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Network Attack Detection Final Report 

Introduction 
The Federal Government has recognized the United States' reliance on certain national 
infrastructures. The incapacity or destruction of these infrastructures would have a 
debilitating impact on the defense or economic security of the United States. One of the 
categories of threats to these infrastructures is computer-based attacks on the information 
or communications components that control these critical infrastructures ("cyber 
threats"). Over the last decade these infrastructures have become increasingly dependent 
on private sector "cyber" communication systems such as the Internet. Recent news 
events such as denial-of-service (DoS), DoS tool kits1, and virus/worm attacks have 
emphasized the vulnerability of government and civilian organizations to damage caused 
by these types of attacks on the Internet. Methods for quickly detecting, localizing and 
responding to attacks to prevent or minimize damages are needed. 

Recent work in Self-Organizing Systems (SOS) has shown that complex systems exhibit 
certain statistical properties2. Complex systems exhibit power law statistics and spectrum 
which plot as straight lines on log-log graphs. In addition, the slope of the power law 
statistics is a characteristic of a particular complex system. The fractal nature of the 
Internet traffic is an almost certain indication that large networks are SOS and should 
exhibit the same kinds of statistical properties. 

Project Objective 
The objective of the project in this final report is to develop new methods of network 
attack detection utilizing the inherent statistics of complex systems. It is hypothesized 
that a large network will exhibit one set of statistics under normal operation and a 
different one under attack. 
A localized attack will change the statistical characteristics in one part of the network. 
The statistics will no longer be self-similar (the same at all scales) and the statistics will 
change to a non-fractal, non-power law distribution.  An effective wide scale attack will 
change the slope of the power law curve. Both of these change characteristics are 
detectable. 
The basic approach in this final report develops classification algorithms that use the 
statistical differences between normal network operation and network operation under 
attack. The data used in developing the new methods of network attack detection is a 
combination of collected and simulated data. It is necessary to simulate attack data 
because it is not currently feasible to run attacks against any real large networks. 
However, it is possible to collect normal operational data from large networks as long as 
the collection does not interfere with network operation. Future collection of operational 
data is planned using the TRW Intranet. The data from network operation will be used to 
validate the simulation model. This simulator was implemented so that operation and 



attacks can be easily visualized and changed to aid in understanding and developing 
methods of countering attacks. This approach has the following advantages: 

• It can be used to detect attacks on the network infrastructure, not just attacks on 
the networked computers. 

• It utilizes the inherent large scale characteristics of the network that are 
impractical for attackers to spoof or control 

Task 1. Network Simulation and Visualization 

Task Objective 

The project objective of the simulator has been to provide simulated attack data for use in 
testing attack detection algorithms. The simulator design has several objectives. 

It is important to model those key characteristics of the network that will generate 
the SOS statistics used in attack detection, without adding unnecessary 
complexity to the simulation. 

The simulation needs to run on a desktop PC and still be able to handle thousands 
of router nodes. 

The simulation needs to run fast enough to provide quick answers for large 
networks. It is also important that simulation be easy to modify and maintain so 
that changes can be quickly implemented. 

It is important to be able to visualize progression and propagation of attacks. 

Approach 

The simulation software was written in Visual Basic 6.0 on a 500 MHz Dell OptiPlex 
GX1 computer with 128 Mbytes of RAM. The operating system used is Windows 98. 
Visual Basic was chosen as the implementation language at the top level because it is a 
productive rapid application development (RAD) environment.   We use ActiveX 
components to integrate code from other languages such as C++. The availability of a 
large number of commercially available ActiveX components to extend programming 
functions is also an advantage. 
The approach to programming the simulation software has been to develop a flow model 
and not to try to model the complexity of packets. An iteration of the main simulation 
loop of the model represents approximately five seconds of network operation. This 
approach preserves the key characteristics of the network and allows the model to run 
fast. The main simulation loop for the model is a little over 80 lines of code. It allows 
32,000 nodes plus associated links to be processed a second. This is approximately 100K 
network components per second. The simulation was implemented as an Active-X 
component so that it could be reused in visualization, attack detection algorithm 
development, and future coarse of action (COA) tools. 



Good models of the topological structure of a network are essential for developing and 
analyzing networks. Georgia Institute of Technology has developed software to generate 
graph models that accurately represent the topological properties of real networks . We 
ported their code from Unix to Windows and compiled it into an ActiveX component that 
can be called by many Windows development environments. Their Transit-Stub model 
was used to generate graph files used as the network model input to the simulation 
software. The simulation software will accept varying sizes of networks. 

Network sizes from 40 to 10,000 nodes have been used to test the simulation software. 
The simulation software was designed to read the file format produced by the Georgia 
Tech Model and produce a network map of the nodes and links. Figure 1 is an example 
of a network map produced by the simulation software. This particular network map has 
650 nodes and 1802 links. 

It is important for the analyst be able to interact and display the simulated data in ways 
that will allow greater understanding of attacks and avalanches. The simulation software 
animates the network map allowing simulated data to be visualized. The visualization 
implementation allows links (lines) and nodes (buttons) to be placed on a form under 
program control. In addition the links (lines) can be colored, change thickness or 
disappear under program control. These drawing object parameters have been used to 
animate the visualization portion of the simulation algorithm. 
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Algorithm Description 

Figure 2 shows the major processing steps in the simulation algorithm. 

• (1) The simulation software reads the network map file created by the Transit- 
Stub model. The simulation software scales and draws the network map in a 
window. It saves the necessary constants and arrays for the animation process to 
reference the nodes and links of the network map. 

• (2) A randomized initialization file containing the initial state for the network map 
is created. This procedure sets the initial state for buffers, traffic flows, and 
routing. Power law statistics are used to initialize network parameters. Those 
initial parameters are stored to a Network State File. That same file is used to 
store network parameters at any point in the simulation. The network state file is 
used to start the animation at the same point each time when running tests under 

Generate Network Map 

Store/Replay Create Random Initial 
Network State 

Compute OC Values 
for Links 

Simulate N Iterations 

SNMP Messages 
Store/Ri eplay 

Animate N Iterations 

Figure 2 Simulation Algorithm Node/Link Flow Simulation Model 
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different attack conditions 

• (3) Using the initialization file, the link capacities for each node are assigned by 
running a modified simulation to find average traffic flows for links from each 
node. The modified simulation turns off congestion control and traffic 
randomization algorithms to get average steady state flow values. As expected, 
certain links carry more traffic than others. The nodes are assigned OC numbers 
(link capacity) relative tp the traffic flow they carry. The nodes are then colored 
on the map according their link capacity OC number. 

• (4) The simulation is then run for N iterations. N is a number that will allow all 
the simulation, animation and output data to fit in the PC memory. The larger the 
network, the smaller the value of N can be without running out of memory. 
Keeping the simulation and data in memory allows the simulation and animation 
to run faster. 

• (5) After N iterations have run, the simulated SNMP data is displayed in the 
animation process. The analyst can slow down, stop, or single step the display, 
somewhat like a videocassette recorder (VCR). The last N iterations can be 
displayed over again as many times as desired. In addition, the algorithm allows 
the analyst to save a section of data (multiple of N iterations) to a file for future 
replay. The algorithm allows the iterations to continue N at a time (see step 4) 
until the routine reaches the total number of iterations requested by the analyst. 

The animation software allows the analyst to use control sliders to set data display 
thresholds. For instance, one of the simulation data outputs examined was the percentage 
loading of links. The control sliders allowed the analyst to display all links carrying a 
percentage of full capacity between the two thresholds. In addition, another slider 
controlled how the link widths were scaled (line width) when drawn. If desired, the 
animation process can be turned off and the simulation then runs faster. 

Self Organizing System Simulation Model 

Figure 3 illustrates the basic concepts of the simulation model for a single node and 
associated links. The core simulation loop implements this model. The simulation 
software scales the flows, data stores and capacities for as many nodes and links as 
needed for a particular network map. The following concepts are implemented in the 
model: 

• The total traffic flow into a router is assumed to be equal to the total traffic flow 
out of a router to the link buffers. 

• Traffic flows are fractal random processes4 implemented with a fractal random 
lookup table i.e. routing is a fractal random process. We generated the fractal 
random lookup table using fractal traffic generation software5 we ported to 
Windows. 



The link buffers have a maximum capacity. If more data flows into a link buffer 

I raffle into router through links =   I raffle out of router to link buflers 

Routing is assumed to be        Buffers have a maximum capacity, 
a fractal random process        Overfilling causes loss of traffic. 

Loss flows are routed opposite the 
traffic flows 

Figure 3 Router Node Model 

than it can handle, an overflow occurs and traffic is lost. This overflow results in 
error messages. The error messages are modeled as flows of lost traffic. 

Error messages flow opposite the direction of routed traffic. 

Because error messages are a relatively small fraction of the total traffic they are 

Link in absorbs 
all traffic 

Increase or cut 
traffic in half 
depending on 
lost-traffic 

end node 

link in 
from network 

lost traffic 

link out 
to network 

Figure 4 End Node Model 
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modeled separately from traffic flows and are modeled as not contributing to the 
total traffic flow. 

All the links from a node have the same capacity. The method for assigning link 
capacity for each node was discussed previously. The traffic flow out the link can 
not exceed the link capacity. 

End nodes implement the congestion control mechanism as shown in Figure 4. 
Only end nodes increase the amount of traffic in the network. End nodes absorb 
all data routed into then from the network. If the lost traffic flow to an end node 
is below a threshold then the traffic flow from an end node into the network is 
increased by a percentage. If the error flows are above the threshold then the end 
node traffic into the network is cut in half. 

We feel that these are the essential characteristics of the Internet that represent how the 
system operates6.  The main mechanisms that characterize how the network operates are 
the routing of data, the buffering of data, link capacity limits, and the congestion control 
when packets are lost. They create a non-linear system that has self organizing power 
law characteristics when a large number of elements interact using these basic network 
characteristics. 

There are certainly more details that can be added to the simulation, but experience with 
other large systems indicates that increased detail will not significantly affect the 
simulation results7. For example details of HTML, FTP, Telnet,... may have different 
traffic characteristics, but when all of the protocols are added together in the flow of 
traffic in a high speed link, their individual characteristic will tend to average out over 
time and should not have a major impact on the characteristics of network operation. 

Characteristics like packet loss and congestion control are a major part of the network 
which will affect the basic characteristics of the network and will not average out with 
some other property. Similarly the effects of link capacity and random routing of traffic 
will not average out with other 
characteristics. Because these 
characteristics are fundamental, they 
are the ones we use in our self- 
organizing system simulation of the 
Internet. 

A plotting control with associated 
software was placed on the network 
map to plot selected log-log 
statistics of the network. This plot 
was updated with new data every N 
iterations.  One of the simulated 
SNMP messages plotted was link 
loading. Figure 5 shows the number 
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of links near capacity (exceeding 60% loading) during simulated normal operations. 

Avalanches in this graph are defined as the total number of links that are loaded beyond a 
threshold value that we can adjust with sliders in our interface. This is an overly simple 
avalanche definition which will be improved in the future. 

A better avalanche definition would be to count only over threshold links that are closely 
coupled together. This would mean counting links connected to each other or connected 
to the same backbone. Regional avalanche information is also needed to locate attacks. 

DDoS Attack Results 

DDoS and possibly other attacks will reduce the data on adjacent links as Internet 
congestion control algorithms adjust to the heavy denial of service traffic loads. Our 
present threshold sliders can measure under load avalanche statistics. 

Other important avalanche measures of the 
network such as packet loss and spectral 
characteristics of avalanche variations are 
important to use in the detection algorithms. 

The curve in Figure 5, like most power law 
statistics, deviates from a straight line at the 
ends of the probability distribution. Most 
power law curves deviate from a straight line 
at the ends typically because there is less 
dependency between the elements of the 
large system in these parts of the graph.   In 
the network simulation, when there are few 
link data rates over a threshold value, they 
tend to be weakly interacting or isolated 
events. Isolated and weakly interacting events have a different statistical characteristic of 
avalanches from more strongly coupled events in the other parts of the distribution. 

A " quick and dirty" implementation of a Distributed Denial of Service (DDoS) Attack 
was accomplished by editing a network state file by hand, routing 99% of the traffic from 
5 end nodes to a single end node (i.e. the node under attack). This produced an overload 
on some of the links the traffic went through. Other links with higher capacity handled 
the traffic with no problems. In the future, a generalized attack routine needs to be 
developed to automate this process for several types of attacks. The DDoS attack 
changed the total statistics of the network as shown in figure 6. 

The shapes of the normal network operation and attack operation distribution are 
significantly different and detection of the difference will be relatively easy. 

In second type of DDoS attack (Figure 7), the traffic only overloaded the last link going 
to the target. The other links were run with the minimum amount of attack traffic to 
minimize the probability of detection by an automatic algorithm. 
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Figure 6 Normal vs Attack Statistics 
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Again, the distribution (Figure 
7) is significantly different than 
the normal network operation 
curve. Detecting the difference 
is relatively simple 

Statistical characteristics of the 
Internet are continually 
changing over time. To handle 
the time varying nature of the 
network, the attack detection 
algorithms will look for short 
term changes in the statistical 
characteristics caused by the 
attack being launched. With 
local information about 
different parts of the networks, 
we would use algorithms that 
would see significant statistical 
anomalies in different parts of 
the network. 

Simulation Model Verification 

To verify our assumptions about modeling the Internet, we installed, debugged and ran 
the Dartmouth SSF and the S3 simulators. We expected a well defined model of the 
Internet with a good interface. We found, that in both simulators, we would have to make 
many assumptions and major development would be required. Getting the output data 
into a form that might be usable for comparison looked very difficult. 

Even then it looked like we would not have sufficient capability to compare those packet 
level Internet simulation models to our traffic flow model. 

We have the Mil3 OPNET simulator, which is a well designed commercial package that 
works at the packet level. We discussed the simulator with our in-house expert user. It 
may have a better chance of meeting our needs, but there was still a major concern that 
we would get usable results. Getting those results would use a major part of the program 
resources to developing the simulation. 

This project is working with emergent behavior of large networks which will tend not to 
appear in the small simulations that we could implement with these other tools. The 
conclusion is that the only good way to test our simulation techniques is to compare it 
with a large real network. 

The network we plan to use in this testing is the TRW Intranet which is international in 
extent and used by over 60K people with one or more computers assigned to them. For 
example, in our Sunnyvale Ca. facility where this project is run, the average employee 



has more than two computers for their use. We also have about as many people, such as 
production line workers, that don't have a computer but use computer stations for time 
worked entry and getting company information. 

This large network will show the emergent properties we need and it has even had attack 
like problem that can be used for testing. For example a DoS type attack has occurred 
with a faulty set up of some software. We have received oral approval to use the TRW 
network on this project and are in the process of doing the paper work to get final 
approval. 
Network traffic will vary over time on this network. Since we will have access to all the 
SNMP messages on the network, we will be able to measure traffic and packet losses in 
all parts of the network. We can set up our simulation to have the same parameters. As 
we run our simulator for different sets of parameters, we can see if we are measuring the 
same statistical characteristics in both the real and the simulated network 

The simulated network has small number of parameters and design conditions that can be 
changed if there are differences in the statistics.  For example, differences in packet 
losses would probably be caused by errors in our model of router cache. Differences in 
traffic dynamics could require changes in our congestion control algorithm approach. 

Task 2. Network Management Message Pattern Detection 

Task Objective 

The objective of the second part of the program was to develop tools to monitor changes 
in network management message patterns for attack detection classification. Specifically, 
we are developing a computationally efficient monitoring system based on incoming 
SNMP message parameters collected by COTS network management tools. 

This is being accomplished by implementing a computationally fast N-gram algorithm 
for use with TRAP- or GIDO-based parameter inputs in order to monitor potential attacks 
on a very large network via processing on a single workstation. Our ultimate goal is to 
fuse the results of avalanche detection, message pattern detection, and attack transient 
behavior indicators for optimum detection reliability. 

Existing Practice 
Network traffic is by its nature heterogeneous and stochastic. Current network 
monitoring systems are not designed to perform adaptive, anomaly-based attack detection 
against this type of behavior. Instead, existing network monitoring schemes use static 
thresholds set by a human network manager which in turn generate alarms when 
exceeded. 
The manager manually transfers his understanding of the local network into a set of rules 
(i.e. threshold levels). When the one or more of the threshold levels are exceeded, an 
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alarm is sent and the manager must correlate the alarm with a corrective action. This 
existing method is not designed to accommodate the dynamic nature of network 
behavior. 

As a result it cannot reliably detect the precursors of a network attack, let alone 
distinguish between different attack categories. In addition, as the size and rate of change 
of the network increases it becomes exponentially more difficult for a human network 
manager to maintain adequate understanding of the network's behavior. 

Approach 

Network management messages provide key information on what is happening at each 
node. That information is typically provided by the equivalent of SNMP messages 
containing management information base (MIB) variables. These messages provide a 
different view of the network than avalanche failures. 

In particular, they provide an approach for detecting anomalies at the node level, i.e. 
detecting when one or more nodes are acting significantly different than normal. In our 
network management message pattern detection approach, we monitor these MIB 
variables using adaptive statistical techniques based on an N-gram methodology. 

Messages are not part of a continuous function so traditional clustering and pattern 
recognition do not work well.  Message pattern recognition is similar to the problem of 
recognizing patterns in text. A statistical approach for non-continuous distributions 
called N-grams is often used to do text topic recognition. 

These techniques are very general and can be used to recognize the patterns of network 
management messages. If the pattern changes from normal, this is an indication of a 
possible attack. Node locations for abnormal message patterns can be used to locate the 
position of the attack. N-gram algorithms are computationally fast and should allow us 
ultimately to use one workstation to detect and classify attacks across a very large 
network. 

We began this task by performing an extensive literature search of recently published 
research in this area. The results of this investigation provided insight into promising 
message classes and pattern recognition methods that could potentially be incorporated 
into our design. In addition, this investigation provided confirmation that our N-gram 
approach to network monitoring has not been attempted before. 

Algorithm Description 

Figure 8 summarizes the modules and dataflow of our algorithm. We have implemented 
most of this system in Visual Basic. In the top left box of Figure 8, our algorithm in its 
current form uses archived IF and IP-level MIB parameters that have been collected off 
of TRW Sunnyvale's internal Intranet (see Figure 9) via the COTS network management 
package InterMapper. This data set corresponds to parameters collected at 30 second 
intervals from three link interfaces and one server. 
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Performed for Entire Net 

Incoming SNMP 
Data Set Normalized 

Conversion into 
N-GramSet 

Hash Function 

Comparison with 
Archived Histogram 

Multidim 
Distance Measure 

GIDO^Type 
Messages 

6. Create Scatter plot 
using data from 

all sampled Nodes 

Ultimately, this data archive activity can be expanded to include parameters from a 
significantly larger set of links and routers. TRW intranet parameters (incoming and 
outgoing bytes per second, packets per second, errors per minute, and discards per 
minute) are used to populate the probability cluster corresponding to "normal" network 
operation. Ultimately, this "normalcy data" will be expanded to incorporate a much 
larger set of MIB parameters and will be used to create a family of hyper-plane decision 
boundaries that can be used to distinguish probability clusters of abnormal nodes. Each 
node has its own 
distinct set of decision      Performed for each Node 
boundaries. 

Once the incoming 
data set has been 
normalized, the next 
module (i.e. Box 2 in 
Figure 8) generates a 
purely statistical 
characterization of the 
MIB parameters based 
on N-grams. The N- 
gram techniques have 
previously been used 
by USG in high-speed 
text topic recognition, 
text compression, and 
language recognition. 

In our application, the 
N-gram recognition 
algorithm is used to 
detect when the pattern 
of network messages 
has changed from 
normal to an 
anomalous state. N- 
gram algorithms have 
advantages in being 
able to quickly handle 
large numbers of 
messages with 
probability distribution 
accumulations that 

Perform multidimensional 
clustering 

1 
8 

Identify node cluster 
anomalies 

Figure 8 Network Management Message Pattern Detection Algorithm 

suppress noise. N-gram algorithms are designed to work with non-smooth probability 
distributions, like network management messages. 
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As each new SNMP parameter is received, it is normalized and quantized into one of 5 
levels. It is then used to generate a new N-gram vector. Each N-gram vector contains 
eight elements: 

1. The current (i.e. new) sample received at time t 

2. The preceding sample value received at time t-1 

3. The preceding sample value received at time t-2 

4. The preceding sample value received at time t-3 

Hosts 

Figure 9 TRW Sunnyvale Intranet 

5. The preceding sample value received at time t-4 

6. The average of the past 10 sample values 

7. The average of the past 100 sample values 

8. The average of the past 1000 sample values 

In summary, the algorithm in its current form generates eight N-gram vectors (one for 
each of the eight SNMP parameter categories). Each of these N-gram vectors contains 
eight elements that reflect recent history ofthat particular SNMP parameter. 
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Each N-gram vector corresponds to a numerical value between 1 and 390,624. This 
range is large and using it directly would require impractical amounts of memory to 
accumulate the histogram.   To avoid this problem, conventional hashing techniques are 
used to create a smaller address that can be used to address a practical size memory. 

As a result, each N-gram vector is indexed to improve the computational efficiency of the 
algorithm accomplished by running each N-gram vector through a hash function based on 
modular arithmetic (referred to in Box 3 of Figure 8).   The numerical values of each N- 
gram vector are thus stored and retrieved using these indices as pointers to memory using 
a hash key as its index. 

The hash function reduces the required size of the search table by two orders of 
magnitude - i.e. from 390,624 to 4031.   Our algorithm ignores collisions (i.e. different 
N-grams being mapped to the same index value) since these appear to occur fairly 
infrequently. 

Each index value generated by the hash function was then compared with a histogram of 
archived values (Box 4 in Figure 8). We use a distance measure to rank the relative 
"normalcy" of each N-gram index value, and a geometric distance measure is generated 
based all eight dimensions (Box 5 in Figure 8). 

Decisions 

Figure 10 shows a sample of our system's GUI display. The upper eight boxes 

Node Status HEE3 

Outdoing 

Status I     Discard Status 

Overall Interface Status 

85 

NodeScor    0 

JÜ    J J 
Threshold Sensitivity = 

Figure 10 Sample display from node monitor tool GUI 
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Distance Measure 
based on SNMP 
Parameter #1 

+ +& 

+ 

correspond to the relative state of each of the eight MIB parameters. If the distance 
measure of the current N-gram for a given MIB parameter is small (i.e. the N-gram's 
hash index value matches a commonly seen hash index value in the archived histogram) 
then the corresponding box appears bright green. 

If the N-gram is 
less common (i.e. 
more anomalous) 
the distance 
measure increases 
and the color of the 
box transitions 
from green to 
black to red. The 
bottom rectangle in 
the display 
corresponds to the 
geometric distance 
measure produced 
by the combination 
of all eight MIB 
variables. 

Distance Measure 
based on SNMP 
Parameter #2 

Because eight 
separate MIB 
parameters are 
being monitored 
for each node, in 
effect we have 
created an eight- 
dimensional 
location for each 
node, where the 
distance out along 
each axis (corresponding to each of the eight dimensions) is the probability of a given 
network management message history.   GIDO-type messages from multiple nodes across 
the network (Box 6 of Figure 8) are 

Distance Measure 
based on SNMP 
Parameter #3 

Figure 11 Detection clustering 

then collected to create a network- 
wide status scatter plot as illustrated 
in Figure 11. Three axes are shown 
for illustration purposes with each 
star representing the current state of 
a single node, but in addition to the 
eight of our algorithm there can 
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Figure 12 N-gram cluster detection for distinguishing 
nodes in normal operation from attacked nodes. 
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ultimately be thousands of dimensions for the histogram space. 

Normal operation is going to produce one or more probability clusters centered near the 
origin as shown in Figure 12.  Hyper-plane decision boundaries (Box 7 of Figure 8) can 
be placed around those clusters by training a decision tree . 

If an attack is underway, it can be expected to produce an abnormal set of conditions at a 
node or a set of nodes that no longer respond network management messages (Box 8 of 
Figure 8)   Those abnormalities will create a probability cluster that is different from the 
normal clusters, as shown in Figure 5. With a significant probability mass outside of the 
normal range, the detection algorithms will declare that an attack may be underway. 

Network Attack Tests 

In its current form 8 N-gram vectors per node result in an 8-dimensional cluster set. 
(Three-dimensions are shown in this illustration.) 

As was mentioned earlier, network management messages from TRW's internal Intranet 
are being used to supply "normalcy" data for our prototype system. Based on our 

Figure 13 Nine-dimensionai N-gram status display of 28 nodes 
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existing archive, we have extrapolated a set of rough parameter estimates for seven 
anomalous network conditions: 

1. Unusually light traffic load 

2.Unusually heavy traffic load 

3. Broadcast storm 

4. Stalled router 

5. Jabbering node 

6. Physically degraded link 

7. Denial of service attack 

Based on the scatter plot concept of Figures 11 and 12, we have developed a prototype 
visualization tool in Visual Basic. This visualization tool is intended to assist the 
network manager in simultaneously monitoring the status of all nodes and providing a 
means for visually observing anomalous clustering patterns. Figure 13 shows a sample of 
this network-wide scatter plot display in monostatic mode. This tool is also capable of 
presenting a stereo version of the display for 3-dimensional visualization. 
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