = JL I   g» gm(p-T) ej2™" dp   . (5.78) 
Ts — 

Note that Equations (5.3) and (5.78) are identical in form to Equations (4.17) and (4.29), respectively.  It follows 
from Equation (4.35) that 

B2 (Ts-H) sin[fftfCri-M)]    jtwo^f.,] ui < T 

¥mm(T,V) = \ Ts XV(T-\t\) '       " S    - (5.79) 

0 \T\ > Ts 
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Observe that 

^mm(0,0) = B2. 

Therefore, as would be expected due to our normalization, 

E[r(o,o)] = i   . 

(5.80) 

(5.81) 

Although the terms corresponding to the expectations in Equation (5.74) average to zero, they contribute to 
significant fluctuations of the ambiguity function over the x-v plane. A measure of these fluctuations is the variance 
of T(x, v). By definition, this is given by 

Var{T(T,v)} = E[|r(r,u|2 j - |E[r(T,v]| (5.82) 

E[T(x , v)] is found from Equation (5.77). Therefore, it remains to determine E[| T(x ,v)|2], For this purpose, it is 
convenient to return to Equation (5.71). 

Making the change of variables 

P = O ~ kTs 

in Equation (5.71), it follows that 

? gl (<X - kTs) gn (<7 - X - H\) e1*™ d<7 

= ej2™kT» ? g; <j>) gn [p - x - (/-k)T, ] e2*vp dp 

= Tse
j2;rükT^mn[T+(^-k)Ts,i;] 

where the cross-correlation function between g„j(t) and gn(t) is defined to be 

vma (r,v) = ^ I gL (P) gn (ß-t) e2*vp dp    . 

(5.76) 

(5.83) 

(5.84) 

Note that Equations (5.3) and (5.84) are identical in form to Equations (4.17) and (4.31), respectively.  It follows 
from Equation (4.39) that 

¥**(?>») = { 

'B2(TS-|T|) sin[^amn(Ts-|T|)]  ^^.^ + 2^ 

Ts ^amn(Ts-|r|) 

where Omn is given by 

amn - fm - f „ - v mn m n 

X   <T„ 

X   >T 

(5.85) 

(4.37) 

105 



Consequently, Equation (5.71) can be expressed as 

1 
T{T,V) = 

KMB2 <J2 k=0 m=0 £=0 n=0 

It follows that 

\r(r,v)\2=nr,v)r(r,v) 

K-l   M-l   K-l   M-l     . .„      , _ 
ZEE   SS^^e'^'^lT+^-k)!,,«].        (5.86) 

f l \     K-l   M-l   K-l   M-l 

vKMB2<72
y 

E   E   E   E SkmS,ne 
k=0   m=0   1=0   n=0     K'm    *'n 

j2;rukTs ymn[T+(f-k)Ts,i;] 

K-l    M-l    K-l   M-l 

x     E   E   E   E Sk,m,S;n, e 
k'=0   m'=0   f=0   n'=0     K,m        '" 

-j2*uk'Ts ...» ^vlT+^-kOT,,«] (5.87) 

vKMB2<72
y 

V   K-l   M-l   K-l   M-l     K-l    M-l    K-l   M-l 
E   E   E   E    E    E   E   E Sk,m S£iB Sk, m- S,,,, 

k=0   m=0   /=0    n=0     k=0   m=0   I =0   n=0       ' 

x   ej2;ry(k-k')T8 yrB1I[T+(/-k)Tifü]^11.[T+(«/-k')T„ü] 

The expected value of I T(z ,v) 12 is, therefore, 

1 
E[|r(r,ü)|2] = 

f * ^     K-l   M-l   K-l   M-l    K-l    M-l    K-l   M-l 

VKMB2 <72 j 
EEEE    I,   I,   J:   1, 
k=0   m=0   (=0   n=0    k'=0   m'=0   l'=0   n'=0 

ülV      Q       Q «I*       1  P J2*«(k-k')Tt 
^L^k.m^n^k'.m'^'.n' J  e (5.88) 

yM[*+«-k)Ti,ü]Vr;v[T+(/'-k')Ti,ü]      . 

Recall that the modulation symbols, Sk,m, are assumed to be stationary and statistically independent with 
zero means.   Consequently, when E[Skm S/>n Sk< m- S'ty\ can be decomposed into a product for which one or 

more of the factors is the expectation of a single symbol or its conjugate, the expectation in Equation (5.88) is zero 
and the corresponding terms can be excluded from the eight-fold summation. 

In addition, for some choices of the indices in Equation (5.88), E[Skm S£n Sk-m^Sr nJ can be 

decomposed into a product involving factors of the form E[Sk m J and E[(Sk m ) J . For circularly symmetric 

signal sets these expectations are, also, zero as explained next. 
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In general, S^m is a complex quantity which can be expressed in polar form as 

Sk,m = Ak>m  e
je*-   . (5.89) 

Consequently, 

SU = Ak>m ej2*-   . (5.90) 

Assuming pp data bits are used to specify the symbol, the number of possible phases is given by Equation (5.53). 
When the symbol constellation has circular symmetry, such as that in Figure 5.3, the phases are distributed by equal 
angular increments where the increment is given by 

A0 = ^-       . (5.91) 
2PP 

Beginning with symbols placed on the real positive axis, the symbol angles are given by 

kA0 = ^;k=O,l,...,(Np-l)     . (5.92) 
2Pp 

A total increment of n corresponds to 

kA0=^-^=;r      . (5.93) 

This requires that 

k = 2rp_1 = —v- (5.94) 
p  i      ND »V1   _        P 

which is an integer in the set for k since Np is guaranteed to be an even integer. Therefore, for each symbol in the 
set, there is a corresponding symbol with the same amplitude but displaced in phase by n radians. This justifies the 
conclusion that 

E[ejek»J=0       . (5.95) 

Now consider Sk m for which the angle is given by 29k,m .   The symbols corresponding to Sk m are 

distributed at equal angular increments given by 

. A .     „ In       In      In 2 A<^ = 2—• = —- =-r (5.96) 
2Pp     2(pp~l)    2P' 

where 

P'P=PP-1     • (5-97) 
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In effect, S2. m is distributed in the same manner as Sk,m except that the number of data bits used to specify the phase 

of Sk m is reduced by unity. Therefore, the number of distinct phases for S£>m is half of those for SKm. Based on 

these observations, it is concluded that 

E[ej2ökm J= 0     . (5.98) 

Because the amplitude data bits are statistically independent of the phase data bits, it follows that 

E[s2,m ] = E|AU ej2 ** J = E[A2
k,m ] E[ej2*- J = 0      . (5.99) 

Also, since the complex conjugate of zero is zero, 

E[(S;J
2
J=O    . (5.ioo) 

Excluding those terms for which E ]ß[ m S(>B Sk>. S*-n< J is zero, the only remaining terms in the eight- 

fold summation of Equation (5.88) are those having the form 

SkJ J and E 
12   I |2 

where k*l and m^a. These arise in the following ways: 

1)   Letk = € = k' = V andm = n = m' = n'. 

The corresponding terms in Equation (5.88) are given by 

(        «        V 1 

VKMB2C72, 

K-l M-l 

Z  Z  E 
k=0 m=0 

LPk,m k»»[^w \ (5.101) 

2)  Let  k = £, m = n and  k' = V,   m' = n' but exclude k = e = k' = V and m = n = m' = n'.   The 
corresponding terms in Equation (5.88) are given by 

1 

KMB2(72 j 

K-l M-l K-l   M-l 

Z  Z Z   Z   E 
k=0 m=0k'=0 m'=0 

|Sk>mf]E|Sk>f 

k*k' & m#m' (5.102) 

x e j2fft>(k-k')Ts LJ^«]^'[^1 

3)   Let k = k', m = m' and   £ = £', n = n' but exclude k = I = k' =   V and m = n = m' = n'.   The 
corresponding terms in Equation (5.88) are given by 
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vKMB2CJ2
y 

K-l   M-l K-l M-l 

X   X X  X  ESkm|   ESJ 
=0     m=0<>=0  n=0        1    K-ml   J     I   '•"!   J 

k*t & m*n 

(5.103) 

x^^-kJT^lf 

Letting 

i«4=E k,m (5.104) 

and making use of Equations (5.11), (5.101), (5.102), and (5.103), Equation (5.88) becomes 

i_ r i v 
£[|r(T,u)|2] = 

{KMB2 a2 j 

M-l 

X 
m=0 

+ 
1        V      K-l     M-l   K-l    M-l n      ,,   ,_ 

>      ZEES    ey2*«(*-*w. 
4=0   m=0     *'=0^   m'=0 

k*k'& m*m' KMB\ 

J       A2    K-l    M-l  K-l   M-l 

^mJr,U ] yA<[T,U] (5.105) 

J:MB
2 X    X   X   X    |^„[T+0?-*)T;,U]| 

t=0   m=0    f=0     n=0       ' *=0   m 
h*{ &m*n 

With reference to Equation (5.82), it is, also, necessary to evaluate I E[ T(t ,v)] 12.   From Equation (5.77) it 
follows that 

\E[r(r,v)]2 =E[r(r,v)Mr(T,vW 

K-l M-l K-l M-l 

2 i HEX eJ2Mk~k)TsVmm [r,t> ] ^K.w] 
KMB    J    k=0 »1=0 *'=0 m'=0 

AT-lM-1 f     i     VAT-IM-I 

#Affi2 

(5.106) 

k=0 m=0 

——     XXX    X eJ2,w(k-k)T<y/mm[T,v\y/*mW[T,v] 
KMB2)    *=oro   *=o, m-=o y''«'"1       )f»1' 

Combining the results for E[| T(x ,v)l2] and I E(T(x ,v)]l2 in Equation (5.82) yields 
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K MB2<72
y 

2 
M-l 

Var{r(T,v)} = -   —^    {fit-O *    k»[T,ü]| 
m=0 

(5.107) 

/"        1        V "    K-l     M-l     K-l   M-l 
+    —^-T       2    E    Z   Z       yrmn[T+(*-k)T,,ü] 

I lfMR2   I        k=0   m=0        £=0   m=0 |r mn ' 
-KMB •     w &m*„ 

An obvious choice for Ts is 

Ts = T (5.108) 

where T is the duration of a subpulse in the Costas single proposed for the radar pulse waveform. Also, let 

K = M = N (5.109) 

where N is the number of subpulses in the Costas single.  Then the frequencies of the Costas and OFDM signals 
become identical and the duration of the OFDM signal equals that of the radar pulse. 

Note that Equation (5.77) can be expressed as 

1 K-l    M-l 

Eim«)] = rxr.v) + ^ z x r_ (*.»> *'"""■ (5,10) 
k*m 

where 

r^v^ = ^T % ¥m<r,v) J2*vml> (5.111) 
KMB      m=0 

while Equation (4.32) can be expressed as 

Z(T,v) = %'(T,v) + -J^   Z  £ ^ [THm-n)T,v)  e^"T (5 m) 

where 

^'^ = 7^ X^-(T'ü) eJ2"mT  • (5-113) 
AN   m=0 

As pointed out in Chapter 4, the central peak of the Costas signal ambiguity function is associated with x' (7 >v ) • 
Under the conditions of Equations (5.108) and (5.109) 
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I-2 

A2 Vmm(T>V)   =   — 0mm(r,V) . (5.114) 

Then T'(T,V) becomes equal to %'(T,V) within a scale factor. This, in turn, implies that the central peaks of 
the ambiguity functions for the OFDM and Costas signals have identical shapes with identical resolutions in delay 
and Doppler. Because the non-cooperative bistatic radar does not know a priori in which direction the main radar is 
pointing, it must perform the difficult task of pulse chasing. However, it is likely to be unsuccessful in completing 
this task because it will be unable to distinguish between reflections involving either the OFDM or Costas signal. In 
addition, it will be difficult for the non-cooperative bistatic receiver to separate the OFDM and Costas signals 
because they contain the same frequencies and, assuming time synchronization, will experience amplitude 
transitions at the same time instants. As a result, performance of the non-cooperative bistatic radar will be severely 
degraded. This issue is investigated further in Chapter 6. 
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CHAPTER 6 

NON-COOPERATIVE BISTATIC RADAR RECEIVER PERFORMANCE 

6.1 Cross Ambiguity Function for the Costas and OFDM Signals 

As discussed in Section 2.3, the non-cooperative bistatic radar receiver performs detection by utilizing an 
estimate of the main radar transmitted signal for correlation with the received data. In this report it is assumed that 
the estimate is obtained from the direct path signal observed by the bistatic radar. As revealed by Equation (2.63), 
the detection statistic used by the non-cooperative bistatic radar receiver involves the cross ambiguity function, 
Z(x,u), between the Costas and OFDM signal in addition to their delay-Doppler ambiguity functions. An expression 
for Z(T,U) is derived in this section. 

With reference to Equation (2.54), the cross-ambiguity function is defined to be 

Z{X,V) = I  f,™ (<7) Wff-T) ej2""   d<7        . (2.54) 
—oo 

Substitution of Equations (4.16) and (5.13) into Equation (2.54) yields 

1 -     fK-l   M-l 1 
Z(T,V) = — 7=——  J  U   X   S*kimg*m(c7-kTs) 

AB<TS JKMNTT  -  lk=0 m=0 J s  v s (6.1) 
fNZ pB(<7-T-nT)leJ2™r der 
n=0 J 

Once again, assume the conditions of Equations (5.108) and (5.109).   Interchanging the order of summation and 
integration yields 

(6.2) 

1 N-l    N-l   N-l 

Z(T,V) = —= z  z  z s[m 
ABCTSTNVN  

k=° m=° n=0 

I g;(ff-kT) Pn(a-T-nT) eJ2*Bff der . 

Making the change of variables 

p = a - kT (6.3) 

in Equation (6.2), it follows that 

I g;(t7-kT)pn(fT-r-nT)ej2^da 
—oo 

= eJ2*BkT   ?   g'm (p)pn[p-T-(n-k)T] ei2^ dp (6.4) 

= T ej2^kTömn[r+(n-k)T,v] 

where the cross-correlation function between gn,(t) and pn(t) is defined to be 
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*-.<*.») =4 "i  g*m(P)Pn(/>-^)  ei2*vpdp . (6.5) 
l   -~ 

Utilizing the same procedure employed to develop Equation (4.39), it follows that 

*„(*,«>) = ■ 

where a,™ is given by 

AD(T-M) sin[^amn(T-|T|)] e_j[Mi-(T+r)+2,fiif]      | , <T 

T        ;ramn(T-|r|) '   M (6.6) 
0 ,      H > T 

Consequently, Equation (6.2) can be expressed as 

Z(t,v) = ^=   Z   Z   Z   s:mej2"kTöran[T+(n-k)T,ü]    .      (6.8) 

Because the modulation symbols, S^m, are selected randomly based upon the data to be transmitted, Z(t,v) 
is a random function of the modulation symbols. Note that 

1 N-l    N-l    N-l 
_    X   E   Z 

ABcr NA/N   
k=0 m=0 n=0 E[Z(r,v)] = —1=1,   X   I,  E[S:)m]ej2"kTomn[T+(n-k)T,u] = 0      (6.9) 

where use was made of equation (5.73). Thus, as seen from Equation (2.63), Z(x,u) behaves as a zero-mean additive 
noise component of the detection statistic for the non-cooperative bistatic radar. 

6.2 Non-Cooperative Bistatic Radar Detection Statistic Involving the Costas and OFDM Signals 

As expressed in Equation (2.44) the detection statistic for the non-cooperative bistatic receiver is the sum of 
nine terms where the first four terms are given by Equations (2.51), (2.58), (2.59), and (2.60), respectively. The 
remaining five terms involve receiver noise and are developed next by carrying out the products indicated in 
Equation (2.43). 

Making use of Equations (2.3), (2.38), (2.39), and (2.40), these five terms can be expressed as 

T     _ uTP -j2^[fDPrrP +fBT+VT,e -VT] 
l5   - KRAD    e 

I Wt-Tw) [nDP(t-rB +rj e^""«* dt, 

T    _ KTP     _-j2;r [fDPrTP + fBr+urTP - VT] 
l6   * KIFM    C 

If,PM(t-rTP)[nDP(t-rB+r)I e»*^ dt, 
—oo 

T      _    --J2* [-fBT
TP + fBT+VTT? - VT] 

h ~ e 

J nTP(t) [nDP(t-TB +rj e-i2"(f»-v)t dt, 

(6.10) 

(6.11) 

(6.12) 
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T    -   (vDF   V   p.J2^[fTPrTP-fTPr-ürTP+OT] 
X8  -    \KRAD/     e 

(6.13) 

T    _   (vD? V   „J2*[fTPrTP-fTpr-wTP + w] 
x9 ~   \KIFM/    e 

(6.14) 
[nw(t)f™(t-T,p+r)e-^(,w-«'),dt . 

The statistic can be written as 

£ = fs+^, (6.15) 

where the signal portion of the statistic is 

*. = I, (6-16) 

and the interference component of the statistic is 

*! = 2  Ii      • (6.17) 
i=2 

Recall from Equation (2.39) and (2.40) that T and v denote the errors experienced in estimating TB and fB, 
respectively. Perfect estimates are obtained when 

T = V   = 0 . (6.18) 

In order to evaluate the best possible performance of the non-cooperative bistatic radar, it is assumed throughout the 
remainder of this chapter that Equation (6.18) is valid. The expressions for the nine terms of the detection statistic 
then simplify to 

I, =k,;jr(0,0), (6.19) 

12 = k2 Z*(0,0) , (6.20) 

13 = k3 Z(0,0) , (6.21) 

14 = k4 1X0,0) , (6.22) 

I5 = k™, t»'™ f UO-T") [nDP(t-rB)I e^fDP' dt , (6.23) 
—oo 

I« = k[F
PM e-j"fDPrTP I Wt-rTP) [nDP(t-rBJ e^fDPt dt , (6.24) 

I7 = t'lni^ ] n^t) [nDP(t-TB)]* e"j2;rfBt dt , (6.25) 

I. = fc)*   e*"w'w I nTP(t) C(t-rTP)   e-^f?Pt dt    , (6.26) 
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I9=teJ   e^rinw(t)4(t-rTf)   e^*'"« dt (6.27) 

In general, the detection statistic is a complex random variable.   However, because the Costas signal is 
deterministic, x(0,0) is a constant. Utilizing Equation (4.47), it follows that 

El*.] = E[lJ = k, . (6.28) 

Thus, the signal portion of the detection statistic is a constant. 

With respect to the interference component of the detection statistic, note that 

E[l2] = E[l3] = 0 (6.29) 

due to Equation (6.9). Also, with reference to Equation (5.81) 

E[I4] = k4 E[r(o,o)] = k4      . (6.30) 

Finally, assuming the complex envelopes of the receiver noises in the direct and total paths to be statistically 
independent with zero means, it follows that 

E[l5] = E[I6] = E[l7] = E[l8] =  E[l9] = 0      . (6.31) 

Consequently, 

B[£x] = k4 . (6.32) 

Hence, the interference component of the detection statistic is a random variable with a nonzero mean. 

The variance of i\ is now derived. By definition, 

Var{^}=E[|^|]2  -|E[^]|2 . (6.33) 

Note that 

9     9 
\tX =£, £   = Z Z LI 
I    'I '       ' i=2 j=2 J 

Therefore, 

,->        yy       r       iy ,   .-> yyri 
E kf = ZX   EL Itl = Z   E  L      +IZ EL I* 

L|    ''   J       i=2 j=2 } i=2 L|   ''   J i=2 j=2        L l    >J 

(6.34) 

(6.35) 

Observe that the double summation in Equation (6.35) contains 64 expectations that need to be evaluated. 

To evaluate the expectations involving I2 and I3, it is necessary to obtain an expression for Z(0,0).  From 
Equation (6.8) 

z(o,o) = 1 N-l    N-l    N-l 

Z   Z   Z  S*   Omn[(n-k)T,0] (6.36) 
AB<TSNVN k=0 m=0 n=0 

where 0mn(T,O) is given by Equation (6.6). Since O^T, U) is zero for |T| > T , it follows that 

6mn [(n-k)T,0] = 0 for n^k      . (6.37) 
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As a result, Z(0,0) becomes 

z(o,o) = 
ABO-.NVN 

k=0 m=0 

N-l     N-l 

S    Z   S*   0mk[O,O] 

However, 

^(0,0) = 
[AB   ,   m=k 

0 m*k 

Thus, the expression for Z(0,0) simplifies to 

z(o,o) = 1 N-l 

<JSNVN 
k=°   k,k 

E [|l2| 
2 J and E [|l3| 

2 j are evaluated first. Note that 

E[|l2|]
2=|k2f E[|Z(0,0)|2]      . 

Utilizing Equation (6.40), it follows that 

E |Z(0,0p   = -^-Y   X    2 ESkkS,J 

N-l [ 2] N-l      N-l r , r , 
Z    E Skk     +E    Z  ESkk   E[S,J 
k=0        M   k'kl  J     k=o   £=o      L K,KJ      L ''tJ 

(6.38) 

(6.39) 

(6.40) 

(6.41) 

(6.42) 

<7S
2N3 

where the statistical independence between different data symbols was invoked.   However, the data symbols are 
2 

random variables with zero mean and variance O,   . 

Consequently, 

E[|Z(O,O)|
2
] = ^ (6.43) 

and 

N' 
(6.44) 
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In a similar manner. 

N2 

Also, 

E[l2i;]=k2k3* EJIz'^O)]2} 

(6.45) 

(6.46) 

Use of Equations (6.40) and (5.99) and the statistical independence of the zero mean data symbols results in 

k    k*       N-l     N-l [l If    If        N_1    "-'        r l 

M;  = 4^7   *   £ ESkkSJ 2    3J (j2]^      k=0     ;=0 L   k,k     e/J 

=  ^T     k?0   EkJ+Ä   Z  EKJEKJ 
k=0    f=0 

k*£ 

=    0 

Similarly, 

E[I3I;J = O 

Next observe that 

N-l 

<TSNVN  
k=0 E[Z(O,O)] = ——= i E[S*J = 0 

due to the zero mean value of the data symbols.   It is concluded that 

E[I2I;J=E[I4I;J = E[I2I;J = E[I5I*2J 

(6.47) 

(6.48) 

(6.49) 

= E[I2I;]=E[I7I;]=E[I2I;]=E[I8I;] 

= E[I3I;]=E[I4I;]=E[I3I;]=E[I5I;] 

(6.50) 

= E[I3I;]=E[I7I;]=E[I3I;]=E[I8I;] = o 

Also, because the receiver noises are zero mean and statistically independent, it follows that 
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E[I2I;]=E[I6I;]=E[I2I;]=E[I9I;] 

= E[I3 I;]=E[I6 I;} = E[I3 /;] = E[I9 /;] 

= E[I4I;]=E[I5I;]=E[I4I;]=E[I6I;} 

= *[/4 /;] =E[I7 I;}=E[I4 I;]=E[I& /;] 

= E[I4I;]=E[I9I;]=E[I5I;]=EII, r5] 

= E[I5I;]=E[I,I;]=E[I5I;]=E[I9I;} 

= E[I6 /;]=*[/7 /;]=E[I6 I;]=E[/8 /;] 

= E[i6r9]=E[i9re]=E[iy /,*]=£[/,/;] 

= *[/,/;]=*[/,/;] = o 

(6.51) 

Finally, from Equation (5.13), it is noted that 

1 K-l    K-l 

 z 
m=0 

E[fIFM(t)] = Z   z' E[skJgm(t-kTs)=   0 
BcrsA/KMTs 

k=° 

due to the zero mean value of the data symbols. Thus, 

E[I5I*J=E[I6I;J=E[I8I;J=E[I9I;]= O 

(6.52) 

(6.53) 

At this point 58 of the 64 expectations in Equation (6.35) have been evaluated.   It remains to evaluate 

E|I4|
2
J, E|I5|

2
],E|I6|

2
J,E|I7|

2
J, E|l8|

2j,andE|l9|
2.    . 

Note from Equation (6.22) that 

E[|I4|]
2
 =|k4|E[|r(o,o)|2]      . (6.54) 

An expression for E[|r(T,l>)| 2 J is given by Equation (5.105). Observing from Equation (5.79) that 

Vmm(0,0) = B2 (6.55) 

and from Equation (5.85) that 

^mn(0,0) = 0;     m*n, (6.56) 

the expression for E[|r(0,0)|   J simplifies to 
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r(o,o) 
vN

2B2<72
y 

N-l 

//4N   Z  B 
m=0 

(6.57) 

2t>2 N'B 

N-l     N-l       N-l N-l 

ZEE I   B4 

k=0    k'=0    m=0 m'=0 
k#k'    m*m' 

where the conditions of Equations (5.108) and (5.109) have been employed. 

With respect to Equation (6.57), observe that there are N terms in the single summation involving the index 
m. In addition, there are (N2 - N) terms in the double summation involving the indexes k and k' where k * k' and 
there are (N2 - N) terms in the double summation involving the indexes m and m' where m * m'. Consequently, 
there are 

(N
2
 - N) (N2

 - N) = N2 (N -1)2 (6.58) 

terms in the four-fold summation involving the indexes k, k', m, m' where k * k' and m * m'. It follows that 

|r(o,o)f]=^ ^- + (N-l)2 (6.59) 

Thus, 

Hl2l-tl N J-N2 4 +(N-l)2 
(6.60) 

An expression for I5 is given by Equation (6.23).   Therefore, 

E[|i5|
2]=|k2J2 JJ Wt-O ^(M-T

TP
) LRAD' 

fDP, 

E{[nDP(t-rB)]*nDP(// -rB)} e^""^ dtd// 

Denote the autocorrelation function of tl    (t) by R DP (T)   where 

RnDP(T) = E{[nDP(t)]* nDP(t+r)}   . 

Consequently, 

E{[nDP(t-TBJ nDP(//-rB)} = R^fci-t) 

(6.61) 

(6.62) 

(6.63) 

Assume that nDP(t) can be approximated as white noise with a two-sided power spectral density given by N0. Then 

RnDP(r) = N0£(T) (6.64) 

where 8(T) is the Dirac delta function. Hence, 
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■]- 
iTP 
(RAD [{Unit -TTP)fUH-rTP) 

N0S(ß-t)eJ2"fDP{"M) dtdju 

= \kZo\2N0] {/^(t-r^l2 dt 

(6.65) 

kTP      N KRAD\    JVO 

since, by Equation (4.21), fRAD(t) has unit energy. 

An expression for I6 is given by Equation (6.24). As a result, 

^W2] = fef fi Elf™«-*") f™^-*TP)\ 
I I — OO 

E{[nDP(t-rB)] nDP(ß-rB)}e^DP^ dtdju 

= ICf \l E\fIFM{t -rTP) f;M(M ~ rTP)] 

N0S(ju-t) eilnfDP(t-^ dtdfi 

N0  I £[|/™('-^)|2]^ 
—oo I * 

(6.66) 

TP 
ZIFM 

= \k TP 
IFM Nn 

where use was made of Equation (6.64) and the fact that f^O) is normalized by Equation (5.13) to have unit 
average energy. 

An expression for I7 is given by Equation (6.25).   It follows that 

£[w2]=ü4ff(')W} 

The autocorrelation function of n^t) is defined to be 

RnT?(r) = E{[nTP(t)]* nw(t + r)}     . 

Making use of Equations (6.63) and (6.68), Equation (6.67) becomes 

(6.67) 

(6.68) 
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E[|I7| \= liRnTr(t-/i)Ru„(ß-t)ei2*ta(M-t) dtdfi    . (6.69) 

At this point it would be convenient to approximate both nDP(t) and nTP(t) as statistically independent white 
noise processes.   However, this leads to the integrand of Equation (6.69) containing a squared impulse with the end 
result being that E[ I7   2 J is infinite. This unrealistic result is caused by the simplifying but idealized assumption 

of white noise. 

In actuality, the non-cooperative bistatic radar will have a receiver bandwidth of 2W. A realistic 
assumption is that the power spectral density of the receiver noise is constant over this bandwidth. Therefore, it is 
assumed that the power spectral density of the noise complex envelopes is rectangular with height, N0, and 
extending from -W to +W Hz. The autocorrelation function of this bandlimited noise is then given by 

RnDP(r) = RnTP(r)= I  N0 e^f* df = 2N0W sif ^WT
    .   (6.70) n n -w 2;rWr 

Another point that need to be addressed is the infinite limits of integration that appear in Equation (6.69). 
They arise from Equation (2.42) where the infinite limits of integration are permitted because of the actual finite 
time extent of the integrand. (Recall that a radar will employ time gates to extract time segments of the received 
signal equal in duration to the radar pulse width.) In the absence of estimation errors, Equation (2.42) would be 
expressed as 

£= J [sDP(t-<rBJ sTP(t) e-
j2*fB(t-TDP-rB)dt . (6.71) 

Under the conditions of Equations (5.108) and (5.109) both the main radar and interferometer signals contained 
within sDP(t-xB) and s^t) are zero outside the time interval 

TTP < t < rTP + NT . (6.72) 

Consequently, Equation (6.71) can be written as 
J.TP + NT 

£=   J    [sDP(t-rB)]* sTP(t) e-j2*fB(,-rTP)dt (6.73) 

where use was made of Equation (2.3). Introducing the change of variable 

T = t - TTP , (6.74) 

Equation (6.73) becomes 

NT 

I = I    [sDP(r + rTP -TB] S
TP

(T + T
TP

) e"j2*f»T dr 
0 

NT 

= J   [sDP(t + TDP)]* s^Ct + r") e~j2*fBt dt 

(6.75) 

where use was, again, made of Equation (2.3) and the variable, t, was substituted for the variable, T. Focusing on the 
noise components of Equations (2.28) and (2.35), the component oft corresponding to I7 is given by 

NT 

L = J [nDP(t+rDP)]* nTP(t+rTP) e^2*'»* dt   . (6.76) 
o 
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Equation (6.76) is now used to determine an expression for E[|I7|
2
] 

Utilizing Equation (6.76), it follows that 

£[|/7|
2]=J7 E{[nDP(t+TDP)] nDP(u+XDP)} 

E{nlp(t+TTP) [nTP{u+TTP)])eJ2nh(l'-') dtdu 

NT 

=   U RDP(u-t) R„(t-u)   eilnfs(u^ dtdu 

(6.77) 

Observe that Equation (6.77) is identical to Equation (6.69) except that the limits of integration are now finite. Note 
from Equation (6.70) that the noise correlation function is an even function oft. Consequently, 

RnTP (t-u) = RnW(u-t) 

Employing Equations (6.70) and (6.78), it follows that 

E[|I7|
2
]=(2N0W)

2
 JJ sin2;r W(u-t) 

eJ2*fB(»-t)   dtdu 

(6.78) 

(6.79) 

variable 

2*W(u-t) 

Attention is now devoted to evaluation of the double integral in Equation (6.79).  Introduce the change of 

X =u-t (6.80) 

We wish to replace the double integral involving u and t by a double integral involving T and t. The regions of 
integration in the t vs. u and t vs. x planes are shown in Figure 6.1. Observe that the boundaries for the region of 
integration in the t vs. t plane are given by 

I: t = NT ,    x = u - NT 
II: t = 0     ,    r = u 
III: u = NT ,    T = NT-t 
IV: u = 0     ,   x = -t 

(6.81) 

1 i k 

NT 
i 

rv III 

0 
II N T        u 

IIV \ 

-NT 0 

NT 

M 
S 

in 

II       NT      T 

Figure 6.1:   E[ I7     J is evaluated by integrating over the regions indicated. 
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Carrying out the integration in the t vs. T plane, 

NT 

I 
0 

--{2N0Wf   1 
■    • o 

+ {2N0Wf    J 

m 
= {2N0Wf   J 

o 

+ {2N0Wf    ) 
-N 

m 
= (2N0Wf    J 

o 

I 
NT 

sin 2K WT 

2KWT 

sin2K WT 

INT-T 1 

e'2sf't\   J    dt\ dT J2* 

-]2 

NT 

0 

J 
-NT 

sin2it WT 

2KWT 

2KWX 

-[2 

NT 

sin2/r Wt 

2KWX 

NT 

\ 
-NT 

sin2K WT 
-12 

2KWT 

eJ2*fBT\   I    dAdT 

eJ2*hT(NT-T) dT 

eJ1*fst(NT+T) dT 

(NT-\T\)   en*fBt dT 

(6.82) 

where the strips of integration with respect to t are shown in Figure 6.1. Unfortunately, even though the expression 

for E[| I7 J   J has been reduced to a single integration, a closed form result does not appear possible. 

To obtain an estimate of En IJ   J, a rectangular approximation is made for sin 2 n W x / 2 n W T. The 

height of the rectangle is chosen to be unity, which is the maximum value of sin 2 n W T / 2 n W x, and the width of 

the rectangle is chosen to be 1/W, which is the width of the main lobe of sin 2 n W x 12 n W x. The rectangular 

approximation is centered at the origin because the main lobe of sin 2 n W x 12 % W x is, also, centered at the origin. 

Hence, we introduce the approximation 

sin 2KWT 

2KWT 

1,     -—— <T < 
2W 2W 

0,     otherwise 

Consequently, 

(6.83) 
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J_ 
2W 

£[|/7|J« {2N0Wf    I    (NT-\T\) eilKhx   dT 

= {2N0Wf    J    (NT+T) eilKhr dr 
i 

2IF 

_1_ 
2(F 

(6.84) 

+ (2AT0^)2   J    (NT-T) eJ2Kf'T dT 
o 

Utilizing the integral relation that 

j r eaT dr = ^-(ar -1) 
a 

and combining results, it follows that 

(6.85) 

E[N']=(2N0W)'U-L- 1 - cos—- 
W 

/ 
+ 

\ sin- 
7üiu 

NT- 
V 2W 

W 
nU 

(6.86) 

From Equation (4.65) and (5.26) the baseband bandwidth of both the Costas and OFDM signals is approximately 
given by 

T 
(6.87) 

where the conditions of Equations (5.108) and (5.109) are assumed to apply. Assuming the receiver bandwidth of 
the non-cooperative bistatic radar receiver is twice the baseband bandwidth of the signals, 

T 
(6.88) 

As a result, Equation (6.86) can be expressed as 

2N, 
N 

nU 

1 -cos 
V 

*fBT 
N f 

2nU 
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where fB is the bistatic Doppler shift given by Equation (2.38). 

Finally, following the same reasoning that led to the results of Equations (6.65) and (6.66), it is concluded 
that 
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E[|I l2l = lkDP I2  N ^U^l     J        K-RAD iNC (6.90) 

and 

E[|l9|
2] = |k 

DP 
IFM Nfl (6.91) 

With reference to Equations (6.47), (6.48), (6.50), (6.51), and (6.53), it is noted that all terms are zero in the 
double summation of Equation (6.35) for which i * j. Hence, 

E[|M
2
]= ZElliJ2] (6.92) 

Substitution of Equations (2.45), (6.44), (6.45), (6.60), (6.65), (6.66), (6.89), (6.90), and (6.91) into Equation (6.92) 
yields 
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On the other hand, making use of Equations (2.45) and (6.32), 

|EM|2=M2 = 
rDP 
MFM 

rTP 
LIFM (6.94) 

The variance of lh as given by Equation (6.33), then becomes 
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One measure of performance for a radar is signal-to-noise ratio.  For a monostatic radar operating in an 
additive thermal noise background with variance, N0, the signal-to-noise ratio is given by 

\yNK)Monosiatlc 
\E[t,\   _H'.X 

Var {Noise} N0 

(6.96) 

For the non-cooperative bistatic radar, the signal-to-noise ratio is 

[SNRlNon-cooperative   = 
'Bistatic 

\Eitsy 
Var{£j} 

(6.97) 

where Varftjis given by Equation (6.95). The loss factor is defined to be 
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Observe that the loss factor, LF, is defined to be a positive number greater than or equal to unity since the signal-to- 
noise ratio of the monostatic radar is expected to be larger than that of the non-cooperative bistatic radar. The more 
effective is the interferometer in masking the transmitted radar waveform, the larger will be the value for LF. 

6.3 Non-Coop erative Bistatic Radar Receiver Performance 

6.3.1      False Alarm Probability 

Because Z(0,0), r(0,0), and fiFM(t) consist of a large number of random components due to the randomness 
of the data symbols, the central limit theorem can be invoked to justify modeling the detection statistic, £, as a 
complex Gaussian random variable. By definition, the probability of false alarm is the conditional probability of 
detecting a target given that a target is not present. With reference to Equations (2.35), (2.36), and (2.37), the 
absence of a target is equivalent to 

TP 
UT KRAD KIFM   — U 

Then 

TP. sir(t) = n"(t) 

(6.99) 

(6.100) 

The mean value of the signal component of the detection statistic is given by Equation (6.28). In view of 
Equations (2.45) and (6.99), it follows that 

E[/.] = kI=  0 (6.101) 

in the absence of a target.  In addition, the mean value of the interference component of the detection statistic is 
given by Equation (6.32). Hence, in the absence of a target, it is concluded from Equations (2.45) and (6.99) that 
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E[*,] = k4 = 0 

Thus, given that a target is not present, 

E[/] = E[<,]+ £[/,]=    0 

(6.102) 

(6.103) 

Let (7?   denote the variance of the detection statistic in the absence of a target. Because Cs is a constant, 

al =MU = k DP 
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(6.104) 
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where use was made of Equations (6.99) and (6.95). The absence of a target is conventionally referred to as 
hypothesis, H0. Therefore, under H0, the detection statistic, C, can be modeled as a zero-mean complex Gaussian 
random variable with its variance given by Equation (6.104). 

Denote the real and imaginary parts of the detection statistic by 

£t =Re{£] 

and 

£i = Im{^}     . 

In the absence of a target, the probability density function of I is 
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where <Jlo   is given by Equation (6.104). 

2KG: 

(6.105) 
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Let H! refer to the hypothesis that a target is present.   The statistical test employed for detection is then 
described by 

(6.108) 

H, o 

where y is a constant that denotes the threshold.   A statistically equivalent test, which is easier to analyze, is 
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As a result, the probability of false alarm is given by 

PF =Pr fc +1) >f\H0}=T>r{erJi e RIM,} 

where R is the shaded region sketched in Figure 6.2.     Consequently, 
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L    falls into the shaded region. 

To evaluate the double integration in Equation (6.110), it is convenient to introduce polar coordinates. Let 

Lr = Z COS/? (6.111) 

It follows that 

and 

L; = Zsin/? 

Z= ^L2
r + L: 
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Equation (6.110) can then be expressed as 
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where use was made of the differential relationship 
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Evaluation of the integrals results in 
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From Equation (6.117) it follows that 

y = alo V21n(l/PF) (6.118) 

Consequently, the threshold is readily determined from a knowledge of  <j]0   and specification of the false alarm 

probability. Note that the smaller is PF and the larger is Olo the larger is the required value of the threshold. 

6.3.2      Detection Probability 

By definition, the probability of detection is the conditional probability of detecting a target given that a 
target is present. The presence of a target is typically designated as hypothesis, H,. Under H, the detection statistic, 
t, is modeled as a complex Gaussian random variable with mean 

m. = m   + j m( 

and variance <7£
2, . From Equations (6.28), (6.32), and (2.45) it follows that 
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In the presence of a target, the probability density function of C is 
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However, 
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As a result, Equation (6.121) becomes 
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Employing the test specified in Equation (6.109) the probability of detection is given by 

PD = Pr{?2
r +£)   >f !#,}.= Pr{^r >*i£  R |#i} (6-124) 

where R, once again, is the shaded region sketched in Figure 6.2. Consequently, 
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Evaluation of the double integral in Equation (6.125) is, as before, facilitated through introduction of the 
polar coordinates defined by Equations (6.111) and (6.112). It follows that 
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From a table of integrals it is known that 

1     *t — J   ercos^ + ssin^ d/? = I0 [Vr2 + s2 (6.127) 

where I0() is a zeroth-order modified Bessel function of the first kind. Therefore, the detection probability becomes 
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With reference to Equation (6.119), observe that 
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Thus, the expression for PD can be simplified to 

(6.129) 
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Having integrated out ß, it has been determined that the probability density function on z is given by 
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Consequently, 

I P,(z) dz = 1 

and the probability of detection can be expressed as 
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The above result can be further simplified by introducing the incomplete Toronto function [13,14] which is 

defined as 
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Substitution of Equations (6.135) and (6. 136) into Equation (6.133) yields 

4l c,, 

PD=\-2e~r2     1    te~'2 I0 [2rt]dt 

Ji 
1,0, 

m, 

V2 Gt ■ j 

(6.134) 

(6.135) 

(6.136) 

(6.137) 

132 



Plots of Trj (1, 0, -yjq ) are presented in Figures 13 and 14 of the Marcum paper [13] for various choices of v 

and q. Although the Toronto function needs to be evaluated numerically, Equations (6.130) and (6.133) clearly 

reveal that the detection probability is decreased by increasing y and <Te . This observation is useful in selecting 

system parameters to effectively degrade the operation of the non-cooperative bistatic radar. 
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CHAPTER 7 

CONCLUSIONS 

7.1 Summary 

Radar receivers typically utilize a replica of the transmitted waveform for processing the radar return. In an 
attempt to estimate this transmitted waveform, non-cooperative bistatic radars normally intercept a direct path signal 
emitted through the side lobes of the host radar. 

This report investigates the use of an interferometer along with the host radar to deny coherent reference 
signals to unwanted observers. The interferometer signal is intended to be 

1) effective in masking the host radar signal emitted through the side lobes, 

2) orthogonal to the signal transmitted through the main lobe of the host radar so as not to degrade radar 
performance, 

3) useful for data/voice communications, 

4) controllable such that separate communication signals can be directed to different receivers located in 
different directions. 

In addition, the host radar signal is intended to be flexible to allow for multi-mission operations. 

The time domain cannot be used to achieve orthogonality between the interferometer and radar waveforms 
because, assuming perfect synchronization and temporal orthogonality, the non-cooperative radar could correlate the 
direct path signal with its radar return without experiencing any loss due to presence of the interferometer signal. In 
fact, for effective masking, the radar and interferometer signals should be highly correlated in the time domain. 

Consequently, the desired orthogonality must be achieved in the spatial domain. Analysis of the two- 
element interferometer array factor reveals that a relatively broad spatial null exists in its end fire position when the 
element spacing is an odd integer number of half wavelengths of the transmitted interferometer signal. This null 
cannot be steered electronically. Therefore, when the host radar main lobe points broadside to the x-axis, the 
interferometer elements must be placed along the y-axis in order to take advantage of the broad null. Should the 
main lobe be steered to different directions, it would be necessary to mechanically rotate the interferometer elements 
in order to maintain the spatial orthogonality between the interferometer and radar waveforms. 

In order to communicate separate signals in different directions, it will be necessary to steer the 
interferometer without destroying the broad null in the end fire position. This can be accomplished by frequency 
hopping the transmitted carrier such that the odd integer relationship between the element spacing and wavelength is 
maintained while the carrier changes from one frequency to another. 

The flexibility of frequency hopping makes it attractive for design of the host radar waveform. Depending 
upon the particular mission, the frequency hops can be arranged to synthesize a discrete frequency quantized 
approximation to the frequency modulated signal that produces a desired delay-Doppler ambiguity function. 

Because the ideal shape of the ambiguity function is an impulse function, the Costas signal is proposed for 
the host radar waveform. It yields a thumb tack shaped ambiguity function with a relatively low pedestal. For a 
fixed number of frequency hops within a radar pulse, there are many different hopping patterns that result in 
essentially the same thumb tack shaped ambiguity function. Hence, different frequency hopping patterns can be 
utilized to further complicate the coherent reference estimation task of the non-cooperative radar. 

Having selected the Costas signal for the transmitted radar waveform, orthogonal frequency division 
multiplexing (OFDM) becomes an attractive communication technique for the interferometer. The hopping 
frequencies of the Costas signal are required to be orthogonal over a hopping interval of duration, T. The subcarrier 
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frequencies of an OFDM signal are required to be orthogonal over a symbol duration, Ts. By selecting T = Ts, the 
two sets of frequencies become identical. In addition, the use of M-ary amplitude and phase shift keying to 
modulate the subcarriers makes it very difficult to separate the Costas and OFDM signals when their amplitude 
transitions are synchronized in time. 

Utilization of OFDM for communications has many important advantages. Both modulation and 
demodulation can be implemented using fast Fourier transforms. The difficult tasks of channel estimation and 
equalization are simplified significantly when communicating over fading and time-variant broadband channels. 
Also, the parallel nature of OFDM makes it an efficient scheme for the transmission of data. 

Performance of the non-cooperative bistatic radar receiver was analyzed. In addition to noise terms, the 
detection statistic was shown to involve the delay-Doppler ambiguity functions of the host radar and interferometer 
waveforms as well as their cross ambiguity function. Analytical expressions for these functions were obtained under 
the assumption that the host radar and interferometer employ Costas and OFDM signals, respectively. Taking 
advantage of the result that the detection statistic consists of a random sum of many terms, none of which are 
dominant, the detection statistic was approximated as a complex Gaussian random variable. Analytical expressions 
were then derived for the false alarm and detection probabilities of the non-cooperative bistatic radar. 

7.2 Suggestions for Future Work 

7.2.1 Performance Evaluation of the Complete System Using Realistic Scenarios 

Although analytical expressions needed for performance of the non-cooperative bistatic radar were 
obtained, time did not permit for assessment of the complete system. It is desirable to 

1) Construct plots of the OFDM ambiguity function and the cross ambiguity function between OFDM 
and Costas signals for both individual sample functions and the entire ensemble of the OFDM signal, 

2) Obtain analytical expressions for the false alarm and detection probabilities of the host radar, 

3) Postulate realistic scenarios along with the corresponding numerical values for the system parameters, 

4) Evaluate complete system performance for the realistic scenarios postulated in (3) and adjust the 
system parameters where necessary to improve performance, 

5) Perform computer simulations to verify the predicted theoretical results. 

7.2.2 Extension of the Interferometer to More than Two Elements 

The two-element interferometer, under a specified constraint, produced a broad null in the end fire position 
which was useful in obtaining spatial orthogonality between the host radar and interferometer waveforms. However, 
this null could not be steered electronically. It is conjectured that introduction of a third interferometer element will 
enable steering of the broad null. Should this prove to be possible, the advantages to be gained by adding additional 
elements would be investigated. 
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The concept of the tri-element interferometer is illustrated in Figure 7.1. Elements 1 and 2 can be replaced 
by an equivalent element, denoted by E. Elements E and 3 then comprise an equivalent two-element interferometer. 
By adjusting the amplitudes and phases of the sinusoidal signals applied to elements 1 and 2, the position of element 
E can be moved horizontally along the line connecting elements 1 and 2. Selection of the frequency of excitation 
such that the distance, d, is an odd integer of half wave lengths would then produce a broad null in the end fire 
position of the equivalent two-element interferometer. In this manner the broad null could be electronically steered 
by appropriately selecting the amplitudes and frequencies of the sinusoidal signals applied to elements 1,2, and 3. 

z+S- 

3 

Figure 7.1: The tri-element interferometer can be viewed as an equivalent two-element interferometer. 

7.2.3      Generalization of the Ambiguity Function to Include Direction of Arrival 

Because both spatial and temporal processing is performed in a radar, an ambiguity function generalized to 
include the direction of arrival would be extremely useful. As a first step, it is proposed to carry out this 
generalization by incorporating the antenna radiation patterns as a function of angle. 

More generally, the transformation of operators approach, introduced by Cohen [15], may be useful in 
developing a combined delay-Doppler, spatial displacement-spatial frequency ambiguity function. This would be 
applicable to pulse propagation where there is a strong correlation between temporal and spatial frequencies. 
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