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1    Significant Accomplishments 
The objective of this project was to develop capabilities for fault tolerance 
and live software upgrades for application systems developed within the 
CORBA distributed programming model. The project has been a remarkable 
success, and has resulted in: 

• Design and implementation of the CORBA-based Eternal system 

• Adoption of a new industry standard for Fault Tolerant CORBA 

• Formation of a startup company to commercialize the technology 
developed in this project. 

The project has also resulted in the design of the Java-based Aroma sys- 
tem, which has similar functionality to that of Eternal. It is very satisfying 
that this DARPA-funded research has proceeded so rapidly to a successful 
demonstration, standardization and commercial products. 

1.1    Challenges for Consistent Replication 

The Eternal system provides fault tolerance for CORBA applications by 
replicating the application objects. The purpose of replication is to provide 
multiple, redundant, identical copies, or replicas, of an object so that the 
object can continue to provide useful services, even if some of its replicas 
fail, or the processors hosting some of its replicas fail. For replication to 
work correctly, all of the replicas of an object must have consistent state, 
under both fault-free and recovery conditions. 



To ensure strong replica consistency of the application, Eternal requires 
application objects to be deterministic in their behavior so that if two replicas 
of an object start from the same initial state, and have the same sequence of 
messages applied to them, in the same order, the two replicas will reach the 
same final state. Eternal provides mechanisms that address the challenges in 
maintaining replica consistency: 

• Ordering of Operations. All of the replicas of each replicated ob- 
ject must perform the same sequence of operations in the same order 
to achieve replica consistency. Eternal achieves this by exploiting a 
reliable totally ordered multicast group communication system for con- 
veying the HOP invocations (responses) to the replicas of a CORBA 
server (client). 

• Duplicate Operations. Replication, by its very nature, may lead 
to duplicate operations. For example, when every replica of a three- 
way actively replicated client object invokes a method of a replicated 
server object, every server replica will receive three copies of the same 
invocation, one from each of the client replicas. Eternal ensures that 
such duplicate invocations (responses) due to a replicated client (server) 
object are filtered so that the server (client) object receives only a single 
copy of every distinct invocation (response). 

• Recovery. When a new replica is activated, or when a failed replica 
is recovered, before it issues an invocation, performs an operation, or 
issues a response, it must have the same state as the other replicas of 
the object. Eternal provides mechanisms for retrieving the state from 
an existing operational replica of the object and transferring the state 
to the new or recovering replica. 

• Multithreading. Many commercial ORBs and CORBA applications 
employ multithreading, a significant source of non-deterministic behav- 
ior. Replicas of a multithreaded object might become inconsistent if 
the threads, and the operations that they execute, are not carefully 
controlled. For multithreaded ORBs that allow an object to execute 
multiple operations simultaneously, Eternal provides mechanisms to 
ensure replica consistency, regardless of the multithreading of the ORB 
or the application. 

Eternal's OMG-compliant fault tolerance infrastructure consists of CORBA 
objects above the ORB and mechanisms underneath the ORB, as shown in 
Figure 1. Because the components above the ORB are CORBA objects, they 
can also be replicated, with a sufficient number of replicas distributed across 
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Figure 1: Eternal's OMG-compliant fault tolerance infrastructure. 

the system. Eternal's mechanisms, on the other hand, must be present on 
every processor within the fault tolerance domain. 

1.2    Replication Management 

To manage the replication of an object, Eternal employs the notion of an 
object group, where the members of the group correspond to the replicas of 
an object. In Eternal, both client and server objects can be replicated and, 
thus, constitute object groups. 

The Replication Manager is a crucial component of the infrastructure, 
and handles the creation, deletion and replication of both the application ob- 
jects and the infrastructure objects within the fault tolerance domain. The 
Replication Manager replicates objects, and distributes the replicas across 
the system. Although each replica of an object has an individual object ref- 
erence, the Replication Manager fabricates an object group reference for the 
replicated object that clients use to contact the replicated object. Through 
inheritance, the Replication Manager incorporates the functionalities of the 
Property Manager, Generic Factory and Object Group Manager. 

The Property Manager allows a user to assign values to a number of fault 



tolerance properties for every application object that is to be replicated. 
Eternal provides the user with the flexibility to configure the replication 
of every application object by assigning the values of the following fault 
tolerance properties: 

• Replication Style - stateless, actively replicated, cold passively repli- 
cated or warm passively replicated. 

• Membership Style - addition of replicas to, or removal of repli- 
cas from, the object group is application-controlled or infrastructure- 
controlled. 

• Consistency Style - replica consistency (including replication, recov- 
ery, checkpointing, logging, etc.) is application-controlled or infrastruc- 
ture-controlled. 

• Factories - objects that create and delete the replicas of the object. 
• Initial Number of Replicas - the number of replicas of the object 

to be created initially. 
• Minimum Number of Replicas - the number of replicas of the 

object that must exist for the object to be sufficiently protected against 
faults. 

• Checkpoint Interval - the frequency at which the state of an object 
is to be retrieved and logged for the purposes of recovery. 

The Generic Factory allows users to create replicated objects in the same 
way that they would normally create unreplicated objects. This interface is 
inherited by the Replication Manager to allow the application to invoke the 
Replication Manager directly to create and delete replicated objects. When 
asked to create a replicated object through its Generic Factory interface, the 
Replication Manager, in turn, delegates the operation to the factories on the 
processors where the individual replicas of the object are to be created. 

The Object Group Manager allows users to control directly the creation, 
deletion and location of individual replicas of an application object. While 
this violates replication transparency (because the user is explicitly aware 
of the replicas of an object), and must be used with care so that replica 
consistency is maintained, it is useful for expert users who wish to exercise 
direct control over the replication of application objects. 

Infrastructure-controlled Membership Style in conjunction with infra- 
structure-controlled Consistency Style is favored for the development of fault- 
tolerant CORBA applications, because it provides the maximal ease of use- 
and transparency to the application, with the assurance of strong replica 
consistency, under both fault-free and recovery conditions. 



Actively Replicated 
Client Object A 

Actively Replicated 
Server Object B 

Duplicate invocation 
suppressed (a) 

^ft ^Ä 
Duplicate responses 

suppressed 

Rusively Replicated 
Client Object A 

■ 'Replica I 
(Backup) 

Replici'2- 
IFtiaaryi 

. • Keplica I 
>*   (Prtmuyj 

ftssively Replicated 
Server Object B 

Replica2 
(Backup) 

Rcplica'3. 
(Backup) 

(b) 

Figure 2: Two of the Replication Styles supported by the Eternal system (a) 
active replication and (b) warm passive replication. 

1.3    Transparency via Interception 

Eternal's Interceptor is a non-ORB-level, non-application-level component 
that transparently "attaches" itself to every CORBA object at runtime, with- 
out the object's or the ORB's knowledge, and that can modify the object's 
behavior as desired. The Interceptor ensures that the application's HOP 
messages (containing the client's invocations and the server's responses), 
originally destined for TCP/IP, are diverted instead to the Replication Mech- 
anisms. The advantage of the Interceptor, located underneath the ORB, is 
not only its transparency to the ORB and to the application, but also its 
implementation in an ORB-independent manner. 

Eternal's Interceptor currently employs the library interpositioning hooks 
found on Unix and Windows NT. Library interpositioning involves the trans- 
parent runtime replacement of the socket-level library routines used by the 
CORBA application for connection establishment over TCP/IP. Eternal's 
Interceptor captures, and redefines, those routines so that the application's 
TCP/IP connections are transparently converted into connections to the 
Replication Mechanisms. Once the connections are established, the Inter- 
ceptor adds no overhead in the path of message communication because 
the application automatically (and unknowingly) uses the connection to the 
Replication Mechanisms to send HOP messages. 

1.3.1    Replication Mechanisms 

To facilitate replica consistency, the Replication Mechanisms convey the HOP 
messages of the CORBA application using the reliable totally-ordered multi- 



cast messages of the underlying Totem multicast group communication pro- 
tocol. 

Eternal's Replication Mechanisms perform different operations for the 
different replication styles, as shown in Figure 2. For an actively replicated 
server (client) object, each replica responds to (invokes) every operation. 
Thus, the Replication Mechanisms deliver every HOP invocation (response) 
intended for a replicated server (client) to every server (client) replica through 
the Interceptor. For active replication, the failure of a single active replica 
is masked due to the presence of the other active replicas that are also per- 
forming the operation. 

For a passively replicated server (client) object, only one of the replicas, 
designated the primary, responds to (invokes) every operation. In this case, 
the Replication Mechanisms deliver every HOP invocation (response) only to 
the primary server (client) replica. In the case of warm passive replication, 
the backup replicas are synchronized periodically with the primary replica. 
In the case of cold passive replication, the backup replicas are not loaded, but 
Eternal periodically retrieves, and stores in a log, the state of the primary 
replica. In the event that the primary replica fails, one of the backup replicas 
takes over as the new primary replica. 

1.4    Fault Detection and Notification 

The Fault Detector is capable of detecting host, process and object faults. 
Each application object must inherit a monitorable interface to allow the 
Fault Detector to determine the object's status. The Fault Detector commu- 
nicates the occurrence of faults to the Fault Notifier. 

On receiving reports of faults from the Fault Detector, the Fault Notifier 
filters them to eliminate any inappropriate or duplicate reports. The Fault 
Notifier then distributes fault event notifications to all of the objects that 
have subscribed to receive such notifications. The Replication Manager is 
one such subscriber. 

Eternal allows the user to influence fault detection for an object through 
the following fault tolerance properties: 

• Fault Monitoring Style - the object is monitored by periodic "ping- 
ing" (pull monitoring) of the object, or by periodic "i-am-alive" mes- 
sages (push monitoring) sent by the object. 

• Fault Monitoring Granularity - the replicated object is monitored 
on the basis of a replica, a location, or a location-and-type. 



• Fault Monitoring Interval - the frequency at which an object is to 
be "pinged" to detect if it is alive or has failed. 

1.5    Logging and Recovery 

Every replicated CORBA object can be regarded as having three kinds of 
state: application state (known to, and programmed into the object by, the 
application programmer), ORB state (maintained by the ORB for the object) 
and infrastructure state (invisible to the application programmer and main- 
tained for the object by Eternal). Application state is typically represented 
by the values of the data structures of the replicated object. ORB state is 
vendor-dependent and consists of the values of the data structures (last-seen 
request identifier, threading policy, etc.). Infrastructure state is independent 
of, and invisible to, the replicated object as well as the ORB, and involves 
information that Eternal maintains for consistent replication. 

Eternal's Recovery Mechanisms ensure that all of the replicas of an ob- 
ject are consistent in application, ORB and infrastructure state. The Recov- 
ery Mechanisms handle the restoration of a new primary replica's state, as 
well as the periodic retrieval of an operational primary replica's state. The 
transfer of state to a new or recovering replica includes the transfer of ap- 
plication state to the new replica, ORB state to the ORB hosting the new 
replica, and infrastructure state to the Recovery Mechanisms that manage 
the new or recovered replica. To enable application state to be captured and 
logged for the purposes of recovery, every replicated CORBA object must 
inherit the Checkpointable interface that contains methods for retrieving 
(get_stateO) and assigning (get_stateO) an object's state. 

Because state retrieval from an existing active (primary passive) replica 
occurs at a different point in the message sequence from the assignment of 
the retrieved state to the new active (backup passive) replicas, the Recovery 
Mechanisms at the state retrieval and assignment locations synchronize the 
retrieval and state assignment messages. Furthermore, the Recovery Mecha- 
nisms log all new invocations and responses that arrive for a replica while its 
state is being assigned for delivery after the state assignment is complete. 

To enable incoming response messages to be matched with their corre- 
sponding invocations, and to ensure that the- target application objects re- 
ceive only one copy of every distinct invocation or response intended for them, 
the Recovery Mechanisms insert an operation identifier into the Eternal- 
specific header for each outgoing HOP message. 

By deriving operation identifiers from the unique totally-ordered sequence 



numbers assigned by the underlying multicast group communication protocol 
to each message that it delivers, the Recovery Mechanisms on different pro- 
cessors assign the same operation identifier for a specific operation. Thus, if 
a three-way replicated client invokes an operation, the three duplicates (one 
from each replica) of the same invocation will carry the same operation iden- 
tifier in the Eternal-specific header; distinct invocations are assigned distinct 
operation identifiers. At the Recovery Mechanisms hosting the target server 
replicas, the first of the three invocations to arrive is delivered to the server; 
the examination of the operation identifiers of the subsequently received du- 
plicates leads to their suppression. 

1.6    Implementation and Performance 

The current implementation of Eternal is capable of providing transparent 
fault tolerance to unmodified applications running over unmodified commer- 
cial ORBs (VisiBroker, Orbix, TAO, ORBacus, e*ORB, CORBAplus, om- 
niORB2 and ILU), over standard operating systems (Solaris 2.x, Red Hat 
Linux 6.0 and HP-UX 10.20). 

To measure the performance of Eternal for the different replication styles 
and levels of fault tolerance, we used a simple test application developed with 
the VisiBroker 3.2 ORB. The measurements were taken over a network of 
six dual-processor 167 MHz UltraSPARC workstations, running the Solaris 
2.5.1 operating system and connected by a 100 Mbps Ethernet. The graph 
in Figure 3 shows the throughputs obtained with this test application for 
the following cases, which are listed in the order of increasing level of fault 
tolerance: 

• Case 1: Unreplicated client and server objects without the Eternal 
system. The throughput is determined only by the ORB mechanisms. 

• Case 2: Three-way active replication of both client and server objects 
without majority voting. Reliable totally ordered multicasts without 
either the message digests or the signatures are used. The throughput is 
dictated by the cost of interception, active replication and multicasting, 
in addition to the costs for case 1. The Totem protocol is employed in 
this case. 

• Case 3: Three-way active replication of both client and server objects 
with majority voting. Secure reliable totally ordered multicasts with 
message digests are used. The throughput is dictated by the cost of 
message digests, in addition to the costs for case 2. The SecureRing 
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Figure 3: Performance of the Eternal system. 

protocol is employed in this case. 
• Case 4: Three-way active replication of both client and server objects 

with majority voting. Secure reliable totally ordered multicasts with 
message digests and digitally signed tokens are used. The throughput 
is dictated by the cost of signatures, in addition to the costs for case 3. 
The SecureRing system is employed in this case. 

For cases 2, 3 and 4, up to six multicast messages were sent with each to- 
ken visit, where each multicast message encapsulates possibly multiple HOP 
messages. While the cost of computing a single signature is spread over six 
messages, the use of digital signatures is nevertheless computationally ex- 
pensive, as can be seen from the overheads of the Eternal system in case 4. 
However, the results indicate that the overheads of the Eternal system with- 
out signatures (cases 2 and 3) are low. In particular, the overheads are in 
the range of 7-15% for remote invocations for the triplicated clients and the. 
triplicated servers of case 2.   In all of the cases, the overheads are quite 
reasonable. 



1.7    Live Software Upgrades 

In the Eternal system, objects are replicated to provide fault-tolerance. The 
Eternal Evolution Manager exploits this replication to support upgrades of 
CORBA application objects. It is assumed that the application programmer 
writes the new version of the application code himself. The Eternal Evo- 
lution Manager performs offline analysis necessary for live upgrades, and it 
automatically performs the sequence of operations necessary to perform the 
actualy upgrade. 

We achieve upgrades without interrupting the executing application by 
performing a series of individual replacements which nudge the application 
towards an upgraded state but which do not affect the behavior of the pro- 
gram. We use automatically-generated intermediate objects that contain new 
objects with new interfaces that coexist with old objects still using their old 
interfaces. The replicas being upgraded are replaced, one at a time, by their 
intermediate versions, which continue to execute the old methods. Once all 
of these intermediate versions are in place, we effect an atomic switchover 
after which only the new methods are invoked. Then, to clean up the pro- 
gram, we replace the intermediate objects one at a time with final versions 
containing only the new version of the code, all the while executing the new 
methods. 

When an object's interface changes as the result of an upgrade, the sit- 
uation becomes more complex. Suppose that the upgrade of B involves a 
signature change in method B.mQ. If we were to upgrade only B, and ignore 
the other application objects, any other object that attempts to invoke B.m() 
would cause an error. Therefore, we use coordinated upgrade sets - groups 
of objects that are evolved "together" - to upgrade multiple objects at the 
same time. 

We have demonstrated interface preserving and interface changing up- 
grades running independently of the rest of the Eternal System. Specifically, 
we started several objects at the same time so that they appeared to be repli- 
cas of each other, and we upgraded these pseudo-replicas. We are continuing 
to work on integrating the Evolution Manager with the rest of the Eternal 
system so that real replicas can be upgraded. 

1.7.1    Interface Comparisons 

As discussed in previous reports, there are two basic types of CORBA ob- 
ject upgrades. The easier of the two occurs when the applications' IDL files 
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(which define the interfaces between CORBA objects) do not change. In 
this case, we do not need to check how the changes in one object's interface 
propagate to the other objects; the code modifications are confined to the 
particular object. The more difficult scenario occurs when an object's inter- 
face changes. This sort of upgrade may require modification of other objects 
that use this interface. The mechanics of the upgrade process depend largely 
on which type of upgrade is being performed. Therefore, the first type of 
code analysis that we completed determines whether changes have occurred 
between IDL files. We want to be able to compare two IDL files and deter- 
mine whether the interfaces that they describe are equivalent. A simple diff 
old.idl new.idl is inadequate. For example, a diff would indicate that these 
two interfaces are different when, in fact, they are equivalent. 

interface hat { 
readonly attribute short size; 
readonly attribute short color; 
} 

interface hat { 
readonly attribute short size, color; 
} 

To recognize the equivalence of interfaces such as this, the IDL files are 
parsed with the JavaCC compiler (which conveniently contains a CORBA- 
IDL grammar in its free distribution package). The grammar contains state- 
ments such as: 

void interface_header()   : 
O 
{ 
"interface" identifier() [ inheritance.specO ] 

} 
} 

We are able to add Java to this source code, so that certain operations 
are performed whenever an appropriate part of the grammar is encountered. 
For example, whenever we encounter an interface-header, we would like to 
create a new Java InterfaceObj in which we will store information about the 
interface's methods and attributes, as well as the name of the interface which 
this object represents. We accomplish this code by modifying the code above. 

11 



void interface.headerO : 
{ 
String interfaceName; 
} 
i 
"interface" interfaceName = identifierO [ inheritance specO ] 
i 
thelnterface = new interfaceObj(interfaceName); 
} 
} 

There are similar methods which parse attribute and method declarations 
and code is similarly added to store methods and attributes in InterfaceObj. 
Comparing two IDL files now becomes quite easy. You just run each IDL 
file through the parser, and then compare the resulting data structures using 
the overloaded equality operator. 

1.7.2    Automatically-Generated Intermediate Code 

We have also implemented a tool that generates automatically the interme- 
diate code necessary for live upgrades, because generating it by hand is quite 
tedious and error-prone. 

For example, if the old and new versions of the CountObj code have the 
following method: 

void UpdateCount(int updatedCountVal) 

the following intermediate version would be generated automatically. It con- 
tains a member variable switchFlag, indicating if the switchover has occurred, 
as well as both the old and new versions of the method updateCountQ. 

class CountObj.inter { 
unsigned short switchFlag; 
CountObj *oldCount; 
CountObj.new *newCount; 

void UpdateCountCint updatedCountVal)  { 
if  (switchFlag ==0) 
oldCount->UpdateCount(updatedCountVal); 
else 
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newCount->UpdateCount(updatedCountVal); 

} 
} 

We have written additional code that determines where the implementa- 
tions of code versions differ. 

1.7.3    Automatically-Generated State Transfer Code 

Relying heavily on the JavaCC parser package, we now have the ability to 
automatically generate state transfer code to be used with generic C++ 
applications. The methods generated are char *SendState() and Receive 
State(char *theState). char *SendState returns a formatted character string, 
encapsulating the state of the object, and ReceiveState(char *) assigns the 
state from this character string. 

All of the member variables are accounted for in this state transfer code. 
We assume that state will be transferred only between method invocations; 
consequently, we do not worry about local variables (those declared within 
method bodies). This assumption not only simplifies our code, but also 
is necessary to preserve replica consistency. Method invocation boundaries 
provide a convenient point of synchronization. We have no way of ensuring 
(with our current implementation) that replicas are executing identical parts 
of methods at the same time. Therefore, if we were to transfer state while a 
method was executing, different replicas would likely transfer different states, 
and replica consistency would be lost. 

Inevitably, there will be cases in which the programmers wish to modify 
the way in which we transfer state. If an object contained a member variable 
char *hostname and state was being transferred to an object on a different 
host, some other mechanism (presumably a call to gethostname()) would be 
required to properly initialize the variable. 

We have designed a GUI to achieve this level of user-interaction with the 
generation of the state transfer code. The GUI allows you to delete certain 
member variables, or if a member variable is a non-basic type, portions of a 
member variable from the state. The GUI additionally allows you to modify 
the automatically generated state transfer code. 
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Pointers 

Handling pointers is somewhat more complicated.   Consider the following 
example from the automatically-generated SendState code: 

int testlnt = 10; 
int *pointerInt = fetestlnt; 

Before properly handling pointers, the state we would have transferred 
would have looked like: 

wrongstateCi] = "int;testlnt;10" 
wrongstate[i+l] = "int*;pointerlnt;10" 

With proper pointer handling, the state now looks like 

correctstate[i]  = "int;testlnt;10" 
correctstate[i+1]  = "int*;pointerInt;LABEL=i" 

More complicated examples include pointers that do not point to another 
variable (double *ptrDouble = new double(15);), forward pointers (pointers 
that point to variables not yet declared) and pointers to non-user-defined 
types. 

Cycles 

Once we started handling pointers, we had to deal with cyclic pointers. Con- 
sider the following example: 

Class cycleTest { 
cycleTest *back; 
cycleTest *forward; 

} 

cycleTest a, b; 

a.back = ftb; 
b.forward = &a; 
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A naive SendState method would encounter a, follow its back pointer to 
b follow b's forward pointer to a, follow a's back pointer to b, and so on. A 
more realistic example of a cycle like this is a linked list, where the cycle is 
of arbitrary length. We would like to be able to detect a cycle the first time 
a variable occurs for the second time. 

We handle this problem by keeping track of the pointer's address itself, in 
addition to the address to which the pointer points. The pointer s addresses 
are stored in a hash table, and as soon as a duplicate is detected, the state 
transfer code backs and moves on to the next variable. 

1.7.4    State Conversion Code 

Normally, state transfer is performed between objects of identical type, which 
therefore have the same state variables. However, the work on state transfer 
originally began as a spin-off from work on the Evolution Manger so this 
assumption was never made. When an upgrade is taking place, and the state 
of an old version of an object is transferred to a new version of the object, 
the old object's state might not correspond to the state variables present in 

the new object. 
Initially, we thought about creating a ConvertState(char *) method which 

would be invoked between char *SendState() and ReceiveState(char ) to 
deal with this problem. It was decided, however, that this additional level 
of indirection would slow down the state transfer mechanism. Instead, we 
modify a copy of the char *SendState() code that the earlier mechanisms 
generated. If member variables from the old code are no longer present in 
the new code, their presence in the char *SendState() code is simply deleted 
If the new version includes a new member variable, initialization Code (which 
is elicited from the user through another GUI) is incorporated into the char 
*SendState() code. 

More difficult to handle is the case in which two member variables repre- 
sent the same concept, but have different implementations For example, in 
an old version of code, information might be stored in a linked list, while in a 
new version it is stored in a stack. The ability to automatically produce code 
that handles conversion between similar yet dissimilar member variables is 
currently beyond the scope of the project. So for now the user must provide 
the conversion code by interacting with a GUI. 
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1.8    Resource Management 

Resource management in Eternal is implemented as a collection of CORBA 
objects which can be replicated and, thus, benefits from Eternal's fault tol- 
erance. The Profilers receive information from the Replication Manager that 
includes the names of the methods invoked, the invoking methods, the name 
of the processors where the objects are located, and the time of the invo- 
cations. For each local method invoked, the Profiler records the time of 
invocation, and when the local method terminates, it computes the mean 
time of invocation and the mean number of invocations of each other method 
during one invocation of the local method. When a local method invokes a 
remote method, the Profilers compute the mean time required for the remote 
method invocation. The Profilers operate on a timescale of seconds, and use 
the above information to construct a local profile of the method invocations. 

The Resource Manager maintains a global view of the system and does 
not need to act individually upon each measurement made by each Pro- 
filer. Periodically, the Profilers generate a report to the Resource Manager, 
which constructs a profile for the entire system. Based on the Profilers' re- 
ports, the Resource Manager estimates a system-wide mean time required 
to invoke each method both locally and remotely and the mean number of 
invocations of other methods made by this method. The Profilers also com- 
pute the current load on the processor's resources (processing and memory) 
and periodically transmit this information to the Resource Manager. The 
Resource Manager then decides which is the most appropriate processor to 
host a new object replica or detects an overloaded processor and uses the 
migration mechanisms to reallocate objects to different processors. 

1.8.1    Dynamic Real-Time Scheduling 

The Eternal system uses the least laxity scheduling dynamic real-time schedul- 
ing algorithm. In a multi-processor environment, least laxity scheduling has 
proven to be quite effective since it allows the invocation of a method of a 
task to take the task's laxity with it, from one processor to another, yielding 
a system-wide scheduling strategy that requires only local computation. In 
least laxity scheduling, the laxity of a task represents a measure of urgency 
of the task, and is defined as: 

Laxity = Deadline — ComputationTime 

To determine the real-time priority of the application objects, the laxity 
value of the objects is augmented with the importance that these objects have 

16 



for the application tasks. Then, the objects are executed according to their 
real-time priorities. We use the Real-Time (RT) Scheduling class provided 
by the Solaris operating system which provides some degree of real-time 
support. Threads in the real-time class have a higher priority than threads 
belonging to any other class, and they run until they voluntarily surrender 
the processor. The Scheduler is instrumented to allow threads from the other 
classes with lower priorities also to be able to operate in the system. 

In Eternal, the Scheduler works in cooperation with the Profilers and the 
Resource Manager. The Scheduler keeps a Ready Queue that determines 
the local order in which the objects are dispatched in the processor. The 
order is determined by the laxity value of the task invoking the object and 
the importance the object has for the task. When a new task arrives, the 
Scheduler calculates a target deadline for the task and then subtracts the 
task's estimated computation time to yield the initial laxity for the task. 
The LocateRequest and LocateReply messages sent by a client object are 
used to identify the initiation of a new task. A LocateRequest message is 
sent by a client object to obtain the current addressing information for a 
server object. A LocateReply is a reply message sent by the server object in 
response to the received LocateRequest message. 

However, the actual scheduling begins on receipt of a Request message. 
A Request message is sent by the client object to invoke an operation of the 
server object. As the server object executes, it is scheduled according to the 
task's laxity. The laxity value is adjusted depending on other server objects 
located on the same processor. The object with the minimum laxity value is 
scheduled first. If a server object invokes a method of another server object, 
the invocation message carries the task's laxity with it. That laxity is used 
to schedule the method on that processor. 

When the task completes, a Reply message is sent to the client object. 
Upon receipt of the Reply message, the Scheduler calculates the Residual 
Laxity of the task. The Residual Laxity gives us a good estimate of the 
current system conditions. If the task execution is completed more quickly 
than was expected, the task laxity increases; otherwise, the task laxity is 
reduced. If the Resource Manager estimate of the task's computation time 
is correct, the Residual Laxity is the same as the Initial Laxity. 

1.8.2    Object Migration 

Object migration involves policies that determine how migration is used and 
mechanisms for the actual transfer.   Resource management in Eternal in- 
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volves two migration algorithms that decide to migrate objects when the 
load on a processor is too high or when the latency of a task is too high. 
In Eternal, the Profilers measure the load on the processors and monitor 
the behavior of the objects and periodically report this information to the 
Resource Manager. The Resource Manager in an effort to keep a uniform 
load on all of the processors, uses the Cooling algorithm to migrate objects 
from an overloaded processor. It selects the objects that are contributing the 
most to the load on the overloaded processor and tries to migrate them to the 
least-loaded processor. The Resource Manager uses the Hotspot algorithm 
when a task is not meeting its deadlines. It selects the object whose methods 
cause the larget increase in the latency to the completion of the task and 
tries to migrate it in the least loaded processor. 

To migrate an object, a new object (identical to the one to be migrated) 
is created on another machine, and the state of the old object is transferred 
to the new object on that machine. Then, the old object is destroyed and 
the new object takes over. Migrating an object involves: (1) transfer of 
the virtual memory of the object, (2) access to any open files using their 
file descriptors, and, (3) transfer of object-specific information such as the 
object's identifier, the user's id and the current working directory. 

The costs of migration depends on both the policies and the mechanism 
to be used. The cost of the mechanisms consists of the cost to transfer open 
files and the speed of transferring virtual memory. Our recent results show 
that the cost of the policies depends on the frequency at which the Profilers 
provide feedback information to the Resource Manager. The more frequent 
the Profiler reports information, the more accurate the processor load is 
represented by the Resource Manager, which decides the object migration. If 
this information is sent very frequently, the Resource Manager may decide to 
migrate objects more often than is required. The application tasks themselves 
determine how frequently the Profilers report to the Resource Manager. 

1.9    The Aroma System 
The Java platform provides two distinct models for distributed computing, 
namely JavalDL and JavaRMI. The JavalDL model is a concrete Java imple- 
mentation of the CORBA specification, and promotes interoperability with 
other CORBA-compliant objects. The basic JavaRMI model (RMI-JRMP) 
is targeted at pure Java client-server applications, and provides easy-to-use 
interfaces with simple semantics. RMI-JRMP exploits the Java Remote 
Method Protocol (JRMP), a TCP/IP-based protocol that leverages Java- 
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specific mechanisms such as object serialization, distributed garbage collec- 
tion and dynamic class-loading. 

To support the integration of legacy code with JavaRMI applications, 
the basic JRMI model was extended to support CORBA's HOP protocol. 
RMI-IIOP bridges the JavaRMI and CORBA models, preserving the simple 
interfaces of RMI-JRMP, exploiting the CORBA2.3 pass-by-value seman- 
tics in lieu of object serialization, and doing away with Java-isms such as 
distributed garbage collection and dynamic class-loading. The RMI-IIOP 
model is the communication model preferred in the Enterprise Java Beans 
(EJB 1.1) specification. 

The Aroma System is middleware that extends the JRMI model with 
support for replication. Thus, Aroma can be exploited by distributed Java 
applications to provide reliable, highly-available operation. Aroma has three 
objectives: 

• Transparency. The Aroma mechanisms should be completely invisi- 
ble to the application. There is no need for the application developer to 
use special constructs or modify the application in any way, to exploit 
the replication mechanisms. As a result, even existing applications can 
take advantage of the Aroma infrastructure for replication. 

• Strong Replica Consistency. By definition, replicas must be in- 
distinguishable from each other both in internal state as well as in 
exhibited behavior. Aroma supports replication of both stateful and 
stateless objects. Thus, to ensure "correct" replicated behavior, Aroma 
provides strong replica consistency, even in the presence of faults. 

• Flexibility. Typical applications involve upwards of 5000 objects dis- 
tributed over a limited number of processors. Aroma support both 
passive and active replication styles, allowing the system administrator 
the flexibility of allocating available resources in an optimal manner. 

An overview of the Aroma System architecture is provided in Figure 4, 
and consists of three main components, the Aroma Interceptor, The Aroma 
Replication Manager and a reliable, totally-ordered multicast protocol, namely 
Totem. The reliable, ordered delivery guarantees are exploited to enforce 
replica consistency, and to facilitate communication within and across replica 
groups. 
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Figure 4: The Aroma system. 

1.9.1    Interceptor 

The Aroma Interceptor consists of a custom copy of the Java libnet network- 
ing library, and a Delegate object. The libnet library mimics the interface 
of the standard libnet Java networking library, and internally forwards the 
calls to an instance of a Delegate class. Aroma provides a base Delegate 
object and a derived AromaDelegate object. The base Delegate object del- 
egates the calls to the standard libnet library, thereby supporting standard 
JRMI behavior. In this mode, we can exploit the Interceptor for parsing 
standard JRMI messages, debugging, or for gathering statistcal information 
about the frequency and content of JRMI invocations. However, by using the 
AromaDelegate class, we map intercepted socket calls onto a "connection in- 
terface"; this interface translates calls meant for a TCP/IP socket, into calls 
made on a local socket to the Aroma Replication Manager. Subsequently, 
all intercepted TCP/IP messages are diverted, via this connection, to the 
Aroma replication mechanisms. 

Our Interceptor design provides a double advantage. It mimics a standard 
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interface provided with the JVM; thus, the methods that it implements are 
guaranteed to be supported by all operating systems that support the Java 
Virtual Machine. Furthermore, the Interceptor is introduced to the JVM 
at runtime. Because it requires no modification or addition to the applica- 
tion, it can be exploited both by existing applications and by applications 
under development. Experiments have shown that the Interceptor functions 
successfully with both RMI-JRMP and RMI-IIOP models and adds minimal 
overhead to the system. 

1.9.2    Replication Manager 

The Aroma Replication Manager is a daemon that runs outside the Java 
Virtual Machine, and is the cornerstone of the replication process. The 
Replication Manager defines five distinct components: Acceptor, Connec- 
tor, Scheduler, Group Manager, and Multicast Adapter. The connector and 
scheduler components comprise the Aroma Message Handler, and implement 
the core replication mechanisms. 

• Acceptor. The Acceptor listens on the well-known port associated 
with the Aroma daemon, accepts incoming requests, determines the 
identity of the requestor (group identity), and spawns off an appropriate 
Connector instance to handle further requests from that client JVM. 

• Connector. The Acceptor establishes a dedicated Connector for every 
new replica detected on the local host. The Connector controls the 
channel between the JVM and the physical network, separating replica- 
specific information from the details associated with the group. The 
Connector maintains the mapping between a replica identifier, and its 
associated group identifier. Network-bound messages are "patched" to 
contain only group-level identifiers, and are adapted for multicast to 
all replicas of the target object; the changes are reversed on incoming 
messages bound for the JVM. The Connector encapsulates the replica 
consistency mechanisms required to overcome non-determinism in the 
JRMI architecture. 

• Scheduler. The Scheduler supervises message queueing at the mul- 
ticast adapter and the connectors, routing messages between them as 
required. All network bound messages are collected from the connec- 
tors and enqueued at the adapter for multicast. Inbound messages 
from the network are dequeued from the adapter and routed to the 
appropriate connectors for delivery to the corresponding replicas. The 
Scheduler detects and discards duplicate messages. It can be extended 
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to undertake the logging of invocations and responses required for re- 
covery. The Scheduler exploits the services of the Group Manager to 
discard all incoming messages destined for groups that do not host a 
replica on the local processor. 

• Group Manager. The Group Managers on the distributed Aroma 
Replication Managers systemwide, collaborate to maintain information 
about the groups supported by the system, and the membership of each 
group. All "membership" messages are delivered, by the Scheduler, to 
the local Group Manager. The Group Manager also identifies groups 
that host a replica on the local host, and the Connector associated with 
it. 

• Multicast Adapter. The Multicast Adapter defines simple open, 
send, poll, receive, close semantics, that are implemented by a concrete 
multicast protocol, in our case, Totem. By mapping our requests onto 
this generic MulticastAdapter interface, we can exploit any reliable, 
totally-ordered multicast protocol that can support this interface. 

Currently, we have implemented different components of the Aroma Sys- 
tem and are working on integration of these mechanisms. The Aroma System 
has been designed to handle both RMI-JRMP and RMI-IIOP; the prototype 
implementation is being tested with RMI-JRMP. Aroma requires a Java2 
Standard Edition (J2SE) development kit, although it can easily be modi- 
fied to support earlier versions. Our primary development platform is Solaris 
2.6; the code has also been tested successfully on Linux (Mandrake 6.0, 2.2.9 
kernel) using the Blackdown-Sun Microsystems port of the J2SE. Future di- 
rections include identifying JRMP-specific and HOP-specific requirements 
during recovery, and implementing mechanisms to meet these requirements. 
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Systems, V. Kalogeraki, P. M. Melliar-Smith and L. E. Moser, submitted. 

46. Recovery of Strongly Consistent Replicated CORBA Objects, P. Narasim- 
han, L. E. Moser and P. M. Melliar-Smith, submitted. 

47. Transparent Consistent Replication of JavaRMI Objects, N. Narasimhan, 
L. E. Moser, P. M. Melliar-Smith, submitted. 

48. Dynamic Scheduling of Distributed Method Invocations, V. Kalogeraki, 
L. E. Moser, P. M. Melliar-Smith, submitted. 

49. The Eternal System, P. Narasimhan, L. E. Moser and P. M. Melliar- 
Smith, Encyclopedia of Distributed Computing, ed. J. Urban and P. Das- 
gupta, Kluwer Academic Publishers (2000), in preparation. 

50. Distributed Object Computing, L. E. Moser and P. M. Melliar-Smith, En- 
cyclopedia of Distributed Computing, ed. J. Urban and P. Dasgupta, Kluwer 
Academic Publishers (2000), in preparation. 
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4    Other Activities 
We list below meetings attended, presentations and software demonstrations, 
and visitors to the project. 

4.1 DARPA Meetings, Presentations, Demos 

L. E. Moser and P. M. Melliar-Smith, Demonstration of Totem at the DoD 
Research Advocacy Day and also at DARPA, Washington, DC (May 1997) 

L. E. Moser, Extending CORBA with Fault Tolerance and Real Time, Dis- 
tributed Objects Session, DARPA PI meeting, Washington, D.C. (July 1997) 

L. E. Moser, The Eternal System, DARPA Fault-Tolerant Computing Work- 
shop, Jet Propulsion Laboratory, Pasadena, CA (September 1997) 

L. E. Moser, The Eternal System, 20th annual C3A Technical Exchange 
Meeting (TEM 97), Rome Labs (December 1997) 

P. M. Melliar-Smith, The Realize System, DARPA-OMG-MCC Workshop 
on Compositional Software Architectures, Monterey, CA (January 1998) 

L. E. Moser, The Eternal System, DARPA-OMG-MCC Workshop on Com- 
positional Software Architectures, Monterey, CA (January 1998) 

L. E. Moser, The Eternal System, DARPA Adaptive Architecture Workshop, 
SRI International, Menlo Park, CA (May 1998) 
P. M. Melliar-Smith, L. E. Moser, R. Koch and M. Santos, Demonstration, 
The Realize System, Totem System and Atomic Group System, DARPA PI 
Meeting, San Diego, CA (July 1998) 
P. M. Melliar-Smith, L. E. Moser, DARPA PI Quorum Meeting, Poster Pre- 
sentation on the Realize System, Atlanta, GA (February 1999) 

L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, DARPA Information Sur- 
vivability Conference, Demonstration of the Eternal System, Hilton Head, 
SC (January 2000) 

4.2 Other Meetings, Presentations, Demos 
P. Narasimhan, Exploiting the Internet Inter-ORB Protocol to Provide Fault 
Tolerance for CORBA, 3rd Conference on Object-Oriented Technologies and 
Systems, Portland, OR (June 1997) 
P. Narasimhan, The Interception Approach to Providing CORBA with Fault 
Tolerance, 3rd Conference on Object-Oriented Technologies and Systems, 
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Portland, OR (June 1997) 

L. E. Moser, The Eternal System, OOPSLA Workshop on Dependable Dis- 
tributed Object Systems, Atlanta, GA (October 1997) 

L. E. Moser, P. M. Melliar-Smith, V. Kalogeraki, P. Narasimhan, N. Narasim 
han, L. Tewksbury and K. Kihlstrom, Fault-Tolerant Distributed Systems, 
Jet Propulsion Laboratory (November 1997) 

L. E. Moser, The Eternal System, Annual UCSB College of Engineering 
Research Review (November 1997) 

L. E. Moser and P. M. Melliar-Smith, Strategies for Building Fault-Tolerant 
Distributed Systems, Channel Islands Chapter American Society of Naval 
Engineers, Pt Mugu (February 1998) 

P. M. Melliar-Smith, Supporting Enterprise Applications with the Eternal 
System, IEEE Conference on Enterprise Networking and Computing '98, 
ICC/SUPERCOMM '98, Atlanta, GA (June 1998) 

P. M. Melliar-Smith, The Realize Middleware for Replication and Resource 
Management, IFIP International Conference on Distributed Systems Plat- 
forms and Open Distributed Processing, Middleware '98, The Lake District, 
England (September 1998) 

P. M. Melliar-Smith, L. E. Moser, Priya Narasimhan, Vana Kalogeraki, Lau- 
ren Tewksbury, Fault Tolerance for CORBA, OMG Meeting, Burlingame, 
CA (November 1998) 

K. Berket, The InterGroup Protocols: Scalable Group Communication for 
the Internet, Third Global Internet Mini-Conference, GLOBECOM, Sydney, 
Australia (November 1998) 

R. R. Koch, Global Causal Ordering with Minimal Latency, Conference on 
Parallel and Distributed Computing and Networks, Brisbane, Australia (De- 
cember 1998) 

R. R. Koch, Timestamp Acknowledgments for Determining Message Stabil- 
ity, Conference on Parallel and Distributed Computing and Networks, Bris- 
bane, Australia (December 1998) 

V. Kalogeraki, Dynamic Modeling of Replicated Objects for Soft Real-Time 
Distributed Systems, IEEE 4th Workshop on Object-Oriented Real-Time 
Dependable Systems, Santa Barbara, CA (January 1999) 

P. M. Melliar-Smith, L. E. Moser, Priya Narasimhan, OMG Meeting, Wash- 
ington, DC (January 1999) 

P. M. Melliar-Smith, L. E. Moser, P. Narasimhan, OMG Meeting, Philadel- 
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phia, PA (March 1999) 

V. Kalogeraki, Using Multiple Feedback Loops for Object Profiling, Schedul- 
ing and Migration in Soft Real-Time Distributed Object Systems, IEEE 2nd 
International Symposium on Object-Oriented Real-Time Distributed Com- 
puting, Saint Malo, France (May 1999) 
P. Narasimhan, Providing Support for Survivable CORBA Applications with 
the Immune System, IEEE 19th International Conference on Distributed 
Computing Systems, Austin, TX (May/June 1999) 
L. E. Moser, P. M. Melliar-Smith, Priya Narasimhan, Vana Kalogeraki, Lau- 
ren Tewksbury, Ruppert Koch, Nitya Narasimhan, Wenbing Zhao, OMG 
Fault Tolerance for CORBA Submitters Meeting, Santa Barbara, CA (June 
1999) 

L. E. Moser, A Fault Tolerance Framework for CORBA, IEEE 29th Annual 
International Symposium on Fault-Tolerant Computing, Madison, WI (June 
1999) 
L. E. Moser, P. M. Melliar-Smith, Priya Narasimhan, OMG Meeting, San 
Jose, CA (August 1999) 
P. Narasimhan, Replication and Recovery Mechanisms for Strong Replica 
Consistency in Reliable Distributed Systems, Fifth ISSAT International Con- 
ference on Reliability and Quality Design, Las Vegas, NV (August 1999) 

L. E. Moser, Multicast Group Communication for CORBA, IEEE Inter- 
national Symposium on Distributed Objects and Applications, Edinburgh, 
Scotland (September 1999) 

P. M. Melliar-Smith, The Eternal System, Iona Technologies, Dublin, Ireland 
(September 1999) 

R. R. Koch, A Group Communication Protocol for CORBA, IEEE Interna- 
tional Workshop on Group Communication, Aizu, Japan (September 1999) 

P. M. Melliar-Smith, The Eternal System: An Architecture for Enterprise 
Applications, IEEE Third International Enterprise Distributed Object Com- 
puting Conference, Mannheim, Germany (September 1999) 

P. Narasimhan, Enforcing Determinism for the Consistent Replication of 
Multithreaded CORBA Applications, IEEE 18th Symposium on Reliable 
Distributed Systems, Lausanne, Switzerland (October 1999) 

P. Narasimhan, Transparent Fault Tolerance for CORBA, IEEE Workshop 
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on Reliable Middleware, Lausanne, Switzerland (October 1999) 

P. M. Melliar-Smith, Fault Tolerant CORBA, OMG Meeting, Cambridge, 
MA (November 1999) 

L. E. Moser, The Eternal System, Telcordia, Morristown, NJ (November 
1999) 

P. M. Melliar-Smith, Fault Tolerant CORBA, OMG Meeting, Mesa, AZ (Jan- 
uary 2000) 
L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, R. Koch, W. Zhao, Demon- 
stration of the Eternal System, Air Defense, OMG Meeting, Mesa, AZ (Jan- 
uary 2000) 
V. Kalogeraki, A CORBA Framework for Managing Real-Time Distributed 
Multimedia Applications, IEEE 33rd Hawaii International Conference on 
System Sciences, Maui, HI (January 2000) 

L. E. Moser, P. M. Melliar-Smith, P. Narasimhan, Demonstration of the 
Eternal System, Air Defense, OMG Meeting, Denver, CO (March 2000) 

V. Kalogeraki, Dynamic Scheduling for Soft Real-Time Distributed Object 
Systems, IEEE 3rd International Symposium on Object-Oriented Real-Time 
Distributed Computing, Newport Beach, CA (March 2000) 

P. Narasimhan, Gateways for Accessing Fault Tolerance Domains, Middle- 
ware 2000: IFIP/ACM International Conference on Distributed Systems 
Platforms New York, NY (April 2000) 

L. E. Moser, P. M. Melliar-Smith and their students also made presentations 
and gave software demonstrations for the following visitors to the project. 

4.3    Visitors to the Project 

Professor Klaus Petermann, Technical University of Berlin 
Professor Ben Wah, University of Illinois 
Dr. Kevin C. Almeroth, Georgia Institute of Technology 
Dr. Ender Ayanoglu, Bell labs, Lucent Technologies 
Dr. Rachid Guerraoui, Ecole Polytechnique Federale de Lausanne 
Dr. David Blumenthal, Georgia Institute of Technology 
Richard Thibault and Bruce Canna, The Foxboro Company, Foxboro, MA 
Professor Dan Gajski, University of California, Irvine 
Professor Douglas Schmidt, Washington University, St. Louis 
Dr. Michael Reiter, AT&T Laboratories 
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Dr. Gil Neiger, Intel 
Dr. Brian A. Hanson, Director, Panasonic Technologies, Inc 

with 12 other Directors of Panasonic's USA Laboratories 
Keith Bromley, NRad, San Diego 
Dennis Hollingworth, Trusted Information Systems 
C. K. Toh, Hughes Research Laboratory 
Brian Norling, Director of Engineering, Space and Launch Systems, 

Litton Guidance and Control 
Professor Partha Dasgupta, Arizona State University 
Professor Hermann Kopetz, Technical University of Vienna, Austria 
James Kirkley, John Norris and Brian Whittle, QAD, Carpenteria, CA 
Dr. David Lomet, Microsoft Corporation 
Dr. Lewis B. Oberlander, Dr. Won Kang, Francis Tam, 

Motorola Corporation, Arlington Heights, IL 
Dr. Gregory Papodopolous, Dr. Emil Sarpa, Dr. John M. Hale, 

Georgi C. Johnson, Sun Microsystems 
Professor Douglas Schmidt, Washington University, St. Louis 
Dr. Stephen Wright, Mathematics and Computer Science Division, 

Argonne National Laboratory 
Professor Georgis Giannakis, University of Virginia 
Gerhard Beenan, Greg Hoffman, Mihir Ravel, Tektronix 
Mark Gibbs and John Dix, Network World 
Mike Toma and Vic Walker, jeTech Data Systems, Inc, Camarillo, CA 
Professor Odd Pettersen, Norwegian University of Science and Technology 
Professor Robert Blumofe, University of Texas, Austin 
Dr. Peter Feldmann, Bell Labs 
Professor Yale Patt, University of Michigan 
Professor David Du, University of Minnesota 
Achilleas Anastasapoulos, University of Southern California 
Professor Upamanyu Madhow, University of Illinois 
Dr. Ragunathan Rajkumar, Carnegie Mellon University 
Ali Dasdan, University of Illinois 
Professor Dian Zhou, University of North. Carolina 
Bwolen Yang, Carnegie Mellon University 
Edward Chang, Stanford University 
Professor Peder Emstad, Norwegian University of Science and Technology 
Tom Bruggere, Mentor Graphics 
Pascal Felber, Oracle Corporation 
Victor Giddings, Objective Interfaces 
Chris Smith, Ericsson 
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Shalini Yajnik, Lucent Technologies 
Patrick Hurley, Vaughn Combs, Program Managers from 

Air Force Laboratory Rome 
Dr. Thomas McVittie, Joe Hutcherson, Mark Jean, NASA JPL 
Dr. Shahzad Aslam-Mir, Indresh Chaudhari, Joey Garon, Yuval Levy, Vertel 
Richard Santagelo, Guy Savage, QAD 
Frank Careccia, Punkaj Jain, Anne Greenlee, Erik O'Neill, Inprise 
Benn Schreiber, Santa Barbara Technology Incubator 

4.4    Industrial Interest 

The Totem system has attracted considerable interest from individuals in a 
number of organizations. 

Joe Caruso, Leslie Madden and Michael Masters of the HiPerD project 
at NSWC, Dalgren, have expressed interest in using the Eternal and Realize 
systems for the SC21 project. Quite extensive discussions have been con- 
ducted with Joe Caruso on our experience with CORBA and on the use of 
CORBA, Eternal and Realize in the next generation projects at NSWC. 

Keith Bromley of NRaD visited our Lab in October 1997. Keith had heard 
Louise Moser's presentation at the DARPA meeting in Washington, D.C. in 
July 1997, and had recommended that we present our work at the Jet Propul- 
sion Laboratory (JPL) to Leon Alkalai, Roger Lee and the other researchers 
at JPL involved in the next generation space program X2000. Louise Moser 
made a presentation in September 1997 at the DARPA sponsored workshop 
on fault tolerance at JPL. Louise Moser and Michael Melliar-Smith and five 
of their students made a second presentation at JPL in November 1997. JPL 
is very interested in using the technology being developed by Louise Moser 
and Michael Melliar-Smith and their students at UCSB, both in this project 
and in our other DARPA sponsored projects. 

Patrick Hurley, our project manager at Rome Labs for the Eternal system 
project, is also interested in using this technology. 

Dr. Deborah Agarwal, our former student and now a research scientist at 
Lawrence Berkeley National Laboratory, is currently collaborating with us to 
develop protocols for DOE's Distributed Collaboration Environments to allow 
scientists to collaborate over the Internet. Two of sour students, Karlo Berket 
and Nityä Narasimhan, spent the summer of 1997 at LBNL. 

Dr. Hossein Moiin, our former student and an employee of Sun Microsys- 
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terns continues to seek our advice and to provide equipment to us. At Sun, 
we have given talks on Totem, Eternal and Realize, presented the air traffic 
control demonstration, and have met with people in Sun's STREAMS, NEO, 
and High Availability groups. 

Gradimir Starovic and Martin Mayhead of SUN IMP in England, who 
build fault-tolerant real-time systems using Sun processors, are also inter- 
ested in using Totem in telco applications. Hossein Moiin has recently moved 
to London to work with Sun IMP. The SUN IMP group has partnered with 
us on our Proposal to the OMG on Fault Tolerance for CORBA. 

Michel Gien, Michel Tombroff and Stephane Ciceron of Chorus Systems, 
recently purchased by Sun, have expressed interest in Eternal and Realize 
for use with their COOL ORB. Sun Microsystems has purchased Chorus 
Systems to strengthen Sun's real-time capability. 

In December 1997 we presented work on Eternal and Realize at Sun Mi- 
crosystems in Menlo Park, and Greg Papodopolous, the Chief Technical Of- 
ficer of Sun Microsystems, and some of his colleagues visited our laboratory 
in March 1998. In his subsequent debriefing with the Dean of Engineering 
at UCSB, Dr. Papodopolous commented on the remarkably close correspon- 
dence between the research being undertaken by us and the research needs 
of Sun. 

Richard Thibault and Bruce Canna of The Foxboro Company, Foxboro, 
Massachusetts, manufacturers of industrial control systems are currently 
starting to develop an object-oriented infrastructure for their control system. 
Initially, they wanted to use Totem to support a replicated name server. Dur- 
ing the visit, however, it became clear that the Eternal and Realize projects 
correspond more closely to their needs. 

David McKnight, Corey Minyard and Gregory Graham of Nortel are im- 
plementing a version of Totem in Nortel's ATM telephone switching network 
to operate across the United States. Two of our students, Ruppert Koch 
and Efstratios Thomopoulos, spent the summer of 1997 at Nortel as interns 
working on that implementation. 

Dr. Richard Chenovick of Raytheon Electromagnetic Systems Division 
(now a subsidiary of E-Systems) has visited our laboratory to discuss our 
technology for various applications. 

Brian Norling of Litton Guidance and Control, Space and Launch Sys- 
tems, visited our laboratory in November 1997. Litton is interested in build- 
ing commercial low-earth-orbit satellites using essentially the same strategies 
and technologies envisaged by JPL for deep-space missions. 
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Lewis Oberlander, Francis Tarn and Won Kang of Motorola's Cellular 
Infrastructure Group at Arlington Heights, Illinois visited the project in Jan- 
uary 1998. They are building a new infrastructure for their land-based and 
land-mobile products, but are not involved in the space-based systems such 
as Iridium. A part of their plans involves extensive use of object-oriented 
technology and a real-time ORB, possibly the Sun/Chorus COOL ORB or 
Doug Schmidt's TAO ORB. 

Much of what we described to the group from Motorola about Eternal 
and Realize exactly matched their needs, and our overheads are acceptable 
for their application. They were very concerned, and rightly, about our 
testing procedures and the consequent quality of our code for their telco 
service-critical applications. They were also concerned that our timescale 
is still too long for their needs; they wanted a prototype in 3Q98 and a 
commercial quality product in 2Q99. We have advised them that we might 
have something more experimental than a prototype in 3Q98 and that there 
is no way, even if Motorola gives us an army of programmers, that a product 
could reach telco service-critical quality by 2Q99. 

However, it is our belief that Motorola, like NASA JPL, NSWC, Rome 
Labs, Nortel and Foxboro before them, have nowhere else to go to get trans- 
parent object replication, fault tolerance and live upgrades, and they have 
not denied that. We plan to continue to work with Motorola and to have 
them experiment with and evaluate our Eternal and Realize systems as soon 
as it becomes possible to provide useful functionality to them. 

Following the presentation of our proposal on Fault Tolerance for CORBA 
at the OMG meeting at Burlingame, CA, in November 1998, we were ap- 
proached by several commercial ORB vendors. Major players in the enter- 
prise software market who approached us were Dave Curtis and Jeff Mischin- 
sky of Inprise, Martin Chapman of Iona, and Gary Hallmark of Oracle. We 
were also approached by smaller specialist real-time ORB vendors, including 
Tom Greene of Expersoft/Vertel, Ken Black and Jon Currey of Highlander 
Communications and Bill Beckwith and Victor Giddings of Objective Inter- 
face Systems. Our proposal was submitted jointly with Sun Microsystems 
with whom we are, of course, also in contact. 

An appropriate strategy for real-time applications will be to integrate 
our technology into the ORB, thus avoiding conflicts between multiple levels 
of scheduling. Specialized real-time ORB vendors are, however, small com- 
panies with limited development and marketing resources. They are very 
interested in integrating our technology into their ORBs but are unlikely to 
be able to do so without strong customer encouragement. We will work with 
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military agencies, such as Rome Labs and NSWC, and also with Motorola 
and Foxbro, to provide that encouragement. 

In contrast, the enterprise market, driven by the Internet, has much 
shorter development cycles and a substantial demand for fault tolerance is de- 
veloping quite quickly. Few enterprise applications require real-time deadline 
scheduling, but many of them can benefit from distributed resource alloca- 
tion and from monitoring and profiling. The design of the Eternal system, 
with its emphasis on application transparency and operation with existing 
unmodified commercial ORBs, makes it particularly attractive to the enter- 
prise market, and also to ORB vendors seeking to exploit this market rapidly. 

Several of the ORB vendors expressed great interest in the use of our 
Eternal and Realize technology with their ORBs. We were invited to present 
and demonstrate the technology to them. We have visited Inprise Corpora- 
tion and Objective Interface Systems in January 1999, Iona in August 1999 
and Vertel in November 1999. We are investigating with these ORB vendors 
the possibility of licensing our products as augmentations to their ORBs, or 
of licensing our code and technology for integration into their ORBs. 

We worked with these ORB vendors, and several other companies includ- 
ing Lucent Bell Laboratories, Oracle, Lockheed Martin, Ericsson and Sun 
Microsystems, to develop a common proposal for the standard for fault toler- 
ance in CORBA. The specification provides the stringent fault tolerance that 
is needed for major government projects, and is based on the DARPA-funded 
research of this project. The OMG standard for Fault Tolerant CORBA was 
approved in March 2000, and commercial products should become available 
during the Fall of 2000. 

Considerable interest is also starting to develop in fault tolerance for Java 
programs, particularly from Sun Microsystems and Oracle. Although the 
standardization process has not yet started for Java, much of the CORBA 
fault tolerance technology is directly transferable to Java, and we expect a 
commercial Java product to be available on a similar timescale. 

In October 1999, because of our leadership in the development of the Fault 
Tolerant CORBA standard, we were approached by Dr. Thomas McVittie 
and his team at NASA JPL. They sought fault tolerance technology for their 
Shared Net project being built for the US Marine Corps. The JPL team has 
visited Santa Barbara twice and we have negotiated a contract with them 
that will lead to on-ship operation in early 2001. 

The Eternal system has been demonstrated at the OMG meeting in Mesa, 
AZ, in January 2000, the DARPA Information Survivability Conference in 
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Hilton Head, SC, in January 2000, and the OMG meeting in Denver, CO, 
in March 2000. As a result of these demonstrations, more than 40 com- 
panies have approached us and requested evaluation copies of the Eternal 
system. Among those companies were Alcatel, AT&T, Boeing, Deutsche 
Telekom, General Dynamics, GTE BBN, Hitachi, IO Software, Litton, Lock- 
heed Martin, Lucent Technologies, Motorola, NTT, Naval Surface Warfare 
Center (Aegis), Oracle, Siemens, Sprint, Sun Microsystems, Thompson/CSF 
and Xerox. 
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